
LaRVa’s Small System

Jesús Arias

1 System description

data_read

data_write

11
addr

wrlanes

32
rdata wdata

8 16

flags

RXD

TXD urd

TIMER counter

32

irq

trap

UART

iocs

iramcs

30
ivector

2

ints

ivector

2

30 addr

d

IRQEN

interrupt

controller

dq

internal RAM

(2048x32)

trap

irq

vectored

32

32

CPU

addr

wstb

RISC−V

address
decoding

Peripher.

iramcs

iocs

uartcs

irqcs

wrvector

wrirqen

urd

decoding

cdo[31:2]

cdo[15:0]

2

F
P

G
A

 p
in

s

cdi[31:0]

2

30

2

iramcs

ca[12:2]

ca[3:2]

wrirqen

wrvector

cdo[1:0]

mdo[31:0]

ca[7:2]

io
d

o
[3

1
:0

]

6

32

32

4

30

mwe[3:0]

cdo[31:0]

ca[31:2]

4

uwr

uwr

The above figure shows the block diagram of the system, that basically includes a laRVa CPU, 8KB of

internal RAM with a known initial content, and an small number of peripherals:

• An Universal Asynchronous Receiver/Transmitter, UART, that provides a bidirectional communication

channel with the outside World.

• A free running timer counter for time measurement.

• An interrupt enable register with one enable bit for each interrupt source: Bit 0: UART RX, Bit 1: UART

TX.

• A Vectored Interrupt Controller with up to 4 different programmable interrupt vectors. These vectors are

presented to the CPU when some interrupt is requested (including the execution of ECALL and EBREAK

opcodes)

1

The RAM and the peripheral registers are mapped to the address space by means of the address decoding blocks

(mainly for writings) and multiplexers (for reads).

1.1 Address decoding and memory map

mwe[0]

mwe[1]

mwe[2]

mwe[3]

ca[2] urd
/rd

ca[31]

ca[30]

ca[29]

ca[7]

ca[5]

ca[2]

mwe[0]

ca[7]

ca[6]

ca[5]

irqcs
ca[6]

mwe[0]

mwe[1]

mwe[2]

mwe[3]

ca[4]

mwe[0]

ca[4] wrvector

iocs

iramcs

wrirqen

uartcs

uwr

A more detailed schematic of the address decoding logic is shown in the above figure, where “ca[]” are the

address lines coming from the CPU and “mwe[]” are the memory write enable lanes for bytes. As data buses

are 32 bits wide but the address is for bytes, the two lowest address bits are always 00 and they aren’t included

in the address bus. The four write lane enable signals are provided instead because we have to select which

bytes to write during Store-Byte and Store-Halfword instructions. With this logic the memory map is:

strobe address bits R/W Base address (x=A=0)

iramcs 000x.xxxx.xxxx.xxxx.xxxA.AAAA.AAAA.AA00 x 0x00000000

iocs 111x.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xx00 x 0xE0000000

uartcs 111x.xxxx.xxxx.xxxx.xxxx.xxxx.000x.xx00 x 0xE0000000

uwr 111x.xxxx.xxxx.xxxx.xxxx.xxxx.000x.x000 mwe[0] 0xE0000000

urd 111x.xxxx.xxxx.xxxx.xxxx.xxxx.000x.x000 rd 0xE0000000

irqcs 111x.xxxx.xxxx.xxxx.xxxx.xxxx.111x.xx00 x 0xE00000E0

wrirqen 111x.xxxx.xxxx.xxxx.xxxx.xxxx.1110.xx00 mwe[0] 0xE00000E0

wrvector 111x.xxxx.xxxx.xxxx.xxxx.xxxx.1111.AA00 mwe[3:0] 0xE00000F0

The above table is mainly for writes, where a write strobe signal is generated for each register to be written.

The exception is “urd”, a read strobe for the UART that is used to clear some flags (received data valid, for

instance). Also notice that the interrupt vectors only allows the Store-Word instruction (32 bit write).

On the other hand, the mapping for reads is performed in the multiplexers for the CPU data input bus,

resulting in the following table:

address bits data read Base address Data width

000x.xxxx.xxxx.xxxx.xxxA.AAAA.AAAA.AA00 internal RAM 0x00000000 D[31:0]

111x.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xx00 peripherals 0xE0000000 D[31:0]

111x.xxxx.xxxx.xxxx.xxxx.xxxx.000x.x000 UART RX (Q) 0xE0000000 D[7:0]

111x.xxxx.xxxx.xxxx.xxxx.xxxx.000x.x100 UART flags 0xE0000004 D[3:0]

111x.xxxx.xxxx.xxxx.xxxx.xxxx.011x.xx00 Timer counter 0xE0000060 D[31:0]

111x.xxxx.xxxx.xxxx.xxxx.xxxx.111x.xx00 IRQEN 0xE00000E0 D[1:0]

2

Notice that, apart from the timer which requires a Load-Word, all the peripherals can also be read with

Load-Byte or Load-Halfword instructions.

2 Peripherals

The peripheral address space is located at the upper 512MB area (0xE0000000 to 0xFFFFFFFF) . The included

peripherals are:

• A simple UART with fixed data format (8-bit, no parity) but now with a programmable baud rate. The

UART can request two different interrupts: one for data received and other when ready to transmit.

• A free-running timer.

• A vectored interrupt controller.

2.1 UART

A minimal UART was designed for interfacing. It has the following characteristics:

• 8 data bits, No Parity. 1 or 2 Stop bits.

• Fixed baud rate with no 1/16 or 1/8 prescaler. Baud rates as fast as fCLK/6 are possible. Baud rate is

defined with a clock divider parameter, ’DIVIDER’, during synthesis.

• Clock resynchronization on every data transition.

• No buffer register for TX. One byte buffer for RX.

A simplified diagram of the transmitter is shown next. It includes a clock divider, a 9-bit shift register, and a

bit counter. The clock divider (baud counter) gets reset when a data is written into the shift register or when it

reaches its maximal count, and provides an strobe pulse for data shifting and bit counting. The bit counter is

loaded on writes with ten or eleven, depending on the number of Stop bits, and downcounts until it reaches zero.

When in zero state the tx_ready flag is asserted. This is all the logic needed for a functional UART transmitter.

TCclk

clk

TXD

clk TXRDY

loadreset

wr

en

zero

en

SHIFT

P2 P1 P0P3

BIT counter

load

Baud counterSin

(stop)
’1’ ’0’

(start)

D0D1D8

......

Q0

’1’ ’0’ ’1’

nstop

d[7:0]

The diagram of the receiver is shown next. It also includes a baud counter that get reset when it reaches

its maximal count (DIVIDER-1) or when an edge is detected in the incoming data stream. Also, a sampling

strobe is asserted at the middle of the bit time, enabling the shifting of the incoming bits. The shift register has

3

10 bits and when the start bit of the data arrives at Q0 all its bits are preset as ones while the rest of the register

is copied to the output buffer, including the received Stop bit. A value of zero in that bit means a framing error.

Another two flags are also present: an ’rxvalid’ flag is asserted every time a data is stored in the buffer, and

a ’rxoverr’ flag can also be set if ’rxvalid’ is already active when data is stored. These two flags are reset by

means of an external read strobe, ’rd’.

D QD Q

SI SHIFT

......

clk

clk

......

......

Q8 Q7 Q0......

Q0Q1Q8Q9

Q

== DIVIDER/2

clk

reset

Baud counter

== DIVIDER−1

clk

allset

Q0Q1

en

reset

SHIFT

clk

rd

Q

rxvalid

rxframeer

rxoverr

rxd

sample

en

wrD0D7D8

’1’

SI

rx buffer

edge detector

The UART module has all its flags available as individual outputs. These signals were grouped into an

status register at address 0xE0000004 in the following way:

Register ... bit 3 bit 2 bit 1 bit 0

STATUS (read) 0 RX overrun RX Framing error TX ready RX valid

On the other hand, while the UART core can transmint one or two stop bits, in this system its ’nstop’ control

input is fixed as ’0’, so, only one stop bit is transmitted.

2.2 Timer

The timer is simply a 32 bit counter that gets incremented each clock cycle. Its value can be read at address

0xE0000060. This is a read-only peripheral.

3 Vectored Interrupts

trap

unused

I0

I1

I2

I3

D

Q

30

irq

ca[3:2]

2

WA[1:0] we

wrvector

cdo[31:2]

encoder

priority

(high)

(low)

30
ivector[31:2]RA[1:0]

2

4x30
RAM

(read addr.)

(write addr.)

rxvalid

txrdy

4

The diagram of the simple Vectored Interrupt Controller is shown in the above figure. The system has 3

possible interrupt sources, each of them with an specific interrupt vector (write-only) where the memory address

of the corresponding interrupt service routine is stored. There is also an interrupt enable register that allows the

selective masking of interrupts:

Interrupt Cause INTEN bit mask (0=masked) Vector # Priority Vector address

ECALL, EBREAK non-maskable 0 Highest 0xE00000F0

UART RX valid bit #0 1 0xE00000F4

UART TX ready bit #1 2 Lowest 0xE00000F8

The software interrupts (instructions ECALL and EBREAK) can’t be masked. These are always serviced.

4 Summary

The system presented here was synthesized for an ICE40HX4K FPGA with the following results:

Logic cells 2813

BRAMs 16

Max. clock frequency 22 MHz

5

	System description
	Address decoding and memory map

	Peripherals
	UART
	Timer

	Vectored Interrupts
	Summary

