A Dual-Mode, Complex, $\Delta\Sigma$ ADC in CMOS for Wireless-LAN Receivers

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, J. Barbolla

Dpto de E. y Electrónica, E.T.S.I. telecomunicación, Universidad de Valladolid, Valladolid (Spain) Agere Systems, 555 Union Boulevard, Allentown, PA, (USA)

agere

IEEE 802.11a/g, low-IF, receiver with Nyquist-rate ADC

IEEE 802.11a/g, low-IF, receiver with $\Delta\Sigma$ ADC

Proposed architecture

$\Delta\Sigma$ Architecture selection

\Rightarrow Continuous-time (CT):

- Capable of operation at high sampling frequencies.
- ✓ Low power consumption.
- ✓ Implicit anti-aliasing property.
- \Rightarrow Multibit:
 - ✓ Good SNR for low oversampling ratios. (16)
 - ✔ Good stability.
 - ✓ DAC mismatches can be overcome using the Data Weighting Algorithm.

Modulator architecture (Real $\Delta\Sigma$)

DAC

- Oversampling ratio of 16
- Second-order NTF
- Optimized zero: +3dB SNR
- 3-bit ADC and DAC
- 60 dB of SNR
- RZ DAC: less sensitive to: ADC metastability Logic delays

NTF

Complex $\Delta\Sigma$ modulator schematic

Complex $\Delta\Sigma$ modulator schematic

Ampl. (dB)

-40

-60

Zero–IF mode 0 -20 -80

Low–IF mode

Circuit blocks: Transconductors

 $G_m(x) = G_m(0)\frac{\partial}{\partial x} \left\{ \tanh\left(x + \frac{0.82}{3}x^3 + \frac{2.14}{5}x^5 - \frac{0.60}{7}x^7\right) \right\}$

Circuit blocks: Capacitors: Inversion MOSFETs

 Smallest chip area
No technology options required
Channel resistance can alter the NTF: Big capacitors must be split into parallel, smaller, capacitors to improve their Q

Circuit blocks: flash ADC

Circuit blocks: ADC's comparators

Comparator & Latch

Circuit blocks: Current-mode DACs

Photograph of the test chip

0.25 μ m CMOS. Area: 0.44 mm² without pads. (1.3 mm² with pads)

Measurements. Experimental setup

Measurements. Sine Wave. Zero-IF mode

Measurements. Sine Wave. Low-IF mode

Measurements. SNR and SNDR

Zero-IF mode

Low-IF mode

Measurements. OFDM. Zero-IF mode

Input Amplitude = -12 dBm EVM = 0.95 % rms

Measurement. OFDM. Low-IF mode

(single OFDM input modulated at 10 MHz)

Summary

 \Rightarrow A dual-mode, complex $\Delta\Sigma$ modulator for wireless-LANs is demostrated.

 \Rightarrow This ADC greatly relaxes the prefiltering specs.

Key parameters

Signal Bandwidth	20 MHz
SNDR	54 dB
ENOB	8.7 bits
Image Rejection	47 dB
Power	32 mW
Technology	0.25 <i>µm</i> CMOS

A Dual-Mode, Complex, $\Delta\Sigma$ ADC in CMOS for Wireless-LAN Receivers

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, J. Barbolla

Dpto de E. y Electrónica, E.T.S.I. telecomunicación, Universidad de Valladolid, Valladolid (Spain) Agere Systems, 555 Union Boulevard, Allentown, PA, (USA)

THANKS

Sensitivity to clock jitter

- Clock input: sine-wave with variable amplitude

Biasing circuit for ADC

DWA scrambler

Measurement. OFDM. Low-IF mode

(single OFDM input modulated at 10 MHz)

