

Delta-Sigma ADCs for High Speed Data Communications

Task ID# 1198.001

Task Leader: Jesús Arias

University of Valladolid (Spain)

SRC Students

 \Rightarrow David Bisbal, UVA, PhD in progress.

 \Rightarrow Jacinto San Pablo, UVA, PhD in progress.

Industrial Liaisons

Customized SRC project:

agere

Primary Anticipated Result

A delta-sigma ADC for High speed data communications (Gigabit Ethernet) will be designed and its performance will be tested to meet the required specifications.

Summary of Task's Deliverables

- ⇒ Architectural analysis of the propossed converter, development of the software for systemlevel simulations and system-level simulations. (Nov. 2004)
- ⇒ Circuit-level design and simulation of the different functional blocks composing the modulator: integrators, embedded flash ADC and DAC, and digital logic. (May. 2005)

Publications & Software

 \Rightarrow Conference Presentation:

"Noise Simulation of Continuous-Time Sigma-Delta Modulators" J. Arias, L. Quintanilla, D. Bisbal, J. San Pablo, L. Enriquez, J. Vicente and J. Barbolla. ICNF 2005. Salamanca (Spain) Sep. 19th-23rd.

 \Rightarrow Software description:

system-level simulator for continuous-time sigma-delta modulators

- ✓ Version 1 (Nov. 2004): Gm-C based modulators
- ✓ Version 2 (May. 2005): Opamp based modulators are also included.

Delta-Sigma ADCs for High Speed Data Communications

1st deliverable

Due Date: November 2004

Architectural analysis of the proposed converter, development of the software for system-level simulations and system-level simulations.

Gm-C based, Continuous-Time, multibit $\Delta\Sigma$ modulator

- Second–Order loop filter
- 3–bit quantizer
- Oversampling ratio of 8
- Optimal zero placement
- Gm–C based integrators

- 90nm CMOS technology
- 1 GHz clock frequency
- 62.5 MHz signal bandwidth
- ~50 dB of SNR
- 8 effective bits of resolution

System level simulator for CT $\Delta\Sigma$ modulators

Main features:

- Quick simulations (seconds).

- Performance analysis: SNR and distortion extraction.

- Parameter sweep and Monte Carlo simulations.

- Many real effects included.

Nonlinear Gm	Clock jitter
Finite integrator gain	Nonlinear ADC
Nondominant pole	Metastability in ADC
Variable output resistance of DACs	Hysteresis in ADC
Dynamic range scaling	Nonlinear DACs
Thermal noise	DWA scrambler
1/f noise	Loop delay

Nonidealities in Transconductors

Noise & Jitter

Thermal Noise

Clock Jitter

Nonidealities in the Quantizer

Mismatches in DACs

Flash ADC Effects

^{(1%} element mismatch)

SNR=49.8dB (Vhyst=30mV)

Combination of effects and Monte Carlo

Combined effects

Monte Carlo simulation

Signal-related performance

Delta-Sigma ADCs for High Speed Data Communications

2nd deliverable

Due Date: May 2005

Circuit-level design and simulation of the different functional blocks composing the modulator: integrators, embedded flash ADC and DAC, and digital logic.

Significant change in research direction

- ⇒ Gm-C based modulators have several drawbacks
 - ✓ Transconductor nonlinearity \Rightarrow Distortion.
 - ✓ Low output impedance in transconductors ⇒ Low DC gain ⇒ High in-band quantization Noise.
 - ✓ Low output impedance in DACs \Rightarrow Distortion, higher quantization Noise
 - ✓ Parasitics \Rightarrow Detuning, Distortion

Gm-C modulator. Simulation

Ideal transconductors and biasing sources.

- Too high noise floor (SNR=48dB)

- Some distortion still present (3^{rd} har. = -58dBc)

Gm-C modulator. Design issues

 \Rightarrow It is difficult to design current-mode DACs with the required specs with only 1 volt supply.

 \Rightarrow Not enough voltage room for cascode structures.

- ⇒ Transconductors and biasing sources will further degrade the performance. (Low output resistance)
- ⇒ Parasitic capacitances are a substantial fraction of the total integration capacitance and they are highly nonlinear.

New modulator architecture

- DACs are connected to low impedance nodes.
- Voltage swing at DAC outputs is small.
- Parasitics are not included as integration capacitances.
- Feedback improves linearity.
- Penalty: higher power consumption.

System-level simulations

Opamp modeling (single-ended):

- Nonlinear transfer function.
- Finite DC gain.
- Finite Gain-Bandwidth product.
- Thermal and 1/f noise

System-level simulations

Opamp's GBW effect

Thermal & 1/f noise effect

Requirements:

- Opamps with GBW $\approx 3 \text{GHz}$

- Integrating capacitors: C1=0.5pF, C2=0.2pF (1dB loss of SNR)

Opamp-based modulator. Opamps

- Main spec: GBW > 2GHz. Load capacitance: 0.5pF.

- Current consumption \approx 3mA

Opamp-based modulator. CMFB circuits

- Different CM voltages through the modulator. (efficient use of N-channel devices in opamps)

Opamp-based modulator. DACs

- Simple, bipolar output, DAC.
- High enough output impedance without cascodes.
- Small devices \Rightarrow mismatch. Corrected via DWA scrambler.

Flash ADC

- Preamp: variable threshold voltage obtained by using different input transistors.
- Fast regenerative latch ($\tau = 30 ps$).

Flash ADC. Biasing

• $(V_{GS} - V_{TH})$ independent of process variations and temperature \Rightarrow Constant LSB voltage.

Mismatch correction. DWA scrambler

- Dynamic element matching for DACs.

- Mismatch errors are translated to a shaped noise floor.

Tuning against process variations

(a) Resistors with switchable portions allow for the digital tuning of the modulator.

(b) DAC's currents are kept proportional to 1/R

Transistor-level simulations (full circuit)

Results for simulation including mismatch and scrambler:

SNR = 50.8dB SNDR = 50.3dB Total power = 7mW

Summary

- A $\Delta\Sigma$ modulator for Gigabit Ethernet has been designed.

- System-level and transistor-level simulations show that the modulator meets the design specs.

Next deliverables

- Layout of functional blocks.

- Simulations including parasitics from extracted circuits.