Current Capabilities and Future Prospects of Atomistic Process Simulation

M. Jaraiz Univ. of Valladolid, Spain

Recent collaborators

- Univ. of Valladolid:
 - Pedro Castrillo
 - Ruth Pinacho
 - Jose E. Rubio
- Synopsys:
 - Ignacio Martin-Bragado
- Chartered:
 - Caroline Mok
- NXP:
 - Julien Singer

Outline

- The atomistic Kinetic Monte Carlo (KMC) scheme
- Atomistic KMC: Current capabilities
- Recent developments
- Prospects of Atomistic Process Simulation
- Conclusions

Why Atomistic?

 <u>Complex processing conditions</u>: Many different, simultaneous, non-negligible mechanisms

- <u>Detailed</u>: Direct input from ab-initio parameters, facilitates model calibration
- <u>Predictive</u>: physically-based simulations
- Like fabrication, KMC simulates individual devices (accounts for Variability)
- ... and is now feasible (small devices)

The Atomistic KMC Approach

Lattice atoms are just vibrating

Molecular Dynamics: Δt ≈ 1E-15s

But only defect atoms move (diffusion hops)

KMC output

So, KMC follows defect atoms only **Δt: ps** ... hours

Atomistic KMC capabilities

Damage model: highly adaptive

- Accumulates I's & V's as agglomerates.
- These agglomerates behave both as Amorphous Pockets and Clusters, and have size-dependent activation energies.
- Amorphization: When local damage concentration reaches a threshold value.

Implant damage

Realistic

Simulation

Experiment

Amorphization Accurate

Amorph. Depth vs. Implant energy

Amorphization vs Target Temperature

Accurate

Si, 1-10¹⁵ cm² 3.57-10¹² cm²/s

Symbols: Experim. (RBS) Lines: Simulat.

Amorphization: Dose rate & Temp.

Accurate

Amorphization Temperature vs. Dose Rate

 $(Dose = 1E15 cm^{-2})$

Symbols: Experim. Lines: Simulat.

Damage anneal: Extended defects

Realistic

Accurate

It's important to predict 311→DLoop transition because thermal budget can change considerably

Dopant clusters: Activation / deactivation

as many cluster compositions as needed

Interfaces: trapping and segregation

Dose loss cannot be neglected for small volume devices

- Multiple species (B, As...) simultaneously
- Combined Interface saturation level

Experiment

Simulation

Also reproduces Energy, Dose and Time dependencies

Recrystallization, impurity sweep

- 1. Recryst. front moves with thermally activated velocity
- 2. Controlled trapping/deposition of impurities (snow plow)
- 3. Above solubility: Deposits minimum-energy impurity clusters

Charge levels

- Each state implemented as a separate particle:
- Example: B_i⁰, B_i⁺, B_i⁻

Field effects

Fields due to: Electric Charge Ge composition Stress (anisotropic)

Formation-energy gradient: different jump probabilities

Example: Electric field

$$\frac{P_{+x}}{P_{-x}} = \exp\left(\frac{jq\mathcal{E}_x\lambda}{k_BT}\right)$$

Fermi level effects

Excellent agreement with experimental diffusion data, under intrinsic and extrinsic conditions

Recent progress

Si-Ge interdiffusion: Atomistic implementation

- Different probability for an I or V to move a Si or a Ge atom
- Thus, I or V supersaturation effects are automatically accounted for
- **Dopants:** $D_B \propto DC_I$, $D_{Sb} \propto DC_V$

Si-Ge interdiffusion: Atomistic implementation

- Excellent agreement with experimental selfdiffusivities for all Ge compositions
- Provides a means for calibration of I, V parameters in SiGe

Effect of anisotropy on {311} ripening

relaxed (or isotropic stress)

Effect of anisotropy on {311} ripening

Dissol. **Test for strain-induced I-diffusion anisotropy**

time const.

Remarkable effect on {311} ripening: suggests a test for strain-induced **I-diffusion** anisotropy

Implanters: Batch

vs. several

parameters

30 KeV, 1×10¹⁴ Ge⁺/cm², 90^oC

Atomistic KMC enables quantitative analysis of amorphization vs. different Implanter parameters

Implanters: Single-wafer

Amorphized volume vs. scan speed

ribbon beam

Almost insensitive to scan speed

Implanters: Single-wafer

Amorphized volume vs. beam width

ribbon beam

Effect of de-focused beam: <u>Abrupt change</u> beyond a given <u>beam width</u> at critical amorphizing dose

Device fabrication

All mechanisms are always active simultaneously:

No need for simplifying assumptions

Other results: KMC-Device

1. A. Asenov - DADOS

2. M. Hane (NEC) - Own KMC implementation

3. Chartered - DADOS

4. Synopsys - KMC/DADOS

Future Prospects of Atomistic Process Simulation

Alternative Technologies

Nothing beats MOSFETs overall for Boolean logic operations at comparable risk levels (ITRS Analysis)

- MOSFETs (Planar, FDSOI, FinFET, MultiGate...) likely to continue for the coming years:
 - Ion Implant: less relevant
 - Growth, Etch, Deposition: dominant role of *interfaces*

Simulation Requirements for Upcoming Devices

Simulation Requirements for Upcoming Devices

Lattice KMC: Grain boundaries

If the destination site of a jump is at a grain boundary (A2):

 Check the energy of sites belonging to other grain orientations (B) around destination site.

2. If energy(B1) < energy(A2) then the final site is B1.

Lattice KMC

SIMULATION

20 nm

EXPERIMENT

20 nm

Al Pt & Cu

Can predict different morphologies depending on processing conditions

Lattice KMC

Grains: a) Growth-Shrinkage

- b) Faceting
- c) Diffusion along grain boundaries

Aluminum, deposited @ 80 °C, 0.25 µm/min:

as Deposited $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2$ s anneal @ 300 °C

Amorphous materials need to be incorporated

In summary...

- Atomistic KMC can handle many mechanisms simultaneously.
- Basic *microscopic mechanisms* and *ab-initio parameters* can be directly plugged in.
- KMC is a *predictive* process simulation technique.
- The goal is to attain a simulator that, although not particularly accurate for any given simulation *never gives a totally wrong result*, even for previously unexplored conditions.
- Lattice KMC looks like a promising process simulation technique for upcoming device generations.