
The ultimate 16550 UART character printing routine

Jesús Arias

November 4, 2021

1 Introduction

The classic 16550 UART from National Semiconductor was an usual peripheral in PCs before being re-
placed by USB and it is still in use in many microcontrollers, in particular in those made by NXP. Probably
its popularity was the deciding factor for including such an aging peripheral in modern microcontrollers.
We must remark that this UART was in fact an enhancement of the old 8250, another simpler UART made
by Intel for its 8080 CPU, differing only in the addition of 16-byte FIFOs for both the transmitter and the
receiver. The receiver FIFO proved to be very useful in reducing the interrupt overhead in old MS-DOS
computers connected to “high-speed” (56Kbit/s) modems, one of the early cases where a hardware hack
allowed to hide the crappy details of the software to the user: The real problem was the very long interrupt
latency of the MS-DOS drivers, but instead of improving the software the serial port was replaced with a
new UART with FIFOs and this allowed a reliable communication with the modem.

So, the receiver FIFO is really very useful and any modern software will enable it, but what’s about the
transmitter FIFO? It is also enabled along the receiver FIFO but it is rarely used at all due to the stupid
meaning of its flags. Instead of a FIFO-full flag to check before transmitting what we really got is a FIFO-
empty flag (THRE bit in LSR register). Therefore the simple character printing routine, whose code is listed
next, waits until the TX FIFO is completely empty before sending the next character instead of queuing it
if there is still a free space in the FIFO.

void U0putch(int d)

{

while(!(U0LSR&0x20));

U0THR=d;

}

In this code the function parameter is really 8-bit wide in spite of using a 32-bit variable because the
compiler generates a more compact code if variables fit the native width of the CPU registers (we are
compiling this code for a 32-bit ARM cortex-M core). The UART registers are all 8-bit wide and only the
8 least significant bits of variables are actually read or written. The “while” loop waits until the THRE
flag (bit 5 of LSR) is one, and then writes the character into the THR register. By calling this routine the
transmitter FIFO never holds more than a single character.

1



What I’m pretending here is to make a smarter use of the transmitter FIFO in spite of its flags. The
solution isn’t yet perfect, because there isn’t a reliable way to know if the FIFO is full, but it can still make
use of the FIFO under many practical situations.

2 The transmitter flags

The Line Status Register (LSR) contains two bits related to the transmitter. These are:

• Bit 5. Transmitter Holding Register Empty (THRE). This bit is one if the TX FIFO is empty.

• Bit 6. Transmitter Empty (TEMT). This bit is one if the TX FIFO is empty and the output shift
register is also empty. This means that all pending data was completely transmitted.

I want to notice that the shift register of the transmitter provides one additional byte of storage and, therefore,
the UART can hold up to 17 bytes awaiting to be transmitted, one in the shift register and 16 in the FIFO.

From our software point of view it is useful to summarize the meaning of these flags in the following
table:

TEMT THRE max # of bytes to write
LSR[6] LSR[5] FIFO OFF FIFO ON

1 1 2 17

0 1 1 16

0 0 0 0 to 15

1 0 Never happens

The ugly detail here is the uncertainty about the filling of the FIFO. If THRE is zero the FIFO can be
still not full and it could store more additional bytes to transmit, but there is no way to know if this is true.
What we really know is that we can transmit up to 16 bytes without waiting if THRE is one or 17 bytes if
TEMT is also one.

2



3 The routine

Here is the code:

typedef signed int s32;

void U0putch(int d)

{

s32 nf;

//static u8 nfifo;

#define nfifo U0SCR

if ((((s32)U0LSR)<�<(31-6))<0) nf=16;

else {

nf=nfifo-1;

if (nf<0) {

while ((((s32)U0LSR)<�<(31-5))>=0);

nf=15;

}

}

U0THR=d;

nfifo=nf;

}

The main idea behind this code is to keep track of how many characters have been sent to the UART since
the last time the flags were set, because we know we can send up to 16 characters when THRE is set, or
one character more if TEMT is also set. The static variable “nfifo” holds how many more characters can be
sent before waiting again for THRE. In this example this variable is in fact the scratch register of the UART
(SCR), a register without any usage by the hardware that can store one byte. In this way no RAM is needed
for the “nfifo” variable.

There are also some less clear optimizations in the source code. For instance, the static “nfifo” variable is
copied to the local variable “nf” because local variables are usually mapped to registers instead of memory
and the resulting code is better than using the static variable directly. This is specially true for the UART
registers because they are declared as “volatile”, meaning they have to be read every time they appear in an
expression. Also, the flags of U0LSR are sifted from their positions to bit 31 in order to test them as sign
bits. This saves the loading of a mask value to a register prior to an AND/TST instruction (as is the case of
the simple routine).

The resulting code after compilation with the “-Os” option (optimize code for size) is listed next. The
target CPU is an ARM cortex-M (16-bit Thumb-2 code).

3



0000036e <U0putch>:

36e: 4a07 ldr r2, [pc, #28] ; (38c)

370: 2310 mov r3, #16

372: 6951 ldr r1, [r2, #20] ; (U0LSR)

374: 0649 lsl r1, r1, #25

376: d406 bmi 386

378: 69d3 ldr r3, [r2, #28] ; (U0SCR)

37a: 3b01 sub r3, #1

37c: d503 bpl 386

37e: 6953 ldr r3, [r2, #20] ; (U0LSR)

380: 069b lsl r3, r3, #26

382: d5fc bpl 37e

384: 230f mov r3, #15

386: 6010 str r0, [r2, #0] ; (U0THR)

388: 61d3 str r3, [r2, #28] ; (U0SCR)

38a: 4770 bx lr

38c: 40008000 .word 0x40008000 ; UART #0 Base address

4


