

Simulación Atomística de Procesos en Microelectrónica Juan Barbolla Dept. de Electrónica, Universidad de Valladolid

Simulación atomística de procesos tecnológicos:

Realista y detallada
Más rápida para sub-0.1 µm

35 nm - MOSFET

Toshiba IEDM,2001

35 nm - MOSFET

Simulación eléctrica a partir de la simulación atomística de procesos

Estrategia de simulación atomística

Dinámica del sistema: Método de Monte Carlo Cinético (KMC)

Técnicas complementarias para KMC

Frecuencias de salto: Dinámica Molecular (MD) Dopado + Dañado por implantación iónica: Colisiones binarias (BC)

Dinámica del sistema: Monte Carlo Cinético (KMC)

Introducción Simulación KMC: – Programa DADOS - Difusión del Boro Dinámica Molecular Simulación de la implantación con BC Conclusiones

Diffusion of Atomistic Defects, Object-oriented Simulator

- Simulador KMC
- C++, 30.000 líneas de código
- Rendimiento >1 millón de eventos/ seg. (P-4)
- Desarrollado en la Universidad de Valladolid
- Primer simulador atomístico incorporado en un simulador de procesos comercial (TAURUS, versión 3D del TSUPREM)

• Interacción: radios de captura $I + I_n \rightarrow I_{n+1}$

• Evento: frecuencias

$$I \quad I_{n+1} \rightarrow I_n + I_n$$

Esquema de simulación

Fenómenos que se pueden simular

- Difusión de defectos y dopantes
- Evolución de clusters de defectos (311´s, "voids",...)
- Gettering de defectos por trampas (I-C, V-O)
- Formación de precipitados
- Papel de la superficie (oxidación, nitridación,...)
- Amorfización / Recristalización
- Efectos de carga (nivel de Fermi)
- Efectos 3-D
- Inhomogeneidades (discretización de la posición)

Simulación de fabricación de DISPOSITIVOS

Difusión del Boro

Difusión del Boro Efectos de la implantación y recocido

Difusión del Boro Efectos de la implantación y recocido

1. Aumento Transitorio de la Difusión (TED) 😕

$$\frac{\mathsf{D}_{\mathsf{B}}}{\mathsf{D}_{\mathsf{B}}^{*}} = \frac{\mathsf{C}_{\mathsf{I}}}{\mathsf{C}_{\mathsf{I}}^{*}} \implies \mathsf{D}_{\mathsf{B}} \gg \mathsf{D}_{\mathsf{B}}^{*}$$

 2. Posible <u>formación de clusters de Boro</u> Inmóviles ⁽ⁱ⁾ y eléctricamente inactivos ⁽ⁱ⁾ ⁽ⁱ⁾

Aumento Transitorio de la Difusión Papel de los clusters de intersticiales

- Breve transitorio inicial Clusters de intersticiales y vacantes \rightarrow recombinación I-V
- Sobreviven algunos clusters de l ~1 intersticial extra por cada ión implantado ("modelo +1")
- Los clusters de l aumentan de tamaño: los {311}'s
- Los clusters de intersticiales son fuente de l móviles: Emisión de los I por los clusters $\rightarrow C_I \rightarrow D_B$

Clusters de Intersticiales

Aumento Transitorio de la Difusión Supersaturación de intersticiales

Datos experimentales: Cowern et al., PRL 99

Duración del transitorio Disolución de los {311}'s

Desactivación eléctrica del B Implantación de B Implantación de B

40 keV 2.10¹⁴ cm⁻². Recocido: 800°C, 1000 s

40 keV 9.10¹³ cm⁻². Recocido: 800°C, 500 s

eléctricamente inactiva

Desactivación eléctrica del B

- Todos los marcadores experimentan TED
- Clusters de B en marcadores cerca de la superficie
- Precursores ricos en intersticiales: $B_i+I \rightarrow BI_2$

Evolución de los Clusters de B B_i DISOLUCIÓN Bi ESTABI Bi B₃I is NUCLEACION LIZACIÓN B_2I В Bi Bi Bi **CRECIMIENTO** FORMACIÓN

Activación eléctrica del B

40 keV 2x10¹⁴ cm⁻² B implant, 800°C anneal

Clusters de B eléctricamente inactivos: \rightarrow se forman al principio del recocido

 \rightarrow se disuelven lentamente después de la TED

- Introducción
- Simulación KMC:
 - Programa DADOS
 - Difusión del Boro
- Dinámica Molecular
- Simulación de la implantación con BC
- Conclusiones

Dinámica Molecular (MD) Definición

Resolución de las ecuaciones de Newton para un conjunto de N partículas:

$$\left.\begin{array}{c}
m_{i} \frac{d\vec{r}_{i}}{dt} = \vec{p}_{i} \\
\frac{d\vec{p}_{i}}{dt} = \vec{F}_{i}
\end{array}\right\} (i = 1, 2, ..., N)$$

Celda MD

Dinámica Molecular Tipos

- PRIMEROS PRINCIPIOS (ab initio)
- Resolución de la ecuación de Schrödinger
- Simulaciones sin parámetros
- Límites: N ~ 100 átomos, tiempo ~ 1 ps
- POTENCIALES INTERATÓMICOS EMPÍRICOS
- Energía del sistema como función de las coordenadas: E_{Total} = E_{Total} {r_i}

 Potenciales empíricos: parámetros ajustables
 Límites: N ~ 1.000.000 átomos, tiempo ~ 1 ns <u>Nuestro código MD: 15 µs/átomo·iteración</u>

Dinámica MolecularEjemplos de simulación en 1 día $N = 10^6$ átomos, t = 5 ps $N = 10^3$ átomos, t = 5 ns

5 keV As \rightarrow Si(100)

Interfase C/A a 1100 °C

Dinámica Molecular Difusión del intersticial de silicio

 $T = 800 \, ^{\circ}C$

Dinámica Molecular Configuraciones del intersticial

TETRAÉDRICA (T)

DUMBELL (D)

EXTENDIDA (E)

$E_F = 4.14 \text{ eV}$ $E_F = 5.25 \text{ eV}$ $E_F = 4.61 \text{ eV}$

Dinámica Molecular Camino de difusión 1

Dinámica Molecular Camino de difusión 2

Dinámica Molecular Constante de difusión (D) Relación de Einstein: $D = \lim_{t\to\infty} \sum_{i} |\vec{r_i}(t) - \vec{r_i}(0)|^2/6t$

Difusión de un intersticial a $T = 800 \,^{\circ}C$

Dinámica Molecular Energía de migración y prefactor Comportamiento tipo Arrhenius: D = D₀ exp(-E_M/k_BT)

- Introducción
- Simulación KMC:
 - Programa DADOS
 - Difusión del Boro
- Dinámica Molecular
- Simulación de la implantación con BC
- Conclusiones

Implantación iónica Fundamentos

- Introducción de iones energéticos
 ⇒ dopado + dañado (I's y V's)
 Rangos típicos: Energía: 1 keV .. 1 MeV
 Dosis: 10¹²..10¹⁵ cm⁻²
- Otros parámetros:
 - Ángulos de incidencia (inclinación, rotación)
 - Estructura cristalina (orientación) y/o amorfa
 - Geometría del dispositivo

- como choques entre dos partículas
- Cascada: proyectil , intersticiales y vacantes
- Válido hasta energías de MeV
- Colisiones binarias: mucho más rápido que MD

Implantación iónica Modelos físicos

• Frenado

Elástico: núcleo-núcleo Inelástico: núcleo-electrón

Dañado

Implementación

Modelo estadístico

- perfiles de impurezas
- poco preciso para el dañado

rápido

Modelo atomístico

- perfiles de impureza
- preciso para el dañado \rightarrow KMC
- más lento

Implantación iónica Simulador IIS

• Modelado físico para el frenado electrónico:

 Densidad electrónica ab-initio 3D: un único parámetro ajustable proyectil-blanco

- 3D: dopado, dañado
- Ejecución paralela, mecanismos de reducción del ruido estadístico, etc

Implantación iónica
Boro en Siliciocon diferentes energías y orientaciones $B(0^{\circ},0^{\circ}) \rightarrow Si \{100\}$

Hernández-Mangas et al., JAP 2002

Implantación iónica Arsénico y Fósforo en Silicio en condiciones de acanalamiento

As \rightarrow Si {110}

 $P \rightarrow Si \{100\}$

Hernández-Mangas et al., JAP 2002

Implantación iónica Moléculas BF₂ en Silicio con diferentes energías y dosis

 $BF_2 \rightarrow Si \{100\}, 5 \ 10^{13} \text{ y } 4 \ 10^{15} \text{ at/cm}^2$

Hernández-Mangas et al., JAP 2002

Implantación iónica en Arseniuro de Galio (III-V)

Se (7°,30°) y (0°,0°) 300 keV→GaAs{100}

Si (7°,30°) y (0°,0°) 150 keV→GaAs{100}

Hernández-Mangas et al., JAP 2002

Implantación iónica en Carburo de Silicio (IV-IV)

As $(12.5^{\circ}, 3.5^{\circ}) \rightarrow 6H-SiC\{0001\}$

Conc. (at/cm³)

Hernández-Mangas et al., JAP 2002

Conclusiones

La Simulación Atomística de Procesos Tecnológicos:

- Proporciona un elevado nivel de detalle y precisión
- Buena herramienta para el estudio de mecanismos complejos
- Mas rápida y precisa que los simuladores continuos
 3D para dispositivos < 0.1 μm

Caracterización Eléctrica de Materiales y Dispositivos Microelectrónicos

LÍNEAS DE INVESTIGACIÓN

Caracterización de:

- Centros profundos en uniones bipolares (p-n y Schottky)
- Defectos en estructuras MIS
- Propiedades dieléctricas en estructuras metal-aislante-metal
- Dispositivos electrónicos avanzados
 - HEMT de GaN
 - Estructuras silicio-sobre-zafiro
 - Dispositivos fotónicos de semic. III-V (InGaAs, InGaP, InAlAs):
 Diodos láser, células solares integradas, detectores y emisores optoelectrónicos

Caracterización Eléctrica de Materiales y Dispositivos Microelectrónicos

TÉCNICAS DE CARACTERIZACIÓN

Técnicas convencionales

- Caracterización de dispositivos en condiciones estacionarias
- Deep level transient spectroscopy (DLTS)
- Medidas de efecto Hall
- Medidas C-V en estructuras MIS (cuasiestática y alta frecuencia)

Técnicas desarrolladas en nuestro laboratorio

- DLTS de un sólo barrido (SS-DLTS)
- Espectroscopía óptica de admitancia (OAS)
- Técnica de transitorios capacidad-voltaje (CVTT)
- Técnica de transitorios de conductancia (g-t)
- Análisis de impedancia en radio-frecuencia (RFIA)

Diseño de Circuitos Integrados Analógicos Diseño de sistemas de altas prestaciones

- FILTROS que operan a muy baja tensión (1V)
 - Solución basada en el AO conmutado. Aplicación: *Radio Data System*
- CONVERSORES
 - De tipo Nyquist: circuitos de muestreo y retención y conversor *pipeline*
 - De sobremuestreo: conversor sigma-delta de tiempo continuo
 Aplicación: comunicación inalámbrica de alta velocidad (*wireless-LAN*)

Simulación Atomística de Procesos en Microelectrónica Juan Barbolla Dept. de Electrónica, Universidad de Valladolid

