Low-Power Pipelined ADC Design for Wireless LANs

J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla

Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación, Univ. de Valladolid, Spain.

ageresystems

V. Boccuzzi, M. Banu

Agere Systems, 555 Union Boulevard, Allentown, Pennsylvania, 18109, USA

Block Diagram of the ADC

Operational Amplifiers

First stage is a telescopic cascode:

- Large DC gain:
 - Short–channel devices are OK
 - Low Parasitics
- 2 cascode nodes available for compensation:
 - Split Compensation Capacitors give more Gain–Bandwidth or Phase–Margin

Two Common–Mode–Feedback loops:

- Good stability
- Outer loop is a SC circuit due to linearity requirements.

Main Specs:

- Slew rate: 166 V/ μ s
- Gain-Bandwidth: 200 MHz

1.5–Bit, Flash, sub–ADC

- No charge pumping. Low Power

- Sensitive to charge injection from switches, but:
 - · Charge injection generate offsets
 - · Offsets are removed through digital correction

Comparator

Low-gain Preamplifier

- Isolates input from kick-back noise

fast settling

Full-Swing Latch

- Fast regeneration. No metastability
- Rail-to-rail output

Clocked output

- Avoids non-CMOS levels

1.5–Bit sub–DAC

- High impedance output during phase 1. This saves 2 series-switches in the S&H circuit
- High linearity thanks to wire–crossing inversion

Digital Delay and Correction Circuit

System-level Simulation

Single INL run

Monte-Carlo

Effects simulated:

- Capacitor mismatch
- Comparator offset

- Finite opamp gain
- Digital correction logic.

Transistor-level Simulation (Spectre)

- Simulated from extracted circuit
- Distortion < -60 dB
- Power: 11.5 mW
 - Analog: 9.75 mW
 - Digital: 1.75 mW

Effects not included:

- Mismatch
- Circuit noise

Chip photograph

Area: 1500 x 880 μm^2 , including pads.

Measurements

Measured Nonlinearity Graphs

- Code density measurement with sinusoidal input.

Frequency-domain measurements

- Single and two-tone tests
- Continuous time and sampled sinusoids.

EVM measurements with real OFDM signals

IQ constellation

- 54-Mbit/s OFDM signal (IEEE 802.11a/g). 10 MHz carrier.

- Agilent's EVM test equipment & software.

Performance summary

Resolution	10 bits
Sampling Rate	40 MHz
Power	ADC: 11.7 mW
consumption	Pin drivers: 1.3 mW
	(C_Lpprox 4.5 pF)
Technology	2.5-V, 0.25-µm, CMOS (MOM cap.)
Chip Area (w. pads)	1.5 imes 0.88 mm ²
(wo. pads)	$1.2 imes 0.58~{ m mm}^2$
Nonlinearity	DNL: 0.77 LSB
(max)	INL: 1.15 LSB
SNR	61.3 dB
SNDR	57.6 dB
ENOB	9.3 bit

Low-Power Pipelined ADC Design for Wireless LANs

J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación, Univ. de Valladolid, Spain.

V. Boccuzzi, M. Banu

Agere Systems, 555 Union Boulevard, Allentown, Pennsylvania, 18109, USA

Operational Amplifiers

- Continuous-time
- Diff. pair + level shifter
- Small differential-input range

- Discrete-time
- Highly linear. Large input range
- Two circuits operate on alternate clock phases

Performance summary

Resolution	10 bits
Sampling Rate	40 MHz
Power	ADC: 11.7 mW
consumption	Pin drivers: 1.3 mW
	(C_Lpprox 4.5 pF)
Technology	2.5-V, 0.25-µm, CMOS (MOM cap.)
Chip Area (w. pads)	1.5 imes 0.88 mm ²
(wo. pads)	$1.2 imes 0.58~\mathrm{mm}^2$
Nonlinearity	DNL: 0.77 LSB
	INL: 1.15 LSB
SNR (max)	61.3 dB @ 10.6 MHz
SNDR (max)	57.6 dB @ 1 MHz
	57.8 dB @ 19.3 MHz [†]
	59.0 dB @ 19.3 MHz ^{††}
ENOB (max)	9.3 bit @ 1 MHz
	9.3 bit @ 19.3 MHz [†]
	9.6 bit @ 19.3 MHz ^{††}

Notes:

[†] Sampled input.

^{††} Sampled input and static INL correction.

OFDM modulation

- \Rightarrow Large number of subcarriers per channel.
- \Rightarrow Orthogonality = No interference bw. subcarriers.

$$\int_0^{T_s} A_i \cos(\omega_i t + \varphi_i) \times A_j \cos(\omega_j t + \varphi_j) dt = 0$$

⇒ OFDM modulation and demodulation are done via Fast Fourier Transforms (FFT).

OFDM (standard IEEE 802.11a/g)

- 64 sub–carriers, but
 - No DC carrier (f=0 Hz)
 - No carriers close to adjadcent channels
- 54 used subcarriers.
- 48 carriers for data.
- Subcarrier modulation: QAM
- QAM constellations:
 - 64 (54 mb/s), 16 or 4 points.

