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ABSTRACT 

We report on a physically-based Fermi-level modeling approach designed to be accurate and 

yet amenable to be implemented in a device-size process simulator. We use an atomistic 

kinetic Monte Carlo method in conjunction with a continuum treatment for carrier densities. 

The model includes (i) charge reactions and electric bias according to the local Fermi-level, 

(ii) pairing and break-up reactions involving charged particles, (iii) clustering-related dopant 

deactivation and (iv) Fermi level-dependent solubility. Degenerated statistics, band-gap 

narrowing, and damage-induced electrical compensation are also included. The parameters 

used for charged particles are in agreement with ab-initio calculations and experimental 

results. This modeling scheme has proved to be very computationally efficient for realistic 

device-dimension process simulations. We present an illustrative set of simulation results for 

two common dopants, Boron and Arsenic, and discuss the potential of this approach for 

accurate process simulation of decanano CMOS devices. 
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I. INTRODUCTION 

Current decananometer CMOS technology faces complexities arising from the need for very 

high-doping, reduced thermal budged (non-equilibrium conditions), and 3-dimensional 

effects. Under such conditions it would be advantageous to be able to directly implement the 

underlying physical mechanisms. In particular, high-doping concentrations demand a correct 

description of extrinsic diffusion [1, 2]. Other charge-related issues are Fermi-level dependent 

solubility [3], clustering-related dopant deactivation [4], and high-damage electrical 

compensation. 

The non-lattice kinetic Monte Carlo method (kMC) has proved to offer a detailed and 

comprehensive description of technology process physics together with the capability of 

simulating typical device sizes and processing times [5, 6]. In this work we describe a 

physically-based Fermi-level modeling approach for atomistic kMC. This approach has been 

designed for its implementation in the process simulator DADOS [7, 8]. We will first focus on 

the physical models, then outline the implementation approach, and finally show some 

simulation examples. 

 

II. PHYSICAL MODELS 

In our simulation scheme, particles and defects are treated atomistically, while carrier 

concentrations are treated in a continuum fashion. Charge reactions are much faster than 

structural reactions [9] and, therefore, electrical equilibrium can be assumed even in situations 

in which particle concentrations are far from equilibrium conditions. Consequently, the 

Fermi-level (eF) can be considered to be well defined. In this section we will adapt the 

formulation of Fermi-level effects in diffusion [1] to an atomistic framework and will 

introduce some concepts not explicitly present in continuum model formalisms. 

We are going to take the vacancy (V) as an example of a simple point defect. The silicon 

vacancy has multiple charge states: V0, V-, V--, V+, V++. Its charge levels are well 
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characterized [1, 10]. We use the values listed in Table I. We denote by , , , and 

 the energy levels associated to the charge transitions between V0 and V-, V- and V--, V0 

and V+, and V+ and V++, respectively. Then, the relative concentrations are: 
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where kT is the thermal energy. We have assumed the same degeneracy factor for all charged 

states [1]. The concentration of V0 in equilibrium conditions (denoted as [V0]*) is controlled 

by its formation energy, Ef(V0), that is independent on eF because it is a neutral particle. The 

Fermi-level dependence of the formation energies of the charged states, as well as their 

equilibrium concentrations, can be obtained from Eqs.1. The dependence of the formation 

energies with eF for charged vacancies using the values of Table I are displayed in Fig.1. As a 

convention, we take the origin of energy levels at the valence-band edge. The total vacancy 

concentration as a function of eF will be primarily determined by the charge state with lower 

Ef (thick dashed line in the Figure). As it can be seen in the Figure, V+ is a metastable state, 

i.e. it is not the minimum Ef for any value of eF . Out from equilibrium, Eqs.1 are still valid 

and, therefore, the vacancy supersaturation, defined as SV = [V]/[V]*, is the same for all the 

charge states: [Vj]/[Vj]* = [V0]/[V0]* = SV . 

The migration frequency νm of the vacancy in a given charge state j is: 
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where νm0 is the migration prefactor and Em the migration energy. The diffusivity of Vj will 

be: 

6)()( 2 j
m
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where λ is the jump distance. In equilibrium conditions, the product D(Vj)[Vj]* will be 

proportional to exp( Edif(Vj) / kT ), being Edif = Em + Ef the diffusion energy, that is also 

indicated in Fig. 1. The diffusion flux will be dominated by the defect with lower Edif (thick 

solid line in Fig. 1). Using the parameters of Table I a good fit to V diffusivity measurements 

of Ref.11 is achieved. 

The charge levels of silicon self-interstitials are not conclusively established [1, 10, 12]. I+ 

seems to be metastable but with a very low migration energy and probably controls interstitial 

diffusion for p-doped materials [10]. As a simplification, we will ignore the I++ state [1] and 

will describe the interstitial using the I+, I0, I- states, using the values listed in table I. These 

parameters are set to fit the experimental data of both I diffusion [13] and total silicon self-

diffusion [14]. 

Electric drift is a natural consequence of the local dependence of the formation energies of 

charged particles. Within the kMC framework, the relation between the migration frequency 

in the positive and negative directions along the x axis for a migrating point defect with 

charge jq is 
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where F is the electric field and q is the absolute value of the electron charge. Using Eq.4 in a 

first order approximation, the x-component of drift velocity, vx = λ ( νm,+x – νm,-x ), can be 

written as vx = (jqD / kT) Fx , that is the well-known Einstein relation. Electric drift has to be 

accounted properly in order to reproduce the fact that, in equilibrium, [V0]* and [I0]* have to 

be constant even if ∇eF ≠ 0. 

Let us consider now the cases in which the point defect can be seen as the pair AX, where A 

is an impurity and X is either an I or a V . We are going to illustrate it with the case of 

interstitial boron Bi (that, in our non-lattice kMC description, is equivalent to a BI pair). It is 

commonly accepted that B migrates mainly due to interstitial mechanism, via Bi, rather than 
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via V-mediated mechanism. The charged states of Bi are Bi
-, Bi

0 and Bi
+. The pairing and 

break up and charge reactions related to Bi can be represented by 
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We assume substitutional boron to be immobile and always ionized (B-). In Eq.5 horizontal 

reactions (pairing and break-up) conserve the charge while vertical reactions establish the 

electrical equilibrium. Direct break-up of Bi
+ is not included because we do not consider I++. 

The charge level values that we adopt for Bi are listed in table I. These values have been 

measured by electrical characterization [10]. 

From the first reaction in Eq.5, in local equilibrium conditions: 
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being vcapt the effective capture volume for pairing reaction and νbk the break-up frequency. 

The ratio of Eq.6 is independent of eF because the charges of Bi
- and B- are the same. In 

contrast, [Bi
0]/[B-] and [Bi

+]/[B-] are Fermi-level dependent. The activation energy for Bi
- 

break-up will be Eb(Bi) + Em(I0), Eb denoting the binding energy. Considering energy 

conservation in reactions of Eq.5, it can be obtained that 
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and the activation energy for Bi
0 break-up will be Eb(Bi

0) + Em(I+). From equilibrium 

conditions it can be also derived that the break-up prefactors νbk0 have to fulfill: 
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In Fig. 2 we have represented the formation energy of a Bi
j from a B- ( Ef(Bi

j) - Ef(B-) ) as a 

function of eF (dashed lines). This is also the activation energy of the ratio [Bi
j]/[B-]. The 

Figure is a good agreement with the picture derived from ab-initio calculations [15]. 
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Boron effective diffusivity D(B) is given by the sum of the contribution of all the mobile 

species: 
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Using the Maxwell-Boltzmann approximation, this equation is usually written in continuum 

models as: 
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p and ni being the hole concentration and the intrinsic concentration, respectively. The 

relations between the above diffusivity components DX(B), DP(B), DPP(B) and the 

microscopic parameters are, therefore: 
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ei being the intrinsic level. These expressions can be used as a bridge between the parameters 

of continuum simulators and those of a kMC simulator. The activation energies of the terms 

in Eq.9 (usually known as "defect-assisted diffusion energies " or just "diffusion energies", 

Edif(Bi
j) ) are represented in Fig.2. It can be seen that Bi

0 is a metastable state (as ) 

but is the main responsible for boron diffusion in a wide range of eF and, in consequence, 

D(B) ∝ p/ni [2]. According to Fig.2 the effective migration energy of a Bi for eF ≈ ei is 

Edif(Bi
0) - Ef(Bi

+) ≈ 0.6 eV, in agreement with the experimental observation [16]. The 

parameters listed in table I have been chosen to fit the Arrhenius plot of equilibrium boron 

diffusivity, D(B)*, reported in Ref.17 for intrinsic conditions. 

−+ >
ii BB

ee

A similar analysis can be done for arsenic, but taking into account both vacancy and 

interstitial contributions, related to AsV and Asi, respectively. Our parameter set for As is 

reported in Ref.18. 
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The distance traveled by a point defect pair before breaking up (usually denoted as the "long 

hop distance", Λ) is given by [19, 20]: 
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In the above mentioned case of a Bi for which multiple charged states are considered, Eq.12 

becomes: 
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The temperature dependence of Λ using the parameters of table I is displayed in Fig.3, both 

for intrinsic and doped silicon, and compared with experimental values for almost intrinsic 

materials [19, 21]. With the values we are using, Λ ∝ p/ni for eF ~ ei. 

The solubility of charged species depends on eF [3]. For the case of an acceptor, like boron, 

the solubility limit is given by: 
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where i
ext nBB 2
max

int
max )]([][ −− =  is the solubility in intrinsic conditions (eF = ei) and the 

solubility when [B-]max » ni. Equation 14 is a consequence of the fact that the formation 

energy of charged defects depends on eF. Extended defects, such as clusters, are assumed to 

be electrically inactive and account for clustering related dopant deactivation. 

extB max][ −

 

III. IMPLEMENTATION 

In atomistic kMC each individual defect is represented by one or more particles. Physical 

mechanisms are described as "interactions" (reactions between particles within a capture 

radius, for example: pairing) or as "events" (performed by the defects with a certain 

frequency, for example: break-up). The implementation we describe here has been included in 

the atomistic simulator DADOS [6, 8]. 
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As we mentioned above, extended defects can be considered to be neutral as a first 

approximation. Therefore, our implementation of Fermi-level effects is built on point-defects, 

and will affect the extended defects only as a consequence. The main tasks that the simulator 

has to do, related to charged point-defects, are to always maintain the right local ratio between 

the various charge states (Eq.1) and to include the electric bias effects (Eq.4). 

 Electrostatic interactions between particles are accounted for through the bias. Additionally, 

pairing between charges of the same sign is forbidden, reflecting repulsive interaction. The 

interaction of point-defects with extended defects and with the surface has been enabled only 

for neutral states. In this way, we get naturally the behavior described by Eq.14. 

We calculate eF (and, thus, the carrier concentrations) within the charge neutrality 

approximation. The translation from discrete charges to charge densities is done using a local-

dependent averaging radius equal to the Debye-length [22]. If not smoothed distributions are 

used, incorrectly high diffusivities are obtained, due to overestimation of carrier densities in 

the neighborhood of dopant atoms. 

Substitutional point defect dopants are taken to be always electrically active (ionized). This is 

a good approximation for shallow dopants (as Boron and Arsenic) even for very high 

concentrations [7]. In order to account for the high resistivity of highly damaged material, 

interstitials and vacancies are treated as compensating deep level centers, decreasing the 

effective value of the dopant concentration. 

We have included Fermi-Dirac statistic, but we can also use Maxwell-Boltzmann statistics 

(non-degeneracy approximation) in order to compare with analytic results. Band-gap 

narrowing is assessed using Jain and Roulston 's model [23]. 

 

IV. SIMULATION EXAMPLES 

The simulation scheme presented above has proven to be efficient for realistic device-

dimension process simulations. The inclusion of all the mechanisms mentioned in previous 
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sections increases the computation time by less than a factor of 2 with respect to simulations 

with no charge effects. Typical simulation boxes are of the order of 106 nm3. 

Figure 4 shows the good agreement between the differential equation-based model and our 

atomistic simulations for the case of Arsenic in-diffusion for both intrinsic and extrinsic 

conditions. The effect of Fermi-level on the pro le shape and depth is evident. The comparison 

also validate the parameter translation between atomistic and continuum formulation (Eq.11 

and equivalent for As). 

Figure 5 tests Boron redistribution occurring during post-implant annealing near a n+p 

junction. Boron is depleted from the p side of the junction due to the electric drift, that pushes 

B- toward the n side. However, it is interesting to remark that this apparent electric drift was 

actually associated to a net flux of Bi
0, that is neutral. The gradient of eF produces a gradient 

of [Bi
0]/[B-] and, in consequence, a diffusion flux of Bi

0 toward the n-region that tends to 

homogenize [Bi
0]. Boron pile-up in the As-rich region is related to the lower value of D(B) in 

n-type materials (see Eq.10). 

 

V. CONCLUSIONS 

We have presented the formalism for the assessment of Fermi-level effects on an atomistic 

kMC model, as well as a the guidelines for its implementation in an atomistic process 

simulator. The approach has been illustrated with data analysis and simulation examples for 

boron and arsenic. The method allows a detailed description of high-doping phenomena 

situations and is suitable for accurate decanano device process simulation. 

This work has been partially supported by the Spanish Government under project BFM 2001-

2250 and by the Castilla y Leon Regional Government under project VA-010/02. 
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Tables 

Table I: Parameters used for charged states of silicon vacancy (Vj), silicon self-interstitial (Ij) 

and interstitial boron (Bi
j). D0 is the diffusivity prefactor (Eq.3), Em the migration energy, and 

et the charge level measured from the valence band edge. For T ≠ 0, we assume that et scales 

with band gap energy [22]. Prefactors for equilibrium concentrations and formation energies 

of I0 and V0 are also shown. Other parameters used in this work but not listed in the Table are 

Dbk0(Bi
-) = 5 cm2/s and Eb(Bi

-) = 0.4 eV. Dbk0 is the break-up prefactor expressed in diffusivity 

units ( = (λ2/6) νbk0 ). Dbk0(Bi
0) and Eb(Bi

0)(T) can be obtained from Eqs.7 and 8. We take the 

jump distance λ to be equal to second-neighbor distance (0.384 nm). In our implementation, 

the effective capture volume is vcapt = 3λ3. 

 
 

 V-- V- V0 V+ V++ I- I0 I+ Bi
- Bi

0 Bi
+ 

D0 (× 103 cm2/s) 1 1 1 1 1 5 5 5 1 1 1 
Em (eV) 0.4 0.4 0.4 0.6 0.8 1 1 0.8 0.5 0.2 1.1 
et (T=0) (eV) 1.06 0.6  0.03 0.13 1  0.2 0.72  1.02
[X0]0

* (× 1025 cm-3)   1.5    103     
Ef (eV)   3.7    3.9     
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Figure captions 

Fig.1 Formation energies (Ef, dashed lines) and diffusion energies (Edif = Ef + Em, solid 

lines) of charged silicon vacancy (Vj) as a function of Fermi-level (eF) using the 

parameter set of Table I. eF is measured from the valence band edge. (Band-gap 

energy is Eg = 1.17 eV for T= 0 K). Minimum values of Ef(Vj) and Edif(Vj) are drawn 

with thick d lines. Edif
int corresponds to the diffusion energy for intrinsic silicon (eF = 

ei). Open circles indicate the energy crossings corresponding to charge levels ( ). jVe

Fig.2 Dashed lines: Energy to form a Bi
j from a B- ( = Ef(Bi

j) - Ef(B-) ) as a function of 

Fermi-level using the values of Table I. Solid lines: Activation energy of the 

contribution of Bi
j for the effective Boron diffusivity in equilibrium conditions, Edif 

(see Eq.9). Migration energies (Em(Bi
j)) are the differences between solid and dashed 

lines. Black dot indicates the value of Edif
int. The other notation is like in Fig.1. 

Fig.3 Arrhenius plot for Bi long hop distance (Λ). Lines: values calculated using our 

parameter set for intrinsic, n-doped and p-doped silicon. Symbols: experimental values 

in quasi-intrinsic conditions [19, 21]. 

Fig.4 Normalized concentration profiles for Arsenic in-diffusion under intrinsic and 

extrinsic conditions for 800° C, at different times. Lines: Theoretical diffusion profiles 

calculated for intrinsic conditions (dashed lines) and for n = 20 ni (solid lines) [1]. 

Symbols: Atomistic kMC simulated profiles, normalized with time, for intrinsic 

conditions and for n = 20 ni (open and filled symbols, respectively). In order to do an 

even comparison, Maxwell-Boltzmann statistics has been set in our simulation. 

Fig.5 Dopant redistribution in a pn junction. Initially boron has an homogeneous 

concentration close to 2 × 1018cm-3 (p region). The n+ region has been implanted (As, 

10 KeV, 5 × 1014 cm-2) and, subsequently, the sample has been annealed by 10 min. at 

750°C. 
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