A3 VBE Core Standard

VESA®

Video Electronics Standards Association

2150 North First Street, Suite 440 Phone: (408) 435-0333
San Jose, CA 95131-2029 FAX: (408) 435-8225

VESA BIOSEXTENSION (VBE)

Core Functions
Standard

Version: 2.0
Document Revision: 1.2

Ratification Date: November 18, 1994

Purpose

To standardize a modular, software interface to display and audio devices. The VBE interface
isintended to simplify and encourage the development of applications that wish to use
graphics, video, and audio devices without specific knowledge of the internal operation of the
evolving target hardware.

Summary

The VBE standard defines a set of extensions to the VGA ROM BIOS services. These
functions can be accessed under DOS through interrupt 10h, or be called directly by high
performance 32-bit applications and operating systems other than DOS.

These extensions also provide a hardware-independent mechanism to obtain vendor
information, and serve as an extensible foundation for OEMs and VESA to facilitate rapid
software support of emerging hardware technology without sacrificing backwards
compatibility.

Intellectual Property

Copyright © 1993, 1995 - Video Electronics Standards Association. Duplication of this
document within VESA member companies for review purposesis permitted. This document
may be posted online in its unmodified, read-only format only. No charges, other than
standard connect or download charges, may be assessed for this document. All other rights
reserved.

While every precaution has been taken in the preparation of this standard, the Video
Electronics Standards A ssociation and its contributors assume no responsibility for errors or
omissions, and make no warranties, expressed or implied, of functionality or suitability for
any purpose.

The sample code contained within this standard may be used without restriction.

Trademarks
All trademarks used in this document are property of their respective owners.

VESA, VBE, VESA DDC, VBE/AI, VBE/PM, and VBE/DDC are trademarks of Video
Electronics Standards A ssociation.

MS-DOS and Windows are trademarks of Microsoft , Inc.

IBM, VGA, EGA, CGA, and MDA are trademarks of International Business Machines
RAMDAC isatrademark of Brooktree Corp.

Herculesis atrademark of Hercules Computer Technology, Inc.

Patents

VESA proposa and standards documents are adopted by the Video Electronics Standards
Association without regard to whether their adoption may involve patents on articles,
materials, or processes. Such adoption does not assume any liability to any patent owner, nor
does it assume any obligation whatever to parties adopting the proposal or standards
document.

Support for this Specification
Clarifications and application notes to support this standard will be published as the need
arises. To obtain the latest standard and support documentation, contact VESA.

If you have a product which incorporates VBE, you should ask the company that
manufactured your product for assistance. If you are adisplay or controller manufacturer,
VESA can assist you with any clarification you may require. All comments or reported errors
should be submitted in writing to VESA using one of the following mechanisms:

World Wide Web: www.vesa.org Mail to:
E-mail: vesa-support@exodus.net Video Electronics Standards Association
Page ii VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

Fax: 408-435-8225 2150 North First Street, Suite 440
Voice: 408-435-0333 San Jose, California 95131-2029

VBE CORE FUNCTIONS VERSION 2.0 Page iii
DOCUMENT REVISION 1.2

SSC/VBE Workgroup Members

Any industry standard requires input from many sources. The people listed below were
members of the VBE Workgroup of the Software Standards Committee (SSC) which was
responsible for combining all of the industry input into this proposal:

CHAIRMAN
Kevin Gillett, SMOS Systems, Inc.,
past chairman, Rod Dewell , Excalibur Solutions

MEMBERS

David Penley, AT& T Global Information Solutions
Rebecca Nolan, Chips and Technologies, Inc.

Brad Haakenson, Cirrus Logic, Inc.

Joe Rickson, Logitech, Inc.

Aaron Leatherman, LS| Logic Corporation

Jake Richter, Panacea Inc.

Raluca lovan, Phoenix Technologies Ltd.

Kendall Bennett, SciTech Software

Tom Ryan, SciTech Software

George Bystricky, S-MOS Systems, Inc.

Jason Li, Trident Microsystems, Inc.

Chris Tsang, ULSI Systems

Greg Moore, Video Electronics Standards Association
Andy Lambrecht, VLS| Technology, Inc.

Rex Wolfe, Western Digital Imaging

Page iv VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Table of Contents

INTELLECTUAL PROPERTY ottt ittt seeeeees s s asasss s sssseeasees seessassasssssssssssssssesssses saesssssssssssssssnnnn i
TRADEMARKS. ... uuttttuueesseeseeeeeeesaas sessassssssssssssssssseeaasssas sasssasssssssssssssssssassssssas sasssssssssssssssssssssssssssses sassssssssssssssssssnnnns i
[N = N TR i
SUPPORT FOR THIS SPECIFICATION .ot ettt et e e e e e e e e e e e e s e saaaaass s s s s s seasaaaaasaeeeessss sannens i
SSC/VBE WORKGROUP MEMBERS ...ttt ettt et raaaaa s s s et e s e e e s e aaaeeeeeees s sasasesens iv
TABLE OF CONT ENT S ..cettttttttiiiiiiiie e e e e e e e e et b bt e e e e eeeesaaeaeeeees seeaaab bbb s ssseeeessaaaaseeeses sasassbbbbasssseeesseessesseses sans \%
L.OINTRODUCTION it ettt e et e e e s —eeeeeaaaaeeeeessssss s e e b bbb bs £eeeasaaasassesssssssssssarabrs seeaeaans 1
1.1 SCOPE OF THEV BE STANDARD ...covvttttuiiiiiiiiieiiiiittts hrstssisieeessastsesssssssssas sassasssssssssssssssssssssstiesseeesesseesssssssnnnnns 1
1.2 B ACKGROUNDER ...uuiiiiiiiiiiiiitttsttiesies seeeeteasstessssssbs i aassesas saastsssssssssssaassseessaassses sesssssssssasssassssssssssssssss bssssnnsssns 2
20 VBE OVERVIEW e ettt oot et e ettt et e e e e e e e e e e e eee s e saaasaassssseeeasaaaaasessessss srasanens 5
2.1 VBE FEATURESciiiiittitttiiiiee et e et et ee e ettt e e e bt s s e e eeeaastees seaeaa bbb s eesseeaaseeesasstbs hbbaa s eeseeaasseessssbbaaans saaaeseeaasaes 5
2.2 VBE AFFECTED DEVICES.....cciiiiitttttiiiiie e i ee et et ettt ettt e st e e e s e e et teaes seaaa b sseeseaasstess s s s bbaas s eesassesseessbbaaaaanssss 5
2.3 PROVIDING VENDOR INFORMATIONciiiiiittttutttsstieetiees seeesattesssssssssssseesssssses eessssssssssssstssssseesteesss sssssssssnsseesees 5
B.0VBE MODE NUMBERS ... ettt e e et e e e e e e et e ettt e e eaaaaeeeeeeeessssss hbsssseeeeeaaasaaseeeeeaanaas 6
A0 VBE FUNGCTIONSttt e et oot aa e e e et eeeeeeees seeesssssaasssaaassssssessssses seessssssssssssssesssnsseeesses seeanans 8
4.1 VBE RETURN STATUS. ... iiiiiiiiiiiitiiiiie et e e e cee e ettt eeta e st s eeeeeaatee seess s s bbb e stesasaessssssss hbabbaaasaesseassseessssssrans snns 8
4.2 PROTECTED M ODE CONSIDERATIONS ..uuttttuiiietiieiiiiettsssssas siissasssessssssttessssssssssss saeessessssesssssssssisaesseesssaseessesssses 9
4.3 FUNCTION OOH - RETURN VBE CONTROLLER INFORMATION.ciiiiiiiiiettiiiiiesiiees seeeeeieessssssssnnsseesesssses sessssssses 10
4.4 FUNCTION O1H - RETURN VBE M ODE INFORMATIONciiiittittttiiiiieeeieesiies sesssssssssssessssssesssssssss sosssssnsssessasssnes 14
4.5 FUNCTION OZ2H = SETVBE MODE.......iiitiiiiiiiii et ettt e e ettt a s bbbt s e e e e e e s s e s e s b ab bbb sasaasseaassennnns 21
4.6 FUNCTION O3H - RETURN CURRENT VBE MODEuiiiiiiiiiiiieetttes ettt s e e e s s e esaaaaaa s 22
4.7 FUNCTION O4H - SAVE/RESTORE STATE. .. uuuuuuuuuuutrrtseeiiiieeiees eessssssssssssssssssssesseetses aesssssssssssssssssssssseeeses eeessas 23
4.8 FUNCTION O5H - DISPLAY WINDOW CONTROL ..vvvttttuuiieeiiieiiieiieesssis rsssisssesesssssesssssssssnssieesssssssssssssssssn 23
4.9 FUNCTION O6H - SET/GET LOGICAL SCAN LINE LENGTHuuuuittuteeererieiiiiieeeees seeesesssssssssssssssssesessses seessssssssssssns 24
4,10 FUNCTION O7H = SET/GET DISPLAY START ..uuuttttttttieiiiiiiieeeeeseees seiisssssssssssetesteeaassssses sasssssssssssseesesseasaeesssessans 25
4.11 FUNCTION O8H - SET/GET DA C PALETTE FORMAT . ..uttttttettie e e e e eeeeeees seeeeesssssssssssssssessssaes sessssssssssssssssssnnns 26
4,12 FUNCTION O9H - SET/GET PALETTEDATA ¢ ettt ettt et eeeeee s asaaa s sseeseseeees seessssssssssssassssssnseeesses seeas 26
4.13 FUNCTION OAH - RETURN VBE PROTECTED M ODE INTERFACE......ccuttttiiiiiiiiieeeeiiees sevsssissnseeeseesssessssssssas sones 27
5.0 VBE SUPPLEMENTAL SPECIFICATIONS ..o ettt rarnen e e e s e e e s e e e e e e 30
5.1 PURPOSE OF SUPPLEMENTAL SPECIFICATIONS. .. .ciiiittttttttiiiiieeteeetis seettssstssssssssssessssssessss shsssssssssseesesssseessssssnnnns 30
5.2 OBTAINING SUPPLEMENTAL VBE FUNCTION NUMBERS........ccttttttiiiiiieiiieeeis seeesiestisiesssessesaseeass sesssssnnnneens 30
5.3 REQUIRED VBE SUPPLEMENTAL SPECIFICATION COMPONENTSciiiiiiiiettiiiiiieeiiees seeeeseesssssssissseeesssssees esens 31

5.3.1 VBE Supplemental SpecifiCation FUNCLIONSooiiiiiiiieeiee ettt e 31

R I 2 (= (U [IS = LU SRS 31

5.3.3 Subfunction 00h - Return VBE Supplemental Specification Informationccccoeviiiiiniiniiinenenn. 31
5.4 SUPPLEMENTAL SPECIFICATION PROTECTED M ODE GUIDELINES........iictvttutttiiiiieeiieess seeeieesssssssissseesssssseessases 33
5.5 LOADING SUPPLEMENTAL DRIVERS......cciiiiiiitttitiiiie e i iiees seeeetieetb s s s s e e e e eesstes sesasaabb e e s eseasseessesabas abaaaaseeeeeas 34
5.6 IMPLEMENTATION QUESTIONS. .. uttttteiiuttteteeessstrrees sassseesessssssssssssssssssesses ssssesssssssssssessssnssssssssss teeeesssssssseessssnsses 34

VBE CORE FUNCTIONS VERSION 2.0 Page v

DOCUMENT REVISION 1.2

5.7 KNOWN SUPPLEMENTAL SPECIFICATIONS. ..t uuutiieiiiieitiessssssssis ssssesseesssesssssssssssssstees seeesssseessssssssnnieeeeeesseesereees 35

5.7.1 Function 10h - Power Management EXtENSIONS (PM)ooiiiiiiiiie e 35
5.7.2 Function 11h - Flat Panel Interface EXtENSIONS (FP)......c..ooiiiiiiiiiii e 35
5.7.3 Function 12h - Cursor Interface EXIENSIONS (C1)eieiueiiiiieiiieiiee et 35
5.7.4 Function 13h - Audio Interface EXENSIONS (Al) ...coueieiiieiieiieeeiee ettt be e e e s 35
5.7.5 FUNCtion 14h - OEM EXLENSIONSvveiiieiiiiiiiieiee e e e ettt e e e e eeetaaeeeeeseesaasbbaeeeseseessanssaeeeeseenssnsseseeseaeeann 35
5.7.6 Function 15h - Display Data Channel (DD C)cccioiiiiiieieie et a e e s 35
5.7.7 Function 16h - Graphics System Configuration (GC).........couuiiieriniereie et 35
APPENDIX 1-VBE QUICK REFERENCEooiie et sttt ettt e rtee e stae e stae e sneeeennee e 36
APPENDIX 2 - VBE DATA STRUCTURES ...ttt ettt ettt e et seaaseeeessssanseesaseesraeee e 40
APPENDIX 3-VBE SUPPLEMENTAL SPECS. ...t ettt et e e atba e e e e e enrraeee s 54
APPENDIX 4-VBE IMPLEMENTATION CONSIDERATIONS ...ttt 56
A4.1 MINIMUM FUNCTIONALITY REQUIREMENTS. cututttttiiieiiieeiieitiesstss vasssssseesssssssessssssssssss soseesssessssssssssssssmsnnne e 56
A4 1.1 REQUITEH VBE SEIVICESueiiiiieitieaitieeiee et e ettt etee e st e e sate e s aeeesaneeesabeesabeeaabeeabeeabeeesbeesbeeaabeeaaneaanns 56
A4.1.2 Minimum ROM IMPIEMENTALTON........cueiiiieiiie ittt et e sbe e e sae e e saseesaneesaneeesnseaas 56
A4 1.3 TSR IMPIEMENTALIONSeeeeiiiee ittt ettt et e et e s et e e sae e e saeeesateesabeesabeeeabeeesnbeesbeeanneeeaneeann 56
A2V GA BlIOS IMPLICATIONSttt cttteeeees ceeeeeeeeeeaeaa e e aaaa———seres aeaaaaeeesaeaaaassssssssssssss saaaaaaseeseeaaaanannnnnns 57
AL 3 ROM SPACE LIMITATIONS. .. ciiiiiieiiiititttttteeres eeeeeeeessesaaaaaaaasasssssaes aaaaaaessseaaaaaassssssssssssss saaaaaeeeessaanaannsnnnnnns 58
Y B R D L= (= S (o] =10 [TS U TR U PR UUUPOTRPPRN 58
A4.3.2 Removal Of UNUSEA VGA FONLS......ccociiiiie ettt e e e e e ettt e e e e e e e e sstbaeeeeeeeeesnnsseeeeeeeesannnnes 58
A4.3.3 Deleting VGA Parameter TaDIES..........oo it ettt e e e e e s ne e e saneea 59
A4.3.4 INCreasing ROM SPBCEceeiuiiiiieaitie et e itee et ee sttt sae e e s et e s eeesaaeeesabeasateesabeeabeesseeaanbeeabeeeabeeeaneaanns 59
4.3.5 SUPPOIt OFf VGA TTY FUNCLIONS.eiiiiiiiie ettt eiiee ettt e st sas e saee e s sae e ssbeesmseeanseeenneeesnreesnees 59
A4 4 IMPLEMENTATION NOTESBY FUNCTION L...ciiiiiiiititiiieeeieeees ceeeeeeesseeaaaastbbssseeeeeees 2aeeeeasaaaannsssssssssnneeeees eeeenn 60
AL A1 GENEIAI INOLESttt ettt e e e e ettt e e e e e e et ettt e e e e e e eeesasaaaaeeaeeseasssbbeeseeaseaasssseeeeeeeannssnnes 60
A4.4.2 Function 00h - Return VBE Controller INformationeeeeeeieeiiiiiiiee e eectreeee e 60
A4.4.3 Function 01h - Return VBE Mode INfOrMatioN...........cooiiuiiiiieie ettt eennvrae e e e e e 61
A4.4.4 FUNCLioN 02N = SEL VBE MOGE........ccc ottt ettt e e e et e e e e e e e e s s eaabaeeeeeeeesnasnseeeeeseeeeannnees 61
A4.4.5 Function 03h - Return CUrrent VBE MOUE..........uuviiiiiiiiiiieiee ettt e ettt e e e e e e e etvbae e e e e e e e nannnes 62
A4.4.6 Function 05h - Display WINAOW CONEFOLcc.eiiiiiiieeeeiee ettt naee e 62
A4.4.7 Function 06h - Get/Set Logical Scan Line Lengthcoocoi i 63
A4.4.8 Function 07h - Get/Set DiSPlay SToo ettt b e b e e be e enea e 63
A4.4.9 Function 08h - Set/Get DAC Palette FOrMALveeiiiiiiiiiieiee ettt e e sarrae e e e e e nnnnes 63
A4.4.10 Function 09h - Set/Get Palette Dal@l......ccieeceeiciiieieee ettt e ee et e e e e e e eaa e e e e e e e e ssanraaeeeeeeeeannnes 63
A4.4.11 Function OAh - Return VBE Function INfOrmationeeeeieieeiiiiiiiee e eecvreeee e 64
ALS PLUG AND PLAY ISSUESttt e e e e e e et e e e e a e e e ee seeaeaeeeeeeeaaaasassasssssssaes saaaaaaesesaaaaaaanssnnsnsnnnns 64
A4.6 SUPPORTING MULTIPLE CONTROLLERS........iiiiuutttttttteeieeees eeeeeeaaaaaaanssssssssseeeeees aeeeassaaaaannssssssssssneeeees saeeaeann 64
A4.6.1 DUAl-CONIOHEr DESIGNSeeieiiiie ettt ettt ettt ettt et e et e e sabe e sabeesbeeebeeebeeesneeesabeeasbeeeanneanns 64
A4.6.2 Provision for Multiple Independent CONtrollers........ ..o 64
A4.7 DISPLAY REFRESH RATES AND INTERLACING.cciiiiieeuutititrtreees eeeeeeeeeeeeaaaannssnssssssses aaaaaaeeseeaaaaaaassnnssssssnns 65
A48 OEM EXTENSIONSTOVBEt et e e e e e e e e e e e e et e e seeeaaaaaeaaeeaeaaaannans 65
A4.9 CERTIFICATION REQUIREMENTS . ..citttttuuiiiiiiieiieiiiessts hassssasseesssssttesssssssssas saaeassssssssssssssssssssssses seeeeesseessssssnes 66
A9, 1 VBETESE ULHITY ettt ettt ettt ettt et e bt e bt e e s et e e s ab e e e shee e smbeesmbeasnneeenneeaneaanns 66
A4.9.2 Communication With VESA OffiCEuuiiiiii ettt e e e e atra e e e e e e e eaannes 66
Page vi VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

APPENDIX 5- APPLICATION PROGRAMMING CONSIDERATIONSccoiiiiiieee e 67

A5.1 APPLICATION DEVELOPER'S SAMPLE SOURCEcciiiiieuuuttttrtteetes eeeeeeeeeeeeaaaaassasssssssses aaaaaaeeesesaaaaaasnnsssssens 67
C LaNQUAGE MOUUIE..........eeeeeee ettt ettt e et e e et e e et e e e be e e bt e e eabe e e beeaneeeneeeanneennneeeannean 67
ASSEMDlY LanNQUAQE MOUUIE........couiieeeeie ettt ettt et e sae e e st e e st e e s abeeeabbeesnbeesnbeeenbeeenneeanns 75

AS5.2 IMPLEMENTATION NOTESBY FUNCTION L. .iiiiiiiiiiitiiiieeieeees ceeeeeessaeeaassstssssseeeeeees aeeaeassaaaannsssssssssnnereees aeeenn 76
AB.2.1 GENEIAI INOLESttt ettt e e e ettt e e e e e e e s ettt aeeeeeeeesasaasaeeaeeseasssbsseeeeeeeanasssseeeeeseennssnnes 76
A5.2.2 Function 00h - Return VBE Controller INformationeeeeeeeieiiiiiieee et 76
A5.2.3 Function 01h - Return VBE Mode INfOrMatioN...........cooiiuiiieieii et eeeinarae e e e e 77
A5.2.4 FUNCioN 02N = SEL VBE MOUE........ccc ittt ettt e ettt e e e e e e e s s aabaeeeeeeeesnnnaseeeeeseeesannnnes 77
A5.2.5 Function 03h - Return CUrrent VBE MOUE..........uuviiieiiieiieiiee ettt e e e e e e e e snabae e e e e e e enannnes 77
A5.2.6 Function 05h - Display WINAOW CONEFOLccueiiiiiiieieeeiee et 78
A5.2.7 Function 06h - Get/Set Logical Scan Line Lengthcooiiiiiiiiiie e 78
A5.2.8 Function 07h - Get/Set DiSPlay SToo ittt b e b e e be e enea e 78
A5.2.9 Function 08h - Set/Get DAC Palette FOrMALveeiiiiiiiiiiieieee et e e e srrre e e e e e e nnnnes 79
AS5.2.10 Function 09h - Set/Get PalEtte Dal@......ceieeceiicirieiee ettt e ettt e e e e e ettt e e e e e e e s sanrsaeeeeeeensnnnes 79
A5.2.11 Function OAh - Return VBE Function INfOrmationeeeeieeieiiiiiieee et e 79

APPENDIX 6 - DIFFERENCESBETWEEN VBE REVISIONSoooiiiiieeeeceees ettt s 81
(ST Y = e 5 IR OO 81
(SISt KOO OO 81
ORIV = OO O PP 81
B.4 WBE 2.0 oottt e e e e e e e ——— e e e e e e e e ————taaeaeeaaai—raeeaaeeaaa——raaaaeeeeaianrrrraeaaeaans 81
B.5 VBE 2.0, REV. L.ttt ettt e e e e ettt e e e e e e e ab b e e e e e e e e e aabaaeeeesaeeesaanbbaeeeeeeeannnrreneaaeeaeaan 82

APPENDIX 7 - RELATED DOCUMENTSttt ettt e ettt e e e e et ae s eeataaeeseeeeasreeeeeeensrees sens 85

VBE CORE FUNCTIONS VERSION 2.0 Page vii

DOCUMENT REVISION 1.2

Introduction

1.0 Introduction

This document contains the VESA BIOS Extension (VBE) specification for standard software
access to graphics display controllers which support resolutions, color depths, and frame
buffer organizations beyond the VGA hardware standard. It isintended for use by both
applications programmers and system software developers.

System software developers may use this document to supplement the System and INT 10h
ROM BIOS functions to provide the VBE services. Application developers can use this
document as a guide to programming all VBE compatible devices.

To understand the VBE specification, some knowledge of 80x86 assembly language and the
V GA hardware registers may be required. However, the services described in this
specification may be called from any high-level programming language that provides a
mechanism for generating software interrupts with the 80x86 registers set to user-specified
values.

In this specification, 'VBE' and 'VBE 2.0' are synonymous with 'VBE Core Functions
version 2.0'.

1.1 Scope of the VBE Standard

The primary purpose of the VESA VBE isto provide standard software support for the many
unigue implementations of Super VGA (SVGA) graphics controllers on the PC platform that
provide features beyond the original VGA hardware standard. Thisisto provide afeasible
mechanism by which application developers can take advantage of this nonstandard hardware
in graphics applications.

The VBE specification offers an extensible software foundation which allows it to evolve as
display and audio devices evolve over time, without sacrificing backward software
compatibility with older implementations. New application software should be able to work
with older hardware, and application software that has already shipped should work correctly
on new hardware devices.

VBE services provide standard access to all resolutions and color depths provided on the
display controller, and report the availability and details of all supported configurations to the
application as necessary.

VBE implementations facilitate the field support of audio and display hardware by providing
the application software with the manufacturer's name and the product identification of the
display hardware.

Since graphics controller services on the PC are typically implemented in ROM, the VBE
services are defined so that they should be implemented within the standard VGA ROM.
When ROM implementations of VBE are not possible, or when field software upgrades to the
onboard ROM are necessary, the VBE implementation may be also offered as a device driver
or DOS Terminate and Stay Resident (TSR) program.

VBE CORE FUNCTIONS VERSION 2.0 Page 1
DOCUMENT REVISION 1.2

Introduction

The standard VBE functions may be supplemented by OEM's as necessary to support custom
or proprietary functions unique to the manufacturer. This mechanism enables the OEM to
establish functions that may be standard to the product line, or provide access to specia
hardware enhancements.

Although previous VBE standards assumed that the underlying graphics architecture was a
V GA device, the display services described by VBE 2.0 can be implemented on any frame
buffer oriented graphics device.

The majority of VBE services facilitate the setup and configuration of the hardware, allowing
applications high performance, direct access to the configured device at runtime. To further
improve the performance of flat frame buffer display devices in extended resolutions, VBE
2.0 provides new memory models that do not require the traditional frame buffer "banking"
mechanisms.

VBE is expected to work on all 80x86 platforms, in real and protected modes.

Since some modern display devices are designed without any VGA support, two display
controllers may be present in the system. One display controller would be used for VGA
compatibility, and the other used for graphic extensions to the basic VGA modes, resolutions,
and frame buffer models. Therefore, VBE must be able offer the application automatic access
to the appropriate device based on the mode or resolution that is requested by the application.

Currently beyond the scope of the VBE specification is the handling of hardware
configuration and installation issues. It was originally considered to become part of VBE 2.0,
however we have deferred the issues to the Graphics Configuration Supplemental
Specification. In addition, it is aso possible for an OEM to define their own extensions using
the OEM Supplemental Specification if required.

1.2 Backgrounder

The IBM VGA* has become a de facto standard in the PC graphics world. A multitude of
different VGA offerings exist in the marketplace, each one providing BIOS or register
compatibility with the IBM VGA. More and more of these VGA compatible products
implement various supersets of the VGA standard. These extensions range from higher
resolutions and more colors to improved performance and even some graphics processing
capabilities. Intense competition has dramatically improved the price/performance ratio, to the
benefit of the end user.

'IBM and VGA are trademarks of International Business Machines Corporation.

Page 2 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Introduction

However, several serious problems face a software developer who intends to take advantage
of these "Super VGA"? environments. Because there is no standard hardware implementation,
the developer is faced with widely different Super VGA hardware architecture. Lacking a
common software interface, designing applications for these environmentsis costly and
technically difficult. Except for applications supported by OEM-specific display drivers, very
few software packages can take advantage of the power and capabilities of Super VGA
products.

The VBE standard was originally conceived to enable the development of applications that
wished to take advantage of display resolutions and color depths beyond the VGA definition.
The need for an application or software standard was recognized by the developers of graphic
hardware to encourage the use and acceptance of their rapidly advancing product families. It
became obvious that the majority of software application developers did not have the
resources to develop and support custom device level software for the hundreds of display
boards on the market. Therefore the rich new features of these display devices were not being
used outside of the relatively small CAD market, and only then after considerable effort.

Indeed, the need for a standard for SVGA display adapters became so important that the
VESA organization was formed to seek out a solution. The original VBE standard was
devised and agreed upon by each of the active display controller manufacturers, and has since
been adopted by DOS application devel opers to enable use of non-VGA extended display
modes.

Astimewent along VBE 1.1 was created to add more video modes and increased logical line
length/double buffering support. VBE 1.2 was created to add modes and also added high
color RAMDAC support.

In the three years since VBE 1.2 was approved we have seen the standard become widely
accepted and many successful programs have embraced VBE. However, it has become
obvious that the need for a more robust and extensible standard exists. Early extensionsto the
V GA standard continued using all of the original VGA /O ports and frame buffer address to
communicate with the controller hardware. Aswe've seen, the supported resolutions and
color depths have grown, intelligent controllers with BITBLT and LineDraw Functions have
become common, and new flat frame buffer memory models have appeared along with
display controllers that are not based on VGA in any way. VBE 2.0 and future extensions
will support non-V GA based controllers with new functions for reading and writing the
palette and for access to the flat frame buffer models.

2 The term "Super VGA" is used in this document for a graphics display controller implementing any superset
of the standard IBM VGA display adapter.

VBE CORE FUNCTIONS VERSION 2.0 Page 3
DOCUMENT REVISION 1.2

Introduction

VBE 2.0, as designed, offers the extensibility and the robustness that was lacking in the
previous specifications, while at the same time offering backwards compatibility.

In the future, we see the need for adding supplemental specifications for issues like
Multimedia; Advanced Graphics Functions; and "Plug and Play" features.

Page 4 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Overview

2.0 VBE Overview
This chapter outlines the various features and limitations of the VBE standard.

2.1 VBE Features
- Standard application interface to Graphics Controllers (SVGA Devices).
Standard method of identifying products and manufacturers.
Provision for OEM extensions through Sub-function 14h.
Simple protected mode interface.
Extensible interface through supplemental specifications.

2.2 VBE Affected Devices

All frame buffer-based devices in the PC platform (with the exception of Hercules,
Monochrome (MDA), CGA and EGA devices) are suitable for use within the VBE standard
to enable access to the device by VBE-compliant applications.

2.3 Providing Vendor Information

The VGA specification does not provide a standard mechanism to determine what graphic
deviceit isrunning on. Only by knowing OEM -specific features can an application determine
the presence of a particular graphics controller or display board. This often involves reading
and testing registers located at 1/0O addresses unique to each OEM. By not knowing what
hardware an application is running on, few, if any, of the extended features of this hardware
can be used.

The VESA BIOS Extension provides several functions to return information about the
graphics environment. These functions return system level information as well as graphics
mode specific details. Function 00h returns general system level information, including an
OEM identification string. The function also returns a pointer to the supported VBE and OEM
modes. Function 01h may be used by an application to obtain additional information about
each supported mode. Function 03h returns the current VBE mode.

VBE CORE FUNCTIONS VERSION 2.0 Page 5
DOCUMENT REVISION 1.2

VBE Mode Numbers

3.0 VBE Mode Numbers

Standard VGA mode numbers are 7 bits wide and presently range from 00h to 13h. OEMs
have defined extended display modes in the range 14h to 7Fh. Values from 80h to FFh cannot
be used, since VGA BIOS Function 00h (Set video mode) interprets bit 7 as aflag to clear or
preserve display memory.

Due to the limitations of 7-bit mode numbers, the optional VBE mode numbers are 14 bits
wide. To initialize aVBE mode, the mode number is passed in the BX register to VBE
Function 02h (Set VBE mode).

The format of VBE mode numbersis as follows:
DO0-D8 = Mode number
If D8 == 0, thisisnot a VESA defined mode
If D8 == 1, thisisa VESA defined mode

D9-D13 = Reserved by VESA for future expansion (= 0)
D14 = Linear/Flat Frame Buffer Select

If D14 == 0, Use VGA Frame Buffer

If D14 == 1, Use Linear/Flat Frame Buffer
D15 = Preserve Display Memory Select

If D15 == 0, Clear display memory
If D14 == 1, Preserve display memory

Thus, VBE mode numbers begin at 100h. This mode numbering scheme implements standard
7-bit mode numbers for OEM-defined modes. Standard VGA modes may be initialized
through VBE Function 02h (Set VBE mode) simply by placing the mode number in BL and
clearing the upper byte (BH). 7-bit OEM-defined display modes may be initialized in the
same way. Note that modes may only be set if the mode existsin the VideoModeL ist pointed
to by the VideoModePTR returned in Function 00h. The exception to this requirement is the
mode number 81FFh.

To date, VESA has defined one special 7-bit mode number, 6Ah, for the 800x600, 16-color,
4-plane graphics mode. The corresponding 15-bit mode number for this mode is 102h.
The following VBE mode numbers have been defined:

GRAPHICS TEXT

15-bit 7-bit Resolution Colors 15-bit 7-bit Columns Rows
mode mode mode mode

number number number number

100h - 640x400 256 108h - 80 60
101h - 640x480 256 109h - 132 25
102h 6Ah 800x600 16 10Ah - 132 43
103h - 800x600 256 10Bh - 132 50
104h - 1024x768 16 10Ch - 132 60
105h - 1024x768 256

106h - 1280x1024 16

107h - 1280x1024 256

Page 6 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

VBE Mode Numbers

GRAPHICS

15-bit 7-bit Resolution Colors
mode mode

number number

10Dh - 320x200 32K (1:5:5:5:)
10Eh - 320x200 64K (5:6:5)
10Fh - 320x200 16.8M (8:8:8)
110h - 640x480 32K (1:5:5:5:)
111h - 640x480 64K (5:6:5)
112h - 640x480 16.8M (8:8:8)
113h - 800x600 32K (1.5:5:5:)
114h - 800x600 64K (5:6:5)
115h - 800x600 16.8M (8:8:8)
116h - 1024x768 32K (1:5:5:5:)
117h - 1024x768 64K (5:6:5)
118h - 1024x768 16.8M (8:8:8)
119h - 1280x1024 32K (1:5:5:5:)
11Ah - 1280x1024 64K (5:6:5)
11Bh - 1280x1024 16.8M (8:8:8)
81FFh Special Mode (see below for details)

Note: Starting with VBE version 2.0, VESA will no longer define new VESA mode numbers
and it will not longer be mandatory to support these old mode numbers. However, it is highly
recommended that BIOS implementations continue to support these mode numbers for
compatibility with older software. VBE 2.0-aware applications should follow the guidelines
in Appendix 5 - Application Programming Considerations - for setting a desired mode.

Note: Mode 81FFh is a special mode designed to preserve the current memory contents and
give access to the entire video memory. This mode is especially useful for saving the entire
video memory contents before going into a state that could lose the contents (e.g., set this
mode to gain access to all video memory to save it before going into a volatile power down
state). This mode is required because the entire video memory contents are not always
accessible in every mode. It is recommended that this mode be packed pixel in format, and a
ModelnfoBlock must be defined for it. However, it should not appear in the VideoModeL ist.
Look in the ModelnfoBlock to determine if paging is required and how paging is supported if
itis. Also note that there are no implied resolutions or timings associated with this mode.

Note: Future display resolutions will be defined by VESA display vendors. The color depths
will not be specified and new mode numbers will not be assigned for these resolutions. For
example, if the VESA display vendors define 1600x1200 as a VESA resolution, application
developers should target their display resolution for 1600x1200 rather than choosing an
arbitrary resolution like 1550x1190. The VBE implementation should be queried to get the
available resolutions and color depths and the application should be flexible enough to work
with thislist. Appendix 5 gives adetailed summary of the way an application should go
about selecting and setting modes.

VBE CORE FUNCTIONS VERSION 2.0 Page 7
DOCUMENT REVISION 1.2

VBE Functions

4.0 VBE Functions

This chapter describes in detail each of the functions defined by the VBE standard. VBE
functions are called using the INT 10h interrupt vector, passing arguments in the 80X 86
registers. The INT 10h interrupt handler first determinesif aVBE function has been
requested, and if so, processes that request. Otherwise control is passed to the standard VGA
BI1OS for completion.

All VBE functions are called with the AH register set to 4Fh to distinguish them from the
standard VGA BIOS functions. The AL register is used to indicate which VBE function is to
be performed. For supplemental or extended functionality the BL register is used when
appropriate to indicate a specific sub-function.

Functions 00h-OFh have been reserved for Standard VBE function numbers; Functions
10h-FFh are reserved for VBE Supplemental Specifications.

In addition to the INT 10h interface, a Protected M ode Interface is available and is described
below.

4.1 VBE Return Status

The AX register is used to indicate the completion status upon return from VBE functions.

If VBE support for the specified function is available, the 4Fh value passed in the AH register
on entry isreturned in the AL register. If the VBE function completed successfully, 00h is
returned in the AH register. Otherwise the AH register is set to indicate the nature of the
failure.

VBE RETURN STATUS

AL ==4Fh: Function is supported

AL !'= 4Fh: Function is not supported

AH ==00h: Function call successful

AH ==01h: Function call failed

AH ==02h: Function is not supported in the current hardware configur ation
AH ==03h: Function call invalid in current video mode

Note: Applications should treat any non-zero value in the AH register as a general failure
condition as later versions of the VBE may define additional error codes.

Page 8 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

4.2 Protected Mode Considerations
VBE services may be called directly from 32-bit protected mode only.

For 32-bit protected mode, 2 selector/segment descriptors for 32-bit code and the data
segment are needed. These will be allocated and initialized by the caller. The segment limit
fields will be set to 64k. These selectors may either beinthe GDT or LDT, but must be valid
whenever the VBE is called in protected mode. The caller must supply a stack large enough
for use by VBE and by potential interrupt handlers. The caller's stack will be active if or when
interrupts are enabled in the VBE routine, since the VBE will not switch stacks when
interrupts are enabled, including NMI interrupts. The 32-bit VBE interface requires a 32-bit
stack.

If the memory location is zero, then only 1/0O mapped ports will be used so the application
does not need to do anything special. This should be the default case for ALL cards that have
I/O mapped registers because it provides the best performance.

If the memory location is nonzero (there can be only one), the application will need to create a
new 32-bit selector with the base address that points to the “physical” location specified with
the specified limit.

When the application needs to call the 32-bit bank switch function, it must then load the

ES selector with the value of the new selector that has been created. The bank switching code
can then directly access its memory mapped registers as absolute offsets into the ES selector
(i.e., mov [es:10],eax to put a value into the register at base+10).

It is up to the application code to save and restore the previous state of the ES selector if this
is necessary (for examplein flat model code).

When the VBE services are called, the current 1/O permission bit map must allow access to
the 1/O ports that the VBE may need to access. This can be found in the Sub-Table (Ports and
Memory) returned by VBE Function OA.

To summarize, it is the responsibility of the calling to ensure to that it has the appropriate 1/0
and memory privileges, and alarge enough stack and appropriate selectors allocated. Itis
also the responsibility of the calling application to preserve registers if necessary.

Applications must use the same registers for the Function 05h and Function 09h protected
mode interface that they would use in areal mode call. Thisincludesthe AX register.

Function 07h protected mode calls have a different format.

AX = 4FQ07h
BL = 00h Set Display CRTC Start
= 80h Set Display CRTC Start during Vertical Retrace
CX = Bits 0-15 of display start address
DX = Bits 16-31 of display start address

VBE CORE FUNCTIONS VERSION 2.0 Page 9
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

The protected mode application must keep track of the color depth and scan line length to
calculate the new start address. If avalue that is out of range is programmed, unpredictable
results will occur.

4.3 Function 00h - Return VBE Controller Information

This required function returns the capabilities of the display controller, the revision level of
the VBE implementation, and vendor specific information to assist in supporting all display
controllersin the field.

The purpose of this function isto provide information to the calling program about the
general capabilities of the installed VBE software and hardware. This function fills an
information block structure at the address specified by the caller. The VbelnfoBlock
information block size is 256 bytes for VBE 1.x, and 512 bytes for VBE 2.0.

4FQ00h Return VBE Controller Information
Pointer to buffer in which to place
VbelnfoBlock structure
(VbeSignature should be set to 'VBEZ2' when
function is called to indicate VBE 2.0 information
isdesired and the information block is 512 bytesin
size.)

I nput: AX
ES:DI

Output: AX = VBE Return Status
Note: All other registers are preserved.
The information block has the following structure:

VbelnfoBlock struc

VbeSignature db 'VESA' ; VBE Signature
VbeVersion dw 0200h ; VBE Version
OemStringPtr dd ? ; Pointer to OEM String
Capabilities db 4 dup (?) ; Capabilities of graphics controller
VideoM odePtr dd ? ; Pointer to VideoM odeL ist
TotalMemory dw ? ; Number of 64kb memory blocks
; Added for VBE 2.0
OemSoftwareRev dw ? ; VBE implementation Software revision
OemV endorNamePtr dd ? ; Pointer to Vendor Name String
OemProductNamePtr dd ? ; Pointer to Product Name String
OemProductRevPtr dd ? ; Pointer to Product Revision String
Reserved db 222 dup (?) ; Reserved for VBE implementation scratch
, area
OembData db 256 dup (?) ; DataAreafor OEM Strings
VbelnfoBlock ends
Page 10 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

Note: All datain this structure is subject to change by the VBE implementation when VBE
Function O0Oh is called. Therefore, it should not be used by the application to store data of any
kind.

Description of the VbelnfoBlock structure fields:

The VbeSignature field isfilled with the ASCII characters 'VESA' by the VBE
implementation.VBE 2.0 applications should preset this field with the ASCII characters
'VBEZ2' to indicate to the VBE implementation that the VBE 2.0 extended information is
desired, and the VbelnfoBlock is 512 bytesin size. Upon return from VBE Function 00h, this
field should always be set to 'VESA' by the VBE implementation.

The VbeVersion isaBCD value which specifies what level of the VBE standard is
implemented in the software. The higher byte specifies the magjor version number. The lower
byte specifies the minor version number.

Note: The BCD value for VBE 2.0 is 0200h and the BCD value for VBE 1.2 is 0102h. In the
past we have had some applications misinterpreting these BCD values. For example, BCD
0102h was interpreted as 1.02, which is incorrect.

The OemStringPtr isaReal Mode far pointer to a null terminated OEM-defined string. This
string may be used to identify the graphics controller chip or OEM product family for
hardware specific display drivers. There are no restrictions on the format of the string. This
pointer may point into either ROM or RAM, depending on the specific implementation. VBE
2.0 BIOS implementations must place this string in the OemData area within the
VbelnfoBlock if 'VBEZ2' is preset in the VbeSignature field on entry to Function 00h. This
makes it possible to convert the RealM ode address to an offset within the VbelnfoBlock for
Protected mode applications.

Note: The length of the OEM String is not defined, but for space considerations, we
recommend a string length of less than 256 bytes.

The Capabilities field indicates the support of specific features in the graphics environment.
The bits are defined as follows:

DO = DAC isfixed width, with 6 bits per primary color

= DAC width is switchable to 8 bits per primary color
D1 = Controller is VGA compatible

= Controller isnot VGA compatible
D2 = Norma RAMDAC operation

= When programming large blocks of information to the RAMDAC,
use the blank bit in Function 09h.
D3-31 = Reserved

VBE CORE FUNCTIONS VERSION 2.0 Page 11
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

BIOS Implementation Note: The DAC must always be restored to 6 bits per primary as
default upon amode set. If the DAC has been switched to 8 bits per primary, the mode set
must restore the DAC to 6 bits per primary to ensure the application developer that he does
not have to reset it.

Application Developer's Note: If aDAC is switchable, you can assume that the DAC will
be restored to 6 bits per primary upon amode set. For an application to use aDAC, the
application program is responsible for setting the DAC to 8 bits per primary mode using
Function 08h.

VGA compatibility is defined as supporting al standard IBM VGA modes, fonts and 1/0
ports; however, VGA compatibility doesn't guarantee that all modes which can be set are
VGA compatible, or that the 8x14 font is available.

The need for D2 = 1 "program the RAMDA C using the blank bit in Function 09h" is for older
style RAMDACSs, where programming the RAM values during display time causes a "snow-
like" effect on the screen. Newer style RAMDACs don't have this limitation and can easily be
programmed at any time, but older RAMDACs require that they be blanked so as not to
display the snow while values change during display time. This bit informs the software that
it should make the function call with BL=80h rather than BL=00h to ensure the minimization
of the "snow-like" effect.

The VideoM odePtr pointsto alist of mode numbersfor all display modes supported by the
VBE implementation. Each mode number occupies one word (16 bits). Thelist of mode
numbersis terminated by a-1 (OFFFFh). The mode numbersin thislist represent al of the
potentially supported modes by the display controller. Refer to Chapter 3 for a description of
VESA VBE mode numbers. VBE 2.0 BIOS implementations must place this mode list in the
Reserved area of the VbelnfoBlock or have it statically stored within the VBE implementation
if 'VBEZ2' is preset in the VbeSignature field on entry to Function 00h.

Note: It isresponsibility of the application to verify the actual availability of any mode
returned by this function through the Return VBE Mode Information (VBE Function 01h)
call. Some of the returned modes may not be available due to the actual amount of memory
physically installed on the display board or due to the capabilities of the attached monitor.

Note: If aVideoModeList isfound to contain no entries (starts with OFFFFh), it can be
assumed that the VBE implementation is a"stub” implementation where only Function 00h is
supported for diagnostic or "Plug and Play" reasons. These stub implementations are not
VBE 2.0 compliant and should only be implemented in cases where no space is available to
implement the entire VBE.

The TotalM emory field indicates the maximum amount of memory physically installed and
available to the frame buffer in 64KB units. (e.g. 256KB =4, 512KB = 8) Not all video
modes can address all this memory, see the ModelnfoBlock for detailed information about the
addressable memory for a given mode.

Page 12 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

The OemSoftwareRev field isaBCD value which specifies the OEM revision level of the
VBE software. The higher byte specifies the maor version number. The lower byte specifies
the minor version number. Thisfield can be used to identify the OEM's VBE software
release. Thisfieldisonly filled in when 'VBEZ2' is preset in the VbeSignature field on entry to
Function 00h.

The OemVendor NamePtr isapointer to anull-terminated string containing the name of the
vendor which produced the display controller board product. (This string may be contained in
the VbelnfoBlock or the VBE implementation.) Thisfieldisonly filled in when 'VBE2' is
preset in the VbeSignature field on entry to Function 00h. (Note: the length of the strings
OemProductRev, OemProductName and OemV endorName (including terminators) summed,
must fit within a 256 byte buffer; thisisto allow for return in the OemData field if necessary.)

The OemProductNamePtr isapointer to anull-terminated string containing the product
name of the display controller board. (This string may be contained in the VbelnfoBlock or
the VBE implementation.) Thisfieldisonly filled in when 'VBEZ2' is preset in the
VbeSignature field on entry to Function 00h. (Note: the length of the strings
OemProductRev, OemProductName and OemV endorName (including terminators) summed,
must fit within a 256 byte buffer; thisisto allow for return in the OemData field if necessary.)

The OemProductRevPtr isapointer to a null-terminated string containing the revision or
manufacturing level of the display controller board product. (This string may be contained in
the VbelnfoBlock or the VBE implementation.) Thisfield can be used to determine which
production revision of the display controller board isinstalled. Thisfieldisonly filled in
when 'VBEZ2' is preset in the VbeSignature field on entry to Function 00h. (Note: the length
of the strings OemProductRev, OemProductName and OemV endorName (including
terminators) summed, must fit within a 256 byte buffer; thisisto allow for return in the
OembDatafield if necessary.)

The Reserved field is a space reserved for dynamically building the VideoModeL.ist if
necessary if the VideoModeL st is not statically stored within the VBE implementation. This
field should not be used for anything else, and may be reassigned in the future. Application
software should not assume that information in thisfield is valid.

The OemData field is a 256 byte data area that is used to return OEM information returned
by VBE Function 00h when 'VBEZ2' is preset in the VbeSignature field. The

OemV endorName string, OemProductName string and OemProductRev string are copied into
this area by the VBE implementation. Thisareawill only be used by VBE implementations
2.0 and above when 'VBEZ2' is preset in the VbeSignature field.

VBE CORE FUNCTIONS VERSION 2.0 Page 13
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

4.4 Function 01h - Return VBE Mode Information

This required function returns extended information about a specific VBE display mode from
the mode list returned by VBE Function 00h. This function fills the mode information block,
ModelnfoBlock, structure with technical details on the requested mode. The M odelnfoBlock
structure is provided by the application with afixed size of 256 bytes.

Information can be obtained for all listed modes in the VideoM odeL ist returned in Function
00h. If the requested mode cannot be used or is unavailable, a bit will be set in the
ModeAttributes field to indicate that the mode is not supported in the current configuration.

I nput: AX =4F0l1h Return VBE mode information

CX = M ode number

ES.DI = Pointer to ModelnfoBlock structure
Output: AX = VBE Return Status

Note: All other registers are preserved.
The mode information block has the following structure:
M odel nfoBlock struc

; Mandatory information for all VBE revisions

M odeAttributes dw ? ; mode attributes
WinAAttributes db ? ; window A attributes
WinBAttributes db ? ; window B attributes
WinGranularity daw ? ; window granularity
WinSize daw ? ; window size

WinA Segment dw ? ; window A start segment
WinB Segment dw ? ; window B start segment
WinFuncPtr dd ? ; pointer to window function
BytesPerScanLine daw ? ; bytes per scan line

; Mandatory information for VBE 1.2 and above
XResolution daw ? . horizontal resolution in pixels or characters®

Y Resolution daw ? ; vertical resolution in pixels or characters
XCharSize db ? ; Character cell width in pixels

Y CharSize db ? ; character cell height in pixels
NumberOfPlanes db ? ; number of memory planes

BitsPerPixel db ? ; bits per pixel

NumberOfBanks db ? ; number of banks

3Pixelsin graphics modes, characters in text modes.

Page 14 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
03h Return Current VBE Mode

MemoryModel db ? ; memory model type
BankSize db ? ; bank sizein KB
NumberOflmagePages db ? ; number of images
Reserved db 1 ; reserved for page function

; Direct Color fields (required for direct/6 and Y UV/7 memory models)

RedMaskSize db ? ; size of direct color red mask in bits
RedFieldPosition db ? ; bit position of Isb of red mask
GreenMaskSize db ? ; size of direct color green mask in bits
GreenFieldPosition db ? ; bit position of Isb of green mask
BlueMaskSize db ? ; size of direct color blue mask in bits
BlueFieldPosition db ? ; bit position of Isb of blue mask
RsvdMaskSize db ? ; size of direct color reserved mask in bits
RsvdFieldPosition db ? ; bit position of Isb of reserved mask
DirectColorM odel nfo db ? ; direct color mode attributes

; Mandatory information for VBE 2.0 and above

PhysBasePtr dd ? ; physical address for flat memory frame buffer
Off ScreenM emOffset dd ? ; pointer to start of off screen memory
OffScreenMemSize dw ? ; amount of off screen memory in 1k units
Reserved db 206 dup (?) ; remainder of ModelnfoBlock

M odel nfoBlock ends
The ModeAttributes field describes certain important characteristics of the graphics mode.

The ModeAttributes field is defined as follows:

DO M ode supported by hardware configuration
M ode not supported in hardware

M ode supported in hardware

1 (Reserved)

TTY Output functions supported by BIOS
TTY Output functions not supported by BIOS
TTY Output functions supported by BIOS
Monochrome/color mode (see note below)
Monochrome mode

Color mode

Mode type

Text mode

Graphics mode

VGA compatible mode

Yes

No

D1
D2

D3

D4

D5

POl PFRPOIHNFPOIHEFPOI I — Ol

VBE CORE FUNCTIONS VERSION 2.0 Page 15
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

D6 VGA compatible windowed memory mode is available
Yes

No

Linear frame buffer mode is available

No

Yes

Reserved

0
1
D7 =
0
1
5

D8-D1

Bit DO is set to indicate that this mode can be initialized in the present hardware
configuration. This bit is reset to indicate the unavailability of a graphics mode if it requires
a certain monitor type, more memory than is physically installed, etc.

Bit D1 was used by VBE 1.0 and 1.1 to indicate that the optional information following the
BytesPerScanLine field were present in the data structure. This information became
mandatory with VBE version 1.2 and above, so D1 is no longer used and should be set to 1.
The Direct Color fields are valid only if the MemoryModel field is set to a6 (Direct Color)
or 7 (YUV).

Bit D2 indicates whether the video BIOS has support for output functions like TTY output,
scroll, etc. inthismode. TTY support is recommended but not required for all extended text
and graphic modes. If bit D2 is set to 1, then the INT 10h BIOS must support all of the
standard output functions listed below.

All of thefollowing TTY functions must be supported when this bit is set:

01 Set Cursor Size

02 Set Cursor Position

06 Scroll TTY window up or Blank Window

07 Scroll TTY window down or Blank Window
09 Write character and attribute at cursor position
OA Write character only at cursor position

OE Write character and advance cursor

Bit D3 is set to indicate color modes, and cleared for monochrome modes.
Bit D4 is set to indicate graphics modes, and cleared for text modes.

Note: Monochrome modes map their CRTC address at 3B4h. Color modes map their CRTC
address at 3D4h. Monochrome modes have attributes in which only bit 3 (video) and bit 4
(intensity) of the attribute controller output are significant. Therefore, monochrome text
modes have attributes of off, video, high intensity, blink, etc. Monochrome graphics modes
are two plane graphics modes and have attributes of off, video, high intensity, and blink.
Extended two color modes that have their CRTC address at 3D4h, are color modes with one
bit per pixel and one plane. The standard VGA modes, 06h and 11h, would be classified as

Page 16 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
03h Return Current VBE Mode

color modes, while the standard V GA modes 07h and OFh would be classified as
monochrome modes.

Bit D5 isused to indicate if the mode is compatible with the VGA hardware registers and I/0
ports. If thisbit is set, then the mode is NOT VGA compatible and no assumptions should be
made about the availability of any VGA registers. If clear, then the standard VGA 1/0O ports
and frame buffer address defined in WinA Segment and/or WinBSegment can be assumed.

Bit D6 isused to indicate if the mode provides Windowing or Banking of the frame buffer
into the frame buffer memory region specified by WinA Segment and WinBSegment. If set,
then Windowing of the frame buffer isNOT possible. If clear, then the device is capable of
mapping the frame buffer into the segment specified in WinA Segment and/or WinB Segment.
(Thisbit isused in conjunction with bit D7, see table following D7 for usage).

Bit D7 indicates the presence of a Linear Frame Buffer memory model. If thisbit is set, the
display controller can be put into a flat memory model by setting the mode (VBE Function
02h) with the Flat Memory Model bit set. (This bit is used in conjunction with bit D6, see
following table for usage)

D7 | D6
Windowed frame buffer only 0 0
n/a 0 1
Both Windowed and Linear* | 1 0
Linear frame buffer only 1 1

The BytesPer ScanL ine field specifies how many full bytes are in each logical scanline.
Thelogical scanline could be equal to or larger than the displayed scanline.

The WinAAttributes and WinBAttributes describe the characteristics of the CPU
windowing scheme such as whether the windows exist and are read/writeable, as follows:

DO Rel ocatable window(s) supported
Single non-relocatable window only
Rel ocatable window(s) are supported
Window readable

Window is not readable

Window is readable

Window writeable

Window is not writeable

Window is writeable

Reserved

D1

D2

POl FRPROI kOl

)
@
)
\I

*Use D14 of the Mode Number to select the Linear Buffer on a mode set (Function 02h).

VBE CORE FUNCTIONS VERSION 2.0 Page 17
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

Even if windowing is not supported (bit DO = O for both Window A and Window B), then an
application can assume that the display memory buffer resides at the location specified by
WinA Segment and/or WinBSegment.

WinGranularity specifies the smallest boundary, in KB, on which the window can be placed
in the frame buffer memory. The value of thisfield is undefined if Bit DO of the appropriate
WinAttributes field is not set.

WinSize specifies the size of the window in KB.

WinASegment and WinBSegment address specify the segment addresses where the
windows are located in the CPU address space.

WinFuncPtr specifies the segment:offset of the VBE memory windowing function. The
windowing function can be invoked either through VBE Function 05h, or by calling the
function directly. A direct call will provide faster access to the hardware paging registers than
using VBE Function 05h, and is intended to be used by high performance applications. If this
fieldisNULL, then VBE Function 05h must be used to set the memory window when paging
is supported. Thisdirect call method uses the same parameters as VBE Function 05h
including AX and for VBE 2.0 implementations will return the correct Return Status.

VBE 1.2 implementations and earlier, did not require the Return Status information to be
returned. For more information on the direct call method, see the notesin VBE Function 05h
and the sample code in Appendix 5.

The XResolution and Y Resolution specify the width and height in pixel elements or
characters for this display mode. In graphics modes, these fields indicate the number of
horizontal and vertical pixelsthat may be displayed. In text modes, these fields indicate the
number of horizontal and vertical character positions. The number of pixel positions for text
modes may be calculated by multiplying the returned X Resolution and Y Resolution values by
the character cell width and height indicated in the XCharSize and Y CharSize fields described
below.

The XChar Size and Y Char Size specify the size of the character cell in pixels. Thisvalueis
not zero based (e.g. XCharSize for Mode 3 using the 9 point font will have avalue of 9).

The Number OfPlanes field specifies the number of memory planes available to software in
that mode. For standard 16-color VGA graphics, this would be set to 4. For standard packed
pixel modes, the field would be set to 1. For 256-color non-chain-4 modes, where you need
to do banking to address all pixels, this value should be set to the number of banks required to
get to all the pixels (typically thiswould be 4 or 8).

The BitsPer Pixel field specifies the total number of bits allocated to one pixel. For example,
a standard VGA 4 Plane 16-color graphics mode would have a4 in thisfield and a packed
pixel 256-color graphics mode would specify 8 in thisfield. The number of bits per pixel per
plane can normally be derived by dividing the BitsPerPixel field by the NumberOfPlanes
field.

Page 18 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
03h Return Current VBE Mode

The MemoryM odel field specifies the general type of memory organization used in this
mode. The following models have been defined:

00h = Text mode

0lh = CGA graphics

02h = Hercules graphics

03h = Planar

04h = Packed pixel

05h = Non-chain 4, 256 color
o6h = Direct Color

07h = YUV

08h-OFh = Reserved, to be defined by VESA
10h-FFh = To be defined by OEM

VBE Version 1.1 and earlier defined Direct Color graphics modes with pixel formats 1:5:5:5,
8:8:8, and 8:8:8:8 as a Packed Pixel model with 16, 24, and 32-bits per pixel, respectively. In
VBE Version 1.2 and later, the Direct Color modes use the Direct Color memory model and
use the MaskSize and FieldPosition fields of the ModelnfoBlock to describe the pixel format.
BitsPerPixel is always defined to be the total memory size of the pixel, in bits.

Number OfBanks. Thisisthe number of banksin which the scan lines are grouped. The
quotient from dividing the scan line number by the number of banks is the bank that contains
the scan line and the remainder is the scan line number within the bank. For example, CGA
graphics modes have two banks and Hercules graphics mode has four banks. For modes that
don't have scanline banks (such as VGA modes 0Dh-13h), thisfield should be set to 1.

The BankSize field specifies the size of a bank (group of scan lines) in units of 1 KB. For
CGA and Hercules graphics modes thisis 8, as each bank is 8192 bytes in length. For modes
that do not have scanline banks (such as VGA modes ODh-13h), this field should be set to 0.

The Number Ofl magePages field specifies the "total number minus one (-1)"of complete
display images that will fit into the frame buffer memory. The application may load more than
one image into the frame buffer memory if thisfield is non-zero, and move the display
window within each of those pages. This should only be used for determining the additional
display pages which are available to the application; to determine the available off screen
memory, use the Off ScreenM emOffset and Off ScreenM emSize information.

Note: If the ModelnfoBlock isfor an IBM Standard VGA mode and the
NumberOflmagePages field contains more pages than would be found in a 256K B
implementation, the TTY support described in the ModeAttributes must be accurate. i.e., if
the TTY functions are claimed to be supported, they must be supported in all pages, not just
the pages normally found in the 256K B implementation.

The Reserved field has been defined to support a future VBE feature and will always be set to
oneinthisversion.

VBE CORE FUNCTIONS VERSION 2.0 Page 19
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

The RedM askSize, GreenM ask Size, BlueM ask Size, and RsvdM ask Size fields define the
size, in bits, of the red, green, and blue components of a direct color pixel. A bit mask can be
constructed from the MaskSize fields using simple shift arithmetic. For example, the
MaskSize values for a Direct Color 5:6:5 mode would be 5, 6, 5, and O, for the red, green,
blue, and reserved fields, respectively. Note that in the YUV MemoryModel, thered field is
used for V, the green field isused for Y, and the blue field is used for U. The MaskSize fields
should be set to 0 in modes using a memory model that does not have pixels with component
fields.

The RedFieldPosition, GreenFieldPosition, BlueFieldPosition, and RsvdFieldPosition
fields define the bit position within the direct color pixel or YUV pixel of the least significant
bit of the respective color component. A color value can be aligned with its pixel field by
shifting the value left by the FieldPosition. For example, the FieldPosition values for a Direct
Color 5:6:5 mode would be 11, 5, 0, and 0O, for the red, green, blue, and reserved fields,
respectively. Note that in the YUV MemoryModel, the red field is used for V, the green field
isused for Y, and the blue field is used for U. The FieldPosition fields should be set to O in
modes using a memory model that does not have pixels with component fields.

The DirectColor M odel nfo field describes important characteristics of direct color modes.
Bit DO specifies whether the color ramp of the DAC isfixed or programmable. If the color
ramp is fixed, then it can not be changed. If the color ramp is programmable, it is assumed
that the red, green, and blue lookup tables can be loaded by using VBE Function 09h. Bit D1
specifies whether the bits in the Rsvd field of the direct color pixel can be used by the
application or are reserved, and thus unusable.

Bitsin Rsvd field are reserved
Bitsin Rsvd field are usable by the application

DO = Color ramp is fixed/programmable
0= Color ramp isfixed
1= Color rampis programmable

D1 = Bitsin Rsvd field are usable/reserved
0
1

The PhysBasePtr is a 32-bit physical address of the start of frame buffer memory when the
controller isin flat frame buffer memory mode. If this mode is not available, then this field
will be zero.

The OffScreenM emOffset isa 32-bit offset from the start of the frame buffer memory. Extra
off-screen memory that is needed by the controller may be located either before or after this
off screen memory, be sure to check Off ScreenMemSize to determine the amount of off-
screen memory which is available to the application.

The OffScreenM emSize contains the amount of available, contiguous off-screen memory in
1k units, which can be used by the application.

Page 20 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
03h Return Current VBE Mode

Note: Version 1.1 and later VBE will zero out all unused fields in the Mode Information
Block, always returning exactly 256 bytes. This facilitates upward compatibility with future
versions of the standard, as any newly added fields will be designed such that values of zero
will indicate nominal defaults or non-implementation of optional features. (For example, a
field containing a bit-mask of extended capabilities would reflect the absence of all such
capabilities.) Applications that wish to be backwards compatible to Version 1.0 VBE should
pre-initialize the 256 byte buffer before calling the Return VBE Mode Information function.

4.5 Function 02h - Set VBE Mode

This required function initializes the controller and setsa VBE mode. The format of VESA
VBE mode numbersis described earlier in this document. If the mode cannot be set, the BIOS
should leave the graphics environment unchanged and return afailure error code.

Input: AX = 4F02h Set VBE Mode
BX = Desired Mode to set
D0-D8= M ode number

D9-D13= Reserved (must be 0)
D14 =0 Usewindowed frame buffer model
=1 Uselinear/flat frame buffer model
D15 = Clear display memory
=1 Don' clear display memory

Output: AX = VBE Return Status
Note: All other registers are preserved.

If the requested mode number is not available, then the call will fail, returning AH=01h to
indicate the failure to the application.

If bit D14 is set, the mode will be initialized for use with a flat frame buffer model. The base
address of the frame buffer can be determined from the extended mode information returned
by VBE Function 01h. If D14 is set, and alinear frame buffer model is not available then the
cal will fail.

If bit D15 is not set, all reported image pages, based on Function 00h returned information
NumberOflmagePages, will be cleared to 00h in graphics mode, and 20 07 in text mode.
Memory over and above the reported image pages will not be changed. If bit D15 is set, then
the contents of the frame buffer after the mode change is undefined. Note, the 1-byte mode
numbers used in Function 00h of an IBM VGA compatible BIOS use D7 to signify the same
thing as D15 does in this function. If function call D7 is set and the application assumesit is
similar to the IBM compatible mode set using VBE Function 02h, the implementation will
fail. VBE aware applications must use the memory clear bit in D15.

Note: VBE BIOS 2.0 implementations should also update the BIOS Data Area 40:87 memory
clear bit so that VBE Function 03h can return thisflag. VBE BIOS 1.2 and earlier
implementations ignore the memory clear bit.

VBE CORE FUNCTIONS VERSION 2.0 Page 21
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

Note: Thiscall should not set modes not listed in the list of supported modes. In addition all
modes (including IBM standard VGA modes), if listed as supported, must have
ModelnfoBlock structures associated with them. Required ModelnfoBlock values for the
IBM Standard Modes are listed in Appendix 2.

4.6 Function 03h - Return Current VBE Mode
This required function returns the current VBE mode. The format of VBE mode numbersis
described earlier in this document.

I nput: AX =4F03h Return current VBE Mode
Output: AX = VBE Return Status
BX = Current VBE mode

D0O-D13 = Mode number

D14 =0 Windowed frame buffer model
=1 Linear/flat frame buffer model

D15 =0 Memory cleared at last mode set
=1 Memory not cleared at last mode set

Note: All other registers are preserved.

Version 1.x Note: In astandard VGA BIOS, Function OFh (Read current video state) returns
the current graphics mode in the AL register. In D7 of AL, it also returns the status of the
memory clear bit (D7 of 40:87). Thisbit is set if the mode was set without clearing memory.
In this VBE function, the memory clear bit will not be returned in BX since the purpose of the
function is to return the video mode only. If an application wants to obtain the memory clear
bit, it should call the standard VGA BIOS Function OFh.

Version 2.x Note: Unlike version 1.x VBE implementations, the memory clear flag will be
returned. The application should NOT call the standard VGA BI1OS Function OFh if the mode
was set with VBE Function 02h.

Note: The mode number returned must be the same mode number used in the VBE Function
02h mode set.

Note: Thisfunction is not guaranteed to return an accurate mode value if the mode set was
not done with VBE Function 02h.

Page 22 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
07h Set/Get Display Start

4.7 Function 04h - Save/Restore State

This required function provides a complete mechanism to save and restore the display
controller hardware state. The functions are a superset of the three subfunctions under the
standard VGA BIOS Function 1Ch (Save/restore state) which does not guarantee that the
extended registers of the video device are saved or restored. The complete hardware state
(except frame buffer memory) should be saveable/restorable by setting the requested states
mask (in the CX register) to 000Fh.

Input: AX =4F04h Save/Restore State
DL =00h Return Save/Restore State buffer size
=01h Save state
=02h Restore state
CX = Requested states
DO= Save/Restore controller hardware state
D1= Save/Restore BIOS data state
D2= Save/Restore DAC state
D3= Save/Restore Register state
ES:BX = Pointer to buffer (if DL <> 00h)
Output: AX VBE Return Status

BX Number of 64-byte blocks to hold the state

buffer (if DL=00h)
Note: All other registers are preserved.

4.8 Function 05h - Display Window Control

This required function sets or gets the position of the specified display window or page in the
frame buffer memory by adjusting the necessary hardware paging registers. To use this
function properly, the software should first use VBE Function 01h (Return VBE Mode
information) to determine the size, location and granularity of the windows.

For performance reasons, it may be more efficient to call this function directly, without
incurring the INT 10h overhead. VBE Function 01h returns the segment:offset of this
windowing function that may be called directly for thisreason. Note that a different entry
point may be returned based upon the selected mode. Therefore, it is necessary to retrieve
this segment:offset specifically for each desired mode.

Input: AX =4F05h VBE Display Window Control
BH =00h Set memory window
=01h Get memory window
BL = Window number
=00h Window A
=01h Window B
DX = Window number in video memory in window

granularity units (Set Memory Window only)

VBE CORE FUNCTIONS VERSION 2.0 Page 23
DOCUMENT REVISION 1.2

VBE Functions
00h Return VBE Controller Information

Output: AX
DX

VBE Return Status
Window number in window granularity units
(Get Memory Window only)

Note: In VBE 1.2 implementations, the direct far call version returns no Return Status
information to the application. Also, in the far call version, the AX and DX registers will be
destroyed. Therefore if AX and/or DX must be preserved, the application must do so prior to
making the far call. The application must still load the input argumentsin BH, BL, and DX
(for Set Window). In VBE 2.0 implementations, the BIOS will return the correct Return
Status, and therefore the application must assume that AX and DX will be destroyed.

Application Developer's Note: Thisfunction is not intended for use in alinear frame buffer
mode, if this function is requested, the function call will fail with the VBE Completion code
AH=03h.

VBE BIOS Implementation Note: If thisfunction iscalled whilein alinear frame buffer
memory model, this function must fail with completion code AH=03h.

4.9 Function 06h - Set/Get Logical Scan Line Length

This required function sets or gets the length of alogical scan line. This allows an application
to set up alogical display memory buffer that is wider than the displayed area. VBE Function
07h (Set/Get Display Start) then allows the application to set the starting position that is to be
displayed.

Input: AX =4F06h VBE Set/Get Logical Scan Line Length
BL =00h Set Scan Line Length in Pixels
=01h Get Scan Line Length
=02h Set Scan Line Length in Bytes
=03h Get Maximum Scan Line Length
CX = If BL=00h Desired Width in Pixels

If BL=02h Desired Width in Bytes
(Ignored for Get Functions

Output: AX = VBE Return Status
BX = Bytes Per Scan Line
CcX = Actual Pixels Per Scan Line
(truncated to nearest complete pixel)
DX = Maximum Number of Scan Lines

Note: The desired width in pixels or bytes may not be achievable because of hardware
considerations. The next larger value will be selected that will accommodate the desired
number of pixels or bytes, and the actual number of pixelswill be returned in CX. BX returns
avalue that when added to a pointer into display memory will point to the next scan line. For
example, in VGA mode 13h this would be 320, but in mode 12h this would be 80. DX
returns the number of logical scan lines based upon the new scan line length and the total
memory installed and usable in this display mode.

Page 24 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
07h Set/Get Display Start

Note: Thisfunctionisalso valid in VBE supported text modes. In VBE supported text
modes the application should convert the character line length to pixel line length by getting
the current character cell width through the X CharSize field returned in Model nfoBlock,
multiplying that times the desired number of characters per line, and passing that value in the
CX register. In addition, this function will only work if the line length is specified in
character granularity. i.e. in 8 dot modes only multiples of 8 will work. Any value whichis
not in character granularity will result in afunction call failure.

Note: On afailure to set scan line length by setting a CX value too large, the function will
fail with error code 02h.

Note: The value returned when BL=03h is the lesser of either the maximum line length that
the hardware can support, or the longest scan line length that would support the number of
linesin the current video mode.

4.10 Function 07h - Set/Get Display Start

This required function selects the pixel to be displayed in the upper left corner of the display.
This function can be used to pan and scroll around logical screens that are larger than the
displayed screen. This function can also be used to rapidly switch between two different
displayed screens for double buffered animation effects.

Input: AX =4F07h VBE Set/Get Display Start Control
BH =00h Reserved and must be 00h
BL =00h Set Display Start
=01h Get Display Start
=80h Set Display Start during Vertical Retrace
cX = First Displayed Pixel In Scan Line

(Set Display Start only)

DX = First Displayed Scan Line (Set Display Start only)
Output: AX = VBE Return Status

BH = 00h Reserved and will be O (Get Display Start only)

cX = First Displayed Pixel In Scan Line (Get Display Start only)

DX = First Displayed Scan Line (Get Display Start only)

Note: Thisfunctionisalso valid in text modes. To use this function in text mode, the
application should convert the character coordinates to pixel coordinates by using XCharSize
and Y CharSize returned in the ModelnfoBlock. If the requested Display Start coordinates do
not allow for afull page of video memory or the hardware does not support memory
wrapping, the Function call should fail and no changes should be made. Asageneral case,

if arequested Display Start is not available, fail the Function call and make no changes.

Note: CX and DX, for both input and output values, will be zero-based.

VBE CORE FUNCTIONS VERSION 2.0 Page 25
DOCUMENT REVISION 1.2

VBE Functions
OAh Return VBE Protected Mode Interface

4.11 Function 08h - Set/Get DAC Palette Format

This required function manipulates the operating mode or format of the DAC palette. Some
DACs are configurable to provide 6 bits, 8 bits, or more of color definition per red, green, and
blue primary colors. The DAC palette width is assumed to be reset to the standard VGA
value of 6 bits per primary color during any mode set.

Input: AX =4F08h VBE Set/Get Palette Format
BL =00h Set DAC Palette Format
=01h Get DAC Palette Format
BH = Desired bits of color per primary

(Set DAC Palette Format only)

VBE Return Status
Current number of bits of color per primary

Output: AX
BH

An application can determine if DAC switching is available by querying Bit DO of the
Capabilities field of the VbelnfoBlock structure returned by VBE Function 00h (Return
Controller Information). The application can then attempt to set the DAC pal ette width to the
desired value. If the display controller hardware is not capable of selecting the requested
palette width, then the next lower value that the hardware is capable of will be selected.

The resulting palette width is returned.

This function will return failure code AH=03h if called in adirect color or YUV mode.

4.12 Function 09h - Set/Get Palette Data

This required function is very important for RAMDAC's which are larger than a standard
VGA RAMDAC. Thestandard INT 10h BIOS Palette function calls assume standard VGA
ports and VGA palette widths. This function offers a palette interface that is independent of
the VGA assumptions.

Input: AX =4F0%h VBE Load/Unload Palette Data
BL =00h Set Palette Data
=01h Get Palette Data
=02h Set Secondary Palette Data
=03h Get Secondary Palette Data
= 80h Set Palette Data during Vertical Retrace

with Blank Bit on

CX = Number of palette registers to update (to a
maximum of 256)
DX = First of the palette registers to update (start)
ES.DI = Table of palette values (see below for format)
Output: AX = VBE Return Status
Page 26 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

VBE Functions
OAh Return VBE Protected Mode Interface

Format of Palette Values.Alignment byte, Red byte, Green byte, Blue byte

Note: The need for BL= 80h isfor older style RAMDAC's where programming the RAM
values during display time causes a "snow-like" effect on the screen. Newer style
RAMDAC's don't have this limitation and can easily be programmed at any time, but older
RAMDAC's require that they be programmed during a non-display time only to stop the snow
like effect seen when changing the DAC values. When thisis requested the VBE
implementation will program the DAC with blanking on. Check D2 of the Capabilities field
returned by VBE Function 00h to determine if 80h should be used instead of 00h.

Note: The need for the secondary palette is for anticipated future palette extensions, if a
secondary palette does not exist in aimplementation and these calls are made, the VBE
implementation will return error code 02h.

Note: Whenin 6 bit mode, the format of the 6 bitsis LSB, thisis done for speed reasons, as
the application can typically shift the data faster than the BIOS can.

Note: All application should assume the DAC is defaulted to 6 bit mode. The application is
responsible for switching the DAC to higher color modes using Function 08h.

Note: Query VBE Function 08h to determine the RAMDA C width before loading a new
palette.

4.13 Function OAh - Return VBE Protected Mode Interface

This required function call returns a pointer to a table that contains code for a 32-bit protected
mode interface that can either be copied into local 32-bit memory space or can be executed
from ROM providing the calling application sets all required selectors and |/O access
correctly. This function returns a pointer (in real mode space) with offsets to the code
fragments, and additionally returns an offset to a table which contains Non-VGA Port and
Memory locations which an Application may have to have I/O access to.

Input: AX =4FO0Ah VBE 2.0 Protected Mode Interface
BL =00h Return protected mode table
Output: AX = Status
ES = Real Mode Segment of Table
DI = Offset of Table

CX Length of Table including protected mode code in bytes

(for copying purposes)

VBE CORE FUNCTIONS VERSION 2.0 Page 27
DOCUMENT REVISION 1.2

VBE Functions
OAh Return VBE Protected Mode Interface

The format of thetableis as follows:

ES:DI + 00h Word Offset in table of Protected mode code for
Function 5 for Set Window Call

ES:DI + 02h Word Offset in table of Protected mode code for
Function 7 for set Display Start

ES:DI + 04h Word Offset in table of Protected mode code for
Function 9 for set Primary Palette data

ES.DI + 06h Word Offset in table of Ports and Memory Locations

that the application may need I/O privilege for.
(Optional: if unsupported this must be 0000h)
(See Sub-table for format)

ES.DI +? Variable remainder of Table including Code

The format of the Sub-Table (Ports and Memory locations)

Port, Port, ..., Port, Terminate Port List with FF FF, Memory locations (4 bytes),
Length (2 bytes), Terminate Memory List with FF FF.

Example 1. For Port/Index combination 3DE/Fh and Memory locations DESO0-DEA 00h

(Ilength = 200h) the table would look like this:
DE 03 DF 03 FF FF 00 E8 OD 00 00 02 FF FF

Example 2. For only the ports it would look like:
DE 03 DF 03 FF FF FF FF

Example 3. For only the memory locations it would look like
FF FF 00 E8 OD 00 00 02 FF FF

Note:. All protected mode functions should end with a near RET (as opposed to FAR RET) to
allow the application software to CALL the code from within the ROM.

Note: The Port and Memory location Sub-table does not include the Frame Buffer Memory
location. The Frame Buffer Memory location is contained within the M odel nfoBlock
returned by VBE Function 01h.

Note: The protected mode code is assembled for a 32-bit code segment, when copying it, the
application must copy the code to a 32-bit code segment.

Note: Itistheresponsibility of the application to ensure that the selectors and segments are
set up correctly.

If the memory location is zero, then only 1/0O mapped ports will be used so the application
does not need to do anything special. This should be the default case for ALL cards that have
I/O mapped registers because it provides the best performance.

Page 28 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Functions
OAh Return VBE Protected Mode Interface

If the memory location is nonzero (there can be only one), the application will need to create a
new 32-bit selector with the base address that points to the “physical” location specified with
the specified limit.

When the application needs to call the 32-bit bank switch function, it must then load the

ES selector with the value of the new selector that has been created. The bank switching code
can then directly access its memory mapped registers as absol ute offsets into the ES selector
(i.e., mov [es:10],eax to put avalue into the register at base+10).

It is up to the application code to save and restore the previous state of the ES selector if this
is necessary (for examplein flat model code).

Note: Currently undefined registers may be destroyed with the exception of ESI, EBP, DS
and SS.

Note: Applications must use the same registers for the Function 05h and Function 09h
protected mode interface that it would usein areal mode call. Thisincludesthe AX register.

Note: Function 07h protected mode calls have a different format.

AX = 4FQ07h
BL = 00h Set Display CRTC Start
= 80h Set Display CRTC Start during Vertical Retrace
CX = Bits 0-15 of display start address
DX = Bits 16-31 of display start address

The protected mode application must keep track of the color depth and scan line length to
calculate the new start address. If avalue that is out of range is programmed, unpredictable
results will occur.

Note: Refer to Section 4.2 for information on protected mode considerations.

VBE CORE FUNCTIONS VERSION 2.0 Page 29
DOCUMENT REVISION 1.2

VBE Supplemental Specifications

5.0 VBE Supplemental Specifications
This chapter details VBE Supplemental Specifications.

5.1 Purpose of Supplemental Specifications

The VBE was originally designed to provide a device-independent interface between
application software and SV GA hardware. In the last few years, the personal computing
environment has grown much more complex and there have been numerous requests to
provide interfaces similar to the VBE to service these new requirements. The VBE
supplemental specification architecture provides a way to extend the basic VBE specification
without making it too unwieldy or having to revise the VBE specification itself.

The supplemental specifications are implemented using VBE function numbers starting at
AL=10h. Thisleaves the first sixteen functions available for eventual VBE growth. Individual
calls for each supplemental specification are made through a subfunction number viathe BL
register. This function/subfunction architecture is compatible with the VBE and provides each
VBE Supplemental Specification with 64 potential subfunctions. Subfunction 00h for each
supplemental specification isreserved for a'Return VBE Supplemental Specification
Information' call. It is based on the VBE Function 00h and returns basic information on the
VBE Supplemental Specification implementation.

5.2 Obtaining Supplemental VBE Function Numbers

VBE Supplemental Specifications can only be created by VESA committees. Once a need for
a new software specification has been identified, the group working on it needs to contact the
VESA Software Standards Committee (SSC) to discuss the requirements. The SSC will assign
a function number and name to the supplemental specification. The name assigned to a
supplemental specification will be in the form of 'VBE/??? where the '??? isatwo or three
letter acronym for its function. Two letter acronyms will be padded with FFh for the third
letter. In some cases the committee that is working on the supplemental specification may
have another name that they will use for promotional purposes, however the VBE/??? will
continue to be the signature.

The VBE specification will be revised periodically to update the list of supplemental
specifications. To obtain the actual specifications, contact the VESA office.

Page 30 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Supplemental Specifications

5.3 Required VBE Supplemental Specification Components

5.3.1 VBE Supplemental Specification Functions

All VBE Supplemental Specification functions are called with the AH register set to 4Fh to
identify them as VBE function calls. The AL register is used to specify which VESA function
the supplemental specificationisusing. The BL register will contain the subfunction number
for the call being made, BH will contain the sub-subfunction number if necessary.

eg., Input: AX =4FXXh VESA Supplemental VBE Specification
("XX" represents the function number for the
supplemental specification)
BL =7 Subfunction
BH =72 Sub-subfunction

5.3.2 Return Status
All VBE Supplemental Specifications will use the VBE Completion codes as documented in
Section 4.1 of the VBE specification.

5.3.3 Subfunction 00h - Return VBE Supplemental Specification Information

This subfunction returns the capabilities, revision level, and vendor specific information of
the supplemental specification, and is arequired function for any VBE 2.x Supplemental
Specification.

The purpose of this subfunction is to provide information to the calling program about the
general capabilities of the installed VBE software and hardware. This subfunction fills an
information block structure at the address specified by the caller. The SupVBEInfoBlock
information block size is 256 bytes.

Input: AX =4FXXh Return Supplemental VBE Specification Information
("XX" represents the function number for the
supplemental specification)

BL =00h Subfunction '0'
ESDI = Pointer to buffer in which to place
SupVBEInfoBlock structure
Output: AX = VBE Return Status

Other registers may be defined for input and output based upon the particular requirements of
supplemental specifications

When writing supplemental functions, explicitly state which registers are preserved and which
are destroyed. Refrain from preserving all registers as this tends to limit expandability in the
future. An example of the noteis:

Note: Currently undefined registers may be destroyed with the exception of SI,BP,DS
and SS.

VBE CORE FUNCTIONS VERSION 2.0 Page 31
DOCUMENT REVISION 1.2

VBE Supplemental Specifications

The information block has the following structure:

SupVbel nfoBlock struc
SupVbeSignature db 'VBE/??? ; Supplemental VBE Signature

SupVbeVersion dw ? ; Supplemental VBE Version

SupV beSubFunc db 8 dup (?) ; Bitfield of supported subfunctions
OemSoftwareRev dw ? ; OEM Software revision

OemV endorNamePtr dd ? ; Pointer to Vendor Name String
OemProductNamePtr dd ? ; Pointer to Product Name String
OemProductRevPtr dd ? ; Pointer to Product Revision String
OemStringPtr dd ? ; Pointer to OEM String

Reserved db 221 dup (?) ; Reserved for description strings and future

; expansion
SupVbel nfoBlock ends

Note: All datain this structure is subject to change by the VBE implementation when any
VBE Subfunction 00h is called. Therefore it should not be used by the application to store
data of any kind.

Description of the SupVbel nfoBlock structure fields:

The SupVbeSignature field is filled with the ASCII characters 'VBE/' followed by the two or
three letter acronym that represents the supplemental specification. Thisfield isfilled by the
supplementary VBE implementation. In the event that the acronym is only two letters, the
third letter must be filled with FFh.

The SupVbeVersion isaBCD vaue which specifies what level of the VBE supplementary
specification isimplemented in the software. The higher byte specifies the maor version
number. The lower byte specifies the minor version number.

Note: The BCD value for 2.0 is 0200h and the BCD value for 1.2 is 0102h. In the past we
have had some applications misinterpreting these BCD values. For example, BCD 0102h was
interpreted as 1.02, which isincorrect.

The SupVbeSubFunc isabitfield that represents the subfunctions available for the
supplementary specification. If the bit representing a particular subfunction is set, then that
subfunction is supported. Subfunction '0' is represented by the LSB of the first byte and the
other subfunctions follow. Only bits for subfunctions defined in the specification need to be
set.

The OemStringPtr isaRea Mode far pointer to a null-terminated OEM-defined string. This
string may used to identify the graphics controller chip or OEM product family for hardware
specific display drivers. There are no restrictions on the format of the string. This pointer may
point into either ROM or RAM, depending on the specific implementation.

Page 32 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Supplemental Specifications

The OemSoftwar eRev field isa BCD value which specifies the OEM revision level of the
Supplemental Specification software. The higher byte specifies the maor version number.
The lower byte specifies the minor version number. Thisfield can be used to identify the
OEM's VBE software release.

The OemVendor NamePtr isaReal Mode far pointer to a null-terminated OEM -defined
string containing the name of the vendor who produced the display controller board product.

The OemProductNamePtr isaRea Mode far pointer to a null-terminated OEM -defined
string containing the product name of the display controller board.

The OemProductRevPtr isaReal Mode far pointer to a null-terminated OEM-defined string
containing the revision or manufacturing level of the display controller board product. This
field can be used to determine which production revision of the display controller board is
installed.

5.4 Supplemental Specification Protected Mode Guidelines

VBE Supplemental Specifications may wish to incorporate 32-bit protected mode interfaces
based upon the 32-bit protected mode interface in VBE 2.0. The guidelines for this are
simple.

Input: AX =4FXXh Supplemental Specification Function Number
BL =XX Return 32-bit protected mode interface table
Output: AX = Status
ES = Real Mode Segment of Table
DI = Offset of Table
CX = Length of Table including protected mode code

(for copying purposes)

The format of the table should be as follows:

ES.DI + 00h Word Offset in table of Protected mode code for
first function
ES.DI + (n*2) Word Offset in table of Protected mode code for
nth function
ES:DI +? Word Offset in table of Ports and Memory Locations

that the application may need I/O privilege for
(Optional: if unsupported this must be 0000h)
(See Sub-table for format)

ES:DI +? Variable remainder of Table including Code

VBE CORE FUNCTIONS VERSION 2.0 Page 33
DOCUMENT REVISION 1.2

VBE Supplemental Specifications

The format of the Sub-Table (Ports and Memory locations)

Port, Port, ..., Port, Terminate Port List with FF FF, Memory locations (4 bytes),
Length (2 bytes), Terminate Memory List with FF FF.

Example 1. For Port/Index combination 3DE/Fh and Memory locations DES00-DEA 00h

(length = 200h) the table would look like this:
DE 03 DF 03 FF FF 00 E8 OD 00 00 02 FF FF

Example 2. For only the ports it would look like:
DE 03 DF 03 FF FF FF FF

Example 3. For only the memory locations it would look like
FF FF 00 E8 OD 00 00 02 FF FF

Note:. All protected mode functions should end with a near RET (as opposed to FAR RET) to
allow the application software to CALL the code from within the ROM.

Note: The protected mode code should be assembled for a 32-bit code segment, when
copying it, the application must copy the code to a 32-bit code segment.

Note: Itistheresponsibility of the application to ensure that the selectors and segments are
set up correctly.

Note: Currently undefined registers may be destroyed with the exception of ESI, EBP, DS
and SS.

In developing a supplemental specification, ensure that both the application developer and the
VBE/XXX implementors are aware of which portion of the function is supported, i.e., if a
function supports both a Get and a Set function, spell out which is supported, the Get, the Set
or both.

5.5 Loading Supplemental Drivers

VBE Supplemental Specifications can be implemented in ROM, TSR programs or as device
drivers. The specific requirements will vary depending on the individual supplementary
specification. If there are any specific requirements, they should be detailed in the
supplementary specification.

5.6 Implementation Questions

When developing a new supplemental specification, implementation questions whether they
are covered in this guideline or not, should be referred to the VESA Software Standards
Committee for clarification. The chairman of the SSC can be contacted through VESA office.

Page 34 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Supplemental Specifications

5.7 Known Supplemental Specifications

5.7.1 Function 10h - Power Management Extensions (PM)
This optional function controls the power state of the attached display device or monitor.
Refer to the VBE/PM Standard for specifics.

5.7.2 Function 11h - Flat Panel Interface Extensions (FP)

This proposed optional supplemental specification allows access to the special features
incorporated in Flat Panel controllers. There is no reference specification at the time of this
standard's approval. Contact the VESA office for more information.

5.7.3 Function 12h - Cursor Interface Extensions (Cl)

This proposed optional function provides services for Hardware Cursors and Pointing
Devices. At thistime, thisisin development. Thereisno reference specification at the time
of this standard's approval, contact the VESA office for more information.

5.7.4 Function 13h - Audio Interface Extensions (Al)
This optional function provides standard Audio services.
Refer to the VBE/AI Standard for specifics.

5.7.5 Function 14h - OEM Extensions

This optional supplemental function provides OEM's with a code dispatch area that falls under
the VESA 4Fh functions. An OEM may use this area at their own risk. VESA states no
warranties or guarantees about the function calls contained within this area.

5.7.6 Function 15h - Display Data Channel (DDC)
This optional function provides a mechanism to extract data from attached display devices on
the VESA communication channel. Refer to the VBE/DDC Standard for specifics.

5.7.7 Function 16h - Graphics System Configuration (GC)

This proposed supplemental function provides a mechanism for system level servicesto set
up Monitor Timings, Linear Frame Buffer addresses etc., i.e. system level calls that
applications should not deal with . There is no reference specification at the time of this
standard's approval. Contact the VESA office for more information.

VBE CORE FUNCTIONS VERSION 2.0 Page 35
DOCUMENT REVISION 1.2

VBE Quick Reference

Appendix 1 - VBE Quick Reference

I nput: AX
ES:DI

4FQ00h Return VBE Controller Information
Pointer to buffer in which to place
VbelnfoBlock structure
(VbeSignature should be set to 'VBE2' when
function is called to indicate VBE 2.0 information
isdesired and the information block is 512 bytesin
size.)

Output: AX = VBE Return Status
Note: All other registers are preserved.

Input: AX =4F01h Return VBE mode information

CX = M ode number

ES.DI = Pointer to ModelnfoBlock structure
Output: AX = VBE Return Status

Note: All other registers are preserved.

Input: AX = 4F02h Set VBE Mode
BX = Desired Mode to set
DO0-D8= Mode number
D9-D13= Reserved (must be 0)
D14 = Use windowed frame buffer model
= Use linear/flat frame buffer model
D15 = Clear display memory

= Don't clear display memory

Output: AX = VBE Return Status
Note: All other registers are preserved.

Page 36 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Quick Reference

Input: AX =4F03h Return current VBE Mode
Output: AX = VBE Return Status
BX = Current VBE mode

D0-D13= M ode number
D14 =0 Windowed frame buffer model
=1 Linear/flat frame buffer model
D15 =0 Memory cleared at last mode set
=1 Memory not cleared at last mode set
Note: All other registers are preserved.

Input: AX =4F04h Save/Restore State
DL =00h Return Save/Restore State buffer size
=01h Save state
=02h Restore state
CX = Requested states
DO= Save/Restore controller hardware state
D1= Save/Restore BIOS data state
D2= Save/Restore DAC state
D3= Save/Restore Register state
ES:BX = Pointer to buffer (if DL <> 00h)
Output: AX VBE Return Status

BX Number of 64-byte blocks to hold the state
buffer (if DL=00h)

Note: All other registers are preserved.

Input: AX =4F05h VBE Display Window Control
BH =00h Set memory window
=01h Get memory window
BL = Window number
= 00h Window A
=01h Window B
DX = Window number in video memory in window

granularity units (Set Memory Window only)

Output: AX
DX

VBE Return Status
Window number in window granularity units

VBE CORE FUNCTIONS VERSION 2.0 Page 37
DOCUMENT REVISION 1.2

VBE Quick Reference

I nput:

Output:

I nput:

Output:

I nput:

Output:

Page 38

AX
BL

CX

AX
BX
CX

DX

AX
BH
BL

CX
DX
AX
BH

CX
DX

AX
BL

BH

AX
BH

= 4F06h
= 00h
=01h
= 02h
=03h

VBE Set/Get Logical Scan Line Length
Set Scan Line Length in Pixels

Get Scan Line Length

Set Scan Line Length in Bytes

Get Maximum Scan Line Length

If BL=00h Desired Width in Pixels
If BL=02h Desired Width in Bytes
(Ignored for Get Functions)

VBE Return Status

Bytes Per Scan Line

Actual Pixels Per Scan Line
(truncated to nearest complete pixel)
Maximum Number of Scan Lines

VBE Set/Get Display Start Control

Reserved and must be 00h

Set Display Start

Get Display Start

Set Display Start during Vertical Retrace

First Displayed Pixel In Scan Line

(Set Display Start only)

First Displayed Scan Line (Set Display Start only)

VBE Return Status

00h Reserved and will be O (Get Display Start only)

First Displayed Pixel In Scan Line (Get Display Start only)
First Displayed Scan Line (Get Display Start only)

= 4F08h
= 00h
=01h

VBE Set/Get Palette Format

Set DAC Palette Format

Get DAC Palette Format
Desired bits of color per primary
(Set DAC Palette Format only)

VBE Return Status
Current number of bits of color per primary

VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

Input: AX =4F0%h
BL =00h
=01h
=02h
=03h
=80h
CX =
DX =
ES.DI =
Output: AX =

VBE Quick Reference

VBE Load/Unload Palette Data
Set Palette Data
Get Palette Data
Set Secondary Palette Data
Get Secondary Palette Data
Set Palette Data during Vertical Retrace
with Blank Bit on
Number of palette registers to update
First palette register to update
Table of palette values (see below for format)

VBE Return Status

Format of Palette Values:. Alignment byte, Red byte, Green byte, Blue byte

Input: AX =4FO0Ah VBE 2.0 Protected Mode Interface
BL =00h Return protected mode table
Output: AX = Status
ES = Real Mode Segment of Table
DI = Offset of Table
CX = Length of Table including protected mode code in bytes
(for copying purposes)
VBE CORE FUNCTIONS VERSION 2.0 Page 39

DOCUMENT REVISION 1.2

VBE Data Structures

Appendix 2 - VBE Data Structures

VbelnfoBlock struc

VbeSignature db 'VESA' ; VBE Signature
VbeVersion dw 0200h ; VBE Version
OemStringPtr dd ? ; Pointer to OEM String
Capabilities db 4 dup (?) ; Capabilities of graphics controller
VideoM odePtr dd ? ; Pointer to VideoM odeL ist
TotalMemory dw ? ; Number of 64kb memory blocks
; Added for VBE 2.0
OemSoftwareRev dw ? ; VBE implementation Software revision
OemV endorNamePtr dd ? ; Pointer to Vendor Name String
OemProductNamePtr dd ? ; Pointer to Product Name String
OemProductRevPtr dd ? ; Pointer to Product Revision String
Reserved db 222 dup (?) ; Reserved for VBE implementation scratch
, area
OembData db 256 dup (?) ; DataAreafor OEM Strings
VbelnfoBlock ends
Page 40 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

VBE Data Structures

M odel nfoBlock struc
; Mandatory information for all VBE revisions

M odeAttributes dw ? ; mode attributes
WinAAttributes db ? ; window A attributes
WinBAttributes db ? ; window B attributes
WinGranularity dw ? ; window granularity
WinSize dw ? ; window size
WinA Segment dw ? ; window A start segment
WinB Segment dw ? ; window B start segment
WinFuncPtr dd ? ; pointer to window function
BytesPerScanLine daw ? ; bytes per scan line
; Mandatory information for VBE 1.2 and above
XResolution dw ? ; horizontal resolution in pixels or characters
Y Resolution dw ? ; vertical resolution in pixels or characters
XCharSize db ? ; character cell width in pixels
Y CharSize db ? ; character cell height in pixels
NumberOfPlanes db ? ; number of memory planes
BitsPerPixel db ? ; bits per pixel
NumberOfBanks db ? ; number of banks
MemoryM odel db ? ; memory model type
BankSize db ? ; bank sizein KB
NumberOflmagePages db ? ; number of images
Reserved db 1 ; reserved for page function
; Direct Color fields (required for direct/6 and Y UV/7 memory models)
RedMaskSize db ? ; size of direct color red mask in bits
RedFieldPosition db ? ; bit position of Isb of red mask
GreenMaskSize db ? ; size of direct color green mask in bits
GreenFieldPosition db ? ; bit position of Isb of green mask
BlueMaskSize db ? ; Size of direct color blue mask in bits
BlueFieldPosition db ? ; bit position of Isb of blue mask
RsvdMaskSize db ? ; size of direct color reserved mask in bits
RsvdFieldPosition db ? ; bit position of Isb of reserved mask
DirectColorM odel nfo db ? ; direct color mode attributes
; Mandatory information for VBE 2.0 and above
PhysBasePtr dd ? ; physical address for flat memory frame buffer
OffScreenM emOffset dd ? ; pointer to start of off screen memory
OffScreenMemSize dw ? ; amount of off screen memory in 1k units
Reserved db 206 dup (?) ; remainder of ModelnfoBlock
M odel nfoBlock ends

VBE CORE FUNCTIONS VERSION 2.0 Page 41

DOCUMENT REVISION 1.2

VBE Data Structures

SupVbelnfoBlock struc

SupV beSignature db 'VBE/??? ; Supplemental VBE Signature
SupVbeVersion dw ? ; Supplemental VBE Version
SupV beSubFunc db 8 dup (?) ; Bitfield of supported subfunctions
OemSoftwareRev dw ? ; OEM Software revision
OemV endorNamePtr dd ? ; Pointer to Vendor Name String
OemProductNamePtr dd ? ; Pointer to Product Name String
OemProductRevPtr dd ? ; Pointer to Product Revision String
OemStringPtr dd ? ; Pointer to OEM String
Reserved db 221 dup (?) ; Reserved for description strings and future
; expansion
SupVbel nfoBlock ends
Function OAh Table Formats
The format of the table is as follows:
ES.DI + 00h Word Offset in table of Protected mode code for
Function 5 for Set Window Call
ES.DI + 02h Word Offset in table of Protected mode code for
Function 7 for set Display Start
ES.DI + 04h Word Offset in table of Protected mode code for
Function 9 for set Primary Palette data
ES.DI + 06h Word Offset in table of Ports and Memory Locations

that the application may need I/O privilege for
(Optional: if unsupported this must be 0000h)
(See Sub-table for format)

ES.DI +? Variable remainder of Table including Code

The format of the Sub-Table (Ports and Memory locations)

Port, Port, ..., Port, Terminate Port List with FF FF, Memory locations (4 bytes),
Length (2 bytes), Terminate Memory List with FF FF.

Page 42 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Required Model nfoBlock Information for VGA Standard M odes

VBE Data Structures

The VGA Standard modes are not required to be supported by the VESA set mode Function
02h, however, if 4F02h can set the mode, then the mode must have a M odel nfoBlock
structure associated with it. These are the required ModelnfoBlock formats for VGA standard

modes if they are supported.

Note: The NumberOfimagePages field is defined as

[Available Memory/(Y Resolution* BytesPerScanLine)] -1

The Available Memory has been calculated for a 256KB V GA implementation;
implementations >256K B may have more memory available to an IBM Standard

Mode and therefore this number may vary. All other values are fixed.

; IBM Mode 00 VBE Support

: Text 40x25

DW
DB

DB

DW
DW
DW
DW
DW
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0000Eh
06

00

32

32
0B800h
00000h
0,0

80

40
25
9

16

PP OOR MR

; ModeAttributes

; WinAAttributes

; WinBAttributes

; WinGranularity

; WinSize

; WinA Segment

; WinB Segment

; WinFuncPtr

; BytesPerScanLine

: XResolution
'Y Resolution

; XCharSize (Thismay be 8 for flat panels)

: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryM odel (text)

: BankSize

; NumberOfI magePages
: Reserved

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Page 43

VBE Data Structures

; IBM Mode 01 VBE Support

: Text 40x25

DW
DB

DB

DW
DW
DW
DW
DW
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

;IBM Mode 02 VBE Support

: Text 80x25

Page 44

DW
DB

DB

DW
DW
DW
DW
DW
DW

0000Eh ; ModeAttributes

06 ; WinAAttributes

00 ; WinBAttributes

32 ; WinGranularity

32 ; WinSize

0B800h ; WinA Segment
00000h ; WinB Segment

0,0 ; WinFuncPtr

80 ; BytesPerScanLine
40 ; XResolution

25 ; YResolution

9 ; XCharSize (Thismay be 8 for flat panels)
16 ; YCharSize

1 ; NumberOfPlanes

4 ; BitsPerPixel

1 ; NumberOfBanks

0 ; MemoryM odel (text)
0 ; BankSize

15 ; NumberOfl magePages
1 ; Reserved

0000Eh ; ModeAttributes

06 ; WinAAttributes

00 ; WinBAttributes

32 ; WinGranularity

32 ; WinSize

0B800h ; WinA Segment
00000h ; WinB Segment

0,0 ; WinFuncPtr

160 ; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

VBE Data Structures

80 : XResolution

25 : Y Resolution

9 ; XCharSize (Thismay be 8 for flat panels)
16 : YCharSize

1 : NumberOfPlanes

4 . BitsPerPixel

1 : NumberOfBanks

0 ; MemoryM odel (text)

0 : BankSize

7 ; NumberOfl magePages
1 : Reserved

;IBM Mode 03 VBE Support

: Text 80x25

DW
DB

DB

DW
DW
DW
DW
DW
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0000Eh ; ModeAttributes
06 ; WinAAttributes
00 ; WinBAttributes
32 ; WinGranularity
32 ; WinSize
0B800h ; WinA Segment
00000h ; WinB Segment
0,0 ; WinFuncPtr
160 ; BytesPerScanLine
80 ; XResolution
25 ; YResolution
9 ; XCharSize (Thismay be 8 for flat panels)
16 ; YCharSize
1 ; NumberOfPlanes
4 ; BitsPerPixel
1 ; NumberOfBanks
0 ; MemoryM odel (text)
0 ; BankSize
7 ; NumberOfl magePages
1 ; Reserved
VBE CORE FUNCTIONS VERSION 2.0 Page 45

DOCUMENT REVISION 1.2

VBE Data Structures

;IBM Mode 04 VBE Support

: 320x200x4

DW
DB
DB
DW
DW
DW
DW
DD
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0001Eh : ModeAttributes
06 : WinAAttributes
00 : WinBAttributes
32 ; WinGranularity
32 : WinSize

0B800h ; WinA Segment
00000h ; WinB Segment

0 : WinFuncPtr

80 ; BytesPerScanLine
320 : XResolution

200 : YResolution

8 : XCharSize

8 : YCharSize

1 : NumberOfPlanes
2 . BitsPerPixel

2 : NumberOfBanks
1 ;CGA Graphics ; MemoryM odel

8 : BankSize

1 ; NumberOfl magePages
1 : Reserved

; IBM Mode 05 VBE Support

: 320x200x4

Page 46

DW
DB
DB
DW
DW
DW
DW
DD
DW

0001Eh
06

00

32

32
0B800h
00000h
0

80

; ModeAttributes

; WinAAttributes

; WinBAttributes

; WinGranul arity

; WinSize

; WinA Segment

; WinB Segment

; WinFuncPtr

; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

VBE Data Structures

320 : XResolution
200 : Y Resolution
: XCharSize
: YCharSize
: NumberOfPlanes
. BitsPerPixel
: NumberOfBanks
;CGA Graphics ; MemoryM odel
: BankSize
; NumberOfl magePages
: Reserved

PP OFPNDNPEFEOOO

; IBM Mode 06 VBE Support

: 640x200x2

DW
DB
DB
DW
DW
DW
DW
DD
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0001Eh : ModeAttributes
06 : WinAAttributes
00 : WinBAttributes
32 ; WinGranularity
32 : WinSize
0B800h ; WinA Segment
00000h ; WinB Segment
0 : WinFuncPtr
80 ; BytesPerScanLine
640 : XResolution
200 : YResolution
8 : XCharSize
8 : YCharSize
1 : NumberOfPlanes
1 : BitsPerPixel
2 : NumberOfBanks
1 ;CGA Graphics ; MemoryModel
8 : BankSize
1 ; NumberOfl magePages
1 : Reserved

VBE CORE FUNCTIONS VERSION 2.0 Page 47

DOCUMENT REVISION 1.2

VBE Data Structures

; IBM Mode 07 VBE Support

; Text 80x25
DW 00006h ; ModeAttributes
DB 06 ; WinAAttributes
DB 00 ; WinBAttributes
DwW 32 ; WinGranularity
DwW 32 ; WinSize
DW 0B0O0Oh ; WinA Segment
DW 00000h ; WinBSegment
Dw 0,0 ; WinFuncPtr
DW 160 ; BytesPerScanLine
DW 80 ; XResolution
DW 25 ; YResolution
DB 9 ; XCharSize (Thismay be 8 for flat panels)
DB 16 ; YCharSize
DB 1 ; NumberOfPlanes
DB 2 ; BitsPerPixel
DB 1 ; NumberOfBanks
DB O ; MemoryM odel (text)
DB O ; BankSize
DB 7 ; NumberOfl magePages
DB 1 ; Reserved

; IBM Mode OD VBE Support

; 320x200x16
DW 0001Eh ; ModeAttributes
DB 06 ; WinAAttributes
DB 00 ; WinBAttributes
DW 64 ; WinGranularity
DW 64 ; WinSize
DW 0AO0Q0Oh ; WinA Segment
DW 00000h ; WinBSegment
DD O ; WinFuncPtr
DW 40 ; BytesPerScanLine

Page 48 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

320
200

P~NOWR AL

; IBM Mode OE VBE Support

1 640x200x16

DW
DB
DB
DW
DW
DW
DW
DD
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0001Eh
06

00

64

64
OA000h
00000h
0

80

640
200

P WOWErhM~2pSHOoOoo

: XResolution
: Y Resolution
: XCharSize
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel
; BankSize

; NumberOf ImagePages

: Reserved

: ModeAttributes
: WinAAttributes
: WinBAttributes
; WinGranularity

: WinSize

; WinA Segment
; WinB Segment
: WinFuncPtr

; BytesPerScanLine

: XResolution
: Y Resolution
: XCharSize
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel
; BankSize

; NumberOfl magePages

: Reserved

VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

VBE Data Structures

Page 49

VBE Data Structures

; IBM Mode OF VBE Support

: 640x350x2

DW
DB
DB
DW
DW
DW
DW
DD
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

00016h
06
00
64
64
OA000h
00000h

0

80

640
350

8

14

PROWR MDD

; ModeAttributes

; WinAAttributes

; WinBAttributes

; WinGranularity

; WinSize

; WinA Segment

; WinB Segment

; WinFuncPtr

; BytesPerScanLine

: XResolution

: Y Resolution

: XCharSize

: YCharSize

: NumberOfPlanes
. BitsPerPixel

: NumberOfBanks
; MemoryModel

: BankSize

; NumberOfl magePages
: Reserved

; IBM Mode 10 VBE Support

: 640x350x16

DW
DB
DB
DW
DW
DW
DW
DD
DW

Page 50

0001Eh
06
00
64
64
OA000h
00000h

0

80

; ModeAttributes

; WinAAttributes

; WinBAttributes

; WinGranularity

; WinSize

; WinA Segment

; WinB Segment

; WinFuncPtr

; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

640
350

PROWR MDD

; IBM Mode 11 VBE Support

: 640x480x2

DW
DB
DB
DW
DW
DW
DW
DD
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0001Eh
06

00

64

64
OA000h
00000h
0

80

640
480
8
16

POOWRr MDD

: XResolution
: Y Resolution
: XCharSize
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel
; BankSize

; NumberOfl magePages

: Reserved

: ModeAttributes
: WinAAttributes
: WinBAttributes
; WinGranularity

: WinSize

; WinA Segment
; WinB Segment
: WinFuncPtr

; BytesPerScanLine

: XResolution
: Y Resolution
: XCharSize
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel
; BankSize

; NumberOfl magePages

: Reserved

VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

VBE Data Structures

Page 51

VBE Data Structures

; IBM Mode 12 VBE Support

: 640x480x16

DW
DB
DB
DW
DW
DW
DW
DD
DW

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0001Eh
06
00
64
64
OA000h
00000h

0

80

640
480

8

16

POOWRr MDD

; ModeAttributes

; WinAAttributes

; WinBAttributes

; WinGranularity

; WinSize

; WinA Segment

; WinB Segment

; WinFuncPtr

; BytesPerScanLine

: XResolution

: Y Resolution

: XCharSize

: YCharSize

: NumberOfPlanes
. BitsPerPixel

: NumberOfBanks
; MemoryModel

: BankSize

; NumberOfl magePages
: Reserved

; IBM Mode 13 VBE Support
; 320x200x256

DW
DB
DB
DW
DW
DW
DW
DD
DW

Page 52

0001Eh
06
00
64
64
OA000h
00000h

0

320

; ModeAttributes

; WinAAttributes

; WinBAttributes

; WinGranularity

; WinSize

; WinA Segment

; WinB Segment

; WinFuncPtr

; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

DW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

VBE Data Structures

320 : XResolution

200 : Y Resolution

8 : XCharSize

: YCharSize

: NumberOfPlanes
. BitsPerPixel

: NumberOfBanks
; MemoryM odel

: BankSize

; NumberOfl magePages
: Reserved

RPOOMREFRLOEFO®

VBE CORE FUNCTIONS VERSION 2.0 Page 53
DOCUMENT REVISION 1.2

VBE Supplemental Specifications Summaries

Appendix 3 - VBE Supplemental Specs.

VESA Power Management (VBE/PM 1.0) Function Summary
(VBE/PM Function 4F10h)

00h - Return VBE/PM Information

01h - Set Display Power State

02h - Get Display Power State

VESA Audio Interface (VBE/AI 1.0) Function Summary
(VBE/AI Function 4F13h)

00h - Return VBE/AI Information

01h - Get Next Device Handle

02h - Get Device Class Information

03h - Open Device

04h - Close Device

05h - Driver Unload Request

06h - Driver Chaining

07h - Load 32-hit Interface

WAVE Audio Services
wsDeviceCheck()
wsPCMInfo()
wsPlayBlock()
wsRecordBlock()
wsPlayCont()
wsRecordCont()
wsPausel O()
wsResumel O()
wsStopl O()
wsTimerTick()
wsGetL astError()

MIDI Audio Services
msDeviceCheck()
msGlobal Reset()
msMIDImsg()

msPrel oadPatch()
msUnloadPatch()
msTimerTick()
msGetL astError()

Page 54 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Supplemental Specifications Summaries

VOLUME Control Services
vsDeviceCheck()
vsSetVolume()
vsSetFieldVol()
vsToneControl()
vsFilterControl ()
vsOutputPath()

vsGetL astError()

VESA BIOS Extensions/ Display Data Channel (VBE/DDC 1.0) Function Summary
(VBE/DDC Function 4F15h)

00h - Report VBE/DDC Capabilities

01h - Read EDID

02h - Read VDIF

VBE CORE FUNCTIONS VERSION 2.0 Page 55
DOCUMENT REVISION 1.2

VBE Implementation Considerations

Appendix 4 - VBE Implementation Considerations

This appendix discusses required features of VBE 2.0. implementations, and offers some
suggestions for consideration by BIOS developers. Some issues raised here apply only to
adding VBE 2.0 to an existing VGA BIOS, while other issues are more generally relevant.

A4.1 Minimum Functionality Requirements

A4.1.1 Required VBE Services

VBE Functions 00h-0Ah are required; all other functions are optional. There are no
absolutely required modes, or mode capabilities, since these will vary according to the
hardware and applications.

A4.1.2 Minimum ROM Implementation

For compliance certification, Functions 00-0Ah must be implemented in the ROM. In the case
of ROM space limitations that do not allow full implementations, VESA strongly
recommends that VBE Get Controller Information Function 00h be implemented in the ROM
so applications will be able to find information about the controller type and capabilities. This
'Stub’ implementation can be supplemented by a TSR which will provide full VBE Core
functionality. These stub implementations are not VBE 2.0 compliant and should only be
implemented in cases where no space is available to implement the whole VBE. |n the event
that a stub isimplemented a TSR must be available to complete VBE 2.0 functionality.

In a stub implementation, the VideoModeL ist will contain no entries (starts with OFFFFh).
Thisisthe indicator to application software that the VBE Core implementation is in fact only
astub and that other functions and modes do not exist.

A4.1.3 TSR Implementations

TSR based implementations of VBE must not assume that a compatible graphics controller is
present! They must first attempt to detect the presence of a compatible device before chaining
into INT 10h and completing the load process. If no compatible hardware is detected they
must exit without chaining INT 10h. On failure to load, the TSR should display an
appropriate message to the screen, identifying both the installed and expected hardware and
displaying the OEM strings from Function 00h, if available. The software version number
and identifying information for the TSR should also be shown.

TSRs which are meant to work in avariety of hardware and BIOS environments should check
to see if the ROM supports some version of VBE Function 00h, Get Controller Information.
The information which is returned from this function can then be passed on to calling
applications or displayed on the screen, reducing the burden of supporting different display
hardware. If astub or incomplete version of VBE existsin ROM, it is the responsibility of the
TSR to supplement all missing functions and replace Function 00h.

Page 56 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Implementation Considerations

VESA recommends that VBE 2.0 TSRs be given names which contain some identifier for the
OEM and/or product, as well asa'2' to indicate the VBE version supported. Thiswill help
users make sure they have the correct version of software for their hardware, and may prevent
afew phone calls for software support. It isalso required that a help screen be included,
which can be activated by typing "/h", "/?", or any unrecognized parameter on the command
line. The help screen should contain all pertinent information about the source and version
number of the TSR and the hardware on which it is designed to work.

A4.2 VGA BIOS Implications

A primary design goal with the VESA VBE isto minimize the effects on the standard VGA
BIOS. Standard VGA BIOS functions should need to be modified as little as possible.
However, two standard VGA functions are affected by the VBE. These are VGA Function
00h (Set VGA Mode) and VGA Function OFh (Get Current VGA Mode).

VBE-unaware applications (such as old Pop-Up programs and other TSRs, or the CLS
command of MS-DOS), may use VGA BIOS Function OFh to get the current display mode
and later call VGA BIOS Function 00h to restore/reinitialize the old graphics mode. To make
such applications work, the 8-bit value returned by VGA BIOS Function OFh (it is up to the
OEM to define this number), must correctly reinitialize the graphics mode through VGA
B1OS Function 00h.

However, VBE-aware applications should not set the VBE mode using VGA BIOS Function
00h, or get the current mode with VGA BIOS Function OFh. VBE Functions 02h (Set VBE
mode) and 03h (Get VBE Mode) should be used instead. The mode number must be from the
mode list returned by VBE Function 00h, and Function 03h must return the same mode
number used to set the mode in Function 02h.

Given these requirements, and the fact that many BIOS manufacturers will need to support at
least some of the VESA-defined 14-bit mode numbers for backwards compatibility, it is clear
that the BIOS must keep track of the last mode that was set with VBE Function 02h. There
are various ways that this could be accomplished without the use of scratch registers or non-
volatile RAM, which is not always available. One method is to use the mode number bytein
the BIOS Data Area to store the index into the mode list returned in VBE Function 00h,
which is always stored in ROM. Another method is to store a small translation table for the
14-bit mode numbers (probably necessary for using duplicate mode numbers anyway) and to
use an obsolete or unused bit in the BIOS Data Areato indicate a 14-bit mode in effect.

If aBIOS offers only the flat frame buffer version of one of the modes which have VESA -
defined numbers, it may be advisable to use an OEM-defined number for that mode instead.
Since VBE 1.2 and earlier versions assume standard VGA windowing of the frame buffer,
older VBE-aware applications may recognize the mode number and attempt to use windowed
memory without properly checking with Function 01h.

VBE CORE FUNCTIONS VERSION 2.0 Page 57
DOCUMENT REVISION 1.2

VBE Implementation Considerations

A4.3 ROM Space Limitations

Since standard VGA BIOS is currently confined to 32K ROM images, space s likely to be
critical in implementing even the minimum VBE 2.0 functionality. Most VGA BIOSs have
already been compressed many times as new features and modes have been added over time.
Clearly, older VGA BIOS features may have to be sacrificed to make room.

A4.3.1 Data Storage

To alow for ROM based execution of the VBE functions, each VBE function must be
implemented without the use of any local data. When possible, the BIOS data area, non-
volatile RAM, or OEM specific scratch registers can be used to place scratch data during
execution. All VBE data structures are allocated and provided to VBE by the calling
application.

A4.3.2 Removal of Unused VGA Fonts

VESA strongly recommends that removal of the 8x14 VGA font become a standard way of
freeing up space for VBE 2.0 implementations. The removal of thisfont leaves 3.5K bytes of
ROM space for new functions, and is probably the least painful way to free up such alarge
amount of space while preserving as much backwards compatibility as possible. The 8x14
font is normally used for VGA Modes 0*, 3* and Mode 10h, which are 350-line or EGA
compatible modes. When these modes are selected the 8x16 font may be chopped and used
instead. When chopping a 16 point font to replace the 14 point, there are several characters
(ones with descenders) that should be special cased.

Some applications which use the 8x14 font obtain a pointer to the font table through the
standard VGA functions and then use this table directly. In such cases, no workaround using
the 8x16 font is possible and a TSR with the 8x14 font is unavoidable. Some OEMs may find
this situation unacceptable because of the potential for an inexperienced user to encounter
"garbage" on the screen if the TSR is not present. However, OEMs may also find eventually
that demand for VBE 2.0 servicesis great enough to justify the inconvenience associated with
an 8x14 font TSR. To date, no compatibility problems are known to be caused by the use of
such aTSR. VESA will make available a TSR that replaces the 8x14 font, please contact
VESA for more information.

Another option with the fonts in Turn-Key systems (such as L aptops, Notebooks etc.) isto
move the fonts to another location in the System ROM. In fact VBE functions could even be
relocated. This however is not an acceptable solution for most desktop systems, where they
are expandable.

Page 58 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Implementation Considerations

A4.3.3 Deleting VGA Parameter Tables

One way to create more ROM space for the VBE is to delete some of the VGA parameter
tables by deleting modes which are outdated and little used. Many of the standard VGA
modes are now almost entirely obsolete and should probably be phased out of existence.
How quickly this might happen depends on which applications are still using the older modes
and on how tolerant OEM s and users will be to using TSR programs for these modes when
necessary. Some mode groups which might be candidates for removal are modes 4, 5, and 6,
all CGA modes, or all 200 line modes.

It must be emphasized, however, that it is absolutely necessary to preserve the size and
positions of all the standard mode VGA parameter tables! Failure to do so will cause alot of
problems with diagnostics and older VGA applications. If atableisremoved, fill the space
with an equal number of bytes of code or data.

A4.3.4 Increasing ROM Space

In the PC environment, VGA BIOS developers have traditionally been limited to a 32K ROM
image located at CO000h-C7FFFh. The C8000h-CBFFFh area was originally reserved for the
XT hard disk BIOS, which is of little current concern. However, SCSI CD ROM controllers
have now begun to use this area, and the possibility exists that other devices may use this area
also. Itisunlikely that VBE developers will be able to expand into the C8000h-CFFFFh
region without creating potential conflicts.

4.3.5 Support of VGA TTY Functions

The support of VGA TTY functions is recommended, but not mandatory, for graphic modes
beyond VGA. TTY support for all modesis desirable to allow basic text operations such as
reading and writing characters to the screen. Some operating systems will revert to using
TTY functions when a hardware error occurs, since the graphics environment may no longer
be operational.

Support of TTY functions for all modes will, of course, increase the size of the BIOS. One
possible solution isto provide TTY function support for extended modes as part of a TSR
rather than in the ROM.

Bit D2 in the Mode Attributes field in the ModelnfoBlock structure returned by VBE
Function 01h indicates the presence of support for TTY functions for each VBE mode.
Refer to the VBE Function 01h description for details on which TTY functions must be
supported when this bit is set.

VBE CORE FUNCTIONS VERSION 2.0 Page 59
DOCUMENT REVISION 1.2

VBE Implementation Considerations

A4.4 Implementation Notes by Function

A4.4.1 General Notes

Starting with VBE version 2.0 VESA will no longer define new VESA mode numbers and it
will not longer be mandatory to support these old mode numbers. However, it is highly
recommended that BIOS implementations continue to support these mode numbers for
compatibility with old software. VBE 2.0 aware applications should follow the guidelines in
Appendix 5 - Application Programming Considerations - for setting a desired mode.

Applications should treat any non-zero value in the AH register as a general failure condition
as later versions of the VBE may define additional error codes. BIOS developers should
refrain from defining their own return codes, which may conflict with future VESA-defined
return codes.

VESA strongly recommends the preservation of the Graphics Controller indexes.

Ad.4.2 Function 00h - Return VBE Controller Information

All datain the structure is subject to change by the VBE implementation when VBE Function
OOhiscalled. Therefore it should not be used by the application to store data of any kind.
VBE should fill any unused portion of the structure with zeros.

The BCD value for VBE 2.0 is 0200h, The BCD value for VBE 1.2 is 0102h. In the past we
have had some applications misinterpreting these BCD values. For example, BCD 0102h was
interpreted as 1.02, which isincorrect.

The length of the OEM String is not defined, but for space considerations, we recommend a
string length of less than 256 bytes.

The DAC must always be restored to 6 bits per primary as default upon a mode set. If the
DAC has been switched to 8 bits per primary, the mode set must restore the DAC to 6 bits per
primary to ensure the application developer that he does not have to reset it.

If the RAMDAC is an older style RAMDAC with the possibility of "snow" during
programming, the VBE 2.0 implementation must place a 1 in bit 2 of the Capabilities field.

If aVideoModeList isfound to contain no entries (starts with OFFFFh), it can be assumed that
the VBE implementation is a"stub" implementation where only Function O0h is supported for
diagnostic or "Plug and Play" reasons. These stub implementations are not VBE 2.0
compliant and should only be implemented in cases where no space is available to implement
the whole VBE.

The length of the strings OemProductRev, OemProductName and OemV endorName
(including terminators), summed, must fit within a 256 byte buffer. Thisisto allow for return
in the OemDatafield if necessary.

Page 60 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Implementation Considerations

A4.4.3 Function 01h - Return VBE Mode Information

Monochrome modes map their CRTC address at 3B4h. Color modes map their CRTC address
at 3D4h. Monochrome modes have attributes in which only bit 3 (video) and bit 4 (intensity)
of the attribute controller output are significant. Therefore, monochrome text modes have
attributes of off, video, high intensity, blink, etc. Monochrome graphics modes are two plane
graphics modes and have attributes of off, video, high intensity, and blink. Extended two
color modes that have their CRTC address at 3D4h, are color modes with one bit per pixel
and one plane. The standard VGA modes, 06h and 11h would be classified as color modes,
while the standard VGA modes 07h and OFh would be classified as monochrome modes.

Version 1.1 and later VBE will zero out all unused fields in the Mode Information Block,
always returning exactly 256 bytes. This facilitates upward compatibility with future versions
of the standard, as any newly added fields will be designed such that values of zero will
indicate nominal defaults or non-implementation of optional features. (For example, afield
containing a bit-mask of extended capabilities would reflect the absence of all such
capabilities.) Applications that wish to be backwards compatible to Version 1.0 VBE should
pre-initialize the 256 byte buffer before calling the Return VBE Mode Information function.

If the ModelnfoBlock isfor an IBM Standard VGA mode and the NumberOf I magePages
field contains more pages than would be found in a 256K B implementation, the TTY support
described in the ModeAttributes must be accurate, i.e., if the TTY functions are claimed to be
supported, they must be supported in all pages, not just the pages normally found in the
256K B implementation.

Ad4.4.4 Function 02h - Set VBE Mode

VBE BIOS 2.0 implementations should also update the BIOS Data Area 40:87 (memory clear
bit) so that Function 03h can return thisflag. VBE BIOS 1.2 and earlier BIOS
implementations ignore the memory clear bit.

Function 00h of an IBM VGA compatible BIOS uses D7 to signify the same thing as D15
doesin thisfunction. If D7 isset for an IBM compatible mode when calling this function,
this mode set should fail. VBE aware applications must set the memory clear bit in D15.

This call should not set modes not listed in the list of supported modes. All modes (including
IBM standard VGA modes), if listed as supported, must have M odelnfoBlock structures
associated with them.

VBE CORE FUNCTIONS VERSION 2.0 Page 61
DOCUMENT REVISION 1.2

VBE Implementation Considerations

Mode 81FFh is a special mode designed to preserve the current memory contents and to give
access to the entire video memory. This mode is especially useful for saving the entire video
memory contents before going into a state that could |ose the contents (e.g. set this mode to
gain access to all video memory to save it before going into a volatile power down state).
This mode is required as the entire video memory contents are not always accessible in every
mode. It isrecommended that this mode be packed pixel in format, and a Model nfoBlock
must be defined for it. However, it should not appear in the VideoModeList. Look in the
ModelnfoBlock to determine if paging isrequired and, if it isrequired, how it is supported.
Also note that there are no implied resolutions or timings associated with this mode.

A4.4.5 Function 03h - Return Current VBE Mode

Version 1.x Note: In astandard VGA BIOS, Function OFh (Read current video state) returns
the current graphics mode in the AL register. In D7 of AL, it also returns the status of the
memory clear bit (D7 of 40:87). Thisbit isset if the mode was set without clearing memory.
In this VBE function, the memory clear bit will not be returned in BX since the purpose of the
function is to return the video mode only. If an application wants to obtain the memory clear
bit, it should call the standard VGA BIOS Function OFh.

Version 2.x Note: Unlike version 1.x VBE implementations, the memory clear flag will be
returned. The application should NOT call the standard VGA BI1OS Function OFh if the mode
was set with VBE Function 02h.

The mode number returned must be the same mode number used in the VBE Function 02h
mode set.

This function is not guaranteed to return an accurate mode value if the mode set was not done
with VBE Function 02h. In that case, the results are unspecified.

A4.4.6 Function 05h - Display Window Control

In VBE 1.2 implementations, the direct far call version returns no Return Status information
to the application. Also, inthe far call version, the AX and DX registers will be destroyed.
Therefore if AX and/or DX must be preserved, the application must do so prior to making the
far call. The application must still load the input argumentsin BH, BL, and DX (for Set
Window). InVBE 2.0 implementations, the BIOS will return the correct Return Status, and
therefore the application must assume that AX and DX will be destroyed.

If thisfunction is called while in alinear frame buffer memory model, this function must fail
with completion code AH=03h.

Page 62 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Implementation Considerations

Ad.4.7 Function 06h - Get/Set Logical Scan Line Length

The desired width in pixels may not be achievable because of hardware considerations.

The next larger value will be selected that will accommodate the desired number of pixels,
and the actual number of pixelswill be returned in CX. BX returns avalue that when added
to a pointer into display memory will point to the next scan line. For example, in VGA mode
13h this would be 320, but in mode 12h thiswould be 80. DX returns the number of logical
scan lines based upon the new scan line length and the total memory installed and usable in
this display mode.

On afailure to set scan line length by setting a CX value too large, the function will fail with
error code 02h.

The value returned when BL=03h is the lesser of either the maximum line length that the
hardware can support, or the longest scan line length that would support the number of lines
in the current video mode.

Thisfunction is also valid in text modes. In text modes the application should convert the
character line length to pixel line length by getting the current character cell width through the
XCharSize field returned in Model nfoBlock, multiplying that times the desired number of
characters per line, and passing that value in the CX register.

In text modes, this function will only work if the line length is specified in character
granularity. i.e. in 8 dot modes only multiples of 8 will work. Any value whichisnotin
character granularity will result in afunction call failure.

A4.4.8 Function 07h - Get/Set Display Start

Thisfunction isalso valid in text modes. To use this function in text mode, the application
should convert the character coordinates to pixel coordinates by using X CharSize and

Y CharSize returned in the ModelnfoBlock. If the requested Display Start coordinates do not
allow for afull page of video memory or the hardware does not support memory wrapping,
the Function call should fail and no changes should be made. Asageneral casg, if a
requested Display Start is not available, fail the Function call and make no changes.

A4.4.9 Function 08h - Set/Get DAC Palette Format
This function will return failure code 03h if called in adirect color or YUV mode.

A4.4.10 Function 09h - Set/Get Palette Data

The need for BL= 80h isfor older style RAMDAC's where programming the RAM values
during display time causes a "snow-like" effect on the screen. Newer style RAMDAC'sdon't
have this limitation and can easily be programmed at any time, but older RAMDAC's require
that they be programmed during a non-display time only to stop the snow like effect seen
when changing the DAC values. When thisis requested the VBE implementation will
program the DAC with blanking on. Check D2 of the Capabilities field returned by VBE
Function 00h to determine if 80h should be used instead of O0h.

The need for the secondary palette is for anticipated future palette extensions, if a secondary
palette does not exist in aimplementation and these calls are made, the VBE implementation
will return error code 02h.

VBE CORE FUNCTIONS VERSION 2.0 Page 63
DOCUMENT REVISION 1.2

VBE Implementation Considerations

A4.4.11 Function OAh - Return VBE Function Information
All protected mode functions should end with anear RET (as opposed to FAR RET) to allow
the application software to CALL the code from within the ROM.

The Port and Memory location Sub-table does not include the Frame Buffer Memory
location. The Frame Buffer Memory location is contained within the M odel nfoBlock
returned by VBE Function 01h.

The protected mode code must be assembled for a 32-bit code segment, when copying it, the
application must copy the code to a 32-bit code segment.

A4.5 Plug and Play Issues

Plug and Play information may be used to fill in the VBE Function 00h (Return VBE
Controller Information) data structures. Since VBE Function 00h returns information such as
product name, or product revision, which must be hard-coded in the ROM BIOS, Plug and
Play may help to avoid the need for the display board manufacturer to alter or customize the
ROM binary image.

A4.6 Supporting Multiple Controllers

It is sometimes necessary for more than one display controller to be present in the system for
several reasons. For example, OEMs may choose to implement a dual-controller design with
V GA functionality provided by one controller, and SVGA or VBE functionality provided by
asecond controller. In some cases, it may be desirable to install more than one display
adapter in the system for simultaneous support of multiple display monitors.

A4.6.1 Dual-Controller Designs

VBE 2.0 supports the dual-controller design by assuming that since both controllers are
typically provided by the same OEM, under control of asingle BIOS ROM, it is possible to
hide the fact that two controllers are indeed present from the application. This has the
l[imitation of preventing simultaneous use of the independent controllers, but allows
applications released before VBE 2.0 to operate normally. The VBE Function 00h (Return
Controller Information) returns the combined information of both controllers, including the
combined list of available modes. When the application selects a mode, the appropriate
controller is activated. Each of the remaining VBE functions then operates on the active
controller.

A4.6.2 Provision for Multiple Independent Controllers

There are no provisions for multiple independent controllers under VBE at thistime. If it ever
becomes necessary, support of additional display controllers can be provided under the
"Supplemental Specification" guidelines.

Page 64 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

VBE Implementation Considerations

A4.7 Display Refresh Rates and Interlacing

Display refresh rates, interlacing, and other timing parameters are automatically implied for
each graphics mode. Application programs should not be concerned with these hardware
details, and therefore should assume that the most desirable timings are selected for each
graphics mode.

The VGA standard defines the timing details for each VGA mode, and all VGA monitors
support these timing requirements. Additional graphics modes implemented under VBE
should operate at the maximum frequency possible for the display controller and installed
monitor. This presents a problem since the manufacturer of the display controller may be
unaware of what display monitor hardware isinstalled, and what its capabilities are.

VESA isin the process of standardizing a mechanism by which the display controller can
automatically determine the capabilities of the installed display monitor. The maximum
refresh rate and need for interlacing for each graphics mode can then be determined based on
the display controller timing logic and the hardware profile of the installed monitor. See the
VESA Display Data Channel and Graphics Configuration documents for more information.

If the VESA Display Data Channel capability is absent, the display controller manufacturer
must provide a configuration utility, or other suitable process, to select the best available
timing for each mode. It is permissible for the display controller OEM to extend the VBE
implementation with private functions to assist with the configuration of the display hardware
in astandard way across the product line (see section A4.8). This allows support of all
controllersin the product line with a single configuration utility that makes use of these
private functions. When an automatic method is not available, the end user can run this utility
when a new monitor isinstalled to select the refresh rates and adjust other parameters such as
centering for each graphics mode. Monitor specific information must then be stored, either in
scratch registers, non-volatile RAM, or, more likely, through the use of a configuration file
and associated TSR.

A utility accessing these proprietary functions must read the VbelnfoBlock returned by VBE
Function 00h to determine if the firmware is of the proper type and revision level before
making any Function 14h calls. Failure to do so will render the calling utility incompatible
with VBE 2.0 and may cause unpredictable results.

A4.8 OEM Extensions to VBE

The VBE specification allows the OEM to extend its functionality for support of nonstandard,
or private features known only to the OEM and custom applications that are aware of these
OEM extensions.

VBE Function 14h isreserved for use by OEMs wishing to add VBE subfunctions of their
own. This function number is provided so that the OEM may add custom services without
fear of conflict with other VBE services. These subfunctions must use the AX register in the
same manner as all other standard VBE functions and return the standard VBE completion
codes.

VBE CORE FUNCTIONS VERSION 2.0 Page 65
DOCUMENT REVISION 1.2

VBE Implementation Considerations

Normally, these extended functions are used by the OEM to aid in the setup and configuration
of the controller hardware. For example, during installation it may be necessary to set the
physical frame buffer address, maximum monitor refresh frequency, default graphics mode,
default power state, etc. A single setup and installation program can be used by the OEM
with the entire product line if the same OEM extensions are implemented on each product.

A utility accessing these proprietary functions must read the VbelnfoBlock returned by VBE
Function 00h to determine if the firmware is of the proper type and revision level before
making any Function 14h calls. Failure to do so will render the calling utility incompatible
with VBE 2.0 and may cause unpredictable results.

A4.9 Certification Requirements

Perhaps one of the key differencesin VBE 2.0 over earlier revisions, is the certification
requirements of VBE 2.0. Thereisonly one type of certification that can be done through
VESA, thisis"Compliance". For Compliance with VBE 2.0, an implementation must pass a
certification process. Compliance testing will require VBE functions in ROM, and will
benefit the end user, the video vendor and the application developers. Vendors who pass
compliance testing, may license the VESA VBE 2.0 logo, and may market their products as
VBE 2.0 Compliant.

Another term that can be associated with VBE 2.0 implementations is "Compatible".

VBE 2.0 compatible systems cannot be marketed as VBE 2.0 Compliant, VBE 2.0
Compatible nor can they use the VESA VBE 2.0 logo. VBE Compatible means that a system
implements VBE 2.0 correctly but does not have the featuresin ROM. VBE Compatibility is
not the desired method of VBE implementation because of the Plug and Play advantages of
the ROM implementation. VBE Compatibility is targeted for the upgrading of older video
Systems.

A4.9.1 VBETest Utility

A Test program will be developed which must be passed in order to claim your system is
VBE Compliant. It isextremely important that even VBE Compatible implementations be
tested with thistest. The test will be made available to VESA Members only, however
discussion on the merits of distributing this test to the general public is going on at this time.

A4.9.2 Communication with VESA Office
To find out more about VBE 2.0 Compliant Logo licensing and testing, please contact the
VESA office.

Page 66 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Application Programming Considerations

Appendix 5 - Application Programming Considerations

A5.1 Application Developer's Sample Source

The certification processis only for the BIOS implementations, this should be enough to
ensure that the applications fall in line with the VESA standard. If it doesn't work on aVBE
Compliant card, then the application is wrong and should be changed. To help ensure that the
application developer will work on VBE Compliant systems, sample source for application
developer's will be provided by the VESA office.

A simple example of how to set aVideo Mode, and how to use it to put something up on the
screen, isfound below. Thisisnot intended to be a complete SDK or source example, but it
only demonstrates what we are trying to achieve.

C Language Module
(This has been compiled and tested under Microsoft C 6.0. Conversion for the direct banking
method to inline assembly may be required for Borland C.)

/**
*

Hel | o VBE

Language: C (Keyword far is by definition not ANSI, therefore
to nake it true ANSI renove all far references and
conpi | e under MEDI UM nodel .)

Environnent: |1BMPC (MSDCO5) 16 bit Real Mde

Oiginal code contributed by: - Kendall Bennett, SciTech Software

Conversion to Mcrosoft C by: - Rex Wlfe, Western Dgital |maging
- (Ceorge Bystricky, S-MX Systens

Description: Sinple "Hello Wrld programto initialize a user
speci fied 256 col or graphics node, and display a sinple
nmoire pattern. Tested with VBE 1.2 and above.

This code does not have any hard-coded VBE node nunbers,
but will use the VBE 2.0 aware nethod of searching for
avai |l abl e video nodes, so will work with any new extended
vi deo nodes defined by a particular CEM VBE 2.0 version.

For brevity we don't check for failure conditions returned
by the VBE (but we shoul dn't get any).

E o I T S I T R R S T I

**/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <dos. h>

#i ncl ude <coni o. h>

VBE CORE FUNCTIONS VERSION 2.0 Page 67
DOCUMENT REVISION 1.2

Application Programming Considerations

/* Comment out the follow ng #define to disable direct bank sw tching.
* The code will then use Int 10h software interrupt nethod for banking. */

#define DI RECT_BANKI NG

#i fdef DI RECT_BANKI NG

/* only needed to setup registers BX, DX prior to the direct call.. */

extern far setbxdx(int, int);

#endi f

R LR e T T Macro and type definitions ----------------------- */

/* Super VA information bl ock */

struct

{
char VESASI gnat ur e[4] ; /* "VESA 4 byte signature */
short VESAVer si on; /* VBE versi on nunber */
char far *CEMBtringPtr; /* Pointer to CEM string */
| ong Capabi lities; /* Capabilities of video card */
unsi gned far *Vi deohMbdePtr; /* Pointer to supported nodes */
short Tot al Menory; /* Nunber of 64kb menory bl ocks */
char reserved[236] ; /* Pad to 256 byte bl ock size */

} VWoel nf oBl ock;

/* Super VGA node information bl ock */

struct

{
unsi gned short MbdeAttri butes; /* Mode attributes */
unsi gned char WnAAttri butes; /* Wndow A attributes */
unsi gned char WnBAttri butes; /* Wndow B attributes */
unsi gned short WnQanul arity; /* Wndow granularity in k */
unsi gned short WnSi ze; /* Wndow size in k */
unsi gned short W nASegnent ; /* Wndow A segment */
unsi gned short W nBSegnent ; /* Wndow B segmnent */
void (far *WnFuncPtr) (voi d); /* Pointer to w ndow function */
unsi gned short Byt esPer ScanLi ne; /* Bytes per scanline */
unsi gned short XResol uti on; /* Horizontal resolution */
unsi gned short YResol ution; /* Vertical resolution */
unsi gned char XChar S ze; /* Character cell width */
unsi gned char YChar S ze; /* Character cell height */
unsi gned char Nunber O Pl anes; /* Nunber of memory pl anes */
unsi gned char BitsPerPixel ; /* Bits per pixel */
unsi gned char Nunber O Banks; /* Nunber of CGA style banks */
unsi gned char Menor yModel ; /* Menory nodel type */
unsi gned char BankS ze; /* Size of OGA style banks */
unsi gned char Nunber O | nagePages; /* Nunber of images pages */
unsi gned char resl; /* Reserved */
unsi gned char RedMaskSi ze; /* Size of direct color red mask */
unsi gned char RedFi el dPositi on; /* Bit posn of |sb of red mask */
unsi gned char G eenMaskS ze; /* Size of direct color green nask */
unsi gned char GeenFieldPosition; /* Bit posn of |Isb of green mask */
unsi gned char Bl ueMaskSi ze; /* Size of direct color blue nask */
unsi gned char Bl ueFi el dPosi ti on; /* Bit posn of |sb of blue nask */
unsi gned char RsvdMaskSi ze; /* Size of direct color res mask */
unsi gned char RsvdFi el dPosi ti on; /* Bit posn of |sb of res mask */
unsi gned char D rectCol or Mdelnfo; /* Direct color node attributes */

Page 68 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

Application Programming Considerations

unsi gned char res2[216]; /* Pad to 256 byte bl ock size */
} Model nf oBl ock;
typedef enum
menPL = 3, /* Planar menory mnodel */
menPK = 4, /* Packed pi xel menory mnodel */
menRGB = 6, /* Drect color RE menory nodel */
menyW =7, /* Drect color YW nenory nodel */
} nmenhbdel s;
A R Q@ obal Variables -----------------"""--------- */
char nystr[256];
char *get_str();
i nt Xres, yres; /* Resol ution of video node used */
i nt byt esper | i ne; [* CRT scanline |length */
i nt cur Bank; /* Current read/wite bank */
unsi gned i nt bankShift; /* Bank granularity adjust factor */
i nt ol dvbde; /* Ad video node nunber */
char far *screenPktr; /* Pointer to start of video nmenory */
voi d (far *bankSw tch)(void); /* Drect bank switching function */
A LR T VBE Interface Functions ------------------------ */
/* Get SuperVEA information, returning true if VBE found */
i nt get Vbel nfo()
{
uni on REGS in, out;
struct SREGS segs;
char far *VWbelnfo = (char far *)&WVbel nfoBl ock;
i n.x.ax = 0x4F00;
in.x.di = FP_CFF(VWbelnfo);
segs. es = FP_SEQ Vbel nfo);
i nt 86x(0x10, & n, &out, &segs);
return (out.x.ax == 0x4F);
}
/* Get video node information given a VBE node nunmber. W return O if
* if the node is not available, or if it is not a 256 col or packed
* pi xel node.
*/
i nt get Mbdel nfo(int node)
{
uni on REGS in, out;
struct SREGS segs;
char far *nodelnfo = (char far *)&\bdel nf oBl ock;
if (nmode < 0x100) return O; /* 1 gnore non-VBE nodes */
i n.x.ax = 0x4F01,
i n.x.cx = node;
in.x.di = FP_CFF(nodel nfo);
segs. es = FP_SEQ nodel nf o) ;
i nt 86x(0x10, & n, &out, &segs);
if (out.x.ax !'= Ox4F) return O;
i f ((Model nfoBl ock. ModeAttri butes & 0x1)
&& Nbdel nf oBl ock. Menor yModel menPK
&& Model nf 0Bl ock. Bi t sPer Pi xel
&& Mbdel nf oBl ock. Nunber O Pl anes 1)
return 1,
VBE CORE FUNCTIONS VERSION 2.0 Page 69

DOCUMENT REVISION 1.2

Application Programming Considerations

return O;

}
/* Set a VBE video node */

voi d set VBEMbde(i nt node)

{
uni on REGS in, out;
in. x.ax = 0x4F02; in.x.bx = node;
i nt 86(0x10, & n, &out) ;

}

/* Return the current VBE vi deo node */

i nt get VBEMbde(voi d)

{
uni on REGS in, out;
in. x.ax = 0x4F03;
i nt 86(0x10, & n, &out) ;
return out. X. bx;

}

/* Set new read/wite bank. W nust set both Wndow A and Wndow B, as

* many VBE s have these set as separately available read and wite

* windows. W al so use a sinple (but very effective) optimzation of

* checking if the requested bank is currently active.

*/
voi d set Bank(int bank)
{
union REGS in, out;
i f (bank == curBank) return;
cur Bank = bank;
bank <<= bankShift;
#i fdef D RECT_BANKI NG

set bxdx(0, bank) ;

bankSwi t ch();

set bxdx(1, bank);

bankSwi t ch();
#el se

in. x.ax = 0x4F05; in.x.bx = O;
i nt 86(0x10, & n, &out);
in. x.ax = Ox4F05; in.x.bx = 1;
i nt 86(0x10, & n, &out);

#endi f

}

| * e eeee o

/* Plot a pixel
void putPixel (int x,int y,int color)

long addr = (long)y * bytesperli
set Bank((i nt)(addr >> 16));

*(screenPtr + (addr & OxFFFF)) =

Page 70

Appl i cation Functions

/* Bank is already active
/* Save current bank nunber
/* Adjust to w ndow granularity

i n. X.dx bank;

i n. X.dx bank;

at location (x,y) in specified color (8 bit nodes only)

ne + X;

(char)col or;

VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

*/
*/
*/

Application Programming Considerations

/* Draw a line from(x1,yl) to (x2,y2) in specified color */

void line(int x1,int yl,int x2,int y2,int color)

{
i nt d; /* Decision variabl e */
i nt dx, dy; /* Dx and Dy values for the line */
i nt Ei ncr, NEi ncr; /* Decision variable increnents */
i nt yi ncr; /* Increment for y val ues */
i nt t; /* Counters etc. */
#def i ne ABS(a) ((a) >=07?(a) : -(a))
dx = ABS(x2 - x1);
dy = ABS(y2 - yl);
if (dy <= dx)
{

/* \ have a line with a slope between -1 and 1
*

* Ensure that we are always scan converting the line fromleft to
* right to ensure that we produce the sane line fromPl to PO as the
line fromPO to P1.

*

*/
if (x2 < x1)
t =x2; x2 =x1; x1 =1t; /* Swap X coor di nat es */
t =y2; y2 =yl; yl =1t; /* Swap Y coordi nat es */
}
if (y2 >yl
yincr = 1;
el se
yincr = -1;
d = 2*dy - dx; /* Initial decision variable value */
Ei ncr = 2*dy; /* Increment to nmove to E pixel */
NE ncr = 2*(dy - dx); /* Increnent to nove to NE pixel */
put Pi xel (x1, y1, col or); /* Draw the first point at (x1,yl) */

/* Incremental ly determne the positions of the remaining pixels */
for (x1++; x1 <= x2; x1++)

{
if (d <0
d += E ncr; /* Choose the Eastern Pixel */
el se
d += NH ncr; /* Choose the North Eastern Pi xel */
yl += yincr; /* (or SE pixel for dx/dy < OI) */
put Pi xel (x1,y1,color); /* Draw the point */
}
}
el se

/* W have a line with a slope between -1 and 1 (ie: includes
* vertical lines). W must swap our x and y coordinates for this.

*

Ensure that we are always scan converting the line fromleft to
* right to ensure that we produce the sane line fromPl to PO as the
line fromPO to P1.

*

*/
if (y2 <yl
{

VBE CORE FUNCTIONS VERSION 2.0 Page 71
DOCUMENT REVISION 1.2

Application Programming Considerations

t =x2; x2 =x1; x1 =1t; /* Swap X coor di nat es */

t =y2; y2 =yl; yl =1t; /* Swap Y coordi nat es */
}
if (x2 > x1)

yincr = 1;
el se

yincr = -1;
d = 2*dx - dy; /* Initial decision variable value */
Ei ncr = 2*dx; /* Increment to nmove to E pixel */
NE ncr = 2*(dx - dy); /* Increment to nove to NE pixel */
put Pi xel (x1, y1, col or); /* Draw the first point at (x1,yl) */

/* Incremental ly determ ne the positions of the remaining pixels */
for (yl++; yl <= y2; yl++)

if (d <0
d += E ncr; /* Choose the Eastern Pixel */
el se
d += NHE ncr; /* Choose the North Eastern Pi xel */
x1 += yincr; /* (or SE pixel for dx/dy < OI) */
}
} put Pi xel (x1,y1,color); /* Draw the point */
} }
Page 72 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

Application Programming Considerations

/* Draw a sinple noire pattern of lines on the display */
voi d drawwbi r e(voi d)

o _
i nt i;
for (i =0; i <xres; i +=5)
line(xres/2,yres/2,i,0,i % OxFF);
line(xres/2,yres/2,i,yres, (i+l) % OxFF);
for (i =0; i <yres; i +=5)
line(xres/2,yres/2,0,i,(i+2) % O0OxFF);
line(xres/2,yres/ 2, xres,i, (i+3) % O0xFF);
}
line(0,0,xres-1,0,15);
line(0,0,0,yres-1,15);
line(xres-1,0, xres-1,yres-1,15);
line(0,yres-1,xres-1,yres-1,15);
}

/* Return NEAR pointer to FAR string pointer*/
char *get_str(char far *p)

int i;
char *q=nystr;

for(i=0;i<255;i++)

£(*p) *qrt = *pry

el se break;

}

*g ='\0";

return(nystr);
}
/* Display a list of available resolutions. Be careful with calls to
* function 00h to get SuperVGA node information. Many VBE s build the
* list of video nmodes directly in this information block, so if you
* are using a common buffer (which we aren't here, but in protected
* node you will), then you will need to nake a local copy of this |ist
* of avail abl e nodes.
*/

voi d avai | abl eMbdes(voi d)

{

unsi gned far *p;
if (!'getVbelnfo())

printf("No VESA VBE detected\n");
exit(1);

}

printf("VESA VBE Version %l. % detected (9%)\n\n",
Vbel nf oBl ock. VESAVer si on >> 8, Vbel nf oBl ock. VESAVer si on & OxF,
get _str(Vbel nf oBl ock. CEMBtringPtr));

printf("Available 256 col or video nodes:\n");

for (p = Vbel nfoBl ock. Vi deoMbdePtr; *p !'=(unsigned)-1; p++)

VBE CORE FUNCTIONS VERSION 2.0 Page 73
DOCUMENT REVISION 1.2

Application Programming Considerations

i f (getModel nfo(*p))

printf(" %ld x %d % bits per pixel\n",
Model nf oBl ock. XResol uti on, Mddel nf oBl ock. YResol uti on,
Model nf oBl ock. Bi t sPer Pi xel) ;

}
printf("\nUsage: hellovbe <xres> <yres>\n");
exit(1);

}

/* Initialize the specified video node. Notice how we determne a shift
* factor for adjusting the Wndow granul arity for bank switching. This
* is nuch faster than doing it with a multiply (especially wth direct
* banki ng enabl ed) .

*/
voi d initQG aphics(unsigned int x, unsigned int y)
{
unsi gned far *p;
if (!'getVbelnfo())
printf("No VESA VBE detected\n");
exit(1);
}
for (p = Vbel nfoBl ock. Vi deoMbdePtr; *p !'= (unsigned)-1; p++)
i f (get Model nfo(*p) && Model nf oBl ock. XResol ution ==
&& NMbdel nf oBl ock. YResol ution == y)
{
Xres = X; yres =y,
byt esper | i ne = Model nf oBl ock. Byt esPer ScanLi ne;
bankShift = 0;
whil e ((unsigned) (64 >> bankShift) !'= Mdel nf oBl ock. WnG anul arity)
bankShi f t ++;
bankSwi t ch = Model nf 0Bl ock. WnFuncPtr;
curBank = -1,
screenPtr = (char far *)(((!ong)0xA000)<<16 | 0);
ol dvbde = get VBEMbde() ;
set VBEMbde(*p) ;
return;
}
printf("Valid video node not found\n");
exit(1);

/* Main routine. Expects the x &y resolution of the desired video node
* to be passed on the command line. WIIl print out a list of available
* video nodes if no command line is present.

*/
void main(int argc,char *argv[])
{
int x,y;
if (argc !'= 3)
avai | abl eMbdes(); /* Display list of avail abl e nodes */
Page 74 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.2

Application Programming Considerations

x = atoi(argv[1]); /* Get requested resol ution */

y = atoi(argv[2]);

i nit@aphics(x,y); /* Start requested video node */

drawhbi re(); /* Draw a noire pattern */

getch(); /* Wit for keypress */
) set VBEMbde(ol dvbde) ; /* Restore previous node */
2 */
/* The follow ng comrented-out routines are for Pl anar nodes */
/* outpw() is for word output, outp() is for byte output */
2 */

/* Initialize Planar (Wite node 2)
* Should be Called frominitQ aphics

void initPlanar()
out pw(Ox3C4, 0x0F02) ;
out pw(Ox3CE, 0x0003) ;
out pw(Ox3CE, 0x0205) ;

}

*/

/* Reset to Wite Mde 0
* for Bl OGS default draw text

void set WiteMdeO()

out pw(Ox3CE, OxFFO08) ;
out pw(Ox3CE, 0x0005) ;

}
*/
/* Plot a pixel in Planar node

void putPixel P(int x, int y, int color)

{

char dumy_read;

long addr = (long)y * bytesperline + (x/8);

set Bank((i nt)(addr >> 16));

out p(Ox3CkE, 8) ;

out p(Ox3CF, 0x80 >> (x & 7));

dummy_read = *(screenPtr + (addr & OxFFFF));

*(screenPtr + (addr & OxFFFF)) = (char) col or;
L

Assembly Language Module
Below isthe Assembly Language module required for the direct bank switching. In Borland
C or other C compilers, this can be converted to in-line assembly code.

public _set bxdx

. MODEL SMVALL ; what ever
. OCDE
set_struc struc
VBE CORE FUNCTIONS VERSION 2.0 Page 75

DOCUMENT REVISION 1.2

Application Programming Considerations

dw ? ;old bp
dd ? ;return addr (always far call)
p_bx dw ? ;reg bx val ue
p_dx dw ? ;reg dx val ue
set _struc ends
_set bxdx proc far ; nmust be FAR
push bp
nov bp, sp
nov bx, [bp] +p_bx
nov dx, [bp] +p_dx
pop bp
ret
_set bxdx endp

END
A5.2 Implementation Notes by Function

A5.2.1 General Notes

Starting with VBE version 2.0 VESA will no longer define new VESA mode numbers and it
will not longer be mandatory to support these old mode numbers. VBE 2.0 aware
applications should follow the guidelines in the sample code above for setting a desired mode.

Applications should treat any non-zero value in the AH register as a general failure condition
as later versions of the VBE may define additional error codes. BIOS developers should
refrain from defining their own return codes, which may conflict with future VESA-defined
return codes.

A5.2.2 Function 00h - Return VBE Controller Information

All datain the structure is subject to change by the VBE implementation when VBE Function
OOhiscalled. Therefore it should not be used by the application to store data of any kind.
VBE should fill any unused portion of the structure with zeros.

The BCD value for VBE 2.0 is 0200h, The BCD value for VBE 1.2 is 0102h. In the past we
have had some applications misinterpreting these BCD values. For example, BCD 0102h was
interpreted as 1.02, which isincorrect.

If the RAMDAC is an older style RAMDAC with the possibility of "snow" during
programming, the VBE 2.0 implementation must place a 1 in bit 2 of the Capabilities field.

It is the responsibility of the application to verify the actual availability of any mode returned
by this Function by using the Return VBE Mode Information (VBE Function 01h) call. Some
of the returned modes may not be available due to the actual amount of memory physically
installed on the display board or to the capabilities of the attached monitor.

If aVideoModeList isfound to contain no entries (starts with OFFFFh), it can be assumed that
the VBE implementation is a"stub" implementation where only Function O0h is supported for
diagnostic or "Plug and Play" reasons. These stub implementations are not VBE 2.0

Page 76 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Application Programming Considerations

compliant and should only be implemented in cases where no space is available to implement
the whole VBE. If aDAC is switchable, you can assume that the DAC will be restored to

6 bits per primary upon amode set. For an application to use a DAC the application program
isresponsible for setting the DAC to 8 bits per primary mode using Function 08h.

If aDAC is switchable, you can assume that the DAC will be restored to 6 bits per primary
upon amode set. For an application to use a DAC the application program is responsible for
setting the DAC to 8 bits per primary mode using Function 08h.

A5.2.3 Function 01h - Return VBE Mode Information

Version 1.1 and later VBE will zero out all unused fields in the Mode Information Block,
always returning exactly 256 bytes. This facilitates upward compatibility with future versions
of the standard, as any newly added fields will be designed such that values of zero will
indicate nominal defaults or non-implementation of optional features. (For example, afield
containing a bit-mask of extended capabilities would reflect the absence of all such
capabilities.) Applications that wish to be backwards compatible to Version 1.0 VBE should
pre-initialize the 256 byte buffer before calling the Return VBE Mode Information function.

Since this specification encompasses non-VGA hardware as well as VGA hardware,
applications should not assume VGA properties, e.g., WinASegment and WinBSegment are
not limited to the VGA frame buffer region A0O00-BFFFh, they may exist elsewhere.

A5.2.4 Function 02h - Set VBE Mode

Function 00h of an IBM VGA compatible BIOS uses D7 to signify the same thing as D15
doesin thisfunction. If D7 isset for an IBM compatible mode when calling this function,
this mode set should fail. VBE aware applications must set the memory clear bit in D15.

This call should not set modes not listed in the list of supported modes. All modes (including
IBM standard VGA modes), if listed as supported, must have M odelnfoBlock structures
associated with them.

Mode 81FFh is a special mode designed to preserve the current memory contents and to give
access to the entire video memory. This mode is especially useful for saving the entire video
memory contents before going into a state that could lose the contents (e.g. set this mode to
gain access to all video memory to save it before going into a volatile power down state).
This mode is required as the entire video memory contents are not always accessible in every
mode. It isrecommended that this mode be packed pixel in format, and a Model nfoBlock
must be defined for it. Also note that there are no implied resolutions or timings associated
with this mode.

A5.2.5 Function 03h - Return Current VBE Mode

Version 1.x Note: In astandard VGA BIOS, Function OFh (Read current video state) returns
the current graphics mode in the AL register. In D7 of AL, it also returns the status of the
memory clear bit (D7 of 40:87). Thisbit isset if the mode was set without clearing memory.

VBE CORE FUNCTIONS VERSION 2.0 Page 77
DOCUMENT REVISION 1.2

Application Programming Considerations

In this VBE function, the memory clear bit will not be returned in BX since the purpose of the
function is to return the video mode only. If an application wants to obtain the memory clear
bit, it should call the standard VGA BIOS Function OFh.

Version 2.x Note: Unlike version 1.x VBE implementations, the memory clear flag will be
returned. The application should NOT call the standard VGA BI1OS Function OFh if the mode
was set with VBE Function 02h.

This function is not guaranteed to return an accurate mode value if the mode set was not done
with VBE Function 02h. In that case, the results are unspecified.

A5.2.6 Function 05h - Display Window Control

In VBE 1.2 implementations, the direct far call version returns no Return Status information
to the application. Also, in the far call version, the AX and DX registers will be destroyed.
Therefore if AX and/or DX must be preserved, the application must do so prior to making the
far call. The application must still load the input argumentsin BH, BL, and DX (for Set
Window). InVBE 2.0 implementations, the BIOS will return the correct Return Status, and
therefore the application must assume that AX and DX will be destroyed.

This function is not intended for use in alinear frame buffer mode, if thisfunctionis
requested, the function call will fail with the VBE Completion code AH=03h.

A5.2.7 Function 06h - Get/Set Logical Scan Line Length

The desired width in pixels may not be achievable because of hardware considerations.

The next larger value will be selected that will accommodate the desired number of pixels,
and the actual number of pixelswill be returned in CX. BX returns avalue that when added
to a pointer into display memory will point to the next scan line. For example, in VGA mode
13h this would be 320, but in mode 12h thiswould be 80. DX returns the number of logical
scan lines based upon the new scan line length and the total memory installed and usable in
this display mode.

Thisfunction is also valid in text modes. In text modes the application should convert the
character line length to pixel line length by getting the current character cell width through the
XCharSize field returned in Model nfoBlock, multiplying that times the desired number of
characters per line, and passing that value in the CX register.

In text modes, this function will only work if the line length is specified in character
granularity. i.e. in 8 dot modes only multiples of 8 will work. Any value whichisnotin
character granularity will result in afunction call failure.

A5.2.8 Function 07h - Get/Set Display Start
Thisfunction isalso valid in text modes. To use this function in text mode, the application
should convert the character coordinates to pixel coordinates by using XCharSize and

Page 78 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Application Programming Considerations

Y CharSize returned in the ModelnfoBlock. If the requested Display Start coordinates do not
allow for afull page of video memory or the hardware does not support memory wrapping,
the Function call should fail and no changes should be made. Asageneral casg, if a
requested Display Start is not available, fail the Function call and make no changes.

A5.2.9 Function 08h - Set/Get DAC Palette Format

An application can determine if DAC switching is available by querying Bit DO of the
Capabilities field of the VbelnfoBlock structure returned by VBE Function 00h (Return
Controller Information). The application can then attempt to set the DAC palette width to the
desired value. If the display controller hardware is not capable of selecting the requested
palette width, then the next lower value that the hardware is capable of will be selected.

The resulting palette width is returned.

Thisfunction is not intended for direct color modes, it will return failure code 03h if called in
adirect color or YUV mode.

A5.2.10 Function 09h - Set/Get Palette Data

The need for BL= 80h isfor older style RAMDAC's where programming the RAM values
during display time causes a "snow-like" effect on the screen. Newer style RAMDAC'sdon't
have this limitation and can easily be programmed at any time, but older RAMDAC's require
that they be programmed during a non-display time only to stop the snow like effect seen
when changing the DAC values. When thisis requested the VBE implementation will
program the DAC with blanking on. Check D2 of the Capabilities field returned by VBE
Function 00h to determine if 80h should be used instead of 00h.

When in 6 bit mode, the format of the 6 bitsis LSB, thisis done for speed reasons, as the
application can typically shift the data faster than the BIOS can.

All application should assume the DAC is defaulted to 6 bit mode. The application is
responsible for switching the DA C to higher color modes using Function 08h.

Query VBE Function 08h to determine the RAMDAC width before loading a new palette.

A5.2.11 Function OAh - Return VBE Function Information

The Port and Memory location Sub-table does not include the Frame Buffer Memory
location. The Frame Buffer Memory location is contained within the M odel nfoBlock
returned by VBE Function 01h.

The protected mode code is assembled for a 32-bit code segment, when copying it, the
application must copy the code to a 32-bit code segment.

It is the responsibility of the application to ensure that the selectors and segments are set up
correctly.

VBE CORE FUNCTIONS VERSION 2.0 Page 79
DOCUMENT REVISION 1.2

Application Programming Considerations

If the memory location is zero, then only 1/0O mapped ports will be used so the application
does not need to do anything special. This should be the default case for ALL cards that have
I/O mapped registers because it provides the best performance.

If the memory location is nonzero (there can be only one), the application will need to create a
new 32-bit selector with the base address that points to the “physical” location specified with
the specified limit.

Applications must use the same registers for the Function 05h and Function 09h protected
mode interface that it would use in areal mode call. Thisincludesthe AX register.

Function 07h protected mode calls have a different format.

AX = 4F07h
BL = 00h Set Display CRTC Start
= 80h Set Display CRTC Start during Vertical Retrace
CX = Bits 0-15 of display start address
DX = Bits 16-31 of display start address

The protected mode application must keep track of the color depth and scan line length to
calculate the new start address. If avalue that is out of range is programmed, unpredictable
results will occur.

Currently undefined registers may be destroyed with the exception of ESI, EBP, DS and SS.

Page 80 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Differences Between VBE Revisions

Appendix 6 - Differences Between VBE Revisions

6.1 VBE1.0
Initial implementation:

6.2 VBE1l1

Second implementation:

6.3 VBE1.2
Third implementation:

6.4 VBE2.0
Fourth implementation:

Implemented Functions 00-05h
Defined modes 100-107h

Added Functions 06h and 07h.

Added modes 108-10Ch

Added TotalMemory to VbelnfoBlock

Added NumberOflmagePages and
Reserved fields to Model nfoBlock

Added Function 08h

Added Hi-color modes 10D-11Bh

Added Reserved field to VbelnfoBlock

Added New Direct color fieldsto ModelnfoBlock
Changed optional fields to mandatory in Model nfoBlock
Added Capabilities bit definition in VbelnfoBlock

Added Flat Frame Buffer support in Function 02h (D14)

Added protected mode support (Function OAh)

Added new DAC services for palette operations
(Function 09h)

Added new completion codes 02h and 03h

Added OEM information to VbelnfoBlock

Added two new definitions to Capabilities in VVbelnfoBlock

Added new fields to Model nfoBlock

Certification and ROM requirements for Compliance

Clarified Memory Clear bit in Function 02h (D15)

Clarified Memory Clear bit in Function 03h (D15)

Added new return field in Function 06h

Added Supplemental Functions definition and defined
Supplemental Functions 10-16h

Added new mode to access all of video memory

Added wait for vertical retrace in Function 07h

Clarified and removed ambiguities in the earlier
specifications

Added new mode to access all video memory.

VBE CORE FUNCTIONS VERSION 2.0 Page 81

DOCUMENT REVISION 1.2

Application Programming Considerations

6.5 VBE 2.0,Rev. 1.1
Fifth implementation: Page 6, Section 3 - Revised sentence to read: Note that
modes may only be set if the mode existsin the
VideoModeList pointed to by the VideoModePTR
returned in Function 00h. The exception to this
requirement is the mode number 81ffh.

Page 9, Section 4.2 - Added: If the memory location is
zero, then only 1/0 mapped ports will be used so the
application does not need to do anything special. This
should be the default case for ALL cards that have I/O
mapped registers because it provides the best
performance.

and

If the memory location is nonzero (there can be only
one), the application will need to create a new 32-bit
selector with the base address that points to the
“physical” location specified with the specified limit.
and

When the application needs to call the 32-bit bank switch
function, it must then load the ES selector with the value
of the new selector that has been created. The bank
switching code can then directly access its memory
mapped registers as absol ute offsets into the ES selector
(i.e., mov [es:10],eax to put avalue into the register at
base+10).

It is up to the application code to save and restore the
previous state of the ES selector if thisis necessary (for
examplein flat model code)

Page 21, Section 4.5 - Revised sentence to read: If
function call D7 is set and the application assumesit is
similar to the IBM compatible mode set using VBE
Function 02h, the implementation will fail.

Page 25 - Added: Note: CX and DX, for both input and
output values, will be zero based.

Page 28 - Added: If the memory location is zero, then
only 1/0O mapped ports will be used so the application
does not need to do anything special. This should be the
default case for ALL cards that have 1/0O mapped registers
because it provides the best performance.

Page 82 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Differences Between VBE Revisions

and

If the memory location is nonzero (there can be only
one), the application will need to create a new 32-bit
selector with the base address that points to the
“physical” location specified with the specified limit.
and

When the application needs to call the 32-bit bank switch
function, it must then load the ES selector with the value
of the new selector that has been created. The bank
switching code can then directly access its memory
mapped registers as absol ute offsets into the ES selector
(i.e., mov [es:10],eax to put a value into the register at
base+10).

It is up to the application code to save and restore the
previous state of the ES selector if thisis necessary (for
examplein flat model code).

Page 62 - Added to first paragraph: However, it should
not appear in the VideoModeList. Look inthe
ModelnfoBlock to determine if paging is required and, if
itisrequired, how it is supported.

Page 80, Section A5.2.11 - Added: If the memory
location is zero, then only 1/O mapped ports will be used
so the application does not need to do anything special.
This should be the default case for ALL cards that have
I/O mapped registers because it provides the best
performance.

and

If the memory location is nonzero (there can be only one),
the application will need to create a new 32-bit selector with
the base address that points to the “physical” location
specified with the specified limit.

Corrected typographical errors and style.

Modified copyright notice; modified Support section;
added missing paragraphs regarding protected mode to
function OAh and section on protected mode
considerations; corrected typo in function 09h —

255 should have read 256; corrected cast of ‘color' in
C example.

VBE CORE FUNCTIONS VERSION 2.0 Page 83
DOCUMENT REVISION 1.2

Application Programming Considerations

6.6 VBE 2.0,Rev. 1.2
Current implementation: Changed the E-mail address from techsupport@vesa.org
to vesa-support@exodus.net.

Page 84 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.2

Related Documents

Appendix 7 - Related Documents

VGA Reference Manual(s)

Graphic Controller Data Sheets

VESA Monitor Timings

VBE/PM Monitor Power Management Standard

VBE/AI VESA Audio Interface

VBE/DDC VESA Display Data Channel Software Interface Standard
VESA DDC Hardware Specification

VESA DPMS Hardware Specification

VBE CORE FUNCTIONS VERSION 2.0 Page 85
DOCUMENT REVISION 1.2

