Crusoe Processor Products and Technology

Doug Laird VP Product Development

January 19th 2000

Transmeta, Crusoe, Code Morphing and LongRun are trademarks of Transmeta Corporation

Agenda

- The Crusoe processor family
- The technology behind Crusoe
- VLIW & Code Morphing software
- LongRun power management
- The engineering team
- Mobile benchmarks

TM3120 for Mobile Internet Devices (With Mobile Linux O/S)

	TM3120	
Frequency Range	333-400 MHz	
L1 Cache	96KB	
L2Cache		
Main Memory	SDRAM	
Upgrade memory		
North Bridge	Integrated	
Package	474 BGA	
Fab Partner	IBM	
Process Technology	.22u	
Die Size	77mm	
Sample	Now	
Production	Now	

TM5400 for Ultra-Light PCs (With Microsoft O/S)

	TM5400	
Frequency Range	500-700 MHz	
L1 Cache	128K	
L2Cache	256K	
Main Memory	DDR-SDRAM	
Upgrade memory	SDRAM	
North Bridge	Integrated	
Package	474 BGA	
Fab Partner	IBM	
Process Technology	.18u	
Die Size	73mm	
Sample	Now	
Production	Mid 2000	

Crusoe Processor Hardware System Diagram

VLIW processor interfacing with PC standard components

- SDRAM and DDR-SDRAM memory
- PCI standard I/O devices and controllers

Improved system architecture for better performance & lower power

The Smart Microprocessor Architecture

- Compatible with any x86 App & OS
- Code Morphing software"Morphs" x86 to VLIW
- High Speed, Low Power VLIW Engine
- VLIW + Code Morphing = x86 compatible solution

VLIW Processor Architecture

- Free from x86 Legacy
- 128 bit VLIW processor
- Code morphing hardware facilities
- Integrated North Bridge chipset

Simple Fast Low Power Processor

Code Morphing Software Overview

What are the keys to Code Morphing software?

 Translates x86 compatible PC applications to VLIW hardware

Translation of PC Applications to VLIW (x86 Instructions Converted to VLIW)

Dynamic Software Execution

Dynamic Software Execution (2nd Pass)

Code Morphing Software Overview

What are the keys to Code Morphing software?

 Translates x86 compatible PC applications to VLIW hardware

"Learns" and optimizes the application

Crusoe Processor Software Optimization

x86 (IA-32) Instruction Mix

1. movl %ecx,\$0x3 2. jmp lbl1 Ibl1: 3. movl %edx,0x2fc(%ebp) 4. movl %eax,0x304(%ebp) 5. movl %esi.\$0x0 6. cmpl %edx,%eax 7. movl 0x40(%esp,1),\$0x0 8. ile skip1 9. movl %esi,\$0x1 skip1: 10. movl 0x6c(%esp,1),%esi 11. cmpl %edx,%eax 12. movl %eax,\$0x1 13. il skip2 14. xorl %eax,%eax skip2: 15. movl %esi,0x308(%ebp) 16. movl %edi,0x300(%ebp) 17. movl 0x7c(%esp,1),%eax 18. cmpl %esi,%edi 19. movl %eax,\$0x0 20. jnl exit1 exit2:

"Morphed" (128-bit) VLIW Instructions

1	addi %r39,%ebp,0x2fc				
	· • •				
2.	addi %r38,%ebp,0x304				
3.	ld %edx,[%r39];	add	%r27,%r38,4;	add %r26,%r38,-4	
4.	ld %r31,[%r38];	add	%r35,0,1;	add %r36,%esp,0x40	
5.	ldp %esi,[%r27];	add	%r33,%esp,0x6c;	<pre>sub.c %null,%edx,%r31</pre>	
6.	ldp %edi,[%r26];	sel	#le %r32,0,%r35;		
7.	stam 0,[%r36];	sel	#l %r24,%r35,0;	add %r25,%esp,0x7c	
8.	stam %r32,[%r33];	add	%ecx,0,3;	sub.c %null,%esi,%edi	
9.	st %r24,[%r25];	or a	<pre>leax,0,0;</pre>	brcc #lt, <exit2></exit2>	
10.	br <exitl></exitl>				

A Smart Processor analyzes the programs you run

- Optimization begins as soon as programs are launched
- Code MorphingTM detects the top running blocks
- Uses techniques beyond out of order engine
- Benefits
 - Good Performance
 - Low Power (reduced number of executions)

Code Morphing Software Overview

What are the keys to Code Morphing software?

- Translates x86 compatible PC applications to VLIW hardware
- "Learns" and optimizes the application
- Produces measurable benefits to Transmeta & users

Processor Thermal Comparison

Pentium III Playing DVD

> 105.5° C 221.9° F

Crusoe Processor Playing DVD

> 48.2° C 118.8° F

Code Morphing Software Overview

What are the keys to Code Morphing software?

- Translates x86 compatible PC applications to VLIW hardware
- "Learns" and optimizes the application
- Produces measurable benefits to Transmeta & users
- Provides a platform for future extensions (features)

LongRun Technology

A New Invention for Power Management

"Maximizing Battery Life While Optimizing Performance"

LongRun Technology in Operation

Crusoe Processor

Crusoo procesor starts off at	AC/DC Modes	
 Crusoe processor starts off at 	MHz	Voltage
700MHz	700	1.65
Code Marshing cofficience	667	1.65
 Code Morphing software 	633	1.60
detects user activity	600	1.60
The software dynamically	566	1.55
adjusts MHz and voltage to	533	1.55
	500	1.50
the most efficient power level	466	1.50
	433	1.45
	400	1.40
	366	1.35
	333	1.30
	300	1.25
	266	1.20
	233	1.15
	200	1.10

LongRun Technology Demonstration

MHz	Voltage	% Full Power
700	1.65	100%
400	1.4	41%
333	1.2	25%

Power = C x V² x F = $400MHz/700MHz * 1.4V^2/1.65V^2 = 41\%$

- Crusoe processor starts off at 700MHz
- DVD movie requires between 333 and 400MHz
- Power is reduced to 25 or 41% of full power
- The result is extended DVD playtime

Mobile Benchmarks

- Today's benchmarks address performance and battery life separately
- Battery life benchmark should be improved to represent the mobile user
- Benchmarks for ultra-light mobiles must respond to market needs
 - All day mobile PCS
 - Multimedia (3-4+ hour PCS)
- Transmeta is working with the industry benchmarking leaders to implement a new methodology

Benchmark Methodology

- Measure the performance on real applications
- Measure the battery life after running the application
- Generate a result which combines both properties

Transmeta's proposed methodology

- Run the same application on all systems
- Measure the amount of time that it takes for the application to complete
- Measure the amount of energy that was consumed in the battery
- Performance = 1/amount of time to complete the application * energy consumed

A better score is achieved

- The faster for application completes
- The more battery life you have after running the application

The reference machine for comparison is:

- Dell Inspiron 7500 with PIII-500MHz
- 64MB PC-100 SDRAM
- 440BX Mobile Chipset

Mobile Platform Benchmarks (Mobile Pentium III vs. Crusoe Processor)

Windows 98 SE	Pentium III 500 MHz 1.54V	TM5400 266-533 MHz LongRun
Booting Windows	10	31.2
Windows Desktop Idle	10	62.9
Surfing the Web	10	40.7
Intel Media Benchmark	10	18.3
MP3 playback	10	46.9
DVD playback	10	31.1

Summary

- Introduction of the TM3120 and the TM5400
- Three key features
 - Small, fast VLIW processor
 - Full x86 compatibility
 - LongRun compatibility
- Description of the VLIW processor and Code Morphing Software
- Great Engineering team
- New benchmark methodology

We really did re-invent the microprocessor!