BAC Computer

1 Introduction

BAC is an extremely simple computer conceived as a design example for FPGA. The aim was to achieve a CPU
with less than 300 logic cells in an FPGA of the ICE40HX type, with 8 bits of data width, and with memory
storage in the internal BRAM blocks of the FPGA.

Regarding the name, it is derived from BAC-teria, the simplest possible self-sufficient living beings. Fur-
thermore, the -AC ending puts it in line with other famous computers (“ENIAC”, “UNIVAC”... ;)

This design had its origin in a discussion on the “FPGA-Wars” forum ([https://groups.google.com/g/fpga-
wars-explorando-el-lado-libre/c/BpvDRmLioS4]) in which the basic ideas of what this design would end up

being were presented.

2  Programmer’s model
BAC has the following features::
* Harvard Architecture: Separate program and data memory.

— Program memory: 256 x 16 max.

— Data memory: 256 X 8 max.
* 16 bit wide instructions: 8 bits for op-code + 8 bits for a literal operand

* Registers:

PC: 8 bits, counter, write only. Points to the instruction to be executed in program memory. It is

incremented every clock cycle except when written when executing jump instructions.

X: 8 bits, pointer, write only, points to data memory

Acc: 8 bits, accumulator, contains one of the data for two-operand instructions and can also store

the results of the instructions

Flags: 3 bits, carry (C), zero (Z), and negative (N).
* Addressing modes:

— Immediate or Literal: The operand is in the 8 least significant bits of the instruction.

— Direct: The operand is in the data memory position pointed by the 8 least significant bits of the

instruction.

— Indexed: The operand is at the data memory position pointed by register X.

* The results of two-operand instructions can be written to the Acc register or to data memory (only if
direct or indexed addressing is selected), as desired. Some single-operand instructions always store the

result in data memory (for example INC).

* Specific instructions for input and output: IN, OUT.



2.1 Instruction set

The coding of the instructions follows this format:

151413 2] 11|10

o | 8 |7]e[s[4]3]2[1]0]

|

Instruction

| INDX | NLIT |

Literal data ‘

The instructions are:

) Mod. . Addr. modes o
Instruction Mnemonic - - - Description
Flags Lit ‘ Dir ‘ inX

0000.0x -, NOP implicit
0000.10 SR JIMP y y y unconditional jump
0000.11 - ym JMPD y y y unconditional jump, delayed
0001.00 - yym INC y y y jump if C==0
0001.01 SR JNCD y y y jump if C==0, delayed
0001.10 -y IC y y y jump if C==
0001.11 -y JCD y y y jump if C==1, delayed
0010.00 SR INZ y y y jump if Z==
0010.01 SR JINZD y y y jump if Z==0, delayed
0010.10 - ym Iz y y y jump if Z==
0010.11 -y ym JZD y y y jump if Z==1, delayed
0011.00 - yym JPL y y y jump if N==
0011.01 SR JPLD y y y jump if N==0, delayed
0011.10 SR IMI y y y jump if N==1
0011.11 SR JMID y y y jump if N==1, delayed
0100.00 N,Z.- LDA y y y Acc=op
0100.01 N,Z,- IN - y y Acc =10[addr]
0100.10 -y ym LDX y y y X =op
0101.00 -y STA - y y Mem{[addr] = Acc
0101.01 -y ouT - y y I0[addr] = Acc
0101.10 -ym TAX Implicit X =Acc
1000.00 | N,Z,C ADDA y y y Acc =op + Acc
1000.01 N,Z,C ADDM - y y Mem[addr] = Mem[addr] + Acc
1000.10 | N,Z,C ADCA y y y Acc=o0p+ Acc+C
1000.11 N,Z,C ADCM - y y Mem[addr] = Mem[addr] + Acc + C
1001.00 | N,Z,C SUBA y y y Acc=o0p - Acc
1001.01 N,Z,.C SUBM - y y Mem[addr] = Mem][addr] - Acc
1001.10 | N,Z,C SBCA y y y Acc=op-Acc-/C
1001.11 N,Z,C SBCM - y y Mem[addr] = Mem[addr] - Acc - /C




. Mod. . Addr. modes o
Instruction Mnemonic - —— Description
Flags Lit ‘ Dir ‘ inX
1010.00 | N,Z,C CMP y y y op - Acc (result not stored)
1010.01 N,Z,- TST y y y op & Acc (result not stored)
1010.10 | N,Z,C ROR - y y Meml[addr]| = {C,Memy.;} , C=Memy
1011.00 N,Z.- ANDA y y y Acc=op & Acc
1011.01 N,Z,- ANDM - y y Mem[addr] = Mem[addr] & Acc
1011.10 N,Z.- ORA y y y Acc=oplAcc
1011.11 N,Z,- ORM - y y Mem[addr] = Mem[addr] | Acc
1100.00 N,Z.- XORA y y y Acc =op " Acc
1100.01 N,Z.- XORM - y y Meml[addr] = Mem[addr] » Acc
1101.00 N,Z,- INC - y y Mem[addr] = Mem[addr] + 1
1101.01 N,Z,- INCA - y y Acc = Mem[addr] = Mem[addr] + 1
1101.10 N,Z,- INCX - y y X = Mem[addr] = Mem[addr] + 1
1101.11 N,Z,- INCAX - y y Acc = X = Mem[addr] = Mem[addr] + 1
1110.00 N,Z,- DEC - y y Mem[addr] = Mem][addr] - 1
1110.01 N,Z.- DECA - y y Acc = Mem[addr] = Mem|[addr] - 1
1110.10 N,Z.- DECX - y y X = Mem[addr] = Mem[addr] - 1
1110.11 N,Z,- DECAX - y y Acc = X = Mem[addr] = Mem[addr] - 1

Beware of the order of the operands in the subtraction and comparison instructions: Acc is the value that

is subtracted (this order is similar to that in 8-bit PIC microcontrollers).

Bits 8 and 9 select the addressing mode for the instruction:

INDX,NLIT Addressing mode

x0 Lit | Inmediate / Literal
01 Dir Direct
11 inX Indexed

2.2 Assembler language syntax

A line of code has the following parts:

label:

MNEMONIC operand ; comments

The label and comment fields are optional. The operand field is not present for the NOP and TAX instructions,

but for all other instructions must always be present. And its syntax depends on the addressing mode used.

Examples:

LDA
LDA
LDA
LDA
LDA
LDA
LDA

65

0

.—.,—..—.,_\
X~
2

x41

0xB+2)
OxE];
8+6) ]

; Immediate, decimal constant
; Immediate, hexadecimal constant
; Immediate, ASCII code
*5 ; Immediate, expression
; Direct, hexadecimal address
; Direct, address in an expression

; Indexed



3 Programming tricks

Let’s look at some program examples:

e Data stacks:

sp = 0Ox1F ; memory location used as stack pointer
; push
DECX [sp] ; decrement stack pointer and leave copy in X
STA  [X]
;i Ppop
LDX [sp]
LDA [X]
INC [sp]

¢ Subrutines

; Subrutine call
LDA .+2 ; Return address 2 instructions ahead
JMP rutine

; returns here

rutine:

DECX [sp] ; decrement stack pointer and leave a copy in X

STA  [X] ; return address stored on stack
LDX [sp]

INC [sp]

JMP [X] ; return to main program

* Setting the carry flag

Il
o

ADDA 0 ; C

LDA 255
ADDA 1 ; C =1

¢ Comparisons

CMP op compares (subtracts) Acc from 'op’. The value of the flags will be:
== 1 1f op >= Acc (unsigned values)
Z == 1 1if op == Acc

N == 1 1if op < Acc (unsigned values)

TST op is a logical comparison (AND). The Z flag will be:

Z == 1 1f there is no bit set to 1 simultaneously in Acc and ’op’



¢ Shifts and rotations to the left

LDA [variable] ; shl(variable) = variablex2
ADDM [variable] ; C = variabley
LDA [variable] ; rol(variable) = variablex2 + C
ADCM [variable] ; C = variabley

* Shift right (unsigned)
ADDA O ; Sets C =0
ROR [variable] ; variable = variable / 2

* Shift right (signed)
LDA 0x80
ADDA [variable] ; C = variabley
ROR [variable] ; variable = variable / 2

e memset
LDA dest-1 ; address for writting (-1)
STA [pointer]
LDA nbytes ; number of data to write
STA [counter]
LDA wvalue ; fill value

etl:

INCX [pointer] ; X = ++pointer
STA [X] ; *X = value
DEC [counter] ; ——counter
JNZ etl

4 “Pipelining” (synchronous program memory)

If the program ROM memory is synchronous and has the same active edge in its clock as the CPU, what
will happens is that all instructions are executed with one cycle delay. This only poses a problem for jump
instructions because when you jump, the instruction that was after the jump has already been loaded into the
ROM output register, and if nothing is done about it it will be executed.

This has been prevented by having the current instruction executed as a NOP if the previous instruction was
a taken jump. In this way, the unconditional jump lasts two effective clock cycles, and the conditional jumps
lasts two cycles when taken or only one if not taken.

Although the delayed jumps have also been preserved. They have been coded the same way as the normal
jumps but with bit #10 set to 1. In these jumps, the instruction that follows them is not invalidated and therefore
will always be executed, also for the conditional jumps. It is as if the jump was executed one instruction later
than it should be according to its position in the program, and that is why we call it delayed. We can take
advantage of this behavior by placing useful instructions after the jumps. As an example we have the return of

a subroutine:



rutine:

DECX [sp]

STA [X]

LDX [sp]

JMPD [X] ; returns to main program

INC [sp] ; Executed after a delayed Jjump

Here we take advantage of the instruction that follows the jump (in bold) to adjust the stack pointer upon return
and thus save a clock cycle in the execution.
A more sophisticated example of the use of delayed jumps is in a subroutine to print text strings from

program memory:

; Print string from program memory
; parl : pointer to the beginning of the ASCIIZ string
; trick learned from the GIGATRON computer

pputs: decx [sp]
sta [x]
ppl: Jmpd [parl] ; Jump to table and run LDA n
Jjmpd .+1 ; But immediately jump back (to JZD)
jzd pp2
inc [parl] ; pointer++
Jmpd ppl
out [0] ; data to terminal
PpP2: 1dx [sp] ; subroutine return
Jmpd [x]
inc [sp]

; text strings stored in program memory

txt: lda "H!
lda e’
lda 1’
lda Tl
lda "o’
lda 0

Notice that in this example all the instructions that follow the jumps (in bold) are useful instructions, and that by
placing two consecutive jumps in the code we can execute a single LDA instruction from the text string (This
trick is used in the GIGATRON computer firmware). This way of managing constant tables is only possible
if jumps are of the delayed type. I must confess this has been the real motivation I had for including delayed

jumps in the instruction set.



5 Hardware

5.1 Blocks

The block diagram of the BAC computer follows this figure:
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In the center of the diagram we have an ALU capable of performing addition, AND, OR, and exclusive OR
operations, to which a multiplexer has been added to perform rotations to the right. One of the ALU operands
comes from the Acc register, although you can invert its bits (for subtractions), force a value of zero (for LDA,
LDX, IN, INCs, and jumps), or a value of OxFF (for DECs). In the other operand we can also force a value of
zero, which will allow us to output the value of Acc without modifying it (for STA, OUT, and TAX). A pair of
multiplexers allow us to route to this operand the 8 least significant bits of the instruction, the output of the data
RAM, or an external data (IN instruction).

X and PC are pointer registers that contain memory addresses, either for data (X) or program (PC). The latter
is also a counter register that is incremented every clock cycle, except when written during jump instructions.

The ALU also provides us with the values that we must write to the flag registers: Carry, C, zero, Z, and
negative, N. These flags are written when executing some of the instructions, but not all. And there is actually a
fourth flag, *opvalid’, not shown in the figure, which does not come from the ALU but from the jump logic, and
which indicates whether the current instruction should be executed or not. These flags, along with the 8 MSB
bits of the instruction, read from the program ROM, are used in the “decoder” block to generate the signals that
control each of the individual blocks of the core. “decoder” has two parts: the logic for executing jumps, and a

combinational block similar to a PLA for generating the other control signals.

5.2 Conditional execution (jumps)

Jumps are the only instructions that can be executed or not depending on the value of the flags. When executed,
they write a new value to the PC register, and in the case of normal (non-delayed) jumps, they invalidate the
next instruction, preventing it from being executed. The logic for executing the jumps is shown in the following

figure:



(never) '0' —— 0
(always) "1’ —— 1 op[15]
2
op[14 )
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op[12] —-
op[11] —
(jdel)
opL10] d q » opvalid
clk —> res (disable writes if 0)
(force NOP)
reset

Here I resorted to an 8-input multiplexer to route the logical value corresponding to the selected condition
to a common signal, that is validated with the two MSB bits of the operation code and with the output of the
“opvalid’ flag, to generate a control signal, jmp’, that enables a write to the PC register. If the jump wasn’t of
the delayed type, its opcode will have its bit #10 set to 0, and therefore the *opvalid’ flag will be loaded with
0, so, the next instruction is invalidated. In the case of delayed jumps "op[10]’ is 1, ’opvalid’ will remain at 1,
and the instruction following the jump will be executed.

When "opvalid’ is 0, all write signals are invalidated, not just ’jmp’, and the ’in’ and ’out’ outputs are also
inhibited. When this happens, the instruction doesn’t modify anything and is equivalent to a NOP.

The 'reset’ signal also sets the *opvalid’ flag to 0, since we do not know what op-code we could have in the

ROM output register when starting the system.

5.3 Timing
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An important design constraint has been the use of the FPGA’s BRAM blocks for system memories, both

program and data. In the case of program memory we already have taken into account its synchronous nature,



which gives rise to "pipelining’ and delayed jumps, but we also have to consider it for data memory. If we want
to read and write a memory location during a single clock cycle we have no choice but to do the reading on a
different edge than the writing. This is possible because BRAMs have separate clock signals for reading and
writing, so one clock can be the complement of the other.

This results in the timing diagram shown in the above figure, where the program ROM is read on the rising
edges of the clock while the data RAM is read on the falling edges but written on the rising edges. In order to
have everything operating correctly, the signals have to be valid a certain time before the corresponding clock
edge: the address of the data RAM a time #,44,—serup before the falling edge of the reading, and the output of
the ALU another time 7444 —serup before the rising edge of the write. The longest delay would be for instructions
that read and write to RAM, with direct or indexed addressing, and with a carry propagating within the ALU
adder. For example: INC [pos] when the memory location pos’ contains the data Oxff. The sum of all the
propagation delays plus the write setup time would give us the minimum duration for the half cycle with the
clock low. When the clock is high, the delays are limited to the ROM’s own propagation delay plus that of the
address multiplexer for the RAM, so we will surely have a lot of idle time left if the clock wave is more or less
square. From this consideration, it may be advisable to use a rectangular clock wave with less time high than

low.

6 Results

The designed core is in a Verilog module with the following interface signals:

* “clk’. Clock input

* ’reset’. Reset input, active high and asynchronous.
 ’[7:0]din’. Input bus for peripherals.

* ’[7:0]addr’. Address output for peripherals.

* ’[7:0]dout’. Output bus for peripherals.

e ’out’. Writing pulse in peripherals.

* ’in’. Reading pulse in peripherals.

This module has been instantiated in two test designs. One of them simply routed each signal from the module
to an I/O pin of the FPGA. It did not include any peripherals, and had been designed as a mechanism to measure
the resources that the micro actually occupies in the FPGA.

The other is a practical system that includes as peripherals a simple UART with a predefined baud rate and
a 3-bit register that is displayed on LEDs, as well as a PLL that allows us to test different clock frequencies. In
this design it has been possible to run the “Hello World” program.

The results are:

Conditions Core only | Core+UART+LEDs

Logic cells 162 262
BRAMs 2 2
Maximum clock frequency (nextpnr) 59.01 MHz 43.78 MHz
Maximum clock frequency (tested) | 50% clk duty - 65 MHz
Maximum clock frequency (tested) | 25% clk duty - 85 MHz

In conclusion, compared to other 8-bit micros this design has turned out to be really tiny (6502: 673 LCs,
7Z80: 2247 LCs), and although logically it has limitations, especially in relation to the size of the program

memory, it can still have applications of interest.



7 The 64K BAC

The weak point about the BAC processor is the small address space it has, both for the data and program
memories. So, something had to be done in order to increase its addressing capabilities. In the case of data
memory it will be desirable to have at least 512 bytes because this is the size of a single BRAM block. And for
program memory 256 instructions are easily too few if programs are a bit complex. In both cases we need some
storage for the extra address bits, and a new write-only register, PG, was included along with an instruction to

load data into it:

’ Instruction ‘ Flags ‘ Mnemonic ‘ Description ‘

| 010011 | -~ | LDPG | PG=op |

The PG register has a maximum of 8 bits, but it could have less. For instance, for 512 bytes of data memory
PG only has its bit #0 physically implemented. The new BACO03 core has two parameters, ROMSIZE and
RAMSIZE, both defaulting to 256. If one of these parameters is higher than 256 the PG register and its related
logic is synthesized.

7.1 More than 256 bytes of data memory

For data memory PG can be considered to be the high byte of the index register, X. Therefore, the indexed
addressing mode now uses the registers PG and X to point to a data memory position in a memory space up to
64KB in size.

But the direct addressing mode only has the low 8 bits of the address encoded in the instructions, and only
the first 256 bytes of the data RAM can be addressed in this way. This resembles the “zero-page” mode of the
6800 and 6502 CPUs. Let’s present some examples:

; Setting [0x1234] to OxFF
lda Oxff
ldpg >0x1234 ; high byte (0x12)
ldx <0x1234 ; low byte (0x34)
sta [x] ; data_mem[PG:X] = Acc
; Fill 512 bytes of memory form 0x100 to Ox2FF

; ptr, ptr+l, are in Zero Page

lda O
sta [ptr]
lda 2

sta [ptr+l]
ldpg [ptr+l]
lda fill_value
11: decx [ptr]
jnzd 11
sta [x] ; dmem[PG:X]=Acc
dec [ptr+l]
jnzd 11
ldpg [ptr+l]

7.2  More than 256 instructions in program memory

This requires a PC register with more than 8 bits, easy? No, because we only have 8 bits for the destination

address of jumps. So, the PC is divided into two sections: The lower 8 bits are loaded in the case of jumps while
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the high bits are left unmodified. This limits the jumps to addresses in the same 256 instruction page as we
are when executing the jump (and remember: jumps are executed with one cycle delay, so, a jump instruction
located at address OxOFF will have the PC as 0x100 when jumping).

It would be desirable to have also “long” jumps in order to jump to code in a different page, but, I didn’t

want to include another 16 possible jumps into the instruction set, so, I resorted to a little dirty trick here:

* If the jump is preceded by an ’LDPG” instruction the high bits of the PC are copied from the PG register.
Otherwise they are left unmodified.

I know this will result in a lot of complications if some day the core is modified to support interrupts, but for
now the ’long’ jumps only require an extra flip-flop to remember the write to PG register during the previous
cycle, a very small amount of logic.

As an example lets present how to code a call to a “far” subroutine:

; Far Call
lda > (.+5) ; return page (MSBs)
sta [rpgl
lda < (.+3) ; return address (LSBs)

ldpg >routine ; Page of the subroutine
Jmp routine ; long jump (after 1ldpg)

; return here

routine: 1ldpg O ; Stack on page 0
decx [sp]
sta [x] ; Save return address
decx [sp]
1lda [rpgl ; Save return page
sta [x]

lret: ldx [sp] ; restore return page
lda [x]
sta [rpgl
incx [sp]
ldpg [rpg]
Jmpd  [x] ; long jump (after 1ldpg)
inc [sp]

Of course, much of this mess can be avoided if subroutines are located on the same page as the code, or at least
if they don’t call other nested subroutines and there is no need to use the stack.
This “more than 256 instructions” mod, implied some work also on the assembler tool. Now, the assembler
will display a warning message if a jump instruction changes pages and isn’t preceded by an LDPG instruction.
I must recognize these address space extensions look crappy and that a 64K space should have been con-
sidered from the beginning, resulting in a quite different processor architecture (maybe in a 6502 clone ;) But
there are also crappy commercial examples around. Take for instance the data memory addressing of the Intel

8052, or the memory banking of the Microchip PICs.
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8 Tools

8.1 Assembler

An specific assembler program has been written for this micro, bacO2asm, which has the following command

line:

bac02asm [options] sourcefile.asm

options:

-0 outputfile.hex Name of the output file. Default is "out.hex"
-1 listfile.lst Name of the list file. Default is "out.lst"

-s statfile.lst Name of the instruction statistics file

Regarding the assembler source file, it may contain the following elements:

e Simbols / labels:

’

Labels start at the first text column and must end with ’:” or ’=’. In the first case the current address is assigned

to the label while in the second the result of an expression is explicitly assigned. Examples:

ORG 0x20
labell: LDA <constl6 ; labell becomes 0x20
label2= 0x14 ; label2 becomes 0x14

* Directives. They are the following:

INCLUDE "file" Includes the indicated file into the source code.
ORG <expression> Sets the address counter to the indicated value.

WORD <expression> Directly generates a word in the code.

* Expressions.

Expressions include numerical constants, predefined variables, labels, and their possible combinations

through arithmetic and logical operations.

— Numerical constants:

65 Constant expressed in decimal base
0x41 The same constant in hexadecimal base

"A’" ASCII code value of the uppercase letter A.
— Predefined variables:

(dot) It is the current value of the address counter.

Usage example: " JMP . ; never ending loop"

— Unary operators:

—-value The sign of expression "value" is changed (two’s complement).
~value The bits of the value expression are inverted.
<value The 8 least significant bits of the value expression.

>value The 8 most significant bits of the value expression.
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— Binary operators:

atb The sum of the expressions a and b

a-b The subtraction of a and b

axb The product of a and b

a/b The integer division of a by b

a%b The remainder (module) of the integer division of a by b
a&b The logical AND of the bits of a and b

alb The logical OR of the bits of a and b

a”™b The exclusive-OR (XOR) function of the bits of a and b
a>>b a shifted b bits to the right. Zeros are shifted into MSBs
a<<b a shifted b bits to the left. Zeros are shifted into LSB

— Parentheses: Specify the order of operations. Examples:

pos= base+ (resvd+index) x2
divider= (FCLK/16+BAUD/2)/BAUD-1
ANDA (~((1<<ENAB) | (1<<PWON))) &0xf
org (.+0x0f)&0xf0 ; align to multiple of 16

* Comments: They are all the text that follows ’;’ in each line.

Output file format.

The output file is a sequence of segments with the contents of memory that can be imported from Verilog using
the command $readmemh (“file”, memory) . Includes address markers of the type “@hex” followed by

the data in hexadecimal. Example with a segment of 3 data at address 0 and 2 data at address 16:

@0000
40FF
4DFF
4D05
@0010
0818
E505
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8.2 Emulator

The BAC computer can be simulated using an emulator program, bacO2emu, which shows us the contents of

the registers and data memory interactively while we execute the code. Let’s see a screenshot:

0058: B9FB ORA  [FB] PC = 0060 Flags = Z Cycles=4232 dt=4187
0059: 285F JZ SF Acc = 00 Stalls=357

805A: ----- stall ----- PG.X = 0100 Break =00&0

X----> A1F7 LDA [FT] __ Data Memory (ZP)

00: 00 00 00 00 00 0O OO GO OO0 OO 00 GO 00 OO0 0O 0O
>0060: 8030  ADDA 30 10: 00 00 60 00 00 00 00 6O 00 OO0 00 B0 60 00 B0 00
0e61: 51F6  STA [F6E] 20: 0O 0O 60 OO 0O OO 0O GO 06O GO 0O 00 G0 00 00 00
B062: 4064 LDA 64 30: 00 00 OO 00 00 00 00 PO 0 66 00 00 /0 B0 66 00
0e63: 08B6 IMP  Bé 40: 00 00 00 00 0O 00 GO GO OO OO 00 GO 0O OO0 0B 0O
B0064: 400A LDA  BA 50: 00 00 00 @0 06 00 00 PO 60 66 00 A0 /0 B0 66 00
0e65: 51F6  STA [F6E] 60: 00 0O 00 OO 0O 0O 0O 0O 06O 00 GO 00 GO 00 00 00
B066: 4068 LDA 68 70: 00 OO0 OO @0 00 00 00 PO 60 66 00 A0 /0 B0 66 00
0e67: 08B6 IMP  Bé 80: 00 0O 00 0D 0O 0O GO GO OO0 OO 00 GO 0O OO0 0O 0O
0e68: 41F2 LDA [F2] 90: 0O 0O 00 GO 0O 0O 0O GO 0O GO 0O 00 G0 GO 00 00
0e69: 51F4  STA [F4] AG: 00 00 00 00 GO 0O 00 60 066G GO 0O 0O 60 0O 00 B0
OO6A: 41F3 LDA [F3] BG: 0O 0O 00 0O 0O 0O 0O GO 0O GO 0O 00 G0 GO 00 00
0e6eB: 51F5 STA [F5] CG: 00 00 00 00 0O 0O 00 60 06 GO 0O 0O 60 0O 0O B0
0e6eC: 41F2 LDA [F2] Deo: 0O GO 00 GO 0O 0O 0O GO 0O GO GO 00 G0 GO 00 00
oeeD: 85F4  ADDM [F4] EOG: 0O 00 00 00 00 00 GO0 GO 00 0O 0O GO GO GO 00 00
OO6E: 41F3 LDA [F3] FO: 00 01 03 00 00 00 AF 63 00 GO0 00 00 00 @0 1B 00

[Command,'?']-> ?

? This help
<space> Redraw
<intro> Single Step
B <addr> Breakpoint at <addr>
<addr> Exec until <addr=
Exec until Next instruction
<addr> Exec from <addr> (Jump)
Continue execution without Breakpoint
Continue execution with Breakpoint
<addr> Disassembly from <addr=
Disassembly from next address
<addr> data Memory dump from <addr=
data Memory dump from next address
Reset CPU
Quit to 0.S.

AV =200 MmO w = |

[Command,'?']-> |}

The emulator must be run from a terminal window capable of interpreting ANSI escapes. In the capture of
this example, the LDA [F7] instruction, that was read from the program ROM during the previous cycle, will
be executed. Above it are shown the instructions executed in the 3 previous cycles, the immediately preceding
one beinga——- stall —--(nop),duetothe JZ 5F jump. Below we have the code disassembled from the
address pointed by PC. Above, further to the right, we have the value of the registers (PC, Acc, PG, and X), the
active flags (Zero), the simulated time since the reset, and the time since the last stop (1 cycle when executing

step by step). Below we have the 256 bytes of the zero page of the data memory.

14



The emulator simulates a system that, in addition to the core, and full 64K program and data memories,
includes an UART. Transmitted data is displayed on <stdout>, while text typed on <stdin> is interpreted as
received data (as long as we are not executing the code step by step). The UART registers are those of the

following addresses:

1. Data to be transmitted on writes. Data received on reads. A read also clears the receiver flags: DV and
OV.

2. Flags. Read only. The bits in this register are:

Bit 0: DV. Valid data on reception.

Bit 1: FE. Format error (stop bit was 1). In the emulator this bit is always 0.

Bit 2: OV. Overrun. A data was received when DV was 1.

Bits 3 to 6. Not used.

Bit 7. TRDY. Transmitter ready if 1.

The TRDY bit is disabled when transmitting data for 352 cycles, which is equivalent to having two stop bits
and a divisor of 32 in the simulated UART. When the code is executed without stopping at each instruction we
can see on the screen the data that the simulated micro sends to the UART, in this example the text “1609 Hello

World”. Here the micro executes code until reaching the “breakpoint” at address 0x11:

[Command,’?"]-> =11
<Running... press <ctrl>-c to stop>
1609 Hello World

<press <enter> to resume>

15



9 Verilog sources (Original 0.25K BAC)

[1717777717777777777777777777777777/7///7/7
// BAC-02 computer by

// J. Arias (2023)

// Public domain source.
[111111717171/77/77/777777/77/77/7777/77/7/////77/7

// define ROBUSTDEC

module bac computer (
input clk, // Reloj
input reset, // Reset, asincrono, activo en alto
input [7:0]din, // Datos desde periféricos
output [7:0]addr, // Direccidn de periféricos
output [7:0]dout, // Datos hacia periféricos
output out, // Pulso de escritura en periféricos
output in // Pulso de lectura de periféricos

);

[1177177777777/77777777/77777/77/777/7/7///7/77/
// ROM de programa en BRAM

1177777777777 77777777777/7777/7/7/7/77//7//7/7//7/777
reg [15:0]ROM[0:255];

initial $readmemh("ROM.hex",ROM);

reg [15:0]romout;
always @(posedge clk) romout<=ROM[pc];

[171777777777777777777777/77/7777/7777/77/77/7/77/77/7/77/
// RAM de datos

// lectura en bajada de clk

// escritura en subida de clk

// (asi se parece a una RAM con lectura asincrona)
[1177771777777777777777777777/77777/77777/777/77/7777/
reg [7:0]RAM[0:255];

reg [7:0]ramout;

always @(negedge clk) ramout <= RAM[aram];

always @(posedge clk) if (wrm) RAM[aram] <=aluout;

[117771777777777777777717777/7777777/777/7/77
// registros
[11777777777777777717777177777/7777777/777/7/77

reg [7:0]pc;

reg [7:0]acc;

reg [7:0]xreg;

reg C,Z,N; // flags

always @(posedge clk or posedge reset)
if (reset) pc<=0; else pc <= (jmp) ? aluout : pc + 1;

always @(posedge clk) if (wra) acc<=aluout;

always @(posedge clk) if (wrx) xreg<=aluout;

always @(posedge clk) if (wrc) C <= ror ? alub[0] : co;

always @(posedge clk) if (wrz) {N,Z}<={aluout[7], (aluout==0)};

1177177777777 77777777777/777777/7/77/7/7///7777
// data mux

1177177777777 77777777777/777777/7/7/7/7/7///777/
wire nlit romout[8];

wire indx = romout[9];

wire [7:0]alub
wire [7:0]alua
wire [7:0]aram

zb ? 0 : (nlit ? (in ? din : ramout) : romout[7:0]1);
(za ? 0 : acc)™(ia ? 8'hff : 0);
indx ? xreg : romout[7:0];

16



I117777777777777777177777777777777777177777

// ALU

[11177777777771777777777717777/777/77/77777777

reg [7:0]aluo; // combinacional (salida intermedia)
reg co; // combinacional (salida de acarreo)

// cbdigos de operacién de la ALU

parameter SUM=2'dl; // cualquier permutacién de los cddigos sirve
parameter AND=2'd0; // esta es la que resulta en menos celdas ldgicas
parameter OR =2'd2;

parameter XOR=2'd3;

always @*
case (aop)
SUM: {co,aluo} <= alua + alub + ci;
AND: {co,aluo} <= {1'bx, alua & alub};
OR : {co,aluo} <= {1'bx, alua | alub};
XOR: {co,aluo} <= {1'bx, alua ~ alub};
endcase
wire [7:0]aluout = ror ? {C,alub[7:11} : aluo;

[1177777777777777777777777777777177777777777777/771777777777

// condiciones saltos

// 000 001 010 011 100 101 110 111

// nunca (NOP), siempre, NC, C, NZ, Z, positivo, negativo
[1177777777777777777777777777777777777777/7777/7777/7/77/77/77/777

wire [7:0]jmpcond={N,~N,Z,~Z,C,~C,1'b1l,1'b0};

wire jmp = jmpcond[romout[13:11]] & (~romout[14]) & (~romout[15]) &opvalid;

[111777777777777777777777777777777777777777777777777/77/77/7177/777
// Tras los saltos normales se descarta la siguiente instruccién
[111777777777777777777777777777777777777777777777777/77/77//7/77/777
reg opvalid=0; // Vale 0 después de un salto no retardado
always @(posedge clk or posedge reset)

if (reset) opvalid<=0; else opvalid<=(~jmp)|romout[10];

1171771771777 777/777/777777/77/77/7/7/777/7/7/7/7//7/7//7/77//7//7//7
// decoder

// si opvalid==0 se inhiben todas las escrituras (NOP),
// incluyendo IN y OUT

1171771771777 77777/77777777/77/7/77/777//7/7/7/7/7/7//777//7/7/7//7

reg [10:0]control; // combinacional
wire [1:0]aop = control[10:9];

wire wrm = control[8] & opvalid;
wire wra = control[7] & opvalid;
wire wrx = control[6] & opvalid;
wire wrc = control[5] & opvalid;
wire wrz = control[4] & opvalid;
wire za = control[3];

wire zb = control[2];

wire ia = control[1l];

wire ci = control[0];

// algunas sehales simples

wire ror = (romout[15:10]==6"'b1010 10);
wire in = (romout[15:10]==6'b0100 01) & opvalid;
wire out = (romout[15:10]==6'b0101 01) & opvalid;

17



// Para hacer mas legible la tabla
parameter 1 =1'b1;
parameter  =1'Db0;
parameter Xx =1'bx;

parameter _xx=2'bxx;

always @*
casex (romout[15:107)

6'bOOXX xxX:

6'b0100 00:
6'b0100 01:
6'b0100 10:
6'b0101 00:
6'b0101 01:
6'b0101 10:

6'b1000 00:
6'b1000 01:
6'b1000 10:
6'b1000 11:
6'b1001 00:
6'b1001 01:
6'b1001 10:
6'b1001 11:

6'b1010 00:
6'b1010 01:
6'b1010 10:

6'b1011 00:
6'b1011 01:
6'b1011 10:
6'b1011 11:
6'b1100 00:
6'b1100 01:

6'b1101 00:
6'b1101 01:
6'b1101 10:
6'b1101 11:

6'b1110 00:
6'b1110 01:
6'b1110 10:
6'b1110 11:

“ifdef ROBUSTDEC

“else

“endif

default:

default:

endcase

// @aop wrm, wra Wwrx wrc wrz

control<={ OR, ,

control<={ OR, ,
control<={ OR,
control<={ OR, ,
control<={ OR, 1 ,
control<={ OR,
control<={ OR,

control<={SUM, ,
control<={SUM, 1 ,
control<={SUM, ,
control<={SUM, 1 ,
control<={SUM, ,
control<={SUM, 1 ,
control<={SUM,
control<={SUM, 1 ,

control<={SUM,

control<={AND, ,

control<={ xx, 1

control<={AND,
control<={AND,
control<={ OR,

control<={ OR, 1
control<={XOR,
control<={XOR, 1

control<={SUM, 1 ,
control<={SUM, 1 ,
control<={SUM, 1 ,
control<={SUM, 1 ,

control<={SUM,
control<={SUM,
control<={SUM,
control<={SUM, 1

control<={ xx, ,

control<={ xx, X , X_

[117777177777777777777777777777777777777777

// 1/0

[11771777177771777177777771777/7177777/717/7/777/77
assign dout = aluout;
assign addr = aram;

endmodule
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JMPs

LDA
IN

LDX
STA
ouT
TAX

ADDA
ADDM
ADCA
ADCM
SUBA
SUBM
SBCA
SBCM

CMP
TST
ROR

ANDA
ANDM
ORA
ORM
XORA
XORM

INC
INCA
INCX
INCAX

DEC
DECA
DECX
DECAX

NOP
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10 Verilog sources (64K BAC)

/11777777771777777777777777/777/77/7/7/77///77/7
// BAC-03 computer by

// J. Arias (2023)

// Public domain source.
[111777777777777717777/777/7/7777777/77/77/777/77

// define ROBUSTDEC

module bac computer (
input clk, // Reloj
input reset, // Reset, asincrono, activo en alto
input [7:0]din, // Datos desde periféricos
output [7:0]addr, // Direccién de periféricos
output [7:0]dout, // Datos hacia periféricos
output out, // Pulso de escritura en periféricos
output in // Pulso de lectura de periféricos
);
parameter ROMSIZE=256;
parameter RAMSIZE=512;
localparam PAW=$clog2(ROMSIZE-1);
localparam DAW=$clog2 (RAMSIZE-1);
localparam PGW=(PAW > DAW)? PAW-8 : DAW-8;

[1177177771777777771777777777777771777777717
// ROM de programa en BRAM
[117717777777777777777777777777777/777777717
reg [15:0]ROM[O: (ROMSIZE-1)];

initial $readmemh("ROM.hex",ROM);

reg [15:0]romout;
always @(posedge clk) romout<=ROM[pc];

[1177177777777777771777777777777777777777/777177777
// RAM de datos

// lectura en bajada de clk

// escritura en subida de clk

// (asi se parece a una RAM con lectura asincrona)
[1177171777777777777777777777777777777777777/77777
reg [7:0]RAM[O: (RAMSIZE-1)1;

reg [7:0]ramout;

always @(negedge clk) ramout <= RAM[aram];

always @(posedge clk) if (wrm) RAM[aram] <=aluout;

[1177717177777717177777777777/71777777/7/7777777
// registros
[1177717177777717177777777777/7177/7/7777/7/771777

reg [PAW-1:0]pc;
reg [7:0]acc;
reg [7:0]xreg;
reg [PGW-1:0]pg;
reg C,Z,N; // flags
reg Ljmp=0;
if (PAW>8) begin
always @(posedge clk) ljmp<=wrpg;
end
always @(posedge clk or posedge reset)
if (reset) pc<=0; else begin
pc[7:0] <= (jmp) ? aluout : pc[7:0] + 1;
if (PAW>8)
pc[PAW-1:8] <= (jmp & 1jmp) ? pg[PAW-9:0] : pc[PAW-1:8] + ((&pc[7:0]1)&(~jmp));
end

always @(posedge clk) if (wra) acc<=aluout;

always @(posedge clk) if (wrx) xreg<=aluout;

always @(posedge clk) if (wrpg) pg<=aluout[PGW-1:0];

always @(posedge clk) if (wrc) C <= ror ? alub[0] : co;

always @(posedge clk) if (wrz) {N,Z}<={aluout[7], (aluout==0)};
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[1177177777777771777/77777/77777/77/7/77/77/77//7/7
// data mux
[1177177777177777777/77777/77777/77/7/77/77/77/7//
wire nlit romout[8];

wire indx = romout[9];

wire [7:0]alub
wire [7:0]alua

zb 7 0 : (nlit ? (in ? din : ramout) : romout[7:0]1);
(za ? 0 : acc)™(ia ? 8'hff : 0);

wire [(DAW-1):0]aram = (DAW>8)? (indx ? {pg,xreg} : { {(DAW-8){1'b0}}, romout[7:0]}):
(indx ? xreg : romout[7:0]);

LI11777777777777777777777777777777777777777

// ALU

[117777177777777777777777777177777/777/7777777

reg [7:0]aluo; // combinacional (salida intermedia)
reg co; // combinacional (salida de acarreo)

// cédigos de operacién de la ALU

parameter SUM=2'dl; // cualquier permutacién de los cdédigos sirve
parameter AND=2'd0; // esta es la que resulta en menos celdas légicas
parameter OR =2'd2;

parameter XOR=2'd3;

always @*
case (aop)
SUM: {co,aluo} <= alua + alub + ci;
AND: {co,aluo} <= {1'bx, alua & alub};
OR : {co,aluo} <= {1'bx, alua | alub};
XOR: {co,aluo} <= {1'bx, alua ~ alub};
endcase
wire [7:0]aluout = ror ? {C,alub[7:1]} : aluo;

[1177177717777771777777777777777777777777777777/7777/7/77/77/7

// condiciones saltos

// 000 001 010 011 100 101 110 111

// nunca (NOP), siempre, NC, C, NZ, Z, positivo, negativo
[117777177777771777777777777777777777/77777777/77777/777/777/7/77

wire [7:0]jmpcond={N,~N,Z,~Z,C,~C,1'b1,1'b0};

wire jmp = jmpcond[romout[13:11]1] & (~romout[14]) & (~romout[15]) &opvalid;

[177717777777777777777777777777777777777777/77777777777/7777/7/77777
// Tras los saltos normales se descarta la siguiente instruccién
[11771777777777777777777777777777777777777717777777/7777/7777/777777
reg opvalid=0; // Vale 0 después de un salto no retardado
always @(posedge clk or posedge reset)

if (reset) opvalid<=0; else opvalid<=(~jmp)|romout[10];

[1177777777777177777777777777777777777777777/77777/777/7777
// decoder

// si opvalid==0 se inhiben todas las escrituras (NOP),
// incluyendo IN y OUT
[1177177717777777777177777777777777777777777777/777177717

reg [10:0]control; // combinacional
wire [1:0]aop = control[10:9];

wire wrm = control[8] & opvalid;
wire wra = control[7] & opvalid;
wire wrx = control[6] & opvalid;
wire wrc = control[5] & opvalid;
wire wrz = control[4] & opvalid;
wire za = control[3];

wire zb = control[2];

wire ia = control[1];

wire ci = control[0];

// algunas seflales simples

wire ror = (romout[15:10]==6'b1010 10);

wire in = (romout[15:10]==6'b0100 01) & opvalid;

wire wrpg= ((DAW>8) || (PAW>8))? (romout[15:10]==6'b0100 11) & opvalid : 0;
wire out = (romout[15:10]==6'b0101 01) & opvalid;
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// Para hacer mas legible la tabla

parameter
parameter
parameter
parameter
always @*

casex

6
6
6
6

6

1 =1"b1;
___=1'b0;
X =1"bx;
_Xx=2"bxx;

(romout[15:1071)

// aop wrm, wra Wwrx wrc wrz
'b0Oxx xx: control<={ OR, ,
'b0100 00:
'b0100 O1:
'b0100 10:

'b0100 11:

“ifdef ROBUSTDEC

“else

“endif
6
6
6

6
6
6
6
6
6
6
6

6
6
6

6
6
6
6
6
6

6
6
6
6

6
6
6
6

'b0101 00:
'b0101 01:
'b0101 10:

'b1000_00:
'b1000_01:
'b1000_10:
'b1000 11:
'b1001 60:
'b1001 _01:
'b1001_10:
'b1001_11:

'b1010 00:
'b1010 01:
'b1010 10:

'b1011 00:
'b1011 01:
'b1011 10:
'b1011 11:
'b1100 00:
'b1100 01:

'b1101_00:
'b1101_01:
'b1101_10:
'b1101_11:

'b1110 00:
'b1110 01:
'b1110 10:
'b1110 11:

*ifdef ROBUSTDEC
default:

“else

default:

“endif

endcase

control<={ OR, 1,
control<={ OR,
control<={ OR,

control<={SUM,
control<={SUM,
control<={SUM,
control<={SUM,
control<={SUM,
control<={SUM, 1
control<={SUM,
control<={SUM, 1

control<={SUM,
control<={AND,
control<={ xx, 1

control<={AND,
control<={AND, 1

control<={ OR,
control<={ OR,
control<={X0R,
control<={XOR, 1

control<={SUM,
control<={SUM,
control<={SUM,
control<={SUM,

control<={SUM,
control<={SUM,
control<={SUM,
control<={SUM,

control<={ OR, '

control<={ OR,
control<={ OR, ,

1

]
_1_'
’

{OR, __,

{ xx, ,

{ xx, x, _

~ ~ 0~

~ ~ ~ =

_1_
_1_
1
1

1
1
1
1

’
’
’
’

control<={ xx, X,

1

1

X

control<={ xx, ,

[177777777777777777777777777177777777777777

// 1/0

[177777777777777777777777777771777777777777

assign dout = aluout;
assign addr =

endmodule

aram,

’

control<=((DAW>8) || (PAW>8))?

’
’
’
’
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, X}
, X}
. +s
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1, 1%
1, 1}
1, C}
1, C}
1, 1%
., X}
X, X };
. X}k
. X}k
. X}k
. X}k
. X}k
T .
T W
., 1%
T
., 1%
1, %
1, %
1, %
1,
X, X}
X, X };

//
//
//

//

JMPs

LDA
IN
LDX

LDPG

STA
ouT
TAX

ADDA
ADDM
ADCA
ADCM
SUBA
SUBM
SBCA
SBCM

CMP
TST
ROR

ANDA
ANDM
ORA
ORM
XORA
XORM

INC
INCA
INCX
INCAX

DEC
DECA
DECX
DECAX

NOP

777
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