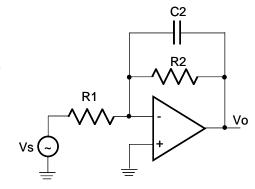

NOMBRE Y APELLIDOS:	DNI:
INSTRUMENTACIÓN ELECTRÓNICA. 11 de Junio de 2009	CALIFICACIÓN:

EJERCICIO 1 (2,5)

Pretendemos utilizar el sensor de presión MPX2300 para la medida de presión en aplicaciones médicas (rango entre 0 y 300 mmHg) y con un error inferior a 5 mmHg. Se trata de un sensor "ratiometric to supply voltage" y salida diferencial, cuyas características se adjuntan. Consideremos que hemos hecho una calibración específica, con el sensor alimentado a 6Vdc y a 25°C, y hemos determinado las características concretas de nuestro sensor (que tomaremos como valores de referencia) corresponde a los valores máximos de la hoja de especificaciones.

- 1.1) Si la tensión de alimentación puede presentar pequeñas variaciones de ± 0.2 V de amplitud respecto al valor nominal de 6 Vdc, determina el error máximo (peor caso) en la medida (expresado en mmHg) a la que esta variación da lugar por el efecto en el offset y la sensibilidad. ¿Es aceptable esta variación en la alimentación de ± 0.2 V para nuestra aplicación o se debería utilizar una fuente de alimentación más estable? (1)
- **1.2**) Consideramos una tensión de alimentación estable de 6 Vdc. Conectamos la salida del sensor a un amplificador de instrumentación (AI), y la salida de este AI a un conversor analógico digital (CAD) con margen de entrada de 0 a 3 V.


Si la ganancia del AI viene dada por [1+(40KΩ/Rg)] ¿Cuál debe ser el valor de Rg para aprovechar de la mejor forma posible el margen de entrada del CAD? (0.3) ¿Cuál es la máxima tolerancia (en %) de la resistencia aceptable para que el error máximo que introduzca esta incertidumbre sea inferior a 5 mmHg? (0.9) ¿Cuántos bits debe tener el CAD para que el error de cuantificación sea inferior a 5 mmHg? (0,3)

EJERCICIO 2 (2,5)

Utilizamos el amplificador inversor de la figura para amplificar una señal procedente de un sensor (Vs).

Consideraremos que el amplificador operacional es ideal.

R1=1 k
$$\Omega$$

R2=10 k Ω
C2= 1nF

- **2.1**) ¿Cuál es el rango de frecuencias de la señal de entrada que se puede medir con un error dinámico a la salida inferior a $\varepsilon=1\%$? *Indica la expresión genérica de la frecuencia máxima en función de los componentes R1, R2, C2 y del error* ε . Solo sustituye los valores numéricos al final. (**0.75**)
- **2.2**) Evalua a tensión de ruido rms a la salida debida al ruido térmico de R1 y R2. Indica la expresión genérica de la tensión de ruido rms en función de los componentes R1, R2, C2 y la constante k_B y la temperatura. Solo sustituye los valores numéricos al final. (0.75)
- **2.3**) Si elegimos R1 y R2 10 veces más grandes (R1=10 k Ω y R2=100 k Ω), ¿Cuál sería la tensión de ruido rms a la salida? ¿Y el rango de frecuencias útil (con error dinámico inferior al 1%)? (**0.5**)

Si con estas nuevas resistencias, queremos seguir manteniendo el mismo rango de frecuencias útil inicial, ¿qué componente debemos modificar y cuánto? En ese caso, ¿cuál sería la tensión de ruido rms? (0.5)

High Volume Pressure Sensor For Disposable Applications

MPX2300DT1 MPX2301DT1

Motorola Preferred Device

Features

- Low Cost
- Integrated Temperature Compensation and Calibration
- · Ratiometric to Supply Voltage
- Polysulfone Case Material (Medical, Class V Approved)
- Provided in Easy-to-Use Tape and Reel

Application Examples

- · Medical Diagnostics
- Infusion Pumps
- · Blood Pressure Monitors
- Pressure Catheter Applications
- · Patient Monitoring

PIN NUMBER					
1	Vs	3	S-		
2	S+	4	Gnd		

MPX2300DT1 MPX2301DT1

MAXIMUM RATINGS(NOTE)

Rating	Symbol	Value	Unit
Maximum Pressure (Backside)	P _{max}	125	PSI
Storage Temperature	T _{stg}	-25 to +85	°C
Operating Temperature	T _A	+15 to +40	°C

NOTE: Exposure beyond the specified limits may cause permanent damage or degradation to the device.

OPERATING CHARACTERISTICS (V_S = 6 Vdc, T_A = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Pressure Range	P _{OP}	0	_	300	mmHg
Supply Voltage ⁽⁷⁾	٧s	_	6.0	10	Vdc
Supply Current	Io	_	1.0	_	mAdc
Zero Pressure Offset	V _{off}	-0.75	_	0.75	m∨
Sensitivity		4.95	5.0	5.05	μV/V/mmHg
Full Scale Span ⁽¹⁾	V _{FSS}	2.976	3.006	3.036	m∨
Linearity + Hysteresis ⁽²⁾		- 1.5	_	1.5	%V _{FSS}
Accuracy ⁽⁹⁾ V_S = 6 V, P = 101 to 200 mmHg		- 1.5	_	1.5	%
Accuracy ⁽⁹⁾ V_S = 6 V, P = 201 to 300 mmHg		- 3.0	_	3.0	%
Temperature Effect on Sensitivity	TCS	-0.1	_	+0.1	%/°C
Temperature Effect on Full Scale Span ⁽³⁾	TCV _{FSS}	-0.1	_	+0.1	%/°C
Temperature Effect on Offset ⁽⁴⁾	TCV _{off}	-9.0	_	+9.0	μV/°C
Input Impedance	Z _{in}	1800	_	4500	Ω
Output Impedance	Z _{out}	270	_	330	Ω
$R_{CAL} (150 \text{ k}\Omega)^{(8)}$	R _{CAL}	97	100	103	mmHg
Response Time ⁽⁵⁾ (10% to 90%)	t _R	_	1.0	_	ms
Temperature Error Band	_	0	_	85	°C
Stability ⁽⁶⁾	T -	_	±0.5	_	%V _{FSS}

- 1. Measured at 6.0 Vdc excitation for 100 mmHg pressure differential. V_{FSS} and FSS are like terms representing the algebraic difference between full scale output and zero pressure offset.
- 2. Maximum deviation from end-point straight line fit at 0 and 200 mmHg.
- 3. Slope of end-point straight line fit to full scale span at 15°C and +40°C relative to +25°C.
- 4. Slope of end-point straight line fit to zero pressure offset at 15°C and +40°C relative to +25°C.
- 5. For a 0 to 300 mmHg pressure step change.
- 6. Stability is defined as the maximum difference in output at any pressure within POP and temperature within +10°C to +85°C after:
 - a. 1000 temperature cycles, –40°C to +125°C.
 - b. 1.5 million pressure cycles, 0 to 300 mmHg.
- Recommended voltage supply: 6 V ± 0.2 V, regulated. Sensor output is ratiometric to the voltage supply. Supply voltages above +10 V may induce additional error due to device self–heating.
- 8. Offset measurement with respect to the measured sensitivity when a 150k ohm resistor is connected to V_S and S+ output.
- Accuracy is calculated using the following equation:

 $Error_p = \{[V_p - Offset)/(Sens_{Nom}^*V_{EX})] - P\}/P$

 V_p = Actual output voltage at pressure P in microvolts (μV) Offset = Voltage output at P = 0mmHg in microvolts (μV)

Sens_{Nom} = Nominal sensitivity = 5.01 μ V/V/mmHg V_{EX} = Excitation voltage

P = Pressure applied to the device