

Low Power Nyquist-Rate ADCs

10 bit, 40 Ms/s, pipeline ADC design.

2.5 V, 0.25 μm CMOS.

J. Arias

Modifications to previous design

- \Rightarrow Lower supply voltage: No enough room for a single cascode stage.
- ⇒ New opamps are two-stages. This gives more DC gain and output swing, but stability demands the use of compensation capacitors.
- \Rightarrow Comparators need a new design to accommodate the new input range.
- \Rightarrow Switches are fully CMOS transmission gates.

Opamps:

 \Rightarrow Specs:

- ✓ Slew-rate high enough to charge the load capacitances in 1/4 of sampling period. ($SR = 4V_{swing}f_s = 166V/\mu s$)
- ✓ Enough Unit-Gain Bandwidth to allow settling to 2^{-N} relative error in 1/4 of sampling period. (*GB* $\simeq 10 f_s = 200 MHz$)
- ✓ DC gain well over 2^N to get good ADC linearity. (Gain>5000)
- ✓ Must be stable with a feedback factor about 1/2 (gain=2).
- ✓ Total opamp noise below quantization noise.

Rail-to-rail output opamp (2 stages)

First stage is a telescopic cascode:

- Large DC gain:
 - Shorter channel devices.
 - Low Parasitics
- 2 cascode nodes available for compensation:
- Splitted Compensation Capacitors gives more Gain–Bandwidth or Phase–Margin

Two Common–Mode–Feedback loops:

- Good stability
- Outer loop is a SC circuit due to linearity requirements.

Main Specs:

- Slew rate: 166 V/ μ s
- Gain-Bandwidth: 200 MHz

Opamp noise (simulation)

- \Rightarrow Small, N-channel, input devices can generate large 1/f noise, but the total noise integral is dominated by thermal noise due to the big bandwidth.
- $\Rightarrow 1/f$ noise corner below 100 KHz.
- Total integrated input noise (BW=200MHz) about $200\mu V$ rms. (15 dB below quantization noise)

Inner Common Mode Feedback

- Continuous-Time CMFB possible because the output voltage swing of first stage is small.

- The circuit is a combination of source followers and level-shifter. It is a small load for the first stage.

- Small devices generate somewhat large noise, but this noise is mainly a common-mode signal.

Outer Common-Mode Feedback

- Two Switched Capacitor sets working on alternate clock phases.
- Highly linear. Linearity is needed because of the high output voltage swing.
- Output stage can drive large capacitors. CMFB circuit does not load the opamp significantly.

Switches

- \Rightarrow Rail-to-rail signals demands a fully complementary switch.
- ⇒ Low ON resistance required when charging large capacitors. ($R_{ON} < 2K\Omega$ for 800fF capacitors).
- ⇒ Switch resistance varies with temperature and and process. Worst case scenario must be taken into account.
- ⇒ Biggest switch: 7/0.28 μm (P-channel), 2.6/0.26 (N-channel). R_{ON} always below 1 $K\Omega$. Switches are scaled depending on load capacitance. Minimum size switch resistance: 26 $K\Omega$.

Flash ADCs:

- Thanks to digital correction these ADCs do not need to be very accurate.
- 100pF level-shifting capacitors. These capacitors always remains charged.

Comparators

- Regenerative comparator: Low gain preamp + Full swing latch.
- Fast regeneration (<1ns typ.): small chances of metastability.

Comparator layout

- High impedance output during phase 1. This saves 2 series-switches in the S&H circuit.
- Switch size depends on pipeline position.

Stage scaling

Stage	Cap. load (fF)	Scale factor	Comments
1	1200	1	Reference design
2	400	1/3	-
3-8	300	1/4	-
9	-	-	Flash ADC only

- \Rightarrow Things scaled:
 - ✓ Opamp currents, transistors and capacitors.
 - ✓ Sampling capacitors.
 - ✓ S&H switches and DAC switches.

S&H capacitor layout

First Stage layout

Other stages

Digital delay & correction logic

C²MOS Flip–Flop

Clock tree

Clock divider & 2-phase generator

Pin drivers

Power supply isolation

Reference Voltages

- Short settling time: Small R.
- Power drain: 2.5 mW
- Common–mode reference
 does not need to be very accurate:
 - (Big resistor divider
 - L External decoupling capacitor

Pads

ADC layout

Linearity Simulation

Simulation conditions:

- Fully extracted circuit with parasitic capacitances (~50000 extracted devices)
- Pads & Bonding wires:

3nH 1Ω

ADC performance summary

Parameter	Value	
Sampling Rate	40 MHz	
Resolution	9.99 bits (1023 codes)	
Technology	0.25 μm CMOS	
Metal Layers	4	
Chip Area (with pads)	1275µm x 670µm (0.85 mm ²)	
Pin Count	22	
Supply Voltage	2.5 V	
3 rd Harmonic Distortion	< -60dB	
Data Latency	300 ns	

Power Bill

Source	Туре	Current (mA)	Power (mW)
vdda! (2.5V)	Analog	3.9	9.75
vdd! (2.5V)	Digital. Core	0.7	1.75
ADC (2.5V)	TOTAL	4.6	11.5
Vdddrv (3.3 V)	Digital. Pin drivers	3.47	11.45
Vdddrv (2.5V)	(see notes)	2.57	6.44

Notes:

- Load capacitance = 10 pF
- Random data modulated OFDM (no guard time), 10 MHz shifted spectrum, full scale input, assumed.
- Bit transition power from pin driver circuit simulation.

To Do

- \Rightarrow Empty areas:
 - More decoupling capacitors.
 - More ground pads.
- \Rightarrow Chip completion:
 - Antenna check OK.
 - General Fill Pattern: Help needed.
- \Rightarrow Submission.
- \Rightarrow Package selection.

Last modifications

- \Rightarrow Dummy capacitors.
 - ✓ Both plates are now connected to ground in order to avoid Vdd noise coupling to signal lines.
- \Rightarrow Protection diodes in Vdd pads.
 - ✓ Vdd pads now only include one reverse-biased diode to ground. Forward-biased diode strings are removed because they seem to be not needed.
- \Rightarrow Pad spacing increased to 150 μ m.
- \Rightarrow No pads in chip corners
- \Rightarrow Two more analog Vdd and ground pads.
- \Rightarrow Big decoupling capacitor for analog power supply added.

More data from simulation.

⇒ Integral non-linearity: 0.38 LSB (nominal corner)

 \Rightarrow 20 Ms/s operation @ Iref = 5 μ A (nominal Iref = 10 μ A)

✔ ADC power: 7.125 mW.

✔ Non-linearity: 0.3 LSB

 \Rightarrow Chip area, with pads: 1500 x 880 μm^2