An improved molecular dynamics technique that allows reduction of the computation time required in ion bombardment simulations is presented. This technique has been used to study the influence of the target temperature and structure on the argon sputtering of silicon. Molecular dynamics simulations of l keV Ar+ ion bombardment of silicon were carried out for several types of sample: (100) crystalline at 0 K, (100) crystalline at 300 K, and amorphous at 300 K. The yield of the sputtering process and the energy distribution of the sputtered atoms have been obtained. These results show that the sputtering process depends on the target surface binding energy which, in turn, is very sensitive to the structure of the sample surface.
DOI: 10.1179/mst.1997.13.11.893
PDF: Molecular dynamics simulations of ion bombardment processes