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An accurate physically-based Fermi-level modeling approach, amenable to be implemented in an
atomistic device-size process simulator, is reported. The atomistic kinetic Monte Carlo method is
used for point and extended defects, in conjunction with a quasi-atomistic, continuum approach
treatment for carrier densities. The model implements charge reactions and electric bias according
to the local Fermi-level, pairing and break-up reactions between particles, clustering-related dopant
deactivation and Fermi level-dependent solubility. We derive expressions that can be used as a
bridge between the continuum and the atomistic frameworks. We present the implementation of
two common dopants, Boron and Arsenic, using parameters that are in agreement with both ab-
initio calculations and experimental results.

I. INTRODUCTION

Current microelectronic technology is facing increas-
ingly complex phenomena related to very high-doping,
reduced thermal budget (non-equilibrium conditions),
and three dimensional effects. Such conditions require
a deep insight into the underlying physical mechanisms
in order to correctly model the material properties. In
particular, high-doping concentrations demand a cor-
rect description of diffusion under extrinsic conditions.1,2

Other charge-related issues are Fermi-level dependent
solubility,3,4 clustering-related dopant deactivation,5 and
high-damage electrical compensation.

Continuum modeling, based on solving partial dif-
ferential equations (PDE) discretized by the finite el-
ement method, has been used since the 1980’s, but
this method is limited by the number of equations that
can be solved without running into convergence insta-
bilities. Moreover, meshing issues and dimensionality
make this approach extremely complicated in 3D. The
International Roadmap for Semiconductors 20036 estab-
lishes the “Modeling hierarchy from atomistic to con-
tinuum” among the difficult challenges that need to be
solved before 2010. The atomistic kinetic Monte Carlo
(kMC) method,7 has proven to be a powerful approach
that allows the inclusion of comprehensive, physically
based models without significantly degrading the sim-
ulator’s performance. Some semiconductor companies8,9

and software vendors10,11 have already started to develop
simulators based on this atomistic kMC approach. Mod-
elling Fermi level effects is one of the critical steps in
developing a comprehensive kMC simulator. Here we
will describe a detailed Fermi-level modeling approach
specially designed to be included in this methodology,
which has been implemented and tested in the atomistic
kMC process simulator DADOS.12

We first describe in detail the basic physical models
and then the particular implementation of point defects
and of two representative dopants (boron and arsenic),
and finally show a simulation example.

II. PHYSICAL MODELS

In this section we will introduce some concepts not
explicitly present in continuum models which will al-
low us to adapt the formulation of Fermi-level effects in
diffusion1 to an atomistic framework.

In our simulation scheme, particles are represented
atomistically, with a particular position, species, type
(substitutional, interstitial) and charge. Defects are
formed by such particles. Electrical equilibrium can
be assumed even when particle concentrations are far
from equilibrium conditions because the charge reactions
are much faster than structural reactions.13 As a con-
sequence, the Fermi-level (eF ) is considered to be well
defined and carrier concentrations are treated in a con-
tinuum fashion.

A. Concentrations of charged states

Let us consider a particle X as an example of native
point defect (self interstitials, I, or vacancies, V ) in sil-
icon, which is the focus of our study. They can be in
multiple charge states Xj , with j = −−,−, 0,+,++.

We denote by e(j + 1, j) the energy level associated to
the charge transitions between Xj+1 and Xj . Then, the
relative concentrations are:

[Xj ]

[Xj+1]
=

gj

gj+1
× exp

(

eF − e(j + 1, j)

kT

)

(1)

gj being the degeneracy factor and kT the thermal en-
ergy. We assume the same degeneracy factor for all the
charge states.

Our convention is to take the origin of energy levels at
the valence-band edge. We can assume that the electric
levels of all charged species vary with the temperature
proportionally to the band gap width Eg.
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The concentration of neutral native point defects (I0 or
V 0) in equilibrium conditions, denoted as [X0]∗, is con-
trolled by its formation energy, Ef (X0), that is indepen-
dent of eF . From Eq. 1 one can derive the concentration
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of charged states and their formation energies. The to-
tal point defect concentration as a function of eF will be
primarily determined by the charge state with lower Ef .
For eF = e(j + 1, j) the formation energies of Xj+1 and
Xj are the same and therefore [Xj+1]∗ = [Xj ]∗. Since
there are no explicit assumptions of equilibrium in Eq. 1
it is still valid out of equilibrium, and then the supersat-
uration, defined as SX = [X]/[X]∗, is the same for all
the charge states:

[Xj ]/[Xj ]∗ = [X0]/[X0]∗ = SX .

B. Defect diffusivities

In atomistic kMC, defect diffusivity is related to the
random walk of migrating defects. The point defect mi-
gration frequency νm for a given charge state j of a par-
ticle X is:

νm(Xj) = νm,0(X
j) exp(−Em(Xj)/kT ) (2)

νm,0 being the migration prefactor and Em the migration
energy. Accordingly, in three dimensions,

D(Xj) = λ2νm(Xj)/6, (3)

where λ is the jump distance. We have chosen λ to be
equal to the second neighbors distance in the silicon lat-
tice (0.384 nm). The transport capacity due to diffusion
will be DC(X) =

∑

j D(Xj)[Xj ]. Under equilibrium

conditions the products D(Xj)[Xj ]∗ are going to have
an activation energy of Edif(X

j) = Em(Xj) + Ef (Xj),
denoted as diffusion energy. The transport capacity will
be dominated by the charge state with lower Edif .

C. Electric drift

Fig. 1 shows electric drift as a natural consequence of
the local dependence of the formation energies of charged
particles. Within the kMC framework, the relation be-
tween the migration frequency in the positive and neg-
ative directions along the x axis for a point defect with
charge jq is

νm,+x

νm,−x

= exp

(

−
λ

kT

dEf

dx

)

= exp

(

jqExλ

kT

)

(4)

where ~E is the electric field and q is the absolute value of
the electron charge. The last equality assumes constant
band gap. From Eq. 4 one can derive the x-component
of drift velocity to be equal to

vx = λ(νm,+x − νm,−x)/6

which, in a first order approximation, becomes the Ein-
stein relation vx = jqDEx/(kT ).

E m

E (x)f

ν+x

ν−x

λ

λxjq E

FIG. 1: Electric drift within a kMC framework (see Eq. 4).

D. Point defect reactions

Reactions between particles take place in kMC when
particles are within the capture radius of each other. In
our model two different reactions are implemented: pair-
ing with impurities (A) and break up,

Xj + Ak
À AXj+k (5)

conserving the charge, and reactions of equilibrium be-
tween different charge states

Xj+1 + e− À Xj . (6)

The pairing reactions between repulsive species are for-
bidden. For the break up reactions, due to the charge
conservation, νbk does not depend on eF . Eq. 5 together
with Eq. 6 are enough to take into account the different
break up paths because we assume that the equilibrium
between different charge states is instantaneous.

In the present model clusters are assumed to be neu-
tral and only neutral particles are emitted and captured.
Once the neutral particle has been emitted as a point
defect, it can change its charge state according to the lo-
cal Fermi level. It would be easy to implement extended
defects charge states in kMC, but reliable values for phys-
ical parameters (either from calculations or experiments)
would be needed.

E. Solubility

The solubility of charged species depends on eF .3,4 For
the case of a dopant Aj , the solubility limit is given by:

[Aj ]max(T ) = [Aj ]intrinsic
max (T ) × exp

(

j
ei − eF

kT

)

, (7)

where

[Aj ]intrinsic
max =

([Aj ]extrinsic
max )2

ni

(8)
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is the solubility in intrinsic conditions (eF = ei) and
[Aj ]extrinsic

max the solubility when [Aj ]max À ni. Eq. 7 is
a consequence of the fact that the formation energy of
charged defects depends on eF . In an atomistic frame-
work expression 7 can be fulfilled by trapping and emit-
ting only neutral particles of the type AX0 with an emis-
sion rate independent of eF .

F. Implementation

Physical mechanisms involving defects can be de-
scribed as “interactions” (reactions between two defects
when they are within a capture radius) or as “events”
(performed by defects with a certain frequency). The
model described here has been implemented in the atom-
istic simulator DADOS.10,12,15 The main tasks that the
simulator has to do, related to charged point-defects,
are to maintain the right local ratio between the vari-
ous charge states (Eq. 1), to compute the Fermi level
(and thus the carrier concentration) and to include the
electric bias effects (Eq. 4). Once the drift is properly ac-
counted in equilibrium, [V 0]∗ and [I0]∗ are constant even
if ∇eF 6= 0. We calculate eF within the charge neutral-
ity approximation and using the Fermi-Dirac statistic,
Band-gap narrowing16,17 and damage induced electrical
compensation.

III. POINT DEFECTS: INTERSTITIALS AND

VACANCIES

A. Vacancies

The charge levels for vacancies (V ++, V +, V 0, V −

and V −−), are well characterized,1,18 and they are rep-
resented in Fig. 2. The dependence of the formation en-
ergies with eF for charged vacancies using the values of
table I are displayed in Fig. 3a (dashed lines). Thick
dashed lines correspond to the most stable charge state
(lower formation energy and higher concentration) that
depends on the Fermi level. As it can be seen V + is a
meta-stable state, i.e. it is not the minimum Ef for any
value of eF . [V 0]∗, that is constant with eF , is dominant
for p-doped materials and of the same order as [V −]∗ for
intrinsic silicon. The solid lines are the diffusion energies.
Em is different for each charged species, but we assume
it does not depend on eF .

The parameters displayed in Table I and represented
in Fig. 3a has been chosen to correctly fit the vacancy
transport capacity reported in Ref. 19 as well as the
charge levels of Refs. 1,18. The Arrhenius plot for va-
cancy transport capacity with the contribution of differ-
ent charge states is represented in Fig. 4a.
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FIG. 2: Electronic levels for V , I, Bi, AsV and Asi.

B. Interstitials

The charge levels of silicon self-interstitials (I−, I0, I+,
I++), are not conclusively established.1,18,20 Theoretical
calculations indicate that I+ is metastable but with a
very low migration energy and controls interstitial diffu-
sion for p-doped and intrinsic materials.20,21 However, ex-
periments show that in intrinsic silicon, diffusion is domi-
nated by I0, and I+ dominate only for eF < 0.4.1,22,23 As
a simplification, and following Ref. 1, we will ignore the
I++ state in our model, and we believe it is not necessary
for continuum models as well. Therefore we will describe
the interstitial using the I+, I0, I− states. As we will
see later (Sec. V), I++ presence will not change dopant
diffusivity, and it only has a very small contribution to
long hop distance of dopants. The values of charge levels
are taken from Ref. 1.

Fig. 3b shows the formation and diffusion energies di-
agram that we have set for interstitials, listed in Tab. I.
As commonly assumed, I0 is the dominant state near the
intrinsic conditions and I− only has a significant contri-
bution for heavy n-doped materials. Theoretical calcula-
tions give a migration energy for neutral interstitials of
about 1 eV, so we have taken Em = 1.0 eV for I0 and we
have assumed the same value for the other charge states.
These parameters fit experimental data for interstitial
diffusivity in intrinsic silicon.24,25

Figure 4b shows the Arrhenius plots for silicon self-
interstitial transport capacity. The experimental points
(symbols) have been extracted from Ref. 24 and 25. The
lines have been calculated using the parameters displayed
in table I.

IV. PAIR POINT-DEFECTS: BORON AND

ARSENIC

Once the point defects, I and V , have been introduced,
we will focus our study in the diffusion of dopants. Sub-
stitutional impurities are assumed to be immobile. Let
us consider now the cases in which the migrating defect
can be seen as the pair AX, where A is an impurity and
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I− I0 I+ V −− V − V 0 V + V ++ B−

i B0
i B+

i As0
i As+

i AsV − AsV 0 AsV +

Dm,0 × 103 (cm2/s) 5 5 5 1 1 1 1 1 1 1 1 4.5 4.5 1 1 1

Em (eV) 1 1 1 0.4 0.4 0.4 0.6 0.8 0.36 0.2 1.1 1.35 1.35 1.7 1.4 1.4

et(T = 0) (eV) 1 0.4 1.06 0.6 0.03 0.13 0.8 1.04 0.1 0.77 0.3

[X0]∗0(×1025 cm−3) 690 2.6

Ef (eV) 3.85 3.7

TABLE I: Parameters used for charged states of silicon vacancy (V j), silicon self-interstitial (Ij), interstitial boron (Bj
i ) and

vacancy and interstitial arsenic (AsV j , Asj
i ). D0 is the diffusivity prefactor (Eq. 3), Em the migration energy, and et the

charge level measured from the valence band edge. For T 6= 0, we assume that et scales with band gap energy.14 Prefactors for
equilibrium concentrations and formation energies of I0 and V 0 are also shown. Other parameters used in this work are, for
boron: Dbk,0(B

−

i ) = 0.4 cm2s−1, Eb(B
−

i ) = 0.1 eV and for arsenic: Dbk,0(AsV +) = 1 × 10−3 cm2s−1, Eb(AsV +) = 1 eV and
Dbk,0(As+

i ) = 5×10−3 cm2s−1, Eb(As+
i ) = 0.1 eV. Dbk,0 is the break-up prefactor expressed in diffusivity units (= (λ2/6) νbk,0).

Dbk,0 and Eb(T ) can be obtained from Eqs. 11 and 12. The point defect capture volume is 2λ3.
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X is either an I or a V . We will describe first the dif-
fusion of boron using Bi and later the case for Arsenic
with AsV and Asi.

A. Boron

It is commonly accepted that B migrates mainly due
to interstitial mechanism, via Bi (either as an interstitial
Bi or a BI pair), rather than via V -mediated mechanism.

The known charged states of Bi are B−
i , B0

i and B+
i .26

The three states are included in our model, although the
inclusion of B+

i will only show up for systems far from
equilibrium. The pairing, break up and charge reactions

related to Bi are represented by the reactions

I0 +B−
À B−

i

↑↓ ↑↓

I+ +B−
À B0

i

↑↓

B+
i

. (9)

In the following, we assume that substitutional boron
is always immobile and ionized (B−). In Eq. 9 horizon-
tal reactions (pairing and break-up) conserve the charge
while vertical reactions establish the electrical equilib-
rium. The rate of the horizontal reactions will not de-
pend on the Fermi-level. Direct break-up of B+

i is not
included because I++ is not implemented. The charge
level values for Bi are listed in table I and illustrated in
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FIG. 5: Potential energy diagram showing the formation and
migration energies for B−

i and I0, and the B−

i binding and
break up energies.

Fig. 2. These values have been measured by electrical
characterization.18,27,28

From the first reaction in Eq. 9 the number of broken
B−

i per unit of volume and time will be [B−
i ]νbk(B−

i ) and
the number of new formed [B−][I0]νm(I0)vcapt. Conse-
quently, in local equilibrium conditions

[B−
i ]

[B−]
= [I0]

νm(I0)

νbk(B−
i )

vcapt, (10)

vcapt being the effective capture volume for pairing reac-

tion and νbk the break-up frequency. The ratio of Eq. 10
is independent of eF because the charges of B−

i and B−

are the same. In contrast, [B0
i ]/[B−] and [B+

i ]/[B−] are
Fermi-level dependent. The activation energies of the
[Bj

i ]/[B
−] fractions are represented as formation energies

in Fig. 6.
The activation energy for B−

i break-up will be
Eb(B

−
i ) + Em(I0) (see Fig. 5), Eb denoting the bind-

ing energy. Considering energy conservation in reactions
of Eq. 9 we obtain

Eb(B
0
i ) = Eb(B

−
i ) + eBi

(0,−) − eI(+, 0) (11)

and the activation energy for B0
i break-up will be

Eb(B
0
i )+Em(I+). Electronic levels scale with Eg, intro-

ducing a slight T dependence in Eb(B0
i ). From equilib-

rium conditions it can be also derived that the break-up
prefactors, νbk,0, have to fulfil

νbk,0(B
0
i )/νbk,0(B

−
i ) = νm,0(I

+)/νm,0(I
0). (12)

Boron effective diffusivity D(B) is given by the sum of
the contribution of all mobile species

D(B) = D(B−
i )

[B−
i ]

[B−]
+D(B0

i )
[B0

i ]

[B−]
+D(B+

i )
[B+

i ]

[B−]
. (13)

The diffusion energy value for boron under intrinsic
conditions in Fig. 6 (Eint

dif ) will be similar to the acti-
vation energy of the Arrhenius plot of equilibrium boron
diffusivity. The small differences can be attributed to the
charge states and the modification of the charge levels
with temperature. The activation energies of the terms
in previous Equation (usually known as “defect-assisted

diffusion energies” or just “diffusion energies”, Edif(B
j
i ))
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are represented in Fig. 6. From this Figure it can be seen
that B0

i is a meta-stable state (as eB
+

i

> eB
−

i

) but is the

main contributor for boron diffusion in a wide range of eF

and in consequence D(B) ∝ p/ni (Ref 2). According to
Fig. 6 the effective migration energy of a Bi for eF ≈ ei is
Edif (B0

i )−Ef (B+
i ) ≈ 0.6 eV, in agreement with the ex-

perimental observation.26 It is also noticeable, that one
can have DPP with no I++. Actually, D(B) does not
depend on the charge states of I, but on those of Bi.

The parameters listed in Table I and used in Fig. 6 have
been chosen to fit the Arrhenius plot of equilibrium boron
diffusivity, D(B)∗ reported in Ref. 29. In particular, the
binding energy of B−

i and migration energy of B0
i have

been taken to fit the boron diffusivity Arrhenius plot, and
the migration energies for B−

i and B+
i are in agreement

with the picture derived from ab-initio calculations30 and
the experimental D∗(B) for n type silicon.2

Using the Maxwell–Boltzmann approximation, Eq. 13
is usually written in continuum models as :

D(B) = SI

[

DX(B) + DP (B)
p

ni

+ DPP (B)

(

p

ni

)2
]

,

(14)
SI being the interstitial supersaturation, and p and ni

the hole concentration and the intrinsic concentration,
respectively. The relations between the above diffusiv-
ity components DX(B), DP (B), DPP (B) and the micro-

scopic parameters are therefore

DX(B) = vcaptD(I0)[I0]∗
(

νm(B−
i )/νbk(B−

i )
)

DP (B) = vcaptD(I0)[I0]∗
(

νm(B0
i )/νbk(B−

i )
)

exp
(

(eBi
(0,−) − ei)/kT

)

DPP (B) = vcaptD(I0)[I0]∗
(

νm(B+
i )/νbk(B−

i )
)

exp
(

(eBi
(0,−) + eBi

(+, 0) − 2ei)/kT
)

(15)
ei being the intrinsic level.

These expressions can be used as a bridge between the
parameters of continuum simulators and those of a kMC
simulator. Nevertheless, the above continuum expression
assume Maxwell-Boltzmann and quasi-equilibrium condi-
tions, which are not needed within the kMC approach.
We should point out that the above terms only depends
on D(I0) without dependences on I+ or I−. The ra-

tios νm(Bj
i )/νbk(B−

i ) mean that the diffusivity of each
term can be increased by increasing the migration rate,
or decreasing the break up rate, but increasing or decreas-
ing both leaves the magnitude unchanged. The atomistic
meaning is that the B diffusivity does not depend on how
fast Bi moves, but on the distance traveled (long hop) by
the Bi before breaking up.

For slightly doped material, the dominant diffusing
interstitial is I0, which upon interaction with substitu-
tional boron creates a B−

i which in turn switches to B+
i

very quickly because B+
i has the lowest formation energy

for these conditions. However, B+
i is a slow diffusant

that can also switch to B0
i , which is a fast diffusant and

provides the main contribution to the overall boron diffu-
sivity. Notice that the most frequent break up reaction is
for the B−

i charge state to fulfil microscopic reversibility
of the most frequent pairing reaction.

B. Arsenic

Once boron charged states have been explained, a sim-
ilar analysis can be done for arsenic, which has both va-
cancy and interstitial contributions, related to AsV and
Asi defects, respectively. Arsenic reactions are

I0 +As+
À As+

i

↑↓ ↑↓

I− +As+
À As0

i

(16)

and

V 0 +As+
À AsV +

↑↓ ↑↓

V − +As+
À AsV 0

↑↓ ↑↓

V −− +As+
À AsV −

(17)

where we are also assuming that As+ is immobile and
always ionized.
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Arsenic diffusion will have all previously mentioned
contributions

D(As) ≈ D(AsV +) [AsV +]
[As+] + D(As+

i )
[As

+

i
]

[As+]

+ D(AsV 0) [AsV 0]
[As+] + D(As0

i )
[As0

i
]

[As+]

+ D(AsV −) [AsV −]
[As+]

(18)

which, in continuum models is usually reduced to31:

D(As) = [fISI − (1 − fI)SV ]×
[

DX(As) + DM (As) n
ni

+ DMM (As)
(

n
ni

)2
]

,

(19)
fI being the fraction of interstitial-assisted diffusion.

Notice, however, that this continuum description con-
veys several simplifying assumptions compared to Eq. 18.
In the first place, the common assumption that DX and
DM fit an Arrhenius plot is only true if the contribu-
tions of AsV + and As+

i have the same activation energy,
and the same has to be true for the AsV 0, As0

i contri-
butions. More importantly, Eq. 19 assumes that the
interstitial fraction, fI is independent of the Fermi level
(i.e. the same for the three charge states), and is also
independent of the temperature. These assumptions re-
duce the range of applicability of Eq. 19. Our parameter
set for As is reported in Table I. These parameters fit
the equilibrium As diffusion reported by Ref. 2. The
binding energy (1.3 eV) and migration energy used for
AsV 0 compares very well with ab-initio calculations.32

The value of eAsV (0,−) is from Ref. 2. The activation
energy of fi is the same than the value in Ref. 33.

Figure 7 shows experimental diffusivity (symbols) re-
ported in Ref. 2 for different concentrations and temper-
atures, compared with our calculated values. We have
taken into account the field enhancement factor h.1

Figure 8 shows the good agreement between the dif-
ferential equation-based model and our atomistic simula-
tions for the case of Arsenic in-diffusion for both intrinsic
and extrinsic conditions. The effect of Fermi-level is ev-
ident in the obtained box like shape profile for extrinsic
diffusion. The comparison made in Figs. 7 and 8 val-
idates the parameter translation between atomistic and
continuum formulation (Eq. 15 and equivalent for As).

V. DOPANT LONG HOPS INVOLVING

SEVERAL CHARGE STATES

In systems where diffusion proceeds via an intermedi-
ate migrating species the shape of the diffusion profiles of
dopants can be substantially different, even though the
standard deviations of the profiles are the same.34,35 This
is because the shape is controlled by the value of the long
hop distance, Λ, (distance traveled by a point defect pair
before breaking up), which is given by35,36

Λ = λ

√

1

6

νm

νbk

, (20)
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FIG. 7: Arsenic diffusion dependence on the temperature and
dopant concentration. Symbols: experimental data (Ref. 2).
Lines: Calculated values (see text).
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FIG. 8: Normalized Arsenic concentration profiles under in-
trinsic and extrinsic (n = 20ni) conditions for 800o C. Lines:
calculated within the continuum framework. Symbols: kMC
simulations (squares: 1.4 × 104 s, circles: 4.6 × 104 s, trian-
gles: 105 s). In order to do an even comparison, Maxwell-
Boltzmann statistics has been used in our simulation.

taking for νm and νbk their average charge states. In the
above mentioned case of a Bi, Eq. 20 becomes

Λ = λ

√

1

6

νm(B−
i )[B−

i ] + νm(B0
i )[B0

i ] + νm(B+
i )[B+

i ]

νbk(B−
i )[B−

i ] + νbk(B0
i )[B0

i ]
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in quasi-intrinsic conditions.25,34,37

which using Eq. 10 and equivalent can be written as

Λ = λ

√

√

√

√1

6

νm(B−
i )

[B−

i
]

[B−] + νm(B0
i )

[B0
i
]

[B−] + νm(B+
i )

[B+

i
]

[B−]

vcapt(νm(I0)[I0] + νm(I+)[I+])

(21)
and, finally using Eqs. 3 and 13

Λ = λ
√

D(B)
6vcapt{D(I0)[I0]+D(I+)[I+]}

≈ λ
√

D∗(B)
6vcaptDC∗(I) .

The last equality assumes that the I− contribution is
negligible. DC∗(I) is the equilibrium transport capacity

of interstitials. With the values we are using, Λ ∝
√

p/ni

for eF ' ei.

The temperature dependence of Λ for boron, using the
parameters of table I is displayed in Fig. 9, both for in-
trinsic and doped silicon, and compared with experimen-
tal values for intrinsic materials.34,37

It is interesting to note that the concentrations of the
different charge states of interstitials (namely I+ and I−)
do not directly affect boron diffusivity (see equations 13
and 15). This could suggest that, as a simplifying ap-
proximation, one can neglect the presence of I− and
I+. However, Eq. 21 shows that, by doing so, an in-
correctly large Λ value could be obtained for extrinsic
materials. In fact, the magnitude of D(B) is governed

by the νm(Bj
i )[B

j
i ]/[B

−] terms, but how Gaussian the
diffusion profile is, depends also on the νm(Ij)[Ij ] terms.

VI. AN EXAMPLE: A COMPLEX SCENARIO

One of the reasons for developing the detailed mod-
elling of charge effects presented in this work is that,
in the complex processing scenarios which are now com-
mon place in advanced semiconductor manufacturing,
the dominant mechanisms may not be apparent or, even
worse, one can be misled by intuition.

As an example, Fig. 10 corresponds to a typical 10 keV,
5×1014 cm−2 As+ implant onto a 2×1018 cm−3 uniformly
B doped substrate followed by a 10 min., 750 ◦C anneal.
This apparently simple experiment involves a number
of different mechanisms and the simulation will only be
predictive against changes in the processing conditions
if each and every mechanism is correctly implemented.
Namely, the simulator accumulates damage (taking into
account the dose rate and implant temperature) and cor-
rectly predicts the amorphization of the top 75 nm layer
and the electrical deactivation of the dopants in the dam-
aged regions. Recrystallization occurs during the simula-
tion of the temperature ramp up. In agreement with ex-
perimental evidence the simulated recrystallization front
partially sweeps B and As, and deposits electrically active
dopants up to a maximum level, depositing the rest as
small defect-dopant clusters. In the simulation, the EOR
interstitial clusters evolve to {311} defects and, even-
tually to dislocation loops. The presence of the loops
lowers dramatically the interstitial supersaturation and
slows down transient enhanced diffusion (TED). During
TED, B is depleted from the junction and piles up as it
enters the N side. However, it is interesting to remark
that this apparent electric drift effect was actually as-
sociated to a net flux of the neutral B0

i , maybe against
simple intuition. Namely, the gradient of eF produces
a gradient of [B0

i ]/[B−] and, in consequence, a diffusion
flux of B0

i toward the N-region that tends to homogenize
[B0

i ]. Boron pile-up in the As-rich region is a result of
the lower value of D(B) in N-type materials (See Eq. 14).
The Figure shows experimental results38 as symbols, and
simulation results as lines. The agreement is good, tak-
ing into account the number of mechanisms involved in
the atomistic simulation as described above.39

VII. CONCLUSIONS

In this work an accurate, physically-based atomistic
modeling of Fermi-level effects of species diffusing in Sil-
icon has been presented. This model takes into account
the charge reactions and electric bias dependency with
Fermi-level, pairing and break-up reactions between par-
ticles, clustering dopant activation and deactivation and
the Fermi-level dependent solubility. It also includes de-
generate Fermi-Dirac statistics, band-gap narrowing and
damage-induced electrical compensation.

The presented model, in particular Eq. 15, estab-
lishes a bridge between atomistic kMC and continuum
approaches for Fermi-level dependent diffusivity. From
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nealed by 10min. at 750◦C (Experimental data from Ref.
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the practical point of view it has the added value of be-
ing amenable to implementation in device size atomistic
kMC process simulators.10 These atomistic simulators
are expected to play an increasingly relevant role in the
forthcoming years6 due to their ability to directly incor-
porate ab-initio parameters and complex mechanisms.
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