Lecture 2: Sensor characteristics

- Transducers, sensors and measurements
- Calibration, interfering and modifying inputs
- Static sensor characteristics
- Dynamic sensor characteristics

Transducers: sensors and actuators

Transducer

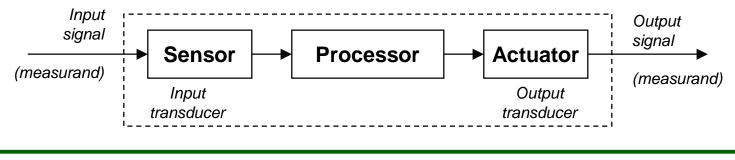
- A device that converts a signal from one physical form to a corresponding signal having a different physical form
 - Physical form: mechanical, thermal, magnetic, electric, optical, chemical...
- Transducers are ENERGY CONVERTERS or MODIFIERS

Sensor

- A device that receives and responds to a signal or stimulus
 - This is a broader concept that includes the extension of our perception capabilities to acquire information about physical quantities

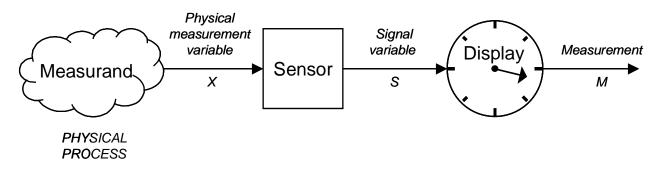
Transducers: sensors and actuators

- Sensor: an input transducer (i.e., a microphone)
- Actuator: an output transducer (i.e., a loudspeaker)



Measurements

A simple instrument model



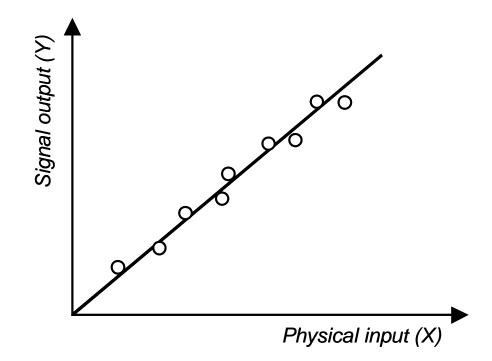
- A observable variable X is obtained from the measurand
 - X is related to the measurand in some KNOWN way (i.e., measuring mass)
- The sensor generates a signal variable that can be manipulated:
 - Processed, transmitted or displayed
- In the example above the signal is passed to a display, where a measurement can be taken

Measurement

• The process of comparing an unknown quantity with a standard of the same quantity (measuring length) or standards of two or more related quantities (measuring velocity)

Calibration

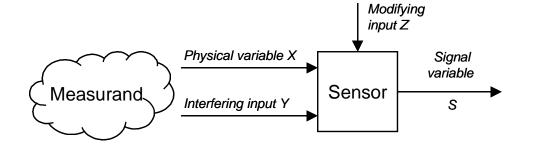
- The relationship between the physical measurement variable (X) and the signal variable (S)
 - A sensor or instrument is calibrated by applying a number of KNOWN physical inputs and recording the response of the system



Additional inputs

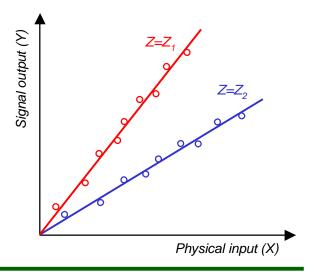
Interfering inputs (Y)

- Those that the sensor to respond as the linear superposition with the measurand variable X
 - Linear superposition assumption: S(aX+bY)=aS(X)+bS(Y)



Modifying inputs (Z)

- Those that change the behavior of the sensor and, hence, the calibration curve
 - Temperature is a typical modifying input



Sensor characteristics [PAW91, Web99]

Static characteristics

- The properties of the system after all transient effects have settled to their final or steady state
 - Accuracy
 - Discrimination
 - Precision
 - Errors
 - Drift
 - Sensitivity
 - Linearity
 - Hystheresis (backslash)

Dynamic characteristics

- The properties of the system transient response to an input
 - Zero order systems
 - First order systems
 - Second order systems

Accuracy, discrimination and precision

- Accuracy is the capacity of a measuring instrument to give RESULTS close to the TRUE VALUE of the measured quantity
 - Accuracy is related to the bias of a set of measurements
 - (IN)Accuracy is measured by the absolute and relative errors

$\begin{array}{l} \text{ABSOLUTE ERROR} = \text{RESULT} - \text{TRUE VALUE} \\ \text{RELATIVE ERROR} = \frac{\text{ABSOLUTE ERROR}}{\text{TRUE VALUE}} \end{array}$

- More on errors in a later slide
- Discrimination is the minimal change of the input necessary to produce a detectable change at the output
 - Discrimination is also known as RESOLUTION
 - When the increment is from zero, it is called THRESHOLD

Precision

- The capacity of a measuring instrument to give the same reading when repetitively measuring the same quantity under the same prescribed conditions
 - Precision implies agreement between successive readings, NOT closeness to the true value
 - Precision is related to the <u>variance</u> of a set of measurements
 - Precision is a necessary but not sufficient condition for accuracy

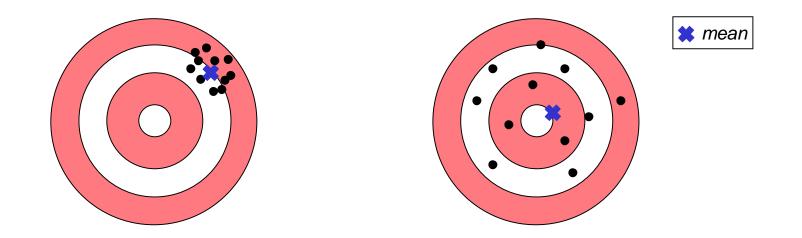
Two terms closely related to precision

- Repeatability
 - The precision of a set of measurements taken over a short time interval
- Reproducibility
 - The precision of a set of measurements BUT
 - taken over a long time interval or
 - Performed by different operators or
 - with different instruments or
 - in different laboratories

Example

Shooting darts

- Discrimination
 - The size of the hole produced by a dart
- Which shooter is more accurate?
- Which shooter is more precise?



Accuracy and errors

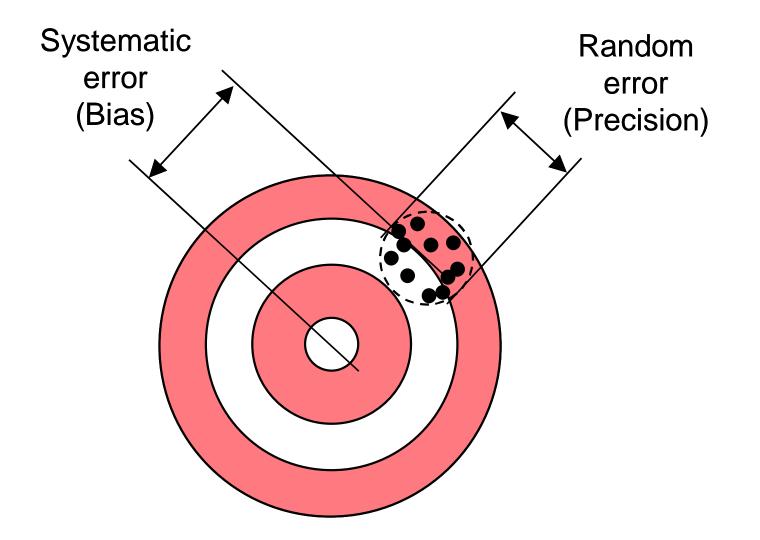
Systematic errors

- Result from a variety of factors
 - Interfering or modifying variables (i.e., temperature)
 - Drift (i.e., changes in chemical structure or mechanical stresses)
 - The measurement process changes the measurand (i.e., loading errors)
 - The transmission process changes the signal (i.e., attenuation)
 - Human observers (i.e., parallax errors)
- Systematic errors can be corrected with COMPENSATION methods (i.e., feedback, filtering)

Random errors

- Also called NOISE: a signal that carries no information
- True random errors (white noise) follow a Gaussian distribution
- Sources of randomness:
 - Repeatability of the measurand itself (i.e., height of a rough surface)
 - Environmental noise (i.e., background noise picked by a microphone)
 - Transmission noise (i.e., 60Hz hum)
- Signal to noise ratio (SNR) should be >>1
 - With knowledge of the signal characteristics it may be possible to interpret a signal with a low SNR (i.e., understanding speech in a loud environment)

Example: systematic and random errors



More static characteristics

Input range

- The maximum and minimum value of the physical variable that can be measured (i.e., -40F/100F in a thermometer)
- Output range can be defined similarly
- Sensitivity
 - The slope of the calibration curve y=f(x)
 - An ideal sensor will have a large and constant sensitivity
 - Sensitivity-related errors: saturation and "dead-bands"
- Linearity
 - The closeness of the calibration curve to a specified straight line (i.e., theoretical behavior, least-squares fit)

Monotonicity

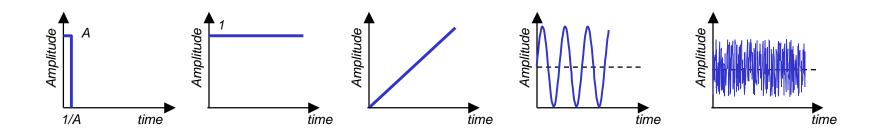
• A monotonic curve is one in which the dependent variable always increases or decreases as the independent variable increases

Hystheresis

- The difference between two output values that correspond to the same input depending on the trajectory followed by the sensor (i.e., magnetization in ferromagnetic materials)
 - Backslash: hystheresis caused by looseness in a mechanical joint

Dynamic characteristics

- The sensor response to a variable input is different from that exhibited when the input signals are constant (the latter is described by the static characteristics)
- The reason for dynamic characteristics is the presence of energy-storing elements
 - Inertial: masses, inductances
 - Capacitances: electrical, thermal
- Dynamic characteristics are determined by analyzing the response of the sensor to a family of variable input waveforms:
 - Impulse, step, ramp, sinusoidal, white noise...



Dynamic models

- The dynamic response of the sensor is (typically) assumed to be linear
 - Therefore, it can be modeled by a constant-coefficient linear differential equation

$$a_k \frac{d^k y(t)}{dt^k} + \cdots + a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = x(t)$$

- In practice, these models are confined to zero, first and second order. Higher order models are rarely applied
- These dynamic models are typically analyzed with the Laplace transform, which converts the differential equation into a polynomial expression
 - Think of the Laplace domain as an extension of the Fourier transform
 - Fourier analysis is restricted to sinusoidal signals
 - $x(t) = sin(\omega t) = e^{-j\omega t}$
 - Laplace analysis can also handle exponential behavior
 - $x(t) = e^{-\sigma t} \sin(\omega t) = e^{-(\sigma + j\omega)t}$

The Laplace Transform (review)

The Laplace transform of a time signal y(t) is denoted by

- L[y(t)] = Y(s)
 - The s variable is a complex number s= σ +j ω
 - The real component σ defines the real exponential behavior
 - The imaginary component defines the frequency of oscillatory behavior

The fundamental relationship is the one that concerns the transformation of differentiation

$$L\left[\frac{d}{dt}y(t)\right] = sY(s) - f(0)$$

Other useful relationships are

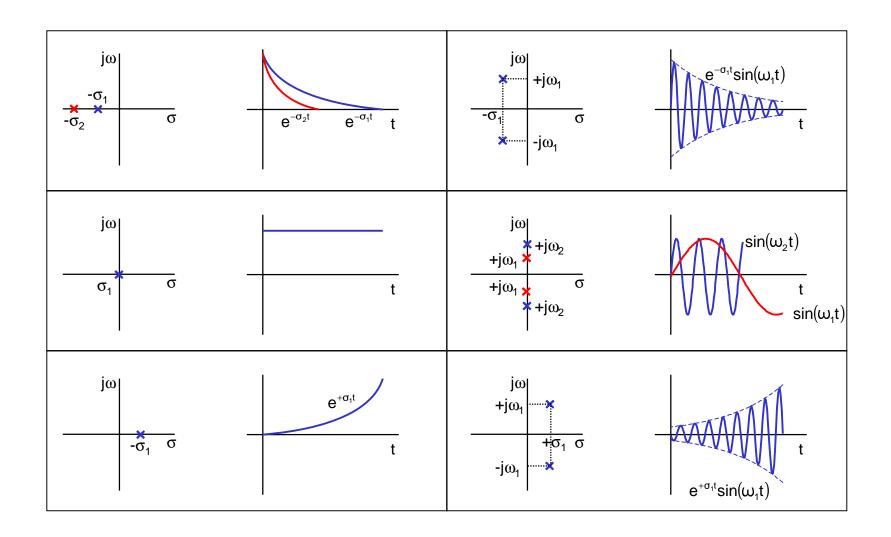
Impulse: $L[\delta(t)]=1$ Decay: $L[exp(at)]=(s-a)^{-1}$ Step: $L[u(t)]=\frac{1}{s}$ Sine: $L[sin(\omega t)]=\frac{\omega}{s^2+\omega^2}$ Ramp: $L[r(t)]=\frac{1}{s^2}$ Cosine: $L[cos(\omega t)]=\frac{s}{s^2+\omega^2}$

The Laplace Transform (review)

Applying the Laplace transform to the sensor model yields

- G(s) is called the transfer function of the sensor
- The position of the poles of G(s) -zeros of the denominator- in the s-plane determines the dynamic behavior of the sensor such as
 - Oscillating components
 - Exponential decays
 - Instability

Pole location and dynamic behavior

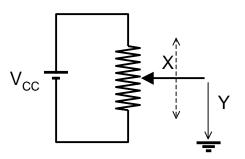


Zero-order sensors

Input and output are related by an equation of the type

$$y(t) = k \cdot x(t) \Longrightarrow \frac{Y(s)}{X(s)} = k$$

- Zero-order is the desirable response of a sensor
 - No delays
 - Infinite bandwidth
 - The sensor only changes the amplitude of the input signal
- Zero-order systems do not include energy-storing elements
- Example of a zero-order sensor
 - A potentiometer used to measure linear and rotary displacements
 - This model would not work for fast-varying displacements



First-order sensors

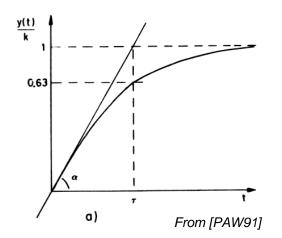
Inputs and outputs related by a first-order differential equation

$$a_1 \frac{dy}{dt} + a_0 y(t) = x(t) \Longrightarrow \frac{Y(s)}{X(s)} = \frac{1}{a_1 s + a_0} = \frac{k}{\tau s + 1}$$

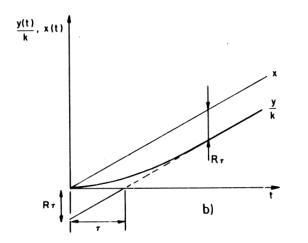
- First-order sensors have one element that stores energy and one that dissipates it
- Step response
 - $y(t) = Ak(1-e^{-t/\tau})$
 - A is the amplitude of the step
 - $k = 1/a_0$ is the static gain, which determines the static response
 - τ (=a₁/a₀) is the time constant, which determines the dynamic response
- Ramp response
 - $y(t) = Akt Ak\tau u(t) + Ak\tau e^{-t/\tau}$
- Frequency response
 - Better described by the amplitude and phase shift plots

First-order sensor response

Step response



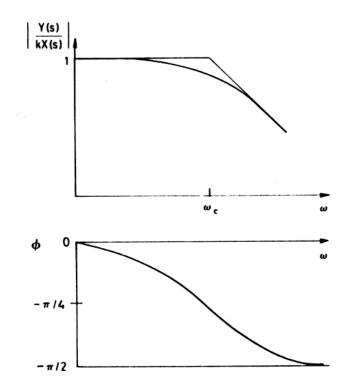
Ramp response



Intelligent Sensor Systems Ricardo Gutierrez-Osuna Wright State University

Frequency response

- Corner frequency $\omega_c = 1/\tau$
- Bandwidth



Example of a first-order sensor

A mercury thermometer immersed into a fluid

- What type of input was applied to the sensor?
- Parameters
 - C: thermal capacitance of the mercury
 - R: thermal resistance of the glass to heat transfer
 - θ_{F} : temperature of the fluid
 - $\theta(t)$: temperature of the thermometer
- The equivalent circuit is an RC network

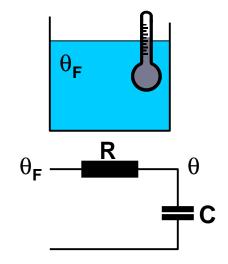
Derivation

- Heat flow through the glass $(\theta_{F} \theta(t))/R$
- Temperature of the thermometer rises as
- Taking the Laplace transform

$$s \theta(s) = \frac{\theta_{F}(s) - \theta(s)}{RC} \Longrightarrow (RCs + 1) \theta(s) = \theta_{F}(s) \Longrightarrow$$
$$\Rightarrow \theta(s) = \frac{\theta_{F}(s)}{(RCs + 1)} \implies \theta(t) = \theta_{F}(1 - e^{-t/RC})$$

 $\frac{\mathrm{d}\boldsymbol{\theta}(t)}{\mathrm{d}\boldsymbol{\theta}(t)} = \frac{\boldsymbol{\theta}_{\mathrm{F}} - \boldsymbol{\theta}(t)}{\mathrm{d}\boldsymbol{\theta}(t)}$

dt



Second-order sensors

Inputs and outputs are related by a second-order differential equation

$$a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y(t) = x(t) \Rightarrow \frac{Y(s)}{X(s)} = \frac{1}{a_2 s^2 + a_1 s + a_0}$$

• We can express this second-order transfer function as

$$\frac{Y(s)}{X(s)} = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

with $k = \frac{1}{a_0}, \ \zeta = \frac{a_1}{2\sqrt{a_0 a_1}}, \ \omega_n = \sqrt{\frac{a_0}{a_2}}$

- Where
 - k is the static gain
 - ζ is known as the damping coefficient
 - ω_n is known as the natural frequency

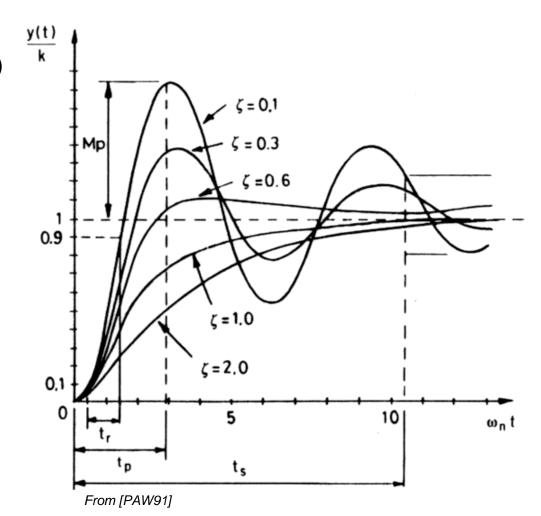
Second-order step response

Response types

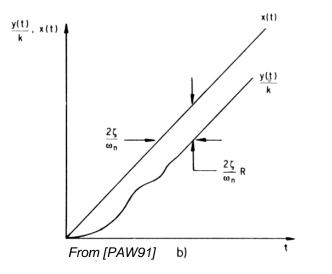
- Underdamped (ζ<1)
- Critically damped (ζ=1)
- Overdamped (ζ>1)

Response parameters

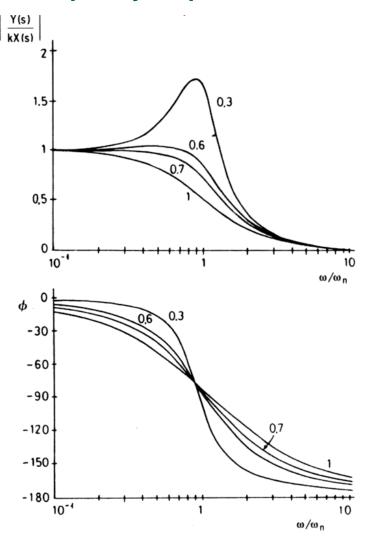
- Rise time (t_r)
- Peak overshoot (M_p)
- Time to peak (t_p)
- Settling time (t_s)



Second-order response (cont)



Frequency response



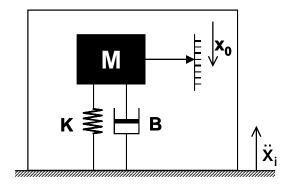
Example of second-order sensors

A thermometer covered for protection

• Adding the heat capacity and thermal resistance of the protection yields a second-order system with two real poles (overdamped)

Spring-mass-dampen accelerometer

- The armature suffers an acceleration
 - We will assume that this acceleration is orthogonal to the direction of gravity
- x₀ is the displacement of the mass M with respect to the armature
- The equilibrium equation is:



$$M(\ddot{x}_{i} - \ddot{x}_{0}) = Kx_{0} + B\dot{x}_{0}$$

$$\Downarrow$$

$$Ms^{2}X_{i}(s) = X_{0}(s)[K + Bs + Ms^{2}]$$

$$\Downarrow$$

$$\frac{X_{0}(s)}{s^{2}X_{i}(s)} = \frac{M}{K}\frac{K/M}{s^{2} + s(B/M) + K/M}$$

References

- [PAW91] R. Pallas-Areny and J. G. Webster, 1991, Sensors and Signal Conditioning, Wiley, New York
- [Web99] J. G. Webster, 1999, The Measurement, Instrumentation and Sensors Handbook, CRC/IEEE Press, Boca Raton, FL.
- [Tay97] H. R. Taylor, 1997, Data Acquisition for Sensor Systems, Chapman and Hall, London, UK.
- [Fdn97] J. Fraden, 1997, Handbook of Modern Sensors. Physics, Designs and Applications, AIP, Woodbury, NY
- [BW96] J. Brignell and N. White, 1996, Intelligent Sensor Systems, 2nd Ed., IOP, Bristol, UK

