

Continuous-time, multibit, complex $\Delta\Sigma$ ADC

320 Ms/s, 16x oversampling, 3-bit quantizer, 10-bit ENOB.

J. Arias, P. Kiss, V. Prodanov

Motivation

\Rightarrow Why complex $\Delta \Sigma$:

- ✔ Channel selection and image rejection are done in the digital domain by the decimation filter.
- Easy analog filtering. (good IQ imbalance, low power)
- \Rightarrow Why continuous-time (CT):
 - Capable of operation at high sampling frequencies.
 - ✔ Low power consumption.
 - ✔ Implicit anti-aliasing property.
- \Rightarrow Why multibit:
 - ✓ Good SNR for low oversampling ratios. (16)
 - ✔ Good stability.

Drawbacks

$\Rightarrow \Delta \Sigma$ ADCs:

- $\times \Delta \Sigma$ ADCs requires high sampling rates (oversampling \geq 16, typical)
- \times A digital filter/decimator is needed (several Kgates).
- $\times \Delta \Sigma$ ADCs consume more power than Nyquist-rate ADCs. (But the total power bill can be lower)

\Rightarrow CT $\Delta\Sigma$ modulators:

- \times Involves DT to CT transformations (NTF) \Rightarrow Tedious mathematics & controllability issues.
- \times CT modulators are more sensitive to clock jitter.

\Rightarrow Multibit $\Delta\Sigma$ modulators:

 \times Sensitive to DAC nonlinearity. Dynamic element matching (scrambler) needed.

IEEE 802.11a/g, low-IF, receiver with Nyquist-rate ADC

IEEE 802.11a/g, low-IF, receiver with $\Delta\Sigma$ ADC

Modulator architecture (Real DSM)

Gm–C Implementation (Real DSM, Single–ended)

Multibit DACs: Overcoming nonlinearity using dynamic element matching

DWA logic (scrambler)

Thermal noise

Noise simula	atior	parameters:
GM1: 1000 μ Α	V/V	C1: 5.165 pF
GM2: 200 μ A/	V	C2: 0.376 pF
GM3: 15 μ Α/V		
lb1: 714μA	lda	ac1: 95.4μA
lb2: 147μA	lda	ac2: 20.1μA

Performance loss: 2 dB SNR

Real DSM. Detailed schematic

Circuit Elements: Transconductors

- Large dynamic range
- Unipolar output
- External tuning
- Vladimir's patent (2001)

Circuit Elements: Transconductor's nonlinear G_m

$$G_m(x) = G_m(0)\frac{\partial}{\partial x} \left\{ \tanh\left(x + \frac{0.82}{3}x^3 + \frac{2.14}{5}x^5 - \frac{0.60}{7}x^7\right) \right\}$$

Circuit Elements: Small Transconductors (GM3)

- Pseudodifferential: poor common mode rejection
- Good linearity
- Low accuracy: Gm depends on Vcas and Cm(Vin)
- Low power efficiency

Circuit Elements: Capacitors: Inversion MOSFETs

Channel resistance is not simulated unless "nqsmod=1" is specified on every capacitor

Big capacitors must be split into parallel, small, capacitors to improve their Q

Circuit Elements: ADC

Circuit Elements: ADC biasing

Circuit Elements: ADC's comparators

Comparator & Latch

Circuit Elements: Current-mode DACs

Circuit Elements: CMFB

Real DSM results (spectre simulation with extracted blocks)

Complex DSM schematic

Two real modulators

Complex DSM schematic

Two real modulators

Complex modulator

Cross-coupled transconductor switching

Clock distribution

Pin drivers

Circuit Layout (2.5-V, 0.25- μ m CMOS, 1480×880 μ m²)

Simulated results (extracted circuit)

- Full extracted circuit
 with parasitic capacitances
- Two-tone test show no intermodulation products
- SNR: 55 dB (+3dB dual tone)
- Total power ~25 mW

Before chip submission

- \Rightarrow Chip completion.
 - ✔ Antenna check
 - Is it removed from Cadence?
 - ✔ Fill patterns
 - $\circ~$ What are they for?
 - Are they really needed?
- \Rightarrow Other issues....

Setup for measurement

