
November 24, 2023

The 6502 Ain’t That Bad
by Kent Dickey

1. Initial Response

Jesús Arias writes in https://www.ele.uva.es/~jesus/onthe6502.pdf “On the 6502:
A brilliant or sloppy design?” about how the 6502 is overrated and how the Z80 is
underrated.

Jesús has done a lot of 6502 work, so he is knowledgeable on the subject, but he’s
overlooking historical factors which mitigate many of his complaints.

In 1976, microprocessors were new, and it wasn’t even clear there was a significant
market. What the 6502 clearly tried to do was to enable the lowest system cost
while also being reasonably efficient. For the first part, the chip needed to be
cheap, and it needed to not require a lot of expense in the system. For the second
part, the 6502 generally is doing a useful operation on the bus almost every cycle
(the author notes it wastes only about 9% of the cycles).

The author is criticizing 6502 performance compared to what could have been
done. Nowadays, system performance is a key metric, since that’s a differentiator.
But it really wasn’t a big concern in 1976—designing something that was useful
was more important than outright performance.

Plus, 1976 had primitive design tools. Effectively, you draw polygons using
crayons, and take a photograph, and that’s how you make masks. There were
almost no tools to help optimize or even check your work. The 6502’s PLA design
is a clever labor reduction suited to this era: not for performance or area, but for
labor costs.

1

https://www.ele.uva.es/~jesus/onthe6502.pdf

November 24, 2023

2. Z80 vs 6502 comparison

The 6502 came out in 1976 at 1MHz. The 6502 is so simple to put in a system, that
Steve Wozniak was able to create a complete computer, with sound, color
graphics, etc. using one board of basically just TTL and (RAM and ROM) chips.
The 6502 has such generous timing margins that he could sneak in video fetches
from the system RAM during the first phase of the clock, which provides memory
refresh as well.

The Z80 also came out in 1976, but at 2MHz. As best as I can tell, the Z80 doesn’t
offer a 4MHz version until 1981. Z80 system design made the CPU speed easier to
change, so Z80 systems moved to the new speeds as they became available. The
Apple II and Commodore could not easily upgrade speeds due to software relying
on the 1MHz speed.

3. 6502 criticisms

Jesús argues about some bad decisions in the 6502. To me, its best to think of the
6502 as quirky, but well documented, and just accept dummy cycles, the weird B
flag, ADC and no ADD, the JMP (0FFF) bug, etc.

The lack of 3-state address bus is not an issue for many system designs which
buffer the CPU address before connecting to all the system peripherals. Address
decode can be faster with no tristate since no qualification is needed, and no bus
holders are needed.

And BCD is useful, as the Sieve example will show. BCD gets the carry flag
correct, and that’s all that’s usually needed. It would be an unusual case where
the N or Z flag would be needed by code after a BCD ADC/SBC so it is not really
an issue.

The way the 6502 uses carry is standard to many CPUs (where SBC requires C=1
to do a simple subtract), such as Arm, and is less hardware (x86 and Z80 must

2

November 24, 2023

invert the CF bit before doing subtract, and must invert the carry out of the ALU
before writing CF. Since x86 and Z80 share a history, this to me is an oddball thing
that they share). The 6502 (and other CPUs) implement subtract by simply
inverting each bit of one operand.

4. Sieve of Eratosthenes

The Sieve of Eratosthenes was selected as a benchmark for 8-bit CPUs. The 6502
has a performance disadvantage for operating on data of more than 256 bytes in
an inner loop, so a Sieve should give a Z80 a slight edge. But the author chose an
encoding of just 256 bytes for the Sieve array, but using all of the bits in the byte to
have 2048 bits. Jesús chose to find primes from 2 through 2048 and print them out
in decimal.

There are many algorithmic variations on a Sieve. The Byte Benchmark version
stores only odd numbers in the array, so a 8192 byte array can count to 16384
(using a byte as a flag), and it skips the cross-off-by-2 step. The Byte Benchmark
version does not consider printing the values, it just counts the number in the
indicated range. Optimizations allow skipping a lot of work: when crossing off
numbers, you do not need to cross off any more once you’ve found a prime >=
sqrt(N), which would be 46 in this case. This saves a great deal of work since the
first entry to be crossed off for prime P is P*P. By tracking P*P as well as P, this
can also save a lot of work by starting the crossing-off at P*P. This helps less so for
a limit of 2048, which is relatively small, and less so for this instance due to the
use of bits instead of bytes. And a segmented Sieve can be a good fit for 8-bit
CPUs by doing the work in two parts: a simple Sieve to find primes through
sqrt(N), and then stepping through segments of 256 bytes or less to find the
remaining primes.

Let’s assume significant algorithmic changes are off the table. We’ll stick to
storing 2048 bits in 256 bytes, and need to print out the primes in decimal.

3

November 24, 2023

4.1. Original 6502 code

Here is the code from onthe6502.pdf, changed to Merlin format and Apple II
addresses (basically, remove : from the end of labels, use $1000 for the code, $2000
for the array):

tmp1 equ $00
tmp2 equ $01
number equ $02 ; and $03
index equ $04 ; and $05
array equ $2000

 org $1000
sieve ldy #0
 lda #$ff
l1 sta array,y
 iny
 bne l1

 sty number+1 ; Start with number=2
 lda #2
 sta number

mbuc lda number
 sta tmp1
 lda number+1
 sta tmp2
 lsr tmp2 ; y = number/8
 ror tmp1
 lsr tmp2
 ror tmp1
 lsr tmp2
 ror tmp1
 ldy tmp1

 lda number ; A = 1 << (number & 7)
 and #7
 tax
 lda #1
 cpx #0
 beq l3
l2 asl

4

November 24, 2023

 dex
 bne l2
l3 and array,y ; check bit
 bne l35 ; not prime
 jmp nxn
l35 lda number ; number is prime. print it
 sta tmp1
 lda number+1
 sta tmp2 ; tmp1,tmp2: data to be printed
 ldy #0
prn1 ;--------- divide tmp1,tmp2 by 10. Remainder in A
 ldx #16
 lda #0
dv1 asl tmp1
 rol tmp2
 rol
 cmp #10
 bcc dv2
 sbc #10
 inc tmp1
dv2 dex
 bne dv1
 ;-------------
 clc
 adc #$b0
 pha
 iny
 lda tmp1
 ora tmp2
 bne prn1
 ;-------------
prn2 pla
 jsr cout
 dey
 bne prn2
 lda #$a0
 jsr cout
 ;------------- Mark every multiple of number as not prime
 lda number ; index=number
 sta index
 lda number+1
 sta index+1
buc2 clc ; index+=number
 lda index
 adc number

5

November 24, 2023

 sta index
 sta tmp1
 lda index+1
 adc number+1
 sta index+1
 sta tmp2

 lda #8 ; if (index >= $800) break
 cmp index+1
 bcc nxn

 lsr tmp2 ; y = index/8
 ror tmp1
 lsr tmp2
 ror tmp1
 lsr tmp2
 ror tmp1
 ldy tmp1

 lda index ; A = ~(1 << (number & 7))
 and #7
 tax
 lda #1
 cpx #0
 beq l7
l6 asl
 dex
 bne l6
l7 eor #$ff

 and array,y ; mark the bit
 sta array,y
 jmp buc2

nxn inc number ; number++
 bne l5
 inc number+1
l5 lda number+1 ; if (number & 0x7ff) != 0 continue
 cmp #8
 beq theend
 jmp mbuc

theend rts

cout rts

6

November 24, 2023

The basic algorithm is to have 256 bytes in array, initialized to all 1’s, and treat the
array as 2048 bits. Start “Number” at 2, and index into Array to get that bit with
index=Number >> 3, bit = Number & 7. If that bit is set in Array, it’s a prime,
print out “number” in decimal, and then cross off all multiples of “Number” in the
array by clearing those bits. Increment Number until it’s more than $800, and then
stop.

Not counting the RTS at “theend”, this code takes 1181744 cycles. Changing the
RTS at “cout” to “JMP $FDED” allows output on an Apple II.

Unfortunately, this code has a bug. The output starts with (this was pointed out
by John Brooks, I missed this):

2 3 5 11 23 29 41 59 71 83 89 101 113 131 …

Which is missing 7, 13, 19, etc. What’s happening is the cross-off code is detecting
the end of the array improperly with: “LDA #8”; “CMP index+1”; “BCC NXN”.
This branches to NXN (and stops crossing off multiples of this number) when 8 <
(index+1). This occurs when the bit offset is $900 or higher—which is too high, it
should stop at $800. When crossing off 3, it wraps around from bit 2048 back to 0
and crosses off 1, 4, 7, 10, etc. This takes more time as well, since it’s crossing off
more numbers. A fix (which matches how most people think about CMP and
BCC/BCS) is to swap the LDA and CMP arguments and do: “LDA index+1”;
“CMP #8”; “BCS NXN”.

With this fix, the cycles drops to 1162093, which is a 1.7% improvement. But we
can do better.

7

November 24, 2023

4.2. “Improv1” code

It’s important with 6502 to try to keep working data in the accumulator. “ASL” of
the accumulator takes 2 clocks, but “ASL $02” to a zero-page location takes 5
clocks. There are places in the code where this would be helpful: it takes less code
and is faster. Another 6502 trick is to use small lookup tables rather than loops.
Rather than performing “1 << shift” shifting by one bit “shift” times, just lookup
in an 8-entry table. We need 1 << shift for shift from 0…7, and ~(1 << shift) for
shift from 0…7. This is just 16 bytes of tables, so it’s a definite win. The other
small thing is moving the code at “nxn” to just before the “L35” label, where the
code was doing a JMP NXN, now it can just fall through. This eliminates other
JMPs as well.

Here’s the update “improv1” code:

tmp1 equ $00
tmp2 equ $01
number equ $02 ; and $03
index equ $04 ; and $05
array equ $2000

 org $1000
sieve ldy #0
 lda #$ff
l1 sta array,y
 iny
 bne l1

 sty number+1 ; Start with number=2
 lda #2
 sta number

mbuc lda number
 sta tmp1
 and #7
 tax
 lda number+1
 lsr ; y = number/8
 ror tmp1
 lsr

8

November 24, 2023

 ror tmp1
 lsr
 ror tmp1
 ldy tmp1

 lda bit_expand,x ; A = 1 << X
l3 and array,y ; check bit
 bne l35 ; not prime

nxn inc number ; number++
 bne mbuc
 inc number+1
l5 lda number+1 ; if (number & 0x7ff) != 0 continue
 cmp #8
 bcc mbuc

theend rts

l35 lda number ; number is prime. print it
 sta tmp1
 lda number+1
 sta tmp2 ; tmp1,tmp2: data to be printed
 ldy #0
prn1 ;--------- divide tmp1,tmp2 by 10. Remainder in A
 ldx #16
 lda #0
dv1 asl tmp1
 rol tmp2
 rol
 cmp #10
 bcc dv2
 sbc #10
 inc tmp1
dv2 dex
 bne dv1
 ;-------------
 clc
 adc #$b0
 pha
 iny
 lda tmp1
 ora tmp2
 bne prn1
 ;-------------
prn2 pla

9

November 24, 2023

 jsr cout
 dey
 bne prn2
 lda #$a0
 jsr cout
 ;------------- Mark every multiple of number as not prime
 lda number ; index=number
 sta index
 lda number+1
 sta index+1
buc2 clc ; index+=number
 lda index
 adc number
 sta index
 sta tmp1
 and #7 ; X = number & 7
 tax
 lda index+1
 adc number+1
 sta index+1

 cmp #8 ; if (index >= $800) break
 bcs nxn

 lsr ; y = index/8
 ror tmp1
 lsr
 ror tmp1
 lsr
 ror tmp1
 ldy tmp1

 lda bit_exp_neg,x ; A = ~(1 << (number & 7))
 and array,y ; mark the bit
 sta array,y
 jmp buc2

cout rts

bit_expand db 1,2,4,8,$10,$20,$40,$80
bit_exp_neg db $fe,$fd,$fb,$f7,$ef,$df,$bf,$7f

10

November 24, 2023

This is a little shorter (182 bytes instead of 202), and now it takes just 859,661
cycles. This is now a 37% improvement.

4.3. “Improv3” Code

I then commented out the code from L35 to PRN2 to see how much time is spent
preparing the decimal number for printing. This runs in 445,015 cycles, so just
preparing to print the prime numbers is taking 414,646 cycles. This is worth
fixing.

There are two approaches: make the binary to decimal conversion faster, which is
definitely possible. Or, keep a “numberbcd” copy of number, which increments
whenever “number” increments, but in BCD mode. For this program, this turns
out to be faster. This is a common technique in 6502 games to track scores and
other user-visible state in BCD to save on the conversion cost. This code still
needs leading-0-removal logic when printing, which John Brooks optimized.

Lucas Scharenbroich shared a tip: the right shift by 3 of number+1:number at the
“MBUC” label can be simplified using a small lookup to deal with the 3 bits in
number+1, and then shifting just the low 8 bits right 3 times and ORA’ing the
shifted upper bits. This save 10 cycles through each of 2046 loops.

This is “improv3”:

tmp1 equ $00
tmp2 equ $01
number equ $02 ; and $03
index equ $04 ; and $05
numberbcd equ $06 ; and $07
array equ $2000

 org $1000
sieve ldy #0
 lda #$ff
l1 sta array,y
 iny
 bne l1

11

November 24, 2023

 sty number+1 ; Start with number=2
 sty numberbcd+1
 lda #2
 sta number
 sta numberbcd

mbuc lda number+1 ; From 0…7
 tay
 lda number
 lsr
 lsr
 lsr
 ora shift5,y
 tay ; y = number/8
 lda number
 and #7
 tax

 lda bit_expand,x ; A = 1 << X
l3 and array,y ; check bit
 bne l35 ; not prime

nxn sed
 lda numberbcd
 clc
 adc #1
 sta numberbcd
 bcc nxn2
 lda numberbcd+1
 adc #0
 sta numberbcd+1
nxn2 cld
 inc number ; number++
 bne mbuc
 inc number+1
l5 lda number+1 ; if (number & 0x7ff) != 0 continue
 cmp #8
 bcc mbuc

theend rts

l35
 ldy #0 ; only 0 digits seen so far
 lda numberbcd+1

12

November 24, 2023

 beq prlowbyte
 jsr prbyte
prlowbyte lda numberbcd
 jsr prbyte

 lda #$a0
 jsr cout
 ;------------- Mark every multiple of number as not prime
 lda number ; index=number
 sta index
 lda number+1
 sta index+1
buc2 clc ; index+=number
 lda index
 adc number
 sta index
 sta tmp1
 and #7 ; X = number & 7
 tax
 lda index+1
 adc number+1
 sta index+1

 cmp #8 ; if (index >= $800) break
 bcs nxn

 lsr ; y = index/8
 ror tmp1
 lsr
 ror tmp1
 lsr
 ror tmp1
 ldy tmp1

 lda bit_exp_neg,x ; A = ~(1 << (number & 7))
 and array,y ; mark the bit
 sta array,y
 jmp buc2

prbyte tax
 lsr
 lsr
 lsr
 lsr
 jsr chkzero

13

November 24, 2023

 txa
 and #$0f
chkzero iny
 bmi prdigit
 tay ; Is A non-0?
 bne prdigit
 rts
prdigit ora #$b0
 tay ; Y > $80, print all digits after
cout rts

shift5 db $00,$20,$40,$60,$80,$a0,$c0,$e0
bit_expand db 1,2,4,8,$10,$20,$40,$80
bit_exp_neg db $fe,$fd,$fb,$f7,$ef,$df,$bf,$7f

With this change (and PRBYTE logic to strip out leading 0’s), the runtime is now
487,625 clocks and 195 bytes. This is more than twice as fast.

4.4. “Brooks1” Code

John Brooks, an expert 6502 programmer, offered some further improvements.
He’s investigated Sieve on the 6502 before, and so has experience in this area.

His key insight is that encoding number:number+1 differently would save a lot of
shifting. In Number+1, encode the 8-bit offset into Array, and encode the bit
number in the high 3 bits of Number. But: it’s handy to have the bit offset in the
low 3-bits of Number, so do that too! So, the initial number is (2<<5 | 2) = $42.
Increment by ((1 << 5) | 1) = 33, and keep masking it by $e7 to avoid having the
bits from the low 3 bits overflow into the top 3 bits.

* Sieve prime calc for 2^11 integers
*
* 1st 6502 version by Jesus Arias
* with mods by Kent Dickey
*
* code-golfed 11/15/2023 by JBrooks

decnum equ $00 ; and $01

14

November 24, 2023

number equ $02 ; and $03
index equ $04 ; and $05

array equ $2000

 org $1000

sieve ldx #2
 stx decnum
 ldx #0
 stx decnum+1
 ldy #$80
 lda #$ff
setarray dey
 sta array,y
 sta array+$80,y
 bne setarray
 lda #2*32+2 ; y = number+1 == 0
 bne chknum ; always

numhi iny ; y = number+1
 bne chknum ; if (32*number <= 0xffff) continue

exit rts

nextnum sed
 clc
 lda decnum
 adc #1
 sta decnum
 bcc nextnum2
 lda decnum+1
 adc #0
 sta decnum+1
nextnum2 cld ; Carry is always clear here
 lda number ; number++
 adc #1*32+1
 and #$e7 ; lo 3 bits of number is in top 3
 bcs numhi ; and lower 3 bits

chknum sta number
 and #7
 tax
 lda bitshift,x
 and array,y

15

November 24, 2023

 beq nextnum

gotprime sty number+1 ; number is prime. print it

prbcd ldy #0
 lda decnum+1
 beq skipzero
 jsr prbyte
skipzero lda decnum
 jsr prbyte
 lda #$a0
 jsr cout

clrothers lda number ; index=number
 sta index
 sta mod1+1
 ldy number+1
 sty mod2+1
 clc
 bcc clrnext ; always

clearbit lda bitmask,x
 and array,y ; clear the bit
 sta array,y

clrnext lda index ; index+=number
mod1 adc #0 ; self-mod #number
 and #$e7 ; lo 3 bits of number is in both
 sta index ; top & btm 3 bits
 and #7 ; x = number & 7
 tax
 tya
mod2 adc #0 ; self-mod #number+1
 tay

 bcc clearbit ; if (32*index >= $ffff) break

 ldy number+1
 jmp nextnum

bitshift db $01,$02,$04,$08,$10,$20,$40,$80
bitmask db $fe,$fd,$fb,$f7,$ef,$df,$bf,$7f

prbyte tax
 lsr

16

November 24, 2023

 lsr
 lsr
 lsr
 jsr chkzero
 txa
 and #$0f
chkzero iny
 bmi prdigit
 tay
 bne prdigit
 rts ; skip leading zeroes
prdigit ora #$b0
 tay ; disable zero skipping

cout jmp $fded

This code takes just 304,731 cycles, and is 174 bytes, and is more than 3 times as
fast as the original code.

4.5. Further Algorithmic improvements

There is almost no end to algorithmic improvement to Sieve-like algorithms,
approaching something like one line: puts(“2 3 5 7 11 …”). So it requires some sort
of agreement on what is a valid optimization, or some sort of limit on size, etc.

To me, a valid sieve algorithm needs to work with various limits, at least able to
work correctly for smaller lengths (like this example, it cannot easily be made
longer, but it can be made shorter) as a compile-time constant.

It would be reasonable to apply the optimization to stop crossing off once Number
exceeds sqrt(2048)=46. And it could be reasonable to track P*P as the position to
start crossing off, to save some work. P*P can be calculated with 2 adds each time
P increments. Start P=2, PXP=4 (this is P*P), PINC=5. The next P is P=P+1;
PXP=PXP+PINC; and PINC=PINC+2. So maintaining PXP takes two extra adds
each time P increments.

17

November 24, 2023

To limit the length, I also produced a 6502 version which used 310 bytes to encode
the BCD difference between primes in one byte each, along with code to print it
out, with a total size of 392 bytes. This runs in 48,733 clocks. To eliminate this
type of “optimization”, a limit on the code size allowed would be helpful, say 220
bytes.

18

