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1 The GUS-16 evolution

This CPU core of my own design has changed many times since its first conception, some times a little, others

drastically. It started as an design example for students, and that implied a design as simple as possible, but

with also a practical use in mind, so, it couldn’t be too simple neither. As a performance minimum I chose

to have some way to call and return from a subroutine. The core started as a 16-bit processor with a register

bank with 8 registers and two output busses to feed an ALU, a 16-bit program counter, and a 4-bit flag register.

These basic features were maintained through all the versions of the core, that are:

Version Arhitecture Instr. Set Comments Uses

V1 Harvard V1 Starting design, 2 memory spaces Emulated

V2

Von Neumman

V1 2-stage pipeline, one memory space Emulated

V3 V1+RETI Interrupt Support FPGA demo

V4 V4 LDPC replaces LDH FPGA demo: GUSY

V5 V5 LD, ST with literal displacements GUSY, Floppyton-GUS

V6 V6 new instruction set, multibit rotation Floppyton-GUS v6

The original core was a Harvard design with separate program and data memories that executed all instruc-

tions in a single clock cycle and was named simply “CPU_ONE_CYCLE”. That version was quickly abandoned

in favor of a Von Neumman implementation due to the problems it had when dealing with constants (take for

instance how to print a character string “Hello World”). Later versions had a single memory for instructions and

data and this was no longer a big problem, yet, the loading of constants was always a concern. They also have a

two-stage pipeline that allows an effectice one-cycle execution time for instructions other than load, store, and

jumps, that required two-cycles.

Version V3 added support for interrupts. This was accomplished by adding a second PC and flags registers

that are switched in when an interrupt happens, leaving the main PC and flags with their last values unmodiffied

until the new instruction RETI is executed. This was the first version being written in Verilog and synthesized

in a FPGA.

Early versions included the LDH instruction for loading the high byte of 16-bit constants into an hidden

register. That instruction was removed in the version V4 and replaced by LDPC instead. This new instruction

uses the PC as a pointer to load the 16-bit word that follows the current instruction into an Rx register. This

has no advantages from the software point of view, but simplifies the hardware design that no longer requires

an 8-bit hidden register to store the high bytes of constants.

Version V5 added 4-bit positive literal displacements to the memory address during load and store instruc-

tions. This “small” change required a substantial rearrangement of the processor internals in order to use the

ALU for the address computation. On the other hand the inclusion of displacements was a quite nice feature

for software development that saved many instructions, for instance when dealing with stacks.

The lastest V6 version includes big changes in the instruction set, while the processing hardware is almost

the same with the exception of a new barrel shifter that enables single-cycle multi-bit rotations.
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Figure 1: Block diagram of the GUS16-V6 processor. New hardware is marked in red

2 GUS16-V6 features

The new V6 processor has the diagram shown in figure 1. This includes a new multiplexer for the register bank

input in order to route the content of the PC register into R6 during the execution cycle of the JAL instruction.

Other changes are present in the ALU, the immediate operand logic, and of course in the decoding.

The ALU and immediate operand logic blocks are shown in more detail in figure 2, where as we can see,

the output of the ALU is followed by a 16-bit rotator. The rotator is built using 4 stacked multiplexers: the first

selects between the input data or the same data rotated 8 bits, the second between the input data or the same

data rotated 4 bits, and so on. This rotator is used by the RORI instruction, but also by single bit shifts. Because

of this its control lines can be forced to one (for shifts) or zero (for any instruction other than shifts or RORI),

and its LSB can be selected to be the LSB of the ALU, ’f0’, for non-shift instructions (also for RORI), zero

for the shift-right, SHR, instruction, the sign bit, ’f15’, for the shift-right arithmetic, SHRA, instruction, of the

carry flag for the RORC instruction.

The immediate operand logic is quite simple: the lower 5 bits of the instruction register are always present

at the output while the higher bits are forced to zero for positive literals, starting at bit #5 for LD/ST, or bit #8

for other immediate operands. In the case of jumps the displacements are 12-bit signed literals, and therefore

in these cases the bit #11 is copied into the 4 upper bits (sign extension).

The instruction set of the V6 processor is summarized in figure 3. Its new features include:

• Jump and link instruction, JAL. This instruction adds a signed 12-bit displacement to PC (like the in-
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Figure 2: Detail of the ALU and the immediate operand logic

struction JR), and also saves the current PC value to R6. This reduces the call to a subroutine to a single

instruction instead of the two instructions used before:

V5: V6:

call: ADPC R6,1 ; R6 = PC+1 call: JAL routine ; R6 = PC

JR routine rethere: ...

rethere: ...

return: JIND R6 return: JIND R6

• Multibit rotation, RORI Rd, Rs, ulit4. This new instruction rotates the contents of register Rs “ulit4”

positions to the right and leaves the result in register Rd. Notice that a rotation to the left is simply a (16-

nbit) rotations to the right, thus, this instruction can also performs as “ROL”. The carry flag isn’t included

in the rotation. The old ROR instruction that included the carry in a single bit rotation is maintained, but

it is now called RORC. The new RORI instruction finds a good use as a byte swap (RORI Rd,Rs,8), but

it also simplifies arithmetic. Take for instance a multiplication by 40:

V5: V6:

ADD R0,R0,R0 RORI R1,R0,11 ; R1=R0*32

ADD R0,R0,R0 RORI R0,R0,13 ; R0=R0*8

ADD R0,R0,R0 ; R0=R0*8 ADD R0,R0,R1 ; R0=R0*40

ADD R1,R0,R0

ADD R1,R1,R1 ; R1=R0*32

ADD R0,R0,R1 ; R0=R0*40

• Now, for other instructions with immediate operands the size of the literal is 8 bits instead of 4. This

was achieved as the expense of fewer instructions (CMP, TST, and TSTI were eliminated) and also by

having the same register as the source and destination. (In fact, the source and destination registers were

the same in much of the V5 code sources)

V5: V6:

ADDI R2,R1,4 ; R2 = R1+4 ADDI R1,127 ; R1 = R1+127

CMPI R0,15 CMPI R0,255

3



V N ZC

RD RB 0

RD RB 0 00

1

1

10

RD RA N Zudisp5 LD RD= Mem(RA+udisp5)

0 1 0 1 1

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1 ST Mem(RA+udisp5)=RBudisp5

0 1 11 sdisp12 JAL PC = PC+sdisp12, Rlink=PC 

sdisp121

sdisp121 0

sdisp121 0

sdisp121 0 0

sdisp121 0

sdisp121 0

sdisp121 0 0

sdisp121 0 0 0 PC = PC+sdisp12 if Zflag 

1

1

1 1

1 1 1

1

1 1

1

1 1

JZ

JNC

JMI

JPL

JNZ

JC

JV

JR

PC = PC+sdisp12 if ~Cflag 

PC = PC+sdisp12 if Nflag 

PC = PC+sdisp12 if Vflag 

PC = PC+sdisp12

PC = PC+sdisp12 if ~Nflag 

PC = PC+sdisp12 if ~Zflag 

PC = PC+sdisp12 if Cflag 

RB 01

1 1

1

1

JIND

RETI

PC = RB 

return from interrupt 0 1 0 1 1

0 1 0 1 1

RD 0 01 LDPC RD = Mem(PC++) 0 1 0 1 1

11

11

1 1

NOT

NEG N Z

N Z RD = ~RB 

C V RD = −RB 

RB RA

1

1

10 9 8 7 6 5 4 23 011415 13 12 11 flagsmnemonic

0 0 0 0 RD RA 0RB

0 0 0 0 RD RA 0RB

0 0 0 0 RD RA 00RB

0 0 0 0 0 RD RA RB

0 0 0 0 0 RD RA 0RB

0 0 0 0 0 RD RA 0RB 1

1

1 1

SUB

ADC

SBC

1

1

1

1

1

AND

XOR N Z

N Z

N Z

RD= RA | RB

RD= RA & RB

RD= RA ^ RB

OR

0 0 0 0 RD RA RB 1 1 N Z1 RD= RA & (~RB)BIC

V N ZC

V N ZC

V N ZC RD= RA − RB

RD= RA + RB+Cflag

ADD0 0 0 0 0 RD RA 00RB RD= RA + RB

0 ulit8 N Z

0 ulit8 N Z

0 ulit8 N Z

0 0 ulit8 C V N Z

0 0 ulit8 C V N Z

0 0 0 ulit8 C V N Z

0 0 0 1 0 ulit8 ADDI C V N Z

1 1

1 0 0

1 0 1

0 1 1 0

1 1 10

1 0 0 0

SUBI

ADCI

SBCI

ANDI

ORI

XORI

RD= RA− RB −~cflag

operation

0 ulit81 0

0 ulit8 N Z1 0 0 CMPI1 C V

RD LDI1 0

RD RB00

RD RB00

RD RB0

0

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

RD= RD + ulit8

RD= RD − ulit8

RD= RD + ulit8 +Cflag

RD= RD − ulit8 −~Cflag

RD= RD & ulit8

RD= RD | ulit8

RD= RD ^ ulit8

RD − ulit8

RD= ulit8

RD

RD

RD

RD

RD

RD

RD

RD

N Z

N Z

N Z

C ?

?C

RORI

1

1

RD RB00 10 1 0 1 1 1

RORC

SHR

SHRA

RD = RB>>1, Cflag=RB0 

RD = RB>>1 (signed) , Cflag=RB0

RD = {Cflag,RB>>1}, Cflag=RB0

RD = (RB>>uli4) | (RB<<16−ulit4) 

C ? N Z

0

10

0

ulit4lulit4h

Figure 3: GUS16-V6 Instruction Set
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• The load, LD, and store, ST, instructions now have a 5 bit displacement. This is one bit more than in the

V5 case and allows the addressing of words up to +31 positions up in the memory pointed by the base

register. As in the V5 case, the displacement is always positive.

• A new bit clear, BIC, instruction is included, mainly because I had a free op-code available for it. But it

lacks an immediate variant that would have been more useful. This instruction is thus a good candidate

for removal. In fact I got a ROR Rd,Rb,Ra instruction in mind that could end using the same op-code

instead (maybe for a V7 variant...).

3 V6 comparisons

The V5 instruction set is included in figure 4 for comparison (sorry for the Spanish version. I hope no Rosetta

Stone is needed for its reading ;). The V5 lacks the JAL and RORI instructions but on the other hand it includes

the useful CMP, TST, and TSTI instructions. All the immediate operands are 4-bit wide, with the exception of

LDI (8-bits) and jumps (12-bits with sign).

The V5 processor lacks the barrel shifter and consequently it requires less logic for being implemented. A

synthesis for a Lattice ICE40HX FPGA gave the following results:

Core Logic Cells max. Frequency (MHz) Synth. time1 (seconds)

GUS16-V5 673 56.49 3.98

GUS16-V6 760 40.56 4.07

6502 (Arlet Ottens) 789 54.15 5.25

Z80 (Guy Hutchison) 2247 43.24 25.46

The new V6 core requires 87 logic cells more than the V5. This is about a 13% more space. Notice the

barrel shifter itself needs 64 logic cells, one per 2-to-1 multiplexer. The table also shows the result of the

synthesis of two classic cores: a 6502 and a Z80. As we can see, the GUS16-V6 have almost the same size as

an 8-bit 6502, while it requires only 1/3 of the space of an 8-bit Z80. The maximum clock frequency estimate

is also lower for the V6 core. This can be explained by the additional delay introduced by the barrel shifter

that is connected in series with the ALU. They could have been connected in parallel, but in that case another

multiplexer would be needed in order to select the data from the ALU of the barrel shifter, and the maximum

clock frequency is still quite high, so I chose the series connection in order to avoid the multiplexer.

3.1 Case study: the Floppyton-II firmware

The Floppyton-II is an embedded computer intended for the emulation of Apple-II floppy disks that is synthe-

sized along the Apple-II replica, allowing to read and write floppy disk images stored in an SD card. The main

components of this computer are:

• CPU: Z80 (original version), GUS16-V5, or GUS16-V6

• Memory: 12 Kbytes (Z80) or 6 Kwords (GUS16)

• OSD, text mode video controller (32 x 24 characters)

• PS2 keyboard input

• DMA for input and output floppy bit streams

• Fast SPI controller
1Synthesized on Intel I7 laptop
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Figure 4: GUS16-V5 Instruction Set
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• Interrupts for track change detection.

The Floppyton firmware was written in assembler, first for a Z80, and then ported to the GUS16 cores. It

includes about 2000 lines of source code and deals with SD card initialization, reading, and writing, FAT32

navigation, interactive file selection, and floppy emulation. This is a quite complex firmware and we have now

3 versions to compare. These are the numbers:

Z80 GUS16 V5 GUS16 V6

Total memory2 (bytes) 3522 3708 3406

Code size3 (bytes) 2313 2548 2246

Code size vs Z80 size 100% +10% -3%

Code size vs GUS16 V5 size -9% 100% -12%

As we can see in the preceding table, the GUS16 V6 has the smaller code size, about a 12% less than the

previous GUS16 V5, and even less than the original Z80 code. Both GUS16 processors were also much faster

than the Z80: All versions ran with a 25MHz clock, but the Z80 takes many clock cycles per instruction. And

the GUS16 core sizes are only 1/3 of the Z80’s.

And now, some instruction usage statistics for the GUS16 V6:

ADD 18 ADDI 56 LDI 169 JIND 24 JNC 4

SUB 16 SUBI 73 RORI 23 RETI 1 JMI 1

ADC 6 ADCI 5 RORC 1 LD 172 JPL 13

SBC 0 SBCI 3 SHR 5 ST 169 JV 0

AND 7 ANDI 20 SHRA 0 JAL 90 JR 35

OR 46 ORI 6 NOT 0 JZ 40

XOR 3 XORI 0 NEG 0 JNZ 53

BIC 0 CMPI 33 LDPC 51 JC 4

Of course, other applications can have different statistics, but as a general rule we can remark the 3-register

instructions have less usage than their immediate operand version, with the exception being OR. But OR was

used quite often to move data between registers (MOV Rd,Rs = OR Rd,Rs,Rs), at that explains its more than

normal use. SHRA and JV aren’t used in the firmware, but that’s because the Floppyton code only deals with

unsigned integer variables. On the other hand, BIC, NOT, and NEG are good candidates for removal, while

XORI is a less clear one.

216-bit words accounted as 2 bytes
3Excluding character table, strings, and reserved areas
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