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Outline
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Disloc. loops, Voids)

– Damage, Amorphiz. & Recrystallization

– Impurities & Impurity clusters

– Other Materials (Oxides, Nitrides) & Interfaces

– SiGe & Strain effects

• Next improvements

• Conclusions



M Jaraiz, Crolles 12/04/05    - 4 -

DADOS: Brief history

• Summer 1994, Bell Labs : First kMC code (BLAST) was 
begun by Jaraiz & Gilmer.

• 1996, Univ. of Valladolid: Based on the accumulated 
experience, Jaraiz rewrote the code completely and 
named it DADOS.

• 1996 to 2001: DADOS improved at the Univ. of 
Valladolid, and source code distributed to some 
Research Centers and Universities.

• 2001: License agreement signed with Avant! to include 
DADOS into TaurusTM

• 2002: Synopsys acquires Avant!

• At present, there are nearly 40 journal papers published 
with DADOS results   (16 APL, 5 JAP, 2 PRB, 2 PRL 
among others)
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Deep-Submicron 
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Front-End Process Modeling
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3D Atomistic kMC Simulator

The Atomistic KMC Approach

Output
Lattice Atoms 

are just 

vibrating

Defect Atoms 

can move by 

diffusion hops

KMC simulates 

Defect Atoms 

only
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Point defects and Impurities

•Egap(T) + Renormalization (high doping)

•Nc(T), Nv(T)

•Fermi-Dirac statistics
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• Charge state update

– static (immobile species)

– dynamic (mobile species)

Charge Effects: Implementation
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• n(x): from charge neutrality + Debye smoothing

• no interaction between repulsive species
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Electric field( ) drift

– modeled as biased diffusion:



M Jaraiz, Crolles 12/04/05    - 10 -

Fermi-level Dependencies (I, V)

• Example: Vacancy charge states (V0,V-,V--,V+,V++)

Dominant V charge state as a

function of local Fermi-level

eF(x,y,z)
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Fermi-level Dependencies 
(Impurities)

• Example: Boron charge states

mobile

very 
fast

slow
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Efficient smoothing algorithms for point charges, based on 
charge neutrality + local Debye estimates

3D charge model (tests)

With

smoothing: 
Without:
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Lines:

Simulation

Symbols:

Continuum

Intrinsic/extrinsic diffusion (tests)
ExtrinsicIntrinsic
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Point defects: Some tests under 
equilibrium conditions.

I and V equilibrium 

transport
Dopant spike diffusion 

(boron) in equilibrium

Bracht et al,98;Cowern et al, 99; Giese et al, 00
Cowern et al, 91
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Extended Defects: Interstitials
{311} defects Faulted loops Perfect loopsSmall clusters

TEM images from Claverie et al.

Cristiano et al.
Cowern et al.
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311-defects dissolution
• Full damage simulation: No “+N” assumption

• Defect cross-section automatically given by 

defect geometry 200 s
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Interstitial Supersaturation
Controls dopant diffusivity
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DADOS Simulation

Dislocation Loops

However, {311} can in fact reach sizes >> 345

From Claverie et al.

Transitition {311} Loop: Activation Energy = 0.7 eV

Loop energy < {311} energy
if Number of atoms > 345

Therefore, the {311} Loop transformation cannot be based 
just on minimum configurational energy.
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{311} → Disloc. Loop transition

{311} to dislocation loops transition.
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{311} size needs to be predicted, for correct transition to DLoop



M Jaraiz, Crolles 12/04/05    - 21 -

Vacancy Clusters & Voids

• Agglomeration of V’s with an irregular shape (small 
clusters) or spherical (Voids) with the Si atomic density

Binding energies for V 

clusters and Voids
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Damage accumulation - Amorphization

Implementation (3D):

• Accumulate I’s & V’s into Amorphous 

Pockets (AP).

• AP’s have irregular shape, like clusters.

• AP’s allow for dynamic anneal between 

cascades.

• AP’s activation energy (for recrystallization) 

is a function of AP size (equiv. number of IV 

pairs).

Top View

Cross Sect.
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Lines: Simulation

Symbols: Experiment 

Golbderg et al, 95

Amorphization: Results (I)

Amorphization is predictive

for a wide range of 

experimental conditions:

•Ion mass

•Dose rate

•Temperature
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Amorphization is predictive for a 

wide range of experimental 

conditions:

•V-rich Amorphous Pockets: more 

free I’s (in agreement with MD)

•Polyatomic ions

Amorphization: Results (II)

Silicon

Carbon sequence
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Implant: 50 KeV, 3.6x1014 Si/cm2

(Pan et al., APL 1997)

Recrystallization: Defects sequence

Implementation (3D):

• When a box (< 2nm-side) reaches the 

amorphiz. threshold  it becomes 

Amorphous.

• Amorphous regions in contact with the 

surface or with a crystalline region 

recrystalize with a given activation 

energy.

• Any I-V unbalance is accumulated as the 

amorphous region recrystallizes (and it is 

dumped into adjacent amorphous boxes).
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•Dopants have a probability 

to be swept by the 

recrystallization front.

•Otherwise they are left as 

active dopants or

•If they exceed the solubility 

limit they can be deposited 

as impurity clusters.

Recrystallization:
Impurity sweep/deposit.
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3D-Recristalization Front

Amorphized 
region

Remaining 
damage

Arsenic 
(drain)Channel

Velocity:
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Impurity-related problems

• Complex relationships between:

– Damage

– Recrystallization: Sweep/Deposition

– Charge

– extended defects interactions 
• {311}-Indium

• DLoops-Boron

– generalized Frank-Turnbull (self-consistent)

– … everything affects dopant diffusion and 
activation/deactivation!
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Impurities: mobile species & clusters

kick-out mechanism Cluster 

capture & emission

Bi
I

I

Frank-Turnbull mechanism
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Boron (I)

Pelaz et al, 97

Huang et al, 97

Boron clustering and diffusion
Silicon implant, 

Boron spike

Boron implant
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Boron (II)

Boron activation

Pelaz et al. 99

40 keV, 2x1014 cm-2 B implant

1000 s at 800ºC annealing InBm Pathway
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Arsenic

Chakravarthi et al, 02 Rousseau et al, 98

Arsenic diffusion, clustering & activation/deactivation
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Materials Interfaces

•Oxides, Nitrides: simple (B, As...) Diffusion.

•Impurity Trapping at the Interface

•Impurity Segregation into the other material
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Materials Interfaces : I, V

Lines: Simulation

Symbols: Experiment, 

Cowern et al, 99

d

Surface Recombination length
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SiO2/Si: B 

trapping/segregation/diffusion

Initial boron profile: 1x1020 cm-3

Subsequent annealing: 2000 s 

at 1000 ºC

Materials Interfaces : Impurities

Oh-Ward model (IEDM’98):

EmissionTrapping
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Modeling SiGe & strain

Unrelaxed 

Si0.8Ge0.2SiO2/Si interface

Self-Interstitials:

Higher Eact(I) = Eform + Emig

We take same Emig

⇒ Higher Eform ⇒ Lower I conc.
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B, As Diffusion in strained SiGe

Initial uniform 

conc. 1e19 cm-3

Lower Eact(V) 

Higher V conc.

Lower B diffusivity

Higher Eact(I) 

Lower I conc.

Higher As diffusivity
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3D-Atomistic Simulation in Taurus

• TPA (Taurus Process Atomistic) uses DADOS to 
perform atomistic simulation of diffusion and defects.

• Taurus handles the rest of the processing 
(deposition, etching…) in the conventional way.

STI

Spacer

Gate

Drain

Source
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Dopants and Defects in DADOS
Drain Source

Arsenic

{311}s

Boron
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{311} Extended Defects: Zoom-In

Plenty of defects 

in source, but just 

a few in drain
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What can be improved next?

• Other dopants: C,P,F,In… (mechanisms ready, 

calibration needed)

• Efficiency (CPU time and memory)

• Flexibility in the models: Models defined by the 

user (partially done)

• Diffusion in amorphous layers

• Moving boundaries (materials interfaces).

• Include Si-Ge alloys (in progress).

• Include stress (in progress).
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Conclusions
• The strength of kMC is that it can handle many mechanisms 

simultaneously, as needed in complex processing.

• As a consequence it can be highly predictive, as already 
shown in several publications.

• It is not meant to compete in accuracy with ad-hoc 
simulation approaches, ‘tabulated’ for specific conditions.

• The goal, instead, is to attain a kMC simulator that, although 
not highly accurate for any particular simulation, it never 
gives a totally wrong result, even for previously unexplored 
simulation conditions.

• kMC is a predictive process simulation technique, intended 
to replace time/money costly experiments to explore 
unknown new conditions, for which conventional simulators 
can be highly unreliable.


