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Why Atomistic?

Complex processing conditions: "~

Many different, simultaneous,
non-negligible mechanisms

Detailed: Direct input from ab-initio parameters,

facilitates model calibration

Predictive: physically-based simulations

Like fabrication, KMC simulates individual
devices (accounts for Variability)

... and is now feasible (small devices)



The Atomistic KMC Approach

Lattice atoms Molecular Dynamics:

are just At = 1E-15s
vibrating

But only defect
atoms move
(diffusion hops) KMC output

So, KMC follows
defect atoms only




Atomistic KMC
capabillities



Damage model: highly adaptive

= Accumulates I's & V's as
agglomerates.

* These agglomerates behave both
as Amorphous Pockets and
Clusters, and have size-dependent
activation energies.

as implanted

= Amorphization: When local (XTEM)

damage concentration reaches a
threshold value.
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Implant damage
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Amorphization vs Target Temperature
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Amorphization: Dose rate & Temp.
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Damage anneal: Extended defects

Realistic Accurate
311’s & DLoops
Simulation Experiment vs. annealing time
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It’s important to predict 311—->DLoop transition
because thermal budget can change considerably
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Dopant clusters: Activation / deactivation

as many cluster compositions as needed
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Interfaces: trapping and segregation

Dose loss cannot be neglected for small volume devices
* Multiple species (B, As...) simultaneously

« Combined Interface saturation level

Experiment Simulation
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* Also reproduces Energy, Dose and Time dependencies
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Recrystallization, impurity sweep

1. Recryst. front moves with
thermally activated velocity

2. Controlled ‘

trapping/deposition of
Impurities (snow plow)

3. Above solubility: Deposits
minimum-energy impurity
clusters
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Charge levels

* Each state implemented as a separate
particle:
* Example: B;Y, B*, B
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Field effects

Fields due to: = Electric Charge
= Ge composition
= Stress (anisotropic)

Formation-energy gradient: different jump probabilities

Example: Electric field
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Fermi level effects

Excellent agreement with
experimental diffusion data,
under intrinsic and extrinsic conditions

Temperature: 800°C
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Recent progress
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Si-Ge interdiffusion:
Atomistic Implementation

Different probability for an | or V to
move a Si or a Ge atom

Thus, | or V supersaturation effects
are automatically accounted for

Dopants: Dg o DC,, Dg, o« DC,,
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Si-Ge interdiffusion: Atomistic implementation

« Excellent agreement
with experimental self-
diffusivities for all Ge
compositions

* Provides a means for
calibration of |, V
parameters in SiGe

10000/T (K1)



Effect of anisotropy on {311} ripening
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Effect of anisotropy on {311} ripening
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Test for strain-induced I-diffusion anisotropy

Remarkable effect
on {311} ripening:
suggests a test
for strain-induced
|-diffusion
anisotropy
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Implanters: Batch 20 KeV. 1x104 Gelem?. 90°C
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Atomistic KMC enables quantitative analysis of

amorphization vs. different Implanter parameters
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Implanters: Single-wafer

Amorphized volume vs. scan speed ribbon beam
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Almost insensitive to scan speed
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Implanters: Single-wafer

Amorphized volume vs. beam width ribbon beam
30 KeV, 90°C .
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Effect of de-focused beam:
Abrupt change beyond a given beam width
at critical amorphizing dose
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Device fabrication
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All mechanisms are always active
simultaneously:

No need for simplifying assumptions
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Other results: KMC-Device
1. A. Asenov - DADOS

2. M. Hane (NEC) - Own KMC /\
implementation

3. Chartered - DADOS

4. Synopsys - KMC/DADOS L
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Future Prospects
of Atomistic
Process Simulation



Alternative Technologies

Nothing beats MOSFETs overall for
Boolean logic operations at comparable
risk levels (ITRS Analysis)

« MOSFETs (Planar, FDSOI, FInFET,
MultiGate...) likely to continue for the
coming years:

* lon Implant: less relevant

 Growth, Etch, Deposition: dominant
role of interfaces
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Simulation Requirements for Upcoming Devices
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Simulation Requirements for Upcoming Devices

Atomic-scale
resolution
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Lattice KMC: Grain boundaries

If the destination site of a
jump is at a grain boundary
(A2).

1. Check the energy of sites
belonging to other grain
orientations (B) around
destination site.
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Lat'“Ce KMC SIMULATION | EXPERIMENT

TR
g b [[E

Can predict different
morphologies depending
on processing conditions
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Lattice KMC

Grains: a) Growth-Shrinkage
b) Faceting
c) Diffusion along grain boundaries

Aluminum, deposited @ 80 °C, 0.25 um/min:
e, i

Py

as Deposited 2 2 2> 2> > > 2sanneal @ 300 °C

Amorphous materials need to be incorporated
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In summary...

e Atomistic KMC can handle many mechanisms
simultaneously.

e Basic microscopic mechanisms and ab-initio
parameters can be directly plugged In.

e KMC iIs a predictive process simulation technique.

e The goal Is to attain a simulator that, although not
particularly accurate for any given simulation never
gives a totally wrong result, even for previously
unexplored conditions.

e Lattice KMC looks like a promising process
simulation technigue for upcoming device
generations.



