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1 Introduction

The 6502 was a very popular CPU during the 8-bit craze 30 years ago. It is still being used as a cheap core in the
embedded market, mainly in its 16-bit incarnation: the 65816, but it is not widely known as it was decades ago. It still
has many enthusiasts doing projects with it. It has been implemented as a VHDL or Verilog core many times. Several
TTL CPUs had been designed using the same instruction set as the 6502, etc, etc, etc. The 6502 is a very interesting
CPU due to its simplicity: few registers, few instructions, few transistors. It is a logical introductory example for
computer design. And it is also interesting due to the prominent role it played during the development of the early
personal computer, with many classic machines running on it.

But, on the other hand, some of these enthusiast seems to have been so focused on it that they think it is the Holy
Grail of computing, while, the 6502 is also well known for its many bugs, limitations, and weird behavior. In this
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document I’m mainly playing the Devil’s Advocate against the 6502, exposing its not so brilliant aspects. I don’t
want to reduce the merit of their designers. They did a magnificent job, but their big goal was to design the cheapest
possible CPU in the World, not the fastest, nor the cleanest, nor the most robust. What gave the 6502 its place in the
computing history was its low price. We mustn’t forget that.

This document includes the knowledge I collected from my own experimentation with a 6502 prototype I build
about one year ago along with that available on Internet resources. In some occasions I’m presenting diagrams inferred
from known facts, but not accurate in the stricter way. There are also some personal views that can be shared or not,
specially those related with the instruction set of the processor.

The document begins with some hardware related issues of the 6502, continues discussing the limitations of its
instruction set, then, a performance comparison between the 6502 and its main competitor, the Z80, is presented, and,
finally the 6502 and a RISC cpu design are compared.

2 Hardware flaws, trade-offs, bugs...

The 6502 as it was originally released included lots of flaws and bugs [?]. Many of these problems were corrected
in the CMOS version, the 65C02. But the improved version came to the market too late and almost all 6502 systems
were designed around the NMOS chip with all its problems. It is quite sure that the designers were aware of some
of these problems before the first chip went out of the factory line. Some were the result of design trade-offs when
reducing the hardware complexity, while others weren’t just taken seriously. None of them was considered of enough
importance for a design revision, so, all NMOS 6502 exhibit them.

Here are some examples of odd hardware behavior or just missing expected functionality.

2.1 Lack of 3-state address bus

The original 6502 came without the possibility of disabling its address output drivers, and, therefore, it became a
nuisance for the designers of systems with any sort of DMA. This feature can be added externally, using 74LS244
3-state drivers, but any other CPU on the market gives you this possibility for free.

The fact is that including a 3-state capability to the address bus requires only a negligible amount of hardware
inside the chip, and there are many unused pins in the package, so, I don’t see the reason for not including it. In fact, a
follower chip, the 6510, included a 3-state address bus, probably due to customer demands (and customers were Atari
and Commodore, not you or me).

2.2 Dummy Reads

The 6502 also lacks an output to validate the R/W signal: some sort or VMA or MEMRQ pin. As a consequence all
clock cycles are memory accesses, either reads or writes, but, there are some cycles when the CPU is doing internal
processing and the value on the data bus is irrelevant. Most of these cycles are dummy reads.

Lets consider for instance the RTS instruction whose timing diagram [?] is shown in Figure 1. Before retrieving the
return address from the stack the stack pointer has to be incremented. During this cycle a dummy read is performed.
The same happens at the end of the instruction when the PC has to be incremented. The RTS instruction does two
dummy reads (and one dummy fetch, discussed later).

Dummy reads aren’t wasted time. This time is needed for internal processing anyway. Their only impact is on
memory sharing systems and in the total power consumption due to extra memory activity.

2.3 Dummy Writes

Some instructions can also have dummy writes. This happens with all Read-Modify-Write instructions like INC zp.
In these instructions the data from memory is read, written to the same address unmodified and, finally, written to the
same address modified [?]. The first write cycle is, thus, a dummy write. As with dummy reads, dummy writes aren’t
wasted time, just unnecessary memory bandwidth.

2.4 Dummy Fetches

Dummy fetches happens when a single byte instruction is executed. After reading the op-code at PC address, a second
read is performed at PC+1. This second read retrieves the first byte of the operands for multi-byte instructions, but,
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Figure 1: Detailed timing for the RTS instruction (inferred from available data).

for single-byte instructions it is unneeded, and therefore, it is wasted time.
Thanks to dummy fetches all instructions have the same first cycle. This can, surely, help in reducing the com-

plexity of the CPU sequencer at the expense of some processing speed penalty. The 6502 was designed to be cheap
and hardware simplicity was more valuable than speed. This speed penalty is also discussed in section 4.1.4 where it
was found to be of little importance (about 10% slower).

Dummy fetches can explain why after a SYNC cycle the address on the bus is always incremented, with hardware
interrupts being the only exceptions to this rule.

2.5 Incomplete decoding logic.

The 6502 sequencer diagram is shown in Figure 2. This diagram was obtained from data available from [?] and the
transistor-level schematic from [?]. It is basically a seven-bit shift register with a “walking one” driving the AND-
plane of a half PLA, the OR-plane of the PLA being replaced with random logic. PLA is not a very convenient name
because the array connections aren’t programmable: a connection is made by placing a transistor in the array during
the design of the chip. The 6502 sequencer is therefore completely hardwired. The shift register is used for counting
the instruction cycles in place of a more conventional counter and decoder. The shift register is not the only input
to the PLA, other bits come from the instruction register (the register where the op-code of the current instruction
is stored). The PLA AND-plane outputs are the Boolean products of any desired combination of inputs, but not all
combinations can fit in the PLA. In this respect the PLA differs from an ordinary ROM. The PLA was therefore
programmed to decode only the documented op-codes of the 6502 and no more than that. As undocumented op-codes
were supposed to be “don’t care” cases in the Boolean equations of the PLA, the size of the PLA was reduced to a
minimum.

Unfortunately, this design strategy also led to weird behavior when undocumented op-codes are executed. Most
of them execute useless operations. Some of them have variable effects because of bus contentions inside the CPU,
and a few of them have the surprisingly effect of stopping the CPU completely. These later op-codes are, jokingly
called, the KIL instructions.

A KIL op-code basically don’t get the SYNC output active for any of the 7 clock cycles it takes for the “walking
one” to get out of the shift register. After this happens the shift register is completely filled with zeroes and the
processor is dead. Only a RESET can get the 6502 into an operational state again.
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Figure 2: Inferred block diagram of the 6502 sequencer. (The programmable connection locations does not correspond
to the actual ones).

This flaw could be related to pipelining, a novel concept applied to microprocessors at the time of the 6502
design. The idea is to do the op-code fetch of the new instruction in parallel with the last execution cycle of the
current instruction, if possible. A convenient way of arranging this is to actually do the op-code fetch during the last
cycle of the current instruction along with its last processing step. So, the SYNC signal (op-code fetch) is activated
from one of the outputs of the sequencer instead of the state counter. If the current op-code fails to activate the SYNC
signal it becomes a KIL.

All KIL op-codes have the bit 1 set (for instance op-code = $02). This is surely related to the fact that one output
from the instruction register is not connected to the PLA (bit 1, of course).

The KIL op-codes seems to be closely related to the Halt and Catch Fire, HCF, instruction of the 6800 CPU. But,
as long as I know, these op-codes were intended as a factory test, so, they were intentional. The HCF stops executing
instructions and keeps the address bus counting, turning the 6800 CPU into no more than an expensive binary counter.

2.6 Interrupts & Reset

2.6.1 The B flag

One of the most bizarre things about the 6502 is the behavior of its Break flag. A “PHP, PLA” sequence always reads
it as “1”, but it is pushed as “0” into the stack when a hardware interrupts happens. The schematic of Figure 3 helps
to understand this behavior: First, there is no storage for this flag. It is just the validated interrupt line. During normal
program execution it is always read as “1” because a “0” will interrupt the program before the actual read. When an
interrupt is executed the flag register is read with the B flag as “0” and pushed into the stack. Before jumping to the
interrupt vector the I flag is set and the NMI edge detector is reset, so, when the execution continues the B flag is one
again.

2.6.2 The BRK op-code ($00)

The BRK op-code can be fetched into the instruction register because of four different possible events:
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Figure 3: Functional schematic of the status register of the 6502 CPU

1. The program contains a BRK instruction and it is fetched like any other op-code.

2. The IRQ input goes low and the I flag is reset.

3. A falling edge in the NMI input happens.

4. The CPU is reset.

The instruction register can be cleared instead of fetching the current op-code when an interrupt or reset happens,
effectively converting the fetched op-code into a BRK (see Figure 2). But, then, the execution of the BRK instruction
differs depending on the cause of the BRK in the following ways:

• A software BRK lets the PC to be incremented two times before pushing it into the stack, pushes the flags
register (with B as “1”), and, finally, reads the new PC value from the addresses $FFFE and $FFFF.

• An IRQ interrupt pushes the PC and the flags register with B as “0”, but it does not increment the PC, allowing
the interrupted op-code to be fetched again after RTI. The new PC value is read from the addresses $FFFE and
$FFFF.

• An NMI interrupt does the same as the IRQ interrupt but the PC is read from addresses $FFFA and $FFFB.

• The Reset is very interesting. The stack pointer is decremented by 3, like if three values were being pushed into
the stack, but nothing gets written into the memory. In fact, the BRK instruction tries to push the PC and the
flags register, but the R/W line is forced high and the three write cycles are turned into dummy reads. It, finally,
reads the new PC value from addresses $FFFC and $FFFD.

So, the BRK instruction gets a lot of different uses, with the software BRK being the least priority to designers. Its
behavior is modified with a few gates that can inhibit the normal PC increment or memory write. The internal buses
are precharged high, and if nothing pulls their lines low they will be read as all ones. To generate the three different
addresses for the vectors only three pull-down transistors are needed (for bits 0, 1, and 2). A lot of functionality is
achieved with only a few transistors. Compare this to the burden of the 8080 case where the external interrupt source
has to put an op-code into the data bus.

2.6.3 Lost BRKs

The BRK instruction is like a fixed address subroutine call. The only noticeable remark being the fact that it is actually
a two-byte instruction. The second byte is not used by the processor, but it can be retrieved from the program memory
by the BRK handler routine and it can get a user-defined meaning. It is tempting to use the BRK as a system call,
but beware: the 6502 has an important bug regarding the BRK instruction [?]. Interrupts are executed by turning the
currently fetched op-code into a BRK. But, when the interrupted instruction is also a BRK the PC increments like for

5



a software BRK but the B flag is pushed as “0” like for a hardware interrupt. As a consequence, the BRK handler is
executed for a hardware interrupt, and, when the RTI instruction is executed, the next instruction fetched is that after
the BRK. The BRK instruction is therefore skipped, like if it was removed from the normal program flow.

2.6.4 No instruction between interrupts

The IRQ handler routine has to take the necessary steps in order to deactivate the IRQ line before returning to the
interrupted code with an RTI instruction. If the IRQ line is still low when the RTI is executed a new interrupt will
happen just at the end of the RTI execution. Not a single instruction of the interrupted program is executed in this
case. This differs from the behavior of other processors where one instruction of the interrupted program gets executed
between interrupts, a trick often exploited by debuggers to implement a single-step execution. In the 6502 case other
solutions have to be found, like, for example, triggering an IRQ just after the fetch cycles of the executed instruction
by using a carefully set timer (if your system includes a 6522 VIA this is possibly the simplest solution).

2.7 BCD arithmetic
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Figure 4: Detail of the BCD correction block and its placement in the 6502 datapath.

The 6502 is able to perform arithmetic using BCD values. Instead of using a BCD adjusting instruction like
many other processors (namely DAA on Intel’s or Z80), the mode of operation is selected by the decimal flag in the
status register. If the D flag is one the ADC and SBC instructions operate in BCD mode. For the ADC instruction
this involves dividing the 8-bit data into two 4-bit BCD digits and to add 6 to the nibbles whose value exceeds 9, a
condition that requires one carry output for each 4-bit digit of the ALU. The BCD adjust are two simple 4-bit adders
that can add 6, 9 (for SBC) or 0 to each digit depending on their control inputs. The Figure 4 shows a diagram of the
ALU, BCD adjust logic, accumulator, and the way they are interconnected.

When operating in decimal mode the N and V flags doesn’t make sense, but the Z flag is also invalid. That’s odd,
because the Z flag can have an useful role also for BCD values, but, the real 6502 can have the Z flag set when the
result is $66 in decimal mode.

This flaw is easily explained by looking at the diagram of Figure 4. The Z flag is computed as the 8-bit NOR
function of all the bits of the internal data bus, not the accumulator inputs. Thus, an active Z flag is telling us that the
output of the ALU is zero but the BCD adjust logic can have added some non-zero value to this result. It seems that
the Z flag computation is done in the wrong place. But, that place was selected because there are instructions that can
change the Z flag without having the ALU nor the accumulator involved (for instance LDX).

So, it looks that the 6502 designers didn’t want to have the Z flag correct. Doing this would have required another
8-input NOR gate placed on the accumulator inputs and the Z flag source switched depending if the accumulator is
the destination or not. This doesn’t look like much extra hardware, but the designers went the easy way: declaring
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the Z flag invalid when in decimal mode. It seems that they had little regard for this mode, maybe because it was a
last hour marketing decision to boost sales by offering something more. In my opinion the BCD mode has little or no
practical use, and, by the way, the developers of Commodore should have had the same opinion because they forgot
to clear the D flag in the IRQ handler routine of the C64 [?] :) Modern CPUs no longer have BCD support, further
supporting this opinion.

3 Instruction set

The 6502 got an “spartan” instruction set that made things a little difficult for programmers. This instruction set was
increased in the 65C02 with much needed instructions. As always happens with instruction set upgrades, applications
usually target the smaller instruction set in order to run on all possible CPUs, and, as a consequence, improvements
aren’t used in most of the actual code. This is particularly true for the 6502: Almost all systems were based on the
NMOS 6502 and only a negligible amount of code was optimized for the newer CMOS version.

Both the oddities of the 6502 instructions and their addressing modes are presented in the following text.

3.1 Useless addressing modes

The 6502 fans are proud of the many addressing modes it provides to programmers. But, some of them have little or
no practical use. The ZP,X and ZP,Y are seldom used because arrays aren’t placed on zero page very often. The zero
page area is much valued for program and system variables, and, usually, there is no space left for arrays. Also, these
addressing modes are particular cases of the more general ABS,X and ABS,Y modes that are what usually get used.

The (IND,X) mode is a clear case of nonsense. It addresses an array of pointers in the zero-page. After writing
thousands of assembler-code lines I never found the opportunity of using it. In my opinion it is not only useless, but
a classical example of the CISC weakness: A piece of hardware inside the CPU which is rarely used. On the other
hand the (IND),Y mode is used very often. In many occasions I missed a similar (IND),X mode. That would have
been much more practical.

3.2 Missing useful instructions

The instruction set of the 6502 has few instructions (56), with almost all of them being regularly used in the programs.
Due to this some people like to name the 6502 as the “first RISC”. The meaning of the term RISC is usually understood
to be something more than just a reduced set of instructions. It implies a large set of registers, a load-store architecture
and a deep instruction pipeline. None of these characteristics are found in the 6502, but, indeed, its instruction set is
reduced, maybe too much. In many occasions the programmers have to resort to tricks, workarounds, or just extra
instructions to do simple operations that in other processors are done with single instructions. Some examples of the
6502 instruction set peculiarities follows:

No ADD, SUB

In the 6502 all additions and subtractions include the carry, so, before doing a simple addition you must be sure the
carry flag is cleared. This involves another instruction (CLC). The same goes for the subtraction, but in this case
the carry has to be set with SEC before executing SBC. I must recognize it is better to have only the addition with
carry than having only the addition (this later being a serious flaw for the PIC family of microcontrollers), but, setting
the carry before ADC/SUB is a nuisance that makes the code longer and slower. The ADD and SUB instructions
would require the ability to force the carry input to the ALU to zero or one, respectively. But this is already done for
comparisons, conditional branches and indexed addressing modes, so, the datapath hardware is already there. Only
the instruction decoding is missing.

No comparison with carry

While the addition and subtraction always includes the carry, the comparison instruction, CMP, does not. Therefore,
when comparing 16 or 32-bit values, the programmer has to resort to the SBC instruction. But that instruction modifies
the accumulator. A comparison with carry, CPC, would not have this problem.
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No INC A, DEC A

In the 6502 when the accumulator has to be incremented or decremented the ADC or SBC instructions have to be
used together with the burden of setting the carry flag properly. This makes the code longer, slower, and the carry flag
value is lost. The newer 65C02 includes these instructions at last.

No PHX, PHY, PLX, PLY

In the NMOS 6502 these instructions were missing. They were added later in the CMOS version. They are really
useful: Not only they save code and time. They also allows you to preserve the value in the accumulator when saving
the X and/or Y registers. As an example consider the following: all registers must be saved before calling a subroutine
and then restored. The value in the accumulator has to be preserved for the called routine. We want to do this without
modifying any variable in the zero-page or any static allocated memory:

6502 code: 65C02 code:

pha ; save registers pha ; save registers
txa phx
pha phy
tya jsr bitbang_out
pha ply ; restore registers
tsx ; reload Acc from stack plx
inx pla
inx rts ; return
inx
lda $100,x
jsr bitbang_out
pla ; restore registers
tay
pla
tax
pla
rts ; return

Too few addressing modes for BIT

The BIT instruction only have the ZP and ABS addressing modes. That’s a pity because it could be useful for testing
the contents of memory without losing the value in the accumulator. With this limitation it is only useful for testing
fixed memory addresses like I/O registers. Again, in the 65C02 there are more addressing modes in general and for
the BIT instruction in particular.

No JSR (IND)

The instruction set includes a JMP (IND) but not a JSR (IND). Therefore, when calling a vectorized routine we must
call a trampoline routine first:

...
jsr indcall
...

indcall: ; Trampoline routine
jmp (vector)

This approach results in a longer and slower code than doing a JSR (IND). By the way, the JMP (IND) instruction
is buggy and care must be taken to ensure your vector does not cross a page [?]. This is not a big problem if variables
are properly aligned.
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“Volatile” Z and N flags

Almost every instruction modify the Z and N flags, with load instructions being a notable case. This saves instructions
for testing data for zero or sign in the code, but, on the other hand, you must do your program bifurcation just after
these flags are valid or almost any other code will change them. Other CPUs have fewer flag-changing instructions
and you can insert code between comparisons and conditional jumps. This feature also plays a role in the invalid Z
flag in decimal mode (see subsection 2.7)

Values contrary to what is normally expected

The carry flag has to be set before SBC or an additional one is subtracted. After SBC the carry flag is set if the result
is zero or positive. That is: if the minuend is bigger or equal than the subtrahend. Most other CPUs have the opposite
values for their carry flag when doing subtractions, with the carry acting as a “borrow” bit.

The I flag is the IRQ mask. It means that hardware interrupts are masked (or inhibited) when the I flag is set.
Therefore, the CLI instruction allows interrupts to happen while SEI disables the interrupts. The CLI mnemonic is
found in many other processors with the opposite meaning.

4 Busting myths

There are two basic myths about the 6502 that deserve some analysis. The first is that, as it uses less clock cycles
per instruction, the 6502 is faster than other simmilar CPUs. In order to disprove this I choose the Z80 as the CPU to
compare the 6502 with. The 6502 and the Z80 have more in common than it is usually though. Both were designed
by people who resigned from their former companies after being fed up with their dilbertian bosses. They completed
their respectives designs on small companies, contended with their former employers in the market, and won. The
6502 and Z80 wiped the 6800 and 8080 out of the 8-bit market. They were very successful during that era, but both
were unable to evolve into competitive 16 or 32 bits designs. The Z80 takes 3 clock cycles to perform a memory read
while the 6502 does the same in just one clock cycle. But what this really means is that a memory chip that is just fast
enough for a 1 MHz 6502 is equally good for a 3 MHz Z80, and, therefore, Z80 systems were usually running with
faster clocks than those based on the 6502. What we have to compare is time, measured in seconds or microseconds,
instead of clock cycles.

The other myth I want to address is that of the interrupt latency. It is usually said that the 6502 has a very short
interrupt latency, but this doesn’t take into account the overhead in the interrupt routine itself. Again, I will compare
the 6502 interrupt against that of its main competitor, the Z80.

4.1 6502 vs Z80 speed comparison

During the eighties the 8-bit personal computer market was filled with lots of incompatible computer models. Most
of them were powered by the Z80 or 6502 CPUs. Only a small fraction of models relied on other processors, like the
6809. The battle was, thus, served. Z80 and 6502 users were eager to convince each other about the error they made
by choosing the opposite CPU. I was also involved in those arguments at that time, and my position was on the Z80
side. Now, many years later, I think I got a more balanced opinion. I’ll try to make an objective comparison about the
performance of these two processors.

Comparing “apples” and oranges

This is a never ending debate. There are always some pieces of code better suited for any particular CPU architecture
and benchmarks tends to be biased. For instance, the Z80 will beat any contemporary CPU when moving data in
the memory thanks to its LDIR instruction, but the 6502 can be a winner when doing BCD arithmetic. 6502 fans
argue that their CPU uses less clock cycles per instruction than the Z80, but the later usually ran on faster clocks.
Also, the Z80 includes more “useful” instructions in its set, meaning that less instructions are required for a particular
processing task. So, what we should compare? The benchmark must be neutral in the sense that neither CPU can take
advantage of their specific features. But, this also can be considered unfair because a good programmer would use
those features whenever possible to get a faster code. It would be a better idea to resort to a real-life application for the
benchmark, but, it is not easy to find the same application ported to these very different architectures. And what has
to be its source code? A high level language can give different results depending on the compiler or interpreter used.

9



Therefore, what I’m trying to do first is to code a particular application in assembler language for both processors,
and I’ll try to do my best to reduce the code size and execution time to a minimum in both cases. The application has
to be simple, because of the work it would require otherwise, but not too simple or it will not be a representative case.
I settled for the following:

A Eratosthenes sieve to compute prime numbers between 2 and 2048. It will require 256 bytes of data to hold a
“compressed” sieve and, therefore, single bit, multi-byte addressing is involved. The size of the sieve allows for an
efficient addressing in the 6502 case, but it does not matter for the Z80 code. Both processors will have to deal with
16-bit arithmetic, bit manipulation, binary to ASCII conversion and memory filling. I/O can be very system dependent
and, while used to test the correctness of the results, will be removed for the final speed test: the dummy character
printing routine will only contribute with its call and return delay to the total execution time. When the output is
printed the following is obtained:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103
107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313
317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433
.............................................................................
1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951
1973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039

System CPU Clock (MHz) System CPU Clock (MHz)
Apple IIe 6502 1.023 ZX Spectrum Z80 3.5

Commodore 64 6510 1.023 Amstrad CPC Z80 4
Commodore PET 6502 1 Spectravideo 328 Z80 3.6

Commodore VIC20 6502 1.023 Grundy New Brain Z80 4
Commodore 128 8502 2 Commodore 128 Z80 4

Atari 2600 6507 1.19 Sony Hit Bit 75 (MSX) Z80 3.58
Atari 800XL 6510 1.79 VTech Laser 200 Z80 3.57
Oric Atmos 6502 1 Jupiter Ace Z80 3.25
BBC micro 6502 2 Tatung Einstein Z80 4
Acorn Atom 6502 1 DEC Rainbow 100 Z80 4.012

Average 1.305 Average 3.751

Table 1: 8-bit system clock rate and CPU survey

The execution time will be measured by executing the code in an emulator and looking at the cycle count. But,
what clock frequency should we use for the emulated processors? First, we will take a look to the 8-bit machine
survey from Table 1 whose data was mainly collected from Wikipedia [?]. It looks clear that 6502 systems were
running at lower clock frequencies, most of them at around 1 MHz, while Z80s were close to 4 MHz. In the following
comparison we will use the average frequencies from the table, namely 1.305 MHz for the 6502 and 3.751 MHz for
the Z80.
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4.1.1 6502 test code

The source code for the 6502 test follows.

*=0

tmp1: *=*+1
tmp2: *=*+1
number: *=*+2
index: *=*+2

*=$e000

direxe: ldy #0 ; Mark all numbers as primes to begin
lda #$ff

l1: sta array,y
iny
bne l1

sty number+1 ; start with number=2
lda #2
sta number

mbuc: lda number ; check if prime
sta tmp1
lda number+1
sta tmp2
lsr tmp2 ; y = number/8
ror tmp1
lsr tmp2
ror tmp1
lsr tmp2
ror tmp1
ldy tmp1

lda number ; A = 1<<(number&7)
and #7
tax
lda #1
cpx #0
beq l3

l2: asl
dex
bne l2

l3: and array,y ; check bit
bne l35 ; not prime
jmp nxn
; number is prime. print it

l35: lda number
sta tmp1
lda number+1
sta tmp2
; tmp1-tmp2: data to be printed
ldy #0
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prn1: ;------------- divide tmp1-tmp2 by 10. Remainder result in A
ldx #16
lda #0

dv1: asl tmp1
rol tmp2
rol
cmp #10
bcc dv2
sbc #10
inc tmp1

dv2: dex
bne dv1
;-------------
clc
adc #’0’
pha
iny
lda tmp1
ora tmp2
bne prn1
;-------------

prn2: pla
jsr cout
dey
bne prn2

lda #10
jsr cout
;--------------- Now, mark every multiple of number as not prime
lda number ; index=number
sta index
lda number+1
sta index+1

buc2: clc ; index+=number
lda index
adc number
sta index
sta tmp1
lda index+1
adc number+1
sta index+1
sta tmp2

lda #7 ; if (index>=$800) break
cmp index+1
bcc nxn

lsr tmp2 ; y = index/8
ror tmp1
lsr tmp2
ror tmp1
lsr tmp2
ror tmp1
ldy tmp1
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lda index ; A = ~(1<<(number&7))
and #7
tax
lda #1
cpx #0
beq l7

l6: asl
dex
bne l6

l7: eor #$ff

and array,y ; mark the bit
sta array,y
jmp buc2

nxn: inc number ; number++
bne l5
inc number+1

l5: lda number+1 ; if (number&0x7ff)!=0 continue
cmp #8
beq theend
jmp mbuc

theend: rts

cout: rts ; dummy character output routine

array=$300 ; 256 byte array

This code was run on an emulator modified form the Marat Fayzullin & Alex Krasivsky code. The emulator keep
track of the total number of cycles, number of instructions executed and number of dummy fetches.
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4.1.2 Z80 test code

The source code for the Z80 test follows.

; DE: number
; HL: index

org 0x0

ld hl,array ;Mark all numbers as primes to begin
ld de,array+1
ld bc,255
ld a,0xff
ld (hl),a
ldir

ld de,2 ; start with number=2

mbuc: ld h,d
ld l,e
srl h ; l=number/8
rr l
srl h
rr l
srl h
rr l
ld bc,array
add hl,bc
ld a,e ; A = 1<<(number&7)
and 7
ld b,a
ld a,1
jr z, l2

l1: sla a
djnz l1

l2: and (hl) ; check bit
jr z, nxp

;------------- number is prime ---------
;----- print it -----

ld h,d
ld l,e
;------------- divide HL by 10. Remainder result in A
ld c,0

prn1: xor a
ld b,16

dv1: sla l
rl h
rl a
cp 10
jr c, dv2
sub 10
inc l

dv2: djnz dv1
add a,0x30 ; convert to ASCII digit
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push af
inc c
ld a,h
or l
jr nz, prn1
ld b,c

prn2: pop af
call cout
djnz prn2

ld a,32 ; space
call cout
;--------------- Now, mark every multiple of number as not prime
ld h,d
ld l,e

buc2: add hl,de
;------ if (HL>=$800) break
ld a,h
cp 0x8
jr nc,nxp

push hl
ld a,l
srl h ; l=index/8
rr l
srl h
rr l
srl h
rr l
ld bc,array
add hl,bc
and 7
ld b,a
ld a,1
jr z, l4

l3: sla a
djnz l3

l4: cpl
and (hl)
ld (hl),a ; mark the bit
pop hl
jr buc2

;------------ not prime -----------
nxp: inc de ; number++

ld a,d
cp 8
jp nz, mbuc ; if (number<2048) continue

halt

cout:
ret

array:
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This code was run in an emulator modified from the Marcel de Kogel code. It keeps track on the total number of
cycles and instructions executed. The repeat instructions (LDIR, among others) are recorded as one instruction per
each repetition. These instructions can be best considered as single-instruction loops, and, by the way, they can be
interrupted.

4.1.3 Compiled code

In order to compare the performance of both CPUs running compiled code the same sieve program was coded using
C. The source listing follows:

void cout(unsigned char);

void simputch(u8 d)
{
// cout(d);
}

u8 array[256];
u8 buf[4];

main()
{

u16 number,index;
u8 t;
array[0]=0xff;
for (t=1;t;t++) array[t]=0xff;

for (number=2;number<2048;number++) {
if (array[number>>3]&(1<<(number&7))) {

//print number
index=number;
t=0;
do {

buf[t++]=(index%10)+’0’;
index/=10;

} while (index);
do {

simputch(buf[--t]);
} while (t);
simputch(’ ’);

for (index=number+number;index<2048;index+=number) {
array[index>>3]&=~(1<<(index&7));

}
}

}
}

This code was cross-compiled using “cc65” for the 6502 case and “sdcc -mz80” for the Z80 case. We must be
aware that, when comparing the execution times, we are actualy comparing the preformances of both the CPUs and
the compilers. The results are discused in the following subsection.

4.1.4 Comparing results

The results of the previous tests are summarized in table 2. These results apply only for the codes presented here and
can vary substantially for other applications. Starting with assembler language results: if we can consider these tests
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Assembler Compiled C
6502 Z80 Z80/6502 cc65 sdcc Z80/6502

Code size (bytes) 202 144 0.71 819 644 0.79
Number of clock cycles 1162093 2282458 1.96 5815906 8220928 1.41
Number of instructions 384373 304526 0.79 1682544 928211 0.55

Number of dummy fetches 94438 — — 598220 — —
Clock Frequency (MHz) 1.305 3.571 2.74 1.305 3.571 2.74

Execution time (ms) 890 639 0.718 4457 2302 0.516
Average cycles per instruction 3.02 7.49 2.48 3.46 8.86 2.56
Percentage of dummy fetches 8.13 % — — 10.3% — —

Table 2: Summary of test results

as representatives for the average applications we can conclude that the Z80 requires almost double the number of
clock cycles than the 6502 to perform the same task, but, when comparing the number of instructions the Z80 only
requires about 80 % of the number of instructions of the 6502. This later can be though as the Z80 being “more
CISC”: the savings come mainly from LDIR and 16-bit arithmetic. At the end, the average Z80 is about a 30 % faster
than the average 6502 thanks to its more than double clock rate.

The code size also gets reduced by about a 30% in the Z80 case thanks to its more complex instructions. This can
be an interesting result if memory is a concern.

Another interesting result is the percentage of dummy fetch cycles for the 6502. Even with many single byte
instructions in the code, the dummy fetches are only an 8.24 % of the total clock cycles. An enhanced sequencer
with no dummy fetches will only improve the speed of the processor by a 9 % while, probably, requiring many more
transistors. Thus, the gain will not worth the effort. A wise design trade-off.

When the compiled codes are compared the Z80/sdcc combination is a clear winner, requiring about half the
number of instructions and execution time than the 6502/cc65. That comes at no surprise because the cc65 code
includes lots of subroutine calls to library helper functions. This is the result of being compiling code for a CPU that
was designed without any regard for high-level languages. In both cases the execution time is much longer than the
required for the corresponding assembler language program: about 5 times longer for the cc65 case and 3.6 times
larger for the sdcc case.

The average number of clocks per instruction also increases for the compiled codes. This is due to the extensive
use of the (ind),y addressing mode and jsr/rts instructions in the 6502 case, while, for the Z80, the use of the registers
IX and IY also results in more average clocks per instruction.

As a conclusion: A 1 MHz 6502 has more or less the same processing power as a 2 MHz Z80 when programming
the applications directly in assembler language. The performance drops more in the 6502 case when moving to a
compiled language due to its inadeccuate instruction set. During the 8-bit computer era most of the Z80 were running
with 3.5 to 4 MHz clocks while many 6502 were only 1 MHz, so, on average, the Z80 systems were noticeably faster.
What saves the 6502 is the fact that it includes about one half of the transistors of the Z80 and that made it cheaper in
a era when CPU chips were really expensive.

4.2 Interrupt latency

The 6502 has a reputation of being very fast at servicing interrupts, its interrupt latency being very short. Some people
even claims it is shorter than that of modern CPUs like ARMs! So, lets compare it against its main contender, the
Z80. Nobody claims the Z80 is very fast at servicing interrupts, but lets see. In the 6502 processor the interrupt is
executed as a modified BRK instruction. This instruction takes 7 clock cycles to execute, and, thus, some people
say the interrupt latency is 7 clock cycles. Of course, this simplistic analysis overlooks lots of things. The interrupt
latency can be defined as the maximum time lapse between the assertion of the IRQ input and the execution of the
related service code. This includes:

1. The time needed for the current instruction to complete its execution. The instruction with the maximum
number of cycles has to be considered for a worst case scenario. In the 6502 this instruction is 6 cycles long
(after excluding the BRK instruction that will be skipped due to the famous 6502 bug). But there is still another
particular case: If the instruction interrupted is a conditional branch the interrupt will be delayed until the next

17



instruction. This adds another 3 cycles for the taken branch. In the Z80 case the longest instruction takes 23
clock cycles.

2. The time needed for jumping to the interrupt service routine. This is 7 cycles for the 6502 and 19 cycles for the
Z80 (in interrupt mode 2).

3. The time expended saving the used registers. After the interrupt all the CPU registers must retain their original
values in order to not disturb the interrupted program. The interrupt call itself usually only saves the PC and
flags. Any other register has to be saved explicitly. On some CPUs there are alternate register sets available for
the interrupt routines that avoid saving registers to RAM. This is the case of the Z80: using the EXX and EX
AF,AF’ instructions there is no need to push anything into the stack. The 6502 must save the needed registers
on the stack, and this usually means the A, X and Y registers, and remember: the NMOS 6502 lacks the PHX
and PHY instructions.

4. The time expended investigating the cause of the interrupt and jumping to its particular service code. This is
needed when an interrupt is shared between various sources. This is always the case for the 6502, even for
a single interrupt source, because the interrupt routine has to discern between a hardware interrupt and the
execution of a BRK instruction. On the other hand, the processors with vectorized interrupts can jump to the
proper routine directly. In the Z80 case this can be accomplished by putting the CPU into the interrupt mode 2
(vectorized).

Lets compare the beginning of the 6502 and Z80 interrupt routines and lets do some cycle counting:

6502 Z80
-------------------------------------- --------------------------------------

; 9 cycles (curr. instr.) ; 23 cycles (curr. instr.)
; + 7 cycles (IRQ) ; +19 cycles (IRQ, IM=2)

; saving registers ; saving registers
pha ; 3 cycles exx ; 4 cycles
txa ; 2 cycles ex af,af’ ; 4 cycles
pha ; 3 cycles
tya ; 2 cycles ;--- Actual ISR code
pha ; 3 cycles

...
; finding the IRQ source ...
bit IOREG ; 4 cycles ...
bpl nothard ; 2 cycles

;--- Actual ISR code

...

...

...

nothard: ; check other sources
; among them BRK

-------------------------------------- --------------------------------------
Total latency: 35 cycles Total latency: 50 cycles

26.8 us @ 1.305 MHz 14.0 us @ 3.571 MHz

Again, the real interrupt latency for the average Z80 is about half of that of the 6502. So, it doesn’t looks like the
6502 is so fast when servicing interrupts. The 65C02 can use the PHX and PHY instructions saving 4 cycles, but, this
doesn’t change the picture too much.
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5 RISC vs CISC

Another test is presented in order to compare the 6502 processor with a modern RISC processor. First, I though about
using an 8-bit AVR for this purpose, but I lacked a tweakable emulator, and the AVR has lots of instructions making
the writing of an emulator just too much work. But, I already have the emulator for my own CPU design: the BN16,
and it can be easily adapted for these tests. The BN16 is a 16-bit processor and the comparison could look too much in
favor of the RISC. But, as we latter see, the 16-bit architecture is more a handicap than an advantage for this particular
test, so, I went ahead with it. But, let present the BN16 processor first.

5.1 The BN16 processor
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Figure 5: Block diagram of the BN16 CPU

I designed the BN16 processor as a teaching exercise some years ago. It is an extremely simple CPU with a Von
Newman memory architecture, a two-stage fetch-and-execute pipeline and only 16 op-codes in its instruction set. Its
block diagram is shown in Figure 5. It includes eight 16-bit registers with the R0 register acting as a program counter.
Alternative PC and flag registers are used when executing interrupt service routines as there is no formal stack for
saving the status of the interrupted program. The instruction register, IR, stores the op-codes read from memory
prior to its execution, but, when the memory buses are not available, the IR register is loaded with NOP op-codes.
This happens when a load (LD) or store (ST) instruction is executed, turning these instructions into effective 2-cycle
instructions. The rest of the op-codes operate with data on the registers and they are executed at a rate of 1 instruction
per clock cycle. For the LD and ST instructions only the indexed addressing mode is supported: the memory address
is stored in one of the 8 registers of the bank.

The BN16 CPU has a very short instruction set. Its encoding is shown in figure 6. Op-codes are 16-bit long,
but only the 4 most significative bits determine the instruction, the rest being the condition codes and operands. All
instructions can be conditionally executed depending on the values of the flags and on the bits of their condition codes.
A 000 value in the condition code field of any instruction makes it a NOP. Many instructions include three operands:
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op Rd Racc n

op Rd Rbcc xxx

op Rdcc xxx Rb

op Rbcc xxx Ra

op Rd Ra Rbcc
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Figure 6: BN16 instruction set encoding

two source registers an a destination register. This makes the design of the decoder easy, but limits the number of
available registers to 8.

The BN16 CPU has very few instructions but many of them can operate on the program counter. This opens
many possibilities to programmers, like calling subroutines by first copying the PC to other register and then jumping.
The PC can also be used as an index register for the LD instruction, thus, providing an immediate addressing mode.
The ADDQ and SUBQ instructions are a convenient way of incrementing and decrementing registers, while the JR
instruction is also a convenient way to jump to other program location. These instructions have immediate operands
encoded in the op-code, and, in the JR case, the program counter is implied as the destination register. This later
instruction complicated the decoder design, but it is worth the effort. The RETI instruction switches back to the
normal PC and flag registers from the interrupt routine.

Due to pipelining the instruction that follows a jump (any instruction with PC as the destination register) is already
loaded into the IR register and it will be executed immediately after the jump. The programmer has to place a NOP
after a jump if there is no other useful instruction available. This does not apply for the LD (Rx),PC instruction, as
the NOP is automatically loaded into the instruction register due to LD.

The BN16 has no stack, but its functionality can be implemented by software. One register has to be used as
the stack pointer. Any register would be good, but, for the sake of software compatibility, I choose R1 for SP. Also,
another register can be reserved for the PC storage during subroutine calls. I choose R2 for this role and named it LR.

The CPU was designed for a CMOS technology using schematic capture, so, it is detailed to the transistor level.
It has an static design, including 7678 transistors. If the CPU were designed as a dynamic, NMOS, chip, the transistor
count could be way lower, with a rough estimate being about 3000 to 4000 transistors. This makes the BN16 similar
to the 6502 in terms of hardware complexity, and, therefore, justifies even more its choice for the CISC vs RISC test. I
was amazed when I learned about the ARM architecture. The BN16 is basically an scaled-down version of the ARM,
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and I designed it without knowing much about that processor.

5.1.1 BN16 test code

The source code for the BN16 test follows:

org 0 ; RESET vector

jr init
xor pc,pc,sp ; Init SP

org 2 ; IRQ vector

reti
nop

init: ld (pc),lr ; Fill sieve with ones
word array
ld (pc),r3
word 128 ; 2048/16
ld (pc),r4
word 65535

l1: st r4,(lr)
subq r3,1,r3
jr.nz l1
addq lr,1,lr

; r7 = number

ld (pc),r7 ; start with number 2
word 2

mbuc: ror r7,r6 ; compute pointer
ror r6,r6
ror r6,r6
ror r6,r6
ld (pc),lr
word 4095
and r6,lr,r6
ld (pc),lr
word array
add r6,lr,r6
ld (pc),r4 ; compute mask
word 15
ld (pc),r3
word 1
and r4,r7,r4
jr.z l3
nop

l2: subq r4,1,r4
jr.nz l2
add r3,r3,r3

l3: ld (r6),r4 ; check bit
and r4,r3,r3
jr.z nextprime
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nop

; Prime number: print it

; divide by 10
xor r3,r3,r3 ; remainder
or r7,r7,r6
ld (pc),r5 ; divider
word 10
xor r4,r4,r4 ; number of digits

l35: ld (pc),lr ; loop counter
word 16

add r6,r6,r6 ; shift left
l4: adc r3,r3,r3

sub r3,r5,r3
add.c r3,r5,r3 ; restore value
addq.nc r6,1,r6 ; update quotient

l6: subq lr,1,lr
jr.nz l4
add r6,r6,r6 ; shift left
ror r6,r6 ; undo last shift

ld (pc),lr
word 48 ; ASCII ’0’
add lr,r3,r3
subq sp,1,sp ; to stack
st r3,(sp)
addq r4,1,r4
or r6,r6,r6
jr.nz l35
xor r3,r3,r3

l7: ld (sp),r3 ; from stack
addq pc,2,lr
jr putch ; print it
addq sp,1,sp
subq r4,1,r4
jr.nz l7
nop

ld (pc),r3
word 32 ; space
addq pc,2,lr
jr putch ; print it
nop

; Now, mark multiples as not primes
; r6 = index
add r7,r7,r6 ; index=2*number

bucclr: ld (pc).lr ; compare with 2048
word 2048
sub r6,lr,lr
jr.nc nextprime
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nop
ror r6,r5 ; compute pointer
ror r5,r5
ror r5,r5
ror r5,r5
ld (pc),lr
word 4095
and r5,lr,r5
ld (pc),lr
word array
add r5,lr,r5

ld (pc),r4 ; compute mask
word 15
ld (pc),r3
word 1
and r4,r6,r4
jr.z l9
nop

l8: subq r4,1,r4
jr.nz l8
add r3,r3,r3

l9: ld (r5),r4 ; clear bit
not r3,r3
and r4,r3,r3
st r3,(r5)

jr bucclr
add r7,r6,r6 ; add number to index

nextprime:
ld (pc),r6 ; compare with max
word 2047
sub r7,r6,r6
jr.nz mbuc
addq r7,1,r7 ; next candidate

hang: jr hang
nop

;-------------------------------------
; routine to print R3 as an ASCII char

putch: or lr,lr,pc ; return (dummy print)
nop

array: ; The sieve data start here

This code differs from that of the 6502 because of the 16-bit data of the BN16 processor. Being able to do 16-bit
arithmetic directly means that one instruction is saved for additions or increments, but in the whole listing there are
only two cases when this saving is achieved: when adding the number to index and when incrementing number (;
next candidate). Comparisons are also 16-bit long, but, in the 6502 case, only the MSBs are compared with the same
results, so, there are no savings. On the other hand, when computing the bit mask the 16-bit processor is in a clear
disadvantage because it has to iterate more times: The 8-bit mask requires between 0 to 7 shifts, with 3.5 shifts being
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the average case, while, the 16-bit mask requires 7.5 shifts on average. This means that, not only the shift instruction,
but also the related counter decrement and jump have to be executed twice the times than for an 8-bit CPU, greatly
overcoming the savings from the faster addition/increment. Therefore, we must conclude that the Eratosthenes sieve
test is biased in favor of the 8-bit CPUs as long as the 16-bit processor is unable to do multibit shifts with single
instructions.

The code was run in an emulator (there is not a physical implementation of the BN16 yet), and the cycle count
was recorded. Also, the number of forced-NOP fetches and program NOPs were accounted for. The former come
from LD or ST instructions, and they help to calculate the average number of cycles per instruction. The program
NOPs were included in the code after jumps because a wrong instruction will be executed otherwise.

5.2 Comparison results

Assembler code test
6502 BN16 BN16/6502

Code size 202 bytes 112 words 1.11
Number of instructions 389087 424783 1.09
Number of clock cycles 1181744 472083 0.40

Number of NOPs — 15616 —
Average cycles per instruction 3.04 1.11 0.36

Percentage of NOPs — 3.67% —

Table 3: Summary of test results

The results of the BN16 test and those of the 6502 are summarized in Table 3. Both codes have similar sizes when
compared as 2 bytes per word. The number of instructions executed are about a 10% higher for the RISC CPU. This
is due to the longer bit mask computation, but also to the fact that RISC instructions are simpler and more are needed
to perform the same task. For instance, lets consider a subroutine call. In the 6502 case it is a single instruction, but
in the BN16 it is done in three steps:

1) addq pc,2,lr ; Save PC+2 (return address) into R2
2) jr routine ; Jump
3) nop ; Executed because of pipelining

But, even when executing more instructions, the BN16 processor requires less than half the number of clock cycles
than the 6502. By looking at this result it isn’t a surprise that CISC CPUs became extinct during the nineties: you can
do a lot more with the same number of transistors in a RISC architecture. The key parameter for the high speed of the
RISC processor is the low average number of clock cycles per instruction: about 1/3 of the 6502 (and the 6502 was
well regarded for its low number of clock cycles per instruction!).

The BN16 also executes many NOPs. If these instructions are subtracted from the total, the average number of
cycles per instruction raises to 1.15, that is a 38% of the 6502 case. Still, a huge improvement with respect to the
CISC.

Verilog and Spice simulations of the BN16 CPU seems to indicate that it can run with a 30 MHz clock in a 350
nm CMOS technology. The worst case delay comes from the carry propagation in the ALU. It could be improved
with carry lookahead circuitry, but, again, the BN16 was designed to be simple. Not because it was intended to be
cheap, like the 6502, but because it had to be easy to understand.
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