
Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 1

Using Interrupts Version 1.0

Disclaimer : While every effort has been made to make sure the information in this document is correct, the author can not be liable
for any damages whatsoever for loss relating to this document. Use this information at your own risk.

Table of Contents

What are Interrupts? Page 2

Interrupts and Intel Architecture Page 3

Hardware Interrupts Page 3

Implementing the Interrupt Service Routine (ISR) Page 5

Using your new Interrupt Service Routine Page 6

The Programmable Interrupt Controller Page 7

IRQ2/IRQ9 Redirection Page 9

Programmable Interrupt Controller's Addresses Page 10

Initialization Command Word 1 (ICW1) Page 11

Initialization Command Word 2 (ICW2) Page 12

Initialization Command Word 3 (ICW3) Page 12

Initialization Command Word 4 (ICW4) Page 14

Operation Control Word 1 (OCW1) Page 15

Operation Control Word 2 (OCW2) Page 16

Operation Control Word 3 (OCW3) Page 17

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 2

What are Interrupts?

When receiving data and change in status from I/O Ports, we have two methods available to
us. We can Poll the port, which involves reading the status of the port at fixed intervals to determine
whether any data has been received or a change of status has occurred. If so, then we can branch to a
routine to service the ports requests.

As you could imagine, polling the port would consume quite some time. Time which could be
used doing other things such refreshing the screen, displaying the time etc. A better alternative would
be to use Interrupts. Here, the processor does your tasks such as refreshing the screen, displaying the
time etc, and when a I/O Port/Device needs attention as a byte has been received or status has
changed, then it sends a Interrupt Request (IRQ) to the processor.

Once the processor receives an Interrupt Request, it finishes its current instruction, places a
few things on the stack, and executes the appropriate Interrupt Service Routine (ISR) which can
remove the byte from the port and place it in a buffer. Once the ISR has finished, the processor returns
to where it left off.

Using this method, the processor doesn't have to waste time, looking to see if your I/O Device
is in need of attention, but rather the device will interrupt the processor when it needs attention.

Interrupts and Intel Architecture

Interrupts do not have to be entirely associated with I/O devices. The 8086 family of
microprocessors provides 256 interrupts, many of these are only for use as software interrupts, which
we do not attempt to explain in this document.

The 8086 series of microprocessors has an Interrupt Vector Table situated at 0000:0000 which
extends for 1024 bytes. The Interrupt Vector table holds the address of the Interrupt Service Routines
(ISR), all four bytes in length. This gives us room for the 256 Interrupt Vectors.

INT (Hex) IRQ Common Uses

00 - 01 Exception Handlers

02 Non-Maskable IRQ Non-Maskable IRQ (Parity Errors)

03 - 07 Exception Handlers

08 Hardware IRQ0 System Timer

09 Hardware IRQ1 Keyboard

0A Hardware IRQ2 Redirected

0B Hardware IRQ3 Serial Comms. COM2/COM4

0C Hardware IRQ4 Serial Comms. COM1/COM3

0D Hardware IRQ5 Reserved/Sound Card

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 3

0E Hardware IRQ6 Floppy Disk Controller

0F Hardware IRQ7 Parallel Comms.

10 - 6F Software Interrupts

70 Hardware IRQ8 Real Time Clock

71 Hardware IRQ9 Redirected IRQ2

72 Hardware IRQ10 Reserved

73 Hardware IRQ11 Reserved

74 Hardware IRQ12 PS/2 Mouse

75 Hardware IRQ13 Math's Co-Processor

76 Hardware IRQ14 Hard Disk Drive

77 Hardware IRQ15 Reserved

78 - FF Software Interrupts

Table 1 : x86 Interrupt Vectors

The average PC, only has 15 Hardware IRQ's plus one Non-Maskable IRQ. The rest of the
interrupt vectors are used for software interrupts and exception handlers. Exception handlers are
routines like ISR's which get called or interrupted when an error results. Such an example is the first
Interrupt Vector which holds the address of the Divide By Zero, Exception handler. When a divide by
zero occurs the Microprocessor fetches the address at 0000:0000 and starts executing the code at this
Address.

Hardware Interrupts

The Programmable Interrupt Controller (PIC) handles hardware interrupts. Most PC's will
have two of them located at different addresses. One handles IRQ's 0 to 7 and the other, IRQ's 8 to 15,
giving a total of 15 individual IRQ lines, as the second PIC is cascaded into the first, using IRQ2.

Most of the PIC's initialization is done by BIOS, thus we only have to worry about two
instructions. The PIC has a facility available where we can mask individual IRQ's so that these
requests will not reach the Processor. Thus the first instruction is to the Operation Control Word
(OCW1) to set which IRQ's to mask and which IRQ's not too.

As there are two PIC's located at different addresses, we must first determine which PIC we
need to use. The first PIC, located at Base Address 0x20h controls IRQ 0 to IRQ 7. The bit format of
PIC1's Operation Control Word 1 is shown on the next page in table 2.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 4

Bit Disable IRQ Function

7 IRQ7 Parallel Port

6 IRQ6 Floppy Disk Controller

5 IRQ5 Reserved/Sound Card

4 IRQ4 Serial Port

3 IRQ3 Serial Port

2 IRQ2 PIC2

1 IRQ1 Keyboard

0 IRQ0 System Timer

Table 2 : PIC1 Operation Control Word 1 (0x21)

Note that IRQ 2 is connected to PIC2, thus if you mask this IRQ, then you will be disabling IRQ's 8 to
15.

The second PIC located at a base address of 0xA0h controls IRQs 8 to 15. Below is the
individual bits required to make up it's Operation Control Word.

Bit Disable IRQ Function

7 IRQ15 Reserved

6 IRQ14 Hard Disk Drive

5 IRQ13 Maths Co-Processor

4 IRQ12 PS/2 Mouse

3 IRQ11 Reserved

2 IRQ10 Reserved

1 IRQ9 Redirected IRQ2

0 IRQ8 Real Time Clock

Table 3 : PIC2 Operation Control Word 1 (0xA1)

As the above table shows the bits required to disable an IRQ, we must invert them should we
want to enable an IRQ. For example, if we want to enable IRQ 3 then we would send the byte 0xF7 as
OCW1 to PIC1. But what happens if one of these IRQs are already enabled and then we come along
and disable it?

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 5

Therefore we must first get the mask and use the AND function to output the byte back to the
register with our changes so to cause the least upset to the other IRQs. Going back to our IRQ3
example, we could use outportb(0x21,(inportb(0x21) & 0xF7); to enable IRQ3. Take note that
the OCW1 goes to the register at Base + 1.

The same procedure must be used to mask (disable) an IRQ once we are finished with it.
However this time we must OR the byte 0x08 to the contents of OCW1. Such and example of code is
outportb(0x21,(inportb(0x21) | 0x08);

The other PIC instruction we have to worry about is the End of Interrupt (EOI). This is sent to
the PIC at the end of the Interrupt Service Routine so that the PIC can reset the In Service Register.
See The Programmable Interrupt Controller (Page 7) for more information. An EOI can be sent using
outportb(0x20,0x20); for PIC1 or outportb(0xA0,0x20); for PIC2

Implementing the Interrupt Service Routine (ISR)

In C you can implement your ISR using void interrupt yourisr() where yourisr is a far
pointer, pointing to the address that your Interrupt Service Routine will reside in memory. This is later
placed in the Interrupt Vector Table so that, it will be called when interrupted.

The following code is a basic implementation of an ISR.

void interrupt yourisr() /* Interrupt Service Routine (ISR) */
{
 disable();

 /* Body of ISR goes here */

 oldhandler();

 outportb(0x20,0x20); /* Send EOI to PIC1 */
 enable();
}

void interrupt yourisr() defines this function as an Interrupt Service Routine. disable();
clears the interrupt flag, so that no other hardware interrupts ,except a NMI (Non-Maskable Interrupt)
can occur. Otherwise, and interrupt with a higher priority that this one can interrupt the execution of
this ISR. However this is not really a problem in many cases, thus is optional.

The body of your ISR will include code which you want to execute upon this interrupt request
being activated. Most Ports/UARTs may interrupt the processor for a range of reasons, eg byte
received, time-outs, FIFO buffer empty, overruns etc, thus the nature of the interrupt has to be
determined. This is normally achieved by reading the status registers of the port you are using. Once it
has been established, you can service it's requests.

If you read any data from a port, it is normally common practice to place it in a buffer, rather
that immediately writing it to the screen, inhibiting further interrupts to be processed. Most Ports these
days will have FIFO buffers which can contain more than one byte, thus repeat your read routine, until
the FIFO is empty, then exit your ISR.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 6

In some cases it may be appropriate to chain the old ISR to this one. Such an example would
be the Clock Interrupt. Other TSR or resident programs may also be using it, thus if you intercept the
interrupt and keep it all for yourself, the other ISR's can no longer function possibly causing some side
effects. However for Serial/Parallel Ports this is not a problem. To chain the old ISR to your new ISR,
you can call it using oldhandler(); where oldhandler points to your old ISR.

Before we can return from the interrupt, we must tell the Programmable Interrupt Controller,
that we are ending the interrupt by sending an EOI (End of Interrupt 0x10) to it. As there are two
PIC's you must first establish which one to send it to. Use outportb(0x20,0x20); for PIC 1 (IRQ 0 -
7) or outportb(0xA0,0x20); for PIC 2 (IRQ 8 - 15).

Note: If using PIC2, then an EOI has to be sent to both PIC1 and PIC2.

Using your new Interrupt Service Routine

Now that we have written our new interrupt service routine, we can start looking at how to
implement it. The following code segment shows the basic usage of your new ISR. For this example
we have chosen to use IRQ 3.

#include <dos.h>

#define INTNO 0x0B /* Interrupt Number - See Table 1 */

void main(void)
{
 oldhandler = getvect(INTNO); /* Save Old Interrupt Vector */
 setvect(INTNO, yourisr); /* Set New Interrupt Vector Entry */
 outportb(0x21,(inportb(0x21) & 0xF7)); /* Un-Mask (Enable) IRQ3 */

 /* Set Card - Port to Generate Interrupts */

 /* Body of Program Goes Here */

 /* Reset Card - Port as to Stop Generating Interrupts */

 outportb(0x21,(inportb(0x21) | 0x08)); /* Mask (Disable) IRQ3 */
 setvect(INTNO, oldhandler); /* Restore old Interrupt Vector Before

 Exit */
}

Before you can place the address of your new ISR in the interrupt vector table, you must first
save the old interrupt vector, so that you can restore it once you exit your program. This is done using
oldhandler = getvect(INTNO); where INTNO is the number of the interrupt vector you wish to
return. Before oldhandler can be used, you must first declare it using void interrupt (
*oldhandler)();

Once the old interrupt vector is stored, we can now install your new ISR into the interrupt
vector table. This is done using the line setvect(INTNO, yourisr); where yourisr points to your
interrupt service routine.

The IRQ which you are using must now be unmasked. We have already discussed this earlier.
See Hardware Interrupts (Page 3.)

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 7

Most Ports/UARTs will need some initialization to be able to generate interrupts. For
Example, The Standard Parallel Port (SPP) will require Bit 4 of the Control Port, Enable IRQ Via
ACK Line to be set at Base + 2. The Serial Port will require the appropriate setting of Bits 0 to 4 of the
Interrupt Enable Register (IER) located at Base + 1.

Your body of the program normally consists of a few housekeeping tasks depending upon your
application. Here you look for new keys pressed, menus being selected, updating clocks, checking for
incoming data in buffers etc, knowing that any data from your Ports will be automatically read and
processed, by the ISR.

If you like implementing ISR's so much, you can attach your own ISR to the Keyboard
Interrupt, so any keys being pressed will be automatically handled by another ISR, and even one to the
clock. Upon every 18.2 ticks you can update the seconds on your display! The possibilities of ISR's
are endless.

Before you exit your program always restore the old interrupt vector, so that your computer
doesn't become unstable. This is done using setvect(INTNO, oldhandler); , where oldhandler points to
the old interrupt service routine, which we stored using oldhandler = getvect(INTNO);

The Programmable Interrupt Controller

As we have all ready discussed, the Interrupt ReQuests (IRQ's) of a PC is handled by two 8259
Programmable Interrupt Controllers. On the old XT's/AT's these were two 28 Pin DIP IC's, but as you
can imagine, things have changed dramatically since then. While the operational principal is still the
same, the PIC is now integrated somewhere into your chipset, along with many other devices.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 8

The basic block diagram of the PIC is shown above. The 8 individual interrupt request lines
are first passed through the Interrupt Mask Register (IMR) to see if they have been masked or not. If
they are masked, then the request isn't processed any further. However if they are not masked, they
will register their request with the Interrupt Request Register (IRR).

The Interrupt Request Register will hold all the requested IRQ's until they have been dealt
with appropriately. If required, this register can be read by setting certain bits of the Operation Control
Word 3. The Priority Resolver simply selects the IRQ of highest priority. The higher priority
interrupts are the lower numbered ones. For Example IRQ 0 has the highest priority followed by IRQ
1 etc.

Now that the PIC has determined which IRQ to process, it is now time to tell the processor, so
that it can call your ISR for you. This process is done by sending a INT to the processor, i.e. the INT
line on the processor is asserted. The processor will then finish the current instruction it's processing
and acknowledge your INT request with a INTA (Interrupt Acknowledge) pulse.

Upon receiving the processor's INTA, the IRQ which the PIC is processing at the time is
stored in the In Service Register (ISR) which as the name suggests, shows which IRQ is currently in
service. The IRQ's bit is also reset in the Interrupt Request Register, as it is no longer requesting
service but actually getting service.

Another INTA pulse will be sent by the processor, to tell the PIC to place a 8 bit pointer on the
data bus, corresponding to the IRQ number. If an IRQ serviced by PIC2 is requesting the service, then
PIC2 will send the pointer to the processor. The Master (PIC1) at this stage, will select PIC2 to send
the pointer, by placing PIC2's Slave ID on the Cascade lines, which is a 3 wire bus between all the
PIC's in a system.

The 5 most significant bits of this pointer is set using the Initialization Command Word 2
(ICW2). This will be 00001 for PIC1 and 01110 for PIC2. The three least significant bits, will be sent
due to which IRQ is being serviced. For example, if IRQ3 is requesting service then the 8 bit pointer
will be made up with 00001 for the 5 most significant bits and 011 (IR3) for the least significant bits.
Put this together and you get 00001011 or 0x0B which just happens to be IRQ3's interrupt vector.

For PIC2, the same principal is applied. If IRQ10 is requesting service, then 01110010 will be
sent, which just happens to represent Interrupt 72h. IRQ10 happens to be connected to IR2 on the
Second PIC, thus 010 is used as the least significant bits.

Once your ISR has done everything it needs, it sends an End of Interrupt (EOI) to the PIC,
which resets the In-Service Register. If the request came from PIC2, then EOI's are required to be sent
to both PICs. The PIC will then determine the next highest priority interrupt and repeat the same
process. If no Interrupt Requests are present, then the PIC waits for the next request before
interrupting the processor.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 9

IRQ2/IRQ9 Redirection

The redirection of IRQ2 causes quite some confusion, and thus is discussed here. In the
original XT's there were only one PIC, thus only eight IRQ's. However users soon out grew these
resources, thus an additional 7 IRQ's were added to the PC. This involved attaching another PIC to the
existing one already in the XT. Compatibility always causes problems as the new configuration still
had to be compatible with old hardware and software. The "new" configuration is shown below.

The CPU only has one interrupt line, thus the second controller had to be connected to the first
controller, in a master/slave configuration. IRQ2 was selected for this. By using IRQ2 for the second
controller, no other devices could use IRQ2, so what happened to all these devices using IRQ2?
Nothing, the interrupt request line found on the bus, was simply diverted into the IRQ 9 input. As no
devices yet used the second PIC or IRQ9, this could be done.

The next problem was that a hardware device using IRQ2 would install it's ISR at INT 0x0A.
Therefore an ISR routine was used at INT 71h, which sent a EOI to PIC2 and then called the ISR at
INT 0x0A. If you dis-assemble the ISR for IRQ9, it will go a little like,

MOV AL,20
OUT A0,AL ; Send EOI to PIC2
INT 0A ; Call ISR for IRQ2
IRET

The routine only has to send a EOI to PIC2, as it is expected that a ISR routine written for
IRQ2 will send a EOI to PIC1. This example destroys the contents of Register AL, thus this must be
placed on the stack first (Not shown in example). As PIC2 is initialized with a Slave on IRQ2, any
request using PIC2 will not call the ISR routine for IRQ2. The 8 bit pointer will come from PIC2.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 10

Programmable Interrupt Controller's Addresses

The two PIC's found in an IBM compatible system are initialized via BIOS thus you don't have
to worry about all of their registers. However for some people, who have inquisitive minds the
following information may come in some use or maybe you want to (re)program a BIOS? Below is a
table of all the command words of the 8259 and compatible Programmable Interrupt Controller. The
Top Table shows the Addresses for the PIC1, while the bottom table shows addresses for PIC2.

Address Read/Write Function

20h Write Initialization Command Word 1 (ICW1)

Write Operation Command Word 2 (OCW2)

Write Operation Command Word 3 (OCW3)

Read Interrupt Request Register (IRR)

Read In-Service Register (ISR)

21h Write Initialization Command Word 2 (ICW2)

Write Initialization Command Word 3 (ICW3)

Write Initialization Command Word 4 (ICW4)

Read/Write Interrupt Mask Register (IMR)

Table 4 : Addresses/Registers for PIC1

PIC2 Addresses . . .

Address Read/Write Function

A0h Write Initialization Command Word 1 (ICW1)

Write Operation Command Word 2 (OCW2)

Write Operation Command Word 3 (OCW3)

Read Interrupt Request Register (IRR)

Read In-Service Register (ISR)

A1h Write Initialization Command Word 2 (ICW2)

Write Initialization Command Word 3 (ICW3)

Write Initialization Command Word 4 (ICW4)

Read/Write Interrupt Mask Register (IMR)

Table 5 : Addresses/Registers for PIC2

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 11

Initialization Command Word 1 (ICW1)

If the PIC has been reset, it must be initialized with 2 to 4 Initialization Command Words
(ICW) before it will accept and process Interrupt Requests. The following selection outlines the four
possible Initialization Command Words.

Bit(s) Function

7: 5 Interrupt Vector Addresses for MCS-80/85 Mode.

4 Must be set to 1 for ICW1

3 1 Level Triggered Interrupts

0 Edge Triggered Interrupts

2 1 Call Address Interval of 4

0 Call Address Interval of 8

1 1 Single PIC

0 Cascaded PICs

0 1 Will be Sending ICW4

0 Don't need ICW4

Table 6 : Initialization Command Word 1 (ICW1)

The 8259 Programmable Interrupt Controller, offers many other features which are not used in
the PC. It also offers support for MCS-80/85 microprocessors. All we have to be aware of being PC
uses, is if the system is running in single mode (One PIC) or if in Cascaded Mode (More than one
PIC) and if the Initialization Command Word 4 is needed. If no ICW4 is used, then all of it's bits will
be set to 0. As we are using it in 8086 mode, we must send a ICW4.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 12

Initialization Command Word 2 (ICW2)

Bit 8086/8080 Mode MCS 80/85 Mode

7 I7 A15

6 I6 A14

5 I5 A13

4 I4 A12

3 I3 A11

2 - A10

1 - A9

0 - A8

Table 7 : Initialization Command Word 2 (ICW2)

Initialization Command Word 2 (ICW2) selects which vector information is released onto the
bus, during the 2nd INTA Pulse. Using the 8086 mode, only bits 7:3 need to be used. This will be
00001000 (0x08) for PIC1 and 01110000 (0x70) for PIC2. If you wish to relocate the IRQ Vector
Table, then you can use this register.

Initialization Command Word 3 (ICW3)

There are two different Initialization Command Word 3's. One is used, if the PIC is a master,
while the other is used for slaves. The top table shows the ICW3 for the master.

Bit Function

7 IR7 is connected to a Slave

6 IR6 is connected to a Slave

5 IR5 is connected to a Slave

4 IR4 is connected to a Slave

3 IR3 is connected to a Slave

2 IR2 is connected to a Slave

1 IR1 is connected to a Slave

0 IR0 is connected to a Slave

Table 8 : Initialization Command Word 3 for Master PIC (ICW3)

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 13

And for the slave device, the ICW3 below is used.

Bit(s) Function

7 Reserved. Set to 0

6 Reserved. Set to 0

5 Reserved. Set to 0

4 Reserved. Set to 0

3 Reserved. Set to 0

2 : 0 Slave ID

000 Slave 0

001 Slave 1

010 Slave 2

011 Slave 3

100 Slave 4

101 Slave 5

110 Slave 6

111 Slave 7

Table 9 : Initialization Command Word 3 for Slaves (ICW3)

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 14

Initialization Command Word 4 (ICW4)

Bit(s) Function

7 Reserved. Set to 0

6 Reserved. Set to 0

5 Reserved. Set to 0

4 1 Special Fully Nested Mode

0 Not Special Fully Nested Mode

3 : 2 0x Non - Buffered Mode

10 Buffered Mode - Slave

11 Buffered Mode - Master

1 1 Auto EOI

0 Normal EOI

0 1 8086/8080 Mode

0 MCS-80/85

Table 10 : Initialization Command Word 4 (ICW4)

Once again, many of these are special functions not used with the 8259 PIC in a PC. We don't
use, Special Fully Nested Mode, thus this bit is set to 0. Likewise we use non-buffered mode and
Normal EOI's thus all these corresponding bits are set to 0. The only thing we must set is 8086/8080
Mode which is done using Bit 0.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 15

Operation Control Word 1 (OCW1)

Once all the required Initialization Command Words have been sent to the PIC, then you can
send Operation Control Words, in any order and at any time during the PIC's operation. The Operation
Control Words are shown in the next sections.

Bit PIC 2 PIC 1

7 Mask IRQ15 Mask IRQ7

6 Mask IRQ14 Mask IRQ6

5 Mask IRQ13 Mask IRQ5

4 Mask IRQ12 Mask IRQ4

3 Mask IRQ11 Mask IRQ3

2 Mask IRQ10 Mask IRQ2

1 Mask IRQ9 Mask IRQ1

0 Mask IRQ8 Mask IRQ0

Table 11 : Operation Control Word 1 (OCW1)

Operation Control Word 1, shown above is used to mask the inputs of the PIC. This has
already been discussed, earlier in this article.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 16

Operation Control Word 2 (OCW2)

Bit(s) Function

7:5 000 Rotate in Auto EOI Mode (Clear)

001 Non Specific EOI

010 Reserved

011 Specific EOI

100 Rotate in Auto EOI Mode (Set)

101 Rotate on Non-Specific EOI

110 Set Priority Command (Use Bits 2:0)

111 Rotate on Specific EOI (Use Bits 2:0)

4 Must be set to 0

3 Must be set to 0

2 : 0 000 Act on IRQ 0 or 8

001 Act on IRQ 1 or 9

010 Act on IRQ 2 or 10

011 Act on IRQ 3 or 11

100 Act on IRQ 4 or 12

101 Act on IRQ 5 or 13

110 Act on IRQ 6 or 14

111 Act on IRQ 7 or 15

Table 12 : Operation Control Word 2 (OCW2)

Operation Control Word 2 selects how the End of Interrupt (EOI) procedure works. The only
thing of interest to us in this register is the non-specific EOI command, which we must send at the end
of our ISR's.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 17

Operation Control Word 3 (OCW3)

Bit(s) Function

7 Must be set to 0

6 : 5 00 Reserved

01 Reserved

10 Reset Special Mask

11 Set Special Mask

4 Must be set to 0

3 Must be set to 1

2 1 Poll Command

0 No Poll Command

1 : 0 00 Reserved

01 Reserved

10 Next Read Returns Interrupt Request Register

11 Next Read Returns In-Service Register

Table 13 : Operation Control Word 3 (OCW3)

Bits 0 and 1 are of the most significant to us, in Operation Control Word 3. These two bits
enable us to read the status of the Interrupt Request Register (IRR) and the In-Service Register (ISR).
This is done by setting the appropriate bits correctly as above, and reading the register at the Base
Address.

For example if we wanted to read the In-Service Register (ISR), then we would set both bits 1
and 0 to 1. The next read to the base register, (0x20 for PIC1 or 0xA0 for PIC2) will return the status
of the In-Service Register.

Using Interrupts http://www.senet.com.au/~cpeacock

Using Interrupts Page 18

Craig Peacock’s Interfacing the PC

http://www.senet.com.au/~cpeacock

http://www.geocities.com/SiliconValley/Bay/8302/

Copyright January 1998 Craig Peacock.

Any errors, ideas, criticisms or problems, please contact the author at cpeacock@senet.com.au

