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Stable high-order delta-sigma DACs

Peter Kiss, Jesus Arias, Dandan Li, and Vito Boccuzzi

Abstract— Stability analysis of high-order delta-sigma loops is a
challenge. In this brief, a sufficient design criterion is presented for high-
order multibit error-feedback DACs which are especially suitable for
high-speed operation. This analytical criterion might be too conservative,
but it allows the design of stable, robust, and high-resolution delta-
sigma DACs. Both analytical and numerical analysis are performed
for verification. Also, experimental results of a discrete-component
multiplier-free prototype demonstrate 10-bit operation at a very low
oversampling ratio of 4.

Index Terms— data conversion, DAC, delta sigma, sigma delta, stable,
stability, error feedback, high order, high speed.

I. HIGH-ORDER DELTA-SIGMA MODULATORS

Since a delta-sigma (∆Σ) modulator uses oversampling and quan-
tization error shaping, it trades speed for resolution, and analog-
circuit accuracy for digital-circuit complexity. A possible way to
obtain a high-resolution and high-speed delta-sigma analog-to-digital
converter (ADC) or digital-to-analog converter (DAC) is to use a
high-order or/and multibit modulator. High-order quantization error
shaping can be achieved by either single-loop or multi-loop (i.e.,
cascaded or MASH) architectures [1].

The choice of the quantization error or quantization noise transfer
function (NTF) plays a significant role in the achievable performance
of the modulator. While the in-band attenuation of the NTF is
provided by its zeros, the out-of-band gain (OBG) of the NTF is
controlled by its poles. Reducing the OBG improves the loop’s
stability, but it increases the inband noise, thus deteriorating the
signal-to-noise ratio (SNR) of the modulator. For high-order loops
(i.e., larger than one) it is possible to gain more performance by
moving out the zeros of the NTF from DC, and arranging them in
the signal band to provide maximal noise suppression for a given
oversampling ratio (OSR) [2]. Also, high-order modulators are prone
to become unstable for large input signals [1, Chaps. 4–5].

Due to the presence of a nonlinear truncator or quantizer1 in the
system, the stability analysis of high-order loops (i.e., larger than
two) is a challenge. “Unstable” means that the modulator exhibits
large, although not necessarily unbounded, states and a poor SNR
compared to those predicted by linear models [1, Sec. 4.1]. Many
excellent papers deal with the issue of stability, e.g., [1–11].

The chain of integrators or accumulators with feedback or feed-
forward summation are popular topologies for delta-sigma ADCs
(Fig. 1(a)) and DACs (Fig. 1(b)), respectively. Let us refer to these as
output-feedback (OF) modulators. To ensure stability, a conservative
empirical rule of Lee [4] or/and the root-locus method [5] along with
extensive simulations must be used. Lee’s rule applies for single-bit
modulators and it requires an OBG of the NTF less than 1.5. Several
functional ICs [12], [13] demonstrate that using Lee’s rule yields to
stable modulators. For multibit high-order designs a more relaxed
value, e.g., of 3.5 [14], is sufficient for stability. In any case, while
this requirement empirically ensures stability, it drastically limits
the achievable performance of single-loop high-order modulators;
moreover, precaution and lengthy simulations are necessary in their
design.
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1“Quantizers” and “truncators,” and “integrators” and “accumulators” are
used in delta-sigma ADCs and DACs, respectively.

The error-feedback (EF) topology (Fig. 1(c)) is not suitable for
delta-sigma ADCs since the imperfections of the analog loop filter
H(z) would enter the critical input node and adversely affect the
output. However, this drawback does not exist in digital modulator
loops. Therefore, it is widely used in delta-sigma DACs [1], [15],
[16] and fractional-N PLLs [17]. For high-order loop filters internal
limiters are often used which protect the overflow of the internal
signals [16]; also, the stability of the design needs to be carefully
verified by extensive simulations.

A sufficient stability test for EF modulators based on the L-norm of
the impulse response of the loop filter h(t) was proposed by Schreier,
which determined just how many quantization levels are needed to
keep the delta-sigma loop stable [6]. Norsworthy extended this L-
norm test [6] to include dither signal as well [7], [1, Sec. 3.14.1].
Here, another sufficient analytical stability criterion is proposed in
Sec. II based on a trivial analysis [18]. Practical considerations are
presented in Sec. III. Finally, supporting simulation and experimental
results are shown in Secs. IV and V, respectively.

II. ANALYTICAL STABILITY ANALYSIS

The block diagram of an EF ∆Σ DAC is shown in Fig. 1(c).
The truncator (TRUNC) provides the most-significant bits (MSBs)
for the following DAC, and feeds the least-significant bits (LSBs) to
the digital loop filter H(z). Using the additive white-noise model [1,
Sec. 2.3] for the truncator, which replaces a deterministic nonlinearity
with a stochastic linear system, we have

Yd(z) = Xd(z) + (1 − H(z))Et(z)

= STF (z)Xd(z) + NTF (z)Et(z), (1)

where STF (z) = 1 is the signal transfer function and NTF (z) =
1−H(z) is the truncation error (or truncation noise) transfer function.

In order to achieve low truncation error energy in the low-
frequency signal band, NTF (z) should have high-pass character-
istics. For example, an Lth-order differentiator (1 − z−1)L may
be chosen as NTF (z). L also determines the order of the delta-
sigma loop. All the zeros of this FIR NTF (z) sit at DC. Therefore,
OBG is 2L, which is the maximum possible OBG value for an
Lth-order modulator. When optimized zeros are used in an FIR
NTF (z), the OBG stays about 2L, only slightly smaller. However,
OF modulators require a much smaller OBG value, e.g., 3.5 [14], for
stability. Therefore, finite-valued poles should be added to NTF (z),
transforming it into an IIR filter.

A. Analysis of EF modulators

When NTF (z) is an FIR transfer function, H(z) is also an
FIR function for EF modulators (eq. (1)). Therefore, there is no
accumulation in H(z) as opposed to the case of OF topologies. The
only accumulation occurs during the addition at the input node, but
this is directly followed by the truncation operation. Therefore, the bit
length of every internal signal can be accurately predicted analytically
without the need of numerical analysis.

Let us assume that the FIR loop filter H(z) adds m bits to the bit
length. The input summation adds one more bit at most. In order to
keep all internal signals bounded, whatever enters the loop also needs
to exit, so yd should have m+1 bits at least (i.e., ‘m’ due to H(z),
and ‘1’ due to the input summation). By notation the input xd has
kx bits and the feedback eh has ke bits (Fig. 2). If ke ≤ kx holds,
which is a valid initial condition, and yd is kept to its minimal value
of m + 1, then ei will have kx + 1 bits at most, and kx − m LSBs
will be fed back to the loop. This leads to eh of kx bits. Therefore,
kx = ke = k holds for steady state, and all internal signals are
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Fig. 1. Single-loop delta-sigma modulator topologies: (a) output-feedback ADC; (b) output-feedback DAC; (c) error-feedback DAC.
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Fig. 2. Error-feedback digital-to-analog converter (details).

bounded indeed, as shown in Fig. 2. Note that k > m for practical
reasons, so k − m will not become negative.

In other words, a sufficient stability criterion can be formulated
as follows: an error-feedback modulator with a truncator of m+1 bits
and an FIR loop filter H(z), which contributes to a m-bit increase
in the dataflow, is stable.

B. Examples of stable modulators

Example #1: Let us consider a Lth-order EF loop with NTF (z) =
(1 − z−1)L and H(z) = 1 − NTF (z). In the worst-case scenario,
a ±1 alternating sequence applied to (1 − z−1)L leads to 2L, that
is, to L-bit output. Therefore, H(z) contributes less than L bits to
the dataflow. In other words, the lowest value for m is L, so if yd

has m + 1 = L + 1 bits, then all internal signals are bounded,
i.e., the Lth-order loop is stable. In case of a 4th-order loop with
NTF (z) = (1− z−1)4 and H(z) = z−1(4− 6z−1 + 4z−2 − z−3),
it turns out that m is 4, and yd has 5 bits according to the criterion
described above (summarized in Fig. 3).

Example #2: Let us consider a Lth-order EF loop with optimized-
zeroed FIR NTF (z). Since the zeroes stay inside the unit circle, the
contribution of H(z) = 1−NTF (z) does not exceed L bits. In case
of a 4th-order loop and OSR = 8, a NTF (z) of (1 − 1.98z−1 +
z−2) · (1− 1.88z−1 + z−2) results [2]. Again, m is 4 and if yd has
5 bits, the modulator is stable based on the criterion describe above.

C. Discussion

The sufficient stability criterion eliminates the need of reducing
the OBG of the Lth-order FIR NTF and guarantees stability if the
number of bits in the truncator are at least L+1. Using this criterion
one can design EF modulators with aggressive noise shaping without
sacrificing stability, and this leads to high SNR.

Note that the rational described in Sec. II-A treats the truncator
as a nonlinear circuit, so it does not rely on the additive white-noise
model used in eq. (1). Also, note that this brief proposes a sufficient
analytical criterion, not a both necessary and sufficient criterion. In
other words, using L+1 bits in the truncator is sufficient to keep all
internal signals bounded, thus to keep the high-order loop stable.
However, it is too conservative. To find a general necessary and
sufficient stability criterion for high-order delta-sigma modulators is
far beyond the scope of this brief. Some excellent discussions on
stability boundaries can be found in, e.g., [1, Chap. 4–5].
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Hardware-efficient example:

� DC-zeroed FIR NTF (z) = (1− z−1)L and H(z) = 1−NTF (z)
m ≤ L ⇒ if yd has L + 1 bits → stable ∆Σ.

� For L = 4:
NTF (z) = (1− z−1)4 = (1− 2 z−1 + z−2) · (1− 2 z−1 + z−2)
and H(z) = z−1 (4− 6 z−1 + 4 z−2 − z−3)
m ≤ 4 ⇒ if yd has 5 bits → stable ∆Σ.

Best-performance example:

� optimized-zeroed FIR NTF (z) and H(z) = 1− NTF (z)
m < L ⇒ if yd has L + 1 bits → stable ∆Σ.

� For L = 4 and OSR = 8:
NTF (z) = (1− 1.98 z−1 + z−2) · (1− 1.88 z−1 + z−2)
and H(z) = z−1 (3.86− 5.72 z−1 + 3.86 z−2 − z−3)
m < 4 ⇒ if yd has 5 bits → stable ∆Σ.

Fig. 3. Two examples of stable EF modulators (summary of Sec. II-B).

Again, an EF modulator with (1−z−1)L FIR NTF (z) and L+1
bits is stable. This stable EF modulator has and OBG of 2L. In
general, reducing OBG improves stability [1, Sec. 5.5]. Therefore,
it is plausible to assume that reducing OBG of this modulator by
adding finite-valued poles to its NTF (z) (i.e., turning the initially
FIR NTF into an IIR filter) does not worsen its stability. In other
words, one expects a stable Lth-order (L + 1)-bit EF modulator
for all possible OBG values. However, this last statement is an
intuitive extension of the sufficient stability criterion; the authors
cannot provide an analytical proof for it.

III. PRACTICAL CONSIDERATIONS

Criterion-based EF modulators require multibit digital-to-analog
conversion. Since 1-bit DACs are inherently linear, it is usually
desired to obtain a single-bit dataflow at the digital output yd.
However, highly-linear multibit DACs are available [1, Chap. 8],
which can make the circuit practical and useful. Another possibility
is to use such a high-order modulator in a cascade configuration [15].

Both the criterion-based high-order EF modulator and the MASH
topology [19–21] are stable, and generate high-order noise-shaped,
multibit output. Compared to the MASH, the criterion-based high-
order EF modulator is implemented within a single loop and can be
made more hardware efficient and to draw less power.

Due to the use of aggressive NTF, the amount of out-of-band
truncation error of a criterion-based EF modulator is larger than
the OF modulator. This imposes slightly more stringent linearity
requirements on the analog DAC circuitry. Also, the analog recon-
struction low-pass filter, which follows the DAC, may need to provide
increased selectivity.

Finally, the use of optimized zeroes may necessitate expensive
multipliers in the digital circuit implementation of H(z), while im-
plementing pure differentiator NTFs are free of multipliers. However,
the design example presented in Sec. V demonstrates that even
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Fig. 4. Simulated FFTs of 4th-order 5-bit modulators for OSR = 8,
(a) EF modulator: SNR = 93.1 dB; (b) OF modulator: SNR = 81.2 dB.

optimized-zeroed NTFs can be effectively implemented by simple,
multiplier-free digital circuits.

IV. SIMULATION RESULTS

To illustrate the behavior of the criterion-based high-order EF DAC
(Fig. 2), first a 4th-order modulator was simulated in Matlab. The
optimized zeroes of the NTF were designed using Schreier’s toolbox
[22]. As expected, it remained stable for several million samples. A
214-point Hann-windowed FFT of the 5-bit output data stream yd is
shown in Fig. 4(a). The digital input xd was quantized to kx = 24
bits. Since the 5-bit truncation error was aggressively pushed out of
band with the 4th-order FIR NTF, a peak SNR of 93.1 dB was
obtained even for a low value of the OSR of 8.

Fig. 4(b) shows the output spectrum of a similar 4th-order 5-bit
DAC, but designed using an OF topology (Fig. 1(b)). The OBG of
the NTF had to be limited to 3.3 in order to keep the loop stable.
This modulator achieved 81.2 dB peak SNR, about 12 dB lower
than the EF architecture. The z-domain expressions of the EF and
OF NTF (z)-s are given by:



EF: NTF (z) = (1−1.98 z−1+1.00 z−2) (1−1.88 z−1+1.00 z−2)
1

OF: NTF (z) = (1−1.98 z−1+1.00 z−2) (1−1.88 z−1+1.00 z−2)

(1−0.82 z−1+0.19 z−2) (1−0.88 z−1+0.46 z−2)

Fig. 5 compares the achievable performance of two 4th-order 5-bit
optimized-zeroed EF and OF modulators. It shows the peak SNR
and the corresponding input-signal amplitude Au in function of OBG
(similar type of graphs can be found in [2]). The OF modulator’s
performance abruptly drops when OBG > 3.6; such OF system
cannot sustain stable operation for OBG > 4.1 at all. Note that high-
OBG OF modulators become unstable if the input signal includes
sharp transitions. Even if the input signal is band limited, the OF
modulator can become unstable during start-up and it never recovers.
On the other hand, the EF modulator remains stable for the whole
possible range of OBG with a small decrease of the available input
range to about 0.7 V

V
(normalized to full scale) as shown in Fig. 5.

EF modulators are insensitive to sharp transitions in the input signal
and to start-up conditions. The best SNR scenarios for these two
4th-order 5-bit optimized-zeroed EF and OF modulators were shown
in Figs. 4(a) and (b), respectively.

The above described stability experiment was performed for a
wide range of OSRs, loop orders (L), and corresponding number
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TABLE I
APPROXIMATIVE SNR COMPARISON (DATA FROM FIG. 6).

∆SNR [dB] L = 2 L = 3 L = 4 L = 5
N = 3 N = 4 N = 5 N = 6

EFopt vs. OFopt ±0 +1 +10 +20
EFdc vs. OFopt −4 −7 −2 +4

of bits (N = L + 1). It was confirmed that the EF modulator
remains stable for large input signals (i.e., Au > 0.5 V

V
[2]) for the

whole range of OBG = 1 . . . 2L. It achieved the best performance
for OBG � 2L, when the NTF is an FIR transfer function. The
comparative peak SNR values are shown in Fig. 6 for EF and
OF modulators with optimized zeros. A DC-zeroed EF modulator
with NTF (z) = (1 − z−1)L might be attractive, since it can be
implemented with simple digital circuitry, so it was also plotted on
Fig. 6. For L = 2 the OF modulator is also stable, so using an EF
modulator cannot improve the performance. For L ≥ 3, however,
the EF modulator clearly outperforms the OF modulator, since the
latter’s performance is limited by the loop’s fragile stability.

A coarse quantitative comparison is shown in Tab. I. It shows
the SNR-gain of the optimized-zeroed EF modulator (EFopt) versus
the optimized-zeroed OF modulator (OFopt) for L = 2 . . . 5 and



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: FUNDAMENTAL THEORY AND APPLICATION 4

N = 3 . . . 6. Also, DC-zeroed EF modulators (EFdc) were included
into the comparison. Since ∆SNR varies with OSR, an average
rounded value was included into Tab. I. For example, a 4th-order 5-bit
EFdc modulator lacks only about 2 dB of SNR compared to OFopt,
but EFdc is significantly simpler to implement than OFopt. Again,
when a 4th-order 5-bit modulator is implemented by EFopt topology,
about 10 dB of SNR can be gained over OFopt based on Tab. I
(Figs. 4 and 6 indicate the “precise” value of ∆SNR = 11.9 dB).

Due to the nonlinear behavior of the modulators and, also, nu-
merical errors affect the results, the given values are approximations.
However, Fig. 6 and Tab. I show a dramatic improvement in the
SNR by using the proposed criterion-based EF modulators.

V. DESIGN EXAMPLE

A 4th-order 5-bit criterion-based EF DAC prototype was built
from discrete components. This design example aims to address
experimentally the stability of the proposed high-order loop and to
investigate the detrimental effects of analog circuit imperfections
in the multibit DAC. The design and analysis of an appropriate
integrated analog reconstruction low-pass filter is beyond the scope
of this brief.

A. Experimental setup

The core of this EF DAC is the digital delta-sigma modulator. Its
24-bit input xd is provided by a digital sinusoidal generator and its
5-bit output yd is scrambled before being converted into an analog
signal ya by a 32-element (i.e., 5-bit) DAC (Fig. 7(a)).

The digital implementation of the proposed optimized-zeroed [2]
4th-order 5-bit EF modulator is shown on Fig. 7(b). A very low
OSR of 4 is targeted aiming to demonstrate 10-bit accuracy for
high-speed applications. Therefore, the loop filter is given by H(z) =
3.4883 z−1−5.0071 z−2+3.4883 z−3−z−4 (from eq. (1) and using
[22]). Expensive multipliers can be avoided since these coefficients
are easy to implement by shifting and adding/subtracting binary
operations, i.e., 3.4883 ≈ 4 − 1/2 − 1/64 and −5.0071 ≈ −4 − 1
(Fig. 7(b)). The approximation error of the coefficients is small
enough to avoid a significant change of the resulting NTF (z); this
approximation leads to about 0.1 dB SNR penalty.

The truncator is a mere splitting of bits. The five MSBs constitutes
the modulator’s output yd, while the 19-LSB truncation error −et is
fed back into the loop filter H(z) (Fig. 7(b)).

To handle the nonlinearities of the multibit DAC due to mismatch
between its elements [1], implemented by resistors of 1% tolerance,
data-weighted averaging (DWA) [23] was used. Since 10-bit of accu-
racy was targeted, the first-order mismatch shaping offered by DWA
was sufficient. To achieve a higher signal-to-noise-and-distortion ratio
(SNDR) when OSR > 4, e.g., second-order mismatch shaping [1,
Sec. 8.3] can be used.

The DWA scrambler rotates the thermometer-coded word using a
barrel shifter (ROT in Fig. 7(c)). A 5-bit register (REG1) holds the
rotation index and this index is incremented by the output value of
each sample yd. Due to the circular nature of the rotator, the index
adder truncates its output to 5 bits. The last register (REG2) of the
scrambler avoids data-dependent delays in the signal path.

The digital logic (i.e., generator, modulator and scrambler) was
implemented using integer arithmetic on a x86 processor. The 32-
line thermometer-coded digital output ys was interfaced with the 32-
resistor “analog” DAC using the parallel port of a personal computer
(PC) and eight 8-bit buffers (Fig. 7(d)). The common node of the
resistors provides the analog output ya of the ∆Σ DAC. The timing
of the circuit is controlled by an accurate external clock (CLK).

The discrete-component experimental setup mimics an integrated
IC scenario. Currently, the sampling rate of the DAC is limited to
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Fig. 7. Implementation of a criterion-based 4th-order 5-bit EF DAC:
(a) block diagram; (b) digital EF modulator; (c) DWA scrambler; (d) 32-
element resistive DAC interfaced to the PC’s parallel port.

64 kHz by the parallel port of the PC used in the experiment. To
increase the sampling rate, the digital logic is also implemented
on a Xilinx Virtex 300 FPGA using A Stream Compiler (ASC)
developed at Bell Laboratories, based on [24]. The maximum clock
rate supported by the FPGA card is 100 MHz. Due to the simplicity
of the digital logic (Fig. 7) and the optimizations performed by ASC
[24], a 70 MHz output sampling rate is obtained running on the Xilinx
Virtex 300 FPGA. The analog part of the FPGA setup is still under
development, and analog measurements are expected to confirm the
feasibility of the proposed approach.

B. Experimental results

This section presents the experimental results of the proposed 4th-
order 5-bit EF DAC with optimized zeroes (Fig. 7). The effective
sampling rate was 64 kHz. The high-order loop remained stable after
several hours of operation. The analog output ya of the multibit DAC
was captured by a Rohde&Schwarz FSEA spectrum analyzer. The
acquired spectra were post processed in a PC to obtain the SNDR
values in a 8-kHz (i.e., OSR = 4) bandwidth.
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Fig. 8. Measured spectra of a criterion-based 4th-order 5-bit EF
modulator for OSR = 4, (a) without DWA: SNDR = 58.7 dB; (b)
with DWA: SNDR = 64.1 dB; (c) full spectrum with DWA.

Fig. 8(a) shows the in-band output spectrum without using the
DWA scrambler (resolution bandwidth RBW : 30 Hz). Large har-
monics and increased noise floor can be observed, which limit
the SNDR to 58.7 dB. By activating the DWA scrambler [23]
the harmonic content becomes negligible and the noise floor is
significantly lower (Fig. 8(b), RBW : 30 Hz). The two NTF (z)
minima can be clearly seen. A few small in-band spurious tones are
present around the second NTF (z) zero due to idle tones of first-
order mismatch shaping. These spurs can be reduced by, e.g., using
second-order mismatch shaping [1, Sec. 8.3]. A SNDR of 64.1 dB
was obtained. This measured value is only 1.8 dB less than the SNR
obtained by simulations assuming floating point arithmetic and ideal
analog DAC (Fig. 6). Finally, Fig. 8(c) shows the full 0 . . . 32-kHz
4th-order noise-shaped spectrum of the DWA-scrambled DAC, but
with an increased RBW of 100 Hz.

VI. CONCLUSION

In this brief stable high-order error-feedback delta-sigma DACs
were designed based on the proposed sufficient stability criterion.
This analytical criterion claims that an error-feedback modulator with
Lth-order FIR noise transfer function and L + 1 bits is stable. Such
error-feedback DACs are robust and achieve better performance than
output-feedback architectures. Due to aggressive noise shaping and
multibit truncation, as simulations showed, they can achieve high
resolution even for low oversampling ratios.

A discrete-component 4th-order 5-bit prototype was built for
further verification. It was implemented by simple, multiplier-free
digital circuits connected to 32 parallel resistors. The high-order loop
remained stable after several hours of operation. 64.1 dB of SNDR
was measured for a very low oversampling ratio of 4.
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