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Abstract

Atomistic process simulation is expected to play an important role for the development of next

generations of integrated circuits. This work describes an approach for modeling electric charge

effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model

has been applied to diffusion of electrically active boron and arsenic atoms in silicon. Several

key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye

length to smooth out the atomistic point charge distribution, (ii) algorithms to correctly update

the charge state in a physically accurate and computationally efficient way, and (iii) an efficient

implementation of the drift of charged particles in an electric field. High concentration effects

such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency,

accuracy, and relevance of the model are discussed.
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I. INTRODUCTION

For a device with 20 nm physical channel length, which is expected to be in production by

2009,1 the discrete nature of dopant atoms is likely to have a significant impact on the device

characteristics. The International Technology Roadmap for Semiconductors cites “Atomistic

process modeling” as one of the long-term (beyond 2010) modeling and simulation require-

ments for which “manufacturable solutions are not known”.1 Therefore, physically-based

models that take into account the discrete properties of each defect, should be developed

to be included in atomistic simulators as a way to accurately predict the behavior of such

current and future devices. With each technology generation, the junctions are required to

become shallower, but without a significant increase of the series resistance. This is satis-

fied by employing high doping levels which introduce a variety of effects related to the high

concentration and spatial variations of electrical charges.

Among the atomistic simulation techniques, the non-lattice kinetic Monte Carlo (kMC)

approach is, probably, the best choice for the size and time scales involved in fabrication

of a typical semiconductor device.2–5 This technique has already proven to produce accu-

rate results for different process simulation scenarios including transient enhanced diffusion

(TED),2,6–8 dopant activation/deactivation phenomena,7–11 and damage accumulation.12,13

Coupled to a device simulator, it was used to describe the effect of statistical variations

in field effect transistors.14 There have been some reports including charge effects in both

lattice15 and non-lattice kMC simulators3,4,16 but without any details on how the charge ef-

fects are modeled. The impact of electrical charges on dopant and defect diffusion in silicon

is described in terms of continuum physics in Ref. 17 and it has recently been reformulated

within the atomistic kMC framework in Ref. 16. Such theoretical derivations can be done

in a rather systematic way. However, their implementation in an atomistic process simula-

tor poses a number of practical difficulties that arise from the inherent discreteness of the

atomistic simulation.

In this work we describe a three-dimensional charge model for point-defects and dopants

as implemented in the atomistic non-lattice kMC simulator dados.3,18 We focus on specific

issues associated with the atomistic nature of the kMC approach and propose practical

solutions to these issues. In Section II we summarize the guidelines of the physical model

(for more details see Ref. 16). The details of the implementation algorithm are described in
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Sec. III. Finally, some illustrative examples are presented and discussed in Sec. IV.

II. THE PHYSICAL MODEL

In the conventional continuum models each defect or dopant species type is represented as

a unique concentration variable with an effective diffusivity that depends on the local Fermi-

level (eF ).27 All possible charge states are lumped into that single concentration variable and

are used to determine the effective diffusivity of the species.

In our atomistic model, each individual particle is described by its position, type, and

charge state. The particle types are defects (interstitials or vacancies, I or V ), dopants (B,

As,. . . ), and dopant-defect pairs (BI , AsI , AsV ,. . . ). The ratio of relative concentrations

of a particle X in the charge states j and j + 1 is given by

[Xj]

[Xj+1]
= exp

(

eF − e(j + 1, j)

kBT

)

(1)

where e(j +1, j) is the energy level associated with the charge transition, kB the Boltzmann

constant, and T the temperature. From an atomistic point of view, Eq. 1 can be interpreted

as the probability ratio for a particle X to be in the charge states j or j + 1. Charge

transitions are assumed to be much faster than atomic transport19 and, therefore, charge

state probability ratios follow Eq. 1 instantaneously. We assume that e(j + 1, j) scales with

the temperature in the same way as the band-gap energy, Eg(T ).20 The values used for the

energy levels e(j +1, j) at T = 0 are listed in Tab. I. The experimental data and theoretical

calculations used to obtain these numbers are described in Refs. 11,16. Substitutional

shallow dopants are assumed to be always ionized (B−, As+,. . . ) at annealing temperatures.

The concentrations of neutral defects in equilibrium conditions ([I0]∗ and [V 0]∗) are con-

trolled by the balance between the defect emission and capture at the surfaces. These

concentrations are independent of eF and have activation energies equal to the correspond-

ing formation energies (Ef (I
0) and Ef (V

0)). The values for these formation energies, as

well as the prefactors for the equilibrium concentrations ([I0]∗0 and [V 0]∗0), are shown is Tab.

I. The concentrations of charged I’s and V ’s are controlled by charge transitions (Eq. 1)

and are, in turn, eF -dependent.16 Therefore, the formation energies of charged defects can

be obtained from Ef (X
0) and eF using:

Ef (X
j+1) = Ef (X

j) + eF − e(j + 1, j). (2)
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In the absence of an electric field, the particles jump randomly with a frequency

νm =
6Dm,0

λ2
exp

(

−

Em

kBT

)

,

Dm,0 being a diffusivity prefactor, λ the jump distance, and Em the migration energy.3 We

take λ equal to the second neighbor’s distance in silicon (λ = 0.384 nm). Each charge state

has an independent jump frequency that does not depend on eF . The values that we use for

Dm,0 and Em can be found in Tab. I. Substitutional dopants are assumed to be immobile.

Therefore, dopant diffusion is determined by the concentration and diffusivity of mobile

defect-dopant pairs.

An electric field ξ introduces a gradient of the formation energy of a charged particle Xj,

inducing an asymmetry in its jump probabilities:3,16

ν+
m

ν−

m

= exp

(

jqλξ

kBT

)

, (3)

ν+
m and ν−

m being the jump frequencies in the positive and negative directions, respectively, ξ

the electric field component, and q the absolute value of the electron charge. This asymmetry

is the microscopic origin of the macroscopic drift of the charged particles in an electric field.

Interaction between particles can occur within a given interaction distance. For example,

if a jumping point defect Xj gets near a dopant Ak (with k = +1 for donors and k = −1

for acceptors), a dopant-defect pair AX can be formed:

Xj + Ak
↔ AXj+k. (4)

Reactions between particles with charge of the same sign are forbidden due to the short-range

electrostatic repulsion. Long-range electrostatic attractions or repulsions are accounted for

by the drift of the charged particles in the electric field.

The reverse process (i.e. the break-up of an AXj pair) will happen with a rate:

νbk(AXj) =
6Dbk,0(AXj)

λ2
exp

(

−

Eb(AXj) + Em(Xj−k)

kBT

)

where Dbk,0 is the break-up prefactor in diffusivity units and Eb is the binding energy. Note

that the reactions considered in the expression 4 conserve the charge. Other pairing or break-

up reactions could be seen as a combination of a charge-conserving reaction and a charge

transition (included in Eq. 1). Break-up prefactors and binding energies for the different
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charge states of a given AX pair are linked by microscopic reversibility considerations as

follows:16,17

Eb(AXj+1) = Eb(AXj) + eAX(j + 1, j) − eX(j + 1 − k, j − k) (5)

Dbk,0(AXj+1) = Dbk,0(AXj)
Dm,0(X

j+1−k)

Dm,0(Xj−k)
(6)

The concentration of AXj in local equilibrium is established by the balance of pairing

and break-up rates:

[AXj] = vcapt[A
k][Xj−k]

νm(Xj−k)

νbk(AXj)
(7)

where vcapt is the effective capture volume. In our case, vcapt = 2λ3. The activation energy

for the equilibrium concentration of pairs resulting from pairing reactions between neutral

defects and charged substitutional dopants (Ak +X0
↔ AXk) are independent of eF and we

use the corresponding binding energies as reference points to compute the Eb for the other

charge states. The independent values Dbk,0 and Eb that we take for BI , AsI , and AsV are

shown in Tab. I.

The model obtains the effective dopant diffusivity as a natural consequence of having the

right proportion of the different charged particles, based on the local eF .16 The relationship

between the microscopic parameters described here and the parameters used in continuum

simulators can be found in Ref. 16.

III. MODEL IMPLEMENTATION

Once the theoretical basis and key assumptions of the model are introduced, we are

going to deal with the implementation issues associated with the atomistic framework. In

particular, in order to perform realistic simulation of impurity diffusion in silicon, it is

necessary to know:

• How to compute the Fermi-level from a distribution of discrete charged particles.

• How to update the charge for the particles with several possible charge states, in order

to follow the space-dependent relative probabilities of Eq. 1.

• How to implement drift of the charged particles in an electric field.

5



A. Computing the charge distribution

Electron concentration is treated in a continuum way. To compute the electron concen-

tration, and subsequently eF , the simulation domain is divided into a tensor product grid

with uniform spacing where each grid cell is a rectangular box. The boxes in a grid have

the same size and are small enough (≈ 1 nm3) to assume that the electron concentration is

constant in each element (box) of the grid.

To calculate the electron concentration, our algorithm does not only count the number

of substitutional dopants (assumed to be always ionized) inside each box, but also averages

the electron concentration over neighboring boxes and accounts for the band-gap narrowing

as described below. Once the electron concentration is calculated, it is used to update eF

in each box, using Fermi-Dirac statistics and the charge neutrality assumption. Unless the

smoothing algorithm is used, the discrete, atomistic charge distribution leads to a computed

electron concentration that is artificially high (or low) near the position of active dopants

and this concentration would depend on the size of the discretization boxes used in the

simulator, changing abruptly from one box to another, and generating unphysical artifacts

in the simulation, as we will see in Sec. IV.

To compute the charge that is affecting the electron concentration in a particular box we

use a radius rD (see Fig. 1), that is set equal to the temperature-dependent Debye length20

rD = (4πq2Ndop/T )−1/2,

Ndop being the local density of active dopants. This charge averaging procedure accounts

for effects such as the transition regions in PN junctions without the need to solve the

Poisson’s equation. This is an intermediate approach between the local charge neutrality

approximation and the exact electrostatic solution and it is good enough for the high doping

levels commonly involved in deep sub-micron technologies.

Doping-induced energy shifts in the conduction band minimum and valence band maxi-

mum have been included in the model. The two components of the fundamental band-gap

narrowing, ∆ev and ∆ec, are computed using the equations from Ref. 21 with the parame-

ters extracted from Ref. 22. For all other electronic energy levels our model assumes that

they vary in proportion with the band-gap Eg. In a region where the conduction and valence

band edges are shifted by ∆ec and ∆evrelative to the no band-gap narrowing case where
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ec = Eg and ev = 0), a charge level e(j + 1, j) will be shifted by:

∆e(j + 1, j) =

(

1 −

e(j + 1, j)

Eg

)

∆ev +
e(j + 1, j)

Eg

∆ec.

B. Charge update scheme

As we have mentioned in Sec. II, our model assumes that the electronic transitions are

much faster than the atomic diffusion and reactions. Therefore, it is necessary to implement

a mechanism to update the charge distribution (and eF ) that follows the atomic jumps. The

probability ratios depend on eF (Eq. 1), so it is necessary to update them each time it

changes. The reasons for a local change of eF can be

• Particles diffusing between boxes with different eF .

• Change of the electron concentration in a particular box.

Furthermore, each time a new particle appears or disappears because of pairing or break-

up reactions, it is necessary to ensure that the charge state of the new particle is consistent

with the local eF .

Our model implements three different mechanisms to maintain the particles in the correct

eF -dependent ratios during the simulation. These mechanisms update the electron concen-

tration in the grid boxes, the charge state of migrating particles, and the charge state of

particles involved in pairing and break-up reactions. All of them are performed at the same

time, but apply to the different possible cases listed above.

1. Updating the electronic concentration and charge state ratios

The model computes the probability P j of each species being in a particular charge state

j as

P j =
[Xj]

∑

i[X
i]
, j = 0,−, +,−−, + + . (8)

We need an updating method that periodically reviews all the particles and updates eF

and the proportions of charged particles in each grid box. The algorithm smooths out the

charge distribution, computes eF in the box using the charge neutrality assumption and

applies Eq. 8 to establish the appropriate charge ratios. This operation slows down the
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simulation, so it is crucial to perform the updates frequently enough to reflect significant

changes in eF , but without unnecessary waste of the Central Processing Unit (CPU) time.

2. Updating mobile particles

Mobile particles see different eF values when jumping from one box to another. Therefore,

a charge update is needed at least each time a particle crosses the (artificial) boundary

between the boxes. We implemented this by updating the charge state of the particles

each time they jump to another box. Nevertheless, some species will diffuse faster than

others, and then they will be updated more frequently. Using Eq. 8 directly to perform

these updates would lead to an artifact in the simulation, because fast diffusing species will

be updated more frequently, so they will have more opportunities to change their charge

state than the slower ones, and then we would get an artificial increase in the slow diffusing

species concentration. To prevent this situation from happening, we have modified Eq. 8

by explicitly introducing there the migration frequency. We assume that the probability for

a particle that is initially in a charge state i, to switch to a charge state j after a diffusion

step, P i→j
dyn , does not depend on the initial state and we will simply denote it by P j

dyn. The

balance of the switch rates between the states i and j becomes

[X i] νm(X i) P j
dyn = [Xj] νm(Xj) P i

dyn,

and therefore

P j
dyn =

P jνm(Xj)
∑

i P
iνm(X i)

.

3. Updating charge in pairing and break up reactions

After pairing or break up reactions (Eq. 4), some species appear and disappear in a box.

To ensure that the concentration of the charged species is in a correct proportion, a break

up/pairing charge update mechanism is implemented which computes the probability for a

new particles to be in a particular charge state j as

P j
pair =

P jνbk(X
j)

∑

i P
iνbk(X i)

,

for pairing reactions and

P j
break =

P j
dynδj

∑

i P
i
dynδi

,
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for break up reactions, where δi is 1 for allowed reactions and 0 otherwise.

C. Drift in an electric field

Since eF is constant inside each box, but can vary across adjacent boxes, the electric drift

only applies to particles moving from one box to another. Referring to Fig.2 and assuming

ν+
m(x1) to be the jump frequency of a particle Xj from x1 to x2 (in an adjacent box) and

ν−

m(x2) to be the jump frequency from x2 to x1, the ratio is

ν+
m(x1)

ν−

m(x2)
= exp

[

(Ef )1 − (Ef )2

kBT

]

, (9)

where Ef is the space-dependent formation energy of the charged particle Xj that can be

evaluated at each position (x1 or x2) using Eq. 2. Therefore, the drift is implemented as an

additional migration barrier (Ef )2 − (Ef )1 to jump from x1 to x2, when (Ef )1 < (Ef )2.

To visualize a simple case without the band-gap narrowing (i.e. when e(j + 1, j)1 =

e(j + 1, j)2), Eq. 9 can be simplified to

ν+
m(x1)

ν−

m(x2)
= exp

[

−j
(eF )2 − (eF )1

kBT

]

. (10)

which is the situation shown in the Fig. 2. Equation 10 is equivalent to the previously

reported Eq. 3.3,16 However, Eq. 9 is more general, since it can also account for situations

where different charge states see different effective electric fields (for instance, when there is

band-gap narrowing).

IV. RESULTS AND DISCUSSION

After the model and implementation details have been explained, different issues, regard-

ing the efficiency, accuracy, and relevance of the models, will be addressed in this section.

Implementing efficient algorithms is crucial for atomistic simulators, which are known

to stress the computer’s resources. The inclusion of the charge model, and particularly

the algorithm to update the local eF and recompute the appropriate charge distribution,

can significantly increase the computation time. A simple, straightforward implementation

of the charge update model can increase CPU time by a factor of 10 or even more. The

optimized update strategy as well as bookkeeping of the charge-modified boxes used in our

implementation helped to limit the CPU time penalty just to a factor of 2.

9



For a relatively large simulation domain of 600×300×200 nm3 the simulator can contain

as many as 106 boxes (220). Allocation and initialization of that many boxes along with

other necessary infrastructure takes about 520 Mb of memory. During simulation of the

subsequent process steps, even if there are high dose implants reaching amorphization level,

the memory consumption does not increase much more. Simulation of the annealing, which

is the most time consuming step of a kMC simulator with hundreds of billions of events,

attains up to one million events per second on a 2.8 GHz CPU.

An analysis of how the simulator scales with the size of the simulation domain has been

performed. The same process flow (implant+annealing), including not only the charge

model, but also defect diffusion, damage evolution, epitaxial recrystallization, as well as

cluster and extended defect formation, was performed for different implant areas. The fol-

lowing process flow was used. 1015 cm−2 As is implanted at 50 keV. The implant temperature

is 20 ◦C and duration is 1000 s. Then the temperature is ramped up from 20 ◦C to 1100 ◦C

in 3 s. The implant area is ranging from 10× 10 nm2 (i.e., 103 arsenic ions) to 100× 100nm2

(i.e. 105 arsenic ions).

The results are shown in Fig. 3. Simulation was performed on a 2.8 GHz personal

computer running Linux. The CPU time is shown in seconds per implanted As ion and

memory is shown in Mb per As ion. The non-monotonic CPU time dependence is due to

the different number of grid boxes used. For the implant area of 10× 10 nm2, there were 216

boxes, for 20 × 20 nm2, there were 218 boxes, and for all other domain sizes, there were 219

boxes.

For a fixed number of grid boxes, the CPU time increases superlinearly with the num-

ber of As particles, while memory increases sublinearly with the number of particles. This

happens because the box size increases with the size of the simulation domain and it takes

more time to search for the interaction neighbors each time an event is performed. The

sublinearity of the memory increase is due to a more efficient way of treating the particles

based in the fact that, beyond a given concentration, it is not necessary to store the posi-

tions of all the particles.12,13 Such a simplification does not affect the simulation accuracy,

though, as the results of all simulations with the implant area of 20× 20 nm2 and larger are

similar. Overall, the required CPU and memory resources look reasonable and feasible for

the practical simulation of the sub-100 nm transistors on regular desktop computers.

Figure 4a shows the profile of substitutional boron and the hole concentration for a 900 ◦C
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simulation with an initial boron concentration of 1 × 1020 cm−3 from 30 nm to 60 nm. The

boron concentration presents a profile with sharp gradients at 30 and 60 nm. The hole profile

is smoother due to the Debye length averaging explained above. The vacancy concentration

profiles in their different charge states for the same simulation are shown in Fig. 4b. The

proposed charge model correctly maintains the neutral vacancies V 0 at a constant level,

increasing locally the concentration of positive states V ++ and V + and decreasing the V −

and V −− concentrations.

Figures 4c and 4d show the same boron profile simulation, but without the charge smooth-

ing. The vacancy concentration in 4d is wrong due to the box discretization. In this case,

even with the high boron concentration, the boxes in the simulation are so small that they

rarely contain any boron atoms, and without smoothing they report an intrinsic hole con-

centration. Such boxes wrongly contribute only the intrinsic concentration of V − and V −−

even in the high boron doped regions. This can be clearly seen in the Figure 4. On the other

hand, a few boxes with active dopant atoms have an unrealistically high hole concentration

(that depends on the particular size of the box), which leads to artificially high V + and V ++

concentrations, as can be seen in Fig. 4d in comparison with the profiles shown in Fig. 4b.

Figure 5 shows two simulations of diffusion of a boron spike with a width of ≈ 10 nm and

2.8 × 1018 cm−3 peak concentration performed at 800 ◦C under a) intrinsic conditions (no

extra doping) and b) a 5×1019 cm−3 uniform p-type background. Annealing times (640 min.

and 15 min.) have been chosen to produce a similar diffusion length. The long hop distance

(Λ),23–25 which strongly depends on the Fermi-level,16 is ≈ 2.5 nm in Fig.5a, and ≈ 16 nm

in Fig.5b. As a consequence, Fig. 5a follows a Gaussian distribution while Fig.5b is more

exponential-like, because the shape depends on Λ, as correctly predicted in the simulator

model presented in this work.

Finally, Fig.6 shows a 50 keV, 2×1015 cm−2 As implant28 (n-type region) over a uniformly

1×1018 cm−3 boron doped p-type region, after 2 hours annealing at 750 ◦C. The experimental

data (symbols) are from Ref. 26. The simulation (shown as lines) includes the amorphization

and subsequent recrystallization of the amorphized silicon layer,13 the formation of arsenic-

vacancy clusters in the areas with high As concentration11 and the formation of extended

defects. Despite the complexity of the full modeling included in Fig. 6, the apparent drift

flux of B0
I is a direct consequence of the implemented charge model. Boron redistribution

occurs during the annealing due to the charged species population difference near the PN
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junction and the electric field effects. It is interesting to note that the apparent electric drift

is actually associated with a net flux of neutral pairs B0
I . The gradient of eF produces a

gradient of the relative concentration [B0
I ]/[B

−] and, in turn, a diffusion flux of B0
I toward

the N-type region, that tends to homogenize [B0
I ]. The boron pile up inside the N-type

region is due to the low effective diffusivity of boron in the N-type regions.

V. CONCLUSIONS

A detailed description of the quasi-atomistic model for simulating Fermi-level effects

in atomistic kinetic Monte Carlo simulators has been presented. We have shown that it

is necessary to smooth out the electron and hole charge distributions, and we have used

the Debye length as the smoothing radius. We have discussed the major considerations

for developing algorithms to update the Fermi-level dependent parameters. The approaches

used to compute the band-gap narrowing and the electric drift have been also described. The

accuracy and performance of the model have been tested with simulations that illustrate the

capability of the model to correctly predict the Fermi-level dependencies, and the necessity

of a physically-based procedure for smoothing out the carrier distribution.
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List of figure captions

FIG. 1 Illustration of the charge smoothing. The electron concentration in each box of

the grid is computed as the average electron concentration in the neighborhood of the box,

where the neighborhood radius is the Debye length.

FIG. 2 A positive singly charged particle jumping from x1 (in box 1) to x2 (in box 2)

finds an additional energy barrier which depends on the local eF of the two boxes. For no

band-gap narrowing, the barrier will be (eF )2 − (eF )1. It corresponds to the existence of an

electric field ξ in the negative direction.

FIG. 3 CPU time and memory required per implanted ion. The same simulation,

1015 cm−2 As implanted at 50 keV and followed by a temperature ramp from 20 ◦C to 1100 ◦C

in 3 s was performed for different areas of the simulation domain, ranging from 10× 10 nm2

to 100× 100nm2. Memory consumption is sublinear vs the implant area, while CPU time is

superlinear for a given number of boxes. Here the number of boxes is 216 for 10 × 10 nm2,

218 for 20 × 20 nm2 and 219 for all other domain sizes.

FIG. 4 a) 1 × 1020 cm−3 boron spike, from 30 to 60 nm and its associated hole concen-

tration at 900 ◦C. The sharp slopes of the spike are translated into the smoother slopes in

the electron concentration because of the Debye-length averaging algorithm. b) Simulated

equilibrium vacancy profiles, in different charge states, for the previous simulation. Notice

the constant value of V 0, a good test for the equilibrium conditions validity. The noise at

low concentrations is due to the atomistic particle representation. c) Boron spike and its

associated hole concentration simulated without the Debye-length averaging algorithm. d)

Simulated equilibrium vacancy profiles, in different charge states, without averaging. This

simulation clearly shows the need for the Debye-length averaging algorithm.

FIG. 5 Diffusion at 800 ◦C of a boron spike with an initial width of ≈ 10 nm and peak

concentration of 2.8×1018 cm−3. a) 640 min. without background doping. The shape follows

a Gaussian curve. b) 15 min. with a 5×1019 p-type uniform background doping. The shape

is not Gaussian. Both simulations have same diffusion length, but the shape is determined

by the long hop distance, which strongly depends on eF .

FIG. 6 Dopant redistribution in a p-n junction. Symbols are the experimental data

from Ref. 26 and lines are our simulations. Initially background boron concentration is

15



1 × 1018 cm−3 (p-type region). The n+-region region has been implanted (As, 50 keV, 2 ×

1015 cm−2) and then the sample was annealed for 2 hours at 750 ◦C.
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Tables

TABLE I: Energy levels for the charged states of silicon self-interstitial (Ij), vacancy (V j),

interstitial-boron pair (Bj
I), interstitial-arsenic pair (As

j
I), and arsenic-vacancy pair (AsV j). Only

independent parameters are listed in the table. The values for charge levels, e(j + 1, j), are given

for T = 0 K with no band-gap narrowing and they are measured from the valence band edge.

I− I0 I+ V −− V − V 0 V + V ++ B−

I B0
I B+

I As0
I As+

I AsV − AsV 0 AsV +

e(j + 1, j) (eV) 1 0.4 1.06 0.6 0.03 0.13 0.8 1.04 0.1 0.77 0.3

Dm,0 × 10−3 (cm2/s) 5 5 5 1 1 1 1 1 1 1 1 5 5 1 1 1

Em (eV) 1 1 1 0.4 0.4 0.4 0.6 0.8 0.36 0.2 1.1 1.35 1.35 1.7 1.4 1.4

Dbk,0 × 10−3 (cm2/s) 400 5 1

Eb (eV) 0.1 0.1 1

[X0]∗0(×1025 cm−3) 690 2.6

Ef (eV) 3.85 3.7
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