
DRM65, a 6502 system with video and MMU in a FPGA

Jesús Arias

This 6502 prototype is built around an FPGA board designed for the emulation of 8-bit systems. Its block

diagram is shown in the following figure:
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It includes a Lattice ICE40HX4K FPGA along with a SPI flash for its configuration, a 16MHz clock gen-

erator that drives its internal PLL, an external SRAM memory with a 64K×16 capacity, and the interfaces to a

VGA monitor, a PS2 keyboard, audio, and joystick. This particular FPGA was chosen because of its affordable

price, relatively easy to solder package, and the availability of open source synthesis tools.

The VGA compatible video signal is generated by means of three 4-bits DACs, one for each color compo-

nent, and two digital signals for the horizontal and vertical sync pulses. This allows us to display up to 212, or

4096 different colors on the screen. Yet, in order to reduce the amount of video RAM required the color depth

is only 1 or 4 bits per pixel, so not more than 2 or 16 colors can be displayed on the screen simultaneously. The

DACs are nothing more than arrays of resistors.

The logic built into the FPGA includes the 6502 core of Arlet Ottens, along with 8KB of boot memory,

a video generator, the interface for the external memory, a minimum memory management unit, MMU, and

several peripherals: Serial port, interrupt logic, PWM audio, and a PS2 keyboard interface. The block diagram

of the synthesized logic is shown next:
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In this design the internal clock runs at 25MHz and the video timing matches the 640×480 VESA standard,

but the resolution is only 512×400 pixels, mainly because having an horizontal resolution that is a power of two

eases the design of the video address generation. The video generator steals clock cycles from the CPU when

both blocks are addressing the external memory. In the monochrome mode one every sixteen cycles during the

visible part of a video line goes to video instead of the CPU, while for the color mode this happens one every

height cycles. So, the effective clock rate of the 6502 is 24.2MHz for the monochrome video mode or 23.4MHz

for the color video mode. But these figures are averages. During the horizontal or vertical borders of the image

the CPU runs at its full speed of 25MHz, and the same happens if the CPU is executing code from the internal

memory. The video logic implements its cycle steal by forcing the CPU clock high when reading video data.

The RDY input of the 6502 core is not used.

The block diagram is more complicated than expected because the 6502 core is designed to be be connected

to a synchronous memory. The internal memory of the FPGA is of this type, but the external RAM, and also

the peripherals, are asynchronous. Because of this a register for the input data bus has to be included, and the

signal for the multiplexer that selects between internal RAM data or that coming from the registered external

memory or peripherals has to be delayed one CPU clock cycle.

The decoder block is simply a combinatory-logic circuit that drives the corresponding selection signal

depending on the value at the address bus of the CPU. Two other blocks that deserve a more detailed description

are the bidirectional data bus interface for the external memory, SB_IO, and the MMU. The schematic of the

former is:
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In addition with coping with the bidirectional data bus of the external RAM, the SB_IO block also manages

the reading and writing of 8-bit values into a 16-bit memory. But, while all the CPU reads and writes are

8-bit wide, the video controller reads 16 bits every time it does a memory access. The bus-high-enable, BHE,

and bus-low-enable, BLE, signals are generated accordingly, also taking into account that for 8-bit data even

addresses are stored in the lower 8-bits of the memory, and odd addresses in the upper 8-bits.
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The MMU is basically a multiplexer that exchanges the 3 upper bits of the CPU address with 4 bits coming

from 7 4-bit registers of the peripherals block, and by doing this it converts the CPU addresses to physical

addresses. Notice that there is no register for the upper address range because in that case the internal memory

or I/O registers are selected instead of the external memory and, therefore, the generated address doesn’t matter.

Memory MAP

The prototype has the following memory map:
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8KB of the internal FPGA RAM is used as a boot memory because its initial content can be programmed

via the configuration bitstream of the FPGA. But it is a read/write memory, not a ROM, it was made writable in

order to be able to place breakpoints into its code. It is mapped to the upper 8KB of the address space because

the reset vector is located there (addresses $FFFC and $FFFD). The available internal memory is slightly less

than 8KB because the first 16 bytes starting from address $E000 are reserved for peripherals.

The rest of the CPU address space is mapped to the external RAM via 7 page registers which select what

8KB block of the RAM is assigned to each 8KB page of the CPU. The 7 page registers are located in the

I/O space starting at address $E008 and ending in address $E00E. Only the 4 lower bits of each register are

implemented. The mappings actually used in the boot code and a video game are also detailed, but other

mappings are possible. For instance, a multitasking scheme would use a different PAGE 0 for each task,

allowing to have a different zeropage and stack for each task.

I/O Space

Addresses $E000 to $E00F are reserved for I/O registers. Their location and description follows:
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• UART data registers, UTXD and URXD ($E000). A write starts transmission. A read recovers the

last received data. Both transmitter and receiver include holding registers (like a 1-byte FIFO), so, a

character can be being transmitted or received while another valid data is stored in the corresponding

holding register. The UART data format and speed are fixed as 8-bit, no parity, 1 stop bit, and 115200

bps. Speed can be changed by selecting a different ’DIVISOR’ parameter for the UART module (now its

value is 217: 25MHz/217=115207) and running the FPGA synthesis again.

• UART status, USTAT ($E001), read only with the following flags:

– Bit 0: FE, Frame Error. Set to 1 when a received stop bit was low.

– Bit 1: OV, Overrun. Set to 1 when a character is received while the holding register is already full.

– Bit 2: TEND, Transmission End. Set to 1 when the holding register and the shift register of the

transmitter are both empty.

– Bit 4: FRXI, Flag for the RX interrupt. Set to 1 when DV is active and the RX interrupt is enabled

(bit 0 of CTRL1).

– Bit 5: FTXI, Flag for the TX interrupt. Set to 1 when THRE is active and the TX interrupt is

enabled (bit 1 of CTRL1).

– Bit 6: DV, Data Valid. Set to 1 when a character is received.

– Bit 7: THRE, Transmitter Holding Register Empty. Set to 1 when there is space available for

transmitting a new character. A logic 1 do not means the transmission is complete (see the TEND

flag), it means that another character can be queued for transmission.

• Border color, BORDER ($E001), write only. Its 4 lower order bits selects the color palette entry to be

assigned to the border of the screen.

• Control register, CTRL1 ($E002), with the following bits:

– Bit 0: ERXI, Enable the UART receiver interrupt if 1. Interrupts are requested when DV is 1.

– Bit 1: ETXI, Enable the UART transmitter interrupt if 1. Interrupts are requested when THRE is 1.

– Bit 2: EVSI, Enable the video VSYN interrupt. Interrupts are requested on the falling edge of the

vertical sync. pulse.

– Bit 3: EHSI, Enable the video HSYN interrupt. Interrupts are requested on the falling edge of the

horizontal sync. pulse.
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– Bit 4: SDLI, Set a Delayed Interrupt. Writing this bit with 1 triggers an interrupt 23 clock cycles

later. This is done for single instruction stepping in debuggers. This bit is not stored.

– Bit 5: CDLI, Clear the Delayed Interrupt. Writing this bit with 1 clears the delayed interrupt request

immediately. This bit is not stored.

– Bit 6: CVSI, Clear the VSYN Interrupt. Writing this bit with 1 clears the VSYN interrupt. This bit

is not stored.

– Bit 7: CHSI, Clear the HSYN Interrupt. Writing this bit with 1 clears the HSYN interrupt. This bit

is not stored.

• Status register, STAT1 ($E002), with the following bits:

– Bits 0 to 3: ERXI to EHSI: The same Interrupt enable bits of CRTL1

– Bit 4: VSYN: The actual Vertical Sync. signal.

– Bit 5: HSYN: The actual Horizontal Sync. signal.

– Bit 6: FVSI: Flag of the Vertical Sync. Interrupt. Set to 1 when this interrupt is pending.

– Bit 7: FHSI: Flag of the Horizontal Sync. Interrupt. Set to 1 when this interrupt is pending.

• Control register, CTRL2 ($E003). With the following bits:

– Bit 0: VMOD: Video Mode. A value of 0 selects a monochrome video mode with 1 bit per pixel

and a 512×400 pixel resolution. In this mode each byte of the video memory contains 8 pixels,

with the MSB corresponding to the pixel displayed on the left. The pixel value selects between the

first and the last entries of the color palette table (index #0 or index #15). A value of 1 selects a

color video mode with 4 bits per pixel and a 256×200 pixel resolution. In this mode each byte of

the video memory contains 2 pixels, with the high nibble corresponding to the pixel displayed on

the left. Each nibble selects one on the 16 possible color palette entries.

– Bit 1: EKBI: Enable Keyboard interrupt if 1. Interrupts are requested when an scan-code is received.

• Status register, STAT2 ($E003), with the following bits:

– Bit 0: VMOD: Video mode. The same bit 0 of CTRL2.

– Bit 1: EKBI: Enable Keyboard interrupt. The same bit 1 of CTRL2.

– Bit 6: KBDV: Keyboard data valid. An scancode is available for read from the KBD register if 1.

This bit is cleared reading the KBD register.

– Bit 7: FKBI: Flag for the keyboard interrupt. A value of 1 indicates a pending keyboard interrupt.

This flags is cleared reading the KBD register.

• Output pins, PINOUT ($E004). Its bits controls the logic levels applied to some external pins of the

FPGA, like those connected to the SPI flash memory of the board.

• Input pins, PININ ($E005), read only. Its bits reflects the state of some input pins of the FPGA, like that

of the serial data coming from the SPI flash or the switches of the joystick interface.

• Palette registers, PAL0 and PAL1 ($E005 and $E006), write only. When writing to PAL0 the data value

with the red and green levels is stored into an 8-bit temporary register. This register is concatenated to

the blue level, coming in the 4 lower bits of the data written to PAL1, and stored at the palette address

selected by the higher 4 bits of the data. Thus, in order to write a palette entry first write to PAL0 and

then write to PAL1.
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• PWM register, PWM ($E007), write only. A PWM signal is generated using the horizontal counter of

the video generator. The PWM output goes high after the falling edge of HSYN and returns to low when

the PWM register, multiplied by two, matches the horizontal counter. The duty cycle is thus restricted to

be between 26% and 90%. The value stored in the PWM register must be changed during the 208 clock

cycles after the HSYN edge (before the displayed video) or some glitches could appear at the output. The

PWM frequency is the same of HSYN, that is 25MHz/800 = 31250 Hz. This PWM signal can be used to

reproduce sampled sounds.

• Keyboard input register, KBD ($E007), read only. The PS2 keyboard scan codes are stored here. This

register has to be read only once because a read sets its value to $FF, and also clears the keyboard

interrupt.

• Page Registers, PAGE0 to PAGE6 ($E008 to $E00E). These registers controls the mapping between CPU

addresses and RAM addresses. Only the 4 lower bits are implemented.

Video generation

Timing

The video generation block deserves some detailed explanation. It was designed to generate a VGA compatible

signal and, thus, the timing of the standard 640×480×60Hz video mode was selected. but I wanted a power of

two for the horizontal resolution, so, a data valid, DV, signal is active during the displayed part of the line that

comprises only 512 pixels. The blanking signal, BLK, is active during the retrace time of the line (front porch,

plus sync pulse, plus back porch). There are some times when DV and BLK are both low. In these cases a plain

color is displayed for the borders of the line.

The vertical timing is the same as the standard VGA mode, but the displayed part is only 400 lines instead

of 480. The same considerations for blanking and borders also apply to vertical timing.

The block diagram of the timing logic is shown in the next figure, along with the corresponding timings for

its horizontal and vertical blocks.
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This logic generates the Horizontal and Vertical sync signals for the VGA monitor, and also a data valid,

DV, signal that is active when refreshing the visible part of the video frame, and a blanking signal, BLK, that

is active during retraces. It consist of two 10-bit counters and some comparator logic to select the appropriate

modulus for each counter and to activate and deactivate the data valid, sync, and blanking signals.
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Video shifter, 1bpp

The video generator supports two modes, one of them has a 512×400 pixel resolution and 1 bit per pixel. The

equivalent diagram of the video shifter for this mode is shown next:
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Video data is loaded 16 bits at a time into a shift register using a mixed endian configuration. In this way

the most significant bit of the lower byte of a 16-bit word is shifted out first and then comes the high byte.

Each clock cycle there is a new single-bit pixel out of the shift register. The shift register is reloaded every 16

clock cycles when the signal DV is active. If DV is low no memory reads are performed and the shift register

becomes empty, but its output doesn’t matter because in that case we are displaying the border or in a retrace.

Video shifter, 4bpp

The video generator also supports a 16 color mode, but in this case the horizontal and vertical resolution were

halved in order to keep the required memory low. In this mode each pixel is output twice using a shifter with

the following block diagram:
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Notice that the 4 shift registers do not shift on odd pixels, so, this is equivalent to have half the clock

frequency or half the horizontal resolution. Memory is read every 8 clock cycles if DV is active.

While this circuit looks different that the one for the monochrome mode its actual components are the same.

The shift register is configured as a single 16-bit shifter or a quadruple 4-bit shifter depending on a mode signal.

Data is routed differently on each case but the flip-flops are the same. The two equivalent circuits are shown

here instead of the actual circuitry for the sake of clarity.
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Video address generation

The video memory is always read as a 16-bit data, therefore no bit 0 is included in the video address. The actual

memory address depends on the selected video mode, but in any case it is built by concatenating some bits of

the horizontal and vertical counters, as it is shown in the following figure:

VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 HC8 HC7 HC6 HC5 HC4 HC3

256 x 200 x 4bpp Video Mode
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vert. counter horiz. counter

vert. counter horiz. counter

Notice that for the 4-bpp mode the least significant bit of the vertical counter is not included in the video

address, resulting in lines being duplicated.

The total memory addressed by the video generator is 12.5KWords or 25KBytes (The vertical data valid

signal becomes low when the vertical counter reaches the value 400 and no higher addresses are read, so, the

highest video address is 0x63FF or 25599). The VA15 and VA16 lines are always zero.

Video palette

The output of the video shifter is a 4-bit data stream, Pixel[3:0], that is connected to the palette circuit of the

following figure:
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The palette consist mainly of a RAM memory with separated read and write buses that translates the 4-bit

pixel value into a 12-bit RGB color output. The internal memory of the FPGA is of this type and the palette

ends reserving a single memory block (256x16 bits). In addition to the RAM, there are two more blocks in the

palette logic. One is for selecting an alternative entry when displaying the border region of the screen, and the

other is for forcing a black color during retraces because VGA monitors can get crazy otherwise.

Also notice that here the data valid and blanking signals are delayed two clock cycles in order to take into

account the delays of the video pipeline (one cycle for the shifter and another cycle for the palette memory)
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PS2 keyboard interface

The interface for a PS2 keyboard is a perfect example of a quite simple circuit creating a lot of trouble. In the

connector we get two lines, one for clock and other for data, which are driven by the keyboard. Only rarely

these lines are driven by the computer, and this possibility wasn’t considered here, but in order to allow for the

required bidirectionality both lines are of the open collector type. When a key is pressed a data frame is sent to

the computer following the chronograph of the figure:

D1 D2 D3 D5 D7D6D4D0 StopStart

idleidle

idle idle

KDATA

KCLK

Parity
(odd)

The clock frequency can vary between 10kHz and 16kHz, and as it is already shown, 11 bits are transmitted,

including the 8 bits of the key scan-code, one parity bit (odd), an start bit which is always low, and another stop

bit which is always high. Data is valid on the falling edges of the clock.

The designed peripheral is little more than a plain 11-bit shift register with its shifting controlled by the

detected falling edges of the keyboard clock. It starts with all its bits set to high, and, when the start bit arrives

at the eleventh output of the register its low value signals an available scan-code to read. The reading of the

scan-code also sets all the bits of the register to one, leaving the register ready to receive a new scan-code.

The logic of the PS2 peripheral is simple enough, but we also have to take into account the electrical

interface. First, we can’t connect the keyboard signals directly to the FPGA because these are 5-volt signals

and the FPGA pins aren’t 5-volt tolerant. This problem was solved by placing two diodes in series with the

inputs and enabling two pull-up resistors to 3.3 volt inside the FPGA. In this way, when the data or clock lines

are low the corresponding FPGA pin is also low, and for the other case the pull-ups will keep the input at 3.3V

while in the keyboard side the same signal is at 5V. The block diagram of the interface, including diodes and

pull-ups is shown next:
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Well, the diodes actually degrade the low logic level of the signals, but +700mV should still be recognized

as low. Just in case, a low forward voltage diode, like a Schottky, could be used instead of a regular small-

signal diode. But these diodes weren’t responsible for the receiving errors that plagued the first versions of the

peripheral. In the diagram there is a flip-flop labeled “deglitcher” that was added in the path of the clock line as

a remedy for the mentioned errors. The actual cause was the slow low-to-high transition in the clock line due
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to the pull-up, and also the fact of being asynchronous with respect to the internal clock. At first I suspected the

lack of Schmitt-trigger buffers for the input pins that resulted in “dirty” clock edges inside the FPGA, but the

FPGA pins actually have more than 200mV of hysteresis, so this shouldn’t be the problem. It could be related

to metastability instead. But with the deglitcher clock connected to CCLK there are still some bad scancodes

received (yet they are rare), and taking into account that these flip-flops can toggle at hundreds of megahertz

the probability of a metastable cycle should be very low when running at 24MHz.

At the end I resorted to sample the keyboard clock using a slow clock signal coming from the horizontal

counter of the video generator. HC[4] has a rising edge every 32 clock cycles or 1.28µs, and with this deglitcher

in place the PS2 receiver finally worked perfectly. My guest is that the Schmitt-trigger hysteresis was not

enough to filter the noise of the clock line, probably because the keyboard was connected using long wires into

a breadboard (any ground wire has a inductance that can cause ringing on signal edges).

As a cautionary tale for any future design, we have to be extra careful about any edge-sensitive signal

coming into the FPGA.
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