Atomistic modeling of defect diffusion in SiGe

P. Castrillo, R. Pinacho, J. E. Rubio, L. M. Vega and M. Jaraiz

University of Valladolid, Spain

Outline

- Motivation
- Modeling of unstrained SiGe
- Modeling of strain effects
- Kinetic Monte Carlo simulations
- Prospects and conclusions

SiGe and Strain in MOSFETs

- mobility ↑
- drive currents ↑

Tyagi, INTEL, IEDM 05

Lee et al, IEDM 02

Gate oxide Strained Si Strained SiGe Strained Si BOX

↓ 13 nm

Antoniadis, IBM J. Res. Dev. 2006

Simulation of SiGe processing

- New issues: Ge content and strain
 - Modification of diffusivities
 - Modification of the electronic structure
 - Dopant segregation in Si/SiGe
 - Si-Ge interdiffusion
 - Strain anisotropy and 3D geometries
- Drawbacks for continuum simulators:
 - Many equations (many mechanisms, 3D...)
 - Parameters (difficult correlation with microscopic properties)

Atomistic Kinetic Monte Carlo (KMC)

- Detailed atomistic description of defects and dopants.
- Can handle sizes and times for device processing.
- Implemented in DADOS (incorporated into Sentaurus Process Simulator).

Features of KMC simulators

- Computation time increases moderately with number of mechanisms.
- Direct plug of *ab-initio* or basic experimental data.
- Inherently 3D.
- More advantageous for deep submicron, far from equilibrium,...

Atomistic diffusion scheme

- Ge atom counters per box
- Formation energy (E_{form}): depends on Ge, strain,...
- Jump probability rejection as a function of local ∆E_{form}

 $D_B \propto D_I C_I$

 $(D_{Sb} \propto D_V C_V)$

Dopant diffusion: assisted by defects

B (inmobile) I (mobile) + $B \rightarrow BI$ (mobile)

Si-Ge interdiffussion scheme

- I: box1 \rightarrow box2 P(Ge_{1 \rightarrow 2}) \propto n_{Ge1}
- In SiGe, $D_{Si} \neq D_{Ge} \Rightarrow P(Ge_{1 \rightarrow 2}) = \frac{\alpha_I n_{Ge1}}{\alpha_I n_{Ge1} + (n_{at} n_{Ge1})}$
- Similarly for Vs.

α_I = Ge/Si transportfraction of an I8

Ge and Si self-diffusivities in SiGe

 E and S linear with Ge content: excellent agreement with experimental data.

Experiments: Zangenber et al, 2001; Strohm, 2002; Werner et al, 1985; Bracht et al, 1998; Silvestri et al, 2006

Dopants: diffusion and segregation vs. Ge content **Example: Boron** • Diffusivity: $D_B \approx D_{Bi}^0 \frac{[BI^0]}{[B^-]}$ depends on: Interstitial transport: D_IC_I • $E_m(BI^0) - E_b(BI^-) + (e(BI^-) - E_i) + (E_i - E_F)$ "chemical" "extrinsic" Segregation: • $E_{form}(B^-) = E_{form}(B^0) + (e(B^-) - E_i) + (E_i - E_F)$ "chemical" "extrinsic" No need for B-Ge pair model assumption ready for other dopants.

10

Dopants: diffusion in intrinsic unstrained Si_{1-x}Ge_x

- Charge levels: quadratic with Ge content
- Good fit to experiments.

Experiments: Kringhøj et al, 1996; Laitinen, 2004; Kuo et al, 1995; Uppal et al, 2004

Strain

Example: SiGe on Si Biaxial strain, equivalent to hydrostatic + uniaxial \triangle vol. < 0 $\epsilon_{\perp} > 0$

Effects on diffusion:

- $E_{form}(I) \uparrow \Rightarrow D_B \downarrow$
- $E_{form}(V) \downarrow \Rightarrow D_{Sb}^{\uparrow}$
- Changes in band and charge levels $\Rightarrow \Delta D$
- Diffusion jump anisotropy -

Dopants in strained SiGe

Example: Boron
again on:
$$D_B \approx D_{Bi}^0 \frac{[BI^0]}{[B^-]}$$
 depends

• D_IC_I

• $E_m(B_i^0) - E_b(B_i^-) + (e(B_i^-)-E_i) + (E_i^- - E_F)$ "chemical" "extrinsic"

- Band changes: hydrostatic + band splitting
- Charge levels: assumed proportional to hydrostatic change of E_{gap}

Strain: consequences on extrinsic diffusivity

 Si/SiGe heterostructure bands at process temperatures

 10^{19} cm^{-3} uniformly B-doped Si/ Si_{0.7}Ge_{0.3} abrupt structure at T = 900°C.

• Effect of band-bending on extrinsic B diffusivity

KMC simulations Boron diffusion: Si vs. SiGe

Retarded by both Ge content and compressive strain

KMC simulations Boron segregation to SiGe

96 hours at 850°C Dots: Experiment Lines: simulation

- No assumption of B-Ge pairs
- Simultaneous interdiffusion

Experiment: Lever et al, J. Appl. Phys, 1998

KMC simulations

Antimony diffusion in Si/SiGe/Si structures

T = 1028°C t = 30 min

Sb (V-assisted) faster in SiGe due to both Ge and strain

Experiment: Kringhøj et al, Phys. Rev. Lett, 1996

What's next ?

- Ready for general strain tensors
- Defect-induced strain

 Effect of strain on extended defect transformations
Example: {311} to Dislocation Loops

Conclusions

- KMC, which is advantageous for the complex structures of ultimate scaled CMOS, can also efficiently account for SiGe composition and strain effects.
- Since it can take microscopic, basic parameters as input, it can be used to test *ab-initio* calculation results.
- Furthermore, it can be used to calibrate continuum-based process simulators.