
NOMBRE Y APELLIDOS:	DNI:
INSTRUMENTACIÓN PARA LAS TELECOMUNICACIONES	CALIFICACIÓN:
16 de Junio de 2010	

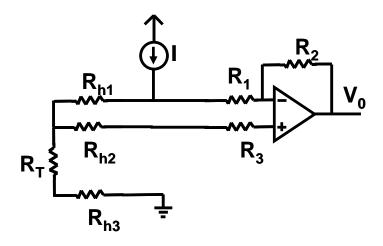
EJERCICIO 1 (2)

Pretendemos utilizar el sensor de presión piezorresistivo de la familia SM5108 para la medida de presión en el rango entre 0 y 15 psi. El sensor se puede esquematizar por un puente de Wheatstone como el indicado y sus características corresponden a los valores típicos indicados en las especificaciones.

CHARACTERISTICS FOR SM5108 - SPECIFICATIONS

All parameters are measured at 5.000V supply at room temperature, unless otherwise specified.

	Min.	Тур.	Max.	Units
Excitation Voltage	0	5.0	15	V
Excitation Current	0	1.5	2.5	mA
Span (FS Range)				
15 PSI	65	100	135	mV
30 PSI	65	100	135	mV
60 PSI	65	100	135	mV
150 PSI	100	150	200	mV
Zero Offset	-35		35	mV
TC Span	-24	-19	-15.5	%FS/100℃
TC Offset	-7	-1	+7	%FS/100℃
TC Resistance	+24	+27.5	+33	%/100℃
Linearity	-0.2	-0.07	+0.2	%FS
Bridge Impedance	4	5	6	kΩ
Input Capacitance		<2		pF
Proof Pressure	зх			Rated FS
Burst Pressure	5X			Rated FS
Operating Temperature	-40		+125	∞
Storage Temperature	-40		+125	∘C


Indica la función de transferencia a 25°C, la función de transferencia a 37°C y el error máximo (en unidades de presión) si se realizan las medidas a 37°C y se toma como referencia la función de transferencia a 25°C.

- a) Con el sensor alimentado con una fuente de tensión de 5 V.
- b) Con el sensor alimentado con una fuente de corriente de 1.5 mA.

EJERCICIO 2 (3)

Se desea medir la temperatura entre 0 y 200°C utilizando una Pt100 (Ro=100 Ω , α =0.00385 °C⁻¹) con coeficiente de disipación δ = 5mW/K y una constante de tiempo τ = 1 s. Disponemos de una fuente de corriente I = 1 mA. Se toma R_1 =100 k Ω , R_2 =100 k Ω y R_3 =50 k Ω . Los hilos de conexión tienen una resistencia nominal de 5 Ω .

- a) Si se introduce el termómetro en un horno a 200°C, ¿cuánto tiempo debemos esperar para que el error en la medida sea inferior al 1%?
- b) Determinar el error máximo por autocalentamiento.
- c) Determinar el error en temperatura asociado a una tensión offset de entrada del A.O de 1 mV.
- d) Si conectamos la salida a un CAD con margen de entrada 1.5 V. ¿Cuántos bits debe tener para conseguir una resolución de 1°C? Indica el circuito intermedio que podríamos colocar entre la salida y el CAD para conseguir la misma resolución con menor número de bits.
- e) Determinar el error (en temperatura) debido a los hilos de conexión comparado con la configuración ideal de 2 hilos con resistencia nula.
- f) Si la resistencia de los 3 hilos no fuese exactamente igual (R_{h1} =4 Ω , R_{h2} =5 Ω , R_{h3} =6 Ω) ¿cuál sería el error en la medida de la temperatura del horno?

