A Dual-Mode, Complex, $\Delta\Sigma$ ADC in CMOS for Wireless-LAN Receivers

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, J. Barbolla

Dpto de E. y Electrónica, E.T.S.I. telecomunicación, Universidad de Valladolid, Valladolid (Spain)
Agere Systems, 555 Union Boulevard, Allentown, PA, (USA)
A dual-mode Complex ΔΣ ADC in CMOS for Wireless-LAN receivers

IEEE 802.11 a/b/g

#1
Motivation

#2
Design
- Architecture
- Circuit blocks

#3
Measurements
- Sine wave input
- OFDM input
IEEE 802.11a/g, low-IF, receiver with Nyquist-rate ADC

Complex BPF (1×):

\[BW = 20 \text{ MHz}, f_{IF} = 10 \text{ MHz} \]

7-pole Chebyshev filter

Nyquist ADC (1×):

\[BW = 20 \text{ MHz}, SNDR = 55 \text{ dB} \]

10-bit pipelined ADC
IEEE 802.11a/g, low-IF, receiver with ΔΣ ADC

Complex BPF:
$BW = 20$ MHz, $f_{IF} = 10$ MHz

3-pole Butterworth filter

Complex CT ΔΣ ADC:
$BW = 20$ MHz, $SNDR = 55$ dB

2nd-order 3-bit $16 \times$ oversampled

Proposed architecture
ΔΣ Architecture selection

⇒ Continuous-time (CT):

✓ Capable of operation at high sampling frequencies.
✓ Low power consumption.
✓ Implicit anti-aliasing property.

⇒ Multibit:

✓ Good SNR for low oversampling ratios. (16)
✓ Good stability.
✓ DAC mismatches can be overcome using the Data Weighting Algorithm.
Modulator architecture (Real $\Delta \Sigma$)

Starting modulator

After amplitude equalization

- Oversampling ratio of 16
- Second-order NTF
- Optimized zero: +3dB SNR
- 3-bit ADC and DAC
- 60 dB of SNR
- RZ DAC: less sensitive to:
 - ADC metastability
 - Logic delays
Complex $\Delta \Sigma$ modulator schematic

Zero-IF mode
Complex $\Delta \Sigma$ modulator schematic

Zero-IF mode

10 MHz
Freq. shift

Low-IF mode

Ampl. (dB)

Freq. (MHz)
Circuit blocks: Transconductors

\[G_m(x) = G_m(0) \frac{d}{dx} \{ \tanh \left(x + \frac{0.82}{3} x^3 + \frac{2.14}{5} x^5 - \frac{0.60}{7} x^7 \right) \} \]
Circuit blocks: Capacitors: Inversion MOSFETs

- Smallest chip area
- No technology options required
- Channel resistance can alter the NTF:
 Big capacitors must be split into parallel, smaller, capacitors to improve their Q
Circuit blocks: flash ADC

Input Range

2.5V
1.8V
0V

70mV
90Ω
Rnplus

Vbias
Circuit blocks: ADC’s comparators

Comparator & Latch

Signal Timing
Circuit blocks: Current-mode DACs

Current-mode DACs

Current cell

Signal timing
Photograph of the test chip

0.25\(\mu m\) CMOS. Area: 0.44 \(mm^2\) without pads. (1.3 \(mm^2\) with pads)
Measurements. Experimental setup
Measurements. Sine Wave.
Zero-IF mode

Input Ampl. = -6 dBm SNR = 51.8 dB IMR = 47.2 dB
Output Ampl. = -5.6 dB THD = -58 dB DC Ampl. = -32.9 dB
Measurements. Sine Wave.

Low-IF mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Ampl.</td>
<td>-6 dBm</td>
</tr>
<tr>
<td>SNR</td>
<td>51.1 dB</td>
</tr>
<tr>
<td>IMR</td>
<td>47.2 dB</td>
</tr>
<tr>
<td>Output Ampl.</td>
<td>-5.67 dB</td>
</tr>
<tr>
<td>THD</td>
<td>-58.3 dB</td>
</tr>
<tr>
<td>DC Ampl.</td>
<td>-35.1 dB</td>
</tr>
</tbody>
</table>
Measurements. SNR and SNDR

Zero-IF mode

Low-IF mode

max SNR = 55.5 dB
max SNDR = 53.9 dB

max SNR = 54.5 dB
max SNDR = 53.5 dB
Measurements. OFDM.
Zero-IF mode

Input Amplitude = -12 dBm EVM = 0.95 % rms
Measurement. OFDM.

Low-IF mode

(single OFDM input modulated at 10 MHz)
Summary

- A dual-mode, complex \(\Delta \Sigma \) modulator for wireless-LANs is demonstrated.

- This ADC greatly relaxes the prefiltering specs.

Key parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Bandwidth</td>
<td>20 MHz</td>
</tr>
<tr>
<td>SNDR</td>
<td>54 dB</td>
</tr>
<tr>
<td>ENOB</td>
<td>8.7 bits</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>47 dB</td>
</tr>
<tr>
<td>Power</td>
<td>32 mW</td>
</tr>
<tr>
<td>Technology</td>
<td>0.25(\mu m) CMOS</td>
</tr>
</tbody>
</table>
A Dual-Mode, Complex, ΔΣ ADC in CMOS for Wireless-LAN Receivers

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal,
J. San Pablo, L. Quintanilla, J. Barbolla

Dpto de E. y Electrónica, E.T.S.I. telecomunicación, Universidad de Valladolid, Valladolid (Spain)
Agere Systems, 555 Union Boulevard, Allentown, PA, (USA)

THANKS
Sensitivity to clock jitter

- Clock input: sine-wave with variable amplitude

\[SNR \ (dB) = -10 \cdot \log_{10} \left[2 \left(\frac{\sigma_v^2}{4\pi^2A^2} + N^2 \right) \right] ; \ \sigma_{jitter} = \frac{T\sigma_v}{2\pi A} \]

\[\sigma_v \approx 6mV ; \ \sigma_{jitter} \approx 0.75ps \]
Biasing circuit for ADC
Measurement. OFDM.

Low-IF mode

(single OFDM input modulated at 10 MHz)