
Defender Recreated, the classic arcade game in a FPGA

Jesús Arias

1 Introduction

In the early eighties Williams Electronics launched it’s best known arcade game: Defender. When compared

to other alien-shooters of its time, like Space Invaders or Galaxian, Defender was simply mind blowing. It was

colorful, with fast controls, a breathtaking pace, and a sound out of this World. Yet, its hardware was relatively

simple and later Williams games incorporated many other hardware improvements like bit-blitters, but in my

opinion these later games where unremarkable, so the only arcade machine from Williams I wanted to recreate

in a FPGA was the Defender.

And for that purpose we already got a board designed around an ICE40HX4K FPGA and a VGA video

output. Named SIMRETRO by the student who designed it, it has enough resources to recreate all the arcade

hardware in a board with only three chips (not counting voltage regulators). Namely:

1. A 7680 logic-cell, 128Kbit internal RAM (16KBytes), 144-pin, FPGA.

2. An Static RAM with 128KBytes of memory and a 16-bit data bus.

3. An SPI Flash with 8MBytes of memory. Used for FPGA configuration and also for storage.

The Defender electronics includes 4 boards with lots of ICs. It is really two separate computers, with the

main board including a 6809 CPU, 48KB of RAM, most of it used for video, and the video logic built using

TTLs. The ROMs are installed in a separate board totaling 26kB of memory. This board also includes a PIA

(MC6821) responsible for communications with the sound board, for the reading of machine control inputs,

like configuration buttons and coin switches, and for the generation of interrupts. The game buttons are read

from another PIA in a separate board (Interface board). And Finally there is the sound board, built around a

6802 CPU with 128 bytes of RAM, 2KB of ROM, a PIA, and a digital to analog converter. This later board its

basically a microcontroller that runs in parallel with the main CPU, generating the sounds being ordered on its

PIA input.

This project really started with the search of suitable CPU cores on Internet. These cores had to be free,

written in Verilog, and cycle accurate. After some searching I found the mc6809 core of Greg Miller and the

ac68 6800 core of Hideyuki Abe. This last core was a bit difficult to work with due to the almost non existing

documentation. Fortunately the included testbench was enough to figure out its synchronous memory design

(the data read from current address is available on next clock cycle). With the 6800 core working it was easy

to recreate the sound board by following its schematic. The main difference with the original board is the use

of Pulse Width Modulation instead of Digital to Analog conversion. The Defender recreated project started as

a lot of strange sounds in a speaker.

Also, the two CPU cores where synthesized in order to have an estimate of the number of logic cells

required, that resulted in about 3400 cells for the 6809 and about 2100 cells for the 6800 of the sound board.

The CPUs account for most of the logic, so it was clear the FPGA had enough room for the two cores and still

we had many logic cells free for the rest of the peripherals.

It was thus the time for the video board design, starting with the VGA interface. The main document

followed here was the “Defender early pcb theory” where the board schematics were dissected. Also, it was

1

PB5

PB6

PB4

PB2

PB3

PB1

PB0

PB7’1

’1

’1

CB1

PA[7:0]

Sound

Selection

(PIA)

6821

IRQB

data bus

address bus

DAC
Audio

output

6802

(CPU)

RAM

128 bytes

IRQ

3.58MHz

2KB

ROM

Figure 1: Simplified diagram of the sound board

Element Address Actual decoding Comments
RAM $00 to $7F A[15:8]=8’b00000000 Internal RAM

PIA

Port A (dir A) $400

A[15:12]=4’b0000 && A10=1

Output to DAC
Control A $401 Not used after reset

Port B (dir B) $402 Input from video game
Control B $403 Not used after reset

ROM $F800 to $FFFF A[15:12]=4’b1111 Code

Table 1: Memory map of the sound board

very clarifying a memory dump provided by Sean Riddle on his web page (https://seanriddle.com/willy.html)

that showed the way pixels are really stored in RAM. The video board was soon running, but the game still had

issues with the palette RAM. It took a time to fix them because the problem was related to interrupts instead.

Even with a wrong palette the video board and the sound board were interconnected and the game was

played on a VGA screen showing it was as challenging as in the eighties. Finally, with the palette issues solved,

the player’s ship was able to explode properly with its pieces fading to red as they fly apart after just a few

seconds of playing. A genuine Defender frustration valued as 8.33 pesetas (today 0.05C, not accounting for

inflation) that now comes for free with Defender Recreated ;)

2 The sound board

The Defender sound board was actually designed for Pinball machines and reused for the game. Its block

diagram is shown in Figure 1. It includes a 6802 CPU with 128 bytes of internal RAM and a 3.58MHz crystal.

This clock is divided by 4, so, the actual CPU frequency is 895kHz. Alternatively, the board can host a 6808

CPU and a separate RAM chip, resulting in a totally equivalent circuit. The code of the sound board is stored

in a 2KB ROM chip, and all the I/O is handled by a 6821 Parallel Interface Adapter (PIA). In the PIA the port

A is programmed as output and connected to a digital to analog converter that drives the cabinet speaker after

an amplification stage. Port B is used as input, with only 5 bits actually used in the Defender game. The PIA

can also request interrupts to the CPU. This happens when the sound selection changes from all ones (value 31)

to any other value. In this event a rising edge reach the CB1 input on the PIA, resulting in the IRQ line being

asserted. A read of port B will clear the interrupt request.

2

Figure 2: Testbench of the sound board playing sound #22 (engine thrust)

The only other thing we need to know to design a Verilog system equivalent to this board is the way the

memories and the PIA are selected, or in other words the memory map of the board, that is listed in table 1.

The PIA is an unfriendly device for an FPGA recreation due to its bidirectional ports, but looking at the

schematic we can see that port A is always output and port B always input, and therefore, a complete PIA

implementation isn’t required. In fact, in the Verilog code the PIA is replaced by a simple output register for

port A, a multiplexer for input data for port B, and a flip-flop for interrupts. The direction and control registers

for ports A and B aren’t implemented at all, and the same happens with the interrupt flag of port B. Because

CB1 is the only interrupt source in this system the interrupt flag (bit 7 of Control B) is not read in the code.

Interrupts are thus requested when the output of the NAND gate shown in figure 1 goes high and cleared on

port B reads.

This extremely simple PIA recreation is enough to get a working sound board. Other thing we still have to

address is the clock generation. Our master clock is a 25MHz signal due to VGA requirements. By dividing this

clock by 28 we get a 892.86kHz signal that is only a 0.24% below its nominal value of 895kHz. The difference

in frequencies is so small that it is not noticeable by human ear.

Well, the only problem remaining is the lack of an digital to analog converter in the FPGA board. But

we can use a fast PWM instead. The pulse-width modulator is an 8-bit counter whose value is compared to a

buffered copy of the port A output of the PIA. When the counter overflows the PWM output is set to 1, and when

a matching to the buffer happens the PWM output is cleared to 0. If a set and a clear happens in the came cycle

(when port A value is zero) the set is ignored. Port A is copied to the buffer register on counter overflows. With

a clock frequency of 25MHz and a total count of 256 the resulting PWM frequency is 97.65kHz, high enough

to drive a power CMOS inverter built with discrete MOSFETs that is directly connected to an 8Ω speaker. The

resulting audio is clearly a Defender soundtrack.

The design of the sound board was an easy one. It also served as a training exercise for the main Defender

computer. Here the PIA was replaced with simple I/O ports and we are also planning to do the same in the big

board. A simulation is shown in figure 2, where a background noise waveform is displayed at the port A of the

PIA as an analog signal. As we can see, the wave is a sequence of ramps with random slopes. In the game this

sound is generated when the player’s ship is moving and there are no other sounds around. The FPGA real state

used by the sound board recreation is listed next. It requires 2201 logic cells, most of them for the 6800 CPU,

and 5 memory blocks (each memory block is a 512 byte memory, either RAM or ROM)

3

16KB RAM

16KB RAM

16KB RAM

Counter

Video Address

Shifter

Pixel Color

RAM

16x8

6809E

CPU

1MHz

Decoder

ROM

6MHz

3

3

2

414

8

dataaddress

1MHz

G

B

R
8

8

8

Mux

Figure 3: Simplified diagram of the video generation logic

Info: Device utilisation:

Info: ICESTORM_LC: 2201/ 7680 28%

Info: ICESTORM_RAM: 5/ 32 15%

3 The main Defender computer

The Defender hardware comprises 4 boards. One of them is the sound board, while the other three are all for

the main computer of the game. They are:

1. The Video board, that includes the 6809E CPU, the RAM memory, and all the logic related to video

generation.

2. The ROM board, that includes all the ROMs, the paging logic, and one PIA. The PIA provides a commu-

nication channel with the sound board, generates interrupts, and reads the cabinet management inputs,

like setup buttons and coin switches. It also drives 4 diagnostic LEDs.

3. The Interface board with one additional PIA for the reading of the 9 game buttons: Up, Down, Thrust,

Reverse, Fire, Bomb, Hyperspace, One player, and Two players.

The schematics of these boards are well detailed in the “Defender Theory of Operation” manual. In overall

this is a quite complex computer and not all its features are going to be recreated in our FPGA version. In

particular, the video generation logic is going to have a completely different design, mostly due to the different

video output (VGA instead of NTSC) but also because we have a much faster RAM than the original board and

this feature can be exploited to simplify the design. But lets first talk a little about the original video board.

3.1 Video generation in the original Defender board

The video generation logic follows the diagram of figure 3. Here, three DRAM banks are used for the frame-

buffer, totaling 48KB of RAM. The memory is accessed twice each microsecond: one read for video refresh

and one read or write for CPU operations. Memory accesses are therefore interleaved and the CPU isn’t slowed

at all due to video refresh. But the video logic has to output 6 pixels each microsecond, and we have 4 bits per

pixel. In order to get this required bandwidth the three memory banks are read in parallel during video refresh

and the resulting 24 bits are stored in shift registers. These shifters runs with a 6MHz clock, and generate a 4 bit

4

Figure 4: Test pattern for the monitor (302x252 pixels)

output for each screen pixel. But this isn’t the final video value, this 4 bit data is used as an address for a color

RAM that outputs an 8 bit data with the final BGR233 video values (these RAMs were later called “palettes”).

These BGR values are translated into video levels using three, maybe too weird, resistor-transistor DACs and

applied to the CRT inputs.

From the video address counter are derived not only the memory addresses for the video refresh, but also

the horizontal and vertical sync pulses for the monitor and an horizontal blanking signal that turns the video

output to black during retraces. Interestingly, no vertical blank signal is generated.

An NTSC line is 64µs wide, and this corresponds to an horizontal total of 384 pixels with 300 pixels

visible. The vertical total is 260 lines, resulting in a 60Hz refresh rate. The NTSC standard has 525 lines in two

interlaced fields of 262 and 263 lines, so the Defender video is a little out of specs. Also, all of the 260 lines

are potentially visible, with the lines 252 to 255 being repeated after line 255. These lines had to be black on

the video memory because no vertical blank signal exist. In fact, looking at memory dumps, it seems that no

image is present after line 240, with the exception of a test pattern for the monitor (figure 4). Also, an interrupt

is generated after reaching line 240, suggesting this is the start of the vertical blanking interval (lines 240 to

259). The vertical sync pulse also starts at line 248. From all this data its difficult to state a given resolution

for the Defender video. 300×240 is the minimum, but from memory dumps we can see up to 312 horizontal

pixels in the image, and the test pattern of figure 4 has 252 vertical lines. It seems that Defender designers were

pushing the resolution of monitors a bit too much, and probably the image stored in the memory was bigger

that the actual image displayed in the screen.

The palette RAM is a write-only memory from the CPU point of view, but writes to this memory interferes

with video refresh and at least three pixels are corrupted for every write. For this reason the game only changes

the palette contents while in the vertical retrace. But the lack of a true vertical blank also means that some color

dashes could be seen on the screen if the monitor isn’t properly adjusted (an issue pointed out by Sean Riddle

in his web page: https://seanriddle.com/lines.html)

And from the CPU point of view the video RAM is arranged in a completely different way, with the

board using a ROM to translate the 8 MSB bits of the CPU address into a 6-bit pseudo address along with

the corresponding bank select signal. This is so weird that schematics were almost useless to figure out the

correspondence between video addresses and CPU addresses. At the end I resorted to try to get an screen

capture out of a memory dump of the game (also from Sean’s web), and I found a quite simple, yet unusual,

pixel arrangement in the memory that is shown in figure 5, starting at the upper-left corner of the screen.

Talking only about CPU addresses, an increment of one is translated as a whole line of video, and an increment

of 256 results in a displacement 2 pixels to the right (every byte of memory holds two pixels). Using this pixel

order I was able to get the image of figure 5 using an approximate palette because the actual palette memory

wasn’t included in the dump (the palette is a write only memory). The image is 312 pixels wide and this is

interesting because the horizontal blank is asserted on pixel #300. But some of the extra 12 pixels could actually

5

Byte 1

Byte 0

Byte 2

Pixel: 0 1 2 3 4 5 6

0

1

2

3

Byte 256

Byte 257

Byte 512

Line:

Figure 5: Pixel arrangement in memory and the corresponding image extracted from a memory dump
(312×240 pixels, shown using an arbitrary palette)

be displayed due to the turn-off delay of the blanking transistor (Q10, color RAM circuit schematic). Again,

another uncertainty regarding video resolution.

In summary, the video generation logic is weird and its recreation is going to take a much simpler approach

while maintaining the pixel arrangement of figure 5 for a 312×240 resolution and a VGA timing.

3.2 The ROM paging

The video image fills the first 39KB of RAM, with the remaining 9KB being used for system variables. There

are also 26KB of ROM, totaling 74KB of memory. This exceeds the 64KB address range of the CPU and,

consequently, memory banking is used. The idea is to have a 4-bit page register whose value is used in the

selection of the banked ROM ICs when a read in the memory range $C000 to $CFFF is performed. Up to 16

different 4KB chips could be selected, adding 60KB to the address space, but in the Defender board there is

provision for only 4 ROM pages (pages #1, #2, #3, and #7, with only 2KB ROM selected at page #7). Page #0

is special because it selects peripherals instead of ROM. The peripherals are:

• The color RAM (palette). A 16-byte, write only memory, at address $C000 to $C00F

• A watchdog reset register. A write-only register at address $C010 (actually written at $C3FF). A value

$38 written to this register will reset the watchdog for another 133ms.

• The NVRAM. A 256×4 battery backed RAM at address $C400 to $C4FF. Only the 4 LSBs of every byte

are actually implemented.

• The Vertical Count Buffer. A read-only register with the 6 MSBs of the line number being displayed, at

address $C800.

• The ROM board PIA, at address $CC00 to $CC03.

• The Interface board PIA, at address $CC04 to $CC07.

The page register is a write-only one, and it is mapped to the $D000 to $DFFF range. Notice that the $D000

to $FFFF range will select the unbanked ROMs (12KB), but there is no problem in mapping the page register

inside this range because write-only devices can use the same address space as read-only ones.

3.3 Interrupts.

All interrupts are of the IRQ type (the NMI and FIRQ inputs of the CPU are always inactive) and all are

generated by the ROM board PIA. These are:

6

• The CA1 interrupt. This pin is driven by a rectangular wave that goes high when the line being displayed

is in the range 240 to 259 (vertical retrace).

• The CB1 interrupt. This pin is driven by a square wave with a 4.096ms period generated by the video

address counter.

• The CA2 interrupt. This pin is driven high when the coin door opens.

4 The FPGA redesign of the main Defender computer

My aim here wasn’t the building of an exact Defender replica in a FPGA, but just a compatible computer

capable of playing the game. The design targeted a particular FPGA board (SIMRETRO) that was specifically

designed for these kind of computers and includes a VGA interface with 4-bit DACs in its RGB signals. VGA

runs at double the speed than NTSC (a line takes 32µs instead of 64µs) and is not interlaced, with a total of

525 lines. I also wanted to get a good image on LCD monitors, without sampling artifacts, and to achieve this it

is a good idea to have the same pixel rate than the standard VGA mode (640x480). VGA uses a 25 MHz pixel

clock (well, 25.175MHz, but 25MHz is also fine and gives a much easier math), and dividing this frequency by

two we get 320 horizontal pixels, a little more than the 312 pixels desired. So, the main idea here is to use a

12.5MHz clock for pixel shifting and to duplicate lines to obtain 480 visible lines instead of 240.

The SIMRETRO board also includes 128KB of RAM outside the FPGA. This RAM has a 16 bit data bus,

but also byte-select signals, so it is easy to use it as an 8-bit memory. Also the FPGA has 16KB of memory

that can have a known initial content, and therefore it can be used as ROM. But this is not enough ROM for all

the Defender game while we still have a lot of RAM unused. The idea here is to store the game ROMs in the

upper RAM, and to inhibit writes to this memory area after the initial uploading of data. We still need a boot

ROM for the upload, but it can be an small one and it can be placed inside the FPGA. We will also need some

I/O ports for accessing the SPI flash and to read the Defender ROM images from there.

There is also the problem of the user interface. The Defender arcade has lots of inputs: 9 buttons for the

player and 6 more inputs for coin slots and setup. My idea was to use a NES game controller clone for playing,

but it has only 8 buttons, so, the button mapping will require some thinking. Also, I would like to translate the

Thrust and Reverse buttons of the Defender game into the Left and Right arrows of the game controller.

And finally, I want to remark that some features of the game never were planned to be incorporated into

the replica, like the watchdog circuit or the coin door interrupt, and others are only half functional, like the

NVRAM.

And now, lets go into the details.

4.1 Clocking

We already found that an adequate pixel clock is 12.5MHz. The external memory is more than capable to

perform a read or write during one of such clock cycles. Moreover, a byte contains two pixels and, consequently,

video reads should be performed every two pixel clock cycles, for instance on even pixels. Therefore half of

the clock cycles are available for CPU accesses, but this would result in a CPU frequency of 6.25MHz, a lot

faster than the original Defender rate (1MHz).

We want a CPU frequency of 1MHz, but this isn’t possible using integer dividers. So, what can we do? My

solution was to generate a non periodic clock waveform in the following way:

• A 5-bit counter is incremented using the 25MHz clock. When the count reaches 24 the counter is reset

to zero and a CPU clock is requested by asserting the rE signal (E is the main CPU clock)

7

Figure 6: Clock generation simulation. “clk” is a 25MHz signal. “peb” is the LSB of the horizontal pixel
counter.

• If rE is active, and the time for an odd pixel comes, the CPU clock pulse is granted by activating gE.

When this happens rE is also reset. gE remains active for a whole pixel clock cycle.

• When gE is active the CPU clocks E, and Q, toggle, providing a clock pulse for the CPU.

In this way the time between E pulses can be more or less, but on average we get a pulse every microsecond. A

simulation is shown in figure 6 where we can see the variable delay between rE and gE assertions.

The gE signal is also used to select the address that is presented to the external memory: If gE is zero the

address comes from the video generator, and if gE is one the address comes from the CPU and paging logic.

Addresses are 17 bit wide.

4.1.1 Slow clocks

Apart from the video and CPU clocks we still need some other clock signals of a much lower frequency. For

instance, there is an interrupt input that is driven by a square wave with a 4.096ms period (244Hz). In the

original Defender this signal was a video address bit. I tried to do the same and the game failed to update the

palette RAM. It took me some time, silly debugging the palette logic, until I realized the signal I used for the

interrupt were not a square one because in my case the video has an odd number of lines (525). At the end

I resorted to use an independent counter driven by the horizontal sync pulse of the VGA. This pulse happens

every 32µs and the counter multiplies this period by a power of two, obtaining the correct 4.096ms period at

the interrupt input. This solved the strange palette issues.

Also another clock is required for the NES controller. This controller is basically a CD4021, parallel to

serial shift register, and the reading of its inputs involves a load pulse followed by seven clock pulses. I chose

a 1.024ms period for this clock, that is translated to 8.192ms between button samples. This low sampling rate

avoids any problem related to switch bouncing. The NES clock comes from the same counter as the 4.096ms

interrupt.

4.2 Memory map and booting.

The Defender recreated has two operaing modes: Boot and Play. The current mode depends on a bit in an I/O

port and after reset this bit select Boot mode, enabling some aditional logic that isn’t present during Play mode.

Namelly:

• A 512 byte ROM can be read from adresses $FE00 to $FFFF. This memory contains the code for booting.

• An output register can be written at address $BFxx (see figure 8). This register contains the mode bit

(BOOT) along with the SPI output signals.

8

$0000 to $BFFF $Cxxx $Dxxx $Exxx $Fxxx

Page #1

Page #3

Page #0

$10000 $11000 $12000 $13000

page register
write to

b
o

o
t

R
O

M

b
o

o
t

I/
O

$17000 −$1FFFF

64K

RAM

I/O

background

RAM

Read−Only after boot

Read−Only after boot

memory
paged

Page #2

Page #7

Page #15

Figure 7: Memory map of the Defender recreated.

MOSI BOOT −−− −−−

−−−−−−

−−−

MOSI BOOT MISO

01234567

SCK

SCK
Read from

Write to

$BFxx

$BFxx

/SS

/SS

/CSSD

/CSSD

Figure 8: I/O register for boot. After reset all output bits are ’1’, including BOOT.

• An input register can be read at address $BFxx (see figure 8). This register contains the same bits as the

output register (for read back) and also the input signal from the SPI bus.

• All the external RAM is writable, including the address range of the boot ROM.

In Play mode the boot ROM and the extra I/O register are no longer accesible for programs, and also the writing

to ROM addresses is inhibited.

After this explanation about boot mode we can present the memory map of figure 7. Here the 128KB of

the external RAM are shown along with its correspondence with ROM pages. The RAM and the unpaged

ROMs are mapped to the lower 64KB of the memory, while the paged ROMs are stored in the upper half of

the external RAM. Up to 15 pages exist, even if Defender uses only 4. Also, page #0, that is reserved for

peripherals, is mapped to the upper RAM, providing a “background” memory for the areas of the page where

there are no peripherals selected. In this way the NVRAM gets implemented for free ;) Also, this background

memory allows the read back of palette values.

The upper RAM is accesible through the mapped 4KB pages at address $Cxxx. The 17-bit address for the

external RAM is obtained using the following Verilog code:

assign selC000=ca[15]&ca[14]&(~ca[13])&(~ca[12]);

assign cam = selC000 ? {1’b1,page,ca[11:0]} : {1’b0,ca};

Where “ca” is the CPU address (16-bit) and “cam” is the 17-bit RAM address. (Notice that the address range

$0C000 to $0CFFF of the external memory is never read nor written)

4.2.1 Boot procedure

After reset the 6809 PC gets loaded with the two last bytes of the boot ROM and the execution jumps to the

boot code. The two main functions of this code are the filling of the memory with the ROM images stored in

9

the SPI flash, and the switching to play mode by clearing the BOOT bit and jumping to the code of the loaded

ROMs. Going into further detail we can list the following actions:

• Setting the DP register to $A0 for local variable storage at $A0xx, and the stack pointer to $BEFF, just

below the boot I/O register.

• Selecting the SPI flash by setting the /SS bit low in boot I/O register.

• Sending a read command to the SPI flash with the address of the ROM images in that flash ($7E0000.

Low addresses are used by FPGA configuration images and $7F0000 also contains a ROM image for a

ZX spectum ;) All SPI data is transferred to the flash via bitbanging, and the read command is the sending

of the bytes: $03, $7E, $00, and $00.

• Write $1 to $D000. This selects the ROM page #1. Then read 4096 bytes from the SPI bus and store

them in the range $C000 to $CFFF.

• Repeat the reading for pages #2 and #3. Store the 4KB data in the same $C000 to $CFFF range.

• Next select page #7 and read 2048 bytes to the range $C000 to $C7FF.

• Now read 12288 bytes and store then in the range $D000 to $FFFF. Bytes written to the range $FE00

to $FFFF can’t be read back because reads will select the boot ROM instead of the external RAM, but

writes are always directed to the external RAM. Also, the data writen to the $D000 to $DFFF range has

changed the value of the page register. We want to return this register to a value of zero, but we have

to be carefull because that zero will also be written to RAM. Fortunatelly the byte at address $D130 is

already zero, so we can use this particular address to write the page register.

• Now we have all the ROM images availabe in RAM. We can deselect the SPI flash and prepare for starting

the game. This implies two things: writting the BOOT bit with zero and an indirect jump to the contents

of the reset vector. But this code can’t be executed in the boot ROM because this ROM is replaced with

RAM as soon as the BOOT bit is written with zero. We have to copy the relevant instructions to RAM

and to jump there. Any RAM location is good but I choose the address $8000 that is visible on the screen.

• After the trampoline code is copied to RAM we can jump to it. Its instructions are:

lda #$37 ; Disable BOOT (bit 3). It can’t be no longer enabled

sta $BF00

ldx $FFFE ; Load reset vector to X

jmp ,x ; and do an indirect jump

With the last jump instruction the control is transferred to the Defender game. It all goes well the screen gets

filled with random data and then the following message is displayed:

INITIAL TEST INDICATE

UNIT OK

Then the game enters a setup menu because the contents on the NVRAM were wrong. By reseting the

FPGA again without removing the power the NVRAM now holds valid data (default values) and the game

proceeds to the Williams Defender Star-Wars-like presentation screen.

10

HSYNC

HBLK

524VC[9:0]

VSYNC

VBLK

HC[8:0] 399 399311

Displayed pixels

323 371

524 0

Displayed lines

479 489 491

Horiz. Counter res

res

VSYNC

Vert. Counter

HSYNC

VC[9:0]

BLK

Comp.

vsync

hsync

max

max

hblk

vblkComp.

VCLK

12.5MHz

HC[8:0]

00

0

L240

Figure 9: Video timing generator and its waveforms.

4.3 VGA Video

Lets present now the design of the video logic. Some of its characteristics were already discussed, like the way

the memory is shared with the CPU, so lets talk about its internal details next.

4.3.1 Video timing

The video timing circuit, whose block diagram is shown in figure 9, is built around two binary counters and

some comparators. The 9 bit horizontal counter runs at 12.5MHz and gets incremented with every pixel. A

video line takes 32µs and this means a total of 400 pixels/line. Therefore the counter counts up to 399 and then

it get reset. But the visible part of the line is only 312 pixels, so, an horizontal blanking signal is generated by

being set when the counter reaches the value 311 and reset when the counter reaches 399. The horizontal sync

pulse is generated in a similar way. It is being reset on count 323 and set on count 371 (hsync is active low).

The sync pulse has to be placed inside the blank portion of the line, and by moving it early or late the image

on the screen is shifted right or left (Well, at least on CRT screens. On modern LCD monitors with auto-adjust

buttons this makes little sense).

The vertical counter follows the same design ideas, but it is clocked by the horizontal blank signal instead

of VCLK. Also it is a 10 bit counter because its maximum value is 524. Contrary to the video logic of the

Defender, here we also have a vertical blank that is active from lines 480 to 524. The image has double the

lines than the game (480 instead of 240) and, therefore, each line of the game has to be displayed twice. The

vertical blank signal is also labeled as Line240 and it is used as an interrupt input (CA1 in the ROM PIA).

4.3.2 Video addresses

The video address is a 17 bit value obtained by the concatenation of several bits of the horizontal and vertical

counters. By looking at the pixel order in figure 5 we can conclude that the horizontal counter value has to be

placed starting at bit #8, but every memory byte stores two pixels, so the count has to be divided by two. The

same happens with the vertical count because lines have to be displayed twice. The resulting address is then:

VC1VC2VC3VC4VC5VC8 VC7 VC60VA[16:0]

116 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

line/2

HC1HC2HC3HC4HC5HC6HC8

pixel/2

HC7

11

B3

B2

B1

B0

G3

G2

G1

G0

R3

R2

R1

R0

D3

D2

D1

D0

Q3

Q2

Q1

Q0

D3

D2

D1

D0

Q3

Q2

Q1

Q0

0

1

Mux

DI0

DI1

DI2

DI3

DI4

DI5

DI6

DI7

fr
o

m
 e

x
te

rn
a

l
m

e
m

o
ry

CA[3:0] CDO[7:0] PALWR

RA0

RA1

RA2

RA3

DO3

DO4

DO5

DO6

DO7

8

WE

DI[7:0]

WA[3:0]
4

DO2

DO1

DO0

D Q D QBLK

16x8 dual−port RAM

VCLK

PalettePixel Shifter

HC[0]

D0

D7 Q7

D6

D5

D4

D3

D2

D1

Q6

Q5

Q4

Q3

Q2

Q1

Q0

Blanking

Figure 10: Block diagram of the video pipeline.

Video memory is read all the time, even during blanking time, and the vertical counter can roll over after

line 511 resulting in incorrect addresses. But this isn’t a problem at all because the video is going to be black

during blanking time.

4.3.3 Video pipeline

The video section of the design ends with the pixel pipeline shown in figure 10, which has three different sub-

blocks. The first one is the pixel shifter, that is a quite simple circuit. The data from the memory contains video

information on even pixels (on odd pixels we can get CPU data instead). Thus, on even pixels the 4 MSBs of

the data are copied to the output register and the 4 LSB are stored on another temporary 4-bit register. Then, in

the next cycle the 4-bit data of the temporary register is copied to the output register.

Next follows the palette memory. A memory block of the FPGA is used here and its dual port feature is put

to full use. In contrast with the original Defender hardware, here we can write to the palette RAM at any time

without random dashes being displayed on the screen.

The palette converts a 4-bit pixel data into an 8-bit BRG signal. The only remaining processing is the

blanking of the output during retraces. This is done by anding the outputs with an inverted an delayed blank

signal. The two cycle delay is required because both the pixel shifter and the palette are synchronous devices

with one cycle delay each. The final 8-bit register was included to avoid combinatorial glitches at the output

(these glitches went unnoticed in an old monitor but were visible on a modern one). The video output has 3

bits for the red and green components and only 2 bits for blue. This signal has to be converted to 4 bit per

component before driving the R-2R DACs of the SIMRETRO board. But this requires no logic, we only have

to connect the MSB bits of the color components to the additional LSB ones, as is shown in figure 10.

4.4 Inputs and the NES controller

In adition to all the memories and video logic we must also recreate the Defender peripherals. These are only

the vertical count buffer and two PIAs. The former is a 6-bit input port (at address $C8xx) where the MSBs of

the vertical counter of the video timing can be read. In the recreation this input is saturated. This means that if

the vertical counter is over line 511 the value presented at the input is 8’b1111_11xx.

Then comes the PIAs.

12

ROM board PIA ($CC00 to $CC03)
PIN DIR FUNCTION
PA0 In Auto UP switch (*)
PA1 In Advance button (*)
PA2 In Coin Right
PA3 In High Score Reset switch (*)
PA4 In Coin Left
PA5 In Coin Center

PA7,PA6 Out Diagnostic LEDs (ignored)
PB5-PB0 Out Sound selection
PB7,PB6 Out Diagnostic LEDs (ignored)

CA1 In Line 240 interrupt
CB1 In 4ms interrupt
CA2 In Coin door interrupt (ignored)
CB2 In Sound board ACK (unused)

Interface board PIA ($CC04 to $CC07)
PIN DIR FUNCTION
PA0 In Fire
PA1 In Thrust
PA2 In Bomb
PA3 In Hyperspace
PA4 In 2 Players
PA5 In 1 Player
PA6 In Reverse
PA7 In Down
PB0 In Up

PB7-PB1 In (unused)
CAx, CBx nc (unused)

(*) Management switches placed inside the Defender cabinet.

Table 2: Pin assignment of the Defender PIAs. All inputs are active high. Sound selection is active low (bits
inverted).

Bit Field Function Comments
0

CA1 control
CA1 IRQ Enable if 1

1 CA1 EDGE (0=falling, 1=rising)
2 Port/Dir (0=direction reg, 1=port reg) Port and Dir share the same address
3

CA2 control
CA2 IRQ Enable if 1

If bit #5 is 0, different meaning if 1
4 CA2 EDGE (1=rising)
5 CA2 dir (0=input, 1=output)
6

IRQ Flags
CA2 IRQ Flag

Cleared on port read
7 CA1 IRQ Flag

Similar control register for port B (replace CA for CB in the previous table)

Table 3: Bits of the control registers of the PIA

4.4.1 The PIAs

The 6821 PIA was already found in the sound board and in that case it was replaced with simple input and

output registers. Lets try to do the same here, but before we have to known what functions the PIA pins have.

In that case the “Theory of operation” manual wasn’t enough. Thankfully, the comments in the source code of

MAME came to the rescue. The Functions of the PIA pins are listed on table 2.

The Interface board PIA is used only as input and it can be replaced by two simple input ports at addresses

$CC04 and $CC06, but the ROM board PIA is more complicated because of interrupts. There are several

interrupt sources and the CPU has to read the port control registers in search for interrupt flags in order to

determine the cause of interrupts. Moreover, it is possible to have some of the interrupts disabled, so, in the

case of the ROM board PIA we have to do a minimally decent control register recreation, including the relevant

interrupt enable and interrupt flag bits. The bits of the control register for port A (address $CC01) are listed on

table 3.

The port pins for the PIA have fixed directions, and therefore the direction registers for port A and B can

be ignored. The CA2 and CB2 registers are also inputs, so we don’t have to worry about strobes (not detailed

in table 3). The CA2 interrupt (coin door) can be left always inactive. And all interrupts are active on rising

edges. This leaves us with only bits 0 and 7 of the two control registers requiring storage. Bit 7 is the interrupt

flag and it is set when a rising edge is detected on CA1/CB1. This bit is cleared on port A/B read. If the flag is

13

SELECT START B A

2

3

5 4

6 7
1 0

NES−Famicom game controller

Figure 11: Button layout of the NES game controller and related bit numbers

S

R

QLeft

Right

Reverse

Thrust

Monostable

~60ms

NES_latch

Figure 12: Logic for the Reverse input.

set, and the interrupt enable bit (bit 0) is also set, the IRQ input of the CPU is asserted.

4.4.2 The NES controller

A NES/Famicon controller was intended to be used for user input. It includes 8 buttons arranged as shown in

figure 11. These buttons are read every 8.192ms by means of an 8-bit shift register, its levels inverted, so at the

end they are active high, and stored. But Defender totals 15 inputs, so, something has to be done in order to

play the game. The idea here was to remove as much inputs as possible, and to use combinations of buttons for

the simulation of additional inputs. As an example, “Coin Center” and “Coin Left” are left inactive, and “Coin

Right” is the AND of buttons “Fire (A)” and “Bomb” (B). Also, “Two Players” is inactive and “One Player” is

the AND of “Hyperspace” (start) and “Fire” (A).

A very annoying thing was the “Reverse” button of defender. I would prefer to move left or right with the

arrow buttons instead of redefining them as reverse and thrust. In order to use the left and right arrows as they

are supposed to be, the additional circuit of figure 12 was included. Still, it isn’t a perfect solution because

you have to press the right arrow just before the playing starts or you can end with the controls reversed. Yet,

even with this limitation the controls are much more player friendly than the originals. The flip flop stores the

last direction of the ship (0 = right), and the monostable is a 3-bit counter that gets loaded with 3’b111 when

triggered and stops downcounting when it reaches zero. Both the monostable and the direction flip-flop use the

latch signal of the NES controller as a clock (8.192ms period).

The final mapping of inputs are listed on table 4. With these controls the setup and test menus can be

navigated and the game played.

4.5 Synthesis and FPGA real state

The complete design, also including the sound board, was synthesized using the ICESTORM public domain

tools. The Lattice tools won’t be able to synthesize this design because for these tools the ICE40HX4K is

limited to only 3520 logic cells while the chip actually have 7680 logic cells (The memory blocks are also

14

Defender input Interface PIA pin Game Controller Bits
Reverse PA6

Left and Right, see fig. 12 0 & 1
Thrust PA1

Up PB0 Up 3
Down PA7 Down 2
Fire PA0 A & (~start) 7

Bomb PA2 B 6
Hyperspace PA3 Start & (~A) 4
One player PA5 A & Start 7, 4
Two players PA4 none -

Defender input ROM PIA pin Game Controller Bits
Advance PA1 Select 5
Auto UP PA0 Start 4

High Score Reset PA3 Up 3
Coin Right PA2 A & B 7, 6
Coin Left PA4 none -

Coin Center PA5 none -

Table 4: Correspondence between Defender inputs and game controller buttons

artificially limited to 20 instead of 32). The total usage of the FPGA resources is:

ICESTORM_LC: 5677/ 7680 73%

ICESTORM_RAM: 7/ 32 21%

Again, most of the logic is used by the two CPUs of the system. The main Defender computer only uses two

additional memory blocks: one for the boot ROM and another for the video palette.

5 Known problems and possible improvements

• When playing the game if the down button is pressed long enough the player’s ship moves almost com-

pletely out of the screen. I don’t know if this actually happens in the real game, but I’m starting to suspect

that the ship is being drawn after line 240. This nasty habit of drawing things on the screen borders is

starting to get on my nerves. So desperate were the Williams engineers to use up to the last line of the

monitor, or they were just following the orders of some stupid management guy? The game is perfectly

playable with 240 lines, anyway. No humanoid climb down below line 240. I tried to increase the num-

ber of lines of the video by means of removing the vertical blank signal but my LCD monitor refused

stubbornly to draw more than 240 lines. Maybe this could have worked on a CRT screen, but on LCDs

is useless. So, I have to stay with 240 lines, but not all hope is lost. The entire screen can be shifted up

by means of adding the offset (in lines) to the video address, and surely, some lines can be removed from

the top.

• And talking about improvements, there are still room for some of them. They can begin by adding more

button combinations for the now unused inputs, like “Two players”.

• Also, it would be interesting to have the coin door interrupt implemented and CA2 mapped to some

combination of buttons just to see what happens if that interrupt is triggered. Does the game sound an

alarm or something like that?

15

Figure 13: Test pattern for monitor after video address mod.

• Another possible improvement is the speed up of the booting code. The reading of the SPI flash is done

via bitbanging and this is slow, with the reading of ROM images taking about 10 seconds. This can be

much faster if the CPU clock is increased to 6.25MHz during the boot mode. I’m not sure about doing

this modification. The ROM images are now beautifully displayed on the screen during the loading and

the time it takes isn’t so long...

• The last “to do” improvement I have in mind is the nonvolatile storage of the NVRAM contents. This

has to be done in the boot code and it will involve the erasing and writing of some SPI flash sector. The

boot ROM size is only 512 bytes. This size was selected because it is the size of a single memory block

in the FPGA, but we still have many blocks unused, so the boot ROM can be made bigger and it could

store more code than now.

5.1 Update

• The problem of the ship hidden at the bottom was finally solved by means of adding a small offset to the

video address generated. Again, the memory dump was useful to find that the first 7 lines of the image are

actually black. So I added 7 to the video address and now the whole game field is visible. In retrospect

it makes sense to have these lines black because the vertical sync pulse ends at line #0 and some time is

required for the retrace. Now, every line starts at address $xx07 and ends at address $xxF6 (instead of

$xx00 to $xxEF). This little mod will cost an extra 8-bit adder in the FPGA bill (there is no carry after

bit #7), but now the image is finally perfect. The test pattern for the monitor is now completely displayed

(see figure 13), or at least it looks so at first glance. There is still a missing line at the top, but an offset

of #6 results in a missing line at the bottom, so I’ll keep the offset at #7.

• Another successful modification was the speed up of the boot code. The trick was simply to replace the

request E pulse signal (rE) by the logic OR of rE and BOOT. In this way, when in boot mode, every odd

pixel is a cycle for the CPU and it runs at 6.25MHz instead of 1MHz. The loading time is now less than

1/6 than before.

• The coin door interrupt was also added but it does nothing. After some debugging it is clear the interrupt

flag is set but the CPU keeps the interrupt enable bit off, so, the game ignores that interrupt completely.

The CA2 flag can still be read by pooling, and it probably is because it gets reset, but no action is taken

by the game when the coin door switch is toggled. Not only that, the CA1 interrupt (line>=240) is also

disabled. Only the CB1 interrupt (4.096ms interrupt) is on. Therefore, the CA2 interrupt, with its flag

16

RA0

RA1

RA2

RA3

DO3

DO4

DO5

DO6

DO7

DO2

DO1

DO0

Pixel Shifter

B3

B2

B1

B0

G3

G2

G1

G0

R3

R2

R1

R0

Palette & Blanking

DI[7:0]

WE

CDO[7:0]CA[3:0] PALWR

8

4

RA4

WA[3:0]

32x8 dual−port RAM

WA4’0’

D3

D2

D1

D0

Q3

Q2

Q1

Q0

0

1

Mux

DI0

DI1

DI2

DI3

DI4

DI5

DI6

DI7

fr
o
m

 e
x
te

rn
a
l
m

e
m

o
ry

VCLK

HC[0]

blk

Figure 14: Simplified video pipeline with combined palette and blanking

and enable bits, is simply useless and could be removed from the design to save a few logic cells. The

CA1 interrupt logic can also be simplified by removing its interrupt enable bit.

• The CA2 interrupt was generated by pressing Start and B in the game controller. In the same way, by

pressing Select, Start, and B, a reset pulse is generated (and it works ;) I found it convenient to have a

three-finger-salute at hand instead of removing power or using the FPGA downloading tools to perform

the reset. Still, more inputs can be generated using other combinations of buttons.

• The video pipeline was also simplified. The main idea here was to move the blanking function into the

palette memory (see figure 14). Now, the palette RAM has 5 bit addresses and 32 entries. This is double

in size than before, but it will result in the same BRAM occupation because the smaller memory block

is 512 bytes. Only entries #0 to #15 can be written by program, the high 16 bytes always remains as

zero. Therefore, during blanking times the reading address is always higher than 15 and the video output

is forced to zero, as expected. Also, the current pixel register and the blank delay have been removed

because they weren’t really needed thanks to the BRAM being a synchronous memory. The resulting

circuit block is now quite simpler than before.

6 Conclusions

The Defender recreation in a FPGA was an ambitious project with very satisfactory results. The game plays

flawlessly, I bet better than on any emulator, and this is mainly due to the fact that I’m building a similar

hardware in the FPGA instead of dealing with an emulation code fighting against an operating system with all

its software headaches (window-manager, video scaling, sound API with its buffers and latency, multitreading...

and some other tons of crap).

And talking about hardware, It took me some time to dig into the details of the original Defender schematics

with all their subtleties. The lack of a vertical blank signal, and also the use of a slow transistor switch for the

horizontal blanking, resulted in an uncertainty in the video resolution that was difficult to figure out precisely.

In my opinion the design of the video blanking and digital to analog conversion in the original Defender board

is a crappy one. After expending hundreds of ICs in the boards these guys resorted to discrete transistors to

save a pair of NAND gate ICs that could have made the blanking a reliable one and the D/A conversion more

17

predictable (now the color even depends on the temperature of transistors because of their Emitter-Base voltage

drop). Not only that, there are 8 diodes in series with the palette outputs that aren’t needed at all because these

outputs are of the open-collector type.

In summary, I think this approach is a better one than the usual Raspberry-Pi inside the cabinet. First, it is

more faithful to the original game hardware, it provides an inherent parallelism that makes possible a perfect

playing using slow clocks (Defender recreated has two CPUs inside the FPGA running in parallel), it has a very

fast boot (much faster than any OS booting), it consumes less power, and finally, it still has the capability of

being reprogrammed for the recreation of other kind of arcade games or personal computers (A ZX spectrum

was also recreated in the same FPGA board)

18

	Introduction
	The sound board
	The main Defender computer
	Video generation in the original Defender board
	The ROM paging
	Interrupts.

	The FPGA redesign of the main Defender computer
	Clocking
	Slow clocks

	Memory map and booting.
	Boot procedure

	VGA Video
	Video timing
	Video addresses
	Video pipeline

	Inputs and the NES controller
	The PIAs
	The NES controller

	Synthesis and FPGA real state

	Known problems and possible improvements
	Update

	Conclusions

