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About This Book

The primary objective of this user's manual is to define the functionality of the MPC750
and MPC740 microprocessors for use by software and hardware devel opers. Although the
emphasis of this manual is upon the MPC750, unless otherwise noted, all information here
applies to MPC740. This book is intended as a companion to the PowerPC™
Microprocessor Family: The Programming Environments (referred to as The Programming
Environments Manual).

About the Companion Programming Environments Manual

The MPC750 RISC Microprocessor User’'s Manual, which
describes MPC750 features not defined by the architecture, is
to be used with the PowerPC Microprocessor Family: The
Programming Environments, Rev. 1, referred to as The
Programming Environments Manual.

Because the PowerPC architectureis designed to be flexible to
support a broad range of processors, The Programming
Environments Manual provides a genera description of
features that are common to PowerPC processors and indicates
those features that are optional or that may be implemented
differently in the design of each processor.

Note that The Programming Environments Manual exists in
two versions. PowerPC Microprocessor Family: The
Programming Environments, Rev. 1 describes features of the
PowerPC architecture for both 64- and 32-bit implementations.
This version may be more useful if migration to 64-bit
processors is critical to the reader. Power PC Microprocessor
Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1 describes features of the PowerPC
architecture only for 32-bit implementations. Because it
describes only those features that support 32-bit processors,
this manual may be more practica if the reader is concerned
primarily with the MPC750 processor.

Contact your sales representative for a copy of The
Programming Environments Manual.
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This document and The Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

e PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA definesthe
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers.

« PowerPC virtual environment architecture (VEA)—TheVEA, whichisthe smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devicescan
access external memory and defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resourcesin
an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA aso conform to the PowerPC
UISA, but may not necessarily adhere to the OEA.

« PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resourcestypically required by an operating system. The OEA definesthe
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause a floating-
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, the arrangement of topics in this book follows that of The
Programming Environments Manual. Topics build upon one another, beginning with a
description and complete summary of MPC750-specific registers and instructions and
progressing to more specialized topics such as MPC750-specific details regarding the
cache, exception, and memory management models. As such, chapters may include
information from multiple levels of the architecture. (For example, the discussion of the
cache model uses information from both the VEA and the OEA.)
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The Power PC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture. For information about ordering
PowerPC documentation, see “ Suggested Reading,” on page xxx.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers responsibility to be sure they are using the most recent version of the
documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.mot.com/powerpc.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the MPC750. It is assumed that the reader
understands operating systems, microprocessor system design, basic principles of RISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

e Chapter 1, “Overview,” isuseful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the MPC750. This
chapter describes the flexible nature of the PowerPC architecture definition, and
provides an overview of how the PowerPC architecture defines the register set,
operand conventions, addressing modes, instruction set, cache model, exception
model, and memory management model.

¢ Chapter 2, “MPC750 Processor Programming Model,”is useful for software
engineers who need to understand the M PC750-specific registers, operand
conventions, and details regarding how PowerPC instructions are implemented on
the MPC750. Instructions are organized by function.

e Chapter 3, “L1 Instruction and Data Cache Operation,” discusses the cache and
memory model as implemented on the MPC750.

e Chapter 4, “Exceptions,” describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the MPC750.

e Chapter 5, “Memory Management,” describesthe MPC750'simplementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

¢ Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditionsto hel p make programming more efficient.
This chapter is of special interest to software engineers and system designers.
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Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of the
MPC750.

Chapter 8, “ System Interface Operation,” describes signal timings for various
operations. It aso provides information for interfacing to the MPC750.

Chapter 9, “L2 Cache Interface Operation,” describes the implementation and use
of the MPC750 L 2 cache and cache controller. Note that this featureis not
supported on the MPC740.

Chapter 10, “Power and Thermal Management,” providesinformation about power
saving and thermal management modes for the MPC750.

Chapter 11, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the MPC750.

Appendix A, “PowerPC Instruction Set Listings,” listsall the PowerPC instructions
whileindicating thoseinstructionsthat are not implemented by the MPC750; it also
includes the instructions that are specific to the MPC750. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

Appendix B, “Instructions Not Implemented,” providesalist of the 32-bit and 64-
bit PowerPC instructions that are not implemented in the MPC750.

This manual aso includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

Thefollowing documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are available from the M organ-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A)),
(415) 392-2665 (International); internet address. mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updatesto the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technol ogy in the Common Hardware Reference Platform, by Apple
Computer, Inc.
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— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

¢ Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

«  PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404,
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

» User's manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 601™ RISC Microprocessor User’s Manual: MPC601UM/AD
(Motorolaorder #)

— PowerPC 603e™ RISC Microprocessor User’s Manual with Supplement for
Power PC 603 Microprocessor:
MPC603EUM/AD (Motorola order #)

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #)

e Programming environments manuals—T hese books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-hbit
model.

— PowerPC Microprocessor Family: The Programming Environments, Rev 1.
MPCFPE/AD (Motorola order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1: MPCFPE32B/AD (Motorola order #)

» Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual isavailable viatheworld-wideweb at http://www.motorola.com/PowerPC/.

* Addendal/erratato user’'s manual s—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changesto
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to Power PC 603e RISC Microprocessor User’s Manual: Power PC
603e Microprocessor Supplement and User’s Manual Errata:
MPC603EUMAD/AD (Motorola order #)
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— Addendum to Power PC 604 RISC Microprocessor User’s Manual: Power PC
604e™ Microprocessor Supplement and User’s Manual Errata:
MPC604UMAD/AD (Motorolaorder #)

Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, aswell as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications:
MPC601EC/D (Motorola order #)

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPCG603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Soecifications:
MPC603EEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Secifications:
MPC603E7VEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Soecifications:
MPCG03E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPCG04EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Soecifications:
MPC604E9VEC/D (Motorola order #

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of itsfeatures. This document isroughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, and 604e as well as the
following:

— PowerPC 620™ RISC Microprocessor Technical Summary: MPC620/D
(Motorola order #)

Power PC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorolaorder #) provides adetailed functional description of the
60x bus interface, asimplemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing acentralized reference sourceto identify the businterface presented by
the 60x family of PowerPC microprocessors.

XXXii
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* PowerPC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction

Set.

« PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #)
This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

« Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC

Processors.

« Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPC106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.motorol a.com/PowerPC/.

Conventions

This document uses the following notational conventions:

mnemonics
italics

0x0

0b0

rA,rB

rb

frA, frB, frC
frD
REG[FIELD]

I nstruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bectrx.
Book titlesin text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronymsfor registersare shown in uppercasetext.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refersto the little-endian mode enable bit in the machine
state register.

In certain contexts, such asasignal encoding, thisindicatesadon’t
care.

Used to express an undefined numerical value
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= NOT logical operator
& AND logical operator
| OR logical operator
Indicates reserved bits or bit fields in a register. Although these bits

may be written to as either ones or zeros, they are dways read as

ZEros.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
BAT Block address translation
BIST Built-in self test
BHT Branch history table
BIU Bus interface unit
BPU Branch processing unit
BTIC Branch target instruction cache
BSDL Boundary-scan description language
BUID Bus unit ID
CMOS Complementary metal-oxide semiconductor
CoP Common on-chip processor
CR Condition register
CQ Completion queue
CTR Count register
DABR Data address breakpoint register
DAR Data address register
DBAT Data BAT
DCMP Data TLB compare
DEC Decrementer register
DLL Delay-locked loop
DMISS Data TLB miss address
DMMU Data MMU
DPM Dynamic power management
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HIDn Hardware implementation-dependent register
IABR Instruction address breakpoint register
IBAT Instruction BAT
ICTC Instruction cache throttling control register
IEEE Institute for Electrical and Electronics Engineers
IMMU Instruction MMU
1Q Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
JTAG Joint Test Action Group
L2 Secondary cache (Level 2 cache)
L2CR L2 cache control register
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LSU Load/store unit
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMCRn Monitor mode control registers
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PLL Phase-locked loop
PLRU Pseudo least recently used
PMCn Performance monitor counter registers
POR Power-on reset
POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RTL Register transfer language
RWITM Read with intent to modify
RWNITM Read with no intent to modify
SDA Sampled data address register
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIA Sampled instruction address register
SPR Special-purpose register
SRn Segment register
SRU System register unit
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
SRU System register unit
TAU Thermal management assist unit
B Time base facility
TBL Time base lower register
TBU Time base upper register
THRMn Thermal management registers
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UMM Unsigned immediate value
UISA User instruction set architecture
UMMCRnN User monitor mode control registers
UPMCn User performance monitor counter registers
USIA User sampled instruction address register
VEA Virtual environment architecture
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Tableii describes terminology conventions used in this manual and the equivalent
terminology used in the PowerPC architecture specification.

Table ii. Terminology Conventions

The Architecture Specification This Manual
Data storage interrupt (DSI) DSl exception
Extended mnemonics Simplified mnemonics
Fixed-point unit (FXU) Integer unit (1U)
Instruction storage interrupt (ISI) ISI exception
Interrupt Exception
Privileged mode (or privileged state) Supervisor-level privilege
Problem mode (or problem state) User-level privilege
Real address Physical address
Relocation Translation
Storage (locations) Memory
Storage (the act of) Access
Store in Write back
Store through Write through
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Tableiii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)
D d
DS ds
FLM FM
FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)
FXM CRM
RA, RB, RT, RS rA, rB, rD, rS (respectively)
SI SIMM
U IMM
ul UIMM
1,00, 101 0...0 (shaded)
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Chapter 1
Overview

This chapter provides an overview of the MPC750 microprocessor features, including a
block diagram showing the major functional components. It provides information about
how the MPC750 implementation complies with the PowerPC™ architecture definition.

1.1 MPC750 Microprocessor Overview

This section describes the features and general operation of the MPC750 and provides a
block diagram showing major functional units. The MPC750 is an implementation of the
PowerPC microprocessor family of reduced instruction set computer (RISC)
microprocessors. The MPC750 implements the 32-bit portion of the PowerPC architecture,
which provides 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and
floating-point data types of 32 and 64 bits. The MPC750 is a superscalar processor that can
compl ete two instructions simultaneously. It incorporates the following six execution units:

¢ Floating-point unit (FPU)

¢ Branch processing unit (BPU)
e System register unit (SRU)

¢ Load/store unit (LSU)

¢ Two integer units (1Us): 1U1 executes all integer instructions. U2 executes al
integer instructions except multiply and divide instructions.

The ability to execute several instructionsin parallel and the use of simpleinstructionswith
rapid execution times yield high efficiency and throughput for MPC750-based systems.
Most integer instructions execute in one clock cycle. The FPU is pipelined, the tasks it
performs are broken into subtasks, implemented as three successive stages. Typically, a
floating-point instruction can occupy only one of the three stages at a time, freeing the
previous stage to work on the next floating-point instruction. Thus, three single-precision
floating-point instructions can bein the FPU execute stage at atime. Double-precision add
instructions have a three-cycle latency; double-precision multiply and multiply-add
instructions have afour-cycle latency.
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Figure 1-1 shows the parallel organization of the execution units (shaded in the diagram).
The instruction unit fetches, dispatches, and predicts branch instructions. Note that thisis
a conceptual model that shows basic features rather than attempting to show how features
are implemented physicaly.

The MPC750 has independent on-chip, 32-Kbyte, eight-way set-associative, physically
addressed caches for instructions and data and independent instruction and data memory
management units (MMUs). Each MMU has a 128-entry, two-way set-associative
trandation lookaside buffer (DTLB and ITLB) that saves recently used page address
trandations. Block address trandation is done through the four-entry instruction and data
block address trandation (IBAT and DBAT) arrays, defined by the PowerPC architecture.
During block tranglation, effective addresses are compared simultaneously with all four
BAT entries. For information about the L1 cache, see Chapter 3, “L1 Instruction and Data
Cache Operation.”

The L2 cache is implemented with an on-chip, two-way, set-associative tag memory, and
with external, synchronous SRAMs for data storage. The external SRAMs are accessed
through a dedicated L2 cache port that supports a single bank of up to 1 Mbyte of
synchronous SRAMs. The L2 cache interface is not implemented in the MPC740. For
information about the L2 cache implementation, see Chapter 9, “L2 Cache Interface
Operation.”

The MPC750 has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for
system resources through a central external arbiter. The MPC750's three-state cache-
coherency protocol (MEI) supportsthe exclusive, modified, and invalid states, acompatible
subset of the MESI (modified/exclusive/shared/invalid) four-state protocol, and it operates
coherently in systems with four-state caches. The MPC750 supports single-beat and burst
data transfers for memory accesses and memory-mapped 1/0O operations. The system
interface is described in Chapter 7, “Signal Descriptions,” and Chapter 8, “System
Interface Operation.”

The MPC750 has four software-controllable power-saving modes. Three static modes,
doze, nap, and sleep, progressively reduce power dissipation. When functional units are
idle, a dynamic power management mode causes those units to enter a low-power mode
automatically without affecting operational performance, software execution, or externa
hardware. The MPC750 also provides athermal assist unit (TAU) and away to reduce the
instruction fetch rate for limiting power dissipation. Power management is described in
Chapter 10, “Power and Thermal Management.”

The MPC750 uses an advanced CMOS process technology and is fully compatible with
TTL devices.
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Figure 1-1. MPC750 Microprocessor Block Diagram
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1.2 MPC750 Microprocessor Features

This section lists features of the MPC750. The interrelationship of these featuresis shown
in Figure 1-1.

1.2.1 Overview of the MPC750 Microprocessor Features
Major features of the MPC750 are as follows:

« High-performance, superscalar microprocessor

— Asmany asfour instructions can be fetched from the instruction cache per clock
cycle
— Asmany as two instructions can be dispatched per clock

— Asmany as six instructions can execute per clock (including two integer
instructions)

— Single-clock-cycle execution for most instructions
¢ Six independent execution units and two register files
— BPU featuring both static and dynamic branch prediction

— 64-entry (16-set, four-way set-associative) branch target instruction cache
(BTIC), acache of branch instructions that have been encountered in
branch/loop code sequences. If atarget instructionisinthe BTIC, itisfetched
into the instruction queue a cycle sooner than it can be made available from
theinstruction cache. Typicaly, if afetch accesshitsthe BTIC, it providesthe
first two instructions in the target stream.

— 512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

— Branchinstructionsthat do not update the count register (CTR) or link register
(LR) are removed from the instruction stream.

— Two integer units (1Us) that share thirty-two GPRs for integer operands
— U1 can execute any integer instruction.

— 1U2 can execute al integer instructions except multiply and divide
instructions (multiply, divide, shift, rotate, arithmetic, and logical
instructions). Most instructions that execute in the U2 take one cycleto
execute. The |U2 has a single-entry reservation station.

— Three-stage FPU

— Fully IEEE 754-1985-compliant FPU for both single- and double-precision
operations

Supports non-1EEE mode for time-critical operations

Hardware support for denormalized numbers

Single-entry reservation station

Thirty-two 64-bit FPRs for single- or double-precision operands
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— Two-stage LSU
— Two-entry reservation station
— Single-cycle, pipelined cache access
— Dedicated adder performs EA calculations
— Performs alignment and precision conversion for floating-point data
— Performs alignment and sign extension for integer data
— Three-entry store queue
— Supports both big- and little-endian modes
— SRU handles miscellaneous instructions
— Executes CR logical and Move to/Move from SPR instructions (mtspr and
mfspr)
— Single-entry reservation station
* Rename buffers
— Six GPR rename buffers
— Six FPR rename buffers
— Condition register buffering supports two CR writes per clock
e Completion unit

— The completion unit retires an instruction from the six-entry reorder buffer
(completion queue) when all instructions ahead of it have been completed, the
instruction has finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)
— Monitors al dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions from the mispredicted
branch

— Retires as many as two instructions per clock

e Separate on-chip instruction and data caches (Harvard architecture)
— 32-Kbyte, eight-way set-associative instruction and data caches
— Pseudo least-recently-used (PLRU) replacement algorithm
— 32-byte (eight-word) cache block

— Physically indexed/physical tags. (Note that the PowerPC architecture refersto
physical address space as real address space.)

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Instruction cache can provide four instructions per clock; datacache can provide
two words per clock

— Caches can be disabled in software
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— Caches can be locked in software
— Data cache coherency (MEI) maintained in hardware

— Thecritical double word is made available to the requesting unit when it is burst
into the line-fill buffer. The cache is nonblocking, so it can be accessed during
this operation.

Level 2 (L2) cacheinterface (The L2 cache interface is not supported in the
MPC740.)

— On-chip two-way set-associative L2 cache controller and tags

— External data SRAMs

— Support for 256-K byte, 512-Kbyte, and 1-Mbyte L2 caches

— 64-byte (256-K byte/512-K byte) and 128-byte (1 Mbyte) sectored line size

— Supports flow-through (register-buffer), pipelined (register-register), and
pipelined late-write (register-register) synchronous burst SRAMs

Separate memory management units (MMUS) for instructions and data
— 52-hit virtual address; 32-bit physical address

— Addresstrandation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte
segments

— Memory programmabl e as write-back/write-through, cacheable/noncacheable,
and coherency enforced/coherency not enforced on a page or block basis

— Separate IBATs and DBATS (four each) also defined as SPRs
— Separate instruction and data translation lookaside buffers (TLBS)

— Both TLBsare 128-entry, two-way set associative, and use L RU replacement
algorithm

— TLBsare hardware-reloadable (that is, the page table search is performed in
hardware)

Separate bus interface units for system memory and for the L2 cache
— Businterface features include the following:

— Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5% ...
8X. (2x to 8x, al half-clock multipliers in-between)

— A 64-bit, split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions
— Single-entry load queue

— Single-entry instruction fetch queue

— Two-entry L1 cache castout queue

— No-DRTRY mode eliminatesthe DRTRY signal from the qualified bus grant.
This allowsthe forwarding of data during load operations to the internal core
one bus cycle sooner than if the use of DRTRY is enabled.
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— L2 cacheinterfacefeatures (which are not implemented on the MPC740) include
the following:

— Core-to-L 2 frequency divisorsof 1, 1.5, 2, 2.5, and 3
— Four-entry L2 cache castout queue in L2 cache BIU
— 17-bit address bus
— 64-bit data bus
¢ Multiprocessing support features include the following:
— Hardware-enforced, three-state cache coherency protocol (MEI) for data cache.

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

¢ Power and thermal management
— Three static modes, doze, nap, and sleep, progressively reduce power
dissipation:
— Doze—All the functional units are disabled except for the time
base/decrementer registers and the bus snooping logic.

— Nap—The nap mode further reduces power consumption by disabling bus
snooping, leaving only the time base register and the PLL in a powered state.

— Sleep—All internal functional units are disabled, after which external system
logic may disable the PLL and SY SCLK.

— Thermal management facility provides software-controllable thermal
management. Thermal management is performed through the use of three
supervisor-level registers and an MPC750-specific thermal management
exception.

— Instruction cache throttling provides control of instruction fetching to limit
power consumption.

» Performance monitor can be used to help debug system designs and improve
software efficiency.

* In-system testability and debugging features through JTAG boundary-scan
capability

1.2.2 Instruction Flow

As shown in Figure 1-1, the MPC750 instruction unit provides centralized control of
instruction flow to the execution units. The instruction unit contains a sequential fetcher,
six-entry instruction queue (1Q), dispatch unit, and BPU. It determines the address of the
next instruction to be fetched based on information from the sequential fetcher and from
the BPU.

See Chapter 6, “Instruction Timing,” for a detailed discussion of instruction timing.
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The sequential fetcher loads instructions from the instruction cache into the instruction
queue. The BPU extracts branch instructions from the sequential fetcher. Branch
instructions that cannot be resolved immediately are predicted using either the MPC750-
specific dynamic branch prediction or the architecture-defined static branch prediction.

Branch instructions that do not affect the LR or CTR are removed from the instruction
stream. The BPU folds branch instructions when a branch is taken (or predicted as taken);
branch instructions that are not taken, or predicted as not taken, are removed from the
instruction stream through the dispatch mechanism.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequentia execution. If branch
prediction is incorrect, the instruction unit flushes all predicted path instructions, and
instructions are fetched from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

The instruction queue (IQ), shown in Figure 1-1, holds as many as six instructions and
loads up to four instructions from the instruction cache during a single processor clock
cycle. The instruction fetcher continuously attempts to load as many instructions as there
were vacancies in the 1Q in the previous clock cycle. All instructions except branch
instructions are dispatched to their respective execution units from the bottom two positions
in the instruction queue (1Q0 and 1Q1) at a maximum rate of two instructions per cycle.
Reservation stations are provided for the 1U1, U2, FPU, LSU, and SRU. The dispatch unit
checks for source and destination register dependencies, determines whether a position is
available in the completion queue, and inhibits subsequent instruction dispatching as
required.

Branch instructions can be detected, decoded, and predicted from anywhere in the
instruction queue. For amore detailed discussion of instruction dispatch, see Section 6.3.3,
“Instruction Dispatch and Completion Considerations.”

1.2.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the sequential fetcher and performs CR
lookahead operations on conditional branchesto resolve them early, achieving the effect of
azero-cycle branch in many cases.

Unconditional branch instructions and conditional branch instructions in which the
condition is known can be resolved immediately. For unresolved conditional branch
instructions, the branch path is predicted using either the architecture-defined static branch
prediction or the MPC750-specific dynamic branch prediction. Dynamic branch prediction
isenabled if HIDO[BHT] = 1.
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When a prediction is made, instruction fetching, dispatching, and execution continue from
the predicted path, but instructions cannot complete and write back results to architected
registers until the prediction is determined to be correct (resolved). When a prediction is
incorrect, the instructions from the incorrect path are flushed from the processor and
processing begins from the correct path. The MPC750 allows a second branch instruction
to be predicted; instructions from the second predicted instruction stream can be fetched
but cannot be dispatched.

Dynamic prediction isimplemented using a 512-entry branch history table (BHT), a cache
that provides two bits per entry that together indicate four levels of prediction for a branch
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic branch
predictionisdisabled, the BPU usesabit in theinstruction encoding to predict the direction
of the conditional branch. Therefore, when an unresolved conditional branch instruction is
encountered, the MPC750 executes instructions from the predicted target stream athough
the results are not committed to architected registers until the conditional branch is
resolved. This execution can continue until a second unresolved branch instruction is
encountered.

When abranch istaken (or predicted as taken), the instructions from the untaken path must
be flushed and the target instruction stream must be fetched into the 1Q. The BTIC isa 64-
entry cache that contains the most recently used branch target instructions, typicaly in
pairs. When an instruction fetch hitsin the BTIC, the instructions arrive in the instruction
gueue in the next clock cycle, a clock cycle sooner than they would arrive from the
instruction cache. Additional instructions arrive from the instruction cache in the next clock
cycle. The BTIC reduces the number of missed opportunities to dispatch instructions and
gives the processor a one-cycle head start on processing the target stream.

The BPU contains an adder to compute branch target addresses and three user-control
registers—thelink register (LR), the count register (CTR), and the CR. The BPU cal cul ates
the return pointer for subroutine calls and saves it into the LR for certain types of branch
instructions. The LR also contains the branch target address for the Branch Conditional to
Link Register (bclrx) instruction. The CTR contains the branch target address for the
Branch Conditional to Count Register (bcctrx) instruction. Because the LR and CTR are
SPRs, their contents can be copied to or from any GPR. Because the BPU uses dedicated
registersrather than GPRs or FPRs, execution of branch instructionsislargely independent
from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit

The completion unit operates closely with the instruction unit. Instructions are fetched and
dispatched in program order. At the point of dispatch, the program order is maintained by
assigning each dispatched instruction a successive entry in the six-entry completion queue.
The completion unit tracks instructions from dispatch through execution and retires them
in program order from the two bottom entries in the completion queue (CQO and CQ1).
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Instructions cannot be dispatched to an execution unit unless there is a vacancy in the
completion queue. Branch instructionsthat do not update the CTR or LR are removed from
the instruction stream and do not take an entry in the completion queue. Instructions that
updatethe CTR and L R follow the same dispatch and compl etion procedures as non-branch
instructions, except that they are not issued to an execution unit.

Completing an instruction commits execution results to architected registers (GPRs, FPRs,
LR, and CTR). In-order completion ensures the correct architectural state when the
MPC750 must recover from amispredicted branch or any exception. Retiring an instruction
removes it from the compl etion queue.

For a more detailed discussion of instruction completion, see Section 6.3.3, “Instruction
Dispatch and Completion Considerations.”

1.2.2.4 Independent Execution Units

In addition to the BPU, the MPC750 provides the five execution units described in the
following sections.

1.2.2.4.1 Integer Units (IUs)

The integer units IU1 and U2 are shown in Figure 1-1. The U1 can execute any integer
instruction; the IU2 can execute any integer instruction except multiplication and division
instructions. Each 1U has a single-entry reservation station that can receive instructions
from the dispatch unit and operands from the GPRs or the rename buffers.

Each IU consists of three single-cycle subunits—a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at atime.

The U1 has a 32-bit integer multiplier/divider as well as the adder, shift, and logical units
of the IU2. The multiplier supports early exit for operations that do not require full 32- x
32-bit multiplication.

Each 1U has a dedicated result bus (not shown in Figure 1-1) that connects to rename
buffers.

1.2.2.4.2 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1, is designed such that single-precision operations require
only asingle pass, with alatency of three cycles. Asinstructions are dispatched to the FPU's
reservation station, source operand data can be accessed from the FPRs or from the FPR
rename buffers. Results in turn are written to the rename buffers and are made available to
subsequent instructions. Instructions pass through the reservation station in dispatch order.
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The FPU contains a single-precision multiply-add array and the floating-point status and
control register (FPSCR). The multiply-add array allows the MPC750 to efficiently
implement multiply and multiply-add operations. The FPU is pipelined so that one single-
or double-precision instruction can be issued per clock cycle. Thirty-two 64-bit floating-
point registersare provided to support floating-point operations. Stalls dueto contention for
FPRs are minimized by automatic allocation of the six floating-point rename registers. The
MPC750 writes the contents of the rename registers to the appropriate FPR when floating-
point instructions are retired by the completion unit.

The MPC750 supports all IEEE 754 floating-point data types (normalized, denormalized,
NaN, zero, and infinity) in hardware, eliminating the latency incurred by software
exception routines. (Note that exception is also referred to as interrupt in the architecture
specification.)

1.2.2.4.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calcul ates effective
addresses, performs data alignment, and provides sequencing for load/store string and
multiple instructions.

Load and store instructions are issued and trandated in program order; however, some
memory accesses can occur out of order. Synchronizing instructions can be used to enforce
strict ordering. When there are no data dependencies and the guarded bit for the page or
block is cleared, a maximum of one out-of-order cacheable |oad operation can execute per
cycle, with atwo-cycle total latency on acache hit. Datareturned from the cacheisheld in
a rename register until the completion logic commits the value to a GPR or FPR. Stores
cannot be executed out of order and are held in the store queue until the completion logic
signals that the store operation is to be completed to memory. The MPC750 executes store
instructions with a maximum throughput of one per cycle and athree-cycle total latency to
the data cache. The time required to perform the actual load or store operation depends on
the processor/bus clock ratio and whether the operation involves the on-chip cache, the L2
cache, system memory, or an 1/O device.

1.2.2.4.4 System Register Unit (SRU)

The SRU executes various system-level instructions, as well as condition register logical
operations and move to/from specia-purpose register instructions. To maintain system
state, most instructions executed by the SRU are execution-serialized; that is, the
instruction is held for execution in the SRU until al previously issued instructions have
executed. Results from execution-serialized instructions executed by the SRU are not
available or forwarded for subsequent instructions until the instruction completes.
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1.2.3 Memory Management Units (MMUSs)

The MPC750's MM Us support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes
(232) of physical memory for instructions and data. The MMUs aso control access
privileges for these spaces on block and page granularities. Referenced and changed status
is maintained by the processor for each page to support demand-paged virtual memory
systems.

The LSU calculates effective addresses for data loads and stores; the instruction unit
calculates effective addresses for instruction fetching. The MMU trandates the effective
address to determine the correct physical address for the memory access.

The MPC750 supports the following types of memory translation:

¢ Real addressing mode—In this mode, trandlation is disabled by clearing bitsin the
machine state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for
data accesses. When address trandlation is disabled, the physical addressisidentical
to the effective address.

¢ Page address trand ation—trang ates the page frame address for a 4-Kbyte page size

¢ Block addresstrand ation—translatesthe base addressfor blocks (128 Kbytesto 256
Mbytes)

If trandation is enabled, the appropriate MMU trandates the higher-order bits of the
effective address into physica address bits. The lower-order address bits (that are
untranslated and therefore, considered both logical and physical) are directed to the on-chip
caches where they form the index into the eight-way set-associative tag array. After
translating the address, the MM U passes the higher-order physical address bitsto the cache
and the cache lookup completes. For caching-inhibited accesses or accesses that missinthe
cache, the untranslated lower-order address bits are concatenated with the translated
higher-order address bits; the resulting 32-bit physical addressis used by the memory unit
and the system interface, which accesses external memory.

The TLBs store page address transl ations for recent memory accesses. For each access, an
effective addressis presented for page and block transl ation simultaneoudly. If atrandation
isfound in both the TLB and the BAT array, the block address trand ation in the BAT array
isused. Usually the trandationisin a TLB and the physical addressisreadily available to
the on-chip cache. When a page address translation is not in a TL B, hardware searches for
one in the page table following the model defined by the PowerPC architecture.

Instruction and data TLBs provide address trandation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of aTLB hit. The MPC750'sTLBs
are 128-entry, two-way set-associative caches that contain instruction and data address
translations. The MPC750 automatically generatesa TLB search on aTLB miss.
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1.2.4 On-Chip Instruction and Data Caches

The MPC750 implements separate instruction and data caches. Each cacheis 32-Kbyte and
eight-way set associative. As defined by the PowerPC architecture, they are physicaly
indexed. Each cache block contains eight contiguous words from memory that are |oaded
from an 8-word boundary (that is, bits EA[27-31] are zeros); thus, a cache block never
crosses a page boundary. An entire cache block can be updated by a four-beat burst load.
Misaligned accesses across a page boundary can incur a performance penalty. Caches are
nonblocking, write-back caches with hardware support for reloading on cache misses. The
critical double word is transferred on the first beat and is simultaneously written to the
cache and forwarded to the requesting unit, minimizing stalls due to load delays. The cache
being loaded is not blocked to internal accesses while the load completes.

The MPC750 cache organization is shown in Figure 1-2.
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Figure 1-2. Cache Organization

Within one cycle, the data cache provides double-word access to the LSU. Like the
instruction cache, the data cache can be invalidated all at once or on a per-cache-block
basis. The data cache can be disabled and invalidated by clearing HIDO[DCE] and setting
HIDO[DCFI]. The data cache can be locked by setting HIDO[DLOCK]. To ensure cache
coherency, the data cache supports the three-state MEI protocol. The data cache tags are
single-ported, so a simultaneous load or store and a Snoop access represent a resource
collision. If a snoop hit occurs, the LSU is blocked internally for one cycle to allow the
eight-word block of data to be copied to the write-back buffer.
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Within one cycle, the instruction cache provides up to four instructions to the instruction
gueue. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled and invalidated by clearing HIDO[ICE] and setting
HIDOQ[ICFI]. Theinstruction cache can belocked by setting HIDO[ILOCK]. Theinstruction
cache supports only the valid/invalid states.

The MPC750 aso implements a 64-entry (16-set, four-way set-associative) branch target
instruction cache (BTIC). The BTIC is a cache of branch instructions that have been
encountered in branch/loop code sequences. If the target instruction is in the BTIC, it is
fetched into the instruction queue a cycle sooner than it can be made available from the
instruction cache. Typically the BTIC containsthefirst two instructionsin the target stream.
The BTIC can be disabled and invalidated through software.

For more information and timing examples showing cache hit and cache misslatencies, see
Section 6.3.2, “Instruction Fetch Timing.”

1.2.5 L2 Cache Implementation (Not Supported in the MPC740)

The L2 cacheisaunified cache that receives memory requests from both the L1 instruction
and data caches independently. The L2 cache is implemented with an on-chip, two-way,
set-associative tag memory, and with external, synchronous SRAMs for data storage. The
external SRAMs are accessed through a dedicated L 2 cache port that supports a single bank
of up to 1 Mbyte of synchronous SRAMs. The L2 cache normally operates in write-back
mode and supports system cache coherency through snooping.

Depending on its size, the L2 cache is organized into 64- or 128-byte lines, which in turn
are subdivided into 32-byte sectors (blocks), the unit at which cache coherency is
mai ntained.

The L2 cache controller contains the L2 cache control register (L2CR), which includes bits
for enabling parity checking, setting the L2-to-processor clock ratio, and identifying the
type of RAM used for the L2 cache implementation. The L2 cache controller aso manages
the L2 cachetag array, two-way set-associative with 4K tags per way. Each sector (32-byte
cache block) hasits own valid and modified status bits.

Requests from the L1 cache generally result from instruction misses, data load or store
misses, write-through operations, or cache management instructions. Requestsfrom the L1
cache are looked up in the L2 tags and serviced by the L2 cache if they hit; they are
forwarded to the bus interface if they miss.

The L2 cache can accept multiple, simultaneous accesses. The L1 instruction cache can
request an instruction at the sametimethat the L 1 data cacheis requesting oneload and two
store operations. The L2 cache also services snoop requests from the bus. If there are
multiple pending requests to the L2 cache, snoop requests have highest priority. The next
priority consists of load and store requests from the L1 data cache. The next priority
consists of instruction fetch requests from the L 1 instruction cache.
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For more information, see Chapter 9, “L 2 Cache Interface Operation.”

1.2.6 System Interface/Bus Interface Unit (BIU)

The address and data buses operate independently; address and data tenures of a memory
access are decoupled to provide a more flexible control of memory traffic. The primary
activity of the system interface is transferring data and instructions between the processor
and system memory. There are two types of memory accesses:

e Single-beat transfers—These memory accesses allow transfer sizes of 8, 16, 24, 32,
or 64 bitsin one bus clock cycle. Single-beat transactions are caused by uncacheable
read and write operations that access memory directly (that is, when caching is
disabled), cache-inhibited accesses, and stores in write-through mode.

« Four-beat burst (32 bytes) data transfers—Burst transactions, which awaystransfer
an entire cache block (32 bytes), are initiated when an entire cache block is
transferred. Because the first-level caches on the MPC750 are write-back caches,
burst-read memory, burst operations are the most common memory accesses,
followed by burst-write memory operations, and single-beat (noncacheable or write-
through) memory read and write operations.

The MPC750 also supports address-only operations, variants of the burst and single-beat
operations, (for example, atomic memory operationsand global memory operationsthat are
snooped), and address retry activity (for example, when a snooped read access hits a
modified block in the cache). The broadcast of some address-only operationsis controlled
through HIDO[ABE]. 1/0 accesses use the same protocol as memory accesses.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the MPC750 to be integrated into systems that implement various fairness and bus
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the bus without sacrificing data coherency. The
MPC750 allows read operationsto go ahead of store operations (except when adependency
exists, or in cases where a noncacheable access is performed), and provides support for a
write operation to go ahead of a previously queued read data tenure (for example, letting a
snoop push be enveloped between address and data tenures of a read operation). Because
the MPC750 can dynamically optimize run-time ordering of load/store traffic, overall
performance isimproved.

The system interface is specific for each PowerPC microprocessor implementation.

The MPC750 signalsare grouped as shown in Figure 1-3. Signalsare provided for clocking
and control of the L2 caches, aswell as separate L 2 address and data buses. Test and control
signals provide diagnostics for selected internal circuits.
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Figure 1-3. System Interface

The system interface supports address pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the MPC750 supports split-bus
transactions for systems with multiple potential bus masters—one device can have
mastership of the address bus while another has mastership of the data bus. Allowing
multiple bus transactions to occur simultaneously increases the avail able bus bandwidth for
other activity.

The MPC750's clocking structure supports a wide range processor-to-bus clock ratios.

1.2.7 Signals
The MPC750's signals are grouped as follows:

Addressarbitration signals—The MPC750 usesthese signalsto arbitrate for address
bus mastership.

Address start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

Address transfer signals—These signals include the address bus and address parity
signals. They are used to transfer the address and to ensure the integrity of the
transfer.

Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write-
through, or caching-inhibited.

Address termination signals—These signal s are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

Data arbitration signals—The MPC750 uses these signals to arbitrate for data bus
mastership.

Datatransfer signals—These signals, which consist of the data bus and data parity
signals, are used to transfer the data and to ensure the integrity of the transfer.
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« Datatermination signals—Datatermination signalsare required after each data beat
inadatatransfer. In asingle-beat transaction, adatatermination signal alsoindicates
the end of the tenure; in burst accesses, datatermination signals apply to individual
beats and indicate the end of the tenure only after the final data beat. They also
indicate whether a condition exists that requires the data phase to be repeated.

¢ L2 cacheclock/control signals—These signals provide clocking and control for the
L2 cache. (Not supported in the MPC740.)

¢ L2 cache address/data—The MPC750 has separate address and data buses for
accessing the L2 cache. (Not supported in the MPC740.)

« Interrupt signals—These signalsinclude the interrupt signal, checkstop signals, and
both soft reset and hard reset signals. These signals are used to generate interrupt
exceptions and, under various conditions, to reset the processor.

* Processor status/control signals—These signals are used to set the reservation
coherency bit, enable the time base, and other functions.

« Miscellaneous signals—These signals are used in conjunction with such resources
as secondary caches and the time base facility.

¢ JTAG/COP interface signals—The common on-chip processor (COP) unit provides
aseria interface to the system for performing board-level boundary scan
interconnect tests.

e Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
are not active low, such asAP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

1.2.8 Signal Configuration

Figure 1-4 shows the MPC750's logical pin configuration. The signals are grouped by
function.
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Figure 1-4. MPC750 Microprocessor Signhal Groups

Signal functionality is described in detail in Chapter 7, “Signal Descriptions,” and
Chapter 8, “ System Interface Operation.”

1-18 MPC750 RISC Microprocessor User’'s Manual



1.2.9 Clocking

The MPC750 requires a single system clock input, SYSCLK, that represents the bus
interface frequency. Internally, the processor uses a phase-locked loop (PLL) circuit to
generate amaster core clock that is frequency-multiplied and phase-locked to the SY SCLK
input. This core frequency is used to operate the internal circuitry.

The PLL is configured by the PLL_CFG[0-3] signals, which select the multiplier that the
PLL uses to multiply the SYSCLK frequency up to the internal core frequency. The
feedback in the PLL guarantees that the processor clock is phase locked to the bus clock,
regardless of process variations, temperature changes, or parasitic capacitances. The PLL
also ensures a 50% duty cycle for the processor clock.

The MPC750 supports various processor-to-bus clock frequency ratios, although not all
ratios are available for all frequencies. Configuration of the processor/bus clock ratios is
displayed through a MPC750-specific register, HID1. For information about supported
clock frequencies, see the MPC750 hardware specifications.

1.3 MPC750 Microprocessor: Implementation

The PowerPC architecture is derived from the POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parall el instruction execution and is scalable to take
advantage of future technological gains.

This section describes the PowerPC architecture in general, and specific details about the
implementation of the MPC750 as alow-power, 32-bit member of the PowerPC processor
family. The structure of this section follows the organization of the user's manual; each
subsection provides an overview of each chapter.

* Registers and programming model—Section 1.4, “ PowerPC Registers and
Programming Model,” describes the registers for the operating environment
architecture common among PowerPC processors and describes the programming
model. It also describes the registers that are unique to the MPC750. The
information inthis section isdescribed morefully in Chapter 2, “MPC750 Processor
Programming Model.”

¢ Instruction set and addressing modes—Section 1.5, “Instruction Set,” describes the
PowerPC instruction set and addressing modes for the PowerPC operating
environment architecture, and defines and describes the PowerPC instructions
implemented in the M PC750. Theinformation in this section isdescribed morefully
in Chapter 2, “MPC750 Processor Programming Model.”
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« Cache implementation—Section 1.6, “On-Chip Cache Implementation,” describes
the cache modé that is defined generally for PowerPC processors by the virtual
environment architecture. It also provides specific details about the MPC750 cache
implementation. The information in this section is described more fully in
Chapter 3, “L1 Instruction and Data Cache Operation.”

¢ Exception model—Section 1.7, “Exception Model,” describes the exception model
of the PowerPC operating environment architecture and the differencesin the
MPC750 exception model. The information in this section is described more fully
in Chapter 4, “ Exceptions.”

¢ Memory management—Section 1.8, “Memory Management,” describes generally
the conventions for memory management among the PowerPC processors. This
section also describes the MPC750's implementation of the 32-bit PowerPC
memory management specification. The information in this section is described
more fully in Chapter 5, “Memory Management

¢ Instruction timing—Section 1.9, “Instruction Timing,” provides agenera
description of theinstruction timing provided by the superscalar, parallel execution
supported by the PowerPC architecture and the MPC750. The information in this
section is described more fully in Chapter 6, “Instruction Timing,”

« Power management—Section 1.10, “ Power Management,” describes how the power
management can be used to reduce power consumption when the processor, or
portions of it, are idle. The information in this section is described more fully in
Chapter 10, “Power and Therma Management.”

¢ Thermal management—Section 1.11, “ Therma Management,” describes how the
thermal management unit and its associated registers (THRM1-THRM3) and
exception can be used to manage system activity in away that prevents exceeding
system and junction temperature thresholds. Thisis particularly useful in high-
performance portable systems, which cannot use the same cooling mechanisms
(such asfans) that control overheating in desktop systems. The information in this
section is described more fully in Chapter 10, “Power and Therma Management.”

¢ Performance monitor—Section 1.12, “Performance Monitor,” describes the
performance monitor facility, which system designers can use to help bring up,
debug, and optimize software performance. The information in this section is
described more fully in Chapter 10, “Power and Thermal Management.”

The following sections summarize the features of the MPC750, distinguishing those that
are defined by the architecture and from those that are unique to the MPC750
implementation.
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The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be described in terms of which of the following levels of the architecture
isimplemented:

» PowerPC user instruction set architecture (Ul SA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

« PowerPC virtual environment architecture (V EA)—Describes the memory model
for amultiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

« PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations. The MPC750 implementations support the three levels
of the architecture described above. For more information about the PowerPC architecture,
see Power PC Microprocessor Family: The Programming Environments.

Specific features of the MPC750 are listed in Section 1.2, “MPC750 Microprocessor
Features”

1.4 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format alows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating system) and user mode of operation (used by the application
software). The programming models incorporate 32 GPRs, 32 FPRs, specia-purpose
registers (SPRs), and several miscellaneous registers. Each PowerPC microprocessor also
has its own unique set of hardware implementation-dependent (HID) registers.

Having accessto privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address trandl ation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.
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Figure 1-5 shows all the MPC750 registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

For more information, see Chapter 2, “MPC750 Processor Programming Model.”
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Figure 1-5. MPC750 Microprocessor Programming Model—Registers
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The following tables summarize the PowerPC registers implemented in the MPC750;
Table 1-1 describes registers (excluding SPRs) defined by the architecture.

Table 1-1. Architecture-Defined Registers on the MPC750 (Excluding SPRs)

Register Level Function

CR User The condition register (CR) consists of eight four-bit fields that reflect the results of certain
operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for floating-
point instructions. These 64-bit registers can hold either single- or double-precision floating-
point values.

FPSCR |User The floating-point status and control register (FPSCR) contains the floating-point exception

signal bits, exception summary bits, exception enable bits, and rounding control bits needed
for compliance with the IEEE-754 standard.

GPRs User The 32 GPRs serve as the data source or destination for integer instructions.

MSR Supervisor | The machine state register (MSR) defines the processor state. Its contents are saved when
an exception is taken and restored when exception handling completes. The MPC750
implements MSR[POW], (defined by the architecture as optional), which is used to enable the
power management feature. The MPC750-specific MSR[PM] bit is used to mark a process for
the performance monitor.

SRO- Supervisor | The sixteen 32-bit segment registers (SRs) define the 4-Gbyte space as sixteen 256-Mbyte
SR15 segments. The MPC750 implements segment registers as two arrays—a main array for data
accesses and a shadow array for instruction accesses; see Figure 1-1. Loading a segment
entry with the Move to Segment Register (mtsr) instruction loads both arrays. The mfsr
instruction reads the master register, shown as part of the data MMU in Figure 1-1.

The OEA defines numerous special -purpose registers that serve avariety of functions, such
as providing controls, indicating status, configuring the processor, and performing special
operations. During normal execution, a program can access the registers, shown in
Figure 1-5, depending on the program’s access privilege (supervisor or user, determined by
the privilege-level (PR) bit in the MSR). GPRs and FPRs are accessed through operands
that are part of the instructions. Accessto registers can be explicit (that is, through the use
of specific instructions for that purpose such as Move to Special-Purpose Register (mtspr)
and Move from Specia-Purpose Register (mfspr) instructions) or implicit, as the part of
the execution of an instruction. Some registers can be accessed both explicitly and
implicitly.

In the MPC750, all SPRs are 32 hits wide. Table 1-2 describes the architecture-defined
SPRs implemented by the MPC750. The Programming Environments Manual describes
these registersin detail, including bit descriptions. Section 2.1.1, “Register Set,” describes
how these registers are implemented in the MPC750. In particular, this section describes
which features the PowerPC architecture defines as optiona are implemented on the
MPC750.
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Table 1-2. Architecture-Defined SPRs Implemented by the MPC750

Register Level Function

LR User The link register (LR) can be used to provide the branch target address and to hold the
return address after branch and link instructions.

BATs Supervisor | The architecture defines 16 block address translation registers (BATs), which operate in
pairs. There are four pairs of data BATs (DBATSs) and four pairs of instruction BATs
(IBATs). BATs are used to define and configure blocks of memory.

CTR User The count register (CTR) is decremented and tested by branch-and-count instructions.

DABR Supervisor | The optional data address breakpoint register (DABR) supports the data address
breakpoint facility.

DAR User The data address register (DAR) holds the address of an access after an alignment or DSI
exception.

DEC Supervisor | The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to
schedule decrementer exceptions.

DSISR User The DSISR defines the cause of data access and alignment exceptions.

EAR Supervisor | The external access register (EAR) controls access to the external access facility through
the External Control In Word Indexed (eciwx) and External Control Out Word Indexed
(ecowx) instructions.

PVR Supervisor | The processor version register (PVR) is a read-only register that identifies the processor.

SDR1 Supervisor | SDR1 specifies the page table format used in virtual-to-physical page address translation.

SRRO Supervisor | The machine status save/restore register 0 (SRRO0) saves the address used for restarting
an interrupted program when a Return from Interrupt (rfi) instruction executes.

SRR1 Supervisor | The machine status save/restore register 1 (SRR1) is used to save machine status on
exceptions and to restore machine status when an rfi instruction is executed.

SPRGO- Supervisor | SPRGO-SPRG3 are provided for operating system use.

SPRG3

B User:read |The time base register (TB) is a 64-bit register that maintains the time of day and operates

Supervisor: |interval timers. The TB consists of two 32-bit fields—time base upper (TBU) and time base
read/write | lower (TBL).

XER User The XER contains the summary overflow bit, integer carry bit, overflow bit, and a field
specifying the number of bytes to be transferred by a Load String Word Indexed (Iswx) or
Store String Word Indexed (stswx) instruction.

Table 1-3 describes the supervisor-level SPRs in the MPC750 that are not defined by the
PowerPC architecture. Section 2.1.2, “MPC750-Specific Registers,” gives detailed
descriptions of these registers, including bit descriptions.
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Table 1-3. MPC750-Specific Registers

Register Level Function

HIDO Supervisor | The hardware implementation-dependent register 0 (HIDO) provides checkstop enables
and other functions.

HID1 Supervisor | The hardware implementation-dependent register 1 (HID1) allows software to read the
configuration of the PLL configuration signals.

IABR Supervisor | The instruction address breakpoint register (IABR) supports instruction address
breakpoint exceptions. It can hold an address to compare with instruction addresses in
the 1Q. An address match causes an instruction address breakpoint exception.

ICTC Supervisor | The instruction cache-throttling control register (ICTC) has bits for controlling the interval
at which instructions are fetched into the instruction buffer in the instruction unit. This
helps control the MPC750’s overall junction temperature.

L2CR Supervisor | The L2 cache control register (L2CR) is used to configure and operate the L2 cache. It
has bits for enabling parity checking, setting the L2-to-processor clock ratio, and
identifying the type of RAM used for the L2 cache implementation. (The L2 cache feature
is not supported in the MPC740.)

MMCRO- Supervisor | The monitor mode control registers (MMCRO-MMCRL1) are used to enable various

MMCR1 performance monitoring interrupt functions. UMMCRO-UMMCR1 provide user-level read
access to MMCRO-MMCRL1.

PMC1- Supervisor | The performance monitor counter registers (PMC1-PMC4) are used to count specified

PMC4 events. UPMC1-UPMC4 provide user-level read access to these registers.

SIA Supervisor | The sampled instruction address register (SIA) holds the EA of an instruction executing

at or around the time the processor signals the performance monitor interrupt condition.
The USIA register provides user-level read access to the SIA.

THRM1, Supervisor | THRM1 and THRM2 provide a way to compare the junction temperature against two

THRM2 user-provided thresholds. The thermal assist unit (TAU) can be operated so that the
thermal sensor output is compared to only one threshold, selected in THRM1 or THRM2.

THRM3 Supervisor | THRM3 is used to enable the TAU and to control the output sample time.

UMMCRO- | User The user monitor mode control registers (UMMCRO-UMMCR1) provide user-level read

UMMCR1 access to MMCRO-MMCR1.

UPMC1- User The user performance monitor counter registers (UPMC1-UPMC4) provide user-level

uUPMC4 read access to PMC1-PMCA4.

USIA User The user sampled instruction address register (USIA) provides user-level read access to

the SIA register.

1.5 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. Thisfixed instruction length and consistent format greatly simplifies
instruction pipelining.

For more information, see Chapter 2, “MPC750 Processor Programming Model.”
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1.5.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR.

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions
— Floating-point compare instructions

— Floating-point status and control instructions

L oad/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store

— Primitives used to construct atomic memory operations (Iwarx and stwcx.
instructions)

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— Condition register logical instructions

Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

— Move to/from SPR instructions
— Move to/from MSR

— Synchronize

— Instruction synchronize

— Order loads and stores
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e Memory control instructions—These instructions provide control of caches, TLBS,
and SRs.

— Supervisor-level cache management instructions

— User-level cache instructions

— Segment register manipulation instructions

— Trandlation lookaside buffer management instructions

This grouping does not indicate the execution unit that executes a particular instruction or
group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computationa instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored in 32-bit implementations.

1.5.2 MPC750 Microprocessor Instruction Set
The MPC750 instruction set is defined as follows:
¢ The MPC750 provides hardware support for al 32-bit PowerPC instructions.

¢ The MPC750 implements the following instructions optional to the PowerPC
architecture:

— External Control In Word Indexed (eciwx)

— External Control Out Word Indexed (ecowx)

— Floating Select (fsel)

— Floating Reciprocal Estimate Single-Precision (fres)
— Floating Reciprocal Square Root Estimate (frsqrte)
— Store Floating-Point as Integer Word (stfiwx)
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1.6 On-Chip Cache Implementation

The following subsections describe the PowerPC architecture’s treatment of cache in
general, and the MPC750-specific implementation, respectively. A detailed description of
the MPC750 cache implementation is provided in Chapter 3, “L1 Instruction and Data
Cache Operation.”

1.6.1 PowerPC Cache Model

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, PowerPC processors can have unified caches, separate instruction and data caches
(Harvard architecture), or no cache at all. PowerPC microprocessors control the following
memory access modes on a page or block basis:

¢ Write-back/write-through mode
e Caching-inhibited mode
¢ Memory coherency

The caches are physically addressed, and the data cache can operatein either write-back or
write-through mode as specified by the PowerPC architecture.

The PowerPC architecture defines the term ‘ cache block’ as the cacheable unit. The VEA
and OEA define cache management instructions a programmer can use to affect cache
contents.

1.6.2 MPC750 Microprocessor Cache Implementation

The MPC750 cache implementation is described in Section 1.2.4, “On-Chip Instruction
and Data Caches,” and Section 1.2.5, “L2 Cache Implementation (Not Supported in the
MPC740).” The BPU also contains a 64-entry BTIC that provides immediate access to
cached target instructions. For more information, see Section 1.2.2.2, “Branch Processing
Unit (BPU).”

1.7 Exception Model

The following sections describe the PowerPC exception model and the MPC750
implementation. A detailed description of the MPC750 exception model is provided in
Chapter 4, “Exceptions.”

1.7.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to interrupt the instruction flow
to handle certain situations caused by external signals, errors, or unusual conditions arising
from the instruction execution. When exceptions occur, information about the state of the
processor is saved to certain registers and the processor begins execution at an address
(exception vector) predetermined for each exception. Exception processing occurs in
supervisor mode.
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Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, some exception
conditions can be enabled or disabled explicitly by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled in order. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that are
undispatched, are required to complete before the exception is taken, and any exceptions
those instructions cause must also be handled first. Likewise, asynchronous, precise
exceptions are recognized when they occur, but are not handled until the instructions
currently in the completion queue successfully retire or generate an exception, and the
completion queue is emptied.

Unless acatastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. For example, if one instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction processing continues until the next exception
condition is encountered. Recognizing and handling exception conditions sequentialy
guarantees that exceptions are recoverable.

When an exception istaken, information about the processor state before the exception was
taken is saved in SRRO and SRR1. Exception handlers should save the information stored
in SRRO and SRR1 early to prevent the program state from being lost due to a system reset
and machine check exception or to an instruction-caused exception in the exception
handler, and before enabling external interrupts.

The PowerPC architecture supports four types of exceptions:

« Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occursisknown and can be compl etely restored. Thismeansthat (excluding thetrap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
When an exception is taken due to atrap or system call instruction, execution
resumes at an address provided by the handler.

¢ Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
MPC750 provides a means to enable the imprecise modes, it implements these
modesidentically to the precise mode (that is, enabled floating-point exceptions are
always precise).
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« Asynchronous, maskable—The PowerPC architecture defines external and
decrementer interrupts as maskable, asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If no instructions
arein the execution units, the exception istaken immediately upon determination of
the correct restart address (for loading SRR0). As shown in Table 1-4, the MPC750
implements additional asynchronous, maskable exceptions.

« Asynchronous, nonmaskable—There are two nonmaskabl e asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide alimited degree of recoverability. Exceptions
report recoverability through the MSR[RI] bit.

1.7.2 MPC750 Microprocessor Exception Implementation
The MPC750 exception classes described above are shown in Table 1-4.

Table 1-4. MPC750 Microprocessor Exception Classifications

Synchronous/Asynchronous | Precise/lmprecise Exception Type
Asynchronous, nonmaskable | Imprecise Machine check, system reset
Asynchronous, maskable Precise External, decrementer, system management, performance

monitor, and thermal management interrupts

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics, such as priority and recoverability,
Table 1-4 describes categories of exceptions the MPC750 handles uniquely. Table 1-4
includes no synchronous imprecise exceptions; athough the PowerPC architecture
supports imprecise handling of floating-point exceptions, the MPC750 implements these
exception modes precisely. Table 1-5 lists MPC750 exceptions and conditions that cause
them. Exceptions specific to the MPC750 are indicated.

Table 1-5. Exceptions and Conditions

Exception Type Vector Offset Causing Conditions
(hex)

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an
address, data, or L2 bus parity error. MSR[ME] must be set.

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.

ISI 00400 As defined by the PowerPC architecture.

External interrupt 00500 MSRI[EE] = 1 and INT is asserted.
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Table 1-5. Exceptions and Conditions (Continued)

Exception Type

Vector Offset

Causing Conditions

(hex)
Alignment 00600 « A floating-point load/store, stmw, stwcx, Imw, Iwarx, eciwx or ecowx
instruction operand is not word-aligned.
« A multiple/string load/store operation is attempted in little-endian mode.
* The operand of dcbz is in memory that is write-through-required or
caching-inhibited or the cache is disabled

Program 00700 As defined by the PowerPC architecture.

Floating-point 00800 As defined by the PowerPC architecture.

unavailable

Decrementer 00900 As defined by the PowerPC architecture, when the most significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00AO00-00BFF [ —

System call 00C00 Execution of the System Call (sc) instruction.

Trace 00D00 MSR[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the
architecture definition, isync does not cause a trace exception

Reserved 00E00 The MPC750 does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E10-00EFF | —

Performance monitor! [ 00F00 The limit specified in a PMC register is reached and MMCRO[ENINT] = 1

Instruction address 01300 IABR[0—-29] matches EA[0-29] of the next instruction to complete, IABR[TE]

breakpoint! matches MSR[IR], and IABR[BE] = 1.

System management |01400 MSR[EE] = 1 and SMI is asserted.

interrupt®

Reserved

01500-016FF

Thermal management
interrupt®

01700

Thermal management is enabled, the junction temperature exceeds the
threshold specified in THRM1 or THRM2, and MSR[EE] = 1.

Reserved

01800-02FFF

Note:
IMPC750-specific

1.8 Memory Management

The following subsections describe the memory management features of the PowerPC
architecture, and the MPC750 implementation, respectively. A detailed description of the
MPC750 MMU implementation is provided in Chapter 5, “Memory Management.”
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1.8.1 PowerPC Memory Management Model

The primary functions of the MMU areto translate logical (effective) addressesto physica
addresses for memory accesses and to provide access protection on blocks and pages of
memory. There are two types of accesses generated by the MPC750 that require address
translation—instruction accesses, and data accesses to memory generated by load, store,
and cache control instructions.

The PowerPC architecture defines different resources for 32- and 64-bit processors; the
MPC750 implements the 32-bit memory management model. The memory-management
model provides 4 Gbytes of logical address space accessible to supervisor and user
programs with a 4-Kbyte page size and 256-Mbyte segment size. BAT block sizes range
from 128 Kbyte to 256 Mbyte and are software selectable. In addition, it definesan interim
52-hit virtual address and hashed page tables for generating 32-bit physical addresses.

The architecture a so provides independent four-entry BAT arrays for instructions and data
that maintain address tranglations for blocks of memory. These entries define blocks that
can vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system
software.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtua
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table sizeis a power of 2, and
its starting address is a multiple of its size. The page table contains a number of page table
entry groups (PTEGs). A PTEG contains eight page table entries (PTEs) of eight bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

Setting MSR[IR] enables instruction address translations and MSR[DR] enables data
address tranglations. If the bit is cleared, the respective effective address is the same as the
physical address.

1.8.2 MPC750 Microprocessor Memory Management Implementation

The MPC750 implements separate MM Us for instructions and data. It implements a copy
of the segment registers in the instruction MMU, however, read and write accesses (mfsr
and mtsr) are handled through the segment registersimplemented as part of thedataMMU.
The MPC750 MMU isdescribed in Section 1.2.3, “Memory Management Units (MMUSs).”

TheR (referenced) bit isupdated in the PTE in memory (if necessary) during atable search
duetoaTLB miss. Updatesto the C (changed) bit are treated like TLB misses. A complete
table search is performed and the entire TLB entry is rewritten to update the C hit.
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1.9 Instruction Timing

The MPC750 is a pipelined, superscalar processor. A pipelined processor is one in which
instruction processing is divided into discrete stages, allowing work to be done on different
instructionsin each stage. For example, after an instruction completes one stage, it can pass
on to the next stage leaving the previous stage available to the subsequent instruction. This
improves overall instruction throughput.

A superscalar processor is one that issues multiple independent instructions into separate
execution units, alowing instructions to execute in paralel. The MPC750 has six
independent execution units, two for integer instructions, and one each for floating-point
instructions, branch instructions, load/store instructions, and system register instructions.
Having separate GPRs and FPRs allows integer, floating-point calculations, and load and
store operationsto occur simultaneously without interference. Additionally, rename buffers
are provided to allow operationsto post execution resultsfor use by subsequent instructions
without committing them to the architected FPRs and GPRs.

As shown in Figure 1-6, the common pipeline of the MPC750 has four stages through
which al instructions must pass—fetch, decode/dispatch, execute, and complete/write
back. Some instructions occupy multiple stages simultaneously and some individual
execution units have additiona stages. For example, the floating-point pipeline consists of
three stages through which all floating-point instructions must pass.

| Maximum four-instruction fetch

Feteh per clock cycle

BPU

Maximum three-instruction dispatch

| Dispatch | per clock cycle (includes one branch
instruction)
/ Execute Stage
FPUL v
FPU2 y v Lsu1l
| SRU | FPU3 | U1 | | U2 | Lsu2
! ' , ' !

Maximum two-instruction

| Complete (Write-Back) | completion per clock cycle

Figure 1-6. Pipeline Diagram

Notethat Figure 1-6 does not show features, such asreservation stations and rename buffers
that reduce stalls and improve instruction throughput.
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The instruction pipeline in the MPC750 has four major pipeline stages, described as
follows:

« Thefetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. The BPU decodes
branches during the fetch stage and removes those that do not update CTR or LR
from the instruction stream.

« Thedispatch stageis responsible for decoding the instructions supplied by the
instruction fetch stage and determining which instructions can be dispatched in the
current cycle. If source operandsfor theinstruction are available, they are read from
the appropriate register file or rename register to the execute pipeline stage. If a
source operand is not available, dispatch provides atag that indicates which rename
register will supply the operand when it becomes available. At the end of the
dispatch stage, the dispatched instructions and their operands are latched by the
appropriate execution unit.

¢ Instructions executed by the IUs, FPU, SRU, and L SU are dispatched from the
bottom two positions in the instruction queue. In asingle clock cycle, a maximum
of two instructions can be dispatched to these execution unitsin any combination.
When an instruction is dispatched, it is assigned a position in the six-entry
completion queue. A branch instruction can be issued on the same clock cycle for a
maximum three-instruction dispatch.

« During the execute pipeline stage, each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the
compl etion stage that theinstruction hasfinished execution. Inthe case of aninternal
exception, the execution unit reports the exception to the compl etion pipeline stage
and (except for the FPU) discontinues instruction execution until the exception is
handled. The exception is not signaled until that instruction is the next to be
completed. Execution of most floating-point instructionsis pipelined within the FPU
allowing up to three instructions to be executing in the FPU concurrently. The FPU
stages are multiply, add, and round-convert. Execution of most load/store
instructionsis aso pipelined. The load/store unit has two pipeline stages. The first
stageisfor effective address cal culation and MMU translation and the second stage
isfor accessing the data in the cache.

¢ The complete pipeline stage maintains the correct architectural machine state and
transfers execution results from the rename registers to the GPRs and FPRs (and
CTR and LR, for someinstructions) asinstructions are retired. As with dispatching
instructions from theinstruction queue, instructions are retired from the two bottom
positionsin the completion queue. If completion logic detects an instruction causing
an exception, all following instructions are cancelled, their execution resultsin
rename registers are discarded, and instructions are fetched from the appropriate
exception vector.
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Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing varies among PowerPC processors.

For a detailed discussion of instruction timing with examples and a table of latencies for
each execution unit, see Chapter 6, “Instruction Timing.”

1.10 Power Management

The MPC750 provides four power modes, selectable by setting the appropriate control bits
in the MSR and HIDO registers. The four power modes are as follows:

¢ Full-power—This is the default power state of the MPC750. The MPC750 isfully
powered and the internal functional units are operating at the full processor clock
speed. If the dynamic power management mode is enabled, functional unitsthat are
idle will automatically enter alow-power state without affecting performance,
software execution, or external hardware.

¢ Doze—All the functional units of the MPC750 are disabled except for the time
base/decrementer registers and the bus snooping logic. When the processor isin
doze maode, an external asynchronous interrupt, a system management interrupt, a
decrementer exception, a hard or soft reset, or machine check brings the MPC750
into the full-power state. The MPC750 in doze mode maintainsthe PLL in afully
powered state and locked to the system externa clock input (SYSCLK) so a
transition to the full-power state takes only afew processor clock cycles.

¢ Nap—Thenap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. The MPC750
returns to the full-power state upon receipt of an external asynchronous interrupt, a
system management interrupt, a decrementer exception, a hard or soft reset, or a
machine check input (MCP). A return to full-power state from anap state takes only
afew processor clock cycles. When the processor isin nap mode, if QACK is
negated, the processor is put in doze mode to support snooping.

*  Sleep—Sleep mode minimizes power consumption by disabling all interna
functional units, after which external system logic may disable the PLL and
SY SCLK. Returning the MPC750 to the full-power state requiresthe enabling of the
PLL and SY SCLK, followed by the assertion of an external asynchronousinterrupt,
asystem management interrupt, ahard or soft reset, or amachine check input (M CP)
signal after the time required to relock the PLL.

Chapter 10, “Power and Thermal Management,” provides information about power saving
and thermal management modes for the MPC750.
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1.11 Thermal Management

The MPC750's thermal assist unit (TAU) provides away to control heat dissipation. This
ability is particularly useful in portable computers, which, due to power consumption and
size limitations, cannot use desktop cooling solutions such as fans. Therefore, better heat
sink designs coupled with intelligent thermal management is of critical importancefor high
performance portable systems.

Primarily, the thermal management system monitors and regulates the system’s operating
temperature. For example, if the temperature is about to exceed a set limit, the system can
be made to slow down or even suspend operations temporarily in order to lower the
temperature.

The therma management facility also ensures that the processor’s junction temperature
does not exceed the operating specification. To avoid the inaccuracies that arise from
measuring junction temperature with an external thermal sensor, the MPC750’s on-chip
thermal sensor and logic tightly couples the thermal management implementation.

The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, control
logic, and the dedicated SPRs described in Section 1.4, “PowerPC Registers and
Programming Model.” The TAU does the following:

¢ Compares the junction temperature against user-programmable thresholds
¢ Generates athermal management interrupt if the temperature crosses the threshold

¢ Enablesthe user to estimate the junction temperature by way of a software
successive approximation routine

The TAU is controlled through the privileged mtspr/mfspr instructions to the three SPRs
provided for configuring and controlling the sensor control logic, which function as
follows:

¢ THRM1 and THRM2 provide the ability to compare the junction temperature
against two user-provided thresholds. Having dual thresholds gives the thermal
management software finer control of the junction temperature. In single threshold
mode, the thermal sensor output iscompared to only onethreshold in either THRM 1
or THRM2.

« THRM3is used to enable the TAU and to control the comparator output sample
time. The thermal management logic manages the thermal management interrupt
generation and time multiplexed comparisonsin the dua threshold mode aswell as
other control functions.

Instruction cache throttling provides control of the MPC750’s overall junction temperature
by determining the interval at which instructions are fetched. This feature is accessed
through the ICTC register.

Chapter 10, “Power and Therma Management,” provides information about power saving
and thermal management modes for the MPC750.
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1.12 Performance Monitor

The MPC750 incorporates a performance monitor facility that system designers can use to
help bring up, debug, and optimize software performance. The performance monitor counts
events during execution of code, relating to dispatch, execution, completion, and memory
accesses.

The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access
for user-level applications. These registers are described in Section 1.4, “PowerPC
Registers and Programming Model.” Performance monitor control registers, MMCRO or
MMCRL, can be used to specify which events are to be counted and the conditions for
which a performance monitoring interrupt is taken. Additionally, the sampled instruction
address register, SIA (USIA), holds the address of the first instruction to complete after the
counter overflowed.

Attempting to write to a user-read-only performance monitor register causes a program
exception, regardless of the MSR[PR] setting.

When a performance monitoring interrupt occurs, program execution continues from
vector offset 0x00F00.

Chapter 11, “Performance Monitor,” describes the operation of the performance monitor
diagnostic tool incorporated in the MPC750.
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Chapter 2
MPC750 Processor Programming Model

This chapter describes the MPC750 programming model, emphasizing those features
specific to the MPC750 processor and summarizing those that are common to PowerPC
processors. It consists of three major sections, which describe the following:

« Registersimplemented in the MPC750
¢ Operand conventions
e The MPC750 instruction set

For detailed information about architecture-defined features, see The Programming
Environments Manual.

2.1 The MPC750 Processor Register Set

This section describes the registers implemented in the MPC750. It includes an overview
of registers defined by the PowerPC architecture, highlighting differences in how these
registers are implemented in the MPC750, and a detailed description of MPC750-specific
registers. Full descriptions of the architecture-defined register set are provided in Chapter 2,
“PowerPC Register Set,” in The Programming Environments Manual.

Registers are defined at all three levels of the PowerPC architecture—user instruction set
architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). The PowerPC architecture defines register-to-register operationsfor all
computational instructions. Source datafor theseinstructions are accessed from the on-chip
registers or are provided as immediate values embedded in the opcode. The three-register
instruction format alows specification of a target register distinct from the two source
registers, thus preserving the original data for use by other instructions and reducing the
number of instructions required for certain operations. Dataistransferred between memory
and registers with explicit load and store instructions only.

2.1.1 Register Set

The registers implemented on the MPC750 are shown in Figure 2-1. The number to the
right of the special-purpose registers (SPRs) indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the integer exception register (XER) is SPR 1). These registers can be accessed using the
mtspr and mfspr instructions.
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1These registers are MPC750-specific registers. They may not be supported by other PowerPC processors.
2 May not be supported by the MPC740.

Figure 2-1. Programming Model—MPC750 Microprocessor Registers
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The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and
floating-point registers (FPRs) are accessed through instruction operands. Access to
registers can be explicit (by using instructions for that purpose such as Move to
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit as part of the execution of an instruction. Some registers are
accessed both explicitly and implicitly.

Implementation Note—The MPC750 fully decodes the SPR field of theinstruction. If the
SPR gpecified is undefined, the illegal instruction program exception occurs. The
PowerPC's user-level registers are described as follows:

e User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. They include the following:

— General-purpose registers (GPRS). The thirty-two GPRs (GPRO-GPR31) serve
as data source or destination registers for integer instructions and provide data
for generating addresses. See” General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

— Floating-point registers (FPRs). The thirty-two FPRs (FPRO-FPR31) serve as
the data source or destination for all floating-point instructions. See
“Hoating-Point Registers (FPRs),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual .

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CRO-CR?7,
that reflect results of certain arithmetic operations and provide a mechanism for
testing and branching. See “Condition Register (CR),” in Chapter 2, “ PowerPC
Register Set,” of The Programming Environments Manual.

— Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. See “Floating-Point Status and Control Register (FPSCR),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for
integer operations. See“ XER Register (XER),” in Chapter 2, “ PowerPC Register
Set,” of The Programming Environments Manual for more information.
Implementation Note—To alow emulation of the Iscbx instruction defined by

the POWER architecture, XER[16-23] isimplemented so that they can be read
with mfspr[XER] and written with mtxer [ XER] instructions.
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— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can be used to hold the
logical address of the instruction that follows a branch and link instruction,
typically used for linking to subroutines. See“Link Register (LR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

— Count register (CTR). The CTR holds aloop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can aso
provide the branch target address for the Branch Conditional to Count Register
(bectrx) instruction. See “Count Register (CTR),” in Chapter 2, “ PowerPC
Register Set,” of The Programming Environments Manual.

User-level registers (VEA)—The PowerPC VEA defines the time base facility
(TB), which consists of two 32-bit registers—time base upper (TBU) and time base
lower (TBL). The time base registers can be written to only by supervisor-level
instructions but can be read by both user- and supervisor-level software. For more
information, see “PowerPC VEA Register Set—Time Base,” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

Supervisor-level registers (OEA)—The OEA defines the registers an operating
system uses for memory management, configuration, exception handling, and other
operating system functions. The OEA defines the following supervisor-level
registers for 32-bit implementations:

— Configuration registers

— Machine state register (MSR). The M SR defines the state of the processor.
The M SR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (r fi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. When an
exception is taken, the contents of the MSR are saved to the machine status
savelrestoreregister 1 (SRR1), which isdescribed below. See* Machine State
Register (MSR),” in Chapter 2, “ PowerPC Register Set,” of The Programming
Environments Manual for more information.

Implementation Note—Table 2-1 describes M SR bits the MPC750
implements that are not required by the PowerPC architecture.

Table 2-1. Additional MSR Bits

Bit

Name Description

13

POW Power management enable. Optional to the PowerPC architecture.

0 Power management is disabled.

1 Power management is enabled. The processor can enter a power-saving mode when additional
conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in
the hardware implementation-dependent register O (HIDO), described in Table 2-4.

29

PM Performance monitor marked mode. This bit is specific to the MPC750, and is defined as reserved
by the PowerPC architecture. See Chapter 11, “Performance Monitor.”

0 Process is not a marked process.

1 Process is a marked process.
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Note that setting M SR[EE] masks not only the architecture-defined external
interrupt and decrementer exceptions but aso the MPC750-specific system
management, performance monitor, and therma management exceptions.

— Processor version register (PVR). Thisregister is aread-only register that
identifies the version (model) and revision level of the PowerPC processor.
For more information, see “ Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

I mplementation Note—The processor version number is 0x0008 for the
MPC750. The processor revision level startsat 0x0100 and isupdated for each
silicon revision.

— Memory management registers

— Block-address tranglation (BAT) registers. The PowerPC OEA includes an
array of block address tranglation registers that can be used to specify four
blocks of instruction space and four blocks of data space. The BAT registers
areimplemented in pairs—four pairs of instruction BATs (IBATOU-IBAT3U
and IBATOL-BAT3L) and four pairs of data BATs (DBATOU-DBAT3U and
DBATOL-DBAT3L). Figure 2-1 liststhe SPR numbersfor the BAT registers.
For moreinformation, see“BAT Registers,” in Chapter 2, “ PowerPC Register
Set,” of The Programming Environments Manual. Because BAT upper and
lower words are loaded separately, software must ensurethat BAT trand ations
are correct during the time that both BAT entries are being loaded.

The MPC750 implementsthe G bit in the IBAT registers; however, attempting
to execute code from an IBAT areawith G = 1 causes an ISl exception. This
complieswith the revision of the architecture described in The Programming
Environments Manual.

— SDRL1. The SDR1 register specifies the page table base address used in
virtual-to-physical addresstrandation. See“SDRL1,” in Chapter 2, “ PowerPC
Register Set,” of The Programming Environments Manual.”

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SR0O-SR15). Note that the SRs are implemented on 32-hit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “ Segment Registers,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

Note that the MPC750 implements separate memory management units
(MMUSs) for instruction and data. It associates the architecture-defined SRs
with the data MMU (DMMU). It reflects the values of the SRsin separate,
so-called ‘ shadow’ segment registersin the instruction MMU (IMMU).
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— Exception-handling registers

Data address register (DAR). After aDSI or an alignment exception, DAR is
set to the effective address (EA) generated by the faulting instruction. See
“Data Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

SPRGO-SPRGS3. The SPRGO-SPRG3 registers are provided for operating
system use. See“ SPRGO-SPRG3,” in Chapter 2, “ PowerPC Register Set,” of
The Programming Environments Manual for more information.

DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

Machine status save/restore register 0 (SRRO). The SRRO register is used to
save the address of the instruction at which execution continues when rfi
executes at the end of an exception handler routine. See “Machine Status
Save/Restore Register 0 (SRRO0),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Machine status savelrestore register 1 (SRR1). The SRR1 register is used to
save machine status on exceptions and to restore machine status when rfi
executes. See “Machine Status Save/Restore Register 1 (SRR1),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

I mplementation Note—When a machine check exception occurs, the
MPC750 sets one or more error bitsin SRR1. Table 2-2 describes SRR1 bits
the MPC750 implements that are not required by the PowerPC architecture.

Table 2-2. Additional SRR1 Bits

Bit

Name

Description

11

L2DP

Set by a data parity error on the L2 bus. The MPC740 does not implement the L2 cache interface.

12

MCPIN

Set by the assertion of MCP

13 |TEA Set by a TEA assertion on the 60x bus
14 |DP Set by a data parity error on the 60x bus
15 |AP Set by an address parity error on the 60x bus

— Miscellaneous registers

Time base (TB). The TB is a 64-bit structure provided for maintaining the
time of day and operating interval timers. The TB consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL). The time base
registers can be written to only by supervisor-level software, but can be read
by both user- and supervisor-level software. See “Time Base Facility
(TB)—OEA,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.
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— Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See" Decrementer Register (DEC),” in Chapter 2, “ PowerPC Register Set,” of
The Programming Environments Manual for more information.

Implementation Note—In the MPC750, the decrementer register is
decremented at a speed that is one-fourth the speed of the bus clock.

— Data address breakpoint register (DABR)—This optional register is used to
cause a breakpoint exception if a specified data address is encountered. See
“Data Address Breakpoint Register (DABR),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual .”

— External accessregister (EAR). This optional register isused in conjunction
with eciwx and ecowx. Note that the EAR register and the eciwx and ecowx
instructions are optional in the PowerPC architecture and may not be
supported in all PowerPC processors that implement the OEA. See “External
Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

*  MPC750-specific register s—The PowerPC architecture allows implementation-
specific SPRs. Those incorporated in the MPC750 are described as follows. Note
that in the MPC750, these registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception if a specified instruction address is encountered.

— Hardware implementation-dependent register O (HIDO)—This register controls
various functions, such as enabling checkstop conditions, and locking, enabling,
and invalidating the instruction and data caches.

— Hardware implementation-dependent register 1 (HID1)—This register reflects
the state of PLL_CFG[0-3] clock signals.

— The L2 cache control register (L2CR) is used to configure and operate the L2
cache. It includes bits for enabling parity checking, setting the L 2-to-processor
clock ratio, and identifying the type of RAM used for the L2 cache
implementation. (Not supported in the MPC740.)

— Performance monitor registers. The following registers are used to define and
count events for use by the performance monitor:

— The performance monitor counter registers (PM C1-PM C4) are used to record
the number of times a certain event has occurred. UPMC1-UPMC4 provide
user-level read access to these registers.

— The monitor mode control registers (MMCRO-MMCR1) are used to enable
various performance monitor interrupt functions. UMM CRO-UMMCRL1
provide user-level read access to these registers.
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— The sampled instruction address register (SIA) contains the effective address
of an instruction executing at or around the time that the processor signalsthe
performance monitor interrupt condition. USIA provides user-level read
accessto the SIA.

— The MPC750 does not implement the sampled data address register (SDA) or
the user-level, read-only USDA registers. However, for compatibility with
processors that do, those registers can be written to by boot code without
causing an exception. SDA is SPR 959; USDA is SPR 943.

— Theinstruction cache throttling control register (ICTC) has bitsfor enabling the
instruction cache throttling feature and for controlling the interval at which
instructions are forwarded to the instruction buffer in the fetch unit. This
provides control over the processor’s overall junction temperature.

— Thermal management registers (THRM 1, THRM2, and THRM3). Used to
enable and set thresholds for the thermal management facility.

— THRM1 and THRM?2 provide the ability to compare the junction temperature
against two user-provided thresholds. The dual thresholds allow the thermal
management software differing degrees of action in lowering the junction
temperature. The TAU can be also operated in a single threshold mode in
which the thermal sensor output is compared to only one threshold in either
THRM1 or THRM2.

— THRM3 is used to enable the therma management assist unit (TAU) and to
control the comparator output sample time.

Note that while it is not guaranteed that the implementation of MPC750-specific registers
is consistent among PowerPC processors, other processors may implement similar or
identical registers.

2.1.2 MPC750-Specific Registers

This section describes registers that are defined for the MPC750 but are not included in the
PowerPC architecture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The address breakpoint register (IABR), shown in Figure 2-2, supports the instruction
address breakpoint exception. When this exception is enabled, instruction fetch addresses
are compared with an effective address stored in the IABR. If the word specified in the
IABR isfetched, the instruction breakpoint handler isinvoked. Theinstruction that triggers
the breakpoint does not execute before the handler is invoked. For more information, see
Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).” The IABR can be
accessed with mtspr and mfspr using the SPR1010.
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Figure 2-2. Instruction Address Breakpoint Register
The |ABR bits are described in Table 2-3.

Table 2-3. Instruction Address Breakpoint Register Bit Settings

Bits | Name Description

0-29 | Address | Word address to be compared

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 TE Translation enabled. An IABR match is signaled if this bit matches MSR[IR].

2.1.2.2 Hardware Implementation-Dependent Register 0

The hardware implementation-dependent register 0 (HIDO) controls the state of severa
functions within the MPC750. The HIDO register is shown in Figure 2-3.

DLOCK |:| Reserved
EMCP BCLK ECLK DOZE SLEEP ILOCK NOOPTI
| ‘DBP‘EBA‘EBI# ‘ 0 ‘ ‘PAR‘ %AP‘ [#PM‘ 0 0 0 ’HR I#E DFE ‘ ‘ ‘ICB[#FI ‘SPD’FEM%GE‘DCF/#TIC‘ 0 ‘ABE‘BHT‘ 0 ‘ |

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Figure 2-3. Hardware Implementation-Dependent Register 0 (HIDO)
The HIDO bits are described in Table 2-4.

Table 2-4. HIDO Bit Functions

Bit Name Function

0 EMCP |Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions
caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes checkstop if MSR[ME] = 0 or a machine check exception if ME = 1.

1 DBP Enable/disable 60x bus address and data parity generation.

0 If the system does not use address or data parity and the respective parity checking is disabled
(HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are disabled, require no pull-up
resistors, and thus should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA Enable/disable 60x bus address parity checking

0 Prevents address parity checking.

1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check
exception if MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.
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Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function
3 EBD Enable 60x bus data parity checking

0 Parity checking is disabled.

1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

4 BCLK CLK_OUT output enable and clock type selection. Used in conjunction with HIDO[ECLK] and the

HRESET signal to configure CLK_OUT. See Table 2-5.

5 — Not used. Defined as EICE on some earlier processors.
6 ECLK CLK_OUT output enable and clock type selection. Used in conjunction with HIDO[BCLK] and the

HRESET signal to configure CLK_OUT. See Table 2-5.

7 PAR Disable precharge of ARTRY.

0 Precharge of ARTRY enabled

1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated)
state. If this is done, the system must restore the signals to the high state.

8 DOZE |Doze mode enable. Operates in conjunction with MSR[POW].

0 Doze mode disabled.

1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze
mode, the PLL, time base, and snooping remain active.

9 NAP Nap mode enable. Operates in conjunction with MSR[POW].

0 Nap mode disabled.

1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap
mode, the PLL and the time base remain active.

10 SLEEP | Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled.

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is
asserted to indicate that the processor is ready to enter sleep mode. If the system logic
determines that the processor may enter sleep mode, the quiesce acknowledge signal, QACK,
is asserted back to the processor. Once QACK assertion is detected, the processor enters
sleep mode after several processor clocks. At this point, the system logic may turn off the PLL
by first configuring PLL_CFG[0-3] to PLL bypass mode, then disabling SYSCLK.

11 DPM Dynamic power management enable.

0 Dynamic power management is disabled.

1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect
operational performance and is transparent to software or any external hardware.

12-14 | — Not used
15 NHR Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset.

0 A hard reset occurred if software had previously set this bit.

1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs
and this bit remains set, software can tell it was a soft reset.

16 ICE Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were
marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled
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Table 2-4. HIDO Bit Functions (Continued)

Bit

Name

Function

17

DCE

Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

18

ILOCK

Instruction cache lock

0 Normal operation

1 |Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

19

DLOCK

Data cache lock.

0 Normal operation

1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status. A snoop hit to a locked L1 data cache performs
as if the cache were not locked. A cache block invalidated by a snoop remains invalid until the
cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20

ICFI

Instruction cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation
begins (usually the next cycle after the write operation to the register). The instruction cache
must be enabled for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each instruction cache block as invalid
without writing back modified cache blocks to memory. Cache access is blocked during this
time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting
ICFI clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once
the L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets
these bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).

Note, in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has this

sequence of operations does not need to be changed to run on the MPC750.

21

DCFI

Data cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins
(usually the next cycle after the write operation to the register). The data cache must be enabled
for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI
clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once the
L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets these
bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set.

Note, In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has this

sequence of operations does not need to be changed to run on the MPC750.
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Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function

22 SPD Speculative cache access disable

0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data
caches is enabled

1 Speculative bus accesses to nonguarded space in both caches is disabled

23 IFEM Enable M bit on bus for instruction fetches.
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus
1 |Instruction fetches reflect the M bit from the WIM settings.

24 SGE Store gathering enable

0 Store gathering is disabled

1 Integer store gathering is performed for write-through to nonguarded space or for
cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. The LSU combines
stores to form a double word that is sent out on the 60x bus as a single-beat operation. Stores
are gathered only if successive, eligible stores, are queued and pending. Store gathering is
performed regardless of address order or endian mode.

25 DCFA Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.)

0 The data cache flush assist facility is disabled

1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence
defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz
instructions to eight per set. The bit should be set just before beginning a cache flush routine
and should be cleared when the series of instructions is complete.

26 BTIC BTIC disable—used to disable use of the 64-entry branch instruction cache.

0 The BTIC is enabled and new entries can be added.

1 The BTIC contents are invalidated and the BTIC behaves as if it were empty. New entries
cannot be added until the BTIC is enabled.

27 — Not used. Defined as FBIOB on earlier 603-type processors.

28 ABE Address broadcast enable—controls whether certain address-only operations (such as cache

operations, eieio, and sync) are broadcast on the 60x bus.

0 Address-only operations affect only local L1 and L2 caches and are not broadcast.

1 Address-only operations are broadcast on the 60x bus.Affected instructions are eieio, sync,
dcbi, dcbf, and dcbst. A sync instruction completes only after a successful broadcast.
Execution of eieio causes a broadcast that may be used to prevent any external devices, such
as a bus bridge chip, from store gathering.

Note that dcbz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of

the setting of this bit. An icbi is never broadcast. No cache operations, except dcbz, are snooped

by the MPC750 regardless of whether the ABE is set. Bus activity caused by these instructions
results directly from performing the operation on the MPC750 cache.

29 BHT Branch history table enable

0 BHT disabled. The MPC750 uses static branch prediction as defined by the PowerPC
architecture (UISA) for those branch instructions the BHT would have otherwise used to predict
(that is, those that use the CR as the only mechanism to determine direction). For more
information on static branch prediction, see “Conditional Branch Control,” in Chapter 4 of The
Programming Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).

The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 — Not used

31 NOOPTI | No-op the data cache touch instructions.
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.
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Table 2-5 shows how HIDO[BCLK], HIDO[ECLK], and HRESET are used to configure
CLK_OUT. See Section7.2.11.2, “Clock Out (CLK_OUT)—Output,” for more
information.

Table 2-5. HIDO[BCLK] and HIDO[ECLK] CLK_OUT Configuration

HRESET | HIDO[ECLK] | HIDO[BCLK] CLK_OUT
Asserted X X Bus

Negated 0 0 High impedance
Negated 0 1 Bus/ 2

Negated 1 0 Core

Negated 1 1 Bus

HIDO can be accessed with mtspr and mfspr using SPR1008.

2.1.2.3 Hardware Implementation-Dependent Register 1

The hardware implementation-dependent register 1 (HID1) reflects the state of the
PLL_CFG[0-3] signals. The HID1 bits are shown in Figure 2-4.

|:| Reserved
|PCO‘PC1‘ PCZ‘ PCS‘ o 0o0o0oO0O0OOOOOOOOOOOTOO®O®OOOOOO0O0TO0O0 O |
01 2 3 4 31

Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1)

The HID1 bits are described in Table 2-6.
Table 2-6. HID1 Bit Functions

Bit(s) Name Description
0 PCO PLL configuration bit O (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 PLL configuration bit 2 (read-only)
3 PC3 PLL configuration bit 3 (read-only)
4-31 — Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[0-3] signals.

HID1 can be accessed with mtspr and mfspr using SPR 10009.
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2.1.2.4 Performance Monitor Registers

This section describes the registers used by the performance monitor, which is described in
Chapter 11, “Performance Monitor.”

2.1.2.4.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO), shown in Figure 2-5, is a 32-bit SPR
provided to specify events to be counted and recorded. The MM CRO can be accessed only
in supervisor mode. User-level software can read the contents of MMCRO by issuing an
mfspr instruction to UMMCRO, described in Section 2.1.2.4.2, “User Monitor Mode
Control Register 0 (UMMCRO0).”

INTONBITTRANS
RTCSELECT
DISCOUNT PMC2INTCONTROL
ENINT PMC1INTCONTROL —‘ PMCTRIGGER
|DIS‘ DP ‘DU ‘DM%DMF# ‘ ‘ ‘ ‘ THRESHOLD ‘ ‘ ‘ ‘ PMC1SELECT ‘ PMC2SELECT
01 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

Figure 2-5. Monitor Mode Control Register 0 (MMCRO)

This register must be cleared at power up. Reading this register does not change its
contents. The bits of the MM CRO register are described in Table 2-7.

Table 2-7. MMCRO Bit Settings

Bit Name Description

0 DIS Disables counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disables counting while in supervisor mode

0 The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not
changed by hardware.

2 DU Disables counting while in user mode

0 The PMCn counters can be changed by hardware.

1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not
changed by hardware.

3 DMS Disables counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disables counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.
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Table 2-7. MMCRO Bit Settings (Continued)

Bit

Name

Description

ENINT

Enables performance monitor interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

Cleared by hardware when a performance monitor interrupt is signaled. To reenable
these interrupt signals, software must set this bit after handling the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.

DISCOUNT

Disables counting of PMCn when a performance monitor interrupt is signaled (that is,

((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an

enabled time base transition with (INTONBITTRANS =1) & (ENINT = 1)).

0 Signaling a performance monitor interrupt does not affect counting status of PMCn.

1 The signaling of a performance monitor interrupt prevents changing of PMC1
counter. The PMCn counter do not change if PMC2COUNTCTL = 0.

Because a time base signal could have occurred along with an enabled counter

overflow condition, software should always reset INTONBITTRANS to zero, if the value

in INTONBITTRANS was a one.

RTCSELECT

64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11  Pick bit 47 to count

INTONBITTRANS

Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on
0 Do not allow interrupt signal if chosen bit transitions.

1 Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

10-15

THRESHOLD

Threshold value. The MPC750 supports all 6 bits, allowing threshold values from 0-63.
The intent of the THRESHOLD support is to characterize L1 data cache misses.

16

PMCI1INTCONTROL

Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow

17

PMCINTCONTROL

Enable interrupt signaling due to any PMC2—-PMC4 counter overflow. Overrides the
setting of DISCOUNT.

0 Disable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.
1 Enable PMC2-PMC4 interrupt signaling due to PMC2—PMC4 counter overflow.

18

PMCTRIGGER

Can be used to trigger counting of PMC2-PMC4 after PMC1 has overflowed or after a

performance monitor interrupt is signaled.

0 Enable PMC2-PMC4 counting.

1 Disable PMC2—PMC4 counting until either PMC1[0] = 1 or a performance monitor
interrupt is signaled.

19-25

PMC1SELECT

PMC1 input selector, 128 events selectable. See Table 2-10.

26-31

PMC2SELECT

PMC2 input selector, 64 events selectable. See Table 2-11.

MM CRO can be accessed with mtspr and mfspr using SPR 952.

2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCRO)
The contents of MMCRO are reflected to UMMCRO, which can be read by user-level
software. MM CRO can be accessed with mfspr using SPR 936.
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2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MM CR1 register
isshown in Figure 2-6.

[ ]Reserved
PMC3SELECT PMC4SELECT 0o 0o0O0OOT OOOO OOT OOT OOTU ODOTOOTUO0OTUOTO OO |
0 4 5 9 10 31

Figure 2-6. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCRL1 are shown in Table 2-8. The corresponding events are described
in Section 2.1.2.4.5, “Performance Monitor Counter Registers (PMC1-PMC4).”

Table 2-8. MMCRL1 Bit Settings

Bits Name Description
0-4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 2-12 for defined selections.
5-9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 2-13 for defined selections.
10-31 — Reserved

MMCRL1 can be accessed with mtspr and mfspr using SPR 956. User-level software can
read the contents of MMCRL by issuing an mfspr instruction to UMMCRL, described in
Section 2.1.2.4.4, “User Monitor Mode Control Register 1 (UMMCR1).”

2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCRL1)
The contents of MMCRL1 are reflected to UMMCRL1, which can be read by user-level
software. MMCR1 can be accessed with mfspr using SPR 940.

2.1.2.4.5 Performance Monitor Counter Registers (PMC1-PMC4)
PMC1-PMC4, shown in Figure 2-7, are 32-bit counters that can be programmed to
generate interrupt signals when they overflow.

| ov ‘ Counter Value |

0 1 31
Figure 2-7. Performance Monitor Counter Registers (PMC1-PMC4)

The bits contained in the PMCn registers are described in Table 2-9.
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Table 2-9. PMCn Bit Settings

Bits Name Description

0 ov Overflow. When this bit is set it indicates that this counter has reached its maximum value.

1-31 | Counter value | Indicates the number of occurrences of the specified event.

Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that
is, they reach the value 2147483648 (0x8000_0000). However, an interrupt is not signaled
unless both PMCN[INTCONTROL] and MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing M SR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the exception is not taken until EE is set. Setting
MMCRO[DISCOUNT] forces counters to stop counting when a counter interrupt occurs.

Software is expected to use mtspr to set PMC explicitly to nonoverflow values. If software
sets an overflow value, an erroneous exception may occur. For example, if both
PMCN[INTCONTROL] and MMCRO[ENINT] are set and mtspr loads an overflow value,
an interrupt signal may be generated without any event counting having taken place.

The event to be monitored can be chosen by setting MM CRO[0-9]. The selected events are
counted beginning when MMCRO is set until either MMCRO is reset or a performance
monitor interrupt is generated. Table 2-10 lists the selectable events and their encodings.

Table 2-10. PMC1 Events—MMCRO0[19-25] Select Encodings

Encoding Description

000 0000 Register holds current value.

000 0001 Number of processor cycles

000 0010 Number of completed instructions. Does not include folded branches.

0000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT (MMRCO[7-8]). 00 = 15,01 =19, 10=23,11 =31

0000100 Number of instructions dispatched—a0, 1, or 2 instructions per cycle

0000101 Number of eieio instructions completed

0000110 Number of cycles spent performing table search operations for the ITLB

0000111 Number of accesses that hit the L2

0001000 Number of valid instruction EAs delivered to the memory subsystem

0001001 Number of times the address of an instruction being completed matches the address in the IABR

0001010 Number of loads that miss the L1 with latencies that exceeded the threshold value

0001011 Number of branches that are unresolved when processed

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others Reserved. May be used in a later revision.
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Bits MM CRO[26-31] specify events associated with PMC2, as shown in Table 2-11.
Table 2-11. PMC2 Events—MMCRO0[26—31] Select Encodings

Encoding Description

00 0000 Register holds current value.

00 0001 Number of processor cycles

00 0010 Number of completed instructions. Does not include folded branches.

00 0011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT (MMRCO[7-8]). 00 = 15, 01 = 19, 10 = 23, 11 = 31.

00 0100 Number of instructions dispatched. 0, 1, or 2 instructions per cycle

00 0101 Number of eieio instructions completed

00 0110 Number of cycles spent performing table search operations for the ITLB

00 0111 Number of accesses that hit the L2

00 1000 Number of valid instruction EAs delivered to the memory subsystem

00 1001 Number of times that the address of an instruction being completed matches the address in the IABR

00 1010 Number of loads that miss the L1 and have latencies that exceeded the threshold value

00 1011 Number of branches that are unresolved when processed

00 1100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others | Reserved. May be used in a later revision.

Bits MM CR1[0-4] specify events associated with PMC3, as shown in Table 2-12.
Table 2-12. PMC3 Events—MMCR1[0-4] Select Encodings

Encoding Description

0 0000 Register holds current value.

0 0001 Number of processor cycles

00010 Number of completed instructions, not including folded branches.

00011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified

through RTCSELECT (MMRCO[7-8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63.

0 0100 Number of instructions dispatched. 0, 1, or 2 per cycle.

00101 Number of L1 data cache misses

00110 Number of DTLB misses

00111 Number of L2 data misses

0 1000 Number of taken branches, including predicted branches.

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the

number of MSR[PM] toggles while the processor is in user mode.

01010 Number of store conditional instructions completed
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Table 2-12. PMC3 Events—MMCR1[0-4] Select Encodings (Continued)

Encoding Description

01011 Number of instructions completed from the FPU

01100 Number of L2 castouts caused by snoops to modified lines

01101 Number of cache operations that hit in the L2 cache

01110 Reserved

01111 Number of cycles generated by L1 load misses

1 0000 Number of branches in the second speculative stream that resolve correctly
10001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies
All others Reserved. May be used in a later revision.

Bits MM CR1[5-9] specify events associated with PMC4, as shown in Table 2-13.

Table 2-13. PMC4 Events—MMCR1[5-9] Select Encodings

Encoding Comments

00000 Register holds current value

00001 Number of processor cycles

00010 Number of completed instructions, not including folded branches

00011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified
through RTCSELECT (MMRCO[7-8]). 0 = 47, 1 =51, 2 = 55, 3 = 63.

00100 Number of instructions dispatched. 0, 1, or 2 per cycle.

00101 Number of L2 castouts

00110 Number of cycles spent performing tables searches for DTLB accesses

00111 Reserved. May be used in a later revision.

01000 Number of mispredicted branches

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in supervisor mode.

01010 Number of store conditional instructions completed with reservation intact

01011 Number of completed sync instructions

01100 Number of snoop request retries

01101 Number of completed integer operations

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches

All others Reserved. May be used in a later revision.
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The PMC registers can be accessed with mtspr and mfspr using following SPR numbers:

* PMClisSPR953
* PMC2isSPR 954
* PMC3isSPR 957
* PMC4isSPR 958

2.1.2.4.6 User Performance Monitor Counter Registers (UPMC1-UPMCA4)
The contents of the PMC1-PMC4 are reflected to UPM C1-UPM C4, which can be read by
user-level software. The UPMC registers can be read with mfspr using the following SPR
numbers:

« UPMC1lisSPR 937

+ UPMC2isSPR 938

+ UPMC3isSPR 941

e UPMC4isSPR 942

2.1.2.4.7 Sampled Instruction Address Register (SIA)

The sampled instruction address register (SIA) is a supervisor-level register that contains
the effective address of an instruction executing at or around the time that the processor
signals the performance monitor interrupt condition. The SIA is shown in Figure 2-8.

Instruction Address

Figure 2-8. Sampled instruction Address Registers (SIA)

If the performance monitor interrupt istriggered by athreshold event, the SIA containsthe
exact instruction (called the sampled instruction) that caused the counter to overflow.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. SIA can be
accessed with the mtspr and mfspr instructions using SPR 955.

2.1.2.4.8 User Sampled Instruction Address Register (USIA)

The contents of SIA arereflected to USIA, which can be read by user-level software. USIA
can be accessed with the mfspr instructions using SPR 939.

2.1.2.4.9 Sampled Data Address Register (SDA) and User Sampled Data
Address Register (USDA)

The MPC750 does not implement the sampled data address register (SDA) or the

user-level, read-only USDA registers. However, for compatibility with processors that do,

those registers can be written to by boot code without causing an exception. SDA is

SPR 959; USDA is SPR 943.
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2.1.3 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the
complexity and overhead of dynamic clock control. System software can control
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-level
register shown in Figure 2-9. The overall junction temperature reduction comes from the
dynamic power management of each functional unit when the MPC750 isidle in between
instruction fetches. PLL (phase-locked loop) and DLL (delay-locked loop) configurations
are unchanged.

|:| Reserved
0o 0o0O0O0OOTOOOOOTODOTODOOOOTOTODTOTO OO0 O ‘ FlI ‘ E |
0 22 23 30 31

Figure 2-9. Instruction Cache Throttling Control Register (ICTC)

Table 2-14 describes the hit fields for the ICTC register.
Table 2-14. ICTC Bit Settings

Bits Name Description
0-22 — Reserved
23-30 | FI Instruction forwarding interval expressed in processor clocks.

0x00 O clock cycle.
0x01 1 clock cycle

OxFF 255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction
forwarding interval into ICTC[FI]. Enabling, disabling, and changing the instruction
forwarding interval affect instruction forwarding immediately.

ThelCTC register can be accessed with the mtspr and mfspr instructions using SPR 1019.

2.1.4 Thermal Management Registers (THRM1-THRM3)
The on-chip thermal management assist unit provides the following functions:
e Compares the junction temperature against user programmed thresholds
¢ Generates athermal management interrupt if the temperature crosses the threshold

« Providesaway for a successive approximation routine to estimate junction
temperature
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Control and access to the thermal management assist unit is through the privileged
mtspr/mfspr instructions to the three THRM registers. THRM1 and THRM2, shown in
Figure 2-10, provide the ability to compare the junction temperature against two
user-provided thresholds. Having dual thresholds allows therma management software
differing degrees of action in reducing junction temperature. Thermal management can use
a single-threshold mode in which the thermal sensor output is compared to only one
threshold in either THRM 1 or THRM2.

|:| Reserved
|TIN‘TIV‘ THRESHOLD 00 0O0OOOOOOOOO0OO0OO0OO0O0TO0TO0O ‘TID‘TIE‘ v |
0 1 2 8 9 28 29 30 31

Figure 2-10. Thermal Management Registers 1-2 (THRM1-THRM2)
The bitsin THRM1 and THRM2 are described in Table 2-15.
Table 2-15. THRM1-THRM2 Bit Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read-only. This bit is set if the thermal sensor output crosses
the threshold specified in the SPR. The state of TIN is valid only if TIV is set. The interpretation of
TIN is controlled by TID. See Table 2-16.

1 TIV Thermal management interrupt valid. Read-only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid. See Table 2-16.

2-8 | Threshold | Threshold that the thermal sensor output is compared to. The range is 0°—127° C, and each bit
represents 1° C. Note that this is not the resolution of the thermal sensor.

9-28 |— Reserved. System software should clear these bits when writing to the THRMn SPRs.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN and to assert a thermal management interrupt if TIE is set. If TID is cleared, TIN is set and
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-16.

30 TIE Thermal management interrupt enable. The thermal management interrupt is maskable by the
MSR[EE] bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction
temperature vs. threshold comparison without causing an exception. This lets system software
successively approximate the junction temperature. See Table 2-16.

31 \Y SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls
bits. THRM1/2[V] = 1 and THRMS3[E] = 1 enables the thermal sensor operation. See Table 2-16.

If an mtspr affects a THRM register that contains operating parameters for an ongoing
comparison during operation of the thermal assist unit, the respective TIV bits are cleared
and the comparisonisrestarted. Changing THRM 3 forcesthe T1V bits of both THRM 1 and
THRM2 to 0, and restarts the comparison if THRM3[E] is set.
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Examples of valid THRM L/THRM2 bit settings are shown in Table 2-16.
Table 2-16. Valid THRM1/THRM?2 States

TN | TVE | TD [ TIE| V Description
X X X X 0 | Invalid entry. The threshold in the SPR is not used for comparison.
X X X 0 1 | Disable thermal management interrupt assertion.
X X 0 X 1 | SetTIN and assert thermal management interrupt if TIE = 1 and the junction

temperature exceeds the threshold.

X X 1 X 1 | SetTIN and assert thermal management interrupt if TIE = 1 and the junction
temperature is less than the threshold.

X 0 X X 1 | The state of the TIN bit is not valid.

0 1 0 X 1 | The junction temperature is less than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 0 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

0 1 1 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 1 X 1 | The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Note:
1TIN and TIV are read-only status bits.

The THRM3 register, shown in Figure 2-11, is used to enable the thermal assist unit and to
control the comparator output sample time. The thermal assist |ogic manages the thermal
management interrupt generation and time-multiplexed comparisons in dual-threshold
mode as well as other control functions.

|:| Reserved
00 00 0 O OOU OO OUOUOUOUOTUOUOOO Sampled Interval Timer Value ‘ E |
0 17 18 30 31

Figure 2-11. Thermal Management Register 3 (THRM3)
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The bitsin THRM3 are described in Table 2-17.

Table 2-17. THRM3 Bit Settings

Bits Name Description

0-17 — Reserved for future use. System software should clear these bits when writing to the THRM3.

18-30 | SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to allow
a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.

The THRM registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

« THRM1lisSPR 1020

e THRM2isSPR 1021

» THRM3isSPR 1022

2.1.5 L2 Cache Control Register (L2CR)

The L2 cache control register, shown in Figure2-12, is a supervisor-level,
implementation-specific SPR used to configure and operate the L2 cache. It iscleared by a
hard reset or power-on reset.

LowT L2DF [ ] Reserved

L2PE L2DR  L2CTL | L2TS L2SL | L2BYP L2IP
|L2E‘ ‘ L2siz ‘ L2CLK ‘LZRAM ‘ ‘LZI‘ ‘ ‘ ‘LZOH ‘ ‘ ‘ ‘ 00000 O0O0O0O0 0 0 O ‘ |
001 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31

Figure 2-12. L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 9, “L2 Cache Interface Operation.” The
L2CR hits are described in Table 2-18.
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Table 2-18. L2CR Bit Settings

Bit

Name

Function

L2E

L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2
cache unit receives. Before enabling the L2 cache, the L2 clock must be configured through
L2CR[2CLK], and the L2 DLL must stabilize (see the hardware specifications). All other L2CR bits
must be set appropriately. The L2 cache may need to be invalidated globally.

L2PE

L2 data parity generation and checking enable. Enables parity generation and checking for the L2
data RAM interface. When disabled, generated parity is always zeros.

L2SIz

L2 size—Should be set according to the size of the L2 data RAMs used. A 256-Kbyte L2 cache
requires a data RAM configuration of 32 Kbytes x 64 bits; a 512-Kbyte L2 cache requires a
configuration of 64 Kbyte x 64 bits; a 1-Mbyte L2 cache requires a configuration of 128K x 64 bits.
00 Reserved

01 256 Kbyte

10 512 Kbyte

11 1 Mbyte

L2CLK

L2 clock ratio (core-to-L2 frequency divider). Specifies the clock divider ratio based from the core
clock frequency that the L2 data RAM interface is to operate at. When these bits are cleared, the L2
clock is stopped and the on-chip DLL for the L2 interface is disabled. For nonzero values, the
processor generates the L2 clock and the on-chip DLL is enabled. After the L2 clock ratio is chosen,
the DLL must stabilize before the L2 interface can be enabled. (See the hardware specifications). The
resulting L2 clock frequency cannot be slower than the clock frequency of the 60x bus interface.
000 L2 clock and DLL disabled

001 =+1

010 =15

011 Reserved

100 =2

101 =25

110 -3

111 Reserved

7-8

L2RAM

L2 RAM type—Configures the L2 RAM interface for the type of synchronous SRAMs used:

» Flow-through (register-buffer) synchronous burst SRAMSs that clock addresses in and flow data out

« Pipelined (register-register) synchronous burst SRAMs that clock addresses in and clock data out

* Late-write synchronous SRAMs, for which the MPC750 requires a pipelined (register-register)
configuration. Late-write RAMSs require write data to be valid on the cycle after WE is asserted,
rather than on the same cycle as the write enable as with traditional burst RAMs.

For burst RAM selections, the MPC750 does not burst data into the L2 cache, it generates an address

for each access. Pipelined SRAMs may be used for all L2 clock modes. Note that flow-through

SRAMSs can be used only for L2 clock modes divide-by-2 or slower (divide-by-1 and divide-by-1.5 not

allowed).

00  Flow-through (register-buffer) synchronous burst SRAM

01 Reserved

10  Pipelined (register-register) synchronous burst SRAM

11  Pipelined (register-register) synchronous late-write SRAM

L2DO

L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only
transactions from the L1 data cache can be cached in the L2 cache, which treats all transactions from
the L1 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is
provided for L2 testing only.

10

L2l

L2 global invalidate. Setting L2 invalidates the L2 cache globally by clearing the L2 bits including
status bits. This bit must not be set while the L2 cache is enabled.
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Table 2-18. L2CR Bit Settings (Continued)

Bit

Name

Function

11

L2CTL

L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ (low-power
mode) signal for cache RAMs that support the ZZ function. While L2CTL is asserted, L2ZZ asserts
automatically when the MPC750 enters nap or sleep mode and negates automatically when the
MPC750 exits nap or sleep mode. This bit should not be set when the MPC750 is in nap mode and
snooping is to be performed through deassertion of QACK.

12

L2wWT

L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back mode)
so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is
always marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be
asserted after the L2 cache has been enabled as previously-modified lines can get remarked as
clean during normal operation.

13

L2TS

L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from
dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather than being
written only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a
dcbz/dcbf instruction sequence to be used with the L1 cache enabled to easily initialize the L2 cache
with any address and data information. This bit also keeps dcbz instructions from being broadcast on
the 60x and single-beat cacheable store misses in the L2 from being written to the 60x bus.

14-15

L20H

L2 output hold. These bits configure output hold time for address, data, and control signals driven by
the MPC750 to the L2 data RAMSs. They should generally be set according to the SRAM's input hold
time requirements, for which late-write SRAMs usually differ from flow-through or burst SRAMs.

00 05nS

01 10nS

1x  Reserved

16

L2SL

L2 DLL slow. Setting L2SL increases the delay of each tap of the DLL delay line. It is intended to
increase the delay through the DLL to accommodate slower L2 RAM bus frequencies. Generally,
L2SL should be set if the L2 RAM interface is operated below 100 MHz.

17

L2DF

L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and
L2CLK_OUTB) of the L2 interface to operate as one differential clock. In this mode, the B clock is
driven as the logical complement of the A clock. This mode supports the differential clock
requirements of late-write SRAMs. Generally, this bit should be set when late-write SRAMs are used.

18

L2BYP

L2 DLL bypass. The DLL unit receives three input clocks:

* A square-wave clock from the PLL unit to phase adjust and export

» A non-square-wave clock for the internal phase reference

» Afeedback clock (L2SYNC_IN) for the external phase reference.

Asserting L2BYP causes clock #2 to be used as clocks #1 and #2. (Clock #2 is the actual clock used
by the registers of the L2 interface circuitry.) L2BYP is intended for use when the PLL is being
bypassed, and for engineering evaluation. If the PLL is being bypassed, the DLL must be operated in
divide-by-1 mode, and SYSCLK must be fast enough for the DLL to support.

19-30

Reserved. These bits are implemented but not used; keep at 0 for future compatibility.

31

L2IP

L2 global invalidate in progress (read only)—This read-only bit indicates whether an L2 global
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by the
L2 bit to determine when it has completed.

The L2CR register can be accessed with the mtspr and mfspr instructionsusing SPR 1017.
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2.1.6 Reset Settings

Table 2-19 shows the state of the registers and other resources after a hard reset and before
the first instruction is fetched from address OxFFFO_0100 (the system reset exception
vector).

Table 2-19. Settings Caused by Hard Reset (Used at Power-On)

Resource Setting Resource Setting
BATs Undefined MSR 0x0000_0040 (only IP set)
Caches (L1 /L2)* | Invalidated and disabled PMCn Undefined
CR Undefined PVR ROM value
CTR Undefined Reservation address | Undefined
DABR Breakpoint is disabled. Address is undefined. ||Reservation flag Cleared
DAR 0x0000_0000 SDR1 0x0000_0000
DEC OXFFFF_FFFF SIA 0x0000_0000
DSISR 0x0000_0000 SPRGO-SPGR3 0x0000_0000
EAR 0x0000_0000 SRs Undefined
FPR Undefined SRRO 0x0000_0000
FPSCR 0x0000_0000 SRR1 0x0000_0000
GPR Undefined TBU and TBL 0x0000_0000
HIDO 0x0000_0000 THRM1-THRM3 0x0000_0000
HID1 0x0000_0000 TLB Undefined
IABR 0x0000_0000 (Breakpoint is disabled.) UMMCRn 0x0000_0000
ICTC 0x0000_0000 UPMCn 0x0000_0000
L2CR 0x0000_0000 USIA 0x0000_0000
LR 0x0000_0000 XER 0x0000_0000
MMCRn 0x0000_0000

* The processor automatically begins operations by issuing an instruction fetch. Because caching is inhibited at
start-up, this generates a single-beat load operation on the bus.

Chapter 2. MPC750 Processor Programming Model 2-27



2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of datain these registers.

2.2.1 Floating-Point Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

« Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

« Single-precision arithmetic instructions require al operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision isdoneimplicitly
by the processor.

All PowerPC implementations provide the equivalent of the following execution modelsto
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

¢ Underflow during multiplication using a denormalized operand
¢ Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the |oad/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
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memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length isimplicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary
equal to its length. An operand’s address is misaligned if is not a multiple of its width.
Operands for single-register memory access instructions have the characteristics shown in
Table 2-20. Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.

The concept of alignment is also applied more generally to datain memory. For example,
a 12-byte dataitem is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory accessinstructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The MPC750 does not provide hardware support for floating-point memory that is not
word-aligned. If afloating-point operand is not aligned, the MPC750 invokes an alignment
exception, and it is left up to software to break up the offending storage access operation
appropriately. In addition, some non-double-word—-aligned memory accesses suffer
performance degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should always be word-aligned and floating-point
double-word accesses should always be double-word—aligned. Frequent use of misaligned
accesses is discouraged since they can degrade overall performance.

2.2.4 Floating-Point Operand

The MPC750 provides hardware support for all single- and doubl e-precision floating-point
operations for most value representations and al rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
standard 754-1985, |[EEE Sandard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

The MPC750 supports non-IEEE mode whenever FPSCR[29] is set. In this mode,
denormalized numbers, NaNs, and some | EEE invalid operations are treated in anon-lEEE
conforming manner. Thisisaccomplished by delivering results that approximate the values
required by the |EEE standard. Table 2-20 summarizes the conditions and mode behavior
for operands.
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Table 2-20. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI'=0)

Non-IEEE Mode
(NI=1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three

Zero all three

Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero Aand B
Double denormalized | Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize Band C | ZeroB and C
Double denormalized | Double denormalized
Single denormalized Normalized or zero Single denormalized Normalize Aand C | Zero Aand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNaN? QNaN?
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaN? QNaN?
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNaN? QNaN?
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.
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Table 2-21 summari zes the mode behavior for results.

Table 2-21. Floating-Point Result Data Type Behavior

Precision DataType IEEE Mode (NI =0) Non-IEEE Mode (NI = 1)
Single Denormalized Return single-precision denormalized number | Return zero.
with trailing zeros.
Single Normalized, Return the result. Return the result.
infinity, zero
Single QNaN, SNaN Return QNaN. Return QNaN.
Single INT Place integer into low word of FPR. If (Invalid Operation)
then
Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32-63].
Double Denormalized Return double-precision denormalized number. | Return zero.
Double Normalized, Return the result. Return the result.
infinity, zero
Double QNaN, SNaN Return QNaN. Return QNaN.
Double INT Not supported by MPC750 Not supported by MPC750

2.3 Instruction Set Summary

This chapter describes instructions and addressing modes defined for the MPC750. These
instructions are divided into the following functional categories:

Integer instructions—These include arithmetic and logical instructions. For more

information, see Section 2.3.4.1, “Integer Instructions.”

Floating-point instructions—These include fl oating-point arithmeticinstructions, as
well asinstructionsthat affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

L oad and storeinstructions—Theseincludeinteger and fl oating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store

Instructions.”

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “Processor Control Instructions—UISA "
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA."
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« Memory synchronization instructions—T hese instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

e Memory control instructions—These instructions provide control of caches, TLBS,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

« Externa control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes aparticular instruction or group of instructions. Thisinformation, which isuseful
for scheduling instructions most effectively, is provided in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
usesinstructions that are four byteslong and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRS). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into aregister, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and aformatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portabl e across the various assemblersfor the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions

The MPC750 instructions belong to one of the following three classes:
» Defined
e lllega
¢ Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, PowerPC
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instructions defined for 64-bit implementations are treated as illega by 32-bit
implementations such as the MPC750.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of areserved instruction, the instruction isillegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor stateis not alowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly-undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in al PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The MPC750 provides hardware support for all
instructions defined for 32-bit implementations. It does not support the optional fsgrt,
fsgrts, and tlbia instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

A defined instruction can have invalid forms. The MPC750 provides limited support for
instructions represented in an invalid form.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:
¢ Instructions not defined in the PowerPC architecture. The following primary
opcodes are defined asillegal but may be used in future extensions to the
architecture:
1,4,5,6,9, 22,56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructionsto
perform new functions.
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« Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such asthe
MPC750.

Thefollowing primary opcodes are defined for 64-bit implementations only and are
illegal on the MPC750:

2, 30, 58, 62

¢ All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “ Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

« Aninstruction consisting of only zerosisguaranteed to beanillegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokesthe systemillegal instruction error handler (aprogram exception). Note that
if only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved I nstruction Class.”

The MPC750 invokes the system illegal instruction error handler (a program exception)
when it detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “ Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. Except for an instruction consisting of binary zeros,
illegal instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are alocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. Attempting to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions” in The Programming
Environments Manual for information about illegal and invalid instruction exceptions.

The PowerPC architecture defines four types of reserved instructions:

* Instructionsin the POWER architecture not part of the PowerPC UISA. For details
on POWER architecture incompatibilities and how they are handled by PowerPC
processors, see Appendix B, “POWER Architecture Cross Reference,” in The
Programming Environments Manual .

« Implementation-specific instructions required for the processor to conform to the
PowerPC architecture (none of these are implemented in the MPC750)
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« All other implementation-specific instructions
« Architecturally-allowed extended opcodes

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the |oad/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Cornventions,” of The Programming
Environments Manual for more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand Iength. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwiseit ismisaligned. For adetailed discussion about
memory operands, see Chapter 3, “Operand Conventions,” of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored.
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Load and store operations have the following modes of effective address generation:
e EA =(rA|0) + offset (including offset = Q) (register indirect with immediate index)
¢ EA =(rA|0) + rB (register indirect with index)

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for |oad and store operations.

Branch instructions have three categories of effective address generation:

¢ Immediate
e Link register indirect
e Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
achange in context. Execution of one of these instructions ensures the following:

* No higher priority exception exists (sc).
¢ All previousinstructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error

exceptions, the results are guaranteed to be determined before thisinstruction is
executed.

¢ Previousinstructions complete execution in the context (privilege, protection, and
address trandlation) under which they were issued.

« Theinstructionsfollowing the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and cannot cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] hit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the M SR[PR] bit indicates user mode.
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2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the MPC750—those caused directly by the execution
of an instruction and those caused by an asynchronous event (or interrupts). Either may
cause components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

« Anattempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructionslisted below causesthe privileged instruction (program
exception) handler to be invoked. The MPC750 provides the following
supervisor-level instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr,
mtsr, mtsrin, rfi, tibie, and tlbsync. Note that the privilege level of the mfspr and
mtspr instructions depends on the SPR encoding.

« Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes
an illegal type program exception. Likewise, a program exception is taken if
user-level software triesto access a supervisor-level SPR. An mtspr instruction
executing in supervisor mode (MSR[PR] = 0) with the SPR field specifying HID1
or PVR (read-only registers) executes as a no-op.

¢ Anattempt to access memory that is not available (page fault) causesthe ISl or DS
exception handler to be invoked.

e Theexecution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.
» The execution of atrap instruction invokes the program exception trap handler.

» Theexecution of an instruction that causes a floating-point exception while
exceptions are enabled in the M SR invokes the program exception handler.

A detailed description of exception conditionsis provided in Chapter 4, “ Exceptions.”

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
MPC750 and highlights any specia information with respect to how the MPC750
implements a particular instruction. Note that the categories used in this section correspond
to those used in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. These categorizations are somewhat arbitrary and are
provided for the convenience of the programmer and do not necessarily reflect the PowerPC
architecture specification.

Note that some instructions have the following optional features:

¢ CR Update—Thedot (.) suffix on the mnemonic enables the update of the CR.
¢ Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

Chapter 2. MPC750 Processor Programming Model 2-37



2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding afew user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

* Integer arithmetic instructions

* Integer compare instructions

* Integer logica instructions

* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-22 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-22. Integer Arithmetic Instructions

Name Mnemonic Syntax
Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA
Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
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Table 2-22. Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax
Multiply Low mullw  (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw  (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu  (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that an implementation that executes instructions that set the overflow
enablebit (OE) or the carry bit (CA) may either execute theseinstructions slowly or prevent
execution of the subsequent instruction until the operation completes. Chapter 6,
“Instruction Timing,” describes how the MPC750 handles CR dependencies. The summary
overflow bit (SO) and overflow bit (OV) in the integer exception register are set to reflect
an overflow condition of a 32-bit result. This can happen only when OE = 1.

2.3.4.1.2 Integer Compare Instructions

Theinteger compareinstructionsalgebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register r B. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-23
summarizes the integer compare instructions.

Table 2-23. Integer Compare Instructions

Name Mnemonic Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in crfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.
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2.3.4.1.3 Integer Logical Instructions

The logica instructions shown in Table 2-24 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logica instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-24. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes
AND Immediate andi. rA,rS,UIMM | —
AND Immediate Shifted andis. rA,rS,UIMM | —
OR Immediate ori rA,rS,UIMM | The PowerPC architecture defines ori r0,r0,0 as the

preferred form for the no-op instruction. The dispatcher
discards this instruction (except for pending trace or
breakpoint exceptions).

OR Immediate Shifted oris rA,rS,UIMM | —
XOR Immediate xori rA,rS,UIMM [ —
XOR Immediate Shifted Xoris rA,rS,UIMM | —
AND and (and.) rA,rS,rB —
OR or (or.) rA,rS,rB —
XOR xor (xor.) rA,rS,rB —
NAND nand (nand.) rA,rS,rB —
NOR nor (nor.) rA,rS,rB —
Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) |rArS —

Extend Sign Half Word extsh (extsh.) |rArS —

Count Leading Zeros Word [ cntlzw (cntlzw.) [rA,rS —

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
alows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of aregister, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.
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Integer rotate instructions rotate the contents of aregister. The result of therotation is either
inserted into the target register under control of amask (if amask hit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask hit is 0 the associated
bit in the target register is unchanged), or ANDed with amask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-25.

Table 2-25. Integer Rotate Instructions

Name Mnemonic Syntax
Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME
Rotate Left Word then AND with Mask riwnm (rlwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert riwimi (rlwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logica
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, *“Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-26.

Table 2-26. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw  (slw.) rA,rS,rB
Shift Right Word srw  (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

e Floating-point arithmetic instructions

¢ Foating-point multiply-add instructions

* Foating-point rounding and conversion instructions
« Floating-point compare instructions

¢ Foating-point status and control register instructions
* Foating-point move instructions
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See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the |EEE 754 standard, except if software sets the non-IEEE mode
FPSCR[NI].

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-27.

Table 2-27. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul  (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Divide (Double-Precision) fdiv  (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Reciprocal Estimate Single 1 fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate * | frsqrte (frsqrte.) frD,frB
Floating Select 1 fsel frD,frAfrC,frB

1The fsel instruction is optional in the PowerPC architecture.

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-28.

Table 2-28. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frAfrC,frB

2-42 MPC750 RISC Microprocessor User's Manual



Table 2-28. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Syntax
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frAfrC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frAfrC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit doubl e-precision floating-point number

to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be found in

Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

Table 2-29. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fctiw  (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare

instructions are summarized in Table 2-30.

Table 2-30. Floating-Point Compare Instructions

Name Mnemonic Syntax
Floating Compare Unordered fcmpu crfD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB
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The PowerPC architecture alows an fcmpu or fcmpo instruction with the Rc bit set to
produce a boundedly-undefined result, which may include an illegal instruction program
exception. In the MPC750, crfD should be treated as undefined

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensuresthat all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-31.

Table 2-31. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Field Immediate mtfsfi  (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) | crbD
Move to FPSCR Bit 1 mtfsbl (mtfsbl.) | crbD

Implementation Note—The PowerPC architecture states that in some implementations,
the Move to FPSCR Fields (mtfsf) instruction may perform more slowly when only some
of the fields are updated as opposed to al of the fields. In the MPC750, there is no
degradation of performance.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-32 summarizes the floating-point
move instructions.

Table 2-32. Floating-Point Move Instructions

Name Mnemonic Syntax
Floating Move Register fmr  (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB
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2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

* Integer load instructions

¢ Integer storeinstructions

* Integer load and store with byte-reverse instructions
« Integer load and store multiple instructions

¢ Foating-point load instructions

* Foating-point store instructions

e Memory synchronization instructions

Implementation Notes—The following describes how the MPC750 handles
misalignment:

The MPC750 provides hardware support for misaligned memory accesses. It performs
those accesses within a single cycle if the operand lies within a double-word boundary.
Misaligned memory accesses that cross a double-word boundary degrade performance.

For string operations, the hardware makes no attempt to combine register values to reduce
the number of discrete accesses. Combining stores enhances performanceif store gathering
is enabled and the accesses meet the criteria described in Section 6.4.7, “Integer Store
Gathering.” Note that the PowerPC architecture requires load/store multiple instruction
accesses to be aligned. At aminimum, additional cache access cycles are required.

Although many unaligned memory accesses are supported in hardware, the frequent use of
them is discouraged since they can compromise the overall performance of the processor.

Accesses that cross a trand ation boundary may be restarted. That is, a misaligned access
that crosses a page boundary is completely restarted if the second portion of the access
causes a page fault. This may cause the first access to be repeated.

On some processors, such as the 603, a TLB reload would cause an instruction restart. On
the MPC750, TLB reloads are done transparently and only a page fault causes arestart.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory

sync |wait for update

icbi |[remove (invalidate) copy in instruction cache
isync [remove copy in own instruction buffer

Chapter 2. MPC750 Processor Programming Model 2-45



These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to itemsin the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxesin systemsthat implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “ Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the
MPC750 does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA#0andrA #rD (otherwiseinvalid), the EA isplaced into r A and the memory element
(byte, half word, word, or double word) addressed by the EA isloaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD asinvalid forms.

Implementation Notes—The following notes describe the MPC750 implementation of
integer load instructions:

« The PowerPC architecture cautions programmers that some implementations of the
architecture may executetheload half algebraic (Iha, Ihax) instructionswith greater
latency than other types of load instructions. Thisis not the case for the MPC750;
these instructions operate with the same latency as other load instructions.

¢ The PowerPC architecture cautions programmers that some implementations of the
architecture may run the load/store byte-reverse (Ihbrx, Ibrx, sthbrx, stwbrx)
instructions with greater latency than other types of load/store instructions. Thisis
not the case for the MPC750. Theseinstructions operate with the samelatency asthe
other load/store instructions.

¢ The PowerPC architecture describes some preferred instruction forms for load and
store multiple instructions and integer move assist instructions that may perform
better than other formsin some implementations. None of these preferred forms
affect instruction performance on the MPC750.

2-46 MPC750 RISC Microprocessor User's Manual



» The PowerPC architecture defines the lwar x and stwcx. as away to update memory
atomically. In the MPC750, reservations are made on behalf of aligned 32-byte
sections of the memory address space. Executing lwar x and stwcx. to apage marked
write-through does not cause a DS exception if the W bit is set, but as with other
memory accesses, DSI exceptions can result for other reasons such as a protection
violations or page faults.

¢ Ingeneral, because stwcx. always causes an external bus transaction it has slightly
worse performance characteristics than normal store operations.

Table 2-33 summarizes the integer load instructions.

Table 2-33. Integer Load Instructions

Name Mnemonic Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed | Ihaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents of r S are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which r A is updated with the EA. For these forms, the following
rules apply:

e IfrA £0, the effective addressis placed into r A.

e |IfrS=rA, the contentsof register r S are copied to the target memory element, then
the generated EA isplaced intorA (rS).
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The PowerPC architecture defines store with update instructionswithrA = 0 asaninvalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc fidld, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-34
summarizes the integer store instructions.

Table 2-34. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rArB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rArB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

2.3.4.3.5 Integer Store Gathering

The MPC750 performs store gathering for write-through accesses to nonguarded space or
to cache-inhibited stores to nonguarded space if the stores are 4 bytes and they are
word-aligned. These stores are combined in the load/store unit (LSU) to form a double
word and are sent out on the 60x bus as a single-beat operation. However, stores can be
gathered only if the successive stores that meet the criteria are queued and pending. Store
gathering takes place regardless of the address order of the stores. The store gathering
feature is enabled by setting HIDO[SGE]. Store gathering is done for both big- and
little-endian modes.

Store gathering is not done for the following:

¢ Cacheable stores

e Storesto guarded cache-inhibited or write-through space
* Bytereverse store

e stwex. and ecowx accesses

¢ Foating-point stores

« Store operations attempted during a hardware table search

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.
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2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions

Table 2-35 describes integer load and store with byte-reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing datain big-endian order. For more information about big-endian and
little-endian byte ordering, see “Byte Ordering,” in Chapter 3, “Operand Conventions,” in
The Programming Environments Manual .

Table 2-35. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB
Load Word Byte-Reverse Indexed lwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rArB
Store Word Byte-Reverse Indexed stwbrx rS,rArB

2.3.4.3.7 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of datato and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes—The following describes the MPC750 implementation of the
load/store multiple instruction:

¢ For load/store string operations, the hardware does not combine register values to
reduce the number of discrete accesses. However, if store gathering is enabled and
the accesses fall under the criteriafor store gathering the stores may be combined to
enhance performance. At aminimum, additional cache access cycles are required.

«  The MPC750 supports misaligned, single-register load and store accessesin
little-endian mode without causing an alignment exception. However, execution of
misaligned |oad/store multiple/string operations causes an alignment exception.

The PowerPC architecture defines the load multiple word (Imw) instruction with r A in the
range of registersto be loaded as an invalid form.

Table 2-36. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word | Imw rD,d(rA)
Store Multiple Word | stmw rS,d(rA)

Chapter 2. MPC750 Processor Programming Model 2-49



2.3.4.3.8 Integer Load and Store String Instructions

The integer load and store string instructions alow movement of data from memory to
registers or from registersto memory without concern for alignment. Theseinstructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-37
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction invokes the alignment error handler; see “Byte Ordering,” in The
Programming Environments Manual for more information.

Table 2-37. Integer Load and Store String Instructions

Name Mnemonic Syntax
Load String Word Immediate Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate | stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the sametype.
A non—word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non—word-aligned string operation that crosses a double-word boundary is also slower
than aword-aligned string operation.

Implementation Note—The following describes the MPC750 implementation of
load/store string instructions:

¢ For load/store string operations, the hardware does not combine register values to
reduce the number of discrete accesses. However, if store gathering is enabled and
the accesses fall under the criteriafor store gathering the stores may be combined to
enhance performance. At aminimum, additional cache access cycles are required.

e The MPC750 supports misaligned, single-register load and store accessesin
little-endian mode without causing an alignment exception. However, execution of
misaligned |oad/store multiple/string operations cause an alignment exception.
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2.3.4.3.9 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access resultsin an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading an operand into an FPR.

I mplementation Notes—The MPC750 treats exceptions as follows:

¢ TheFPU canberunintwo different modes—ignore exceptions mode (M SR[FEQ] =
MSR[FE1] = 0) and precise mode (any other settings for M SR[FEO,FE1]). For the
MPC750, ignore exceptions mode allows floating-point instructions to complete
earlier and thus may provide better performance than precise mode.

¢ Thefloating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx,
stfsux, stfdx, stfdux) areinvalid when the Rc bit isone. In the MPC750, executing
one of these invalid instruction forms causes CRO to be set to an undefined value.

The PowerPC architecture defines aload with update instruction withrA = 0 asaninvalid
form. Table 2-38 summarizes the floating-point load instructions.

Table 2-38. Floating-Point Load Instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.10 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-39 summarizes the floating-point store instructions.
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Table 2-39. Floating-Point Store Instructions

Name Mnemonic Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,r B
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,r B
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,r B
Store Floating-Point as Integer Word Indexed 1 stfiwx frS,rB

1The stfiwx instruction is optional to the PowerPC architecture.

Some floating-point store instructions require conversions in the LSU. Table 2-40 shows
conversions the L SU makes when executing a Store Floating-Point Single instruction.

Table 2-40. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized If(exp < 896)
then Denormalize and Store
else
Store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store
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Table 2-41 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is smply stored.
Only in afew cases are any other actions taken.

Table 2-41. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Architecturally, al floating-point humbers are represented in double-precision format
within the MPC750. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The MPC750 supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cyclesare required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the MPC750, there is also a
case when execution of astore floating-point double (stfd, stfdu, stfdx, stfdux) instruction
can require interna shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles areincurred during the store.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bitsin the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.
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Branch instructions compute the EA of the next instruction address using the following
addressing modes:

* Branchrelative

e Branch conditiona to relative address
¢ Branch to absolute address

* Branch conditional to absolute address
¢ Branch conditional to link register

« Branch conditional to count register

Note that in the MPC750, al branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr,
bclrl, bectr, bectrl) and condition register logical instructions (crand, cror, crxor,
crnand, crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bitsin the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the MPC750 flush
speculatively executed instructions and restore the machine state to immediately after the
branch. This correction can be done immediately upon resolution of the condition registers
bits.

2.3.4.4.2 Branch Instructions

Table 2-42 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbolsis provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for alist of simplified mnemonic examples.

Table 2-42. Branch Instructions

Name

Mnemonic

Syntax

Branch

b (ba bl bla)

target_addr

Branch Conditional

bc (bca bcl bcla)

BO,Bl,target_addr

Branch Conditional to Link Register belr  (belrl) BO,BI

Branch Conditional to Count Register beetr (bectrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions
Condition register logica instructions, shown in Table 2-43, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Table 2-43. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB
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Table 2-43. Condition Register Logical Instructions (Continued)

Name Mnemonic Syntax
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions asinvalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-44 are provided to test for a specified set of
conditions. If any of the conditions tested by atrap instruction are met, the system trap type
program exception is taken. For more information, see Section 4.5.7, “Program Exception
(0x00700).” If the tested conditions are not met, instruction execution continues normally.

Table 2-44. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
acomplete set of simplified mnemonics.

2.3.4.5 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a
service; see Table 2-45. See also Section 2.3.6.1, “System Linkage Instructions—OEA "
for additional information.

Table 2-45. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.5.10, “ System Call Exception (0x00C00)."
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2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions—VEA,” for the mftb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-46 summarizestheinstructionsfor reading from or writing to the condition register.

Table 2-46. Move to/from Condition Register Instructions

Name Mnemonic Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER | mcrxr crfD
Move from Condition Register mfcr rD

I mplementation Note—The PowerPC architectureindicates that in some implementations
the Move to Condition Register Fields (mtcrf) instruction may perform more slowly when
only aportion of thefields are updated as opposed to all of the fields. The condition register
access latency for the MPC750 is the same in both cases.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-47 lists the mtspr and mfspr instructions.

Table 2-47. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr rD,SPR

Table 2-48 lists the SPR numbers for both user- and supervisor-level accesses.

Table 2-48. PowerPC Encodings

SPR?
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
CTR 9 00000 01001 User (UISA) Both
DABR 1013 11111 10101 Supervisor (OEA) Both
DAR 19 00000 10011 Supervisor (OEA) Both
DBATOL 537 10000 11001 Supervisor (OEA) Both
DBATOU 536 10000 11000 Supervisor (OEA) Both
DBAT1L 539 10000 11011 Supervisor (OEA) Both
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Table 2-48. PowerPC Encodings (Continued)

SPR?
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0—-4]

DBAT1U 538 10000 11010 Supervisor (OEA) Both
DBAT2L 541 10000 11101 Supervisor (OEA) Both
DBAT2U 540 10000 11100 Supervisor (OEA) Both
DBAT3L 543 10000 11111 Supervisor (OEA) Both
DBAT3U 542 10000 11110 Supervisor (OEA) Both
DEC 22 00000 10110 Supervisor (OEA) Both
DSISR 18 00000 10010 Supervisor (OEA) | Both
EAR 282 01000 11010 Supervisor (OEA) Both
IBATOL 529 10000 10001 Supervisor (OEA) Both
IBATOU 528 10000 10000 Supervisor (OEA) Both
IBAT1L 531 10000 10011 Supervisor (OEA) Both
IBAT1U 530 10000 10010 Supervisor (OEA) Both
IBAT2L 533 10000 10101 Supervisor (OEA) Both
IBAT2U 532 10000 10100 Supervisor (OEA) Both
IBAT3L 535 10000 10111 Supervisor (OEA) Both
IBAT3U 534 10000 10110 Supervisor (OEA) Both
LR 8 00000 01000 User (UISA) Both
PVR 287 01000 11111 Supervisor (OEA) | mfspr
SDR1 25 00000 11001 Supervisor (OEA) Both
SPRGO 272 01000 10000 Supervisor (OEA) Both
SPRG1 273 01000 10001 Supervisor (OEA) Both
SPRG2 274 01000 10010 Supervisor (OEA) | Both
SPRG3 275 01000 10011 Supervisor (OEA) Both
SRRO 26 00000 11010 Supervisor (OEA) Both
SRR1 27 00000 11011 Supervisor (OEA) Both
TBL 2 268 01000 01100 Supervisor (OEA) | mtspr

284 01000 11100 Supervisor (OEA) | mtspr
TBU 2 269 01000 01101 Supervisor (OEA) | mtspr

285 01000 11101 Supervisor (OEA) | mtspr
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Table 2-48. PowerPC Encodings (Continued)

SPR?
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
XER 1 00000 00001 User (UISA) Both
Notes:

1The order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding. For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five
bits appearing in bits 16—20 of the instruction and the low-order five bits in bits 11-15.

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the
mtspr instruction in supervisor mode and the TBR numbers here. The TB registers can be read
in user mode using either the mftb or mtspr instruction and specifying TBR 268 for TBL and
SPR 269 for TBU.

Encodings for the MPC750-specific SPRs are listed in Table 2-49.

Table 2-49 SPR Encodings for MPC750-Defined Registers (mfspr)

1
Register SPR
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]

DABR 1013 11111 10101 User Both
HIDO 1008 11111 10000 Supervisor Both
HID1 1009 11111 10001 Supervisor Both
IABR 1010 11111 10010 Supervisor Both
ICTC 1019 11111 11011 Supervisor Both
L2CR 1017 11111 11001 Supervisor Both
MMCRO 952 11101 11000 Supervisor Both
MMCR1 956 11101 11100 Supervisor Both
PMC1 953 11101 11001 Supervisor Both
PMC2 954 11101 11010 Supervisor Both
PMC3 957 11101 11101 Supervisor Both
PMC4 958 11101 11110 Supervisor Both
SIA 955 11101 11011 Supervisor Both
THRM1 1020 11111 11100 Supervisor Both
THRM2 1021 11111 11101 Supervisor Both
THRM3 1022 11111 11110 Supervisor Both
UMMCRO 936 11101 01000 User mfspr
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Table 2-49 SPR Encodings for MPC750-Defined Registers (mfspr) (Continued)

1
. SPR
Register
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
UMMCR1 940 11101 01100 User mfspr
UPMC1 937 11101 01001 User mfspr
UPMC2 938 11101 01010 User mfspr
UPMC3 941 11101 01101 User mfspr
UPMC4 942 11101 01110 User mfspr
USIA 939 11101 01011 User mfspr
Note:

INote that the order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in bits
16-20 of the instruction and the low-order 5 bits in bits 11-15.

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “L 1 Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization. See Table 2-50 for a summary.

Table 2-50. Memory Synchronization Instructions—UISA

Name Mnemonic | Syntax Implementation Notes

Load Word lwarx rD,rA,rB | Programmers can use lwarx with stwcx. to emulate common semaphore

and Reserve operations such as test and set, compare and swap, exchange memory, and

Indexed fetch and add. Both instructions must use the same EA. Reservation
granularity is implementation-dependent. The MPC750 makes reservations on

Store Word | stwex. rS,FATB | hehalf of aligned 32-byte sections of the memory address space. If the W bit is

Conditional set, executing lwarx and stwcx. to a page marked write-through does not

Indexed cause a DSI exception, but DSI exceptions can result for other reasons. If the

location is not word-aligned, an alignment exception occurs.

The stwcx. instruction is the only load/store instruction with a valid form if Rc is
set. If Rc is zero, executing stwcx. sets CRO to an undefined value. In general,
stwcx. always causes a transaction on the external bus and thus operates with
slightly worse performance characteristics than normal store operations.
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Table 2-50. Memory Synchronization Instructions—UISA (Continued)

Name Mnemonic | Syntax Implementation Notes

Synchronize |sync — Because it delays subsequent instructions until all previous instructions
complete to where they cannot cause an exception, sync is a barrier against
store gathering. Additionally, all load/store cache/bus activities initiated by prior
instructions are completed. Touch load operations (dcbt, dcbtst) must
complete address translation, but need not complete on the bus. If HIDO[ABE]
=1, sync completes after a successful broadcast.

The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Therefore, frequent use of sync may
degrade performance.

System designs with an L2 cache should take special care to recognize the hardware
signaling caused by a SYNC bus operation and perform the appropriate actions to
guarantee that memory references that may be queued internally to the L2 cache have been
performed globally.

See 2.3.5.2, “Memory Synchronization Instructions—VEA,” for details about additional
memory synchronization (eieio and isync) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions.
If Rcisset, theinstruction form isinvalid for sync and lwar x instructions. If the MPC750
encounters one of these invalid instruction forms, it sets CRO to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aiasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA
definesthe mftb instruction (user-level instruction) for reading the contents of thetime base
register; see Chapter 3, “L1 Instruction and Data Cache Operation,” for more information.
Table 2-51 shows the mftb instruction.

Table 2-51. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR
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Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both abasic and smplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simplified form. Note that the MPC750
ignores the extended opcode differences between mftb and mfspr by ignoring bit 25 and
treating both instructions identically.

Implementation Notes—The following information is useful with respect to using the
time base implementation in the MPC750:

¢  TheMPC750 allows user-mode read access to the time base counter through the use
of the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 32-bit PowerPC implementation, the MPC750 can access TBU
and TBL only separately, whereas 64-bit implementations can access the entire TB
register at once.

« Thetime base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the time base enable (TBE) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “L 1 Instruction
and Data Cache Operation,” for more information about these i nstructions and about related
aspects of memory synchronization.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of 1/0O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As aresult, frequent use of this
instruction may degrade performance dlightly.
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Table 2-52 describes the memory synchronization instructions defined by the VEA.

Table 2-52. Memory Synchronization Instructions—VEA

Name Mnemonic | Syntax Implementation Notes
Enforce eieio — | The eieio instruction is dispatched to the LSU and executes after all previous
In-Order cache-inhibited or write-through accesses are performed; all subsequent
Execution instructions that generate such accesses execute after eieio. If HIDO[ABE] = 1 an
of /0 EIEIO operation is broadcast on the external bus to enforce ordering in the

external memory system. The eieio operation bypasses the L2 cache and is
forwarded to the bus unit. If HIDO[ABE] = 0, the operation is not broadcast.
Because the MPC750 does not reorder noncacheable accesses, eieio is not
needed to force ordering. However, if store gathering is enabled and an eieio is
detected in a store queue, stores are not gathered. If HIDO[ABE] = 1,
broadcasting eieio prevents external devices, such as a bus bridge chip, from
gathering stores.

Instruction  [isync — | Theisync instruction is refetch serializing; that is, it causes the MPC750 to purge
Synchronize its instruction queue and wait for all prior instructions to complete before
refetching the next instruction, which is not executed until all previous instructions
complete to the point where they cannot cause an exception. The isync
instruction does not wait for all pending stores in the store queue to complete.
Any instruction after an isync sees all effects of prior instructions.

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions can be classified as follows:

e Cache management instructions (user-level and supervisor-level)
¢ Segment register manipulation instructions (OEA)
e Trandation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the VEA.
See Section 2.3.6.3, “Memory Control Instructions—OEA,” for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip
cachesif they areimplemented. See Chapter 3, “L 1 Instruction and Data Cache Operation,”
for more information about cache topics. The following sections describe how these
operations are treated with respect to the MPC750’s cache.

As with other memory-related instructions, the effects of cache management instructions
on memory are weakly-ordered. If the programmer must ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed after those instructions.

Note that the MPC750 interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and
dcbst) asif they pertain only to the local L1 and L2 cache. A dcbz (with M set) is aways
broadcast on the 60x bus. The dcbi, dcbf, and dcbst operations are broadcast if
HIDO[ABE] is set.
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The MPC750 never broadcasts an ichi. Of the broadcast cache operations, the MPC750
snoops only dcbz, regardiess of the HIDO[ABE] setting. Any bus activity caused by other
cacheinstructions results directly from performing the operation on the M PC750 cache. Al
cache control instructions to T = 1 space are no-ops. For information how cache control
instructions affect the L2, see Chapter 9, “L 2 Cache Interface Operation.”

Table 2-53 summarizes the cache instructions defined by the VEA. Note that these
instructions are accessible to user-level programs.

Table 2-53. User-Level Cache Instructions

Name Mnemonic | Syntax Implementation Notes
Data Cache Block [dcbt rA,rB | The VEA defines this instruction to allow for potential system performance
Touch ! enhancements through the use of software-initiated prefetch hints.

Implementations are not required to take any action based on execution of
this instruction, but they may prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, the MPC750 checks for
protection violations (as for a load instruction). This instruction is treated
as a no-op for the following cases:

« Avalid translation is not found either in BAT or TLB

« The access causes a protection violation.

¢ The page is mapped cache-inhibited, G = 1 (guarded), or T = 1.

* The cache is locked or disabled

* HIDO[NOOPTI] =1

Otherwise, if no data is in the cache location, the MPC750 requests a
cache line fill (with intent to modify). Data brought into the cache is
validated as if it were a load instruction. The memory reference of a dcbt
sets the reference bit.

Data Cache Block |dcbtst rA,rB | This instruction behaves like dcbt.

Touch for Store 1

Data Cache Block |[dchz rA,rB | The EA is computed, translated, and checked for protection violations. For
Set to Zero cache hits, four beats of zeros are written to the cache block and the tag is

marked M. For cache misses with the replacement block marked E, the
zero line fill is performed and the cache block is marked M. However, if the
replacement block is marked M, the contents are written back to memory
first. The instruction executes regardless of whether the cache is locked; if
the cache is disabled, an alignment exception occurs. If M = 1 (coherency
enforced), the address is broadcast to the bus before the zero line fill.
The exception priorities (from highest to lowest) are as follows:

1  Cache disabled—Alignment exception

2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception

4 TLB protection violation—DSI exception

dcbz is the only cache instruction that broadcasts even if HIDO[ABE] = 0.
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Table 2-53. User-Level Cache Instructions (Continued)

Name Mnemonic | Syntax Implementation Notes
Data Cache Block |dcbst rA,rB | The EA is computed, translated, and checked for protection violations.
Store « For cache hits with the tag marked E, no further action is taken.

« For cache hits with the tag marked M, the cache block is written back
to memory and marked E.

A dcbst is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address translation

and memory protection. It executes regardless of whether the cache is

disabled or locked.

The exception priorities (from highest to lowest) for dcbst are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

Data Cache Block |dcbf rA,rB | The EA is computed, translated, and checked for protection violations.

Flush « For cache hits with the tag marked M, the cache block is written back
to memory and the cache entry is invalidated.

« For cache hits with the tag marked E, the entry is invalidated.

« For cache misses, no further action is taken.

A dcbf is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address translation

and memory protection. It executes regardless of whether the cache is

disabled or locked.

The exception priorities (from highest to lowest) for dcbf are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

Instruction Cache |icbi rA,rB | This instruction performs a virtual lookup into the instruction cache (index
Block Invalidate only). The address is not translated, so it cannot cause an exception. All

ways of a selected set are invalidated regardless of whether the cache is
disabled or locked. The MPC750 never broadcasts icbi onto the 60x bus.

Note:

1 A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve
performance, HIDO[NOOPTI] may be set, which causes dcbt and dcbtst to be no-oped at the
cache. They do not cause bus activity and cause only a 1-clock execution latency. The default
state of this bit is zero which enables the use of these instructions.

2.3.5.4 Optional External Control Instructions
The PowerPC architecture defines an optional external control featurethat, if implemented,
is supported by the two external control instructions, eciwx and ecowx. These instructions
allow a user-level program to communicate with a special-purpose device. These
instructions are provided and are summarized in Table 2-54.

Table 2-54. External Control Instructions

Name Mnemonic | Syntax Implementation Notes
External eciwx rD,rA,rB | A transfer size of 4 bytes is implied; the TBST and TSIZ[0-2] signals are
Control In redefined to specify the Resource ID (RID), copied from bits EAR[28-31]. For
Word Indexed these operations, TBST carries the EAR[28] data. Misaligned operands for

these instructions cause an alignment exception. Addressing a location

External ecowx rS,FATB |where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
Control Out error occurs and the physical address on the bus is undefined.
Word Indexed Note: These instructions are optional to the PowerPC architecture.
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The eciwx/ecowx instructions let a system designer map specia devicesin an aternative
way. The MMU trandation of the EA is not used to select the special device, asit is used
in most instructions such as loads and stores. Rather, it is used as an address operand that
is passed to the device over the address bus. Four other signals (the burst and size signals
on the 60x bus) are used to select the device; these four signals output the 4-bit resource 1D
(RID) field located in the EAR. The eciwx instruction also loads aword from the data bus
that is output by the specia device. For more information about the relationship between
these instructions and the system interface, refer to Chapter 7, “ Signal Descriptions.”

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA aso adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-55). The user-level sc
instruction lets a user program call on the system to perform a service and causes the
processor to take a system call exception. The supervisor-level rfi instruction is used for
returning from an exception handler.

Table 2-55. System Linkage Instructions—OEA

Name Mnemonic | Syntax Implementation Notes
System Call | sc — The sc instruction is context-synchronizing.
Return from rfi — The rfi instruction is context-synchronizing. For the MPC750, this means
Interrupt the rfi instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

2.3.6.2 Processor Control Instructions—OEA

This section describes the processor control instructions used to access the MSR and the
SPRs. Table 2-56 lists instructions for accessing the MSR.

Table 2-56. Move to/from Machine State Register Instructions

Name Mnemonic Syntax
Move to Machine State Register mtmsr rS
Move from Machine State Register mfmsr rD
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The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level
registers. The instructions are listed in Table 2-57.

Table 2-57. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr rD,SPR

Encodings for the architecture-defined SPRs are listed in Table 2-48. Encodings for
MPC750-specific, supervisor-level SPRs are listed in Table 2-49. Simplified mnemonics
are provided for mtspr and mfspr in Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual. For a discussion of context synchronization
requirements when altering certain SPRs, refer to Appendix E, “Synchronization
Programming Examples,” in The Programming Environments Manual.

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following:

« Cache management instructions (supervisor-level and user-level)
¢ Segment register manipulation instructions
« Trandation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 2.3.5.3,
“Memory Control Instructions—VEA,” describes user-level memory control instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-58 lists the only supervisor-level cache management instruction.

Table 2-58. Supervisor-Level Cache Management Instruction

Name | Mnemonic | Syntax Implementation Notes
Data dcbi rA,rB | The EA is computed, translated, and checked for protection violations. For cache
Cache hits, the cache block is marked | regardless of whether it was marked E or M. A
Block dchi is not broadcast unless HIDO[ABE] = 1, regardless of WIMG settings. The
Invalidate instruction acts like a store with respect to address translation and memory

protection. It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbi are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

See Section 2.3.5.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op.
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2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-59 provide access to the segment registers for 32-bit
implementations. Theseinstructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “ Synchronization Requirements for Special Registers and
for Lookaside Buffers” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-59. Segment Register Manipulation Instructions

Name Mnemonic | Syntax Implementation Notes
Move to Segment Register mtsr SRS |—
Move to Segment Register Indirect | mtsrin rSB [—
Move from Segment Register mfsr rD,SR | The shadow SRs in the instruction MMU can be read
by setting HIDO[RISEG] before executing mfsr.
Move from Segment Register Indirect | mfsrin DB [—

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)
The address translation mechanism is defined in terms of the segment descriptors and page
table entries (PTES) PowerPC processors use to locate the logical-to-physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
registers and page tables in memory, respectively.

See Chapter 7, “Memory Management,” for more information about TLB operations.
Table 2-60 summarizes the operation of the TLB instructions in the MPC750.

Table 2-60. Translation Lookaside Buffer Management Instruction

Name Mnemonic | Syntax Implementation Notes
TLB tibie rB Invalidates both ways in both instruction and data TLB entries at the index
Invalidate provided by EA[14-19]. It executes regardless of the MSR[DR] and MSR][IR]
Entry settings.To invalidate all entries in both TLBs, the programmer should issue 64

tibie instructions that each successively increment this field.

TLB tibsync — On the MPC750, the only function tibsync serves is to wait for the TLBISYNC
Synchronize signal to go inactive.

Implementation Note—The tlbia instruction is optiona for an implementation if its
effects can be achieved through some other mechanism. Therefore, it is not implemented
on the MPC750. As described above, tlbie can be used to invalidate a particular index of
the TLB based on EA[14-19]—a sequence of 64 tlbie instructions followed by atlbsync
instruction invalidates all the TLB structures (for EA[14-19] =0, 1, 2,..., 63). Attempting
to execute tlbia causes an illegal instruction program exception.
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The presence and exact semantics of the TLB management instructions are
implementation-dependent. To minimize compatibility problems, system software should
incorporate uses of these instructions into subroutines.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, aset of aternative mnemonicsis provided for some
frequently used operations (such as no-op, load immediate, |oad address, move register, and
complement register). Programs written to be portabl e across the various assemblersfor the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For acomplete list of simplified mnemonics, see Appendix F, “ Simplified Mnemonics,” in
The Programming Environments Manual.
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Chapter 3
L1 Instruction and Data Cache
Operation

The MPC750 microprocessor contains separate 32-Kbyte, eight-way set associative
instruction and data caches to allow the execution units and registers rapid access to
instructions and data. This chapter describes the organization of the on-chip instruction and
data caches, the MEI cache coherency protocol, cache control instructions, various cache
operations, and the interaction between the caches, the load/store unit (LSU), the
instruction unit, and the bus interface unit (BIU).

Note that in this chapter, the term *multiprocessor’ is used in the context of maintaining
cache coherency. These multiprocessor devices could be actual processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.
The MPC750 cache implementation has the following characteristics:
¢ There aretwo separate 32-K byte instruction and data caches (Harvard architecture).
¢ Both instruction and data caches are eight-way set associative.

¢ The cachesimplement a pseudo |east-recently-used (PLRU) replacement algorithm
within each set.

« The cache directories are physically addressed. The physical (real) addresstag is
stored in the cache directory.

< Boththeinstruction and data caches have 32-byte cache blocks. A cacheblock isthe
block of memory that a coherency state describes, also referred to as a cache line.

« Two coherency state bits for each data cache block alow encoding for three states:
— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Invalid (1)

¢ A singlecoherency statebit for eachinstruction cache block alowsencoding for two
possible states:

— Invalid (INV)
— vaid (VAL)
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» Each cache can be invalidated or locked by setting the appropriate bitsin the
hardware implementation-dependent register 0 (HIDO), a special-purpose register
(SPR) specific to the MPC750.

The MPC750 supports a fully-coherent 4-Gbyte physical memory address space. Bus
snooping is used to drive the MEI three-state cache coherency protocol that ensures the
coherency of global memory with respect to the processor’s data cache. The MEI protocol
is described in Section 3.3.2, “MEI Protocol.”

On a cache miss, the MPC750's cache blocks are filled in four beats of 64 bits each. The
burst fill is performed as a critical-double-word-first operation; the critical double word is
simultaneously written to the cache and forwarded to the requesting unit, thus minimizing
stalls due to cachefill latency.

The instruction and data caches are integrated into the MPC750 as shown in Figure 3-1.

Load/Store Unit
Instruction Unit (Lsv)
A A
Instructions (0-127) EA (20-26) Data (0-63)
Y
- Cache Tags Cache Tags
I-Cache D-Cache
32-Khyte ¢ PA (0-19) l ¢ 32-Khyte
8-Way Set Associative 8-Way Set Associative
- Cache Logic Cache Logic
A A
Instructions (0-63) PA (0-31) Data (0-63)
,,,,,, A Y

EA: Effective Address
PA: Physical Address

Figure 3-1. Cache Integration

Both caches aretightly coupled to the MPC750’s businterface unit to allow efficient access
to the system memory controller and other bus masters. The bus interface unit receives
requests for bus operations from the instruction and data caches, and executes the
operations per the 60x bus protocol. The BIU provides address queues, prioritizing logic,
and bus control logic. The BIU captures snoop addresses for data cache, address queue, and
memory reservation (Iwarx and stwcx. instruction) operations.
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The data cache provides buffers for load and store bus operations. All the data for the
corresponding address queues (load and store data queues) islocated in the data cache. The
data queues are considered temporary storage for the cache and not part of the BIU. The
data cache also provides storage for the cache tags required for memory coherency and
performs the cache block replacement PLRU function.

The data cache supplies data to the GPRs and FPRs by means of the load/store unit. The
MPC750's LSU isdirectly coupled to the data cache to allow efficient movement of datato
and from the general-purpose and floating-point registers. The load/store unit provides all
logic required to cal culate effective addresses, handles data alignment to and from the data
cache, and provides sequencing for load and store string and multiple operations. Write
operations to the data cache can be performed on a byte, half-word, word, or double-word
basis.

The instruction cache provides a 128-bit interface to the instruction unit, so four
instructions can be made available to the instruction unit in a single clock cycle. The
instruction unit accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction queue.

3.1 Data Cache Organization

The data cache is organized as 128 sets of eight blocks as shown in Figure 3-2. Each block
consists of 32 bytes, two state bits, and an address tag. Note that in the PowerPC
architecture, the term ‘cache block, or smply ‘block, when used in the context of cache
implementations, refers to the unit of memory at which coherency is maintained. For the
MPC750, thisis the eight-word cache line. This value may be different for other PowerPC
implementations.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bitsA[27-31] of thelogical (effective) addresses are zero); as
aresult, cache blocks are aligned with page boundaries. Note that address bits A[20-26]
provide the index to select a cache set. BitsA[27-31] select a byte within ablock. The two
state bits implement a three-state MEI (modified/exclusive/invalid) protocol, a coherent
subset of the standard four-state MESI (modified/exclusive/shared/invalid) protocol. The
MEI protocol is described in Section 3.3.2, “MEI Protocol.” The tags consist of bits
PA[0-19]. Addresstranglation occursin parallel with set selection (from A[20-26]), and the
higher-order address bits (the tag bits in the cache) are physical.

The MPC750’s on-chip data cache tags are single-ported, and load or store operations must
be arbitrated with snoop accesses to the data cache tags. Load or store operations can be
performed to the cache on the clock cycle immediately following a snoop access if the
snoop misses; snoop hits may block the data cache for two or more cycles, depending on
whether a copy-back to main memory is required.
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Figure 3-2. Data Cache Organization

3.2 Instruction Cache Organization

Theinstruction cache also consists of 128 sets of eight blocks, asshownin Figure 3-3. Each
block consists of 32 bytes, asingle state bit, and an addresstag. Aswith the data cache, each
instruction cache block contains eight contiguous words from memory that are loaded from
an eight-word boundary (that is, bitsA[27-31] of thelogical (effective) addresses are zero);
as a result, cache blocks are aligned with page boundaries. Also, address bits A[20-26]
provide the index to select a set, and bits A[27-29] select aword within a block.

The tags consist of bits PA[0-19]. Address trandlation occurs in parallel with set selection
(from A[20-26]), and the higher order address bits (the tag bits in the cache) are physical.

Theinstruction cache differs from the data cache in that it does not implement MEI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. The instruction cache is not snooped, so if a processor
modifies a memory location that may be contained in the instruction cache, software must
ensure that such memory updates are visible to the instruction fetching mechanism. This
can be achieved with the following instruction sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for |CBI operation to be globally performed
isync # remove copy in own instruction buffer
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These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch compl etes.
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Figure 3-3. Instruction Cache Organization

3.3 Memory and Cache Coherency

The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of amemory location, some containing
stale values, could exist in asystem resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache. This section
describes the coherency mechanisms of the PowerPC architecture and the three-state cache
coherency protocol of the MPC750 data cache.

Note that unless specifically noted, the discussion of coherency in this section appliesto the
MPC750's data cache only. The instruction cache is not snooped. Instruction cache
coherency must be maintained by software. However, the MPC750 does support a fast
instruction cache invalidate capability as described in Section 3.4.1.4, “Instruction Cache
Flash Invalidation.”
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3.3.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either ablock or page basis by using the WIMG
bits in the BAT registers or page table entry (PTE), respectively. The WIMG attributes
control the following functionality:

*  Write-through (W bit)

» Caching-inhibited (I hit)

¢ Memory coherency (M bit)
* Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations.

The WIMG attributes are programmed by the operating system for each page and block.
TheW and | attributes control how the processor performing an access usesits own cache.
The M attribute ensures that coherency is maintained for all copies of the addressed
memory location. The G attribute prevents out-of-order loading and prefetching from the
addressed memory location.

The WIMG attributes occupy four bits in the BAT registers for block address trandlation
and in the PTEs for page address trand ation. The WIMG bits are programmed as follows:

¢ The operating system uses the mtspr instruction to program the WIMG bitsin the
BAT registersfor block address trandation. The IBAT register pairs do not have a
G bit and all accesses that use the IBAT register pairs are considered not guarded.

« The operating system writes the WIMG hits for each page into the PTEs in system
memory as it sets up the page tables.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or local).

Software must exercise care with respect to the use of these bitsif coherent memory support
is desired. Careless specification of these bits may create situations that present coherency
paradoxes to the processor. In particular, this can happen when the state of these bitsis
changed without appropriate precautions (such as flushing the pages that correspond to the
changed bits from the caches of all processors in the system) or when the address
translations of aliased real addresses specify different values for any of the WIMG bits.
These coherency paradoxes can occur within a single processor or across severd
processors. It is important to note that in the presence of a paradox, the operating system
software is responsible for correctness.

For real addressing mode (that is, for accesses performed with address translation
disabled—MSR[IR] = 0 or MSR[DR] = O for instruction or data access, respectively), the
WIMG hits are automatically generated as 0b0011 (the data is write-back, caching is
enabled, memory coherency is enforced, and memory is guarded).
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3.3.2 MEI Protocol

The MPC750 data cache coherency protocol is a coherent subset of the standard MESI
four-state cache protocol that omits the shared state. The MPC750's data cache
characterizes each 32-byte block it contains as being in one of three MEI states. Addresses
presented to the cache are indexed into the cache directory with bits A[20-26], and the
upper-order 20 bits from the physical address trandlation (PA[0-19]) are compared against
theindexed cache directory tags. If neither of the indexed tags matches, theresult isa cache
miss. If atag matches, a cache hit occurred and the directory indicates the state of the cache
block through two state bits kept with the tag. The three possible states for a cache block in
the cache are the modified state (M), the exclusive state (E), and the invalid state (I). The
three MEI states are defined in Table 3-1.

Table 3-1. MEI State Definitions

MEI State

Definition

Modified (M)

The addressed cache block is present in the cache, and is modified with respect to system
memory—that is, the modified data in the cache block has not been written back to memory. The
cache block may be present in the MPC750's L2 cache, but it is not present in any other coherent
cache.

Exclusive (E)

The addressed cache block is present in the cache, and this cache has exclusive ownership of the
addressed block. The addressed block may be present in the MPC750’s L2 cache, but it is not
present in any other processor’s cache. The data in this cache block is consistent with system
memory.

Invalid (1)

This state indicates that the address block does not contain valid data or that the addressed cache
block is not resident in the cache.

The MPC750 provides dedicated hardware to provide memory coherency by snooping bus
transactions. Figure 3-4 shows the MEI cache coherency protocol, as enforced by the
MPC750. Figure 3-4 assumes that the WIM bitsfor the page or block are set to 001; that is,
write-back, caching-not-inhibited, and memory coherency enforced.
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SH/ICRW SHICRW
RM

RH Modified

SH 0 RH

WH SHICIR

Bus Transactions

SH = Snoop Hit @ = Snoop Push
RH = Read Hit

RM = Read Miss

WH = Wrie Hit @ = Cache Block Fil
WM = Write Miss

SHICRW = Snoop Hit, Cacheable Read/Write
SHICIR = Snoop Hit, Caching-Inhibited Read

Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

Since data cannot be shared, the MPC750 signals all cache block fills asif they were write
mi sses (read-with-intent-to-modify), which flushes the corresponding copies of the datain
al caches external to the MPC750 prior to the cache-block-fill operation. Following the
cacheblock load, the MPC750 isthe exclusive owner of the dataand may writeto it without
abus broadcast transaction.

To maintain the three-state coherency, all global reads observed on the bus by the MPC750
are snooped as if they were writes, causing the MPC750 to flush the cache block (write the
cache block back to memory and invalidate the cache block if it is modified, or simply
invalidate the cache block if it is unmodified). The exception to this rule occurs when a
snooped transaction is a caching-inhibited read (either burst or single-beat, where TT[0-4]
= X1010; see Table 7-1 for clarification), in which case the MPC750 does not invalidate the
snooped cache block. If the cache block is modified, the block is written back to memory,
and the cache block is marked exclusive. If the cache block is marked exclusive, no bus
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action is taken, and the cache block remains in the exclusive state. This treatment of
caching-inhibited reads decreases the possibility of data thrashing by allowing noncaching
devices to read data without invalidating the entry from the MPC750's data cache.

Section 3.8, “MEI State Transactions,” provides a detailed list of MEI transitions for
various operations and WIM bit settings.

3.3.2.1 MEI Hardware Considerations

Whilethe MPC750 providesthe hardware required to monitor bus traffic for coherency, the
MPC750 data cache tags are single-ported, and a simultaneous load/store and snoop access
represents aresource conflict. In general, the snoop access has highest priority and is given
first access to the tags. The load or store access will then occur on the clock following the
snoop. The snoop is not given priority into the tags when the snoop coincides with a tag
write (for example, validation after a cache block load). In these situations, the snoop is
retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if
the cache is busy with aburst read or write when the snoop operation takes place.

Notethat it ispossiblefor asnoop to hit amodified cache block that isalready in the process
of being written to the copy-back buffer for replacement purposes. If this happens, the
MPC750 retries the snoop, and raises the priority of the castout operation to allow it to go
to the bus before the cache block fill.

Another consideration is page table aliasing. If a store hits to a modified cache block but
the page table entry is marked write-through (WIMG = 1xxx), then the page has probably
been aliased through another page table entry which is marked write-back (WIMG = 0xxx).
If this occurs, the MPC750 ignores the modified bit in the cache tag. The cache block is
updated during the write-through operation and the block remains in the modified state.

The global (GBL) signal, asserted as part of the address attribute field during a bus
transaction, enables the snooping hardware of the MPC750. Address bus masters assert
GBL to indicate that the current transaction is a global access (that is, an access to memory
shared by more than one device). If GBL is not asserted for the transaction, that transaction
is not snooped by the MPC750. Note that the GBL signal is not asserted for instruction
fetches, and that GBL is asserted for all data read or write operations when using real
addressing mode (that is, address trangdlation is disabled).

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding trandlation descriptor(s). Care should be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerable bus bandwidth if much data is shared. Therefore, available bus bandwidth
decreases as more memory is marked as global.
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The MPC750 snoops a transaction if the transfer start (TS) and GBL signals are asserted
together in the same bus clock (thisis a qualified snooping condition). No snoop update to
the MPC750 cache occurs if the snooped transaction is not marked global. Also, because
cache block castouts and snoop pushes do not require snooping, the GBL signal is not
asserted for these operations.

When the MPC750 detects a qualified snoop condition, the address associated with the TS
signal is compared with the cache tags. Snooping finishesif no hit is detected. If, however,
the address hits in the cache, the MPC750 reacts according to the MEI protocol shown in
Figure 3-4.

3.3.3 Coherency Precautions in Single Processor Systems
The following coherency paradoxes can be encountered within a single-processor system:

« Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.

The MPC750 ignores any hitsto a cache block in amemory space marked
caching-inhibited (WIMG = x1xx). The access is performed on the external bus as
if there were no hit. The datain the cacheis not pushed, and the cache block is not
invalidated.

* Storeto a page marked write-through (WIMG = 1xxx) and a cache hit occursto a
modified cache block.

The MPC750 ignores the modified bit in the cache tag. The cache block is updated
during the write-through operation but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it iscritical that
the cache contents reflect the new WIM bit settings. For example, if ablock or page that
had alowed caching becomes caching-inhibited, software should ensure that the
appropriate cache blocks are flushed to memory and invalidated.

3.3.4 Coherency Precautions in Multiprocessor Systems

The MPC750's three-state coherency protocol permits no data sharing between the
MPC750 and ather caches. All burst reads initiated by the MPC750 are performed as read
with intent to modify. Burst snoops are interpreted as read with intent to modify or read
with no intent to cache. This effectively places all caches in the system into a three-state
coherency scheme. Four-state caches may share data amongst themselves but not with the
MPC750.

3.3.5 MPC750-Initiated Load/Store Operations

Load and store operations are assumed to be weakly ordered on the MPC750. The
load/store unit (L SU) can perform load operations that occur later in the program ahead of
store operations, even when the data cache is disabled (see Section 3.3.5.2, “ Sequentia
Consistency of Memory Accesses). However, strongly ordered load and store operations
can be enforced through the setting of the | bit (of the page WIMG bits) when address
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translation is enabled. Note that when address trandation is disabled (real addressing
mode), the default WIMG bits cause the | bit to be cleared (accesses are assumed to be
cacheable), and thus the accesses are weakly ordered. Refer to Section 5.2, “Red
Addressing Mode,” for adescription of the WIMG bitswhen addresstranslation is disabled.

The MPC750 does not provide support for direct-store segments. Operations attempting to
access adirect-store segment will invoke aDSI exception. For additional information about
DSl exceptions, refer to Section 4.5.3, "DSI Exception (0x00300).”

3.3.5.1 Performed Loads and Stores

The PowerPC architecture defines a performed |oad operation as one that has the addressed
memory location bound to the target register of the load instruction. The architecture
defines a performed store operation as one where the stored value isthe value that any other
processor will receive when executing aload operation (that is of course, until itischanged
again).  With respect to the MPC750, caching-allowed (WIMG = x0xx) loads and
caching-alowed, write-back (WIMG = 00xx) stores are performed when they have
arbitrated to address the cache block. Note that in the event of a cache miss, these storage
operations may place a memory request into the processor's memory queue, but such
operations are considered an extension to the state of the cache with respect to snooping
bus operations. Caching-inhibited (WIMG = x1xx) loads, caching-inhibited (WIMG =
x1xx) stores, and write-through (WIMG = 1xxx) stores are performed when they have been
successfully presented to the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in program order with respect to exceptions and
data dependencies.

The MPC750 achieves sequential consistency by operating a single pipeline to the
cache/MMU. All memory accesses are presented to the MMU in exact program order and
therefore exceptions are determined in order. Loads are alowed to bypass stores once
exception checking has been performed for the store, but data dependency checking is
handled in the load/store unit so that aload will not bypass a store with an address match.
Note that although memory accesses that miss in the cache are forwarded to the memory
gueue for future arbitration for the external bus, al potential synchronous exceptions have
been resolved before the cache. In addition, although subsequent memory accesses can
address the cache, full coherency checking between the cache and the memory queue is
provided to avoid dependency conflicts.

3.3.5.3 Atomic Memory References

The PowerPC architecture defines the Load Word and Reserve Indexed (lwarx) and the
Store Word Conditional Indexed (stwcx.) instructions to provide an atomic update function
for asingle, aligned word of memory. These instructions can be used to develop arich set
of multiprocessor synchronization primitives. Note that atomic memory references
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constructed using lwar x/stwcex. instructions depend on the presence of a coherent memory
system for correct operation. These instructions should not be expected to provide atomic
access to noncoherent memory. For detailed information on these instructions, refer to
Chapter 2, “MPC750 Processor Programming Model,” in this book and Chapter 8,
“Instruction Set,” in The Programming Environments Manual.

The Iwarx instruction performs a load word from memory operation and creates a
reservation for the 32-byte section of memory that contains the accessed word. The
reservation granularity is 32 bytes. The Iwar x instruction makes a nonspecific reservation
with respect to the executing processor and a specific reservation with respect to other
masters. This meansthat any subsequent stwcx. executed by the same processor, regardless
of address, will cancel the reservation. Also, any bus write or invalidate operation from
another processor to an address that matches the reservation address will cancel the
reservation.

The stwex. instruction does not check the reservation for a matching address. The stwcx.
instruction is only required to determine whether a reservation exists. The stwcx.
instruction performs a store word operation only if the reservation exists. If the reservation
has been cancelled for any reason, then the stwex. instruction fails and clears the CRO[EQ]
bit in the condition register. The architectural intent is to follow the Iwarx/stwcx.
instruction pair with a conditional branch which checks to see whether the stwcx.
instruction failed.

If the page table entry is marked caching-alowed (WIMG = x0xx), and an lwarx access
misses in the cache, then the MPC750 performs a cache block fill. If the page is marked
caching-inhibited (WIMG = x1xx) or the cache is locked, and the access misses, then the
Iwar x instruction appears on the bus as a single-beat 1oad. All bus operations that are a
direct result of either an Iwarx instruction or an stwcx. instruction are placed on the bus
with aspecial encoding. Note that this does not force al Iwar x instructions to generate bus
transactions, but rather provides a means for identifying when an Iwarx instruction does
generate a bus transaction. If an implementation requires that al Iwarx instructions
generate bus transactions, then the associated pages should be marked as caching-inhibited.

The state of the reservation is always presented onto the RSRV output signal. This can be
used to determine when an internal condition has caused a change in the reservation state.

The MPC750's data cache treats all stwcx. operations as write-through independent of the
WIMG settings. However, if the stwex. operation hitsin the MPC750's L2 cache, then the
operation completes with the reservation intact in the L2 cache. See Chapter 9, “L2 Cache
Interface Operation,” for more information. Otherwise, the stwcx. operation continues to
the bus interface unit for completion. When the write-through operation completes
successfully, either in the L2 cache or on the 60x bus, then the data cache entry is updated
(assuming it hits), and CRO[EQ)] is modified to reflect the success of the operation. If the
reservation is not intact, the stwcx. completesin the bus interface unit without performing
a bus transaction, and without modifying either of the caches.
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3.4 Cache Control

The MPC750's L1 caches are controlled by programming specific bits in the HIDO
special-purpose register and by issuing dedicated cache control instructions. Section 3.4.1,
“Cache Control Parameters in HIDO,” describes the HIDO cache control bits, and
Section 3.4.2, “Cache Control Instructions,” describes the cache control instructions.

3.4.1 Cache Control Parameters in HIDO

The HIDO special-purpose register contains severa bits that invalidate, disable, and lock
the instruction and data caches. The following sections describe these facilities.

3.4.1.1 Data Cache Flash Invalidation

The data cache is automatically invalidated when the MPC750 is powered up and during a
hard reset. However, a soft reset does not automatically invalidate the data cache. Software
must use the HIDO data cache flash invalidate bit (HIDO[DCFI]) if data cache invalidation
is desired after a soft reset. Once HIDO[DCFI] is set through an mtspr operation, the
MPC750 automatically clears this bit in the next clock cycle (provided that the data cache
isenabled in the HIDO register).

Note that some PowerPC microprocessors accomplish data cache flash invalidation by
setting and clearing HIDO[DCFI] with two consecutive mtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequence of
operations does not need to be changed to run on the MPC750.

3.4.1.2 Data Cache Enabling/Disabling

The data cache may be enabled or disabled by using the data cache enable bit, HIDO[DCE].
HIDO[DCE] is cleared on power-up, disabling the data cache.

When the data cache isin the disabled state (HIDO[DCE] = 0), the cache tag state bits are
ignored, and all accesses are propagated to the L2 cache or 60x bus as single-beat
transactions. Note that the CI (cache inhibit) signal always reflects the state of the
caching-inhibited memory/cache access attribute (the | bit) independent of the state of
HIDO[DCE]. Also note that disabling the data cache does not affect the trandlation logic;
tranglation for data accessesis controlled by MSR[DR].

The setting of the DCE bit must be preceded by async instruction to prevent the cache from
being enabled or disabled in the middle of a data access. In addition, the cache must be
globally flushed before it is disabled to prevent coherency problems when it is re-enabled.

Snooping is not performed when the data cache is disabled.

The dcbz instruction will cause an alignment exception when the data cache is disabled.
The touch load (dcbt and dcbtst) instructions are no-ops when the data cache is disabled.
Other cache operations (caused by the dcbf, dcbst, and dcbi instructions) are not affected
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by disabling the cache. This can potentially cause coherency errors. For example, a dcbf
instruction that hits a modified cache block in the disabled cache will cause a copyback to
memory of potentially stale data.

3.4.1.3 Data Cache Locking

The contents of the data cache can be locked by setting the data cache lock bit,
HIDO[DLOCK]. A data access that hits in a locked data cache is serviced by the cache.
However, all accesses that miss in the locked cache are propagated to the L2 cache or 60x
bus as single-beat transactions. Note that the CI signal always reflects the state of the
caching-inhibited memory/cache access attribute (the | bit) independent of the state of
HIDO[DLOCK].

The MPC750 treats snoop hitsto alocked data cache the same as snoop hitsto an unlocked
data cache. However, any cache block invalidated by a snoop hit remains invalid until the
cacheis unlocked.

The setting of the DLOCK bit must be preceded by a sync instruction to prevent the data
cache from being locked during a data access.

3.4.1.4 Instruction Cache Flash Invalidation

The instruction cache is automatically invalidated when the MPC750 is powered up and
during a hard reset. However, a soft reset does not automatically invalidate the instruction
cache. Software must use the HIDO instruction cache flash invalidate bit (HIDO[ICFI]) if
instruction cache invalidation is desired after a soft reset. Once HIDO[ICFI] is set through
an mtspr operation, the MPC750 automatically clears this bit in the next clock cycle
(provided that the instruction cache is enabled in the HIDO register).

Note that some PowerPC microprocessors accomplish instruction cache flash invalidation
by setting and clearing HIDO[I CFI] with two consecutive mtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequence of
operations does not need to be changed to run on the MPC750.

3.4.1.5 Instruction Cache Enabling/Disabling

The instruction cache may be enabled or disabled through the use of the instruction cache
enablehit, HIDO[ICE]. HIDO[ICE] is cleared on power-up, disabling the instruction cache.

When the instruction cache isin the disabled state (HID[ICE] = 0), the cache tag state bits
are ignored, and all instruction fetches are propagated to the L2 cache or 60x bus as
single-beat transactions. Note that the CI signal always reflects the state of the
caching-inhibited memory/cache access attribute (the | bit) independent of the state of
HIDO[ICE]. Also note that disabling the instruction cache does not affect the translation
logic; trangdlation for instruction accessesis controlled by MSR[IR].
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The setting of the ICE bit must be preceded by an isync instruction to prevent the cache
from being enabled or disabled in the middle of an instruction fetch. In addition, the cache
must be globally flushed before it is disabled to prevent coherency problems when it is
re-enabled. Theichi instruction is not affected by disabling the instruction cache.

3.4.1.6 Instruction Cache Locking

The contents of theinstruction cache can belocked by setting the instruction cache lock bit,
HIDQ[ILOCK]. An instruction fetch that hitsin alocked instruction cache is serviced by
the cache. However, all accesses that miss in the locked cache are propagated to the L2
cache or 60x bus as single-beat transactions. Note that the CI signal always reflectsthe state
of the caching-inhibited memory/cache access attribute (the | bit) independent of the state
of HIDO[ILOCK].

The setting of the ILOCK bit must be preceded by an isync instruction to prevent the
instruction cache from being locked during an instruction fetch.

3.4.2 Cache Control Instructions

The PowerPC architecture definesinstructions for controlling both the instruction and data
caches (when they exist). The cache control instructions, dcbt, dcbtst, dcbz, dcbst, dcbf,
dchi, and icbi, are intended for the management of the local L1 and L2 caches. The
MPC750 interprets the cache control instructions asif they pertain only toitsown L1 or L2
caches. Theseinstructions are not intended for managing other cachesin the system (except
to the extent necessary to maintain coherency).

The MPC750 does not snoop cache control instruction broadcasts, except for dcbz when
M = 1. Thedcbz instruction isthe only cache control instruction that causes a broadcast on
the 60x bus (when M = 1) to maintain coherency. All other data cache control instructions
(dchbi, dcbf, dcbst and dcbz) are not broadcast, unless broadcast is enabled through the
HIDO[ABE] configuration bit. Note that dcbi, dcbf, dcbst and dcbz do broadcast to the
MPC750's L2 cache, regardless of HIDO[ABE]. The ichi instruction is never broadcast.

3.4.2.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The MPC750 treats these instructions identically (that is,
adcbtst instruction behaves exactly the same as a dcbt instruction on the MPC750). Note
that PowerPC implementations are not required to take any action based on the execution
of these instructions, but they may choose to prefetch the cache block corresponding to the
effective address into their cache.

The MPC750 |oads the data into the cache when the address hitsin the TLB or the BAT, is
permitted load access from the addressed page, isnot directed to adirect-store segment, and
isdirected at a cacheable page. Otherwise, the MPC750 treats these instructions as no-ops.
Thedatabrought into the cache asaresult of thisinstruction isvalidated in the same manner
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that aload instruction would be (that is, it is marked as exclusive). The memory reference
of a dcbt (or dcbtst) instruction causes the reference bit to be set. Note also that the
successful execution of the dcbt (or dcbtst) instruction affects the state of the TLB and
cache LRU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dcbz)

The effective address is computed, transated, and checked for protection violations as
defined in the PowerPC architecture. The dcbz instruction is treated as a store to the
addressed byte with respect to address translation and protection.

If the block containing the byte addressed by the EA is in the data cache, all bytes are
cleared, and the tag is marked as modified (M). If the block containing the byte addressed
by the EA isnot in the data cache and the corresponding page is caching-allowed, the block
is established in the data cache without fetching the block from main memory, and all bytes
of the block are cleared, and the tag is marked as modified (M).

If the contents of the cache block are from a page marked memory coherence required
(M = 1), an address-only bus transaction is run prior to clearing the cache block. The dcbz
instruction is the only cache control instruction that causes a broadcast on the 60x bus
(when M = 1) to maintain coherency. The other cache control instructions are not broadcast
unless broadcasting is specifically enabled through the HIDO[ABE] configuration bit.

The dcbz instruction executes regardless of whether the cache islocked, but if the cacheis
disabled, an alignment exception is generated. If the page containing the byte addressed by
the EA is caching-inhibited or write-through, then the system alignment exception handler
isinvoked. BAT and TLB protection violations generate DSI exceptions.

3.4.2.3 Data Cache Block Store (dcbst)

The effective address is computed, transated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache and the cache block isin the exclusive (E) state, no action is
taken. If the address hits in the cache and the cache block is in the modified (M) state, the
modified block iswritten back to memory and the cache block is placed in the exclusive (E)
State.

The execution of adcbst instruction does not broadcast on the 60x bus unless broadcast is
enabled through the HIDO[ABE] bit. The function of thisinstruction is independent of the
WIMG hit settings of the block containing the effective address. The dcbst instruction
executes regardless of whether the cache is disabled or locked; however, a BAT or TLB
protection violation generates a DS exception.
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3.4.2.4 Data Cache Block Flush (dcbf)

The effective address is computed, transated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hitsin the cache, and the block isin the modified (M) state, the modified block
iswritten back to memory and the cache block isplaced intheinvalid (1) state. If the address
hitsin the cache, and the cache block isin the exclusive (E) state, the cache block is placed
intheinvalid (1) state. If the address missesin the cache, no action is taken.

The execution of dcbf does not broadcast on the 60x bus unless broadcast is enabled
through the HIDO[ABE] hit. The function of thisinstruction is independent of the WIMG
bit settings of the block containing the effective address. The dcbf instruction executes
regardless of whether the cache is disabled or locked; however, a BAT or TLB protection
violation generates a DSI exception.

3.4.2.5 Data Cache Block Invalidate (dcbi)

The effective address is computed, trandated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a store with respect to
address translation and memory protection.

If the address hitsin the cache, the cache block is placed in the invalid (1) state, regardless
of whether the datais modified. Because this instruction may effectively destroy modified
data, it isprivileged (that is, dcbi is available to programs at the supervisor privilege level,
MSR[PR] = 0).

The execution of dcbi does not broadcast on the 60x bus unless broadcast is enabled
through the HIDO[ABE] hit. The function of this instruction is independent of the WIMG
bit settings of the block containing the effective address. The dcbi instruction executes
regardless of whether the cache is disabled or locked; however, a BAT or TLB protection
violation generates a DSI exception.

3.4.2.6 Instruction Cache Block Invalidate (icbi)

For the icbi instruction, the effective address is not computed or translated, so it cannot
generate a protection violation or exception. Thisinstruction performsavirtual lookup into
the instruction cache (index only). All ways of the selected instruction cache set are
invalidated.

The ichi instruction is not broadcast on the 60x bus. The icbi instruction invalidates the
cache blocks independent of whether the cache is disabled or locked.
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3.5 Cache Operations
This section describes the MPC750 cache operations.

3.5.1 Cache Block Replacement/Castout Operations

Both the instruction and data cache use a pseudo |east-recently-used (PLRU) replacement
agorithm when a new block needs to be placed in the cache. When the data to be replaced
isinthe modified (M) state, that data is written into a castout buffer while the missed data
is being accessed on the bus. When the load completes, the MPC750 then pushes the
replaced cache block from the castout buffer to the L2 cache (if L2 is enabled) or to main
memory (if L2 is disabled).

The replacement logic first checks to see if there are any invalid blocks in the set and
chooses the lowest-order, invalid block (L[0-7]) as the replacement target. If all eight
blocksin the set arevalid, the PLRU agorithm is used to determine which block should be
replaced. The PLRU algorithm is shown in Figure 3-5.
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Figure 3-5. PLRU Replacement Algorithm
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Each cache is organized as eight blocks per set by 128 sets. There is a valid bit for each
block in the cache, L[0-7]. When all eight blocks in the set are valid, the PLRU algorithm
is used to select the replacement target. There are seven PLRU bits, B[0-6] for each set in
the cache. For every hit in the cache, the PLRU bits are updated using the rules specified in
Table 3-2.

Table 3-2. PLRU Bit Update Rules

If the Then the PLRU bits are Changed to:
Current
ACCTGOS:S Is BO B1 B2 B3 B4 B5 B6
LO 1 1 X 1 X X X
L1 1 1 X 0 X X X
L2 1 0 X X 1 X X
L3 1 0 X X 0 X X
L4 0 X 1 X X 1 X
L5 0 X 1 X X 0 X
L6 0 X 0 X X X 1
L7 0 X 0 X X X 0
x = Does not change

If al eight blocks are valid, then ablock is selected for replacement according to the PLRU
bit encodings shown in Table 3-3.

Table 3-3. PLRU Replacement Block Selection

Then the
Block
If the PLRU Bits Are: Selected for
Replacement
Is:
0 0 0 LO
B3
0 0 1 L1
0 Bl 1 0 L2
B4
0 1 1 L3
BO
1 0 0 L4
B5
1 0 1 L5
1 B2 1 0 L6
B6
1 1 1 L7
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During power-up or hard reset, all the valid bits of the blocks are cleared and the PLRU bits
cleared to point to block LO of each set. Note that this is also the state of the data or
instruction cache after setting their respective flash invalidate bit (HIDO[DCFI] or
HIDO[ICFI]).

3.5.2 Cache Flush Operations

The instruction cache can be invalidated by executing a series of ichi instructions or by
setting HIDO[ICFI]. The data cache can be invalidated by executing a series of dcbi
instructions or by setting HIDO[DCFI].

Any modified entries in the data cache can be copied back to memory (flushed) by using
the dcbf instruction or by executing a series of 12 uniquely addressed load or dcbz
instructions to each of the 128 sets. The address space should not be shared with any other
process to prevent snoop hit invalidations during the flushing routine. Exceptions should be
disabled during this time so that the PLRU agorithm does not get disturbed.

The data cache flush assist bit, HIDO[DCFA], simplifies the software flushing process.
When set, HIDO[DCFA] forces the PLRU replacement algorithm to ignore the invalid
entries and follow the replacement sequence defined by the PLRU bits. This reduces the
series of uniquely addressed load or dcbz instructionsto eight per set. HIDO[DCFA] should
be set just prior to the beginning of the cache flush routine and cleared after the series of
instructions is complete.

3.5.3 Data Cache-Block-Fill Operations

The MPC750's data cache blocks are filled in four beats of 64 bits each, with the critical
double word loaded first. The data cache is not blocked to internal accesses while the load
(caused by a cache miss) completes. This functionality is sometimes referred to as *hits
under misses, because the cache can service a hit while a cache miss fill is waiting to
complete. The critical-double-word read from memory is simultaneously written to the data
cache and forwarded to the requesting unit, thus minimizing stalls due to cachefill latency.

A cache block isfilled after aread miss or write miss (read-with-intent-to-modify) occurs
in the cache. The cache block that corresponds to the missed address is updated by a burst
transfer of the data from the L2 or system memory. Note that if a read miss occurs in a
system with multiple bus masters, and the data is modified in another cache, the modified
dataisfirst written to external memory before the cache fill occurs.

3.5.4 Instruction Cache-Block-Fill Operations

The MPC750's instruction cache blocks are loaded in four beats of 64 bits each, with the
critical double word loaded first. The instruction cache is not blocked to internal accesses
while the fetch (caused by a cache miss) completes. On a cache miss, the critical and
following double words read from memory are simultaneously written to the instruction
cache and forwarded to the instruction queue, thus minimizing stalls due to cache fill
latency. There is no snooping of the instruction cache.
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3.5.5 Data Cache-Block-Push Operation

When a cache block in the MPC750 is snooped and hit by another bus master and the data
ismodified, the cache block must be written to memory and made availabl e to the snooping
device. The cache block that is hit is said to be pushed out onto the 60x bus. The MPC750
supports two kinds of push operations—norma push operations and enveloped
high-priority push operations, which are described in Section 3.5.5.1, “Enveloped
High-Priority Cache-Block-Push Operation.”

3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation

In cases where the MPC750 has compl eted the address tenure of aread operation, and then
detects a snoop hit to amaodified cache block by another bus master, the MPC750 provides
ahigh-priority push operation. If the address snooped is the same as the address of the data
to be returned by the read operation, ARTRY is asserted one or more times until the data
tenure of the read operation is completed. The cache-block-push transaction can be
enveloped within the address and data tenures of a read operation. This feature prevents
deadlocks in system organizations that support multiple memory-mapped buses.

More specifically, the MPC750 internally detects the scenario where a load request is
outstanding and the processor has pipelined awrite operation on top of theload. Normally,
when the data bus is granted to the MPC750, the resulting data bus tenure is used for the
load operation. The enveloped high-priority cache block push feature defines a bus signal,
data buswrite only (DBWO), which when asserted with a qualified data bus grant indicates
that the resulting data tenure should be used for the store operation instead. This signal is
described in Section 8.10, “Using Data Bus Write Only.” Note that the enveloped
copy-back operation is an internally pipelined bus operation.

3.6 L1 Caches and 60x Bus Transactions

The MPC750 transfers data to and from the cache in single-beat transactions of two words,
or in four-beat transactions of eight words which fill a cache block. Single-beat bus
transactions can transfer from one to eight bytes to or from the MPC750, and can be
misaligned. Single-beat transactions can be caused by cache write-through accesses,
caching-inhibited accesses (WIMG = x1xx), accesses when the cache is disabled
(HIDO[DCE] hit is cleared), or accesses when the cache is locked (HIDO[DLOCK] bit is
cleared).

Burst transactions on the MPC750 always transfer eight words of data at a time, and are
aligned to a double-word boundary. The MPC750 transfer burst (TBST) output signal
indicates to the system whether the current transaction is a single-beat transaction or
four-beat burst transfer. Burst transactions have an assumed address order. For cacheable
read operations, instruction fetches, or cacheable, non-write-through write operations that
miss the cache, the MPC750 presents the double-word-aligned address associated with the
load/store instruction or instruction fetch that initiated the transaction.
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As shown in Figure 3-6, the first quad word contains the address of the load/store or
instruction fetch that missed the cache. This minimizes|latency by alowing the critical code
or data to be forwarded to the processor before the rest of the block isfilled. For all other
burst operations, however, the entire block is transferred in order (oct-word-aligned).
Critical-double-word-first fetching on a cache miss applies to both the data and instruction
cache.

MPC750 Cache Address
Bits (27... 28)

00 01 10 11

A B [ D

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

Beat
1 2 3

A B [ D

If the address requested is in double-word C, the address placed on the bus will be that of double-word
C, and the four data beats are ordered in the following manner:

Beat
1 2 3

[ D A B

Figure 3-6. Double-Word Address Ordering—Critical Double Word First

3.6.1 Read Operations and the MEI Protocol

The MEI coherency protocol affects how the MPC750 data cache performs read operations
on the 60x bus. All reads (except for caching-inhibited reads) are encoded on the bus as
read-with-intent-to-modify (RWITM) to force flushing of the addressed cache block from
other cachesin the system.

The MEI coherency protocol aso affects how the MPC750 snoops read operations on the
60x bus. All reads snooped from the 60x bus (except for caching-inhibited reads) are
interpreted as RWITM to cause flushing from the MPC750’s cache. Single-beat reads
(TBST negated) are interpreted by the MPC750 as caching inhibited.

These actions for read operations allow the MPC750 to operate successfully (coherently)
on the bus with other bus masters that implement either the three-state MEI or a four-state
MESI cache coherency protocol.
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3.6.2 Bus Operations Caused by Cache Control Instructions

The cache control, TLB management, and synchronization instructions supported by the
MPC750 may affect or be affected by the operation of the 60x bus. The operation of the
instructions may also indirectly cause bus transactionsto be performed, or their completion
may be linked to the bus.

The dcbz instruction is the only cache control instruction that causes an address-only
broadcast on the 60x bus. All other data cache control instructions (dcbi, dcbf, dcbst, and
dcbz) are not broadcast unless specifically enabled through the HIDO[ABE] configuration
bit. Note that dcbi, dcbf, dcbst, and dcbz do broadcast to the MPC750's L2 cache,
regardless of HIDO[ABE]. HIDO[ABE] also controls the broadcast of the sync and eieio
instructions. The icbi instruction is never broadcast. No broadcasts by other masters are
snooped by the MPC750 (except for dcbz kill block transactions). For detailed information
on the cache control instructions, refer to Chapter 2, “MPC750 Processor Programming
Model,” in this book and Chapter 8, “Instruction Set,” in The Programming Environments
Manual.

Table 3-4 provides an overview of the bus operationsinitiated by cache control instructions.
Note that Table 3-4 assumesthat the WIM bits are set to 001; that is, the cache is operating
in write-back mode, caching is permitted and coherency is enforced.

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

. Current .
Instruction Cache State Next Cache State Bus Operation Comment

sync Don't care No change sync Waits for memory queues
(if enabled in to complete bus activity
HIDO[ABE])

tibie — — None —

tlbsync — — None Waits for the negation of

the TLBSYNC input signal
to complete

eieio Don't care No change eieio Address-only bus
(if enabled in operation
HIDO[ABE])

icbi Don't care | None —

dcbi Don't care | Kill block Address-only bus
(if enabled in operation
HIDO[ABE])

dcbf I,E | Flush block Address-only bus
(if enabled in operation
HIDO[ABE])

dcbf M | Write with kill Block is pushed

dcbst I,E No change Clean block Address-only bus
(if enabled in operation
HIDO[ABE])
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Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction Current Next Cache State Bus Operation Comment
Cache State

dcbst M E Write with Kill Block is pushed

dcbz | M Write with kill —

dcbz E,M M Kill block Writes over modified data

dcbt | E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache

dcbt E,M No change None —

dcbtst | E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache

dcbtst EM No change None —

For additional details about the specific bus operations performed by the MPC750, see
Chapter 8, “ System Interface Operation.”

3.6.3 Snooping

The MPC750 maintains data cache coherency in hardware by coordinating activity between
the data cache, the businterface logic, the L2 cache, and the memory system. The MPC750
has a copy-back cache which relies on bus snooping to maintain cache coherency with other
caches in the system. For the MPC750, the coherency size of the busisthe size of a cache
block, 32 bytes. This means that any bus transactions that cross an aligned 32-byte
boundary must present a new address onto the bus at that boundary for proper snoop
operation by the MPC750, or they must operate noncoherently with respect to the MPC750.

As bus operations are performed on the bus by other bus masters, the MPC750 bus
snooping logic monitors the addresses and transfer attributes that are referenced. The
MPC750 snoops the bus transactions during the cycle that TS is asserted for any of the
following qualified snoop conditions:

» Theglobal signa (GBL) is asserted indicating that coherency enforcement is
required.

« Areservationiscurrently activein the MPC750 astheresult of anlwarx instruction,
and the transfer type attributes (TT[0-4]) indicate awrite or kill operation. These
transactions are snooped regardless of whether GBL is asserted to support
reservationsin the MEI cache protocol.

The state of ABB is not sampled to determine a qualified snoop condition. All transactions
snooped by the MPC750 are checked for correct address bus parity. Every assertion of TS
detected by the MPC750 (whether snooped or not) must be followed by an accompanying
assertion of AACK.
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Once a qualified snoop condition is detected on the bus, the snooped address associated
with TS is compared against the data cache tags, memory queues, and/or other storage
elements as appropriate. The L1 data cache tags and L 2 cache tags are snooped for standard
data cache coherency support. No snooping is done in the instruction cache for coherency.

The memory queues are snooped for pipeline collisions and memory coherency collisions.
A pipeline collision is detected when another bus master addresses any portion of aline that
this MPC750’s data cache is currently in the process of loading (L1 loading from L2, or
L1/L2 loading from memory). A memory coherency collision occurs when another bus
master addresses any portion of a line that the MPC750 has currently queued to write to
memory from the data cache (castout or copy-back), but has not yet been granted bus access
to perform.

If a snooped transaction results in a cache hit or pipeline collision or memory queue
collision, the MPC750 asserts ARTRY on the 60x bus. The current bus master, detecting
the assertion of the ARTRY signal, should abort the transaction and retry it at alater time,
so that the MPC750 can first perform a write operation back to memory from its cache or
memory queues. The MPC750 may also retry a bus transaction if it is unable to snoop the
transaction on that cycle due to internal resource conflicts. Additional snoop action may be
forwarded to the cache as a result of a snoop hit in some cases (a cache push of modified
data, or acache block invalidation).

3.6.4 Snoop Response to 60x Bus Transactions

There are severa bus transaction types defined for the 60x bus. The transactions in
Table 3-5 correspond to the transfer type signals TT[0-4], which are described in
Section 7.2.4.1, “Transfer Type (TT[0-4]).”

Table 3-5. Response to Snooped Bus Transactions

Snooped Transaction TT[0-4] MPC750 Response

Clean block 00000 No action is taken.

Flush block 00100 No action is taken.

SYNC 01000 No action is taken.

Kill block 01100 The Kill block operation is an address-only bus transaction initiated

when a dcbz or dcbi instruction is executed

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (1) state.

« |If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

EIEIO 10000 No action is taken.
External control word 10100 No action is taken.
write
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Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] MPC750 Response

TLB invalidate 11000 No action is taken.

External control word 11100 No action is taken.

read

Iwarx reservation set 00001 No action is taken.

Reserved 00101 —

TLBSYNC 01001 No action is taken.

ICBI 01101 No action is taken.

Reserved 1XX01 —

Write-with-flush 00010 A write-with-flush operation is a single-beat or burst transaction
initiated when a caching-inhibited or write-through store instruction is
executed.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (1) state.

« |If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Write-with-kill 00110 A write-with-kill operation is a burst transaction initiated due to a

castout, caching-allowed push, or snoop copy -back.

« If the address hits in the cache, the cache block is placed in the
invalid (1) state (killing modified data that may have been in the
block).

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Read 01010 A read operation is used by most single-beat and burst load

transactions on the bus.

For single-beat, caching-inhibited read transaction:

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the exclusive (E)
state.

« If the address misses in the cache, no action is taken.

For burst read transactions:

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (1) state.

« |If the address misses in the cache, no action is taken.
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Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] MPC750 Response
Read-with-intent-to-mo 01110 A RWITM operation is issued to acquire exclusive use of a memory
dify (RWITM) location for the purpose of modifying it.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (1) state.

« If the address misses in the cache, no action is taken.

Write-with-flush-atomic 10010 Write-with-flush-atomic operations occur after the processor issues

an stwcx. instruction.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (1) state.

« If the address misses in the cache, no action is taken.

Any reservation is canceled, regardless of the address.

Reserved 10110 —

Read-atomic 11010 Read atomic operations appear on the bus in response to lwarx
instructions and generate the same snooping responses as read
operations.

Read-with-intent-to-mo 11110 The RWITM atomic operations appear on the bus in response to

dify-atomic stwcx. instructions and generate the same snooping responses as
RWITM operations.

Reserved 00011 —

Reserved 00111 —

Read-with-no-intent-to- | 01011 A RWNITC operation is issued to acquire exclusive use of a memory

cache (RWNITC) location with no intention of modifying the location.

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.
« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the exclusive (E)
state.
« If the address misses in the cache, no action is taken.
Reserved 01111 —
Reserved 1XX11 —

3.6.5 Transfer Attributes
In addition to the address and transfer type signals, the MPC750 supports the transfer

attribute signals TBST, TSIZ[0-2], WT, CI, and GBL. The TBST and TSIZ[0-2] signals
indicate the data transfer size for the bus transaction.

The WT signal reflects the write-through status (the complement of the W hit) for the
transaction as determined by the MMU address translation during write operations. WT is
asserted for burst writes due to dcbf (flush) and dcbst (clean) instructions, and for snoop
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pushes; WT is negated for ecowx transactions. Since the write-through status is not
meaningful for reads, the MPC750 uses the WT signal during read transactions to indicate
that the transaction is an instruction fetch (WT negated), or not an instruction fetch (WT
asserted).

The CI signal reflects the caching-inhibited/allowed status (the complement of the | bit) of
the transaction as determined by the MMU address tranglation even if the L1 caches are
disabled or locked. CI is always asserted for eciwx/ecowx bus transactions independent of
the address tranglation.

The GBL signal reflectsthe memory coherency requirements (the complement of the M bit)
of the transaction as determined by the MMU address translation. Castout and snoop
copy-back operations (TT[0—4] = 00110) are generally marked as nonglobal (GBL
negated) and are not snooped (except for reservation monitoring). Other masters, however,
may perform DMA write operations with this encoding but marked global (GBL asserted)
and thus must be snooped.

Table 3-6 summarizes the address and transfer attribute information presented on the bus
by the MPC750 for various master or snoop-related transactions.

Table 3-6. Address/Transfer Attribute Summary

Bus Transaction A[0-31] TT[0-4] | TBST | TSIZ[0-2] BL | WT ClI

Instruction fetch operations:

Burst (caching-allowed) PA[0-28] || Ob000 01110 0 010 - M 1 1*
Single-beat read PA[0-28] || Ob000 01010 1 000 =M 1 Bl
(caching-inhibited or cache

disabled)

Data cache operations:

Cache block fill (due to load or PA[0-28] || Ob000 Al1110 0 010 =M 0 1*
store miss)

Castout CA[0-26] || 0b00000 | 00110 0 010 1 1 1*
(normal replacement)

Push (cache block push due to PA[0-26] || Ob00000 [ 00110 0 010 1 0 1*
dcbf/dcbst)

Snoop copyback CA[0-26] || Ob00000| 00110 0 010 1 0 1*

Data cache bypass operations:

Single-beat read PA[0-31] A1010 1 SSS M 0 =l
(caching-inhibited or cache

disabled)

Single-beat write PA[0-31] 00010 1 SSS =M =W =

(caching-inhibited, write-through,
or cache disabled)

Special instructions:
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Table 3-6. Address/Transfer Attribute Summary (Continued)

Bus Transaction A[0-31] TT[0-4] | TBST | TSIZ[0-2] BL | WT CI
dcbz (addr-only) PA[0-28] || 0b000 01100 0 010 0* 0 1*
dcbi (if HIDO[ABE] = 1, PA[0-26] || 0bO0000 [ 01100 0 010 -M 0 1*
addr-only)
dcbf (if HIDO[ABE] = 1, PA[0-26] || 0bO0000 [ 00100 0 010 -M 0 1*
addr-only)
dcbst (if HIDO[ABE] = 1, PA[0-26] || 0bO0000 [ 00000 0 010 -M 0 1*
addr-only)
sync (if HIDO[ABE] = 1, 0x0000_0000 01000 0 010 0 0 0
addr-only)
eieio (if HIDO[ABE] = 1, 0x0000_0000 10000 0 010 0 0 0
addr-only)
stwcx. (always single-beat write) ||PA[0—29] || 0b00 10010 1 100 -M =W =
eciwx PA[0-29] || Ob0O 11100 EAR[28-31] 1 0 0
ecowx PA[0-29] || Ob0O 10100 EAR[28-31] 1 1 0

Notes:

PA = Physical address, CA = Cache address.

W,I,M = WIM state from address translation; - = complement; 0*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HIDO[IFEM].

A = Atomic; high if lwarx, low otherwise

S = Transfer size

Special instructions listed may not generate bus transactions depending on cache state.

3.7 Bus Interface

The bus interface buffers bus requests from the instruction and data caches, and executes
the requests per the 60x bus protocol. It includes address register queues, prioritizing logic,
and bus control logic. The bus interface also captures snoop addresses for snooping in the
cache and in the address register queues, snoops for reservations, and holds the touch load
address for the cache. All data storage for the address register buffers (load and store data
buffers) are located in the cache section. The data buffers are considered temporary storage
for the cache and not part of the bus interface.
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The general functions and features of the bus interface are as follows:

Seven address register buffers that include the following:
— Instruction cache load address buffer
— Data cache load address buffer

— Two data cache castout/store address buffers (associated data block buffers
located in cache)

— Datacache snoop copy-back address buffer (associated data block buffer ocated
in cache)

— Reservation address buffer for snoop monitoring

Pipeline collision detection for data cache buffers

Reservation address snooping for lwar x/stwcex. instructions

One-level address pipelining

Load ahead of store capability

A conceptual block diagram of the bus interface is shown in Figure 3-7. The address
register queues in the figure hold transaction requests that the bus interface may issue on
the bus independently of the other regquests. The bus interface may have up to two
transactions operating on the bus at any given time through the use of address pipelining.

I-Cache

Y

I —
D-Cache
-
. Y Y Y |
BIU _ I-Cache D-Cache D-Cache D-Cache D-Cache
Control [T LD Addr LD Addr CST/ST Addr 0| | CST/ST Addr 1 SNP Addr

Snoop

Control Addr Addr Data Data
Y Y Yy v

L2 or System Bus

Figure 3-7. Bus Interface Address Buffers

For additional information about the MPC750 bus interface and the bus protocols, refer to
Chapter 8, “ System Interface Operation.”
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3.8 MEI State Transactions

Table 3-7 shows MEI state transitions for various operations. Bus operations are described

in Table 3-5.
Table 3-7. MEI State Transitions
Current Next
Operation Oc:r(:;ii)n sBl:15(; WIM Cache Cache Cache Actions o Srl;ion
P y State State P
Load Read No X0x | Same 1 Cast out of modified Write-with-kill
(T=0) block (as required)
2 Pass four-beat read Read
to memory queue
Load Read No X0x E.M Same Read data from cache —
(T=0)
Load (T = 0) Read No x1x | Same | Passsingle-beatreadto | Read
memory queue
Load (T = 0) Read No x1x E | CRTRY read —
Load (T = 0) Read No x1x M | CRTRY read (push Write-with-kill
sector to write queue)
Iwarx Read Acts like other reads but bus operation uses special encoding
Store Write No 00x | Same | Cast out of modified Write-with-kill
(T=0) block (if necessary)
Pass RWITM to RWITM
memory queue
Store Write No 00x E.M M Write data to cache —
(T=0)
Store # stwcx. Write No 10x | Same Pass single-beat write Write-with-flus
(T=0) to memory queue h
Store # stwcx. Write No 10x E Same | Write data to cache —
T=0
( ) Pass single-beat write Write-with-flus
to memory queue h
Store # stwcx. Write No 10x M Same CRTRY write —
T=0
( ) Push block to write Write-with-kill
queue
Store (T = 0) Write No X1x | Same Pass single-beat write Write-with-flus
or stwcx. to memory queue h
(WIM = 10x)
Store (T =0) Write No Xx1x E | CRTRY write —
or stwcx.
(WIM = 10x)
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Table 3-7. MEI State Transitions (Continued)

Cache Bus Current Next Bus
Operation Overation | sync WIM Cache Cache Cache Actions Oberation
p Y State State p
Store (T =0) Write No Xx1x M | CRTRY write —
or stwcx. - - ——
(WIM = 10x) Push block to write Write-with-Kkill
queue
stwex. Conditional | If the reserved bit is set, this operation is like other writes except the bus operation
write uses a special encoding.
dcbf Datacache | No XXX LE Same | CRTRY dcbf —
block flush
Pass flush Flush
Same | State change only —
dcbf Datacache | No XXX M | Push block to write Write-with-kill
block flush queue
dcbst Datacache | No XXX LE Same | CRTRY dcbst —
block store
Pass clean Clean
Same Same No action —
dcbst Datacache | No XXX M E Push block to write Write-with-kill
block store queue
dcbz Datacache | No x1x X X Alignment trap —
block setto
zero
dcbz Datacache | No 10x X X Alignment trap —
block set to
zero
dcbz Datacache | Yes 00x | Same CRTRY dcbz —
block set to — - —
zero Cast out of modified Write-with-kill
block
Pass kill Kill
Same Clear block —
dcbz Datacache | No 00x E.M Clear block —
block set to
zero
dcbt Datacache | No x1x | Same Pass single-beatreadto | Read
block touch memory queue
dcbt Datacache | No x1x E | CRTRY read —
block touch
dcbt Datacache | No x1x M | CRTRY read —
block touch - - ——
Push block to write Write-with-kill

queue
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Table 3-7. MEI State Transitions (Continued)

Cache Bus Current Next Bus
Operation Overation | sync WIM Cache Cache Cache Actions Oberation
P Y State State P
dcbt Datacache | No X0x | Same | Cast out of modified Write-with-kill
block touch block (as required)
Pass four-beat read to Read
memory queue
dcbt Datacache | No X0x E.M Same No action —
block touch
Single-beat Reload No XXX | Same Forward data_in —
read dump 1
Four-beat read Reload No XXX | E Write data_in to cache —
(double-word-al | dump
igned)
Four-beat write | Reload No XXX | M Write data_in to cache —
(double-word-al | dump
igned)
E—l Snoop No XXX E | State change only —
write or kill (committed)
M1 Snoop No XXX M | State change only —
kill (committed)
Push Snoop No XXX M | Conditionally push Write-with-kill
M-I flush
Push Snoop No XXX M E Conditionally push Write-with-kill
M- E clean
tibie TLB No XXX X X CRTRY TLBI —
invalidate
Pass TLBI —
No action —
sync Synchroni- | No XXX X X CRTRY sync —
zation
Pass sync —
No action —

Note that single-beat writes are not snooped in the write queue.
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Chapter 4
Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to asinterruptsin the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state asa
result of unusual conditions arising in the execution of instructions and from external
signals, bus errors, or various internal conditions. When exceptions occur, information
about the state of the processor is saved to certain registers and the processor begins
execution at an address (exception vector) predetermined for each exception. Processing of
exceptions begins in supervisor mode.

Although multiple exception conditions can map to asingle exception vector, often amore
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Also, software can explicitly enable or disable some exception conditions.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentidly.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until al instructions currently in the execute stage successfully
complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored
in the machine status save/restore registers, SRRO and SRR1, soon after the exception is
taken to prevent this information from being lost due to another exception being taken.
Because exceptions can occur while an exception handler routine is executing, multiple
exceptions can become nested. It is up to the exception handler to save the necessary state
information if control isto return to the excepting program.
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In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees that the machine state is recoverable and processing can resume
without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an
exception isidentified by the processor.
Taken An exception is said to be taken when control of instruction

execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
specification).

Note that the PowerPC architecture documentation refersto exceptions asinterrupts. In this
book, theterm ‘interrupt’ isreserved to refer to asynchronous exceptions and sometimesto
the event that causes the exception. Also, the PowerPC architecture uses the word
‘exception’ to refer to |EEE-defined floating-point exception conditions that may cause a
program exception to be taken; see Section 4.5.7, “Program Exception (0x00700).” The
occurrence of these |EEE exceptions may not cause an exception to be taken. | EEE-defined
exceptions are referred to as | EEE fl oating-point exceptions or floating-point exceptions.

4.1 MPC750 Microprocessor Exceptions

As specified by the PowerPC architecture, exceptions can be either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events
external to the processor’s execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt, thermal management, and performance monitor exception
are defined, at least to some extent, by the PowerPC architecture.

Table 4-1. MPC750 Microprocessor Exception Classifications

Synchronous/Asynchronous | Precise/lmprecise Exception Types
Asynchronous, nonmaskable [ Imprecise Machine check, system reset
Asynchronous, maskable Precise External interrupt, decrementer, system management interrupt,

performance monitor interrupt, thermal management interrupt

Synchronous Precise Instruction-caused exceptions
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These classifications are discussed in greater detail in Section 4.2, “ Exception Recognition
and Priorities” For a better understanding of how the MPC750 implements precise
exceptions, see Chapter 6, “Instruction Timing.” Exceptions implemented in the MPC750,
and conditions that cause them, arelisted in Table 4-2.

Table 4-2. Exceptions and Conditions

Exception Type

Vector Offset

Causing Conditions

(hex)
Reserved 00000 —
System reset 00100 Assertion of either HRESET or SRESET or at power-on reset
Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an
address, data, or L2 bus parity error. MSR[ME] must be set.
DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.
ISI 00400 As defined by the PowerPC architecture
External interrupt 00500 MSR[EE] = 1 and INT is asserted
Alignment 00600 « A floating-point load/store, stmw, stwcx., Imw, lwarx, eciwx, or ecowx
instruction operand is not word-aligned.
« A multiple/string load/store operation is attempted in little-endian mode
« An operand of a dcbz instruction is on a page that is write-through or
cache-inhibited for a virtual mode access.
« An attempt to execute a dcbz instruction occurs when the cache is
disabled.
Program 00700 As defined by the PowerPC architecture
Floating-point 00800 As defined by the PowerPC architecture
unavailable
Decrementer 00900 As defined by the PowerPC architecture, when the most-significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1
Reserved 00AO0-00BFF | —
System call 00C00 Execution of the System Call (sc) instruction
Trace 00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
MPC750 differs from the OEA by not taking this exception on an isync.
Reserved 00E00 The MPC750 does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.
Reserved 00E10-00EFF [ —
Performance monitor | 00F00 The limit specified in PMCn is met and MMCRO[ENINT] = 1 (MPC750-specific)
Instruction address 01300 IABR[0—-29] matches EA[0-29] of the next instruction to complete, IABR[TE]
breakpoint matches MSR[IR], and IABR[BE] = 1 (MPC750-specific)
System management | 01400 MSR[EE] = 1 and SMI is asserted (MPC750-specific)

interrupt
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Table 4-2. Exceptions and Conditions (Continued)

Exception Type Vector Offset Causing Conditions
(hex)
Reserved 01500-016FF |[—
Thermal 01700 Thermal management is enabled, junction temperature exceeds the threshold
management interrupt specified in THRM1 or THRM2, and MSR[EE] = 1 (MPC750-specific)
Reserved 01800-02FFF |[—

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—

system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed and do not wait for
completion of any precise exception handling.

Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken. Note that the MPC750 does not implement an exception of this type.

Maskabl e asynchronous exceptions (external, decrementer, thermal management,
system management, performance monitor, and interrupt exceptions) are delayed
until higher priority exceptions are taken.

The following list of exception categories describes how the MPC750 handles exceptions
up to the point of signaling the appropriate interrupt to occur. Note that a recoverable state
isreached if the completed store queue is empty (drained, not canceled) and any instruction
that is next in program order and has been signaled to complete has completed. If
MSR[RI] =0, the MPC750 is in a nonrecoverable state. Also, instruction completion is
defined as updating all architectural registers associated with that instruction, and then
removing that instruction from the completion buffer.

Exceptions caused by asynchronous events (interrupts). These exceptionsarefurther
distinguished by whether they are maskable and recoverable.

— Asynchronous, nonmaskable, nonrecoverable
System reset for assertion of HRESET—Has highest priority and is taken

immediately regardless of other pending exceptions or recoverability. (Includes
power-on reset)
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— Asynchronous, maskable, nonrecoverable

Machine check exception—Has priority over any other pending exception
except system reset for assertion of HRESET. Taken immediately regardless of
recoverability.

— Asynchronous, nonmaskable, recoverable

System reset for SRESET—Has priority over any other pending exception
except system reset for HRESET (or power-on reset), or machine check. Taken
immediately when arecoverable state is reached.

— Asynchronous, maskable, recoverable

System management, performance monitor, thermal management, external, and
decrementer interrupts—Before handling this type of exception, the next
instruction in program order must complete. If that instruction causes another
type of exception, that exception is taken and the asynchronous, maskable
recoverable exception remains pending, until the instruction compl etes. Further
instruction completion is halted. The asynchronous, maskable recoverable
exception is taken when arecoverable state is reached.

¢ Instruction-related exceptions. These exceptions are further organized into the point
in instruction processing in which they generate an exception.

— Instruction fetch

ISl exceptions—Once this type of exception is detected, dispatching stops and
the current instruction stream is allowed to drain out of the machine. If
completing any of the instructionsin this stream causes an exception, that
exception is taken and the instruction fetch exception is discarded (but may be
encountered again when instruction processing resumes). Otherwise, once all
pending instructions have executed and arecoverable state is reached, the | SI
exception is taken.

— Instruction dispatch/execution

Program, DS, alignment, floating-point unavail able, system call, and instruction
address breakpoint—This type of exception is determined during dispatch or
execution of an instruction. The exception remains pending until all instructions
before the exception-causing instruction in program order complete. The
exception is then taken without compl eting the exception-causing instruction. If
compl eting these previousinstructions causes an exception, that exception takes
priority over the pending instruction dispatch/execution exception, whichisthen
discarded (but may be encountered again when instruction processing resumes).

— Post-instruction execution

Trace—Trace exceptions are generated following execution and completion of
an instruction while trace modeis enabled. If executing the instruction produces
conditions for another type of exception, that exception is taken and the post-
instruction exception is forgotten for that instruction.
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Note that these exception classifications correspond to how exceptions are prioritized, as
described in Table 4-3.

Table 4-3. MPC750 Exception Priorities

Priority Exception Cause
Asynchronous Exceptions (Interrupts)
0 System reset Power on reset, assertion of HRESET and TRST (hard reset)
1 Machine check Any enabled machine check condition (L1 address or data parity error, L2 data
parity error, assertion of TEA or MCP)
2 System reset Assertion of SRESET (soft reset)
3 System management [ Assertion of SMI
4 External interrupt Assertion of INT
5 Performance monitor | Any programmer-specified performance monitor condition
6 Decrementer Decrementer passes through zero
7 Thermal management [ Any programmer-specified thermal management condition
Instruction Fetch Exceptions
0 ISI Any ISI exception condition
Instruction Dispatch/Execution Exceptions
0 Instruction address Any instruction address breakpoint exception condition
breakpoint
1 Program Occurrence of an illegal instruction, privileged instruction, or trap exception
condition. Note that floating-point enabled program exceptions have lower priority.
2 System call System Call (sc) instruction
3 Floating-point Any floating-point unavailable exception condition
unavailable
4 Program A floating-point enabled exception condition (lowest-priority program exception)
5 DSl DSl exception due to eciwx, ecowx with EAR[E] = 0 (DSISR[11]). Lower priority
DSI exception conditions are shown below.
6 Alignment Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned
2 Imw, stmw, lwarx, stwcx. not word-aligned
3 eciwx or ecowx not word-aligned
4 Multiple or string access with MSR[LE] set
5 dcbz to write-through or cache-inhibited page or cache is disabled
7 DSl BAT page protection violation
8 DSl Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or
an access crosses from a T = 0 segment to one where T = 1 (DSISR[5])
9 DSl TLB page protection violation
10 DSl DABR address match
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Table 4-3. MPC750 Exception Priorities (Continued)

Priority Exception Cause

Post-Instruction Execution Exceptions

11 |Trace MSR[SE] = 1 (or MSR[BE] = 1 for branches)

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As aresult, state information for an interrupted exception
may belost; therefore, these exceptions are typically nonrecoverable. An exception may not
be taken immediately when it is recognized.

4.3 Exception Processing

When an exception is taken, the processor uses SRRO and SRR1 to save the contents of the
M SR for the current context and to identify whereinstruction execution should resume after
the exception is handled.

When an exception occurs, the address saved in SRRO hel ps determine where instruction
processing should resume when the exception handler returns control to the interrupted
process. Depending on the exception, thismay bethe addressin SRRO or at the next address
in the program flow. All instructions in the program flow preceding this one will have
compl eted execution and no subsequent instruction will have begun execution. Thismay be
the address of the instruction that caused the exception or the next one (as in the case of a
system call, trace, or trap exception). The SRRO register is shown in Figure 4-1.

SRRO (Holds EA for Instruction in Interrupted Program Flow)

Figure 4-1. Machine Status Save/Restore Register 0 (SRRO)

SRR1 is used to save machine status (selected M SR bits and possibly other status bits as
well) on exceptions and to restore those values when an rfi instruction is executed. SRR1
isshownin Figure 4-2.

| Exception-Specific Information and MSR Bit Values

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

For most exceptions, bits 2—4 and 10-12 of SRR1 are loaded with exception-specific
information and M SR[5-9, 16-31] are placed into the corresponding bit positions of SRR1.

The MPC750's MSR is shown in Figure 4-3.
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|:| Reserved
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Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-4.

Table 4-4. MSR Bit Settings

Bit(s) | Name Description
0 — Reserved. Full function.
1-4 — Reserved. Partial function.
5-9 — Reserved. Full function.
10-12 |— Reserved. Partial function.
13 POW [ Power management enable

0 Power management disabled (normal operation mode).

1  Power management enabled (reduced power mode).

Power management functions are implementation-dependent. See Chapter 10, “Power and Thermal

Management.”

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select the
endian mode for the context established by the exception.

16 EE External interrupt enable
0  The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1  The processor can only execute user-level instructions.

18 FP Floating-point available

0  The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores, and moves.

1 The processor can execute floating-point instructions and can take floating-point enabled
program exceptions.

19 ME Machine check enable

0  Machine check exceptions are disabled.

1  Machine check exceptions are enabled.

20 FEO IEEE floating-point exception mode 0 (see Table 4-5).
21 SE Single-step trace enable

0  The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of every
instruction except rfi, isync, and sc. Successful execution means that the instruction caused
no other exception.
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Table 4-4. MSR Bit Settings (Continued)

Bit(s) | Name Description
22 BE Branch trace enable
0  The processor executes branch instructions normally.
1 The processor generates a branch type trace exception when a branch instruction executes
successfully.
23 FE1 |IEEE floating-point exception mode 1 (see Table 4-5).
24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.
25 P Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or Os. In the following description, nnnnn is the offset of the exception.
0  Exceptions are vectored to the physical address 0x000n_nnnn.
1  Exceptions are vectored to the physical address OxFFFn_nnnn.
26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, “Memory Management.”
27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, “Memory Management.”
28 — Reserved. Full function®
29 PM Performance monitor marked mode
0  Process is not a marked process.
1 Process is a marked process.
MPC750-specific; defined as reserved by the PowerPC architecture. For more information about
the performance monitor, see Section 4.5.13, “Performance Monitor Interrupt (0xO0F00).”
30 RI Indicates whether system reset or machine check exception is recoverable.
0  Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.
31 LE Little-endian mode enable
0  The processor runs in big-endian mode.
1  The processor runs in little-endian mode.
Note:

LEull function reserved bits are saved in SRR1 when an exception occurs; partial function reserved
bits are not saved.

The |IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
al. As shown in Table 4-5, if either FEO or FE1 are set, theMPC750 treats exceptions as
precise. MSR bits are guaranteed to be written to SRR1 when the first instruction of the
exception handler is encountered. For further details, see Chapter 6, “Exceptions,” of The

Programming Environments Manual.
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Table 4-5. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode

0 0 |Floating-point exceptions disabled

0 1 |Imprecise nonrecoverable. For this setting, the MPC750 operates in floating-point precise mode.

1 0 [Imprecise recoverable. For this setting, the MPC750 operates in floating-point precise mode.

1 1 |Floating-point precise mode

4.3.1 Enabling and Disabling Exceptions

When acondition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

* |EEE floating-point enabled exceptions (atype of program exception) are ignored
when both MSR[FEO] and MSR[FE1] are cleared. If either bit is set, all IEEE
enabled floating-point exceptions are taken and cause a program exception.

¢ Asynchronous, maskable exceptions (such as the external and decrementer
interrupts) are enabled by setting M SR[EE]. When MSR[EE] = 0, recognition of
these exception conditionsis delayed. MSR[EE] is cleared automatically when an
exception is taken to delay recognition of conditions causing those exceptions.

* A machine check exception can occur only if the machine check enable bit,
MSR[ME], isset. If MSR[ME] iscleared, the processor goesdirectly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bitsin the HIDO register, which is
described in Table 4-8.

e System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. SRROisloaded with an instruction address that depends on the type of exception.
See theindividua exception description for details about how this register is used
for specific exceptions.

2. SRR1[1-4, 10-15] are loaded with information specific to the exception type.

3. SRR1[5-9, 16-31] are loaded with a copy of the corresponding M SR bits.
Depending on the implementation, reserved bits may not be copied.
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4, The MSR is set as described in Table 4-4. The new values take effect as the first

instruction of the exception-handler routine is fetched.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address trandlation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new M SR value, at alocation
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IPiscleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IPisset, exceptions
are vectored to the physical address OxFFFn_nnnn. For amachine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See

Section 4.5.2, “Machine Check Exception (0x00200).”

4.3.3 Setting MSR[RI]
An operating system may handle MSR[RI] asfollows:

In the machine check and system reset exceptions—If MSR[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

In each exception handler—Clear MSR[RI], set SRRO and SRR1 appropriately, and
then execute rfi.

Note that the RI bit being set indicates that, with respect to the processor, enough
processor state data remains valid for the processor to continue, but it does not
guarantee that the interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously-issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

All previousinstructions have completed to a point where they can no longer cause
an exception. If apreviousinstruction causes adirect-storeinterface error exception,
the results must be determined before this instruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address trangl ation) under which they were issued.

The rfi instruction copies SRR1 hits back into the MSR.

Instructions fetched after this instruction execute in the context established by this
instruction.

Program execution resumes at the instruction indicated by SRRO
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For acompl ete description of context synchronization, refer to Chapter 6, “ Exceptions,” of
The Programming Environments Manual .

4.4 Process Switching
Thefollowinginstructionsare useful for restoring proper context during process switching:

« Thesyncinstruction orders the effects of instruction execution. All instructions
previously initiated appear to have compl eted before the sync instruction compl etes,
and no subsequent instructions appear to be initiated until the sync instruction
completes. For an example showing use of sync, see Chapter 2, “ PowerPC Register
Set,” of The Programming Environments Manual.

¢ Theisyncinstruction waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation, and
protection) established by the previous instructions.

¢ The stwcx. instruction clears any outstanding reservations, ensuring that an lwar x
instruction in an old process is not paired with an stwcex. instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.3, “Setting
MSR[RI].”

4.5 Exception Definitions

Table 4-6 shows all the types of exceptions that can occur with the MPC750 and MSR
settings when the processor goes into supervisor mode due to an exception. Depending on
the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-6. MSR Setting Due to Exception

MSR Bit
Exception Type

POW | ILE |EE|PR|FP|ME|FEO|SE|BE|FE1| IP |IR|DR|[PM|RI| LE
System reset 0 — 0 0 0| — 0 0 0 oOo|—|O0f| O 0| OfILE
Machine check 0 — | 0 ofo 0 0 0] 0 0O|—]|0]O 0 [0|ILE
DSI 0 — 0 0 0| — 0 0 0 0 — 10| O 0 | OfILE
ISI 0 — 0 0 0| — 0 0 0 0 — 10| O 0 | OfILE
External interrupt 0 — 10 0]0|— 0 0 0 oOo|—]0fO 0] 0|ILE
Alignment 0 — 0 0 0| — 0 0 0 0 — 10| O 0 | OfILE
Program 0 — 0 0 0| — 0 0 0 0 — 10| O 0| OfILE
Floating-point unavailable 0 — 10 0]0|— 0 0 0 oOo|—]0fO 0|0 |ILE
Decrementer interrupt 0 — 0 0 0| — 0 0 0 O|—|O0f|O 0 | OfILE
System call 0 — 0 0 0| — 0 0 0 0 — 10| O 0 | OfILE
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Table 4-6. MSR Setting Due to Exception (Continued)

MSR Bit
Exception Type
POW | ILE |EE|PR|FP|ME|FEO|SE|BE|FE1| IP |IR|DR|PM|RI| LE
Trace exception 0 — 10 0]0|— 0 0 0 Oo|—]0fO 0|0 |ILE
System management 0 — 0 0 0| — 0 0 0 oOo|—|O0fO 0 | OfILE
Performance monitor 0 — | 0 ofo0|— 0 0 0 0o|—]|O0]O 0 [O0|ILE
Thermal management 0 — 10 0]0|— 0 0 0 oOo|—]0fO 0|0 |ILE

0 Bit is cleared.
ILE

Bit is copied from the MSRJ[ILE].
Bit is not altered

Reserved bits are read as if written as 0.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn
isthe vector offset); if IPis set, exceptions are vectored to physical address OxFFFn_nnnn.
Table 4-2 shows the exception vector offset of the first instruction of the exception handler

routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The MPC750 implements the system reset exception as defined in the PowerPC
architecture (OEA). The system reset exception is a nonmaskable, asynchronous exception
signaled to the processor through the assertion of system-defined signals. In the MPC750,
the exception is signaled by the assertion of either the SRESET or HRESET inputs,
described more fully in Chapter 7, “ Signal Descriptions.”

Table 4-7 lists register settings when a system reset exception is taken.

Table 4-7. System Reset Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.
SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9  Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits
Note that if the processor state is corrupted to the extent that execution cannot resume reliably,
MSRI[RI] (SRR1[30]) is cleared.
MSR POW 0 FP 0 BE O DR O
ILE — ME — FE1 0 PM 0
EE O FEO O IP — RI 0
PR O SE O IR 0 LE  Setto value of ILE
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If SRESET is asserted, the processor is first put in a recoverable state. To do this, the
MPC750 allows any instruction at the point of completion to either complete or take an
exception, blocks completion of any following instructions and allows the completion
gueue to drain. The state before the exception occurred is then saved as specified in the
PowerPC architecture and instruction fetching begins at the system reset interrupt vector
offset, 0x00100. The vector address on a soft reset depends on the setting of MSR[IP]
(either 0x0000_0100 or OXFFFO_0100). Soft resets are third in priority, after hard reset and
machine check. This exception is recoverable provided attaining a recoverable state does
not generate a machine check.

SRESET is an edge-sensitive signal that can be asserted and deasserted asynchronously,
provided the minimum pulse width specified in the hardware specifications is met.
Asserting SRESET causes the MPC750 to take a system reset exception. This exception
modifies the MSR, SRRO, and SRR1, as described in The Programming Environments
Manual. Unlike hard reset, soft reset does not directly affect the states of output signals.
Attemptsto use SRESET during a hard reset sequence or while the JTAG logic is non-idle
cause unpredictable results.

A hard reset isinitiated by asserting HRESET. Hard reset is used primarily for power-on
reset (POR) (in which case TRST must also be asserted), but can also be used to restart a
running processor. The HRESET signal must be asserted during power up and must remain
asserted for a period that allows the PLL to achieve lock and the internal logic to be reset.
This period is specified in the hardware specifications. The MPC750 internal state after the
hard reset interval isdefined in Table 2-19. If HRESET is asserted for |ess than this amount
of time, the results are not predictable. If HRESET is asserted during normal operation, all
operations cease and the machine state is lost.

The MPC750 implements HIDO[NHR], which hel ps software distinguish a hard reset from
a soft reset. Because this bit is cleared by a hard reset, but not by a soft reset, software can
set this bit after a hard reset and tell whether a subsequent reset is a hard or soft reset by
examining whether this bit is still set. See Section 2.1.2.2, “Hardware | mplementation-
Dependent Register 0.”

4.5.2 Machine Check Exception (0x00200)

The MPC750 implements the machine check exception as defined in the PowerPC
architecture (OEA). It conditionally initiates a machine check exception after an address or
data parity error occurred on the bus or in either the L1 or L2 cache, after receiving a
qualified transfer error acknowledge (TEA) indication on the MPC750 bus, or after the
machine check interrupt (MCP) signal had been asserted. As defined in the OEA, the
exceptionisnot taken if MSR[ME] is cleared, in which case the processor enters checkstop
state.
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Certain machine check conditions can be enabled and disabled using HIDO bits, as
described in Table 4-8.

Table 4-8. HIDO Machine Check Enable Bits

Bit | Name Function

0 EMCP | Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.

1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.

1 DBP Enable/disable 60x bus address and data parity generation.

0 If address or data parity is not used by the system and the respective parity checking is disabled
(HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are disabled, do not require pull-up
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA Enable/disable 60x bus address parity checking.

0 Prevents address parity checking.

1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking

0 Parity checking is disabled.

1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

15 |NHR | Not hard reset (software use only)
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, TEA is expected to be used by a memory controller to indicate that a
memory parity error or an uncorrectable memory ECC error has occurred. Note that the
resulting machine check exception is imprecise and unordered with respect to the
instruction that originated the bus operation.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and
handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0) or through an invalid trandlation. If adcbz instruction
introduces a block into the cache associated with anonexistent physical address, amachine
check exception can be delayed until an attempt is madeto store that block to main memory.
Not all PowerPC processors provide the same level of error checking. Checkstop sources
are implementati on-dependent.
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Machine check exceptions are enabled when MSR[ME] = 1; this is described in the
following section, Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).”
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.
Checkstop state is described in Section 4.5.2.2, “ Checkstop State (MSR[ME] = 0)."

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)

Machine check exceptions are enabled when MSR[ME] = 1. When a machine check
exception is taken, registers are updated as shown in Table 4-9.

Table 4-9. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis the MPC750 can set this to an EA of some instruction that was executing or about to
be executing when the machine check condition occurred.

SRR1 0-10 Cleared

11 Set when an L2 data cache parity error is detected, otherwise zero
12 Set when MCP signal is asserted, otherwise zero

13 Set when TEA signal is asserted, otherwise zero

14 Set when a data bus parity error is detected, otherwise zero

15 Set when an address bus parity error is detected, otherwise zero
16-31 MSR[16-31]

MSR POW 0 FP 0 BE 0 DR O
ILE — ME O FE1 O PM 0
EE O FEO O IP — RI 0
PR 0 SE 0 IR 0 LE  Setto value of ILE

Note that to handle another machine check exception, the exception handler should set MSR[ME] as soon
as it is practical after a machine check exception is taken. Otherwise, subsequent machine check excep-
tions cause the processor to enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the context that existed before the exception. If the condition that caused the
machine check does not otherwise prevent continued execution, MSR[ME] is set to allow
the processor to continue execution at the machine check exception vector address.
Typicaly, earlier processes cannot resume; however, operating systems can use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction fetching resumes at offset 0x00200
from the physical base address indicated by MSR[IF].

4.5.2.2 Checkstop State (MSR[ME] = 0)
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.

When a processor is in checkstop state, instruction processing is suspended and generally
cannot resume without the processor being reset. The contents of al latches are frozen
within two cycles upon entering checkstop state.
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4.5.3 DSI Exception (0x00300)

A DSl exception occurs when no higher priority exception exists and an error condition
related to a data memory access occurs. The DSI exception isimplemented as it is defined
in the PowerPC architecture (OEA). In case of a TLB miss for a load, store, or cache
operation, a DSI exception is taken if the resulting hardware table search causes a page
fault.

Onthe MPC750, aDSI exception istaken when aload or storeis attempted to adirect-store
segment (SR[T] = 1). In the MPC750, a floating-point load or store to a direct-store
segment causes a DS| exception rather than an alignment exception, as specified by the
PowerPC architecture.

The MPC750 also implements the data address breakpoint facility, which is defined as
optiona in the PowerPC architecture and is supported by the optional data address
breakpoint register (DABR). Although the architecture does not strictly prescribe how this
facility must be implemented, the MPC750 follows the recommendations provided by the
architecture and described in the Chapter 2, “Programming Model,” and Chapter 6
“Exceptions,” in The Programming Environments Manual.

4.5.4 ISI Exception (0x00400)
An ISI exception occurs when no higher priority exception exists and an attempt to fetch

the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA), and is taken for the following conditions:

¢ The effective address cannot be trand ated.

e Thefetch accessis to a no-execute segment (SR[N] = 1).
e Thefetch accessisto guarded storage and MSR[IR] = 1.
¢ Thefetch accessisto asegment for which SR[T] is set.
* Thefetch access violates memory protection.

When an ISl exception is taken, instruction fetching resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)

An externa interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). The INT signal is expected to remain asserted until the MPC750 takes the
external interrupt exception. If INT is negated early, recognition of the interrupt request is
not guaranteed. After the MPC750 begins execution of the external interrupt handler, the
system can safely negate the INT. When the MPC750 detects assertion of INT, it stops
dispatching and waits for all pending instructionsto complete. Thisalows any instructions
in progress that need to take an exception to do so before the external interrupt is taken.
After all instructions have vacated the completion buffer, the MPC750 takes the externa
interrupt exception as defined in the PowerPC architecture (OEA).
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An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When an external interrupt exception is taken, instruction fetching resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

4.5.6 Alignment Exception (0x00600)

The MPC750 implements the alignment exception as defined by the PowerPC architecture
(OEA). An aignment exception is initiated when any of the following occurs:

» Theoperand of afloating-point load or store is not word-aligned.

¢ Theoperand of Imw, stmw, lwarx, or stwcx. is not word-aligned.

¢ Theoperand of dcbz isin apage that is write-through or cache-inhibited.
« Anattempt is made to execute dcbz when the data cache is disabled.

¢ Aneciwx or ecowx is not word-aligned

* A multiple or string access is attempted with MSR[LE] set

Note that in the MPC750, a floating-point load or store to a direct-store segment causes a
DSl exception rather than an alignment exception, as specified by the PowerPC
architecture. For more information, see 4.5.3, “DSI Exception (0x00300).”

4.5.7 Program Exception (0x00700)

The MPC750 implements the program exception as it is defined by the PowerPC
architecture (OEA). A program exception occurs when no higher priority exception exists
and one or more of the exception conditions defined in the OEA occur.

The MPC750 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class. The MPC750 fully decodes the SPR field of
the instruction. If an undefined SPR is specified, a program exception is taken.

The UISA defines mtspr and mfspr with the record bit (Rc) set as causing a program
exception or giving a boundedly-undefined result. In the MPC750, the appropriate
condition register (CR) should be treated as undefined. Likewise, the PowerPC architecture
states that the Floating Compared Unordered (fcmpu) or Floating Compared Ordered
(fempo) instruction with the record bit set can either cause aprogram exception or provide
a boundedly-undefined result. In the MPC750, an the BF field in an instruction encoding
for these cases is considered undefined.

The MPC750 does not support either of the two floating-point imprecise modes supported
by the PowerPC architecture. Unless exceptions are disabled (MSR[FEQ] = MSR[FE1] =
0), dl floating-point exceptions are treated as precise.
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When a program exception is taken, instruction fetching resumes at offset 0x00700 from
the physical base address indicated by MSR[IP]. Chapter 6, “Exceptions,” in The
Programming Environments Manual describes register settings for this exception.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When afloating-point unavailable exception is taken, instruction fetching resumes at offset
0x00800 from the physical base address indicated by MSR[1P].

4.5.9 Decrementer Exception (0x00900)

The decrementer exception isimplemented in the MPC750 asiit is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the MPC750, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual .

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900
from the physical base address indicated by MSR[IF].

4.5.10 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. In the
MPC750, the system call exception is implemented as it is defined in the PowerPC
architecture. Register settings for this exception are described in Chapter 6, “ Exceptions,”
in The Programming Environments Manual.

When asystem call exception istaken, instruction fetching resumes at offset 0x00C00 from
the physical base address indicated by MSR[1P].

4.5.11 Trace Exception (0x00DO00)

The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently
completing instruction is a branch. Each instruction considered during trace mode
completes before a trace exception is taken. When a trace exception is taken, the values
written to SRR1 are implementation-specific; those values for the MPC750 are shown in
Table 4-10.
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Table 4-10. Trace Exception—SRR1 Settings

Register Setting
SRR1 0-2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5-9 Cleared

10 Set for Iswx or stswx, otherwise cleared

11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATS, SRs
12 Set for taken branch, otherwise cleared

13-15 Cleared

16-31 MSR[16-31]

I mplementation Note—The MPC750 processor diverges from the PowerPC architecture
in that it does not take trace exceptions on the isync instruction.

When a trace exception is taken, instruction fetching resumes as offset 0x0O0ODOO0 from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (OXO00EO0Q)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the MPC750.

4.5.13 Performance Monitor Interrupt (0OxO0F00)

The MPC750 microprocessor provides aperformance monitor facility to monitor and count
predefined events such as processor clocks, missesin either theinstruction cache or the data
cache, instructions dispatched to a particular execution unit, mispredicted branches, and
other occurrences. The count of such events can be used to trigger the performance monitor
exception. The performance monitor facility is not defined by the PowerPC architecture.

The performance monitor can be used for the following:

« Toincrease system performance with efficient software, especially ina
multi processing system. Memory hierarchy behavior must be monitored and studied
to develop algorithms that schedule tasks (and perhaps partition them) and that
structure and distribute data optimally.

e To help system developers bring up and debug their systems.

The performance monitor uses the following SPRs:

* The performance monitor counter registers (PMC1-PMC4) are used to record the
number of times a certain event has occurred. UPM C1-UPM C4 provide user-level
read access to these registers.

¢ Themonitor mode control registers (MMCRO-MMCRL1) are used to enable various
performance monitor interrupt functions. UMM CRO-UMMCRL provide user-level
read access to these registers.
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e The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. The USIA register provides user-level
read access to the SIA.

Table 4-11 lists register settings when a performance monitor interrupt exception is taken.

Table 4-11. Performance Monitor Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9  Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP 0 BE O DR 0
ILE — ME — FE1 O PM 0
EE O FEO O IP —_ RI 0
PR 0 SE O IR 0 LE  Setto value of ILE

As with other PowerPC exceptions, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (0xO0F00). The priority
of the performance monitor interrupt lies between the external interrupt and the
decrementer interrupt (see Table4-3). The contents of the SIA are described in
Section 2.1.2.4, “Performance Monitor Registers.” The performance monitor is described
in Chapter 11, “ Performance Monitor.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)
An instruction address breakpoint interrupt occurs when the following conditions are met:

e Theinstruction breakpoint address | ABR[0—29] matches EA[0-29] of the next
instruction to completein program order. Theinstruction that triggerstheinstruction
address breakpoint exception is not executed before the exception handler is
invoked.

¢ Thetrandation enable bit (IABR[TE]) matches MSR[IR].

e Thebreakpoint enable bit (IABR[BE]) is set. The address match is also reported to
the JTAG/COP block, which may subsequently generate a soft or hard reset. The

instruction tagged with the match does not compl ete before the breakpoint exception
istaken.
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Table 4-12 lists register settings when an instruction address breakpoint exception istaken.

Table 4-12. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9  Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP 0 BE O DR ©
ILE — ME — FE1 O PM 0
EE 0 FEO O IP —_ RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

The MPC750 requires that an mtspr to the IABR be followed by a context-synchronizing
instruction. The MPC750 cannot generate a breakpoint response for that context-
synchronizing instruction if the breakpoint is enabled by the mtspr (IABR) immediately
preceding it. The MPC750 also cannot block a breakpoint response on the context-
synchronizing instruction if the breakpoint was disabled by the mtspr (IABR) instruction
immediately preceding it. The format of the IABR register is shown in Section 2.1.2.1,
“Instruction Address Breakpoint Register (IABR).”

When an instruction address breakpoint exception is taken, instruction fetching resumes as
offset 0x01300 from the base address indicated by MSR[IP].

4.5.15 System Management Interrupt (0x01400)

The MPC750 implements a system management interrupt exception, which is not defined
by the PowerPC architecture. The system management exception is very similar to the
external interrupt exception and is particularly useful in implementing the nap mode. It has
priority over an externa interrupt (see Table 4-3), and it uses a different vector in the
exception table (offset 0x01400).
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Table 4-13 lists register settings when a system management interrupt exception is taken.

Table 4-13. System Management Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9  Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP 0 BE O DR ©
ILE — ME — FE1 O PM 0
EE 0 FEO O IP —_ RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

Like the external interrupt, a system management interrupt is signaled to the MPC750 by
the assertion of an input signal. The system management interrupt signal (SMI) is expected
to remain asserted until the interrupt is taken. If SMI is negated early, recognition of the
interrupt request is not guaranteed. After the MPC750 begins execution of the system
management interrupt handler, the system can safely negate SMI. After the assertion of
SMI is detected, the MPC750 stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When a system management interrupt exception is taken, instruction fetching resumes as
offset 0x01400 from the base address indicated by MSR[IP].
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4.5.16 Thermal Management Interrupt Exception (0x01700)

A thermal management interrupt is generated when the junction temperature crosses a
threshold programmed in either THRM1 or THRM2. The exception is enabled by the TIE
bit of either THRM 1 or THRM2, and can be masked by setting M SR[EE].

Table 4-14 lists register settings when athermal management interrupt exception is taken.

Table 4-14. Thermal Management Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9  Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP 0 BE O DR ©
ILE — ME — FE1 O PM 0
EE 0 FEO O IP —_ RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

The thermal management interrupt is similar to the system management and externa
interrupts. The MPC750 requires the next instruction in program order to complete or take
an exception, blocks completion of any following instructions, and allows the completed
store queue to drain. Any exceptions encountered in this process are taken first and the
thermal management interrupt exception is delayed until arecoverable halt is achieved, at
which point the MPC750 saves the machine state, as shown in Table 4-14. When athermal
management interrupt exception is taken, instruction fetching resumes as offset 0x01700
from the base address indicated by MSR[1P].

Chapter 10, “Power and Therma Management,” gives details about thermal management.
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Chapter 5
Memory Management

This chapter describes the MPC750 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to asreal addressesin the architecture specification) for memory accessesand 1/0
accesses (/O accesses are assumed to be memory-mapped). In addition, the MMU
provides access protection on a segment, block, or page basis. This chapter describes the
specific hardware used to implement the MMU model of the OEA in the MPC750. Refer
to Chapter 7, “Memory Management,” in The Programming Environments Manual for a
compl ete description of the conceptual model. Note that the MPC750 does not implement
the optional direct-store facility and it is not likely to be supported in future devices.

Two general types of memory accesses generated by PowerPC processors require address
trandation—instruction accesses and data accesses generated by load and store
instructions. Generally, the address trandation mechanism is defined in terms of the
segment descriptors and page tables PowerPC processors use to locate the
effective-to-physical address mapping for memory accesses. The segment information
transl ates the effective address to an interim virtual address, and the page table information
translates the interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the MPC750). In addition,
two trandation lookaside buffers (TLBs) are implemented on the MPC750 to keep
recently-used page addresstransl ations on-chip. Although the PowerPC OEA describes one
MMU (conceptually), the MPC750 hardware maintains separate TLBs and table search
resources for instruction and data accesses that can be performed independently (and
simultaneously). Therefore, the MPC750 is described as having two MMUs, one for
instruction accesses (IMMU) and one for data accesses (DMMU).

The block address trandation (BAT) mechanism is a software-controlled array that stores
the available block addresstranglations on-chip. BAT array entriesareimplemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the MPC750, they reside in the
instruction and data MM USs, respectively.
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The MMUSs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUSs.

5.1 MMU Overview

The MPC750 implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs, with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tablesin the generation of 32-bit physical addresses. PowerPC processors
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the MPC750 MMU implementation defined by the OEA are as follows:

e Support for real addressing mode—Effective-to-physical addresstranglation can be
disabled separately for data and instruction accesses.

« Block address trand ation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytesfrom the 32-hit effective address space into the physical memory space.
This can be used for translating |arge address ranges whose mappings do not change
frequently.

« Segmented address trand ation—T he 32-bit effective address is extended to a 52-hit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register file. This 52-bit virtual address space is divided into 4-K byte pages, each of
which can be mapped to a physical page.

The MPC750 also provides the following features that are not required by the PowerPC
architecture:

e Separate trandlation lookaside buffers (TLBs)—The 128-entry, two-way
set-associative ITLBs and DTLBs keep recently-used page address translations
on-chip.

¢ Table search operations performed in hardware—The 52-bit virtual addressis
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the trandation is not found inaTLB
(that is, aTLB miss occurs), the hardware performs atable search operation (using
a hashing function) to search for the PTE.

¢ TLB invalidation—The MPC750 implements the optional TLB Invalidate Entry
(tlbie) and TLB Synchronize (tIbsync) instructions, which can be used to invalidate
TLB entries. For more information on the tibie and tIbsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”
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Table 5-1 summarizes the MPC750 MMU features, including those defined by the
PowerPC architecture (OEA) for 32-bit processors and those specific to the MPC750.

Table 5-1. MMU Feature Summary

Feature Category

Architecturally
Defined/
MPC750-Specific

Feature

Address ranges

Architecturally defined

232 pytes of effective address

252 pytes of virtual address
232 pytes of physical address
Page size Architecturally defined 4 Kbytes
Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined

Range of 128 Kbyte—256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection

Architecturally defined

Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history

Architecturally defined

Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined

Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs

Architecturally defined

Instructions for maintaining TLBs (tlbie and tlbsync
instructions in MPC750)

MPC750-specific

128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors

Architecturally defined

Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

MPC750-specific

The MPC750 performs the table search operation in hardware.
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5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes aload, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is trandlated to a physical address according to
the procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

Figure5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs, hardware support for the automatic search of the page tables for
PTEs, and other hardware features (invisible to the system software) not shown.

The MPC750 maintains two on-chip TLBs with the following characteristics:

e 128 entries, two-way set associative (64 x 2), LRU replacement

¢ DataTLB supportsthe DMMU; instruction TLB supports the IMMU

e Hardware TLB update

« Hardware update of referenced (R) and changed (C) bitsin the trandation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of
atrangation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the MPC750 instruction and
data MMUSs, respectively. The instruction addresses shown in Figure 5-2 are generated by
the processor for sequential instruction fetches and addresses that correspond to a change
of program flow. Data addresses shown in Figure 5-3 are generated by load, store, and
cacheinstructions.

As shown in the figures, after an address is generated, the high-order bits of the effective
address, EA[0-19] (or a smaller set of address hits, EA[0-n], in the cases of blocks), are
trandlated into physical address bits PA[0-19]. The low-order address bits, A[20-31], are
untrandated and are therefore identical for both effective and physical addresses. After
tranglating the address, the MM Us pass the resulting 32-bit physical addressto the memory
subsystem.
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The MMUSs record whether the translation is for an instruction or data access, whether the
processor isin user or supervisor mode and, for data accesses, whether the accessis aload
or a store operation. The MMUSs use this information to appropriately direct the address
translation and to enforce the protection hierarchy programmed by the operating system.
Section 4.3, “Exception Processing,” describes the MSR, which controls some of the
critical functionality of the MMUs.

The figures show how address bits A[20-26] index into the on-chip instruction and data
caches to select a cache set. The remaining physical address bits are then compared with
the tag fields (comprised of bits PA[0-19]) of the two selected cache blocksto determine if
acache hit has occurred. In the case of a cache miss on the MPC750, the instruction or data
access is then forwarded to the L2 interface tags to check for an L2 cache hit. In case of a
miss (and in all cases of an on-chip cache miss on the MPC740) the access is forwarded to
the bus interface unit which initiates an external memory access.
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Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations
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Figure 5-2. MPC750 Microprocessor IMMU Block Diagram
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5.1.3 Address Translation Mechanisms
PowerPC processors support the following three types of address trandation:
* Page address trandlation—transl ates the page frame address for a 4-Kbyte page size

« Block addresstranslation—translates the block number for blocksthat rangein size
from 128 Kbytes to 256 Mbytes.

» Real addressing mode addresstransl ation—when addresstrand ation isdisabled, the
physical addressisidentical to the effective address.

Figure 5-4 shows the three address translation mechanisms provided by the MMUs. The
segment descriptors shown in the figure control the page address translation mechanism.
When an access uses page address trandlation, the appropriate segment descriptor is
required. In 32-bit implementations, the appropriate segment descriptor is selected from the
16 on-chip segment registers by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interface was present in the architecture only for compatibility with existing 1/0 devices
that used this interface. However, it is being removed from the architecture, and the
MPC750 does not support it. When an access is determined to be to the direct-store
interface space, the MPC750 takes a DSl exception if it is a data access (see
Section 4.5.3, “DSI Exception (0x00300)”), and takesan | S| exceptionif itisaninstruction
access (see Section 4.5.4, “1Sl Exception (0x00400)").

For memory accesses trandated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page residesin an
on-chip TLB and is available for quick access. However, if the page address trandlation
misses in the on-chip TLB, the MMU causes a search of the page tablesin memory (using
the virtual address information and a hashing function) to locate the required physica
address.

Because blocks are larger than pages, there are fewer upper-order effective address bits to
be trandated into physical address bits (more low-order address bits (at least 17) are
untrandated to form the offset into a block) for block address trandlation. Also, instead of
segment descriptorsand aTL B, block address translations use the on-chip BAT registersas
aBAT array. If an effective address matches the corresponding field of a BAT register, the
information in the BAT register is used to generate the physical address; in this case, the
results of the page trandlation (occurring in parallel) are ignored.
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Effective Address i
(MSR[IR] =0, or MSR[DR] = 0)
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| Physical Address | | Physical Address | | Physical Address

Figure 5-4. Address Translation Types

When the processor generates an access, and the corresponding address trandlation enable
bitin MSRiscleared, theresulting physical addressisidentical to the effective address and
al other trandation mechanisms are ignored. Instruction address translation and data
address translation are enabled by setting MSR[IR] and MSR[DR], respectively.
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5.1.4 Memory Protection Facilities

In addition to the trandation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

Table 5-2. Access Protection Options for Pages

User Read Supervisor Read .
. User Supervisor
Option Write Write
I-Fetch Data I-Fetch Data
Supervisor-only — — — v v v
Supervisor-only-no-execute — — — — v v
Supervisor-write-only v v — v v v
Supervisor-write-only-no-execute — v — — v v
Both (user/supervisor) v v v v v v
Both (user-/supervisor) no-execute — v v — v v
Both (user-/supervisor) read-only v v — v v —
Both (user/supervisor) — v — — v —
read-only-no-execute

v Access permitted
— Protection violation

The no-execute option provided in the segment register |ets the operating system program
determine whether instructions can be fetched from an area of memory. The remaining
options are enforced based on a combination of information in the segment descriptor and
the page table entry. Thus, the supervisor-only option alows only read and write operations
generated while the processor is operating in supervisor mode (M SR[PR] = 0) to accessthe
page. User accesses that map into a supervisor-only page cause an exception.

Finaly, afacility in theVEA and OEA allows pages or blocksto be designated as guarded,
preventing out-of-order accesses that may cause undesired side effects. For example, areas
of the memory map used to control 1/O devices can be marked as guarded so accesses do
not occur unless they are explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.
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5.1.5 Page History Information

The MMUSs of PowerPC processors also define referenced (R) and changed (C) bitsin the
page address translation mechanism that can be used as history information relevant to the
page. The operating system can use these bits to determine which areas of memory to write
back to disk when new pages must be alocated in main memory. While these bits are
initially programmed by the operating system into the page table, the architecture specifies
that they can be maintained either by the processor hardware (automatically) or by some
software-assist mechanism.

Implementation Note—When loading the TLB, the MPC750 checks the state of the
changed and referenced bits for the matched PTE. If the referenced bit is not set and the
table search operation isinitialy caused by aload operation or by an instruction fetch, the
MPC750 automatically setsthe referenced bit in the tranglation table. Similarly, if thetable
search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bitsin the translation table. In addition,
when the address trand ation of a store operation hitsin the DTLB, the MPC750 checksthe
state of the changed bit. If the bit is not already set, the hardware automatically updates the
DTLB and thetranslation table in memory to set the changed bit. For moreinformation, see
Section 5.4.1, “Page History Recording.”

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to trandate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data

tranglation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used

(physical address equals effective address) and the access continues to the memory

subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow the MMUs use in determining whether to select real addressing
mode, block address trandation, or the segment descriptor to select page address
trandation.
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Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Notethat if the BAT array search resultsin ahit, the accessis qualified with the appropriate
protection hits. If the access violates the protection mechanism, an exception (1Sl or DSI

exception) is generated.
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5.1.6.2 Page Address Translation Selection

If addresstranslation is enabled and the effective addressinformation does not match aBAT
array entry, the segment descriptor must belocated. When the segment descriptor islocated,
the T bit in the segment descriptor selects whether the translation is to a page or to a
direct-store segment as shown in Figure 5-6. For 32-bit implementations, the segment
descriptor for an access is contained in one of 16 on-chip segment registers; effective
address bits EA[0-3] select one of the 16 segment registers.

Note that the MPC750 does not implement the direct-store interface, and accesses to these
segments cause aDSI or 1S| exception. In addition, Figure 5-6 al so shows the way in which
the no-execute protection is enforced; if the N bit in the segment descriptor is set and the
access is an instruction fetch, the access is faulted as described in Chapter 7, “Memory
Management,” in The Programming Environments Manual. Note that the figure shows the
flow for these cases as described by the PowerPC OEA, and so the TLB references are
shown as optional. Because the MPC750 implements TLBS, these branches are valid and
are described in more detail throughout this chapter.
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Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation
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If SR[T] =0, page addresstranslation is selected. Theinformation in the segment descriptor
is then used to generate the 52-bit virtual address. The virtual address is then used to
identify the page address translation information (stored as page table entries (PTESs) in a
page table in memory). For increased performance, the MPC750 has two on-chip TLBsto
cache recently-used translations on-chip.

If an access hitsin the appropriate TL B, page translation succeeds and the physical address
bits are forwarded to the memory subsystem. If the required tranglation is not resident, the
MMU performs a search of the page table. If the required PTE is found, a TLB entry is
alocated and the page trandlation is attempted again. Thistime, the TLB is guaranteed to
hit. When the trandation is located, the access is qualified with the appropriate protection
bits. If the access causes a protection violation, either an 1Sl or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISl or DSI exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary

To complete any memory access, the effective address must be trandated to a physica
address. As specified by the architecture, an MMU exception condition occurs if this
tranglation fails for one of the following reasons:

« Pagefault—thereis no valid entry in the page table for the page specified by the
effective address (and segment descriptor) and thereis no valid BAT trandlation.

* Anaddresstrandation isfound but the accessis not allowed by the memory
protection mechanism.

The trandlation exception conditions defined by the OEA for 32-bit implementations cause
either the ISl or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identifiesthe address of thefailing instruction. Refer to Chapter 4, “ Exceptions,” for amore
detailed description of exception processing.
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Table 5-3. Translation Exception Conditions

Condition

Description

Exception

Page fault (no PTE found)

No matching PTE found in page tables (and
no matching BAT array entry)

| access: ISI exception
SRR1[1]=1

D access: DSI exception
DSISR[1] =1

Block protection violation

Conditions described for block in “Block
Memory Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual.*

| access: ISI exception
SRR1[4]=1

D access: DSI exception
DSISR[4] =1

Page protection violation

Conditions described for page in “Page
Memory Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual.

| access: ISI exception
SRR1[4]=1

D access: DSI exception

DSISR[4] =1
No-execute protection violation | Attempt to fetch instruction when SR[N] = 1 ISI exception

SRR1[3]=1
Instruction fetch from Attempt to fetch instruction when SR[T] =1 ISI exception
direct-store segment SRR1[3] =1

Data access to direct-store

Attempt to perform load or store (including FP

DSI exception

matching BAT entry and PTE[G] = 1

segment (including load or store) when SR[T] =1 DSISR[5] =1
floating-point accesses)

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] =1 | ISI exception
memory and either matching xBAT[G] = 1, or no SRR1[3] =1

In addition to the translation exceptions, there are other MM U-rel ated conditions (some of
them defined as implementation-specific, and therefore not required by the architecture)
that can cause an exception to occur. These exception conditions map to processor
exceptions as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are those that cause an alignment exception for data accesses. For more
detailed information about the conditions that cause an alignment exception (in particular
for string/multiple instructions), see Section 4.5.6, “Alignment Exception (0x00600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
“Memory/Cache AccessAttributes,” in Chapter 5, “ Cache Model and Memory Coherency,”
of The Programming Environments Manual. Refer to Chapter 4, “Exceptions,” and to
Chapter 6, “Exceptions,” in The Programming Environments Manual for a complete
description of the SRR1 and DSISR bit settings for these exceptions.
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Table 5-4. Other MMU Exception Conditions for the MPC750 Processor

Condition Description Exception
dcbzwithW=1orl=1 dcbz instruction to write-through or Alignment exception (not
cache-inhibited segment or block required by architecture for

this condition)

Iwarx or stwex. with W =1 Reservation instruction to write-through DSl exception
segment or block DSISR[5] =1
lwarx, stwcx., eciwx, or ecowx Reservation instruction or external control DSI exception
instruction to direct-store segment | instruction when SR[T] =1 DSISR[5] =1
Floating-point load or store to FP memory access when SR[T] =1 See data access to
direct-store segment direct-store segment in
Table 5-3.
Load or store that results in a Does not occur in MPC750 Does not apply
direct-store error
eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] = 0 DSl exception
external control facility disabled DSISR[11] =1
Imw, stmw, Iswi, Iswx, stswi, or Imw, stmw, Iswi, Iswx, stswi, or stswx Alignment exception
stswx instruction attempted in instruction attempted while MSR[LE] = 1

little-endian mode

Operand misalignment Translation enabled and a floating-point Alignment exception (some
load/store, stmw, stwcx., Imw, lwarx, eciwx, | of these cases are
or ecowx instruction operand is not implementation-specific)
word-aligned

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers allow the operating system to set up the block address
trandation areas and the page tablesin memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tables in memory whenever the tablesin memory are modified. When
the tables in memory are changed, the operating system purges these caches of the
corresponding entries, alowing the trandation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the MPC750 implements all TLB-related instructions except tlbia, which is
treated as anillegal instruction.

Because the MMU specification for PowerPC processorsis so flexible, it is recommended
that the software that uses these instructions and registers be encapsulated into subroutines
to minimize the impact of migrating across the family of implementations.
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Table 5-5 summarizes MPC750 instructions that specifically control the MMU. For more
detailed information about the instructions, refer to Chapter 2, “MPC750 Processor
Programming Model,” in this book and Chapter 8, “Instruction Set,” in The Programming
Environments Manual

Table 5-5. MPC750 Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#] « rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0-3]] < S

mfsr rD,SR Move from Segment Register
rD « SR[SR#]
mfsrin rD,rB Move from Segment Register Indirect

rD « SR[rB[0-3]]

tlbie rB* TLB Invalidate Entry

For effective address specified by rB, TLB[V] «— 0

The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to
bits 14-19 of the EA.

In addition, depending on the setting of HIDxx, execution of this instruction causes all entries in
the congruence class corresponding to the EA to be invalidated in the other processors attached
to the same bus.

Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tibsync* TLB Synchronize

Synchronizes the execution of all other tlbie instructions in the system. In the MPC750, when the
TLBISYNC signal is negated, instruction execution may continue or resume after the completion
of a tlbsync instruction. When the TLBISYNC signal is asserted, instruction execution stops after
the completion of a tlbsync instruction.

*These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program the MPC750
MM USs. These registers are accessible to supervisor-level software only. Theseregistersare
described in Chapter 2, “MPC750 Processor Programming Model .
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Table 5-6. MPC750 Microprocessor MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SR0-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
IBATOL—IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined
DBATOU-DBAT3U, and as 32-bit registers in 32-bit implementations. These are special-purpose registers
DBATOL-DBAT3L) that are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in

memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

5.2 Real Addressing Mode

If address trandation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

Note that the default WIMG bits (0b0011) cause data accesses to be considered cacheable
(I =0) and thus load and store accesses are weakly ordered. Thisisthe case even if the data
cacheisdisabled in the HIDO register (asit isout of hard reset). If 1/0O devicesrequire load
and store accesses to occur in strict program order (strongly ordered), trandation must be
enabled so that the corresponding | bit can be set. Note also, that the G bit must be set to
ensure that the accesses are strongly ordered. For instruction accesses, the default memory
access mode bits (WIMG) are also 0b0011. That is, instruction accesses are considered
cacheable (I = 0), and the memory is guarded. Again, instruction accesses are considered
cacheable even if the instruction cache is disabled in the HIDO register (asit isout of hard
reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization regquirements for changes to MSR[IR] and
MSR[DR], refer to Section2.3.2.4,“Synchronization,” in this manual, and
“Synchronization Requirements for Specia Registers and for Lookaside Buffers’ in
Chapter 2, “PowerPC Register Set,” in The Programming Environments Manual.
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5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides away to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such asamemory-mapped display buffer or an extremely large array of numerical
data.

Block address trandation in the MPC750 is described in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.

Implementation Note—The MPC750 BAT registers are not initialized by the hardware
after the power-up or reset sequence. Consequently, all valid bits in both instruction and
data BATs must be cleared before setting any BAT for thefirst time. Thisis true regardless
of whether address trandation is enabled. Also, software must avoid overlapping blocks
while updating aBAT or areas. Even if trandation is disabled, multiple BAT hits are treated
asprogramming errorsand can corrupt the BAT registersand produce unpredictableresuilts.

5.4 Memory Segment Model

The MPC750 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address trandation), while providing the programming
flexibility afforded by alarge virtual address space (52 bits).

The segment/page address trand ation mechanism may be superseded by the block address
trandation (BAT) mechanism described in Section 5.3, “Block Address Tranglation.” If not,
the tranglation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of thevirtual page number and the byte
offset within a page), and

2. from virtual addressto physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the MPC750.

5.4.1 Page History Recording

Referenced (R) and changed (C) bitsin each PTE keep history information about the page.
They are maintained by a combination of the MPC750 table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be alocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
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correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address trandation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the MPC750, the referenced and changed bits are updated as follows:
e For TLB hits, the C bit is updated according to Table 5-7.

e For TLB misses, when atable search operation isin progress to locate aPTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

Rand C bits Processor Action
in TLB Entry
00 Combination doesn’t occur
01 Combination doesn’t occur
10 Read: No special action
Write: The MPC750 initiates a table search operation to update C.
11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if thereisa TLB hit). Therefore, when software clears the R and C bitsin
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The dcbt and dcbtst instructions can execute if thereis a TLB/BAT hit or if the processor
isinreal addressing mode. In case of aTLB or BAT miss, these instructions are treated as
no-ops, they do not initiate atable search operation and they do not set either the R or C hits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
addresstrandation were disabled (real addressing mode). If these update accesses hit in the
data cache, they are not seen on the external bus. If they miss in the data cache, they are
performed as typical cache line fill accesses on bus (assuming the data cache is enabled).

5.4.1.1 Referenced Bit

Thereferenced (R) bit of apage islocated in the PTE in the page table. Every time a page
isreferenced (with aread or write access) and the R bit is zero, the MPC750 sets the R bit
in the page table. The OEA specifies that the referenced bit may be set immediately, or the
setting may be delayed until the memory accessis determined to be successful. Becausethe
referenceto apageiswhat causes a PTE to be loaded into the TLB, the referenced bit in all
MPC750 TLB entriesiseffectively always set. The processor never automatically clearsthe
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
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program or even if the access was prevented by memory protection. Examples of thisin
PowerPC systems include the following:

« Fetching of instructions not subsequently executed

« A memory reference caused by a speculatively executed instruction that is
mispredicted

e Accesses generated by an Iswx or stswx instruction with a zero length

¢ Accesses generated by an stwcex. instruction when no store is performed because a
reservation does not exist

* Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of a pageislocated both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if aTLB isimplemented, as in the MPC750). Whenever a data
store instruction is executed successfully, if the TLB search (for page address translation)
resultsin a hit, the changed bit in the matching TLB entry is checked. If it is already set, it
isnot updated. If the TLB changed bit is 0, the MPC750 initiates the table search operation
to set the C bit in the corresponding PTE in the page table. The MPC750 then rel oads the
TLB (with the C bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation isallowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

¢ The execution of an stwex. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

« Theexecution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
Zero.

« Thestore operation is not performed because an exception occurs before the storeis
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the MPC750 updates the R and C bitsin memory,
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the accesses are performed asif MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for al scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over amatching scenario closer to the bottom
of the table. For example, if an stwex. instruction causes a protection violation and thereis
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructionsthat are treated as aload with respect
to address trandation. Similarly, store operations include those operations generated by
storeinstructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address trandation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Causes Setting of R Bit | Causes Setting of C Bit
Priority Scenario
OEA MPC750 OEA MPC750

1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation. Would be required Maybel No No No

by the sequential execution model in the absence

of system-caused or imprecise exceptions, or of

floating-point assist exception for instructions that

would cause no other kind of precise exception.
5 All other out-of-order store operations Maybel No Maybel No
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybel No Maybel No
8 Store conditional (stwcx.) that does not store Maybel Yes Maybel Yes
9 In-order instruction fetch Yes? Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx or dcbz instruction Yes Yes Yes Yes
12 icbi, dcbt, or dcbtst instruction Maybe No No No
13 dcbst or dcbf instruction Maybe Yes No No
14 dcbi instruction Maybel Yes Maybel Yes

Notes:
lifcis set, R is guaranteed to be set also.
2 Includes the case in which the instruction is fetched out of order and R is not set (does not apply for MPC750).
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For more information, see “Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.2 Page Memory Protection

The MPC750 implements page memory protection asit is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

5.4.3 TLB Description

The MPC750 implements separate 128-entry data and instruction TLBs to maximize
performance. This section describes the hardware resources provided in the MPC750 to
facilitate page address tranglation. Note that the hardware implementation of the MMU is
not specified by the architecture, and while this description applies to the MPC750, it does
not necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization

Because the MPC750 has two MM Us (IMMU and DMMU) that operate in parallel, some
of the MMU resources are shared, and some are actually duplicated (shadowed) in each
MMU to maximize performance. For example, although the architecture defines a single
set of segment registersfor the MMU, the MPC750 maintains two identical sets of segment
registers, one for the IMMU and one for the DMMU; when an instruction that updates the
segment register executes, the MPC750 automatically updates both sets.

Each TLB contains 128 entries organized as atwo-way set-associative array with 64 setsas
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
is being translated, a set of two TLB entries is indexed in parallel with the access to a
segment register. |f the addressin one of thetwo TLB entriesisvalid and matches the 40-bit
virtual page number, that TLB entry contains the translation. If no match isfound, aTLB
MisS occurs.
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Figure 5-7. Segment Register and DTLB Organization

Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the accessis no longer out of order.
When the matching PTE isfound in memory, it isloaded into the TLB entry selected by the
least-recently-used (L RU) replacement algorithm, and the translation process begins again,
thistimewith aTLB hit.

To uniquely identify aTLB entry astherequired PTE, the PTE a so contains four more bits
of the page index, EA[0-13] (in addition to the API bitsin of the PTE).

Software cannot access the TLB arrays directly, except to invalidate an entry with thetlbie
instruction.
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Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any
time either entry isused, even if the accessis speculative. Invalid entries are alwaysthefirst
to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), only one exception condition can be reported at
atime. ITLB miss exceptions are reported when there are no more instructions to be
dispatched or retired (the pipeline is empty), and DTLB miss conditions are reported when
theload or storeinstruction isready to beretired. Refer to Chapter 6, “Instruction Timing,”
for more detailed information about the internal pipelines and the reporting of exceptions.

When an instruction or data access occurs, the effective addressis routed to the appropriate
MMU. EAO-EA3 select one of the 16 segment registers and the remaining effective address
bits and the VSID field from the segment register is passed to the TLB. EA[14-19] then
select two entriesin the TLB; the valid bits are checked and the 40-bit virtual page number
(24-bit VSID and EA4-EA19]) must match the VSID, EAPI, and API fields of the TLB
entries. If one of the entries hits, the PP bits are checked for a protection violation. If these
bits don’t cause an exception, the C bit is checked and a table search operation is initiated
if C must be updated. If C does not require updating, the RPN valueis passed to the memory
subsystem and the WIMG bits are then used as attributes for the access.

Although address trandation is disabled on areset condition, the valid bits of TLB entries
are not automatically cleared. Thus, TLB entries must be explicitly cleared by the system
software (with the tlbie instruction) before the valid entries are loaded and address
tranglation is enabled. Also, note that the segment registers do not have avalid bit, and so
they should also beinitialized before trandation is enabled.

5.4.3.2 TLB Invalidation

The MPC750 implements the optional tlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of the tlbie instruction always invalidates four
entries—both the ITLB and DTLB entriesindexed by EA[14-19].

The architecture allowstlbie to optionally enable a TLB invalidate signaling mechanismin
hardware so that other processors also invalidate their resident copies of the matching PTE.
The MPC750 does not signal the TLB invalidation to other processors nor doesit perform
any action when a TLB invalidation is performed by another processor.

The tlbsync instruction causes instruction execution to stop if the TLBISYNC signad is
asserted. If TLBISYNC is negated, instruction execution may continue or resume after the
completion of atlbsyncinstruction. Section 8.8.2, “TLBISY NC Input,” describesthe TLB
synchronization mechanism in further detail.

The tlbia instruction is not implemented on the MPC750 and when its opcode is
encountered, anillegal instruction program exception is generated. To invalidate all entries
of both TLBs, 64 tlbie instructions must be executed, incrementing the value in
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EA14-EA19 by one each time. See Chapter 8, “Instruction Set,” in The Programming
Environments Manual for detailed information about the tlbie instruction.

Software must ensure that instruction fetches or memory references to the virtual pages
specified by the tibie have been completed prior to executing the tibie instruction.

Other than the possible TL B miss on the next instruction prefetch, thetlbieinstruction does
not affect the instruction fetch operation—that is, the prefetch buffer is not purged and does
not cause these instructions to be refetched.

5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands
on the ‘TLB Hit’ branch of Figure 5-6. The detailed flow for the ‘TLB Miss' branch of
Figure 5-6 isdescribed in Section 5.4.5, “ Page Table Search Operation.” Note that asin the
case of block address trandation, if an attempt is made to execute a dcbz instruction to a
page marked either write-through or caching-inhibited (W = 1 or | = 1), an aignment
exception is generated. The checking of memory protection violation conditions is
described in Chapter 7, “Memory Management,” in The Programming Environments
Manual.
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5.4.5 Page Table Search Operation

If thetrandationisnot foundinthe TLBs (aTLB miss), the MPC750 initiates atable search
operation which is described in this section. Formats for the PTE are givenin “PTE Format
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

The following is asummary of the page table search process performed by the MPC750:

1

The 32-bit physical address of the primary PTEG is generated as described in “ Page
Table Addresses’ in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

Thefirst PTE (PTEOQ) in the primary PTEG is read from memory. PTE reads occur
with an implied WIM memory/cache mode control bit setting of Ob001. Therefore,
they are considered cacheable and read (burst) from memory and placed in the
cache.

The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN isthe VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] =0

— PTE[V] =1

— PTE[VSID] = VA[0-23]

— PTE[API] =VA[24-29]

If amatch is not found, step 3 is repeated for each of the other seven PTEsin the
primary PTEG. If amatch isfound, the table search process continues as described
instep 8. If amatch isnot found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

Thefirst PTE (PTEOQ) in the secondary PTEG isread from memory. Again, because
PTE reads have aWIM bit combination of 0b001, an entire cache lineisread into
the on-chip cache.

The PTE in the selected secondary PTEG istested for amatch with the virtual page
number (VPN) of the access. For amatch to occur, the following must be true:

— PTE[H] =1

— PTE[V] =1

— PTE[VSID] =VA[0-23]

— PTE[API] = VA[24-29]

If amatch is not found, step 6 is repeated for each of the other seven PTEsin the
secondary PTEG. If it is never found, an exception is taken (step 9).
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8. If amatchisfound, the PTE iswritten into the on-chip TLB and the R bit is updated
inthe PTE in memory (if necessary). If thereis no memory protection violation, the
C bit isaso updated in memory (if the access is awrite operation) and the table
search is complete.

9. If amatch is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an |SI exception or aDSI
exception).

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary
page table search operations, described in The Programming Environments Manual, are
realized in the MPC750.

Figure 5-9 shows the case of a dcbz instruction that is executed withW =1 or | =1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.
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Figure 5-10. Secondary Page Table Search Flow

The LSU initiates out-of-order accesses without knowledge of whether it islegal to do so.
Therefore, the MMU does not perform hardware table search due to TLB misses until the
request is required by the program flow. In these out-of-order cases, the MMU does detect
protection violations and whether a dcbz instruction specifies a page marked as
write-through or cache-inhibited. The MMU also detects alignment exceptions caused by
the dcbz instruction and prevents the changed bit in the PTE from being updated
erroneously in these cases.

If an MMU register is being accessed by aninstruction in theinstruction stream, the IMMU
stalls for one trandation cycle to perform that operation. The sequencer serializes
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer
classifies those operations as fetch serializing. After such an instruction is dispatched, the
instruction buffer is flushed and the fetch stalls until the instruction completes. However,
for reading from the IBATS, the operation is classified as execution serializing. Aslong as
the LSU ensures that all previousinstructions can be executed, subsequent instructions can
be fetched and dispatched.
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5.4.6 Page Table Updates

When TLBs are implemented (as in the MPC750) they are defined as noncoherent caches
of the page tables. TLB entries must be flushed explicitly with the TLB invalidate entry
instruction (tlbie) whenever the corresponding PTE is modified. As the MPC750 is
intended primarily for uniprocessor environments, it does not provide coherency of TLBs
between multiple processors. If the MPC750 is used in a multiprocessor environment
where TLB coherency is required, all synchronization must be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte store
operations. Note that theV, R, and C bits each reside in adistinct byte of a PTE. Therefore,
extreme care must be taken to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. Thiskind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly-undefined results. Therefore, PTES must not be
changed in amanner that causes an implicit branch. Chapter 2, “PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and M SR bits are changed.

5.4.7 Segment Register Updates

Synchronization requirements for using the move to segment register instructions are
described in “Synchronization Requirements for Special Registers and for Lookaside
Buffers’ in Chapter 2, “PowerPC Register Set,” in The Programming Environments
Manual.
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Chapter 6
Instruction Timing

This chapter describes how the MPC750 microprocessor fetches, dispatches, and executes
instructions and how it reports the results of instruction execution. It gives detailed
descriptions of how the MPC750 execution units work, and how those units interact with
other parts of the processor, such as the instruction fetching mechanism, register files, and
caches. It gives examples of instruction sequences, showing potential bottlenecks and how
to minimize their effects. Finally, it includes tables that identify the unit that executes each
instruction implemented on the MPC750, the latency for each instruction, and other
information that is useful for the assembly language programmer.

6.1 Terminology and Conventions

This section provides an aphabetical glossary of terms used in this chapter. These
definitions are provided as a review of commonly used terms and as a way to point out
specific ways these terms are used in this chapter.

« Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term ‘ predicted’ asit is used here does
not imply that the prediction is correct (successful). The PowerPC architecture
defines ameans for static branch prediction as part of the instruction encoding.

« Branch resolution—The determination of whether a branch istaken or not taken. A
branch is said to be resolved when the processor can determine which instruction
path to take. If the branch is resolved as predicted, the instructions following the
predicted branch that may have been speculatively executed can complete (see
completion). If the branch is not resolved as predicted, instructions on the
mispredicted path, and any results of speculative execution, are purged from the
pipeline and fetching continues from the nonpredicted path.

e Completion—Completion occurs when an instruction has finished executing,
written back any results, and is removed from the completion queue. When an
instruction completes, it is guaranteed that thisinstruction and all previous
instructions can cause no exceptions.
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Fall-through (branch fall-through)—A not-taken branch. On the MPC750, fall-
through branch instructions are removed from the instruction stream at dispatch.
That is, these instructions are allowed to fall through the instruction queue viathe
dispatch mechanism, without either being passed to an execution unit and or given
aposition in the completion queue.

Fetch—The process of bringing instructions from memory (such as a cache or
system memory) into the instruction queue.

Folding (branch folding)—The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a branch is either
taken or predicted as taken.

Finish—Finishing occursin thelast cycle of execution. Inthiscycle, the completion
gueue entry is updated to indicate that the instruction has finished executing.

L atency— The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

Pipeline—In the context of instruction timing, the term *pipeline’ refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—anal ogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cyclesis called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

Program order—The order of instructionsin an executing program. More
specifically, thisterm is used to refer to the original order in which program
instructions are fetched into the instruction queue from the cache.

Rename register—Temporary buffers used by instructions that have finished
execution but have not completed.

Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the
dispatched instruction may depend are not available.

Retirement—Removal of the completed instruction from the completion queue.

Stage—The term ‘stage’ is used in two different senses, depending on whether the
pipelineis being discussed as aphysical entity or a sequence of events. In the latter
case, astage is an element in the pipeline during which certain actions are
performed, such as decoding theinstruction, performing an arithmetic operation, or
writing back the results. A stage is typically described as taking a processor clock
cycleto perform its operation; however, some events (such as dispatch and write-
back) happen instantaneously, and may be thought to occur at the end of the stage.
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An instruction can spend multiple cycles in one stage. An integer multiply, for
example, takes multiple cyclesin the execute stage. When this occurs, subsequent
instructions may stall.

In some cases, an instruction may also occupy more than one stage simultaneously,
especialy in the sense that a stage can be seen asaphysical resource—for example,
when instructions are dispatched they are assigned a place in the completion queue
at the same time they are passed to the execute stage. They can be said to occupy
both the complete and execute stages in the same clock cycle.

« Stall—An occurrence when an instruction cannot proceed to the next stage.

e Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the execute stage at the same time.

¢ Throughput—A measure of the number of instructionsthat are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

*  Write-back—Write-back (in the context of instruction handling) occurs when a
result iswritten into the architectural registers (typically the GPRs and FPRs).
Results are written back at completion time. Resultsin the write-back buffer cannot
be flushed. If an exception occurs, these buffers must write back before the
exception istaken.

6.2 Instruction Timing Overview

The MPC750 design minimizes average instruction execution latency, the number of clock
cycles it takes to fetch, decode, dispatch, and execute instructions and make the results
available for a subsequent instruction. Some instructions, such as loads and stores, access
memory and require additional clock cycles between the execute phase and the write-back
phase. These latencies vary depending on whether the access is to cacheable or
noncacheable memory, whether it hits in the L1 or L2 cache, whether the cache access
generates a write-back to memory, whether the access causes a snoop hit from another
device that generates additional activity, and other conditions that affect memory accesses.

The MPC750 implements many features to improve throughput, such as pipelining,
superscalar instruction issue, branch folding, removal of fall-through branches, two-level
speculative branch handling, and multiple execution units that operate independently and
inparald.

Asaninstruction passes from stage to stage in a pipelined system, the following instruction
can follow through the stages as the former instruction vacates them, alowing severa
instructions to be processed simultaneously. While it may take several cycles for an
instruction to pass through all the stages, when the pipeline has been filled, one instruction
can complete its work on every clock cycle.
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Figure 6-1 represents a generic pipelined execution unit.

| Stage 1 | Stage 2 | Stage 3 |

\ \ \ \

Clock 0 | | Instruction A | ‘ | — | ‘ | — | ‘
\ /%\‘ \ \

Clock 1 : | Instruction B | : | Instruction A | : | — | :
\ ™ ™ \

Clock2 | | Instruction C | \ | Instruction B | \ | Instruction A | \
‘ /\« /\« ‘

| \ \ \

\
Clock 3 | | Instruction D ‘| Instruction C | ‘| Instruction B | ‘
| | |

Figure 6-1. Pipelined Execution Unit

Theentire path that instructionstake through the fetch, decode/dispatch, execute, complete,
and write-back stages is considered the MPC750's master pipeline, and two of the
MPC750's execution units (the FPU and L SU) are also multiple-stage pipelines.

The MPC750 contains the following execution units that operate independently and in
paraldl:

Branch processing unit (BPU)

Integer unit 1 (IU1)—executes al integer instructions

Integer unit 2 (IU2)—executes al integer instructions except multiplies and divides
64-bit floating-point unit (FPU)

Load/store unit (LSU)

System register unit (SRU)

The MPC750 can retire two instructions on every clock cycle. In general, the MPC750
processes instructions in four stages—fetch, decode/dispatch, execute, and complete as
shown in Figure 6-2. Note that the example of a pipelined execution unit in Figure 6-1 is
similar to the three-stage FPU pipeline in Figure 6-2.
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Figure 6-2. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

¢ Theinstruction fetch stage includes the clock cycles necessary to request
instructions from the memory system and the time the memory system takes to
respond to the request. Instruction fetch timing depends on many variables, such as
whether the instruction isin the branch target instruction cache, the on-chip
instruction cache, or the L2 cache. Those factorsincrease when it is hecessary to
fetch instructions from system memory, and include the processor-to-bus clock
ratio, the amount of bus traffic, and whether any cache coherency operations are
required.

Because there are so many variables, unless otherwise specified, the instruction
timing examples below assume optimal performance, that the instructions are
availableintheinstruction queuein the sameclock cyclethat they arerequested. The
fetch stage ends when the instruction is dispatched.

« Thedecode/dispatch stage consists of thetimeit takesto fully decodetheinstruction
and dispatch it from the instruction queue to the appropriate execution unit.
Instruction dispatch requires the following:

— Instructions can be dispatched only from the two lowest instruction queue
entries, |Q0 and |Q1.

— A maximum of two instructions can be dispatched per clock cycle (although an
additional branch instruction can be handled by the BPU).

— Only one instruction can be dispatched to each execution unit per clock cycle.
— There must be avacancy in the specified execution unit.
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— A renameregister must be available for each destination operand specified by the
instruction.

— For an instruction to dispatch, the appropriate execution unit must be available
and there must be an open position in the completion queue. If no entry is
available, the instruction remainsin the 1Q.

The execute stage consists of the time between dispatch to the execution unit (or
reservation station) and the point at which the instruction vacates the execution unit.

Most integer instructions have a one-cycle latency; results of these instructions can
be used in the clock cycle after an instruction enters the execution unit. However,
integer multiply and divide instructions take multiple clock cyclesto complete. The
IU1 can process all integer instructions; the IU2 can process all integer instructions
except multiply and divide instructions.

The LSU and FPU are pipelined (as shown in Figure 6-2).

The complete (complete/write-back) pipeline stage maintains the correct
architectural machine state and commitsit to the architectural registers at the proper
time. If the completion logic detects an instruction containing an exception status,
all following instructions are cancelled, their execution results in rename registers
are discarded, and the correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be
retired per cycle. Instructions areretired only from the two lowest completion queue
entries, CQO and CQL1.

The notation conventions used in the instruction timing examples are as follows:
[ ] Fetch—The fetch stage includes the time between when an instruction is

requested and when it is brought into the instruction queue. This latency can
be very variable, depending upon whether the instruction isin the BTIC, the
on-chip cache, the L2 cache, or system memory (in which case latency can
be affected by bus speed and traffic on the system bus, and addresstranslation
issues). Therefore, in the examplesin this chapters, the fetch stage is usually
idealized, that is, an instruction is usually shown to bein the fetch stage when
itisavalid instruction in the instruction queue. The instruction queue has six
entries, |Q0- Q5.

—— Indispatch entry (1Q0/IQ1)—Instructions can be dispatched from 1QO0 and

QL. Because dispatch isinstantaneous, it is perhaps more useful to describe
it as an event that marks the point in time between the last cyclein the fetch
stage and the first cycle in the execute stage.

ma EXxecute—The operations specified by an instruction are being performed by

the appropriate execution unit. The black stripe is a reminder that the
instruction occupies an entry in the completion queue, described in
Figure 6-3.
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Complete—The instruction isin the completion queue. In thefinal stage, the
results of the executed instruction are written back and the instruction is
retired. The completion queue has six entries, CQ0-CQ5.

I

I | n retirement entry—Completed instructions can be retired from CQO and
CQL. Like digpatch, retirement is an event that in this case occurs at the end
of thefinal cycle of the complete stage.

Figure 6-3 shows the stages of MPC750 execution units.

IU1/IU2/SRU Instructions

Fetch In Dispatch Execute!  Complete/Retire
Entry
LSU Instructions
Execute
Fetch In Dispatch  EA Cache Align Complete/Retire

Entry Calculation

I [ e —_

FPU Instructions

Execute

Fetch In Dispatch i Round/  Complete/Retire
Enfry Muliply Add Normalize P

| I—H

BPU Instructions

Fetch Fetch In Dispatch  In Completion Complete/Retirez
Predict Entry Queue?

1 Several integer instructions, such as multiply and divide instructions, require multiple cycles in
the execute stage.

2 Only those branch instructions that update the LR or CTR take an entry in the completion queue.

Figure 6-3. MPC750 Microprocessor Pipeline Stages

6.3 Timing Considerations

The MPC750 is a superscalar processor; as many as three instructions can be issued to the
execution units (one branch instruction to the branch processing unit, and two instructions
issued from the dispatch queue to the other execution units) during each clock cycle. Only
one instruction can be dispatched to each execution unit.

Although instructions appear to the programmer to execute in program order, the MPC750
improves performance by executing multiple instructions at a time, using hardware to
manage dependencies. When an instruction is dispatched, the register file provides the
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source data to the execution unit. The register files and rename register have sufficient
bandwidth to allow dispatch of two instructions per clock under most conditions.

The MPC750's BPU decodes and executes branches immediately after they are fetched.
When a conditional branch cannot be resolved due to a CR data dependency, the branch
direction is predicted and execution continues from the predicted path. If the prediction is
incorrect, the following steps are taken:

1. Theinstruction queueis purged and fetching continues from the correct path.

2. Any instructions ahead of the predicted branch in the compl etion queue are alowed
to complete.

3. Instructions after the mispredicted branch are purged.
4. Dispatching resumes from the correct path.

After an execution unit finishes executing an instruction, it places resulting data into the
appropriate GPR or FPR rename register. The results are then stored into the correct GPR
or FPR during the write-back stage. If a subsequent instruction needs the result as a source
operand, it ismade available simultaneously to the appropriate execution unit, which allows
a data-dependent instruction to be decoded and dispatched without waiting to read the data
from the register file. Branch instructions that update either the LR or CTR write back their
resultsin asimilar fashion.

The following section describes this processin greater detail.

6.3.1 General Instruction Flow

Asmany asfour instructions can be fetched into the instruction queue (1Q) in asingle clock
cycle. Instructions enter the 1Q and are issued to the various execution units from the
dispatch queue. The MPC750 tries to keep the IQ full at all times, unless instruction cache
throttling is operating.

The number of instructions requested in a clock cycle is determined by the number of
vacant spaces in the IQ during the previous clock cycle. Thisis shown in the examplesin
this chapter. Although the instruction queue can accept as many as four new instructionsin
asingleclock cycle, if only onelQ entry isvacant, only oneinstructionisfetched. Typically
instructions are fetched from the on-chip instruction cache, but they may also be fetched
from the branch target instruction cache (BTIC). If theinstruction request hitsinthe BTIC,
it can usually present the first two instructions of the new instruction stream in the next
clock cycle, giving enough time for the next pair of instructions to be fetched from the
instruction cache with no idle cycles. If instructions are not in the BTIC or the on-chip
instruction cache, they are fetched from the L2 cache or from system memory.

The MPC750's instruction cache throttling feature, managed through the instruction cache
throttling control (ICTC) register, can lower the processor’s overall junction temperature by
slowing the instruction fetch rate. See Chapter 10, “Power and Thermal Management.”
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Branch instructions are identified by the fetcher, and forwarded to the BPU directly,
bypassing the dispatch queue. If the branch is unconditional or if the specified conditions
are aready known, the branch can be resolved immediately. That is, the branch direction is
known and instruction fetching can continue from the correct location. Otherwise, the
branch direction must be predicted. The MPC750 offers several resources to aid in quick
resolution of branch instructions and for improving the accuracy of branch predictions.
These include the following:

¢ Branchtarget instruction cache—T he 64-entry (four-way-associative) branch target
instruction cache (BTIC) holds branch target instructions so when a branch is
encountered in arepeated loop, usualy thefirst two instructionsin the target stream
can be fetched into the instruction queue on the next clock cycle. The BTIC can be
disabled and invalidated through bitsin HIDO.

¢ Dynamic branch prediction—The 512-entry branch history table (BHT) is
implemented with two bits per entry for four degrees of prediction—not-taken,
strongly not-taken, taken, strongly taken. Whether abranch instruction is taken or
not-taken can change the strength of the next prediction. This dynamic branch
prediction is not defined by the PowerPC architecture.

To reduce aiasing, only predicted branches update the BHT entries. Dynamic
branch prediction is enabled by setting HIDO[BHT]; otherwise, static branch
prediction is used.

« Static branch prediction—Static branch prediction is defined by the PowerPC
architecture and involves encoding the branch instructions. See Section 6.4.1.3.1,
“Static Branch Prediction.”

Branch instructions that do not update the LR or CTR are removed from the instruction
stream either by branch folding or removal of fall-through branch instructions, as described
in Section 6.4.1.1, “Branch Folding and Removal of Fall-Through Branch Instructions”
Branch instructions that update the LR or CTR aretreated asif they require dispatch (even
through they are not issued to an execution unit in the process). They are assigned aposition
in the completion queue to ensure that the CTR and LR are updated sequentialy.

All other instructions are issued from the |QO0 and 1Q1. The dispatch rate depends upon the
availability of resources such as the execution units, rename registers, and completion
gueue entries, and upon the serializing behavior of some instructions. Instructions are
dispatched in program order; an instruction in 1Q1 cannot be dispatched ahead of onein

1Q0.

Chapter 6. Instruction Timing 6-9



Figure 6-4 shows the paths taken by instructions.

Fetch
(Maximum four instructions per clock cycle)
Co s T T o T o T T o T 7 | Instruction Queue
L1 _rmies TmIQ3 Q2 oL IR0 1 (in program order)
l T y )
Branch | | Dispatch ) ) ) )
Processing Unit | | (Maximum 2 instructions per clock cycle; 1 instruction per unit]
| |
P ——— - - — = —>
o mmm e m e mmmm e ——— - - = —
[ Completion Queue
: I Assignment J
|
b
|
: I Reservation | ‘ o o o o
| ! Stations | o Lo — — J Lo — — J Lo — — J Lo — — J
o ol
| 1 FPU
[
| i |
| : I I
: I LSU t- ’J -
|
| o —— 1y R S
! : I |
[ Le e [
L ¢ ¢ U1 U2 SRU
|
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|
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: : Store Queue i
|
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; Completion Queue
Complete (Retire) l l (in program orden

Figure 6-4. Instruction Flow Diagram
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6.3.2 Instruction Fetch Timing

Instruction fetch latency depends on whether the fetch hits the BTIC, the on-chip
instruction cache, or the L2 cache, if oneisimplemented. If no cache hit occurs, amemory
transactionisrequired in which casefetch latency is affected by bustraffic, bus clock speed,
and memory trandlation. These issues are discussed further in the following sections.

6.3.2.1 Cache Arbitration

When the instruction fetcher requests instructions from the instruction cache, two things
may happen. If theinstruction cache isidle and the requested instructions are present, they
are provided on the next clock cycle. However, if the instruction cache is busy due to a
cache-line-reload operation, instructions cannot be fetched until that operation completes.

6.3.2.2 Cache Hit

If the instruction fetch hits the instruction cache, it takes only one clock cycle after the
request for as many as four instructions to enter the instruction queue. Note that the cache
isnot blocked to internal accesses during a cache rel oad completes (hits under misses). The
critical double word iswritten simultaneously to the cache and forwarded to the requesting
unit, minimizing stalls due to load delays.

Figure 6-5 shows a simple example of instruction fetching that hits in the on-chip cache.
This example uses a series of integer add and double-precision floating-point add
instructions to show how the number of instructions to be fetched is determined, how
program order is maintained by theinstruction and completion queues, how instructionsare
dispatched and retired in pairs (maximum), and how the FPU, U1, and U2 pipelines
function. The following instruction sequence is examined:

add
f add
add
f add
br 6
fsub
f add
f add
add
add
10 add
11 add
12 fadd
13 add
14 fadd

©CoOoO~NOOUA~WNEO
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H | | |
| | | Execute
T — e T e |
| | | | | | | | |
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| |
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| | | | | | | | | | |
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| | 6 fadd. | | | | |
| | | | | | |
| | _ | | |
| | = fadd4—|—h | | |
| | | | | |
‘ ‘ ‘ L E—— ] ‘ ‘ ‘
| | | L Il L Il | |
w w w | 9add | e — w w
| | | | | | | | | | | | |
o (| e —
| | | I I I | |
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‘ ‘ ‘ | 1ladd | \ e ‘
| | | | ‘ ‘ ‘ ‘ ‘ ‘ |
| | | | [ 12fadd | e —— !
| | | | | | | | | |
| | | | | | ‘ 13 add
[Lfadd [ ——
Instruction
Do 12 (18)
11 11 an
3 5 10 10 12 14 @e) | [y | [(@8)
2 4 9 9 11 13 @@y | @y | [an
1 3 7 8 8 10 12 14 14 (16)
0 2 7 7 9 11 13 13 (15)
Completion
Queue 12 12 14
10 11 11 13
3 6 6 8 9 10 10 12 14
2 3 3 7 8 9 9 11 13
1 1 2 2 6 7 8 8 10 12 14
0 0 1 1 3 6 7 7 9 11 13

Figure 6-5. Instruction Timing—Cache Hit

Theinstruction timing for this example is described cycle-by-cycle as follows:

0. Incycle0, instructions 0-3 arefetched from theinstruction cache. Instructions 0 and
1 are placed in the two entries in the instruction queue from which they can be
dispatched on the next clock cycle.
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. Incyclel, instructions 0 and 1 are dispatched to the IU2 and FPU, respectively.
Notice that for instructions to be dispatched they must be assigned positionsin the
completion queue. In this case, since the completion queue was empty, instructions
0and 1takethetwo lowest entriesin the completion queue. Instructions 2 and 3 drop
into the two dispatch positions in the instruction queue. Because there were two
positions available in the instruction queuein clock cycle 0, two instructions (4 and
5) are fetched into the instruction queue. Instruction 4 is a branch unconditional
instruction, which resolvesimmediately astaken. Becausethe branchistaken, it can
therefore be folded from the instruction queue.

. Incycle 2, assumeaBTIC hit occurs and target instructions 6 and 7 are fetched into
the instruction queue, replacing the folded b instruction (4) and instruction 5.
Instruction 0 compl etes, writes back its results and vacates the compl etion queue by
the end of the clock cycle. Instruction 1 enters the second FPU execute stage,
instruction 2 is dispatched to the IU2, and instruction 3 is dispatched into the first
FPU execute stage. Because the taken branch instruction (4) does not update either
CTRor LR, it doesnot require aposition in the compl etion queue and can be folded.

. Incycle 3, target instructions (6 and 7) are fetched, replacing instructions4 and 5in
Q0 and IQ1. This replacement on taken branchesis called branch folding.
Instruction 1 proceeds through the last of the three FPU execute stages. Instruction
2 has executed but must remain in the completion queue until instruction 1
completes. Instruction 3 replaces instruction 1 in the second stage of the FPU, and
instruction 6 replacesinstruction 3 in thefirst stage. Also, aswill be shownin cycle
4, thereisasingle-cycle stall that occurs when the FPU pipelineisfull.

Because there were three vacancies in the instruction queue in the previous clock
cycle, instructions 8-11 are fetched in this clock cycle.

. Instruction 1 completesin cycle 4, alowing instruction 2 to complete. Instructions
3 and 6 continue through the FPU pipeline. Although instruction 7 isin 1Q1, it
cannot be dispatched because the FPU is busy, and because instruction 7 cannot be
dispatched neither caninstruction 8. The additional cyclestall allowstheinstruction
gueue to be completely filled. Because there was one opening in the instruction
gueue in clock cycle 3, oneinstruction is fetched (12) and the instruction queueis
full.

. Incycle5, instruction 3 completes, allowing instruction 7 to be dispatched to the
FPU, which in turn alows instruction 8 to be dispatched to the IU2. Instructions 9
and 10 drop to the dispatch positions in the instruction queue. No instructions are
fetched in this clock cycle because there were no vacant 1Q entriesin clock cycle 4.
. Incycle 6, instruction 6 completes, instruction 7 isin stage 2 of the FPU execute
stage, and although instruction 8 has executed, it must wait for instruction 7 to
complete. Thetwo integer instructions, 9 and 10, are dispatched to the lU2 and U1,
respectively. Fetching resumes with instructions 13 and 14.
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7. Incycle7,instruction 7 isin the final FPU execute stage and instructions 8-10 wait
in the completion queue. Instructions 11 and 12 are dispatched to the |lU2 and FPU,
respectively. Note that at this point the completion queueis full. Two more
instructions (15 and 16, which are shown only in the instruction queue) are fetched.

8. Incycle 8, instructions 7-11 are through executing. Instructions 7 and 8 compl ete,
write back, and vacate the completion queue. Because the completion queueisfull,
instructions 13 and 14 cannot be dispatched and must remain in the instruction
queue. Only the FPU is executing during this cycle (instruction 12). Additional
instructions (instructions 16 and 17, shown only in the instruction queue) are
fetched, filling the instruction queue.

9. Incycle 9, two more instructions (instructions 7 and 8) are retired from the
completion queue allowing instructions 13 and 14 to be dispatched, again filling the
completion queue. No instructions are fetched on this cycle because the instruction
queue was full on the previous clock cycle.

6.3.2.3 Cache Miss

Figure 6-6 shows an instruction fetch that misses both the on-chip cache and L2 cache. A
processor/bus clock ratio is 1:2 is used. The same instruction sequence is used as in
Section 6.3.2.2, “Cache Hit,” however in this example, the branch target instruction is not
in either the L1 or L2 cache. Because the target instruction is not in the L 1 cache, it cannot
beinthe BTIC.

A cache miss, extends the latency of the fetch stage, so in this example, the fetch stage
shown represents not only the time the instruction spends in the 1Q, but the time required
for the instruction to be loaded from system memory, beginning in clock cycle 2.

During clock cycle 3, the target instruction for the b instruction is not in the BTIC, the
instruction cache or the L2 cache; therefore, a memory access must occur. During clock
cycle5, the address of the block of instructionsis sent to the system bus. During clock cycle
7, two instructions (64 bits) are returned from memory on the first beat and are forwarded
both to the cache and the instruction fetcher.
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* Instructions 5 and 6 are not in the 1Q in clock cycle 5. Here, the fetch stage shows cache latency.

Figure 6-6. Instruction Timing—Cache Miss

6.3.2.4 L2 Cache Access Timing Considerations (MPC750 Only)

If an instruction fetch misses both the BTIC and the on-chip instruction cache, the MPC750
next looks in the L2 cache. If the requested instructions are there, they are burst into the
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MPC750 in much the same way as shown in Figure 6-6. The formula for the L2 cache
latency for instruction accessesis as follows:

1 processor clock + 3 L2 clocks + 1 processor clock

Therefore, if the L2 is operating in 2:1 mode, the instruction fetch takes 8 processor clock
cycles. Additional factors can al so affect this latency, including the type of memory used to
implement the L 2 and whether the processor clock and L2 clocks are aligned immediately.

For more information about the L2 cache implementation, see Chapter 9, “L2 Cache
Interface Operation.”

6.3.3 Instruction Dispatch and Completion Considerations

Several factors affect the MPC750's ability to dispatch instructions at a peak rate of two per
cycle—the availability of the execution unit, destination rename registers, and completion
queue, as well as the handling of completion-serialized instructions. Several of these
limiting factors are illustrated in the previous instruction timing examples.

To reduce dispatch unit stalls due to instruction data dependencies, the MPC750 provides
a single-entry reservation station for the FPU, SRU, and each IU, and a two-entry
reservation station for the LSU. If a data dependency keeps an instruction from starting
execution, that instruction is dispatched to the reservation station associated with its
execution unit (and the rename registers are assigned), thereby freeing the positionsin the
instruction queue so instructions can be dispatched to other execution units. Execution
begins during the same clock cycle that the rename buffer is updated with the data the
instruction is dependent on.

If both instructions in 1QO0 and 1Q1 require the same execution unit, the instruction in 1Q1
cannot be dispatched until the first instruction proceeds through the pipeline and provides
the subsequent instruction with a vacancy in the requested execution unit.

The completion unit maintains program order after instructions are dispatched from the
instruction queue, guaranteeing in-order completion and a precise exception model.
Completing an instruction implies committing execution results to the architected
destination registers. In-order completion ensures the correct architectural state when the
MPC750 must recover from amispredicted branch or an exception.

Instruction state and all information required for completion is kept in the six-entry, first-
inffirst-out completion queue. An completion queue entry is allocated for each instruction
when it is dispatched to an execute unit; if no entry is available, the dispatch unit stalls. A
maximum of two instructions per cycle may be completed and retired from the completion
gueue, and the flow of instructions can stall when alonger-latency instruction reaches the
last position in the completion queue. Subsequent instructions cannot be completed and
retired until that longer-latency instruction completes and retires. Examples of this are
shown in Section 6.3.2.2, “ Cache Hit,” and Section 6.3.2.3, “ Cache Miss”
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The MPC750 can execute instructions out-of-order, but in-order completion by the
completion unit ensures a precise exception mechanism. Program-related exceptions are
signaled when the instruction causing the exception reaches the last position in the
completion queue. Prior instructions are allowed to compl ete before the exception istaken.

6.3.3.1 Rename Register Operation

To avoid contention for agiven register filelocation in the course of out-of-order execution,
the MPC750 provides rename registers for holding instruction results before the
completion commits them to the architected register. There are six GPR rename registers,
six FPR rename registers, and one each for the CR, LR, and CTR.

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register (or registers) for the results of that instruction. If an instruction is dispatched to a
reservation station associated with an execution unit due to a data dependency, the
dispatcher also provides a tag to the execution unit identifying the rename register that
forwardsthe required dataat completion. When the source data reaches the rename register,
execution can begin.

Instruction results are transferred from the rename registers to the architected registers by
the completion unit when an instruction is retired from the completion queue without
exceptions and after any predicted branch conditions preceding it in the completion queue
have been resolved correctly. If a branch prediction was incorrect, the instructions
following the branch are flushed from the completion queue, and any results of those
instructions are flushed from the rename registers.

6.3.3.2 Instruction Serialization

Although the MPC750 can dispatch and complete two instructions per cycle, so-called
serializing instructionslimit dispatch and completion to oneinstruction per cycle. Thereare
three types of instruction serialization:

« Execution serialization—Execution-serialized instructions are dispatched, held in
the functional unit and do not execute until all prior instructions have completed. A
functional unit holding an execution-serialized instruction will not accept further
instructions from the dispatcher. For example, execution seriaization is used for
instructions that modify nonrenamed resources. Results from these instructions are
generally not available or forwarded to subsequent instructions until the instruction
completes (using mtspr to writeto LR or CTR does provide forwarding to branch
instructions).

e Completion serialization (also referred to as post-dispatch or tail serialization)—
Completion-serialized instructions inhibit dispatching of subsequent instructions
until the serialized instruction completes. Completion serialization is used for
instructions that bypass the normal rename mechanism.

» Refetch serialization (flush serialization)—Refetch-serialized instructions inhibit
dispatch of subseguent instructions and force refetching of subsequent instructions
after completion.
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6.4 Execution Unit Timings

The following sections describe instruction timing considerations within each of the
respective execution units in the MPC750.

6.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are
typicaly expensive to execute in most machines because they disrupt normal flow in the
instruction stream. When a change in program flow occurs, the |Q must be relcaded with
the target instruction stream. Previously issued instructions will continue to execute while
the new instruction stream makes its way into the 1Q, but depending on whether the target
instruction is in the BTIC, instruction cache, L2 cache, or in system memory, some
opportunities may be missed to execute instructions, as the example in Section 6.3.2.3,
“Cache Miss,” shows.

Performance features such as the branch folding, removal of fall-through branch
instructions, BTIC, dynamic branch prediction (implemented in the BHT), two-level
branch prediction, and the implementation of nonblocking caches minimize the penalties
associated with flow control operations on the MPC750. The timing for branch instruction
execution is determined by many factors including the following:

* Whether the branch istaken

¢ Whether instructionsin the target stream, typically the first two instructionsin the
target stream, are in the branch target instruction cache (BTIC)

¢ Whether the target instruction stream isin the on-chip cache
¢ Whether the branch is predicted
¢ Whether the prediction is correct

6.4.1.1 Branch Folding and Removal of Fall-Through Branch
Instructions

When a branch instruction is encountered by the fetcher, the BPU immediately begins to

decode it and tries to resolve it. All branch instructions except those that update either the

LR or CTR are removed from the instruction flow before they would take a position in the

completion queue.

Branch folding occurs either when a branch is taken or is predicted as taken (asis the case
with unconditional branches). When the BPU folds the branch instruction out of the
instruction stream, the target instruction stream that is fetched into the instruction queue
overwrites the branch instruction.

Figure 6-7 shows branch folding. Here a br instruction is encountered in a series of add
instructions. The branch isresolved astaken. What happens on the next clock cycle depends
on whether the target instruction stream isin the BTIC, the instruction cache, or if it must
be fetched from the L2 cache or from system memory.
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Figure 6-7 shows cases where there is a BTIC hit, and when there is a BTIC miss (and
instruction cache hit).

If there is a BTIC hit on the next clock cycle the b instruction is replaced by the target
instruction, and1l, that was found in the BTIC; the second and instruction is also fetched
from the BTIC. On the next clock cycle, the next four and instructions from the target
stream are fetched from the instruction cache.

If thetarget instructionis not in the BTIC, thereis an idle cycle while the fetcher attempts
to fetch the first four instructions from the instruction cache (on the next clock cycle). In
the examplein Figure 6-7, the first four target instruction are fetched on the next clock.

If it misses in the caches, an L2 cache or memory access is required, the latency of which
is dependent on several factors, such as processor/bus clock ratios. In most cases, new
instructions arrive in the 1Q before the execution units becomeidle.

Branch Folding Branch Folding

(Taken Branch/BTIC Hit) (Taken Branch/BTIC Miss)

Clock0  Clock1l  Clock 2 Clock0  Clock1l  Clock 2
IQ5 [add5 IQ5 [add5
IQ4 [add4 1Q4 [add4
1Q3 [add3 and6 1Q3 [add3 and4
1Q2 b and5 1Q2 b and3
IQ1 [add2 and2 and4 1Q1 [add2 and2
1Q0 [addl andl and3 1Q0 [addl andl

Figure 6-7. Branch Folding

Figure 6-8 shows the removal of fall-through branch instructions, which occurs when a
branch is not taken or is predicted as not taken.

Branch Fall-Through
(Not-Taken Branch)

Clock0  Clock 1 Clock 2

1Q5 [add5
1Q4 [add4
1Q3 [add3 add5 add7
1Q2 b add4 add6
1Q1 [add2 add3 add5
1Q0 [addl b add4

Figure 6-8. Removal of Fall-Through Branch Instruction

In this case the branch instruction remainsin the instruction queue and is removed from the
instruction stream asif it were dispatched. However, it isnot dispatched to an execution unit
and is not assigned an entry in the completion queue.
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When abranch instruction isdetected before it reaches adispatch position, and if the branch
iscorrectly predicted as taken, folding the branch instruction (and any instructions from the
incorrect path) reduces the latency required for flow control to zero; instruction execution
proceeds as though the branch was never there.

The advantage of removing the fall-through branch instructions at dispatch is only
marginally lessthan that of branch folding. Because the branch is not taken, only the branch
instruction needs to be discarded. The only cost of expelling the branch instruction from
one of the dispatch entries rather than folding it is missing a chance to dispatch an
executable instruction from that position.

6.4.1.2 Branch Instructions and Completion

As described in the previous section, instructions that do not update either the LR or CTR
are removed from the instruction stream before they reach the completion queue, either by
branch folding (in the case of taken branches) or by removing fall-through branch
instructions at dispatch (in the case of non-taken branches). However, branch instructions
that update the architected LR and CTR must do so in program order and therefore must
perform write-back in the completion stage, like the instructions that update the FPRs and
GPRs.

Branch instructions that update the CTR or LR pass through the instruction queue like
nonbranch instructions. At the point of dispatch, however, they are not sent to an execution
unit, but rather are assigned a slot in the completion queue, as shown in Figure 6-9.

Branch Completion
(LR/CTR Write-Back)

Clock 0 Clock 1 Clock 2 Clock 3

IQ5 [add5
1Q4 |add4
1Q3 [add3 add5 add7 add9
1Q2 | bc add4 add6 adds
1Q1 [add2 add3 add5 add7
1Q0 [addl bc add4 add6

CcQ5

CQ4

cQ3

cQ2

CQ1 add2 add3 add5

CQo addl bc add4

Figure 6-9. Branch Completion

In this example, the be instruction is encoded to decrement the CTR. It is predicted as not-
taken in clock cycle 0. In clock cycle 2, bc and add3 are both dispatched. In clock cycle 3,
the architected CTR isupdated and the bc instruction isretired from the completion queue.
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6.4.1.3 Branch Prediction and Resolution
The MPC750 supports the following two types of branch prediction:

« Static branch prediction—Thisis defined by the PowerPC architecture as part of the
encoding of branch instructions.

¢ Dynamic branch prediction—This is a processor-specific mechanism implemented
in hardware (in particular the branch history table, or BHT) that monitors branch
instruction behavior and maintains a record from which the next occurrence of the
branch instruction is predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the BPU
predictswhether it will be taken, and instruction fetching proceeds down the predicted path.
If the branch prediction resolves as incorrect, the instruction queue and all subsequently
executed instructions are purged, instructions executed prior to the predicted branch are
allowed to complete, and instruction fetching resumes down the correct path.

The MPC750 executes through two levels of prediction. Instructions from the first
unresolved branch can execute, but they cannot complete until the branch is resolved. If a
second branch instruction is encountered in the predicted instruction stream, it can be
predicted and instructions can be fetched, but not executed, from the second branch. No
action can be taken for a third branch instruction until at least one of the two previous
branch instructions is resolved.

The number of instructions that can be executed after the issue of a predicted branch
instruction is limited by the fact that no instruction executed after a predicted branch may
actually update the register files or memory until the branch is completed. That is,
instructions may be issued and executed, but cannot reach the write-back stage in the
completion unit. When an instruction following a predicted branch completes execution, it
does not write back itsresultsto the architected registers, instead, it stallsin the completion
queue. Of course, when the completion queue is full, no additional instructions can be
dispatched, even if an execution unitisidle.

In the case of amisprediction, the MPC750 can easily redirect its machine state because the
programming model has not been updated. When a branch is mispredicted, all instructions
that were dispatched after the predicted branch instruction are flushed from the completion
queue and any results are flushed from the rename registers.

The BTIC isacache of recently used branch target instructions. If the search for the branch
target hitsin the cache, thefirst one or two branch instructionsis available in the instruction
gueue on the next cycle (shown in Figure 6-5). Two instructions are fetched on aBTIC hit,
unlessthe branch target isthelast instruction in acache block, in which case oneinstruction
is fetched.

In some situations, an instruction seguence creates dependencies that keep a branch
instruction from being resolved immediately, thereby delaying execution of the subseguent
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instruction stream based on the predicted outcome of the branch instruction. Theinstruction
sequences and the resulting action of the branch instruction are described as follows:

« Anmtspr(LK) followed by a bclr—Fetching stops and the branch waits for the
mtspr to execute.

¢ Anmtspr(CTR) followed by a bcctr—Fetching stops and the branch waits for the
mtspr to execute.

*  Anmtspr(CTR) followed by abc (CTR decrement)—Fetching stops and the branch
waits for the mtspr to execute.

e A third bc(based-on-CR) is encountered while there are two unresolved bc(based-
on-CR). The third bc(based-on-CR) is not executed and fetching stops until one of
the previous bc(based-on-CR) is resolved. (Note that branch conditions can be a
function of the CTR and the CR; if the CTR condition is sufficient to resolve the
branch, then a CR-dependency isignored.)

6.4.1.3.1 Static Branch Prediction

The PowerPC architecture provides a field in branch instructions (the BO field) to allow
software to hint whether a branch is likely to be taken. Rather than delaying instruction
processing until the condition is known, the MPC750 uses the instruction encoding to
predict whether the branch islikely to be taken and begins fetching and executing along that
path. When the branch condition is known, the prediction is evaluated. If the prediction was
correct, program flow continues along that path; otherwise, the processor flushes any
instructions and their results from the mispredicted path, and program flow resumes along
the correct path.

Static branch prediction is used when HIDO[BHT] is cleared. That is, the branch history
table, which isused for dynamic branch prediction, is disabled. For information about static
branch prediction, see“ Conditional Branch Control,” in Chapter 4, “Addressing Modes and
Instruction Set Summary,” in The Programming Environments Manual .

6.4.1.3.2 Predicted Branch Timing Examples

Figure 6-10 shows cases where branch instructions are predicted. It shows how both taken
and not-taken branches are handled and how the MPC750 handles both correct and
incorrect predictions. The example showsthe timing for the foll owing instruction sequence:

0 add

1 add

2 bc

3 mul hw
4 bc TO
5 f add
6 and
add

T7 add
T8 add
T9 add
T10 add
T11 or
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| | |
| | |
0 add Lo I I I I
N
_7 : : : E In dispatch entry (IQ0/IQ1)
| |
[ 2bc —] L ‘ ‘ ;
| ‘ ! , ] | | |:| Predict
|
\M‘:% ‘ |:| Execute
| 4 bC | | | |
‘ ‘ ‘ ‘ ‘ - Complete (In CQ)
| | | | |
-5 fadd
: | ‘ ‘ ‘ | I In retirement entry (CQO/CQL)
| | T0 add—ee I |
| | | | | | | | | | |
l l TL 200 l l l l l
| | | | | | | |
| | | T2 add = | | | | |
| | | | | | | |
| | | T3add — ] | | | | |
| | | | | | | |
| | | T4 and | | | | |
| | | | | | | |
I I I T5 or I I I I I
| | | | | | | |
! ! ! ! ! 5 fadd *
| | | | | t t +
I I I I I M
| | | | | | | | | | eoe |
| | | | | | | | | | |
Instruction | | | | | | | | I I I
Queue | | | | | | | | | | |
| | | | | | | | | | |
EERNEER] I RERRER] L@ ] | | |
12 (bo)|! 4 | T4 ] T4 | @ | | |
| | | | | | | | | | |
' 1 | 3 || T1L || T3 || T3 | 6
0 2 TO T2 T2 5
Completion
Queue
3 T1 (8) (8) (8)
2 TO T1 ) ) )
1 1 3 TO 6 6 6
0 0 2 3 5 5 5

* Instructions 5 and 6 are not in the 1Q in clock cycle 5. Here, the fetch stage shows cache latency.

Figure 6-10. Branch Instruction Timing

0. During clock cycle 0, instructions 0 and 1 are dispatched to their respective

execution units. Instruction 2 is a branch instruction that updates the CTR. It is

predicted asnot takenin clock cycleO. Instruction 3isamulhw instruction on which

instruction 4 depends.
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1. Inclock cyclel, instructions 2 and 3 enter the dispatch entriesin the | Q. Instruction
4 (asecond be instruction) and 5 are fetched. The second be instruction is predicted
astaken. It can be folded, but it cannot be resolved until instruction 3 writes back.

2. Inclock cycle 2, instruction 4 has been folded and instruction 5 has been flushed
from the Q. The two target instructions, TO and T1, are both in the BTIC, so they
arefetched in this cycle. Note that even though the first bc instruction may not have
resolved by this point (we can assume it has), the MPC750 allows fetching from a
second predicted branch stream. However, these instructions could not be
dispatched until the previous branch has resolved.

3. Inclock cycle 3, target instructions T2—T5 are fetched as TO and T1 are dispatched.

4. Inclock cycle 4, instruction 3, on which the second branch instruction depended,
writesback and the branch predictionisprovenincorrect. Eventhough TOisin CQ1,
from which it could be written back, it is not written back because the branch
prediction was incorrect. All target instructions are flushed from their positionsin
the pipeline at the end of thisclock cycle, as are any resultsin the rename registers.

After one clock cycle required to refetch the original instruction stream, instruction 5, the
same instruction that was fetched in clock cycle 1, is brought back into the IQ from the
instruction cache, along with three others (not all of which are shown).

6.4.2 Integer Unit Execution Timing

The MPC750 has two integer units. The IU1 can execute all integer instructions; and the
IU2 can execute all integer instructions except multiply and divide instructions. As shown
in Figure 6-2, each integer unit has one execute pipeline stage, thus when a multicycle
integer instruction is being executed, no other integer instructions can begin to execute.
Table 6-6 lists integer instruction latencies.

Most integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing

The floating-point unit on the MPC750 executes all floating-point instructions. Execution
of most floating-point instructions is pipelined within the FPU, alowing up to three
instructionsto be executing in the FPU concurrently. While most floating-point instructions
execute with three- or four-cycle latency, and one- or two-cycle throughput, three
instructions (fdivs, fdiv, and fres) execute with latencies of 11 to 33 cycles. Thefdivs, fdiv,
fres, mtfsb0, mtfsbl, mtfsfi, mffs, and mtfsf instructions block the floating-point unit
pipeline until they complete execution, and thereby inhibit the dispatch of additional
floating-point instructions. See Table 6-7 for floating-point instruction execution timing.
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6.4.4 Effect of Floating-Point Exceptions on Performance

For the fastest and most predictable floating-point performance, al exceptions should be
disabled in the FPSCR and MSR.

6.4.5 Load/Store Unit Execution Timing

The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages. Thefirst isfor effective address cal culation and MMU tranglation and the second is
for accessing data in the cache. Load and store instructions have a two-cycle latency and
one-cycle throughput.

If operands are misaligned, additional latency may be required either for an alignment
exception to betaken or for additional bus accesses. Load instructionsthat missin the cache
block subsequent cache accesses during the cache line refill. Table 6-8 givesload and store
instruction execution latencies.

6.4.6 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses, and in some cases affect
it significantly. The effects memory operand placement has on performance are shown in
Table 6-1.

The best performanceis guaranteed if memory operands are aligned on natural boundaries.
For the best performance across the widest range of implementations, the programmer
should assume the performance model described in Chapter 3, “ Operand Conventions,” in
The Programming Environments Manual .

The effect of misalignment on memory access latency isthe same for big- and little-endian
addressing modes except for multiple and string operations that cause an alignment
exception in little-endian mode.
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Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing
Size Byte Alignment None 8 Byte Cache Block Protection Boundary
Integer
4 byte 4 Optimal® — — _
<4 Optimal Good Good Good
2 byte 2 Optimal — — —
<2 Optimal Good Good Good
1 byte 1 Optimal — — —
Imw, 4 Good 3 Good Good Good
stmw?
<4 Poor 4 Poor Poor Poor
String 2 — Good Good Good Good
loating-Point
8 byte 8 Optimal — — —
4 — Good Good Good
<4 — Poor Poor Poor
4 byte 4 Optimal — — _
<4 Poor Poor Poor Poor
Notes:

1 Optimal means one EA calculation occurs.

2 Not supported in little-endian mode, causes an alignment exception.

3 Good means multiple EA calculations occur that may cause additional bus activities with multiple bus transfers.
4 Poor means that an alignment exception occurs.

6.4.7 Integer Store Gathering

The MPC750 performs store gathering for write-through operations to nonguarded space.
It performs cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores.
These stores are combined in the LSU to form a double word and are sent out on the 60x
bus as a single-beat operation. However, stores are gathered only if the successive stores
meet the criteria and are queued and pending. Store gathering occurs regardless of the
address order of the stores. Store gathering is enabled by setting HIDO[SGE]. Stores can be
gathered in both endian modes.

Store gathering is not done for the following:

« Cacheable store operations
e Storesto guarded cache-inhibited or write-through space
* Bytereverse store operations

6-26

MPC750 RISC Microprocessor User's Manual




e stwcx. instructions

e ecowx instructions

* A storethat occurs during atable search operation
» Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

6.4.8 System Register Unit Execution Timing

Most instructions executed by the SRU either directly access renamed registers or accessor
modify nonrenamed registers. They generally executein aserial manner. Resultsfrom these
instructions are not available to subsequent instructions until the instruction completes and
is retired. See Section 6.3.3.2, “Instruction Serialization,” for more information on
serializing instructions executed by the SRU, and refer to Table 6-4 and Table 6-5 for SRU
instruction execution timings.

6.5 Memory Performance Considerations

Because the MPC750 can have a maximum instruction throughput of three instructions per
clock cycle, lack of memory bandwidth can affect performance. For the MPC750 to
maximize performance, it must be able to read and write data efficiently. If a system has
multiple bus devices, one of them may experiencelong memory latencies while another bus
master (for example, a direct-memory access controller) is using the external bus.

6.5.1 Caching and Memory Coherency

To minimize the effect of bus contention, the PowerPC architecture defines WIM bits that
are used to configure memory regions as caching-enforced or caching-inhibited. Accesses
to such memory locations never update the on-chip cache. If a cache-inhibited access hits
the on-chip cache, the cache block isinvalidated. If the cache block is marked modified, it
is copied back to memory before being invalidated. Where caching is permitted, memory
is configured as either write-back or write-through, which are described as follows:

*  Write-back— Configuring a memory region as write-back lets a processor modify
datain the cache without updating system memory. For such locations, memory
updates occur only on modified cache block replacements, cache flushes, or when
one processor needs data that is modified in another’s cache. Therefore, configuring
memory aswrite-back can help when bus traffic could cause bottlenecks, especially
for multiprocessor systems and for regions in which data, such aslocal variables, is
used often and is coupled closely to a processor.

If multiple devices use datain a memory region marked write-through, snooping
must be enabled to allow the copy-back and cache invalidation operations necessary
to ensure cache coherency. The MPC750's snooping hardware keeps other devices
from accessing invalid data. For example, when snooping is enabled, the MPC750
monitorstransactions of other busdevices. For example, if another device needsdata
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that is modified on the MPC750’s cache, the access is delayed so the MPC750 can
copy the modified datato memory.

Write-through—Store operations to memory marked write-through always update
both system memory and the on-chip cache on cache hits. Because valid cache
contents always match system memory marked write-through, cache hitsfrom other
devicesdo not cause modified datato be copied back asthey do for locations marked
write-back. However, al write operations are passed to the bus, which can limit
performance. L oad operations that missthe on-chip cache must wait for the external
store operation.

Write-through configuration is useful when cached data must agree with external
memory (for example, video memory), when shared (global) data may be needed
often, or when it is undesirable to alocate a cache block on a cache miss.

Chapter 3, “L1 Instruction and Data Cache Operation,” describes the caches, memory
configuration, and snooping in detail.

6.5.2 Effect of TLB Miss

If apage addresstrandationisnotinaTLB, the MPC750 hardware searches the page tables
and updatesthe TL B when atrandation isfound. Table 6-2 shows the estimated latency for
the hardware TLB load for different cache configurations and conditions.

Table 6-2. TLB Miss Latencies

L1 Qondition L2 Condition Processor/!_Z Processor/Systgm Bus | Estimated Latency
(Instruction and Data) Clock Ratio Clock Ratio (Cycles)

100% cache hit — — — 7

100% cache miss 100% cache hit 11 — 13
100% cache miss 100% cache hit 151 — 18
100% cache miss 100% cache hit 2:1 — 20
100% cache miss 100% cache miss 1:1 2.5:1 (6:3:3:3 memory) 62
100% cache miss 100% cache miss 11 4:1 (5:2:2:2 memory) 77

The PTE table search assumes a hit in the first entry of the primary PTEG.
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6.6 Instruction Scheduling Guidelines

The performance of the MPC750 can be improved by avoiding resource conflicts and
scheduling instructions to take fullest advantage of the parallel execution units. Instruction
scheduling on the MPC750 can be improved by observing the following guidelines:

» To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that evaluates them. Because there can be no more than 12 instructions
in the processor (with theinstruction that sets CR in CQO and the dependent branch
instruction in 1Q5), there is no advantage to having more than 10 instructions
between them.

¢ Likewise, when branching to alocation specified by the CTR or LR, separate the
mtspr instruction that initializes the CTR or LR from the dependent branch
instruction. This ensuresthe register values areimmediately available to the branch
instruction.

¢ Scheduleinstructions such that two can be dispatched at atime.

¢ Scheduleinstructions to minimize stalls due to execution units being busy.

¢ Avoid scheduling high-latency instructions close together. Interspersing single-
cycle latency instructions between longer-latency instructions minimizes the effect
that instructions such as integer divide and multiply can have on throughput.

e Avoid using serializing instructions.

e Scheduleinstructions to avoid dispatch stalls:
— Six instructions can be tracked in the completion queue; therefore, only six

instructions can be in the execute stages at any one time

— Thereare six GPR rename registers, therefore only six GPRs can be specified as
destination operands at any time. If no rename registers are available,
instructions cannot enter the execute stage and remain in the reservation station
or instruction queue until they become available.

Note that load with update address instructions use two destination registers

— Similarly, there are six FPR rename registers, so only six FPR destination
operands can be in the execute and complete stages at any time.

6.6.1 Branch, Dispatch, and Completion Unit Resource
Requirements

This section describes the specific resources required to avoid stalls during branch
resolution, instruction dispatching, and instruction completion.
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6.6.1.1 Branch Resolution Resource Requirements
Thefollowingisalist of branch instructions and the resources required to avoid stalling the
fetch unit in the course of branch resolution:

e Thebclr instruction requires LR availability.

e Thebcctr instruction requires CTR availability.

e Branch and link instructions require shadow LR availability.

« The*“branch conditional on counter decrement and the CR” condition requiresCTR
availability or the CR condition must be false, and the MPC750 cannot execute
instructions after an unresolved predicted branch when the BPU encounters a
branch.

< A branch conditional on CR condition cannot be executed following an unresolved
predicted branch instruction.

6.6.1.2 Dispatch Unit Resource Requirements
The following is alist of resources required to avoid stalls in the dispatch unit. 1Q[0] and
IQ[1] are the two dispatch entriesin the instruction queue:
* Requirements for dispatching from |Q[0] are as follows:
— Needed execution unit available
— Needed GPR rename registers available
— Needed FPR rename registers available
— Completion queueis not full.
— A completion-serialized instruction is not being executed.

* Requirements for dispatching from |Q[1] are as follows:
— Instruction in 1Q[0] must dispatch.
— Instruction dispatched by 1Q[0] is not completion- or refetch-serialized.
— Needed execution unit is available (after dispatch from 1Q[0]).
— Needed GPR rename registers are available (after dispatch from 1Q[Q]).
— Needed FPR rename register is available (after dispatch from 1Q[0]).
— Completion queue is not full (after dispatch from 1Q[0]).

6.6.1.3 Completion Unit Resource Requirements
Thefollowing isalist of resources required to avoid stalls in the completion unit; note that
the two completion entries are described as CQ[0] and CQ[1], where CQ[0] is the
completion queue located at the end of the completion queue (see Figure 6-4).
* Requirements for completing an instruction from CQ[0] are as follows:

— Instruction in CQ[0] must be finished.

— Instruction in CQ[0] must not follow an unresolved predicted branch.

— Instruction in CQ[0] must not cause an exception.
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« Requirements for completing an instruction from CQ[1] are asfollows:
— Instruction in CQ[0] must complete in same cycle.

— Instruction in CQ[1] must be finished.

— Instruction in CQ[1] must not follow an unresolved predicted branch.
— Instruction in CQ[ 1] must not cause an exception.

— Instruction in CQ[1] must be an integer or load instruction.

— Number of CR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of GPR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of FPR updates from both CQ[0] and CQ[1] must not exceed two.

6.7 Instruction Latency Summary

Table 6-3 through Table 6-8 list latencies associated with instructions executed by each
execution unit. Table 6-3 describes branch instruction latencies.

Table 6-3. Branch Instructions

Mnemonic | Primary | Extended Latency

b[l][a] 18 — Unless these instructions update either the CTR or the LR, branch
operations are folded if they are either taken or predicted as taken. They fall

befl][a] 16 - through if they are not taken or predicted as not taken.

becetr[l] 19 528

belr[l] 19 16

Table 6-4 lists system register instruction latencies.

Table 6-4. System Register Instructions

Mnemonic Primary Extended Unit Cycles Serialization

eieio 31 854 SRU 1 —

isync 19 150 SRU 2 Completion, refetch
mfmsr 31 83 SRU 1 —

mfspr (DBATSs) 31 339 SRU 3 Execution

mfspr (IBATS) 31 339 SRU 3 —

mfspr (not I/DBATS) 31 339 SRU 1 Execution

mfsr 31 595 SRU 3 —

mfsrin 31 659 SRU 3 Execution

mftb 31 371 SRU 1 —

mtmsr 31 146 SRU 1 Execution

mtspr (DBATSs) 31 467 SRU 2 Execution

mtspr (IBATS) 31 467 SRU 2 Execution
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Table 6-4. System Register Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
mtspr (not I/DBATS) 31 467 SRU 2 Execution
mtsr 31 210 SRU 2 Execution
mtsrin 31 242 SRU 2 Execution
mttb 31 467 SRU 1 Execution
rfi 19 50 SRU 2 Completion, refetch
sc 17 --1 SRU 2 Completion, refetch
sync 31 598 SRU 3l —
tibsync 2 31 566 — —
Notes:

1 This assumes no pending stores in the store queue. If there are, the sync completes after they complete to memory.
If broadcast is enabled on the 60x bus, sync completes only after a successful broadcast.

2tlbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is
dispatched. Upon retirement, it waits for an external TLBISYNC signal to be asserted. In most systems TLBISYNC
is always asserted so the instruction is a no-op.

Table 6-5 lists condition register logical instruction latencies.

Table 6-5. Condition Register Logical Instructions

Mnemonic Primary Extended Unit Cycles Serialization
crand 19 257 SRU 1 Execution
crandc 19 129 SRU 1 Execution
creqv 19 289 SRU 1 Execution
crnand 19 225 SRU 1 Execution
crnor 19 33 SRU 1 Execution
cror 19 449 SRU 1 Execution
crorc 19 417 SRU 1 Execution
crxor 19 193 SRU 1 Execution
mcrf 19 0 SRU 1 Execution
mcrxr 31 512 SRU 1 Execution
mfcr 31 19 SRU 1 Execution
mtcrf 31 144 SRU 1 Execution

Table 6-6 shows integer instruction latencies. Note that the IU1l executes all integer
arithmetic instructions—multiply, divide, shift, rotate, add, subtract, and compare. The U2
executes all integer instructions except multiply and divide (that is, shift, rotate, add,
subtract, and compare).
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Table 6-6. Integer Instructions

Mnemonic Primary Extended Unit Cycles Serialization
addc[o][.] 31 10 1U1/1U2 1 —
adde[o][.] 31 138 Iu11u2 1 Execution
addi 14 — u1/1U2 1 —
addic 12 — Iu1/1U2 1 —
addic. 13 — IU1/1u2 1 —
addis 15 — u1/1U2 1 —
addme[o][.] 31 234 IU1/1U2 1 Execution
addze[o][.] 31 202 IU11U2 1 Execution
add[o][.] 31 266 1u1/1U2 1 —
andc[.] 31 60 1U1/1U2 1 —
andi. 28 — 1U1/1U2 1 —
andis. 29 — u1/1U2 1 —
and[.] 31 28 1U1/1U2 1 —
cmp 31 0 Iu1/1u2 1 —
cmpi 11 — 1u1/1U2 1 —
cmpl 31 32 1U1/1U2 1 —
cmpli 10 — 1U1/1U2 1 —
cntlzw[.] 31 26 u1/1U2 1 —
divwu[o][.] 31 459 U1 19 —
divwl[o][.] 31 491 U1 19 —
eqv[.] 31 284 u1/1U2 1 —
extsb[.] 31 954 1U1/1U2 1 —
extsh[] 31 922 IU1/1U2 1 —
mulhwu[.] 31 11 u1/1U2 2,3,45,6 —
mulhw[.] 31 75 1U1/1U2 2,345 —
mulli 7 — U1 23 —
mull[o][.] 31 235 U1 2,345 —
nand[.] 31 476 1U1/1U2 1 —
neglo][.] 31 104 1u1/1U2 1 —
nor[.] 31 124 1u1/1U2 1 —
orcl.] 31 412 1U1/1U2 1 —
ori 24 — 1U1/1U2 1 —
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Table 6-6. Integer Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
oris 25 — u1/1U2 1 —
or[.] 31 444 1U1/1U2 1 —
rlwimil.] 20 — 1U1/1U2 1 —
rlwinm[.] 21 — IU1/1U2 1 —
rlwnm[.] 23 — 1u1/1u2 1 —
siw[.] 31 24 U1/1U2 1 —
srawil.] 31 824 u1/1U2 1 —
sraw[.] 31 792 1U1/1U2 1 —
srwl.] 31 536 u1/1U2 1 —
subfc[o][.] 31 8 IU1/1U2 1 —
subfe[o][.] 31 136 Iu1/1U2 1 Execution
subfic 8 — 1U1/1U2 1 —
subfmelo][.] 31 232 IU1/1U2 1 Execution
subfze[o][.] 31 200 1U1/1U2 1 Execution
subf[.] 31 40 IU1/1U2 1 —
tw 31 4 1u1/1U2 2 —
twi 3 — 1U1/1U2 2 —
xori 26 — Iu1/1U2 1 —
xoris 27 — 1u1/1U2 1 —
xor[.] 31 316 1U1/1U2 1 —

Table 6-7 shows latencies for floating-point instructions. Pipelined floating-point
instructions are shown with number of clocks in each pipeline stage separated by dashes.
Floating-point instructions with asingle entry in the cycles column are not pipelined; when
the FPU executes these nonpipelined instructions, it remains busy for the full duration of
the instruction execution and is not available for subsequent instructions.

Table 6-7. Floating-Point Instructions

Mnemonic Primary Extended Unit Cycles Serialization
fabsl.] 63 264 FPU 1-1-1 —
faddsl.] 59 21 FPU 1-1-1 —
fadd[.] 63 21 FPU 1-1-1 —
fempo 63 32 FPU 1-1-1 —
fcmpu 63 0 FPU 1-1-1 —
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Table 6-7. Floating-Point Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
fetiwzl.] 63 15 FPU 1-1-1 —
fetiw[.] 63 14 FPU 1-1-1 —
fdivs[.] 59 18 FPU 17 —
fdiv[.] 63 18 FPU 31 —
fmaddsl.] 59 29 FPU 1-1-1 —
fmadd[.] 63 29 FPU 2-1-1 —
fmr[.] 63 72 FPU 1-1-1 —
fmsubsl.] 59 28 FPU 1-1-1 —
fmsubl.] 63 28 FPU 2-1-1 —
fmuls[.] 59 25 FPU 1-1-1 —
fmul[.] 63 25 FPU 2-1-1 —
fnabsl[.] 63 136 FPU 1-1-1 —
fneg[.] 63 40 FPU 1-1-1 —
fnmaddsl[.] 59 31 FPU 1-1-1 —
fnmaddl[.] 63 31 FPU 2-1-1 —
fnmsubsl.] 59 30 FPU 1-1-1 —
fnmsubl[.] 63 30 FPU 2-1-1 —
fres[.] 59 24 FPU 10 —
frsp[.] 63 12 FPU 1-1-1 —
frsqrte[.] 63 26 FPU 1-1-1 —
fsel[.] 63 23 FPU 1-1-1 —
fsubs[.] 59 20 FPU 1-1-1 —
fsub[.] 63 20 FPU 1-1-1 —
mcrfs 63 64 FPU 1-1-1 Execution
mffs[.] 63 583 FPU 1-1-1 Execution
mtfsbO[.] 63 70 FPU 3 —
mtfsb1[.] 63 38 FPU 3 —
mtfsfi[.] 63 134 FPU 3 —
mtfsf[.] 63 711 FPU 3 —

Chapter 6. Instruction Timing

6-35



Table 6-8 shows load and store instruction latencies. Pipelined |oad/store instructions are

shown with cycles of total latency and throughput cycles separated by a colon.

Table 6-8. Load and Store Instructions

Mnemonic Primary Extended Unit Cycles Serialization
dcbf 31 86 LSu 3:51 Execution
dcbi 31 470 LSu 3:3! Execution
dcbst 31 54 LSu 351 Execution
dcbt 31 278 LSU 2:1 —
dcbtst 31 246 LSU 2:1 —
dcbz 31 1014 LSu 362 Execution
eciwx 31 310 LSU 2:1 —
ecowx 31 438 LSU 2:1 —
ichi 31 982 LSu 3:41 Execution
bz 34 — LSU 2:1 —

Ibzu 35 — LSU 2:1 —
Ibzux 31 119 LSU 2:1 —
Ibzx 31 87 LSU 2:1 —
Ifd 50 — LSU 2:1 —
Ifdu 51 — LSU 2:1 —
Ifdux 31 631 LSU 2:1 —
Ifdx 31 599 LSU 2:1 —
Ifs 48 — LSU 2:1 —
Ifsu 49 — LSU 2:1 —
Ifsux 31 567 LSU 2:1 —
Ifsx 31 535 LSU 2:1 —
lha 42 — LSU 2:1 —
lhau 43 — LSU 2:1 —
lhaux 31 375 LSU 2:1 —
lhax 31 343 LSU 2:1 —
lhbrx 31 790 LSU 2:1 —
lhz 40 — LSU 2:1 —
lhzu 41 — LSU 2:1 —
lhzux 31 311 LSU 2:1 —
lhzx 31 279 LSU 2:1 —
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Table 6-8.

Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles

Imw 46 — LSU 2+n3 Completion, execution
Iswi 31 597 LSU 2+n3 Completion, execution
Iswx 31 533 LSU 2+n3 Completion, execution
Iwarx 31 20 LSuU 31 Execution
Iwbrx 31 534 LSuU 2:1 —

lwz 32 — LSU 2:1 —

lwzu 33 — LSuU 2:1 —

lwzux 31 55 LSuU 2:1 —

lwzx 31 23 LSU 2:1 —

stb 38 — LSuU 2:1 —

stbu 39 — LSuU 2:1 —

stbux 31 247 LSU 2:1 —

stbx 31 215 LSuU 2:1 —

stfd 54 — LSuU 2:1 —

stfdu 55 — LSuU 2:1 —

stfdux 31 759 LSuU 2:1 —

stfdx 31 727 LSuU 2:1 —

stfiwx 31 983 LSuU 2:1 —

stfs 52 — LSuU 2:1 —

stfsu 53 — LSuU 2:1 —

stfsux 31 695 LSuU 2:1 —

stfsx 31 663 LSuU 2:1 —

sth 44 — LSuU 2:1 —
sthbrx 31 918 LSuU 2:1 —

sthu 45 — LSuU 2:1 —

sthux 31 439 LSuU 2:1 —

sthx 31 407 LSU 2:1 —

stmw 47 — LSuU 2+nd Execution
stswi 31 725 LSuU 2+nd Execution
stswx 31 661 LSU 2+n3 Execution
stw 36 — LSU 2:1 —
stwbrx 31 662 LSuU 2:1 —
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Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
stwex. 31 150 LSuU 8:8 Execution
stwu 37 — LSU 2:1 —
stwux 31 183 LSuU 2:1 —
stwx 31 151 LSU 2:1 —
tibie 31 306 LSU 3:4! Execution
Notes:

1 For cache-ops, the first number indicates the latency in finishing a single instruction; the second indicates the
throughput for back-to-back cache-ops. Throughput may be larger than the initial latency as more cycles may be
needed to complete the instruction to the cache, which stays busy keeping subsequent cache-ops from executing.

2 The throughput number of 6 cycles for dchz assumes it is to nonglobal (M = 0) address space. For global address
space, throughput is at least 11 cycles.

3 Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of
cycles, where nis the number of words accessed by the instruction.
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Chapter 7
Signal Descriptions

This chapter describes the MPC750 microprocessor’s external signals. It containsaconcise
description of individual signals, showing behavior when the signal is asserted and negated
and when the signal is an input and an output.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
are not active low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

The MPC750 signals are grouped as follows:

Address arbitration—The MPC750 uses these signals to arbitrate for address bus
mastership.

Address transfer start—These signals indicate that a bus master has begun a
transaction on the address bus.

Address transfer—These signal s include the address bus and address parity signals.
They are used to transfer the address and to ensure the integrity of the transfer.

Transfer attribute—These signals provide information about the type of transfer,
such asthe transfer size and whether the transaction is bursted, write-through, or
cache-inhibited.

Addresstransfer termination—These signals are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

Data arbitration—The MPC750 uses these signals to arbitrate for data bus
mastership.

Datatransfer—These signal's, which consist of the data bus and data parity, are used
to transfer the data and to ensure the integrity of the transfer.
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Data transfer termination—Data termination signals are required after each data
beat in adatatransfer. In asingle-beat transaction, the data termination signals also
indicate the end of the tenure; while in burst accesses, the data termination signals
apply to individual beats and indicate the end of the tenure only after the final data
beat. They also indicate whether a condition exists that requires the data phase to be
repeated.

L 2 cache address/data—The MPC750 has separate address and data buses for
accessing the L2 cache (not supported in the MPC740).

L 2 cache clock/control—These signal s provide clocking and control for the L2
cache (not supported in the MPC740).

Interrupts/resets—These signals include the external interrupt signal, checkstop
signals, and both soft reset and hard reset signals. They are used to interrupt and,
under various conditions, to reset the processor.

Processor status and control—These signals are used to set the reservation
coherency hit, enable the time base, and other functions. They are also used in
conjunction with such resources as secondary caches and the time base facility.

Clock control—These signals determine the system clock frequency. They can also
be used to synchronize multiprocessor systems.

Test interface—The JTAG (IEEE 1149.1a-1993) interface and the common on-chip
processor (COP) unit provide a serial interface to the system for performing board-
level boundary-scan interconnect tests.
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7.1 Signal Configuration

Figure 7-1 illustrates the MPC750's signal configuration, showing how the signals are
grouped. A pinout showing pin numbers is included in the MPC750 hardware

specifications.
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Figure 7-1. MPC750 Signal Groups
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7.2 Signal Descriptions

This section describes individual MPC750 signals, grouped according to Figure 7-1. Note
that the following sections summarize signal functions. Chapter 8, “System Interface
Operation,” describes many of these signals in greater detail, both with respect to how
individual signals function and how groups of signalsinteract.

7.2.1 Address Bus Arbitration Signals

The address arbitration signals areinput and output signalsthe MPC750 usesto request the
address bus, recognize when the request is granted, and indicate to other devices when
mastership is granted. For a detailed description of how these signas interact, see
Section 8.3.1, “Address Bus Arbitration.”

7.2.1.1 Bus Request (BR)—Output
Following are the state meaning and timing comments for the BR output signal.

State M eaning Asserted—I ndicates that the MPC750 is requesting mastership of
the address bus. Note that BR may be asserted for one or more
cycles, and then de-asserted dueto an internal cancellation of the bus
request (for example, due to aload hit in the touch load buffer). See
Section 8.3.1, “Address Bus Arbitration.”

Negated—I ndicates that the MPC750 is not requesting the address
bus. The MPC750 may have no bus operation pending, it may be
parked, or the ARTRY input was asserted on the previous bus clock
cycle.

Timing Comments Assertion—Occurs when the MPC750 is not parked and a bus
transaction is needed. This may occur even if the two possible
pipeline accesses have occurred. BR will also be asserted for one
cycle during the execution of adcbz instruction, and during the
execution of aload instruction which hits in the touch load buffer.

Negation—Occursfor at least one bus clock cycle after an accepted,
qualified bus grant (see BG and ABB), even if another transactionis
pending. It is also negated for at least one bus clock cycle when the
assertion of ARTRY is detected on the bus.

7.2.1.2 Bus Grant (BG)—Input
Following are the state meaning and timing comments for the BG input signal.

State M eaning Asserted—I ndicates that the MPC750 may, with proper
qualification, assume mastership of the address bus. A qualified bus
grant occurs when BG is asserted and ABB and ARTRY are not
asserted the bus cycle following the assertion of AACK. The ABB
and ARTRY signals are driven by the MPC750 or other bus masters.
If the MPC750 is parked, BR need not be asserted for the qualified
bus grant. See Section 8.3.1, “Address Bus Arbitration.”
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Timing Comments

Negated— | ndicates that the MPC750 is not the next potential
address bus master.

Assertion—May occur at any time to indicate the MPC750 can use
the address bus. After the MPC750 assumes bus mastership, it does
not check for aqualified bus grant again until the cycle during which
the address bus tenure completes (assuming it has another
transaction to run). The MPC750 does not accept aBG in the cycles
between the assertion of any TS and AACK.

Negation—May occur at any time to indicate the MPC750 cannot
usethe bus. The MPC750 may still assume bus mastership onthe bus
clock cycle of the negation of BG because during the previous cycle
BG indicated to the MPC750 that it could take mastership (if
qualified).

7.2.1.3 Address Bus Busy (ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB)—Output
Following are the state meaning and timing comments for the ABB output signal.

State M eaning

Timing Comments

Asserted—I ndicates that the MPC750 is the address bus master. See
Section 8.3.1, “Address Bus Arbitration.”

Negated—I ndicates that the MPC750 is not using the address bus. If
ABB is negated during the bus clock cycle following aqualified bus
grant, the MPC750 did not accept mastership even if BR was
asserted. This can occur if a potential transaction is aborted
internally before the transaction begins.

Assertion—Occurs on the bus clock cycle following aqualified BG
that is accepted by the processor (see Negated).

Negation—Occurs for a minimum of one-half bus clock cycle
following the assertion of AACK. If ABB is negated during the bus
clock cycle after aqualified bus grant, the MPC750 did not accept
mastership, even if BR was asserted.

High Impedance—Occurs after ABB is negated.

7.2.1.3.2 Address Bus Busy (ABB)—Input
Following are the state meaning and timing comments for the ABB input signal.

State M eaning

Asserted—I ndicates that the address busisin use. This condition
effectively blocks the MPC750 from assuming address bus
ownership, regardless of the BG input; see Section 8.3.1, “Address
BusArbitration.”

Negated—I ndicates that the address busis not owned by another bus
master and that it is available to the MPC750 when accompanied by
aqualified bus grant.
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Timing Comments Assertion—May occur when the MPC750 must be kept from using
the address bus (and the processor is not currently asserting ABB).

Negation—May occur whenever the MPC750 can use the address
bus.

7.2.2 Address Transfer Start Signals

Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction.

For detailed information about how TS interacts with other signals, refer to Section 8.3.2,
“Address Transfer.”

7.2.2.1 Transfer Start (TS)
The TS signal is both an input and an output signal on the MPC750.

7.2.2.1.1 Transfer Start (TS)—Output
Following are the state meaning and timing comments for the TS output signal.

State M eaning Asserted—I ndicates that the MPC750 has begun a memory bus
transaction and that the address bus and transfer attribute signals are
valid. When asserted with the appropriate TT[0-4] signalsitisalso
an implied data bus request for amemory transaction (unlessitisan
address-only operation).

Negated—I ndicates that no bus transaction is occurring during
normal operation.

Timing Comments Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after TSis asserted.

High Impedance—Coincides with the negation of ABB.

7.2.2.1.2 Transfer Start (TS)—Input

Following are the state meaning and timing comments for the TS input signal.

State M eaning Asserted—I ndi cates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping (see GBL).

Negated—I ndicates that no bus transaction is occurring.

Timing Comments Assertion—May occur during the assertion of ABB.
Negation—Must occur one bus clock cycle after TS is asserted.

7.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signalsinteract, refer
to Section 8.3.2, “Address Transfer.”
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7.2.3.1 Address Bus (A[0-31])
The address bus (A[0-31]) consists of 32 signalsthat are both input and output signals.

7.2.3.1.1 Address Bus (A[0-31])—Output
Following are the state meaning and timing comments for the A[0—31] output signals.

State M eaning Asserted/Negated—Represents the physical address (real addressin
the architecture specification) of the datato be transferred. On burst
transfers, the address bus presents the double-word-aligned address
containing the critical code/data that missed the cache on aread
operation, or the first double word of the cache line on awrite
operation. Notethat the address output during burst operationsis not
incremented. See Section 8.3.2, “Address Transfer.”

Timing Comments  Assertion/Negation—Occurs on the bus clock cycle after aqualified
bus grant (coincides with assertion of ABB and TS).
High Impedance—Occurs one bus clock cycle after AACK is
asserted.

7.2.3.1.2 Address Bus (A[0-31])—Input

Following are the state meaning and timing comments for the A[0-31] input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoop
operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle asthe
assertion of TS; is sampled by MPC750 only on this cycle.

7.2.3.2 Address Bus Parity (AP[0-3])

The address bus parity (AP[0-3]) signals are both input and output signals reflecting one
bit of odd-byte parity for each of the 4 bytes of address when avalid address is on the bus.

7.2.3.2.1 Address Bus Parity (AP[0-3])—Output

Following are the state meaning and timing comments for the AP[0-3] output signals on
the MPC750.

State Meaning Asserted/Negated—Represents odd parity for each of the 4 bytes of
the physical address for atransaction. Odd parity meansthat an odd
number of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

AP0 A[0-7]
AP1 A[8-15]
AP2 A[16-23]
AP3  A[24-31]

For more information, see Section 8.3.2.1, “Address Bus Parity.”

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].
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7.2.3.2.2 Address Bus Parity (AP[0-3])—Input
Following are the state meaning and timing comments for the AP[0-3] input signal on the
MPC750.

State M eaning Asserted/Negated—Represents odd parity for each of the 4 bytes of
the physical address for snooping operations. Detected even parity
causes the processor to take a machine check exception or enter the
checkstop state if address parity checking is enabled in the HIDO
register; see Section 2.1.2.2, “Hardware |mplementation-Dependent
Register 0"

Timing Comments Assertion/Negation—The same as A[0-31].

7.2.4 Address Transfer Attribute Signals

Thetransfer attribute signals are a set of signalsthat further characterize the transfer—such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 8.3.2, “Address Transfer.”

Note that some signal functions vary depending on whether the transaction is a memory
access or an 1/0 access.

7.2.4.1 Transfer Type (TT[0-4])
Thetransfer type (TT[0-4]) signals consist of fiveinput/output signals on the MPC750. For
a complete description of TT[0-4] signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TT[0—4])—Output

Following are the state meaning and timing comments for the TT[0-4] output signals on
the MPC750.

State M eaning Asserted/Negated—I ndicates the type of transfer in progress.
Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

7.2.4.1.2 Transfer Type (TT[0—4])—Input

Following are the state meaning and timing comments for the TT[0-4] input signals on the
MPC750.

State Meaning Asserted/Negated—I ndicates the type of transfer in progress (see
Table 7-2).

Timing Comments Assertion/Negation—The same as A[0-31].
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Table 7-1 describes the transfer encodings for an MPC750 bus master.

Table 7-1. Transfer Type Encodings for MPC750 Bus Master

MPC750 Bus Transaction 60x Bus
Master TTO | TT1 | TT2 | TT3 | TT4 Specification Transaction
. Source
Transaction Command
Address only* dcbst 0 0 0 0 0 Clean block Address only
Address only® dcbf 0 0 1 0 0 Flush block Address only
Address only! sync 0 1 0 0 0 sync Address only
Address only* dcbz or dcbi 0 1 1 0 0 Kill block Address only
Address only® eieio 1 0 0 0 0 eieio Address only
Single-beat ecowx 1 0 1 0 0 External control Single-beat
write (nonGBL) word write write
N/A N/A 1 1 0 0 0 TLB invalidate Address only
Single-beat eciwx 1 1 1 0 0 External control Single-beat
read (nonGBL) word read read
N/A N/A 0 0 0 0 1 Iwarx Address only
reservation set
N/A N/A 0 0 1 0 1 Reserved —
N/A N/A 0 1 0 0 1 tlbsync Address only
N/A N/A 0 1 1 0 1 icbi Address only
N/A N/A 1 X X 0 1 Reserved —
Single-beat Caching-inhibited 0 0 0 1 0 Write-with-flush Single-beat
write or write-through write or burst
store
Burst Cast-out, or 0 0 1 1 0 Write-with-Kkill Burst
(nonGBL) snoop copyback
Single-beat Caching-inhibited 0 1 0 1 0 Read Single-beat
read load or instruction read or burst
fetch
Burst Load miss, store 0 1 1 1 0 Read-with-intent- Burst
miss, or to-modify
instruction fetch
Single-beat stwex. 1 0 0 1 0 Write-with-flush- Single-beat
write atomic write
N/A N/A 1 0 1 1 0 Reserved N/A
Single-beat lwarx (caching- 1 1 0 1 0 Read-atomic Single-beat
read inhibited load) read or burst
Burst lwarx 1 1 1 1 0 Read-with-intent- Burst
(load miss) to-modify-atomic
N/A N/A 0 0 0 1 1 Reserved —

Chapter 7. Signal Descriptions

7-9



Table 7-1. Transfer Type Encodings for MPC750 Bus Master (Continued)

MPC750 Bus Transaction 60x Bus
Master TTO | TT1 | TT2 | TT3 | TT4 Specification Transaction
. Source
Transaction Command
N/A N/A 0 0 1 1 1 Reserved —
N/A N/A 0 1 0 1 1 Read-with-no- Single-beat
intent-to-cache read or burst
N/A N/A 0 1 1 1 1 Reserved —
N/A N/A 1 X X 1 1 Reserved —

Note: Address-only transaction occurs if enabled by setting HIDO[ABE] bit to 1.

Table 7-2 describes the 60x bus specification transfer encodings and the MPC750 bus
snoop response on an address hit.

Table 7-2. MPC750 Snoop Hit Response

60x Bus Specification MPC750 Bus
P Transaction TTO | TT1 | TT2 | TT3 | TT4 Snooper;
Command . .
Action on Hit
Clean block Address only 0 0 0 0 0 N/A
Flush block Address only 0 0 1 0 0 N/A
sync Address only 0 1 0 0 0 N/A
Kill block Address only 0 1 1 0 0 Flush, cancel
reservation
eieio Address only 1 0 0 0 0 N/A
External control word write Single-beat write 1 0 1 0 0 N/A
TLB Invalidate Address only 1 1 0 0 0 N/A
External control word read Single-beat read 1 1 1 0 0 N/A
Iwarx Address only 0 0 0 0 1 N/A
reservation set
Reserved — 0 0 1 0 1 N/A
tibsync Address only 0 1 0 0 1 N/A
icbi Address only 0 1 1 0 1 N/A
Reserved — 1 X X 0 1 N/A
Write-with-flush Single-beat write or burst 0 0 0 1 0 Flush, cancel
reservation
Write-with-Kkill Single-beat write or burst 0 0 1 1 0 Kill, cancel
reservation
Read Single-beat read or burst 0 1 0 1 0 Clean or flush
Read-with-intent-to-modify Burst 0 1 1 1 0 Flush
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Table 7-2. MPC750 Snoop Hit Response (Continued)

60x Bus Specification MPC750 Bus
P Transaction TTO | TT1 [ TT2 | TT3 | TT4 Snooper;
Command . .
Action on Hit
Write-with-flush-atomic Single-beat write 1 0 0 1 0 Flush, cancel

reservation

Reserved N/A 1 0 1 1 0 N/A
Read-atomic Single-beat read or burst 1 1 0 1 0 Clean or flush
Read-with-intent-to modify- Burst 1 1 1 1 0 Flush

atomic

Reserved — 0 0 0 1 1 N/A
Reserved — 0 0 1 1 1 N/A
Read-with-no-intent-to-cache | Single-beat read or burst 0 1 0 1 1 Clean
Reserved — 0 1 1 1 1 N/A
Reserved — 1 X X 1 1 N/A

7.2.4.2 Transfer Size (TSIZ[0-2])—Output

Following are the state meaning and timing comments for the transfer size (TSIZ[0-2])
output signals on the MPC750.

State M eaning

Timing Comments

Asserted/Negated—For memory accesses, these signals along with
TBST, indicate the datatransfer sizefor the current bus operation, as
shownin Table 7-3. Table 8-3 showshow thetransfer sizesignalsare
used with the address signals for aligned transfers. Table 8-4 shows
how the transfer size signals are used with the address signals for
misaligned transfers. Note that the MPC750 does not generate all
possible TSIZ[0-2] encodings.

For external control instructions (eciwx and ecowx), TSIZ[0-2] are
used to output bits 29-31 of the external access register (EAR),
which are used to form the resource ID (TBST|[TSIZ0-TSIZ2).

Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

Table 7-3. Data Transfer Size

TBST TSIZ[0-2] Transfer Size
Asserted 010 Burst (32 bytes)
Negated 000 8 bytes
Negated 001 1 byte
Negated 010 2 bytes
Negated 011 3 bytes
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Table 7-3. Data Transfer Size (Continued)

TBST TSIZ[0-2] Transfer Size
Negated 100 4 bytes
Negated 101 5 bytes!
Negated 110 6 bytes?
Negated 111 7 bytes!

Note: INot generated by MPC750.

7.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the MPC750.

7.2.4.3.1 Transfer Burst (TBST)—Output

Following are the state meaning and timing comments for the TBST output signal.

State M eaning Asserted—Indicates that a burst transfer isin progress.
Negated—I ndicates that a burst transfer is not in progress.

For external control instructions (eciwx and ecowx), TBST isused to
output bit 28 of the EAR, which is used to form the resource ID
(TBST|[TSIZ0-TSIZ2).

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.4.3.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for the TBST input signal.

State Meaning Asserted/Negated—Used when snooping for single-beat reads (read
with no intent to cache).

Timing Comments Assertion/Negation—The same asA[0-31].

7.2.4.4 Cache Inhibit (Cl)—Output

The cache inhibit (CI) signal is an output signal on the MPC750. Following are the state
meaning and timing comments for the CI signal.

State M eaning Asserted—I ndicates that a single-beat transfer will not be cached,
reflecting the setting of the | bit for the block or page that contains
the address of the current transaction.

Negated—I ndicates that a burst transfer will alocate an MPC750
data cache block.

Timing Comments Assertion/Negation—The same asA[0-31].
High Impedance—The same as A[0-31].
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7.2.4.5 Write-Through (WT)—Output
The write-through (WT) signal is an output signal on the MPC750. Following are the state
meaning and timing comments for the WT signal.

State M eaning Asserted—I ndicates that a single-beat write transaction is write-
through, reflecting the value of the W bit for the block or page that
contains the address of the current transaction. Assertion during a
read operation indicates instruction fetching.

Negated—I ndicates that a write transaction is not write-through;
during aread operation negation indicates a data load.

Timing Comments Assertion/Negation—The same as A[0-31].
High Impedance—The same as A[0-31].

7.2.4.6 Global (GBL)
The global (GBL) signal is an input/output signal on the MPC750.

7.2.4.6.1 Global (GBL)—Output
Following are the state meaning and timing comments for the GBL output signal.

State M eaning Asserted—I ndicatesthat atransactionisglobal, reflecting the setting
of the M bit for the block or page that contains the address of the
current transaction (except in the case of copy-back operations and
instruction fetches, which are nonglobal.)

Negated—I ndicates that a transaction is not global.

Timing Comments Assertion/Negation—The same asA[0-31].
High Impedance—The same as A[0-31].

7.2.4.6.2 Global (GBL)—Input
Following are the state meaning and timing comments for the GBL input signal.

State M eaning Asserted—I ndicates that a transaction must be snooped by the
MPC750.

Negated—Indicates that a transaction is not snooped by the
MPC750.

Timing Comments Assertion/Negation—The same as A[0-31].

7.2.5 Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. For detailed information about how these signals interact, see Section 8.3.3,
“Address Transfer Termination.”
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7.2.5.1 Address Acknowledge (AACK)—Input

The address acknowledge (AACK) signal is an input-only signal on the MPC750.
Following are the state meaning and timing comments for the AACK signal.

State M eaning

Timing Comments

Asserted—I ndicates that the address phase of atransactionis
complete. The address bus will go to a high-impedance state on the
next bus clock cycle. The MPC750 samplesARTRY on the busclock
cycle following the assertion of AACK.

Negated—(During ABB) indicates that the address bus and the
transfer attributes must remain driven.

Assertion—May occur as early as the bus clock cycle after TSis
asserted; assertion can be delayed to allow adequate address access
time for slow devices. For example, if an implementation supports
slow snooping devices, an external arbiter can postpone the assertion
of AACK.

Negation—M ust occur one bus clock cycle after the assertion of
AACK.

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on the MPC750.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for the ARTRY output signal.

State M eaning

Timing Comments

Asserted—I ndicates that the MPC750 detects aconditioninwhich a
snooped address tenure must be retried. If the MPC750 needs to
update memory as aresult of the snoop that caused the retry, the
MPC750 asserts BR the second cycle after AACK if ARTRY is
asserted.

High Impedance—Indicates that the MPC750 does not need the
snooped address tenure to be retried.

Assertion—Asserted the third bus cycle following the assertion of
TSif aretry isrequired.

Negation—Occursthe second bus cycle after the assertion of AACK.
Since this signal may be simultaneously driven by multiple devices,
it negatesin auniquefashion. First the buffer goesto highimpedance
for aminimum of one-half processor cycle (dependent on the clock
mode), then it is driven negated for one bus cycle before returning to
high impedance.

This special method of negation may be disabled by setting
precharge disable in HIDO.
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7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for the ARTRY input signal.

State M eaning Asserted—If the MPC750 is the address bus master, ARTRY
indicates that the MPC750 must retry the preceding address tenure
and immediately negate BR (if asserted). If the associated data
tenure has already started, the MPC750 also aborts the data tenure
immediately, evenif the burst data has been received. If the MPC750
is not the address bus master, this input indicates that the MPC750
should immediately negate BR to allow an opportunity for a copy-
back operation to main memory after a snooping bus master asserts
ARTRY. Note that the subsequent address presented on the address
bus may not be the same one associated with the assertion of the
ARTRY signal.

Negated/High Impedance—Indicates that the MPC750 does not
need to retry the last address tenure.

Timing Comments Assertion—May occur as early as the second cycle following the
assertion of TS, and must occur by the bus clock cycleimmediately
following the assertion of AACK if an addressretry is required.

Negation—M ust occur two bus clock cycles after the assertion of
AACK.

7.2.6 Data Bus Arbitration Signals

Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
processfor determining data bus mastership. Note that thereisno databus arbitration signal
equivalent to the address bus arbitration signal BR (bus request), because, except for
address-only transactions, TS implies data bus requests. For a detailed description on how
these signals interact, see Section 8.4.1, “Data Bus Arbitration.”

One specia signal, DBWO, allows the MPC750 to be configured dynamically to write data
out of order with respect to read data. For detailed information about using DBWO, see
Section 8.10, “Using Data Bus Write Only.”

7.2.6.1 Data Bus Grant (DBG)—Input

The data bus grant (DBG) signal is an input-only signal on the MPC750. Following are the
state meaning and timing comments for the DBG signal.

State M eaning Asserted—I ndicates that the MPC750 may, with the proper
qualification, assume mastership of the data bus. The MPC750
derives a qualified data bus grant when DBG is asserted and DBB,
DRTRY, and ARTRY are negated; that is, the data bus is not busy
(DBB isnegated), thereis no outstanding attempt to retry the current
datatenure (DRTRY isnegated), and thereis no outstanding attempt
to perform an ARTRY of the associated address tenure.

Negated—I ndicates that the MPC750 must hold off its data tenures.
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Timing Comments Assertion—May occur any time to indicate the MPC750 is free to
take data bus mastership. It is not sampled until TS is asserted.

Negation—May occur at any time to indicate the MPC750 cannot
assume data bus mastership.

7.2.6.2 Data Bus Write Only (DBWO)—Input

The data bus write only (DBWO) signal is an input-only signal on the MPC750. Following
are the state meaning and timing comments for the DBWO signal.

State M eaning Asserted—I ndicates that the MPC750 may run the data bus tenure
for an outstanding write address even if aread addressis pipelined
before the write address. Refer to Section 8.10, “Using Data Bus
Write Only,” for detailed instructions for using DBWO.

Negated—I ndicates that the MPC750 must run the data bus tenures
in the same order as the address tenures.

Timing Comments Assertion—Must occur no later than a qualified DBG for an
outstanding write tenure. DBWO is sampled by the MPC750 on the
clock of aqualified DBG. If no write requests are pending, the
MPC750 will ignore DBWO and assume data bus ownership for the
next pending read request.

Negation—May occur any time after aqualified DBG and before the
next assertion of DBG.

7.2.6.3 Data Bus Busy (DBB)
The data bus busy (DBB) signal is both an input and output signal on the MPC750.

7.2.6.3.1 Data Bus Busy (DBB)—Output
Following are the state meaning and timing comments for the DBB output signal.

State Meaning Asserted—Indicates that the MPC750 is the data bus master. The
MPC750 always assumes data bus mastership if it needsthe databus
and is given aqualified data bus grant (see DBG).

Negated—I ndicates that the MPC750 is not using the data bus.

Timing Comments Assertion—Occurs during the bus clock cycle following a qualified
DBG.

Negation—Occurs for aminimum of one-half bus clock cycle
(dependent on clock mode) following the assertion of the final TA.

High Impedance—Occurs after DBB is negated.
7.2.6.3.2 Data Bus Busy (DBB)—Input
Following are the state meaning and timing comments for the DBB input signal.

State Meaning Asserted—Indicates that another device is bus master.
Negated—I ndicates that the data bus is free (with proper
qualification, see DBG) for use by the MPC750.
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Timing Comments Assertion—Must occur when the MPC750 must be prevented from
using the data bus.

Negation—May occur whenever the data bus is available.

7.2.7 DataTransfer Signals

Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signalsinteract, see Section 8.4.3, “Data Transfer.”

7.2.7.1 Data Bus (DH[0-31], DL[0-31])

The data bus (DH[0-3]1 and DL[0-31]) consists of 64 signals that are both inputs and
outputs on the MPC750. Following are the state meaning and timing comments for the DH
and DL signals.

State Meaning The data bus has two halves—data bus high (DH) and data bus low
(DL). See Table 7-4 for the data bus lane assignments.

Timing Comments The data busis driven once for noncached transactions and four
times for cache transactions (bursts).

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane
DH[0-7] 0
DH[8-15] 1
DH[16-23] 2
DH[24-31] 3
DL[0-7] 4
DL[8-15] 5
DL[16-23] 6
DL[24-31] 7

7.2.7.1.1 Data Bus (DH[0-31], DL[0-31])—Output
Following are the state meaning and timing comments for the DH and DL output signals.

State M eaning Asserted/Negated—Represents the state of data during a data write.
Byte lanes not selected for data transfer will not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides with DBB and, for
bursts, transitions on the bus clock cycle following each assertion of
TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion of TA, following the assertion of TEA, or incertainARTRY
cases.
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7.2.7.1.2 Data Bus (DH[0-31], DL[0-31])—Input

Following are the state meaning and timing comments for the DH and DL input signals.

State M eaning Asserted/Negated—Represents the state of data during a data read
transaction.

Timing Comments Assertion/Negation—Datamust be valid on the samebus clock cycle
that TA is asserted.

7.2.7.2 Data Bus Parity (DP[0-7])

The eight data bus parity (DP[0-7]) signas on the MPC750 are both output and input
signals.

7.2.7.2.1 Data Bus Parity (DP[0-7])—Output
Following are the state meaning and timing comments for the DP output signals.

State M eaning Asserted/Negated—Represents odd parity for each of the 8 bytes of
datawritetransactions. Odd parity meansthat an odd number of bits,
including the parity bit, are driven high. The generation of parity is
enabled through HIDO. The signal assignments are listed in
Table 7-5.

Timing Comments Assertion/Negation—The same as DL[0-31].
High Impedance—The same as DL[0-31].

Table 7-5. DP[0-7] Signal Assighments

Signal Name Signal Assignments

DPO DH[0-7]

DP1 DH[8-15]

DP2 DH[16-23]

DP3 DH[24-31]

DP4 DL[0-7]

DP5 DL[8-15]

DP6 DL[16-23]

DP7 DL[24-31]

7.2.7.2.2 Data Bus Parity (DP[0-7])—Input

Following are the state meaning and timing comments for the DP input signals.

State M eaning Asserted/Negated—Represents odd parity for each byte of read data.
Parity is checked on al data byte lanes, regardless of the size of the

transfer. Detected even parity causesacheckstop if dataparity errors
are enabled in the HIDO register.

Timing Comments Assertion/Negation—The same as DL[0-31].
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7.2.7.3 Data Bus Disable (DBDIS)—Input
Following are the state meaning and timing comments for the DBDIS signal.

State M eaning

Timing Comments

Asserted—Indicates (for awrite transaction) that the MPC750 must
rel ease the data bus and the data bus parity to high impedance during
the following cycle. The data tenure remains active, DBB remains
driven, and thetransfer termination signalsare still monitored by the
MPC750.

Negated—Indicates the data bus should remain normally driven.
DBDIS isignored during read transactions.

Assertion/Negation—May be asserted on any clock cycle when the
MPC750 is driving or will be driving the data bus; may remain
asserted multiple cycles.

7.2.8 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, “Data Transfer

Termination.”

7.2.8.1 Transfer Acknowledge (TA)—Input
Following are the state meaning and timing comments for the TA signal.

State M eaning

Timing Comments

Asserted— Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer compl eted
successfully (unless DRTRY is asserted on the next bus clock cycle).
Note that TA must be asserted for each data beat in aburst
transaction and must be asserted during assertion of DRTRY. For
more information, see Section 8.4.4, “Data Transfer Termination.”

Negated—(During DBB) indicates that, until TA is asserted, the
M PC750 must continueto drive the datafor the current write or must
wait to sample the data for reads.

Assertion—Must not occur before AACK for the current transaction
(if the address retry mechanism isto be used to prevent invalid data
from being used by the processor); otherwise, assertion may occur at
any time during the assertion of DBB. The system can withhold
assertion of TA toindicate that the MPC750 should insert wait states
to extend the duration of the data beat.

Negation—M ust occur after the bus clock cycle of thefinal (or only)
databeat of thetransfer. For aburst transfer, the system can assert TA
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for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

7.2.8.2 Data Retry (DRTRY)—Input
Following are the state meaning and timing comments for the DRTRY signal.

State M eaning

Timing Comments

Asserted—I ndicates that the MPC750 must invalidate the datafrom
the previous read operation.

Negated—I ndicatesthat data presented with TA onthe previousread
operation isvalid. Note that DRTRY isignored for write
transactions.

Assertion—Must occur during the bus clock cycleimmediately after
TA isasserted if aretry isrequired. The DRTRY signal may be held
asserted for multiple bus clock cycles. When DRTRY is negated,
data must have been valid on the previous clock with TA asserted.

Negation—Must occur during the bus clock cycle after avalid data
beat. Thismay occur several cyclesafter DBB isnegated, effectively
extending the data bus tenure.

Start-up—The DRTRY signal is sampled at the negation of
HRESET; if DRTRY isasserted, no-DRTRY mode is selected. If
DRTRY isnegated at start-up, DRTRY is enabled.

7.2.8.3 Transfer Error Acknowledge (TEA)—Input
Following are the state meaning and timing comments for the TEA signal.

State M eaning

Timing Comments

Asserted—Indicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared

(MSR[ME] = 0)). For more information, see Section 4.5.2.2,
“Checkstop State (MSR[ME] = 0).” Assertion terminates the current
transaction; that is, assertion of TA and DRTRY are ignored. The
assertion of TEA causes the negation/high impedance of DBB in the
next clock cycle. However, data entering the GPR or the cache are
not invalidated. (Note that the term ‘exception’ isa so referred to as
‘interrupt’ in the architecture specification.)

Negated—Indicates that no bus error was detected.

Assertion—May be asserted while DBB is asserted, and the cycle
after TA during aread operation. TEA should be asserted for one
cycle only.

Negation—TEA must be negated no later than the negation of DBB.
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7.2.9 System Status Signals

Most system status signals are input signals that indicate when exceptions are received,
when checkstop conditions have occurred, and when the MPC750 must be reset. The
MPC750 generates the output signal, CKSTP_OUT, when it detects a checkstop condition.
For adetailed description of these signal's, see Section 8.7, “Interrupt, Checkstop, and Reset
Signals”

7.2.9.1 Interrupt (INT)—Input
Following are the state meaning and timing comments for the INT signal.

State M eaning Asserted—The MPC750 initiates an interrupt if MSR[EE] is set;
otherwise, the MPC750 ignores the interrupt. To guarantee that the
MPC750 will take the external interrupt, INT must be held active
until the MPC750 takes the interrupt; otherwise, whether the
MPC750 takes an external interrupt depends on whether the
MSR[EE] bit was set while the INT signal was held active.

Negated—Indicates that normal operation should proceed. See
Section 8.7.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The INT input is level-sensitive.
Negation—Should not occur until interrupt is taken.

7.2.9.2 System Management Interrupt (SMI)—Input
Following are the state meaning and timing comments for SMI.

State M eaning Asserted—The MPC750 initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the MPC750 ignoresthe
exception condition. The system must hold SMI active until the
exception is taken.

Negated—I ndicates that normal operation should proceed. See
Section 8.7.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The SMI input is level-sensitive.

Negation—Should not occur until interrupt is taken.

7.2.9.3 Machine Check Interrupt (MCP)—Input
Following are the state meaning and timing comments for the MCP signal.

State Meaning Asserted—The MPC750 initiates a machine check interrupt
operation if MSR[ME] and HIDO[EMCP] are set; if MSR[ME] is
cleared and HIDO[EMCP] is set, the MPC750 must terminate
operation by internally gating off all clocks, and releasing al outputs
(except CKSTP_OUT) to the high-impedance state. If HIDO[EM CP]
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is cleared, the MPC750 ignores the interrupt condition. The MCP
signal must be held asserted for two bus clock cycles.

Negated—Indicates that normal operation should proceed. See
Section 8.7.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The MCP input is negative edge-
sensitive.

Negation—May be negated two bus cycles after assertion.

7.2.9.4 Checkstop Input (CKSTP_IN)—Input
Following are the state meaning and timing comments for the CKSTP_IN signal.

State M eaning Asserted—I ndicates that the MPC750 must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP_OUT) to the high-impedance state. Once CKSTP_IN has
been asserted it must remain asserted until the system has been reset.

Negated—I ndicates that normal operation should proceed. See
Section 8.7.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

Negation—May occur any time after the CKSTP_OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP_OUT)—Output

Note that the CKSTP_OUT signal is an open-drain type output, and requires an external
pull-up resistor (for example, 10 kQ to Vg4 to assure proper de-assertion of the
CKSTP_OUT signal. Following are the state meaning and timing comments for the
CKSTP_OUT signal.

State M eaning Asserted—I ndicates that the MPC750 has detected a checkstop
condition and has ceased operation.

Negated—I ndicates that the MPC750 is operating normally.
See Section 8.7.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the MPC750 input clocks.

Negation—Is negated upon assertion of HRESET.
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7.2.9.6 Reset Signals

There are two reset signals on the MPC750—hard reset (HRESET) and soft reset
(SRESET). Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)—Input
The hard reset (HRESET) signal must be used at power-on in conjunction with the TRST

signal to properly reset the processor. Following are the state meaning and timing
comments for the HRESET signal.

State M eaning Asserted—I nitiates a complete hard reset operation when thisinput
transitions from asserted to negated. Causes a reset exception as
described in Section 4.5.1, “ System Reset Exception (0x00100).”
Output drivers are released to high impedance within five clocks
after the assertion of HRESET.

Negated—Indicates that normal operation should proceed. See
Section 8.7.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the MPC750 input clock; must be held asserted
for aminimum of 255 clock cycles after the PLL lock time has been
met. Refer to the MPC750 hardware specificationsfor further timing
comments.

Negation—May occur any time after the minimum reset pulse width
has been met.

Thisinput has additional functionality in certain test modes.
7.2.9.6.2 Soft Reset (SRESET)—Input
Following are the state meaning and timing comments for the SRESET signal.

State M eaning Asserted— Initiates processing for areset exception as described in
Section 4.5.1, “ System Reset Exception (0x00100).”

Negated—Indicates that normal operation should proceed. See
Section 8.7.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the MPC750 input clock. The SRESET input is
negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

Thisinput has additional functionality in certain test modes.

7.2.9.7 Processor Status Signals

Processor status signals indicate the state of the processor. This includes the memory
reservation signal, machine quiesce control signals, time base enable signa, and
TLBISYNC signal.
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7.2.9.7.1 Quiescent Request (QREQ)—Output
Following are the state meaning and timing comments for QREQ.

State M eaning

Timing Comments

Asserted—Indicates that the MPC750 is requesting all bus activity
normally required to be snooped to terminate or to pause so the
MPC750 may enter a quiescent (low power) state. When the
MPC750 has entered a quiescent state, it no longer snoops bus
activity.

Negated—I ndicates that the MPC750 is not making a request to
enter the quiescent state.

Assertion/Negation—May occur on any cycle. QREQ will remain
asserted for the duration of the quiescent state.

7.2.9.7.2 Quiescent Acknowledge (QACK)—Input
Following are the state meaning and timing comments for the QACK signal.

State M eaning

Timing Comments

Asserted—Indicates that all bus activity that requires snooping has
terminated or paused, and that the MPC750 may enter the quiescent
(or low power) state.

Negated—I ndicates that the MPC750 may not enter a quiescent
state, and must continue snooping the bus.

Assertion/Negation—May occur on any cycle following the
assertion of QREQ, and must be held asserted for at |east one bus
clock cycle.

7.2.9.7.3 Reservation (RSRV)—Output
Following are the state meaning and timing comments for RSRV.

State M eaning

Timing Comments

Asserted/Negated—Represents the state of the reservation
coherency hit in the reservation address register that is used by the
Iwarx and stwex. instructions. See Section 8.8.1, “ Support for the
Iwarx/stwex. Instruction Pair.”

Assertion/Negation—Occurs synchronously with respect to bus
clock cycles. The execution of an Ilwar x instruction setsthe internal
reservation condition.

7.2.9.7.4 Time Base Enable (TBEN)—Input
Following are the state meaning and timing comments for the TBEN signal.

State M eaning

Timing Comments

Asserted—I ndicates that the time base should continue clocking.
Thisinput is essentially a count enable control for the time base
counter.

Negated—I ndicates the time base should stop clocking.
Assertion/Negation—May occur on any cycle.
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7.2.9.7.5 TLBI Sync (TLBISYNC)—Input

TheTLBI Sync (TLBISYNC) signal isan input-only signal onthe MPC750. Following are
the state meaning and timing comments for the TLBISYNC signal.

State M eaning Asserted—I ndicates that instruction execution should stop after
execution of atlbsync instruction.

Negated—I ndicates that the instruction execution may continue or
resume after the completion of atlbsync instruction.

Timing Comments Assertion/Negation—May occur on any cycle. The TLBISYNC
signal must be held negated during HRESET.

7.2.9.7.6 L2 Cache Interface

The MPC750's dedicated L2 cache interface provides all the signals required for the
support of up to 1 Mbyte of synchronous SRAM for data storage. The use of the L2 data
parity (L2DP[0-7]) and L2 low-power mode enable (L2ZZ) signals is optional, and
depends on the SRAMs selected for use with the MPC750. Note that the |east-significant
bit of L2 address (L2ADDR[16-0]) signals is identified as bit 0, and the most-significant
bit isidentified as bit 16.

Note that the L2 cache interface is not implemented in the MPC740.

7.2.9.8 L2 Address (L2ADDR[16-0])—Output

Following are the state meaning and timing comments for the L2 address output signals.

State Meaning Asserted/Negated—Represents the address of the datato be
transferred to the L2 cache. The L2 address bus s configured with

bit O as the |least-significant bit. Address bit 14 determines which
cachetag set is selected.

Timing Comments Assertion/Negation—Driven valid by the MPC750 during read and
write operations; driven with static datawhen the L2 cache memory
is not being accessed.

7.2.9.9 L2 Data (L2DATA[0-63])

The data bus (L2DATA[0-63]) consists of 64 signals that are both input and output on the
MPC750.

7.2.9.9.1 L2 Data (L2DATA[0-63])—Output

Following are the state meaning and timing comments for the L2 data output signals.

State M eaning Asserted/Negated—Represents the state of data during a data write
transaction; datais always transferred as double words.

Timing Comments Assertion/Negation—Driven valid by MPC750 during write
operations; driven with static datawhen the L2 cache memory is not
being accessed by aread operation.
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High Impedance—Occurs for at least one cycle when changing
between read and write operations to the L2 cache memory.
7.2.9.9.2 L2 Data (L2DATA[0-63])—Input
Following are the state meaning and timing comments for the L2 data input signals.

State M eaning Asserted/Negated—Represents the state of data during a data read
transaction; datais always transferred as double words.

Timing Comments Assertion/Negation—Driven valid by L2 cache memory during read
operations.

7.2.9.10 L2 Data Parity (L2DP[0-T7])
The eight data bus parity (L2DP[0-7]) signals on the MPC750 are both output and input

signals.

7.2.9.10.1 L2 Data Parity (L2DP[0-7])—Output
Following are the state meaning and timing comments for the L2 data parity output signals.

State M eaning Asserted/Negated—Represents odd parity for each of the 8 bytes of
L 2 cache data during write transactions. Odd parity means that an
odd number of bits, including the parity bit, are driven high. Note
that parity bit O is associated with bits 0—7 (byte lane 0) of the
L2DATA bus.

Timing Comments Assertion/Negation—The same as L2DATA[0-63].
High Impedance—The same as L2DATA[0-63].

7.2.9.10.2 L2 Data Parity (L2DP[0—7])—Input
Following are the state meaning and timing comments for the L2 parity input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of L2 cache
read data.

Timing Comments Assertion/Negation—The same as L2DATA[0-63].

7.2.9.11 L2 Chip Enable (L2CE)—Output
Following are the state meaning and timing comments for the L2CE signal.

State M eaning Asserted—I ndicates that the L2 cache memory devices are being
selected for aread or write operation.

Negated—I ndicates that the MPC750 is not selecting the L2 cache
memory devices for aread or write operation.

Timing Comments Assertion/Negation—May occur on any cycle. L2CE is driven high
during HRESET assertion.
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7.2.9.12 L2 Write Enable (L2ZWE)—Output
Following are the state meaning and timing comments for the L2WE signal.

State M eaning Asserted—I ndicates that the MPC750 is performing awrite
operation to the L2 cache memory.

Negated—Indicates that the MPC750 is not performing an L2 cache
memory write operation.

Timing Comments Assertion/Negation—May occur on any cycle. L2ZWE isdriven high
during HRESET assertion.

7.2.9.13 L2 Clock Out A (L2CLK_OUTA)—Output
Following are the state meaning and timing comments for the L2CLK_OUTA signal.

State Meaning Asserted/Negated—Clock output for L2 cache memory devices. The
L2CLK_OUTA signal isidentical and synchronous with the
L2CLK_OUTB signal, and providesthe capability to drive up to four
L2 cache memory devices. If differential L2 clocking is configured
through the setting of the L2CR, the L2CLK_OUTB signal isdriven
phase inverted with relation to the L2ZCLK _OUTA signal.

Timing Comments Assertion/Negation—Refer to the MPC750 hardware specifications
for timing comments. The L2CLK_OUTA signal is driven low
during assertion of HRESET.

7.2.9.14 L2 Clock Out B (L2CLK_OUTB)—Output
Following are the state meaning and timing comments for the L2CLK_OUTB signal.

State M eaning Asserted/Negated—Clock output for L2 cache memory devices. The
L2CLK_OUTB signd isidentical and synchronous with the
L2CLK_OUTA signal, and providesthe capability to drive up to four
L2 cache memory devices. If differential L2 clocking is configured
through the setting of the L2CR, the L2CLK_OUTA signal isdriven
phase inverted with relation to the L2CLK_OUTB signal.

Timing Comments Assertion/Negation—Refer to the MPC750 hardware specifications

for timing comments. The L2CLK_OUTB signa is driven low
during assertion of HRESET.

7.2.9.15 L2 Sync Out (L2SYNC_OUT)—Output

Following are the state meaning and timing comments for the L2SYNC_OUT signal.

State M eaning Asserted/Negated—Clock output for L2 clock synchronization. The
L2SYNC_OUT signal should berouted half of thetracelength tothe

L2 cache memory devices and returned to the L2SYNC_IN signal
input.
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Timing Comments Assertion/Negation—Refer to the MPC750 hardware specifications
for timing comments. The L2SYNC_OUT signal is driven low
during assertion of HRESET.

7.2.9.16 L2 Sync In (L2SYNC_IN)—Input
Following are the state meaning and timing comments for the L2SYNC _IN signal.

State M eaning Asserted/Negated—Clock input for L2 clock synchronization. The
L2SYNC_IN signal isdriven by the L2SYNC_OUT signal output.

Timing Comments Assertion/Negation—Refer to the MPC750 hardware specifications
for timing comments. The routing of thissignal on the printed circuit
board should ensure that the rising edge at L2SYNC _IN is
coincident with the rising edge of the clock at the clock input of the
L2 cache memory devices.

7.2.9.17 L2 Low-Power Mode Enable (L2ZZ)—Output
Following are the state meaning and timing comments for the L2ZZ signal.

State M eaning Asserted/Negated—Enabl es |ow-power mode for certain L2 cache
memory devices. Operation of the signal is enabled through the
L2CR.

Timing Comments Assertion/Negation—Occurs synchronously with the L2 clock when
the MPC750 enters and exits the nap or sleep power modes; after
negation of thissignal, at least two L 2 clock cycleswill elapse before
L2 cache operations resume. The L2ZZ signal is driven low during
assertion of HRESET.

7.2.10 IEEE 1149.1a-1993 Interface Description

The MPC750 has five dedicated JTAG signals which are described in Table 7-6. The test
datainput (TDI) and test data output (TDO) scan ports are used to scan instructions as well
as datainto the various scan registers for JTAG operations. The scan operation is controlled
by the test access port (TAP) controller which in turn is controlled by the test mode select
(TMS) input sequence. The scan datais latched in at the rising edge of test clock (TCK).

Table 7-6. IEEE Interface Pin Descriptions

Signal Name Input/Output WS?EV?;;L;”) IEEE 1149.1a Function
TDI Input Yes Serial scan input signal
TDO Output No Serial scan output signal
T™MS Input Yes TAP controller mode signal
TCK Input Yes Scan clock
TRST Input Yes TAP controller reset
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Test reset (TRST) is a JTAG optional signal which is used to reset the TAP controller
asynchronously. The TRST signal assures that the JTAG logic does not interfere with the
normal operation of the chip, and must be asserted and deasserted coincident with the
assertion of the HRESET signal.

7.2.11 Clock Signals

The MPC750 clock signa inputs determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency.

Refer to the MPC750 hardware specifications for exact timing relationships of the clock
signals.

7.2.11.1 System Clock (SYSCLK)—Input

The MPC750 requires asingle system clock (SY SCLK) input. Thisinput setsthe frequency
of operation for the bus interface. Internally, the MPC750 uses a phase-locked loop (PLL)
circuit to generate a master clock for all of the CPU circuitry (including the bus interface
circuitry) which is phase-locked to the SY SCLK input. The master clock may be set to an
integer or half-integer multiple (2:1, 2.5:1, 3:1, 3.5:1, 4.1, 451, 5:1, 5.5:1, 6:1, 6.5:1, or
7:1) of the SYSCLK frequency allowing the CPU core to operate at an equal or greater
frequency than the bus interface.

State M eaning Asserted/Negated—The SY SCLK input is the primary clock input
for the MPC750, and represents the bus clock frequency for
MPC750 bus operation. Internally, the MPC750 may be operating at
an integer or half-integer multiple of the bus clock frequency.

Timing Comments Duty cycle—Refer to the MPC750 hardware specifications for
timing comments.
Note: SYSCLK isused as the frequency reference for the internal
PLL clock generator, and must not be suspended or varied during
normal operation to ensure proper PLL operation.

7.2.11.2 Clock Out (CLK_OUT)—Output

The clock out (CLK_OUT) signal is an output signal (output-only) on the MPC750.
Following are the state meaning and timing comments for the CLK_OUT signal.

State M eaning Asserted/Negated—Provides PLL clock output for PLL testing and
monitoring. The configuration of the HIDO[SBCLK] and
HIDO[ECLK] bits determines whether the CLK_OUT signal clocks
at either the processor clock frequency, the bus clock frequency, or
half of the bus clock frequency. See Table 2-5 for HIDO register
configuration of the CLK_OUT signal. The CLK_OUT signa
defaults to a high-impedance state following the assertion of
HRESET. The CLK_OUT signal is provided for testing only.

Chapter 7. Signal Descriptions 7-29



Timing Comments Assertion/Negation—Refer to the MPC750 hardware specifications

for timing comments.

7.2.11.3 PLL Configuration (PLL_CFG[0-3])—Input

The PLL (phase-locked loop) is configured by the PLL_CFG[0-3] signals. For a given
SYSCLK (bus) frequency, the PLL configuration signals set theinternal CPU frequency of
operation. Refer to the MPC750 hardware specifications for PLL configuration.

Following are the state meaning and timing comments for the PLL_CFG[0-3] signals.
State M eaning Asserted/Negated— Configures the operation of the PLL and the

internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation; should

only be changed during the assertion of HRESET or during sleep
mode. These bits may be read through the PC[0-3] bitsin the HID1
register.

7.2.12 Power and Ground Signals
The MPC750 provides the following connections for power and ground:

Vpp—TheVpp signals provide the supply voltage connection for the processor
core.

OV pp—The OV pp signals provide the supply voltage connection for the system
interface drivers.

L2Vpp—The L2V pp signals provide the supply voltage connection for the L2
cache interface drivers. These power supply signals are isolated from theVpp and
OV pp power supply signals. These signals are not implemented on the MPC740.

AVpp—The AV pp power signal provides power to the clock generation phase-
locked loop. Seethe MPC750 hardware specificationsfor information on how to use
thissignal.

L2AVpp—The L2AV pp power signal provides power to the L2 delay-locked 1oop.

See the MPC750 hardware specifications for information on how to usethis signal.
Thissignal is not implemented on the MPC740.

GND and OGND—The GND and OGND signals provide the connection for
grounding the MPC750. On the MPC750, thereis no electrical distinction between
the GND and OGND signals.

L2GND—The L2GND signals provide the ground connection for the L2 cache
interface. These ground signals are isolated from the GND and OGND ground
signals. These signals are not implemented on the MPC740.
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Chapter 8
System Interface Operation

This chapter describes the MPC750 microprocessor bus interface and its operation. It
shows how the MPC750 signals, defined in Chapter 7, “Signal Descriptions” interact to
perform address and data transfers.

8.1 MPC750 System Interface Overview

The system interface prioritizes requests for bus operations from the instruction and data
caches, and performs bus operations in accordance with the protocol described in the
PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors. It
includes address register queues, prioritization logic, and bus control unit. The system
interface latches snoop addresses for snooping in the data cache and in the address register
queues, and for reservations controlled by the L oad Word and Reserve Indexed (Iwar x) and
StoreWord Conditional Indexed (stwcx.) instructions, and maintainsthe touch load address
for the cache. The interface allows one level of pipelining; that is, with certain restrictions
discussed later, there can be two outstanding transactions at any given time. Accesses are
prioritized with load operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
wherethey are dispatched to the execution units at apeak rate of two instructions per clock.
Conversely, load and store instructions explicitly specify the movement of operandsto and
from the integer and floating-point register files and the memory system.

When the MPC750 encounters an instruction or dataaccess, it calculatesthelogical address
(effective address in the architecture specification) and uses the low-order address bits to
check for ahit in the on-chip, 32-Kbyte instruction and data caches. During cache lookup,
the instruction and data memory management units (MMUS) use the higher-order address
bits to calculate the virtual address, from which they calculate the physical address (real
addressin the architecture specification). The physical address bits are then compared with
the corresponding cache tag bits to determine if a cache hit occurred in the L1 instruction
or data cache. If the access missesin the corresponding cache, the physical addressis used
to accessthe L2 cachetags (if the L2 cacheisenabled). If no matchisfoundinthelL2 cache
tags, the physical addressis used to access system memory.

In addition to the loads, stores, and instruction fetches, the MPC750 performs hardware
table search operations following TLB misses, L2 cache cast-out operations when
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least-recently used cache lines are written to memory after a cache miss, and cache-line
snoop push-out operations when amodified cache line experiences asnoop hit from another
bus master.

Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the translation logic to the caches and system interface logic.

The MPC750 uses separate address and data buses and a variety of control and status
signals for performing reads and writes. The address busis 32 bitswide and the databusiis
64 bits wide. The interface is synchronous—all MPC750 inputs are sampled at and all
outputs are driven from the rising edge of the bus clock. The processor runs at amultiple of
the bus-clock speed. The MPC750 core operates at 2.5 volts, and the I/O signals operate at
3.3 volts.

8.1.1 Operation of the Instruction and Data L1 Caches

The MPC750 provides independent instruction and data L1 caches. Each cache is a
physically-addressed, 32-K byte cache with eight-way set associativity. Both caches consist
of 128 sets of eight cache lines, with eight words in each cache line.

Because the data cache on the MPC750 is an on-chip, write-back primary cache, the
predominant type of transaction for most applications is burst-read memory operations,
followed by burst-write memory operations and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped, and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the cache).

Since the MPC750 data cache tags are single ported, simultaneous load or store and snoop
accesses cause resource contention. Snoop accesses have the highest priority and are given
first accessto the tags, unless the snoop access coincides with atag write, in which casethe
snoop is retried and must re-arbitrate for access to the cache. Loads or stores that are
deferred due to snoop accesses are performed on the clock cycle following the snoop.

The MPC750 supports a three-state coherency protocol that supports the modified,
exclusive, and invalid (MEI) cache states. The protocol is a subset of the MESI
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in systems
that contain four-state caches. With the exception of the dcbz instruction (and the dcbi,
dcbst, and dcbf instructions, if HIDO[ABE] is enabled), the MPC750 does not broadcast
cache control instructions. The cache control instructions are intended for the management
of thelocal cache but not for other caches in the system.

Cache lines in the MPC750 are loaded in four beats of 64 bits each. The burst load is
performed as critical double word first. The critical double word is simultaneously written
to the cache and forwarded to the requesting unit, thus minimizing stalls dueto load delays.
If subsequent loads follow in sequential order, the instructions or datawill be forwarded to
the requesting unit as the cache block iswritten.
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Figure 8-1. MPC750 Microprocessor Block Diagram
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Cache lines are selected for replacement based on a pseudo least-recently-used (PLRU)
algorithm. Each time acacheline is accessed, it istagged as the most-recently-used line of
the set. When a miss occurs, and all eight lines in the set are marked as valid, the least
recently used lineis replaced with the new data. When datato be replaced isin the modified
state, the modified data is written into a write-back buffer while the missed datais being
read from memory. When the load completes, the MPC750 then pushes the replaced line
from the write-back buffer to the L2 cache (if enabled), or to main memory in a burst write
operation.

8.1.2 Operation of the L2 Cache

The MPC750 provides an on-chip, two-way set associative tag memory, and adedicated L2
cache port with support for up to 1 Mbyte of externa synchronous SRAMsfor data storage.
The L2 cache normally operatesin copy-back mode and supports system cache coherency
through snooping. Designers should note that the MPC740 does not implement the on-chip
L 2 tag memory, or the signalsrequired for the support of the external SRAMs, and memory
accesses go directly to the bus interface unit.

The L2 cache receives independent memory access requests from both the L1 instruction
and data caches. The L1 accesses are compared to the L2 cache tags and the data or
instructions are forwarded from the L2 to the L1 cache if there is a cache hit, or are
forwarded on to the bus interface unit if there is an L2 cache miss, or if the address being
accessed is from a page marked as caching-inhibited. Burst read accesses that miss in the
L2 cache initiate a load operation from the bus interface. As the load operation transfers
data to the L1 cache, the data is also loaded into the L2 cache, and marked as valid
unmodified in the L2 cache tags. An L1 load, store, or castout operation can cause an L2
cache block allocation resulting in the castout of an L2 cache block marked modified to the
bus interface. For additional information about the operation of the L2 cache, refer to
Chapter 9, “L2 Cache Interface Operation.”

8.1.3 Operation of the System Interface

Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes) and four-beat (32 bytes)
burst data transfers. The address and data buses are independent for memory accesses to
support pipelining and split transactions. The MPC750 can pipeline as many as two
transactions and has limited support for out-of-order split-bus transactions.

Access to the system interface is granted through an external arbitration mechanism that
alows devices to compete for bus mastership. This arbitration mechanism is flexible,
alowing the MPC750 to be integrated into systems that implement various fairness and
bus-parking procedures to avoid arbitration overhead.
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Typically, memory accesses are weakly ordered to maximize the efficiency of the bus
without sacrificing coherency of the data. The MPC750 allows load operations to bypass
store operations (except when a dependency exists). In addition, the MPC750 can be
configured to reorder high-priority store operations ahead of lower-priority store
operations. Because the processor can dynamicaly optimize run-time ordering of
load/store traffic, overall performance isimproved.

Note that the synchronize (sync) and enforce in-order execution of 1O (eieio) instructions
can be used to enforce strong ordering.

The following sections describe how the MPC750 interface operates, providing detailed
timing diagramsthat illustrate how the signalsinteract. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 8-2 isalegend of the conventions used in the timing diagrams.

Thisisasynchronousinterface—all MPC750 input signals are sampled and output signals
are driven on the rising edge of the bus clock cycle (see the MPC750 hardware
specifications for exact timing information).

8.1.4 Direct-Store Accesses

The MPC750 does not support the extended transfer protocol for accesses to the
direct-store storage space. Thetransfer protocol used for any given accessis selected by the
T bit in the MMU segment registers; if the T bit is set, the memory access is a direct-store
access. An attempt to access instructions or datain a direct-store segment will result in the
MPC750 taking an ISl or DSI exception.
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Bar over signal name indicates active low
ap0 MPC750 input (while MPC750 is a bus master)
BR MPC750 output (while MPC750 is a bus master)
ADDR+ MPC750 output (grouped: here, address plus attributes)

qual BG MPC750 internal signal (inaccessible to the user, but
used in diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

MPC750 three-state output or input

MPC750 nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

ey lIkn

Timing for a signal had it been asserted (it is not
actually asserted)

Figure 8-2. Timing Diagram Legend

8.2 Memory Access Protocol

Memory accesses are divided into address and data tenures. Each tenure has three phases—
bus arbitration, transfer, and termination. The MPC750 also supports address-only
transactions. Note that address and data tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another and that
both consist of three phases—arbitration, transfer, and termination. Address and data
tenures are independent (indicated in Figure 8-3 by the fact that the data tenure begins
before the address tenure ends), which allows split-bus transactions to be implemented at
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists
of asingle-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache
lines require data transfer termination signals for each beat of data.
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\ DATA TENURE
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| ARBITRATION | SINGLE-BEAT TRANSFER | TERMINATION |

Figure 8-3. Overlapping Tenures on the MPC750 Bus for a Single-Beat Transfer

The basic functions of the address and data tenures are as follows:
* Addresstenure

— Avrbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

— Transfer: After the MPC750 is the address bus master, it transfers the address on
the address bus. The address signals and the transfer attribute signals control the
address transfer. The address parity and address parity error signals ensure the
integrity of the address transfer.

— Termination: After the addresstransfer, the system signalsthat the addresstenure
is complete or that it must be repeated.

e Datatenure

— Avrbitration: To begin the data tenure, the MPC750 arbitrates for mastership of
the data bus.

— Transfer: After the MPC750 is the data bus master, it samples the data bus for
read operations or drives the data bus for write operations. The data parity and
data parity error signals ensure the integrity of the data transfer.

— Termination: Datatermination signals are required after each data beat in adata
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

The MPC750 generates an address-only bus transfer during the execution of the dcbz
instruction (and for the dcbi, dcbf, dcbst, sync, and eieio instructions, if HIDO[ABE] is
enabled), which uses only the address bus with no data transfer involved. Additionally, the
MPC750's retry capability provides an efficient snooping protocol for systems with
multiple memory systems (including caches) that must remain coherent.
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8.2.1 Arbitration Signals

Arbitration for both address and data bus mastership is performed by a central, externa
arbiter and, minimally, by the arbitration signals shown in Section 7.2.1, “Address Bus
Arbitration Signals” Most arbiter implementations require additional signals to coordinate
bus master/d ave/snooping activities. Note that address bus busy (ABB) and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the MPC750 has
mastership of one or both of the respective buses; they must be connected high through
pull-up resistors so that they remain negated when no devices have control of the buses.

The following list describes the address arbitration signals:

BR (busrequest)—Assertion indicates that the MPC750 is requesting mastership
of the address bus.

BG (bus grant)—Assertion indicates that the MPC750 may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted and ABB and ARTRY are negated.

If the MPC750 is parked, BR need not be asserted for the qualified bus grant.

ABB (address busbusy)— Assertion by the MPC750 indicates that the MPC750 is
the address bus master.

The following list describes the data arbitration signals:

DBG (data bus grant)—Indicates that the MPC750 may, with the proper
qualification, assume mastership of the data bus. A qualified data bus grant occurs
when DBG is asserted while DBB, DRTRY, and ARTRY are negated.

The DBB signal isdriven by the current bus master, DRTRY isonly driven from the
bus, and ARTRY isfrom the bus, but only for the address bus tenure associated with
the current data bus tenure (that is, not from another address tenure).

DBWO (data buswrite only)—Assertion indicates that the MPC750 may perform
the data bus tenure for an outstanding write address even if aread addressis
pipelined before the write address. If DBWO is asserted, the MPC750 will assume
data bus mastership for a pending data bus write operation; the MPC750 will take
the data bus for a pending read operation if thisinput is asserted along with DBG
and no writeis pending. Care must be taken with DBWO to ensure the desired write
is queued (for example, a cache-line snoop push-out operation).

DBB (data busbusy)—Assertion by the MPC750 indi cates that the MPC750 isthe
data bus master. The MPC750 always assumes data bus mastership if it needs the
data bus and is given a qualified data bus grant (see DBG).

For more detailed information on the arbitration signals, refer to Section 7.2.1,
“Address Bus Arbitration Signals,” and Section 7.2.6, “ Data Bus Arbitration
Signals”
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8.2.2 Address Pipelining and Split-Bus Transactions

The MPC750 protocol provides independent address and data bus capability to support
pipelined and split-bus transaction system organizations. Address pipelining alows the
address tenure of a new bus transaction to begin before the data tenure of the current
transaction has finished. Split-bus transaction capability allows other bus activity to occur
(either from the same master or from different masters) between the address and data
tenures of a transaction.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bus transactions can greatly improve effective bus'memory throughput.
For this reason, these techniques are most effective in shared-memory multimaster
implementations where bus bandwidth is an important measurement of system
performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The design of the external arbiter affects pipelining by regulating address bus
grant (BG), databusgrant (DBG), and address acknowledge (AACK) signals. For example,
aone-level pipeline is enabled by asserting AACK to the current address bus master and
granting mastership of the address bus to the next requesting master before the current data
bus tenure has compl eted. Two address tenures can occur before the current data bus tenure
completes.

The MPC750 can pipeline its own transactions to a depth of one level (intraprocessor
pipelining); however, the MPC750 bus protocol does not constrain the maximum number
of levels of pipelining that can occur on the bus between multiple masters (interprocessor
pipelining). The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respect to
address tenures. However, externa hardware can further decouple the address and data
buses, alowing the data tenures to occur out of order with respect to the address tenures.
This requires some form of system tag to associate the out-of-order data transaction with
the proper originating address transaction (not defined for the MPC750 interface).
Individual bus requests and data bus grants from each processor can be used by the system
to implement tags to support interprocessor, out-of-order transactions.

The MPC750 supports alimited intraprocessor out-of -order, split-transaction capability via
the data bus write only (DBWO) signal. For more information about using DBWO, see
Section 8.10, “Using Data Bus Write Only.”
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8.3 Address Bus Tenure

This section describes the three phases of the address tenure—address bus arbitration,
address transfer, and address termination.

8.3.1 Address Bus Arbitration

When the MPC750 needs access to the external bus and it is not parked (BG is negated), it
assertsbusrequest (BR) until it is granted mastership of the bus and the busis available (see
Figure 8-4). The external arbiter must grant master-elect status to the potential master by
asserting the bus grant (BG) signal. The M PC750 requesting the bus determines that the bus
is available when the ABB input is negated. When the address bus is not busy (ABB input
isnegated), BG is asserted and the address retry (ARTRY) input is negated. Thisisreferred
to as a qualified bus grant. The potential master assumes address bus mastership by
asserting ABB when it receives a qualified bus grant.

| -1 | 0 | 1 |
Logical Bus Clock | | \:‘
N .
\ ) /
" e
i ——]
ariry \ 7 N
\
qual BG

AB

[5Y)

R
Figure 8-4. Address Bus Arbitration

External arbiters must allow only one device at a time to be the address bus master.
Implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the address bus to the MPC750.

If the MPC750 asserts BR before the external arbiter asserts BG, the MPC750 is considered
to be unparked, as shown in Figure 8-4. Figure 8-5 showsthe parked case, where aqualified
bus grant exists on the clock edge following aneed_bus condition. Notice that the bus clock
cycle required for arbitration is eliminated if the MPC750 is parked, reducing overall
memory latency for a transaction. The MPC750 always negates ABB for at least one bus
clock cycleafter AACK isasserted, evenif it is parked and has another transaction pending.
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Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to correctly predict the next device requesting bus
mastership.
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Figure 8-5. Address Bus Arbitration Showing Bus Parking

When the MPC750 receives a qualified bus grant, it assumes address bus mastership by
asserting ABB and negating the BR output signal. Meanwhile, the MPC750 drives the
address for the requested access onto the address bus and asserts TS to indicate the start of
anew transaction.

When designing external bus arbitration logic, note that the MPC750 may assert BR
without using the bus after it receivesthe qualified bus grant. For example, in asystem using
bus snooping, if the MPC750 asserts BR to perform a replacement copy-back operation,
another device can invalidate that line before the MPC750 is granted mastership of the bus.
Once the MPC750 is granted the bus, it no longer needs to perform the copy-back
operation; therefore, the MPC750 does not assert ABB and does not use the bus for the
copy-back operation. Note that the MPC750 asserts BR for at |least one clock cyclein these
instances.

System designers should note that it is possible to ignore the ABB signal, and regenerate
the state of ABB locally within each device by monitoring the TS and AACK input signals.
The MPC750 allows this operation by using both the ABB input signal and a locally
regenerated version of ABB to determine if aqualified bus grant state exists (both sources
are internally ORed together). The ABB signa may only be ignored if ABB and TS are
asserted simultaneously by all masters, or where arbitration (through assertion of BG) is
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properly managed in cases where the regenerated ABB may not properly track the ABB
signal on the bus. If the MPC750's ABB signal is ignored by the system, it must be
connected to a pull-up resistor to ensure proper operation. Additionally, the MPC750 will
not qualify abusgrant during the cyclethat TSisasserted on the bus by any master. Address
bus arbitration without the use of the ABB signal requires that every assertion of TS be
acknowledged by an assertion of AACK while the processor is not in sleep mode.

8.3.2 Address Transfer

During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.3,
“Address Transfer Termination.”

The signals used in the address transfer include the following signal groups:
» Addresstransfer start signal: transfer start (TS)
¢ Addresstransfer signals. address bus (A[0-31]), and address parity (AP[0-3])

¢ Addresstransfer attribute signals. transfer type (TT[0-4]), transfer size
(TSIZ[0-2)), transfer burst (TBST), cache inhibit (CI), write-through (WT), and
global (GBL)

Figure 8-6 shows that the timing for all of these signals, except TS, isidentical. All of the
address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 8-6. The TS signal indicates that the MPC750 has begun an address
transfer and that the address and transfer attributes are valid (within the context of a
synchronous bus). The MPC750 always asserts TS coincident with ABB. As an input, TS
need not coincide with the assertion of ABB on the bus (that is, TS can be asserted with, or
on, a subsequent clock cycle after ABB is asserted; the MPC750 tracks this transaction
correctly).

In Figure 8-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diagram,
the address bus termination input, AACK, is asserted to the MPC750 on the bus clock
following assertion of TS (as shown by the dependency lin€). Thisisthe minimum duration
of the address transfer for the MPC750; the duration can be extended by delaying the
assertion of AACK for one or more bus clocks.
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Figure 8-6. Address Bus Transfer

8.3.2.1 Address Bus Parity

The MPC750 always generates 1 bit of correct odd-byte parity for each of the 4 bytes of
addresswhen avalid addressis on the bus. The calculated values are placed on the AP[0-3]
outputs when the MPC750 is the address bus master. If the MPC750 is not the master and
TS and GBL are asserted together (qualified condition for snooping memory operations),
the cal culated values are compared with the AP[0-3] inputs. If thereisan error, and address
parity checking is enabled (HIDO[EBA] set to 1), a machine check exception is generated.
An address bus parity error causes a checkstop condition if MSR[ME] is cleared to 0. For
more information about checkstop conditions, see Chapter 4, “ Exceptions.”

8.3.2.2 Address Transfer Attribute Signals

The transfer attribute signals include several encoded signals such as the transfer type
(TT[OH4]) signds, transfer burst (TBST) signal, transfer size (TSIZ[0-2]) signals,
write-through (WT), and cache inhibit (CI). Section 7.2.4, “Address Transfer Attribute
Signals,” describes the encodings for the address transfer attribute signals.

8.3.2.2.1 Transfer Type (TT[0-4]) Signals

Snooping logic should fully decode the transfer type signals if the GBL signal is asserted.
Slave devices can sometimes use the individual transfer type signalswithout fully decoding
the group. For a complete description of the encoding for TT[0-4], refer to Table 8-1 and
Table 8-2.

8.3.2.2.2 Transfer Size (TSIZ[0-2]) Sighals

TheTSIZ[0-2] signalsindicatethe size of the requested datatransfer asshownin Table 8-1.
The TSIZ[0-2] signals may be used along with TBST and A[29-31] to determine which
portion of the data bus contains valid data for a write transaction or which portion of the
bus should contain valid data for a read transaction. Note that for a burst transaction (as
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indicated by the assertion of TBST), TSIZ[0-2] are always set to 0b010. Therefore, if the
TBST signal is asserted, the memory system should transfer a total of eight words (32
bytes), regardless of the TSIZ[0-2] encodings.

Table 8-1. Transfer Size Signal Encodings

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size
Asserted 0 1 0 Eight-word burst
Negated 0 0 0 Eight bytes
Negated 0 0 1 One byte
Negated 0 1 0 Two bytes
Negated 0 1 1 Three bytes
Negated 1 0 0 Four bytes
Negated 1 0 1 Five bytes (N/A)
Negated 1 1 0 Six bytes (N/A)
Negated 1 1 1 Seven bytes (N/A)

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache
line). Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the MPC750. The MPC750 never generates a bus
transaction with atransfer size of 5 bytes, 6 bytes, or 7 bytes.

8.3.2.2.3 Write-Through (WT) Signal

The MPC750 provides the WT signal to indicate a write-through operation as determined
by the WIM bit settings during address trandlation by the MMU. The WT signal is also
asserted for burst writes due to the execution of the dcbf and dcbst instructions, and snoop
push operations. The WT signal is deasserted for accesses caused by the execution of the
ecowx instruction. During read operations the MPC750 uses the WT signal to indicate
whether the transaction is an instruction fetch (WT set to 1), or a data read operation (WT
cleared to 0).

8.3.2.2.4 Cache Inhibit (CI) Signal

The MPC750 indicates the caching-inhibited status of a transaction (determined by the
setting of the WIM bits by the MMU) through the use of the CI signal. The CI signal is
asserted even if the L1 caches are disabled or locked. This signal is also asserted for bus
transactions caused by the execution of eciwx and ecowx instructions independent of the
address tranglation.
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8.3.2.3 Burst Ordering During Data Transfers

During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or
from the cache in order. Burst write transfers are always performed zero double word first,
but since burst reads are performed critical double word first, a burst read transfer may not
start with the first double word of the cache line, and the cache line fill may wrap around
the end of the cache line.

Table 8-2 describes the data bus burst ordering.
Table 8-2. Burst Ordering

For Starting Address:
Data Transfer
A[27-28] = 00 A[27-28] =01 A[27-28] =10 A[27-28] =11
First data beat DWO0 Dw1 DwW2 DW3
Second data beat Dwi Dw2 DW3 DWO
Third data beat DW2 DW3 DWO DwW1
Fourth data beat DW3 DWO0 Dw1 DwW2

Note: A[29-31] are always 0b000 for burst transfers by the MPC750.

8.3.2.4 Effect of Alignment in Data Transfers

Table 8-3 lists the aligned transfers that can occur on the MPC750 bus. These are transfers
inwhich the datais aligned to an address that is an integral multiple of the size of the data.
For example, Table 8-3 shows that 1-byte data is always aligned; however, for a 4-byte
word to be aligned, it must be oriented on an address that is amultiple of 4.

Table 8-3. Aligned Data Transfers

Data Bus Byte Lane(s)
Transfer Size | TSIZO | TSIZ1 | TSIZ2 | A[29-31]
0 1 2 3 4 5 6 7
Byte 0 0 1 000 v — — — — — — —
0 0 1 001 — v — — — — — —
0 0 1 010 — — v — — — — —
0 0 1 011 — | - | = v — | =] = | =
0 0 1 100 — — — — N — _ _
0 0 1 101 — — — — — v — _
0 0 1 110 — — — — — — v —
0 0 1 111 — — — — — — — N
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Table 8-3. Aligned Data Transfers (Continued)

Data Bus Byte Lane(s)
Transfer Size | TSIZ0 | TSIZ1 | TSIZ2 | A[29-31]
0 1 2 3 4 5 6 7
Half word 0 1 0 000 v v — — — — _ _
0 1 0 010 — | = v v _ | | -] =
0 1 0 100 — | =] =1 = Vv v _ | =
0 1 0 110 — — — — — — v v
Word 1 0 0 000 v v v v — — — —
1 0 0 100 — — — — v v v v
Double word 0 0 0 000 v v v v v v v v

Notes: These entries indicate the byte portions of the requested operand that are read or written during
that bus transaction.
These entries are not required and are ignored during read transactions and are driven with unde-
fined data during all write transactions.

The MPC750 supports misaligned memory operations, athough their use may
substantially degrade performance. Misaligned memory transfers address memory that is
not aligned to the size of the data being transferred (such as, a word read of an odd byte
address). Although most of these operations hit in the primary cache (or generate burst
memory operations if they miss), the MPC750 interface supports misaligned transfers
within a word (32-bit aligned) boundary, as shown in Table 8-4. Note that the 4-byte
transfer in Table 8-4 isonly one exampl e of misalignment. Aslong asthe attempted transfer
does not cross a word boundary, the MPC750 can transfer the data on the misaligned
address (for example, a half-word read from an odd byte-aligned address). An attempt to
address data that crosses aword boundary requires two bus transfers to access the data.

Due to the performance degradations associated with misaligned memory operations, they
are best avoided. In addition to the double-word straddle boundary condition, the address
translation logic can generate substantial exception overhead when the |oad/store multiple
and load/store string instructions access misaligned data. It is strongly recommended that
software attempt to align data where possible.
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Table 8-4. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size Data Bus Byte Lanes
(Four Bytes) TSIZ[0-2] | A[29-31]
0 1 2 3 4 5 6 7
Aligned 100 000 Alalalal=|l=]=|=
Misaligned—first access 011 001 A A Al —]—=]=1=
second access 001 100 -l =fAal=]=]=
Misaligned—first access 010 010 — | — A Al —]—=]=1=
second access 011 100 =1 =falal=1]=
Misaligned—first access 001 011 — | =1 = Al—|—|—1|—
second access 011 100 — |-l =]l=lalalal=
Aligned 100 100 — =1 =1=1a
Misaligned—first access 011 101 — =]l =l =1]1=1AlAlA
second access 001 000 Al =l=1=f=]=1=
Misaligned—first access 010 110 — |l -] | =]1=1=lA1lA
second access 010 000 Alal=—|=|=|=|=]|=
Misaligned—first access 001 111 — — — = =] = A
second access 011 000 Alalal|l—|—=|—=|—=]|-—
Notes:

A: Byte lane used
—. Byte lane not used

8.3.2.4.1 Alignment of External Control Instructions

The size of the data transfer associated with the eciwx and ecowx instructions is aways
4 bytes. If the eciwx or ecowx instruction is misaligned and crosses any word boundary, the
MPC750 will generate an alignment exception.

8.3.3 Address Transfer Termination

The address tenure of a bus operation is terminated when completed with the assertion of
AACK, or retried with the assertion of ARTRY. The MPC750 does not terminate the
address transfer until the AACK (address acknowledge) input is asserted; therefore, the
system can extend the address transfer phase by delaying the assertion of AACK to the
MPC750. The assertion of AACK can be as early as the bus clock cycle following TS (see
Figure 8-7), which alows a minimum address tenure of two bus cycles. As shown in
Figure 8-7, these signals are asserted for one bus clock cycle, three-stated for half of the
next bus clock cycle, driven high till the following bus cycle, and finally three-stated. Note
that AACK must be asserted for only one bus clock cycle.
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The address transfer can be terminated with the requirement to retry if ARTRY is asserted
anytime during the address tenure and through the cycle following AACK. The assertion
causes the entire transaction (address and data tenure) to be rerun. As a snooping device,
the MPC750 asserts ARTRY for a snooped transaction that hits modified data in the data
cache that must be written back to memory, or if the snooped transaction could not be
serviced. As abus master, the MPC750 responds to an assertion of ARTRY by aborting the
bus transaction and re-requesting the bus. Note that after recognizing an assertion of
ARTRY and aborting the transaction in progress, the MPC750 is not guaranteed to run the
same transaction the next time it is granted the bus due to internal reordering of load and
store operations.

If an address retry is required, the ARTRY response will be asserted by a bus snooping
device as early as the second cycle after the assertion of TS. Once asserted, ARTRY must
remain asserted through the cycle after the assertion of AACK. The assertion of ARTRY
during the cycle after the assertion of AACK isreferred to asaqualified ARTRY. An earlier
assertion of ARTRY during the address tenure is referred to as an early ARTRY.

As abus master, the MPC750 recognizes either an early or qualified ARTRY and prevents
the data tenure associated with the retried address tenure. If the data tenure has already
begun, the MPC750 aborts and terminates the datatenureimmediately evenif the burst data
has been received. If the assertion of ARTRY isreceived up to or on the bus cycle following
thefirst (or only) assertion of TA for the datatenure, the MPC750 ignoresthe first data beat,
and if it is aload operation, does not forward data internally to the cache and execution
units. If ARTRY is asserted after the first (or only) assertion of TA, improper operation of
the bus interface may resuilt.

During the clock of aqualified ARTRY, the MPC750 also determinesif it should negate BR
and ignore BG on the following cycle. On the following cycle, only the snooping master
that asserted ARTRY and needsto perform a snoop copy-back operationisallowed to assert
BR. This guarantees the snooping master an opportunity to request and be granted the bus
before the just-retried master can restart its transaction. Note that a nonclocked bus arbiter
may detect the assertion of address bus request by the bus master that asserted ARTRY, and
return aqualified bus grant one cycle earlier than shown in Figure 8-7.

Note that if the MPC750 asserts ARTRY due to a snoop operation, and asserts BR in the
bus cyclefollowing ARTRY in order to perform a snoop push to memory it may be several
bus cycles later before the MPC750 will be able to accept aBG. (The delay in responding
to the assertion of BG only occurs during snoop pushes from the L2 cache.) The bus arbiter
should keep BG asserted until it detects BR negated or TS asserted from the MPC750
indicating that the snoop copy-back has begun. The system should ensure that no other
address tenures occur until the current snoop push from the MPC750 is completed. Snoop
push delays can also be avoided by operating the L2 cache in write-through mode so no
snoop pushes are required by the L2 cache.
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Figure 8-7. Snooped Address Cycle with ARTRY

8.4 Data Bus Tenure

This section describes the data bus arbitration, transfer, and termination phases defined by
the MPC750 memory access protocol. The phases of the data tenure are identical to those
of the address tenure, underscoring the symmetry in the control of the two buses.

8.4.1 Data Bus Arbitration

Data bus arbitration uses the data arbitration signa group—DBG, DBWO, and DBB.
Additionally, the combination of TS and TT[0-4] provides information about the data bus
request to external logic.

TheTSsignal isanimplied data bus request from the MPC750; the arbiter must qualify TS
with the transfer type (TT) encodings to determine if the current address transfer is an
address-only operation, which does not require a data bus transfer (see Figure 8-7). If the
data bus is needed, the arbiter grants data bus mastership by asserting the DBG input to the
MPC750. As with the address bus arbitration phase, the MPC750 must qualify the DBG
input with a number of input signals before assuming bus mastership, as shown in
Figure 8-8.
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A qualified data bus grant can be expressed as the following:

QDBG = DBG asserted whileDBB, DRTRY, and ARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualified ARTRY
assertion coincident with a data bus grant signal does not result in data bus mastership
(DBB is not asserted). Otherwise, the MPC750 always asserts DBB on the bus clock cycle
after recognition of aqualified data bus grant. Since the MPC750 can pipeline transactions,
there may be an outstanding data bus transaction when a new address transaction isretried.
Inthis case, the MPC750 becomes the data bus master to compl ete the previoustransaction.

8.4.1.1 Using the DBB Signal

The DBB signal should be connected between masters if data tenure scheduling is left to
the masters. Optionally, the memory system can control data tenure scheduling directly
with DBG. However, it is possible to ignore the DBB signal in the system if the DBB input
is not used as the final data bus alocation control between data bus masters, and if the
memory system can track the start and end of the data tenure. If DBB is not used to signal
the end of a data tenure, DBG is only asserted to the next bus master the cycle before the
cycle that the next bus master may actually begin its data tenure, rather than asserting it
earlier (usually during another master’s data tenure) and allowing the negation of DBB to
be the final gating signal for a qualified data bus grant. Even if DBB is ignored in the
system, the MPC750 alway's recognizes its own assertion of DBB, and requires one cycle
after data tenure completion to negate its own DBB before recognizing a qualified data bus
grant for another datatenure. If DBB isignored in the system, it must still be connected to
apull-up resistor on the MPC750 to ensure proper operation.
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8.4.2 Data Bus Write Only

As aresult of address pipelining, the MPC750 may have up to two data tenures queued to
perform when it receives aqualified DBG. Generally, the data tenures should be performed
in strict order (the same order) as their address tenures were performed. The MPC750,
however, aso supports a limited out-of-order capability with the data bus write only
(DBWO) input. When recognized on the clock of a qualified DBG, DBWO may direct the
MPC750 to perform the next pending data write tenure even if apending read tenure would
have normally been performed first. For more information on the operation of DBWO, refer
to Section 8.10, “Using Data Bus Write Only.”

If the MPC750 has any data tenures to perform, it always accepts data bus mastership to
perform a data tenure when it recognizes a qualified DBG. If DBWO is asserted with a
qualified DBG and no write tenure is queued to run, the MPC750 still takes mastership of
the data bus to perform the next pending read data tenure.

Generally, DBWO should only be used to allow a copy-back operation (burst write) to
occur before a pending read operation. If DBWO is used for single-beat write operations,
it may negate the effect of the eieio instruction by allowing a write operation to precede a
program-schedul ed read operation.

8.4.3 Data Transfer

The data transfer signals include DH[0-31], DL[0-31], and DP[0-7]. For memory
accesses, the DH and DL signals form a 64-bit data path for read and write operations.

The MPC750 transfers data in either single- or four-beat burst transfers. Single-beat
operations can transfer from 1 to 8 bytes at a time and can be misaligned; see
Section 8.3.2.4, “Effect of Alignment in Data Transfers.” Burst operations always transfer
eight words and are aligned on eight-word address boundaries. Burst transfers can achieve
significantly higher bus throughput than single-beat operations.

The type of transaction initiated by the MPC750 depends on whether the code or data is
cacheable and, for store operations whether the cache is in write-back or write-through
mode, which software controls on either a page or block basis. Burst transfers support
cacheable operations only; that is, memory structures must be marked as cacheable (and
write-back for data store operations) in the respective page or block descriptor to take
advantage of burst transfers.

The MPC750 output TBST indicates to the system whether the current transaction is a
single- or four-beat transfer (except during eciwx/ecowx transactions, when it signals the
state of EAR[28]). A burst transfer has an assumed address order. For load or store
operations that miss in the cache (and are marked as cacheable and, for stores, write-back
in the MMU), the MPC750 uses the double-word-aligned address associated with the
critical code or data that initiated the transaction. This minimizes latency by allowing the
critical code or data to be forwarded to the processor before the rest of the cache line is
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filled. For all other burst operations, however, the cache line is transferred beginning with
the eight-word-aligned data.

8.4.4 Data Transfer Termination

Four signals are used to terminate data bus transactions—TA, DRTRY (data retry), TEA
(transfer error acknowledge), and ARTRY. The TA signal indicates normal termination of
data transactions. It must always be asserted on the bus cycle coincident with the data that
itisquaifying. It may be withheld by the slave for any number of clocks until valid datais
ready to be supplied or accepted. DRTRY indicates invalid read data in the previous bus
clock cycle. DRTRY extendsthe current data beat and does not terminateit. If it isasserted
after the last (or only) data beat, the MPC750 negates DBB but till considers the data beat
active and waits for another assertion of TA. DRTRY isignored on write operations. TEA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination
condition, the MPC750 always negates DBB for one cycle.

If DRTRY is asserted by the memory system to extend the last (or only) data beat past the
negation of DBB, the memory system should three-state the data bus on the clock after the
final assertion of TA, even though it will negate DRTRY on that clock. Thisisto prevent a
potential momentary data bus conflict if awrite access begins on the following cycle.

The TEA signal is used to signal anonrecoverable error during the data transaction. It may
be asserted on any cycle during DBB, or on the cycle after a qualified TA during a read
operation, except when no-DRTRY mode is selected (where no-DRTRY mode cancels
checking the cycle after TA). The assertion of TEA terminates the datatenure immediately
evenif inthe middle of aburst; however, it does not prevent incorrect datathat has just been
acknowledged with TA from being written into the MPC750's cache or GPRs. The
assertion of TEA initiates either amachine check exception or a checkstop condition based
on the setting of the MSR[ME] hit.

Anassertion of ARTRY causesthe datatenure to be terminated immediately if the ARTRY
is for the address tenure associated with the data tenure in operation. If ARTRY is
connected for the MPC750, the earliest allowabl e assertion of TA tothe MPC750 isdirectly
dependent on the earliest possible assertion of ARTRY to the MPC750; see Section 8.3.3,
“Address Transfer Termination.”

8.4.4.1 Normal Single-Beat Termination

Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave. The TEA and DRTRY signals must remain negated during the transfer
(see Figure 8-9).
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Figure 8-9. Normal Single-Beat Read Termination

The DRTRY signal is not sampled during data writes, as shown in Figure 8-10.
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Figure 8-10. Normal Single-Beat Write Termination
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Normal termination of aburst transfer occurswhen TA isasserted for four bus clock cycles,
as shown in Figure 8-11. The bus clock cycles in which TA is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate
successfully, TEA and DRTRY must remain negated during the transfer. For write bursts,
TEA must remain negated for a successful transfer. DRTRY isignored during data writes.

1 1 2 /| 3 | 4 | 5 | 6 L7

| | | | | |
o/

Q9

IS

12

3

&y =]

5
f\ﬁ?

O_

data /K/'X >< X /’X
E t

drtry

Figure 8-11. Normal Burst Transaction

For read bursts, DRTRY may be asserted one bus clock cycle after TA is asserted to signal
that the data presented with TA isinvalid and that the processor must wait for the negation
of DRTRY before forwarding data to the processor (see Figure 8-12). Thus, adata beat can
be terminated by a predicted branch with TA and then one bus clock cycle later confirmed
with the negation of DRTRY. The DRTRY signal is valid only for read transactions. TA
must be asserted on the bus clock cycle before the first bus clock cycle of the assertion of
DRTRY:; otherwise the results are undefined.

The DRTRY signal extends data bus mastership such that other processors cannot use the
data bus until DRTRY is negated. Therefore, in the example in Figure 8-12, DBB cannot
be asserted until bus clock cycle 6. This is true for both read and write operations even
though DRTRY does not extend bus mastership for write operations.
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Figure 8-12. Termination with DRTRY

Figure 8-13 shows the effect of using DRTRY during a burst read. It also shows the effect
of using TA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-13,
TA is negated for the second data beat. The MPC750 data pipeline does not proceed until
bus clock cycle 4 when the TA is reasserted.

ST

Ny / Y

Figure 8-13. Read Burst with TA Wait States and DRTRY

Note that DRTRY is useful for systems that implement predicted forwarding of data such
as those with direct-mapped, third-level caches where hit/miss is determined on the
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note that DRTRY may not be implemented on other PowerPC processors.
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8.4.4.2 Data Transfer Termination Due to a Bus Error

The TEA signal indicates that a bus error occurred. It may be asserted while DBB (and/or
DRTRY for read operations) is asserted. Asserting TEA to the MPC750 terminates the
transaction; that is, further assertions of TA and DRTRY are ignored and DBB is negated.

Assertion of the TEA signal causes a machine check exception (and possibly a checkstop
condition within the MPC750). For more information, see Section 4.5.2, “Machine Check
Exception (0x00200).” Note a so that the M PC750 does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer saved
into the SRRO register does not point to the memory operation that caused the assertion of
TEA, but to the instruction about to be executed (perhaps several instructions later).
However, assertion of TEA does not invalidate data entering the GPR or the cache.
Additionally, the address corresponding to the access that caused TEA to be asserted is not
latched by the MPC750. To recover, the exception handler must determine and remedy the
cause of the TEA, or the MPC750 must be reset; therefore, this function should only be
used to indicate fatal system conditions to the processor (such as parity or uncorrectable
ECC errors).

After the MPC750 has committed to run a transaction, that transaction must eventually
complete. Address retry causes the transaction to be restarted; TA wait states and DRTRY
assertion for reads delay termination of individual data beats. Eventually, however, the
system must either terminate the transaction or assert the TEA signal. For thisreason, care
must be taken to check for the end of physical memory and the location of certain system
facilities to avoid memory accesses that result in the assertion of TEA.

Note that TEA generates a machine check exception depending on MSR[ME]. Clearing
the machine check exception enable control bits leads to a true checkstop condition
(instruction execution halted and processor clock stopped).

8.4.5 Memory Coherency—MEI Protocol

The MPC750 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the three-state, MEI cache-coherency
protocol (see Figure 8-14).

The global (GBL) output signal indicates whether the current transaction must be snooped
by other snooping devices on the bus. Address bus masters assert GBL to indicate that the
current transaction isaglobal access (that is, an access to memory shared by more than one
device). If GBL is not asserted for the transaction, that transaction is not snooped. When
other devices detect the GBL input asserted, they must respond by snooping the broadcast
address.

Normally, GBL reflects the M bit value specified for the memory reference in the
corresponding translation descriptor(s). Note that care must be taken to minimize the
number of pages marked as global, because the retry protocol discussed in the previous
section is used to enforce coherency and can require significant bus bandwidth.
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When the MPC750 is not the address bus master, GBL is an input. The MPC750 snoops a
transaction if TS and GBL are asserted together in the same bus clock cycle (this is a
qualified snooping condition). No snoop update to the M PC750 cache occursif the snooped
transaction is not marked global. Thisincludes invalidation cycles.

When the MPC750 detects a qualified snoop condition, the address associated with the TS
is compared against the data cache tags. Snooping completes if no hit is detected. If,
however, the address hits in the cache, the MPC750 reacts according to the MEI protocol
shown in Figure 8-14, assuming the WIM bits are set to write-back, caching-allowed, and
coherency-enforced modes (WIM = 001).

SH/CR SH/CRW
Wi R
- WH
MODIFIED o EXCLUSIVE
RH RH
Wi SHICIR

BUS TRANSACTIONS
SH =Snoop Hit CDz Snoop Push
RH =Read Hit
WH =Write Hit @: Cache Line Fill

WM=Write Miss
RM =Read Miss
SH/CRW=Snoop Hit, Cacheable Read/Write
SH/CIR =Snoop Hit, Caching-Inhibited Read

Figure 8-14. MEI Cache Coherency Protocol—State Diagram (WIM = 001)
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8.5 Timing Examples

This section showstiming diagrams for various scenarios. Figure 8-15illustrates the fastest
single-beat reads possible for the MPC750. This figure shows both minimal latency and
maximum single-beat throughput. By delaying the data bus tenure, the latency increases,
but, because of split-transaction pipelining, the overall throughput is not affected unlessthe
data bus latency causes the third address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

|1 | 2 3| 4 |5 | 6] 71 81910111 |12 |

g e
BR[\__| / [\ /T 7T\
BG| \_| / ‘ \ |/ ‘ \ |/ ‘ 7
ABB \ /—\ /T /
TS L/ L/ L/
A[0-31] (CrUA - (CPUA )+ cPUA )
TT[0-4] ( Read — ‘ Read ‘  —— ‘ Read ‘ )
TBST
GBL | 1 1 |
AACK |/ L/ |/
ARTRY
DBG, \ / \ / \ /
DBB \/ |/ L/
D[0-63] () ) )
TA \ / \ / \ /
DRTRY
TEA
[ I I I Iy o

|l|2|3|4|5|6|7|8|9|10|11|12|

Figure 8-15. Fastest Single-Beat Reads
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Figure 8-16 illustrates the fastest single-beat writes supported by the MPC750. All
bidirectional signals are three-stated between bus tenures.

|1 | 21 314 5 |61 71 8] 9 |10 11 |12 |

Y
BRI\ |/ [\ /] \ /T
BG| \_| /[ \ [\ [T
ABB \ [T\ [T\ /
TS L/ L/ L/
A[0-31] (__cPUA CPUA CPUA )
TT[0-4] (_saw SBW ST
TBST
GBL I I I I I I
AACK |/ L/ ./
ARTRY
DBG \ / \ |/ \ /
DBB L/ L/ L/
D[0-63] o) o) o)
TA \ |/ \ |/ \ |/
DRTRY
TEA
[ S U Ay I I B

| 2| 3|4 |5 |6 | 7|8 )] 9 )10 11,12,

Figure 8-16. Fastest Single-Beat Writes
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Figure 8-17 shows three ways to delay single-beat reads showing data-delay controls:

» TheTA signal can remain negated to insert wait statesin clock cycles 3 and 4.
¢ For the second access, DBG could have been asserted in clock cycle 6.
* Inthethird access, DRTRY isasserted in clock cycle 11 to flush the previous data.

Note that al bidirectiona signals are three-stated between bus tenures. The pipelining
shown in Figure 8-17 can occur if the second access is not another load (for example, an
instruction fetch).

|12 | 2 314 |5 6] 71 8] 9 |10 |11 |12 | 13 |14 |

_ [ I I I I I I I I I I | [ [
BR:_\—i—/ A T A

_ | | | | | 1 | 1 1 l l | | |
BG:_\ f [ T I\ I/ T T \ I/ T I/ | | | | |
as—\ | |~ | Wanll 0  — [ [

[ [ I I [ I I [ I I [ [ [ [ [

TS f | f = |/ = | /1 f f 1 | |

[ [ I [ [ I [ [ [ [ [ [ [ [ [
AJ0-31] I—I—m—l—( cPUA  yY—+— cPuA —F—"t+—+] I I
I [ I I [ [ [ [ [

TT[0-4] i—i—m—i—< Read }—+— Read y—t+—+— | |
I I I I I I I | [ [

TBSTi I I I I [ [ [ [ [ [ [ [ [ [
1 | | | | | | | | | | | | | |
BLI T | T T | T | T T | T | T T | T T I‘ I I
= | | [ | | [ | | [ | | | [ [
AACK, [ D - T [ [ [ [
ARTRY | i i i i i i i i i i i | [ [
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [

DBG | \ I/ / T\ 1/ \ |/ |

[ I I I I I [ I I I I I I I I
DBBI 1T T\ [ | /1 T\ |/ T\l /1 [ [ [

[ [ [ I I I [ [ I [ I [ [ [ [
D[0-63] | i i i ) —n —+—Bad X I —F—+—
i i i i i [ i i [ i [ [ i i |
AL Ty L NN

| i ' | | | | | | | | [ | | |
DRTRY |\ 0~
x| i i i i i i i i i i i i i |

| 2| 3,4 |5 |6 | 7 |8 ] 9 10 )11, 12 13 14

Figure 8-17. Single-Beat Reads Showing Data-Delay Controls
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Figure 8-18 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the
following ways:

» TheTA signal is held negated to insert wait states in clocks 3 and 4.

¢ Inclock 6, DBG is held negated, delaying the start of the data tenure.

Thelast accessis not delayed (DRTRY isvalid only for read operations).

11 21 3141151161 78] 9]10]11]12]
BR[|/ [\ /1 \ 7T\
BG| \_| [ —L\ / ‘ \ |/ ‘ /
ABB \ / T\ /T /
TS L/ L/ L/
A[0-31] (__cPUA CPUA PUA )
TT[0-4] (__sew saw W)
TBST
GBL [ [ [ [ [ [
AACK / ./ ./
ARTRY
DBG \ |/ VA Y A N
DBB \ / /TS
D[0-63] { out ) (Tow ) (Tou )
TA / |/ \ | /N |/
DRTRY
TEA
[ Iy I Iy

|l|2|3|4|5|6|7|8|9|10|11|12|

Figure 8-18. Single-Beat Writes Showing Data Delay Controls
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Figure 8-19 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are three-stated between bus tenures. Note the following:

e Thefirst data beat of bursted read data (clock 0) isthe critical quad word.

« Thewrite burst shows the use of TA signal negation to delay the third data beat.

+ Thefinal read burst showsthe use of DRTRY on the third data beat.

e Theaddress for the third transfer is delayed until the first transfer completes.

|1|2|3|4|5 | 6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|
L L L

L
BR[\_L/ [\ 7\ 7\
BG |\ /i\ /J\
ABB \ /N / \ /
TS L/ L/ L/
A[0-31] (CPUA }——( CPUA ) (CPUA )
TT[0-4] { ‘Read‘ — ‘Wf"e‘ ) \rlgi/
TBST \ /N / \ /
GBL [ [ ] [ [ [
AACK L/ L/ L/
ARTRY
DBG \ |/ \ |/ \ |/
DBB \ / T\ / T\ /
Dlo-63] 0 (0P () ST (5 ETERD (T S () () G G )
TA \ [\ N\ [\ /
DRTRY L/
TEA
| E| 5|4 5 6] 7| & §|20] 15[z (15| 14|15 16 17 |1 |25| 20

Figure 8-19. Burst Transfers with Data Delay Controls
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Figure 8-20 shows the use of the TEA signal. Note that all bidirectiona signals are
three-stated between bus tenures. Note the following:

« Thefirst data beat of the read burst (in clock 0) isthe critical quad word.
« TheTEA signal truncates the burst write transfer on the third data beat.
«  The MPC750 eventually causes an exception to be taken on the TEA event.

|1|2|3|4 |5|6|7|8| 9|10|11|12|13|14|15|16|17|
[ 1L

L]
BR[\_/ |\ 7\ \
ANEA N
ABB \ / T\ / \ /
TS L/ L/ L/
A[0-31] (CPUA Yy CPUA ) (CPUA )
TT[0-4] { ‘Read‘ — ‘WfitJ b A;i/
TBST|[ |\ / T\ / \ /
GBL [ [ T [ [ [
AACK L/ \_L/ L/
ARTRY
DBG \ |/ \ |/ \ |/
DBB \ / T\ /T /
D[0-63] {in 0)(in 1X(in 2)(in 3)——utoutHout 3——(in 0in 1}(in 2Xn 3)
TA \ [\ [\ /
DRTRY
TEA L/
BEENLURBERRRENERS

Figure 8-20. Use of Transfer Error Acknowledge (TEA)
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8.6 Optional Bus Configuration

The MPC750 supports an optional bus configuration that is selected by the assertion or
negation of the DRTRY signal during the negation of the HRESET signal. The operation
and selection of the optional bus configuration is described in the following sections.

8.6.1 No-DRTRY Mode

The MPC750 supports an optional mode to disable the use of the data retry function
provided through the DRTRY signal. The no-DRTRY mode allows the forwarding of data
during load operations to the internal CPU one bus cycle sooner than in the normal bus
protocol.

The 60x bus protocol specifies that, during load operations, the memory system normally
has the capability to cancel datathat was read by the master on the bus cycle after TA was
asserted. In the MPC750 implementation, this late cancellation protocol requires the
MPC750 to hold any loaded data at the bus interface for one additional bus clock to verify
that the data is valid before forwarding it to the internal CPU. For systems that do not
implement the DRTRY function, the MPC750 provides an optional no-DRTRY mode that
eliminates this one-cycle stall during all load operations, and allows for the forwarding of
data to the internal CPU immediately when TA is recognized.

When the MPC750 is in the no-DRTRY moade, data can no longer be cancelled the cycle
after it is acknowledged by an assertion of TA. Dataisimmediately forwarded to the CPU
internally, and any attempt at late cancellation by the system may cause improper operation
by the MPC750.

When the MPC750 is following normal bus protocol, data may be cancelled the bus cycle
after TA by either of two means—late cancellation by DRTRY, or late cancellation by
ARTRY. When no-DRTRY mode is selected, both cancellation cases must be disallowed
in the system design for the bus protocol.

When no-DRTRY mode is selected for the MPC750, the system must ensure that DRTRY
is not asserted to the MPC750. If it is asserted, it may cause improper operation of the bus
interface. The system must also ensure that an assertion of ARTRY by a snooping device
must occur before or coincident with the first assertion of TA to the MPC750, but not on
the cycle after the first assertion of TA.

Other than the inability to cancel datathat was read by the master on the bus cycle after TA
was asserted, the bus protocol for the MPC750 isidentical to that for the basic transfer bus
protocols described in this chapter.

The MPC750 selects the desired DRTRY mode at startup by sampling the state of the
DRTRY signal itself at the negation of the HRESET signal. If the DRTRY signal is negated
at the negation of HRESET, normal operation is selected. If the DRTRY signal is asserted
at the negation of HRESET, no-DRTRY mode is selected.
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8.7 Interrupt, Checkstop, and Reset Signals

This section describes external interrupts, checkstop operations, and hard and soft reset
inputs.

8.7.1 External Interrupts

The external interrupt input signals (INT, SMI and MCP) of the MPC750 eventually force
the processor to take the external interrupt vector or the system management interrupt
vector if the MSR[EE] is set, or the machine check interrupt if the MSR[ME] and the
HIDO[EMCP] bits are set.

8.7.2 Checkstops

The MPC750 has two checkstop input signals—CKSTP_IN (nonmaskable) and MCP
(enabled when MSR[ME] is cleared, and HIDO[EMCP] is set), and a checkstop output
(CKSTP_OUT) signal. If CKSTP_IN or MCP is asserted, the MPC750 halts operations by
gating off all internal clocks. The MPC750 asserts CKSTP_OUT if CKSTP_IN isasserted.

If CKSTP_OUT is asserted by the MPC750, it has entered the checkstop state, and
processing has halted internally. The CKSTP_OUT signal can be asserted for various
reasons including receiving a TEA signal and detection of external parity errors. For more
information about checkstop state, see Section 4.5.2.2, “ Checkstop State (MSR[ME] = 0).”

8.7.3 Reset Inputs
The MPC750 has two reset inputs, described as follows:

e HRESET (hard reset)—The HRESET signal is used for power-on reset sequences,
or for situationsin which the M PC750 must go through the entire cold start sequence
of internal hardware initializations.

e SRESET (soft reset)—The soft reset input provides warm reset capability. This
input can be used to avoid forcing the MPC750 to complete the cold start sequence.

When either reset input is negated, the processor attempts to fetch code from the system
reset exception vector. Thevector islocated at offset 0x00100 from the exception prefix (all
zeros or ones, depending on the setting of the exception prefix bit in the machine state
register (MSR[IP]). The MSR[IP] bit is set for HRESET.

8.7.4 System Quiesce Control Signals

The system quiesce control signals (QREQ and QA CK) allow the processor to enter the nap
or sleep low-power states, and bring bus activity to a quiescent state in an orderly fashion.

Prior to entering the nap or sleep power state, the MPC750 asserts the QREQ signal. This
signal allowsthe system to terminate or pause any bus activities that are normally snooped.
When the system is ready to enter the system quiesce state, it asserts the QACK signal. At
thistime the MPC750 may enter a quiescent (low power) state. When the MPC750isinthe
quiescent state, it stops snooping bus activity. While the MPC750 isin the nap power state,
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the system power controller can enable snooping by the MPC750 by deasserting the QACK
signal for at least eight bus clock cycles, after which the MPC750 is capable of snooping
bus transactions. The reassertion of QACK following the snoop transactions will cause the
MPC750 to reenter the nap power state.

8.8 Processor State Signals

This section describes the MPC750's support for atomic update and memory through the
use of the lwar x/stwcx. opcode pair, and includes a description of the TLBISYNC input.

8.8.1 Support for the lwarx/stwcx. Instruction Pair

The Load Word and Reserve Indexed (Iwarx) and the Store Word Conditional Indexed
(stwex.) instructions provide a means for atomic memory updating. Memory can be
updated atomically by setting areservation on the load and checking that the reservation is
still valid before the storeis performed. Inthe MPC750, the reservations are made on behal f
of aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signa is driven synchronously with the bus clock and
reflects the status of the reservation coherency bit in the reservation address register; see
Chapter 3, “L1 Instruction and Data Cache Operation,” for more information. For
information about timing, see Section 7.2.9.7.3, “ Reservation (RSRV)—Output.”

8.8.2 TLBISYNC Input

The TLBISYNC input alows for the hardware synchronization of changesto MMU tables
when the MPC750 and another DMA master share the same MMU trandation tables in
system memory. It isasserted by aDMA master when it isusing shared addressesthat could
be changed in the MMU tables by the MPC750 during the DMA master’s tenure.

The TLBISYNC input, when asserted to the MPC750, prevents the MPC750 from
completing any instructions past a tlbsync instruction. Generally, during the execution of
an eciwx or ecowx instruction by the MPC750, the selected DMA device should assert the
MPC750's TLBISYNC signal and maintain it asserted during its DMA tenureif it isusing
ashared trandlation address. Subsequent instructions by the MPC750 should include async
and tlbsync instruction before any MMU table changes are performed. This will prevent
the MPC750 from making table changes disruptive to the other master during the DMA
period.
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8.9 IEEE 1149.1a-1993 Compliant Interface

The MPC750 boundary-scan interface is a fully-compliant implementation of the |IEEE
1149.1a-1993 standard. This section describes the MPC750's |EEE 1149.1a-1993 (JTAG)
interface.

8.9.1 JTAG/COP Interface
The MPC750 has extensive on-chip test capability including the following:

« Debug control/observation (COP)
« Boundary scan (standard |EEE 1149.1a-1993 (JTAG) compliant interface)
e Support for manufacturing test

The COP and boundary scan logic are not used under typical operating conditions. Detailed
discussion of the MPC750 test functions is beyond the scope of this document; however,
sufficient information has been provided to alow the system designer to disable the test
functions that would impede normal operation.

The JTAG/COP interface is shown in Figure 8-21. For more information, refer to IEEE
Sandard Test Access Port and Boundary Scan Architecture IEEE STD 1149-1a-1993.

—— | TDI (Test Data Input)

— > TMS (Test Mode Select)
—————»{ TCK (Test Clock Input)
-—— TDO (Test Data Output)

——— > TRST (Test Reset)

Figure 8-21. IEEE 1149.1a-1993 Compliant Boundary Scan Interface

8.10 Using Data Bus Write Only

The MPC750 supports split-transaction pipelined transactions. It supports a limited
out-of-order capability for its own pipelined transactions through the data bus write only
(DBWO) signa. When recognized on the clock of aqualified DBG, the assertion of DBWO
directsthe MPC750 to perform the next pending datawrite tenure (if any), evenif apending
read tenure would have normally been performed because of address pipelining. The
DBWO signal does not change the order of write tenureswith respect to other write tenures
from the same MPC750. It only allows that awrite tenure be performed ahead of a pending
read tenure from the same MPC750.
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In general, an address tenure on the bus is followed strictly in order by its associated data
tenure. Transactions pipelined by the MPC750 complete strictly in order. However, the
MPC750 can run bus transactions out of order only when the external system allows the
MPC750 to perform a cache-line-snoop-push-out operation (or other write transaction, if
pending in the MPC750 write queues) between the address and data tenures of a read
operation through the use of DBWO. This effectively envel opes the write operation within
the read operation. Figure 8-22 shows how the DBWO signal is used to perform an
enveloped write transaction.

\
| Read Address | | Write Address |<—

5C (1) (2
_ L L Enveloped Write
ABB ] [ [ Transaction
AACK L] L I
' \i
Write Data Read Data
_ (2 (1)
DBG 1] L]
DBB T | [ [
DBWO ~1_ [~

Figure 8-22. Data Bus Write Only Transaction

Note that although the MPC750 can pipeline any write transaction behind the read
transaction, special care should be used when using the enveloped write feature. It is
envisioned that most system implementations will not need this capability; for these
applications, DBWO should remain negated. In systems where this capability is needed,
DBWO should be asserted under the following scenario:

1. The MPC750 initiates aread transaction (either single-beat or burst) by completing
the read address tenure with no addressretry.

2. Then, the MPC750 initiates a write transaction by completing the write address
tenure, with no address retry.

3. Atthispoint, if DBWO is asserted with a qualified data bus grant to the MPC750,
the MPC750 asserts DBB and drives the write data onto the data bus, out of order
with respect to the address pipeline. The write transaction concludes with the
MPC750 negating DBB.

4. The next qualified data bus grant signals the MPC750 to complete the outstanding
read transaction by latching the data on the bus. This assertion of DBG should not
be accompanied by an asserted DBWO.
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Any number of bustransactions by other bus masters can be attempted between any of these
steps.

Note the following regarding DBWO:

« DBWO can be asserted if no data bus read is pending, but it has no effect on write
ordering.

¢ Theordering and presence of databuswritesis determined by thewritesin thewrite
queues at the time BG is asserted for the write address (not DBG). If a particular
writeisdesired (for example, acache-line-snoop-push-out operation), then BG must
be asserted after that particular write isin the queue and it must be the highest
priority writein the queue at that time. A cache-line-snoop-push-out operation may
be the highest priority write, but more than one may be gqueued.

« Because more than one write may be in the write queue when DBG is asserted for
the write address, more than one data bus write may be envel oped by apending data
bus read.

The arbiter must monitor bus operations and coordinate the various masters and slaves with
respect to the use of the data bus when DBWO is used. Individual DBG signals associated
with each bus device should alow the arbiter to synchronize both pipelined and
split-transaction bus organi zations. Individual DBG and DBWO signals provide aprimitive
form of source-level tagging for the granting of the data bus.

Note that use of the DBWO signal allows some operation-level tagging with respect to the
MPC750 and the use of the data bus.
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Chapter 9
L2 Cache Interface Operation

This chapter describes the MPC750 microprocessor L2 cache interface, and its
configuration and operation. It describes how the MPC750 signals, defined in Chapter 7,
“Signal Descriptions,” interact to perform address and data transfers to and from the L2
cache. Note that the MPC740 microprocessor does not implement the L2 cache interface.

9.1 L2 Cache Interface Overview

The MPC750's L 2 cacheinterface isimplemented with an on-chip, two-way set associative
tag memory with 4096 tags per way, and a dedicated interface with support for up to
1 Mbyte of external synchronous SRAM for data storage. The tags are sectored to support
either two cache blocks per tag entry (two sectors, 64 bytes), or four cache blocks per tag
entry (four sectors, 128 bytes) depending onthe L2 cache size. If the L2 cacheisconfigured
for 256 Kbytes or 512 Kbytes of external SRAM, the tags are configured for two sectors
per L2 cache block. The L2 tags are configured for four sectors per L2 cache block when
1 Mbyte of external SRAM is used. Each sector (32-byte L1 cache block) in the L2 cache
hasits own valid and modified bits.

The L2 cache control register (L2CR) allows control of L2 cache configuration and timing,
byte-level data parity generation and checking, global invalidation of L2 contents, write-
through operation, and L2 test support. The L2 cache interface provides two clock outputs
that allow the clock inputs of the SRAMSs to be driven at frequency divisions of 1, 1.5, 2,
2.5, and 3 of the processor core frequency. The MPC750's L2 cache normally is configured
to operate in copy-back mode and maintains cache coherency through snooping.

Figure 9-1 shows the MPC750 configured with a 1-Mbyte L 2 cache.
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L2ADDRI16-0] > ADDR[16-0]
L2DATA[0-63] |<€ . >| DATA[-31]
L2DP[0-7] |<«—(Optiona) >| PARITY[0-3]
L2CE > E
LacE E  128kx36
1—|ADSP
> 72
L2CLK_OUTA > K
MPC750 — | ADDR[16-0]
| DATA[D-31]
L — > PARITY[0-3]
L2SYNC_IN > % 128k x 36
> SRAM
0—| ADSC
1| ADSP
- > 7z
L2CLK_OUTB (Optional) > K

Notes:

— For a 1-Mbyte L2, use address bits 16—0 (bit O is LSB).

— For a 512-Kbyte L2, use address bits 15-0 (bit 0 is LSB).

— For a 256-Kbyte L2, use address bits 140 (bit 0 is LSB).

— External clock routing should ensure that the rising edge of the L2 clock is
coincident at the K input of all SRAMs and at the L2Sync_In input of the
MPC750. The clock A network can be used solely or the clock B network can
also be used depending on loading, frequency, and number of SRAMs.

— No pull-up resistors are normally required for the L2 interface.

— The MPC750 supports only one bank of SRAMSs.

— For high-speed operation, no more than two loads should be presented on each
L2 interface signal.

Figure 9-1. Typical 1-Mbyte L2 Cache Configuration

9.1.1 L2 Cache Operation

The MPC750’'s L2 cache is a combined instruction and data cache that receives memory
requests from both L1 instruction and data caches independently. The L1 requests are
generaly the result of instruction fetch misses, data load or store misses, write-through
operations, or cache management instructions. Each L1 request generates an address
lookup inthe L2 tags. If ahit occurs, the instructions or data are forwarded to the L 1 cache.
A missin the L2 tags causes the L1 request to be forwarded to the 60x bus interface. The
cache block received from the bus is forwarded to the L1 cache immediately, and is also
loaded into the L2 cache with the tag marked valid and unmodified. If the cache block
loaded into the L2 causes anew tag entry to be allocated and the current tag entry is marked
valid modified, the modified sectors of the tag to be replaced are castout from the L2 cache
to the 60x bus.
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At any given timethe L1 instruction cache may have one instruction fetch request, and the
L1 data cache may have one load and two stores requesting L 2 cache access. The L2 cache
al so services snoop requests from the 60x bus. When there are multiple pending requests to
the L2 cache, snoop requests have highest priority, followed by dataload and store requests
(serviced on afirst-in, first-out basis). Instruction fetch requests have the lowest priority in
accessing the L2 cache when there are multiple accesses pending.

If read requests from both the L1 instruction and data caches are pending, the L2 cache can
perform hit-under-miss and suppliesthe available instruction or datawhile abustransaction
for the previous L2 cache miss is performed. The L2 cache does not support miss-under-
miss, and the second instruction fetch or data load stalls until the bus operation resulting
from the first L2 miss compl etes.

All requests to the L2 cache that are marked cacheable (even if the respective L1 cacheis
disabled or locked) cause tag lookup and will be serviced if the instructions or data are in
the L2 cache. Burst and single-beat read requestsfrom the L 1 cachesthat hitinthe L2 cache
are forwarded instructions or data, and the L2 LRU bit for that tag is updated. Burst writes
from the L1 data cache due to a castout or replacement copyback are written only to the L2
cache, and the L 2 cache sector is marked modified. Designers should note that during burst
transfersinto and out of the L2 cache SRAM array an addressis generated by the MPC750
for each data beat.

If the L2 cacheis configured as write-through, the L2 sector is marked unmodified, and the
write is forwarded to the 60x bus. If the L1 castout requires a new L2 tag entry to be
alocated and the current tag is marked modified, any modified sectors of the tag to be
replaced are cast out of the L2 cache to the 60x bus.

Single-beat read requests from the L1 caches that missin the L2 cache do not cause any
state changesin the L 2 cache and are forwarded on the 60x businterface. Cacheable single-
beat store requests marked copy-back that hit in the L2 are allowed to update the L2 cache
sector, but do not cause L2 cache sector allocation or deallocation. Cacheable, single-beat
store requests that missin the L2 are forwarded to the 60x bus. Single-beat store requests
marked write-through (through address trandlation or through the configuration of
L2CR[L2WT]) are written to the L2 cache if they hit and are written to the 60x bus
independent of the L2 hit/miss status. If the store hits in the L2 cache, the
maodified/unmodified status of the tag remains unchanged. All requeststo the L2 cache that
are marked cache-inhibited by address tranglation (through either the MMU or by default
WIMG configuration) bypass the L2 cache and do not cause any L 2 cache tag state change.
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The execution of the stwex. instruction resultsin single-beat writes from the L1 data cache.
These single-beat writes are processed by the L 2 cache according to hit/miss status, L1 and
L 2 write-through configuration, and reservation-active status. |f the address associated with
the stwex. instruction misses in the L2 cache or if the reservation is no longer active, the
stwex. instruction bypasses the L2 cache and is forwarded to the 60x bus interface. If the
stwex. hitsin the L2 cache and the reservation is till active, one of the following actions
ocCurs:

¢ If the stwex. hitsamodified sector in the L2 cache (independent of write-through
status), or if the stwex. hitsboth the L1 and L2 cachesin copy-back mode, the stwcx.
iswritten to the L2 and the reservation completes.

* |If the stwex. hitsan unmodified sector in the L2 cache, and either theL1or L2isin
write-through mode, the stwcex. isforwarded to the 60x bus interface and the sector
hit in the L2 cacheisinvalidated.

L1 cache-block-push operations generated by the execution of dcbf and dcbst instructions
write through to the 60x bus interface and invalidate the L2 cache sector if they hit. The
execution of dcbf and dcbst instructions that do not cause a cache-block-push from the L1
cache are forwarded to the L2 cache to perform a sector invalidation and/or push from the
L2 cacheto the 60x bus as required. If the dcbf and dcbst instructions do not cause a sector
push from the L2 cache, they are forwarded to the 60x bus interface for address-only
broadcast if HIDO[ABE] isset to 1.

Thedchi instruction is always forwarded to the L 2 cache and causes a segment invalidation
if ahit occurs. The dcbi instruction is also forwarded to the 60x bus interface for broadcast
if HIDO[ABE] isset to 1. Theicbi instruction invalidates only L1 cache blocks and is never
forwarded to the L2 cache. Any dcbz instructions marked global do not affect the L2 cache
state. If adcbz instruction hitsin the L1 and L2 caches, the L1 data cache block is cleared
and the dcbz instruction completes. If a dcbz instruction misses in the L2 cache, it is
forwarded to the 60x bus interface for broadcast. Any dcbz instructions that are marked
nonglobal act only on the L1 data cache.

The sync and eieio instructions bypass the L2 cache and are forwarded to the 60x bus.

9.1.2 L2 Cache Control Register (L2CR)

The L2 cache control register is used to configure and enable the L2 cache. The L2CR isa
supervisor-level read/write, implementati on-specific register that is accessed as SPR 1017.
The contents of the L2CR are cleared during power-on reset. Table 9-1 describesthe L2CR
bits. For additional information about the configuration of the L2CR, refer to Section 2.1.5,
“L2 Cache Control Register (L2CR)."
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Table 9-1. L2 Cache Control Register

Bit Name Function

0 L2E L2 enable

1 L2PE L2 data parity generation and checking enable

2-3 L2SIZ L2 size—Should be set according to the size of the L2 data RAMs used
00 Reserved
01 256 Kbyte
10 512 Kbyte
11 1 Mbyte

4-6 L2CLK L2 clock ratio (core-to-L2 frequency divider)

000 L2 clock and DLL disabled
001 =1

010 =15

011 Reserved

100 =2

101 =25

110 =3

111 Reserved

7-8 L2RAM L2 RAM type—Configures the L2 RAM interface for the type of synchronous SRAMs used
00  Flow-through (register-buffer) synchronous burst SRAM
01 Reserved
10  Pipelined (register-register) synchronous burst SRAM
11  Pipelined (register-register) synchronous late-write SRAM

9 L2DO L2 data-only. Setting this bit enables the caching of instructions in the L2 cache.

10 L21 L2 global invalidate. Setting L2l invalidates the L2 cache globally by clearing the L2 status
bits.

11 L2CTL L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ
(low-power mode) signal for cache RAMSs that support the ZZ function. This bit should not
be set when the MPC750 is in nap mode and snooping is being performed through
deassertion of QACK.

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default copy-
back mode) so all writes to the L2 cache also write through to the 60x bus.

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that
result from dcbf and dcbst instructions to be written only into the L2 cache and marked
valid, rather than being written only to the 60x bus and marked invalid in the L2 cache in
case of hit. If L2TS is set, causes single-beat store operations that miss in the L2 cache to
be discarded.

14-15 L20H L2 output hold. These bits configure the output hold time of the address, data, and control
signals driven by the MPC750 to the L2 data RAMs.

00 0.5nS
01 10nS
10 Reserved
11  Reserved

16 L2SL L2 DLL slow. Setting L2SL enables L2 data RAM clocking at frequencies less than
100 MHz.

17 L2DF L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and
L2CLK_OUTB) of the L2 interface to operate as one differential clock.
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Table 9-1. L2 Cache Control Register (Continued)

Bit Name Function
18 L2BYP L2 DLL bypass. L2BYP is intended for use when the PLL is being bypassed, and for
engineering evaluation.
19-30 — Reserved. These bits should be cleared to 0.

31

L2IP L2 global invalidate in progress (read only)—This read-only bit indicates whether an L2
global invalidate is occurring.

9.1.3 L2 Cache Initialization

Following a power-on or hard reset, the L2 cache and the L2 DLL are disabled initially.
Before enabling the L2 cache, the L2 DLL must first be configured through the L2CR
register, and the DLL must be allowed 640 L2 clock periods to achieve phase lock. Before
enabling the L2 cache, other configuration parameters must be set in the L2CR, and the L2
tags must be globally invalidated. The L2 cache should be initialized during system start-

up.

The sequence for initializing the L2 cacheis as follows:

Power-on reset (automatically performed by the assertion of HRESET signal).
Disable L2 cache by clearing L2 CR[L2E].

Set the L2CR[L2CLK] bits to the desired clock divider setting. Setting a nonzero
value automatically enablesthe DLL. All other L2 cache configuration bits should
be set to properly configure the L2 cache interface for the SRAM type, size, and
interface timing required.

Wait for the L2 DLL to achieve phase lock. This can be timed by setting the
decrementer for atime period equal to 640 L2 clocks, or by performing an L2 global
invalidate.

Perform an L2 global invalidate. The global invalidate could be performed before
enabling the DLL, or in parallel with waiting for the DLL to stabilize. Refer to
Section 9.1.4, “L 2 Cache Global Invalidation,” for moreinformation about L 2 cache
global invalidation. Note that a global invalidate always takes much longer than it
takes for the DLL to stabilize.

After the DLL stabilizes, an L2 global invalidate has been performed, and the other
L 2 configuration bits have been set, enable the L2 cache for normal operation by
setting the L2CR[L 2E] bit to 1.
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9.1.4 L2 Cache Global Invalidation

The L2 cache supports a global invalidation function in which all bits of the L2 tags (tag
data bits, tag status bits, and LRU hit) are cleared. It is performed by an on-chip hardware
state machine that sequentially cyclesthrough the L2 tags. The global invalidation function
is controlled through L2CR[L2I], and it must be performed only while the L2 cache is
disabled. The MPC750 can continue operation during aglobal invalidation provided the L2
cache has been properly disabled before the global invalidation operation starts.

The sequence for performing a global invalidation of the L2 cacheis asfollows:

« Execute async instruction to finish any pending store operations in the load/store
unit, disable the L2 cache by clearing L2CR[L2E], and execute an additional sync
instruction after disabling the L2 cache to ensure that any pending operationsin the
L2 cache unit have completed.

« Initiate the global invalidation operation by setting the L2CR[L2I] bit to 1.

« Monitor the L2CR[L2IP] hit to determine when the global invalidation operation is
completed (indicated by the clearing of L2CR[L2IP]). The global invalidation
requires approximately 32K core clock cycles to complete.

» After detecting the clearing of L2CR[L2IP], clear L2CR[L2I] and re-enable the L2
cache for normal operation by setting L2CR[L2E].

9.1.5 L2 Cache Test Features and Methods

In the course of system power-up, testing may be required to verify the proper operation of
the L2 tag memory, external SRAM, and overall L2 cache system. The following sections
describe the MPC750's features and methods for testing the L2 cache. The L2 cache
address space should be marked as guarded (G = 1) so spurious load operations are not
forwarded to the 60x bus interface before branch resolution during L2 cache testing.

9.1.5.1 L2CR Support for L2 Cache Testing

L2CR[DO] and L2CR[TS] support the testing of the L2 cache. L2CR[DO] prevents
instructions from being cached in the L2. This allows the L1 instruction cache to remain
enabled during the testing process without having L 1 instruction misses affect the contents
of the L2 cache and allows all L2 cache activity to be controlled by program-specified load
and store operations.

L2CR[TS] is used with the dcbf and dcbst instructions to push data into the L2 cache.
When L2CR[TS] is set, and the L1 data cache is enabled, an instruction loop containing a
dcbf instruction can be used to store any address or data pattern to the L2 cache.
Additionally, 60x bus broadcasting is inhibited when a dcbz instruction is executed. This
alows the use of a dcbz instruction to clear an L1 cache block, followed by a dcbf
instruction to push the cache block into the L2 cache and invalidate the L1 cache block.

When the L2 cache is enabled, cacheable single-beat read operations are allowed to hit in
the L2 cache and cacheable write operations are alowed to modify the contents of the L2

Chapter 9. L2 Cache Interface Operation 9-7



cache when a hit occurs. Cacheable single-beat read and writes occur when address
translation is disabled (invoking the use of the default WIMG bits (0b0011)), or when
address translation is enabled and accesses are marked as cacheabl e through the page table
entries or the BATS, and the L1 data cache is disabled or locked. When the L2 cache has
beeninitialized and the L 1 cache has been disabled or locked, load or storeinstructionsthen
bypass the L1 cache and hit in the L2 cache directly. When L2CR[TS] is set, cacheable
single-beat writesareinhibited from accessing the 60x businterface after an L2 cache miss.

During L2 cache testing, the performance monitor can be used to count L2 cache hits and
misses, thereby providing anumerical signature for test routines and away to verify proper
L2 cache operation.

9.1.5.2 L2 Cache Testing
A typical test for verifying the proper operation of the MPC750's L2 cache memory
(external SRAM and tag) would perform the following steps:

¢ Initialize the L2 test sequence by disabling address trandlation to invoke the default
WIMG setting (0b0011). Set L2CR[DQ] and L2CR[TS] and perform a global
invalidation of the L1 data cache and the L2 cache. The L1 instruction cache can
remain enabled to improve execution efficiency.

¢ Test the L2 cache external SRAM by enabling the L1 data cache and executing a
sequence of dcbz, stw, and dcbf instructionstoinitialize the L2 cachewith adesired
range of consecutive addresses and with cache data consisting of zeros. Oncethe L2
cache holds a sequential range of addresses, disable the L1 data cache and execute
a series of single-beat load and store operations employing a variety of bit patterns
to test for stuck bits and pattern sensitivitiesin the L2 cache SRAM. The
performance monitor can be used to verify whether the number of L2 cache hits or
misses corresponds to the tests performed.

e Test the L2 cache tag memory by enabling the L1 data cache and executing a
sequence of dcbz, stw, and dcbf instructions to initialize the L2 cache with awide
range of addresses and cache data. Once the L2 cache is populated with a known
range of addresses and data, disable the L1 data cache and execute a series of store
operations to addresses not previoudly in the L2 cache. These store operations
should missin every case. Note that setting the L2CR[TS] inhibits L2 cache misses
from being forwarded to the 60x businterface, thereby avoiding the potential for bus
errors due to addressing hardware or nonexistent memory. The L2 cache then can be
further verified by reading the previously loaded addresses and observing whether
all the tags hit, and that the associated data compares correctly. The performance
monitor can aso be used to verify whether the proper number of L2 cache hits and
misses correspond to the test operations performed.

e Theentire L2 cache can betested by clearing L2CR[DQ] and L2CR[TS], restoring
the L1 and L2 cachesto their normal operational state, and executing a
comprehensive test program designed to exercise al the caches. The test program
should include operations that cause L2 hit, reload, and castout activity that can be
subsequently verified through the performance monitor.
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9.1.6 L2 Clock Configuration

The MPC750 provides a programmable clock for the L2 external synchronous data RAM.
The clock frequency for the external SRAM is provided by dividing the MPC750’s internal
clock by ratios of 1, 1.5, 2, 2.5, or 3, programmed through the L2CR[CLK] bits. The L2
clock is phase-adjusted to synchronize the clocking of the latches in the MPC750’s L2
cache interface with the clocking of the external SRAM by means of an on-chip delay-
locked loop (DLL).

Theratio selected for the L2 clock is dependent on the frequency supported by the externa
SRAMSs, the MPC750'sinternal frequency of operation, and the range of phase adjustment
supported by the L2 DLL. Refer to the MPC750 hardware specifications for additional
information about L2 clock configuration.

9.1.7 L2 Cache SRAMTiming Examples

This section describes the signal timing for the three types of SRAM (flow-through burst
SRAM, pipelined burst SRAM, and late-write SRAM) supported by the MPC750's L2
cache interface. The timing diagramsiillustrate the best case logica (ideal, non AC-timing
accurate) interface operations. For proper interface operation, the designer must select
SRAM s that support the signal sequencing illustrated in the timing diagrams. Designers
should a'so note that during burst transfers into and out of the L2 cache SRAM array, an
address is generated by the MPC750 for each data beat.

The SRAM sdlected for a system design is usually a function of desired system
performance, L2 bus frequency, and SRAM unit cost. The following sections describe the
operation of the three SRAM types supported by the MPC750, and the design trade-offs
associated with each.

9.1.7.1 Flow-Through Burst SRAM

Flow-through burst SRAMs operate by clocking in the address, and driving the data directly
to the bus from the SRAM memory array. This behavior allows the flow-through burst
SRAMSsto provide initial read data one cycle sooner than pipelined burst SRAMs, but the
flow-through burst SRAM frequencies available may only support the slowest L2 bus
frequencies. The MPC750 supports flow-through burst SRAM at L2 clock ratios of +2,
+2.5, and +3.
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Figure 9-2 shows a burst read-write-read memory access sequence when the L2 cache
interface is configured with flow-through burst SRAM.

St I ) o Iy 6y
L2CE [\

L2WE

|

T

| <——burstrd—> <——burstwr——> <——burstrd——>>
|

SRAMAddress —(R0 X R1 X R2 X R3 XRur) (W4 X W5 X W6 X W7 X R8 X R9 XRIOXRILX Ry)

| | | | | | | | | | | |
SRAMMemory (RO R R Ra) (W& (W5 X We X WZ X RE X RS YRIOXRILX Re)
| | | | | | | | | | | | | | | | | [ |
SRAMData (R Z\REXRD) ()

Note:
R, indicates where an extra read cycle is signaled to keep the burst RAM driving the
data bus for the last read.

Figure 9-2. Burst Read-Write-Read L2 Cache Access (Flow-Through)

Figure 9-3 shows a burst read-modify-write memory access sequence when the L2 cache
interface is configured with flow-through burst SRAM.

SRAMCIK
L2CE \L\

L2WE

|
I
| <—burstrd—> <—burstrd——> <———rd modify wi——> <—burstwr——>
|

SRAMAddress —(ROXRLX R2XR3 X R4 XR5 X RE X RT X RB X Rur———

SRAMMemory

SRAMData

Note:
R indicates where an extra read cycle is signaled to keep the burst RAM driving the
data bus for the last read.

Figure 9-3. Burst Read-Modify-Write L2 Cache Access (Flow-Through)
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Figure 9-4 shows a burst read-write-write memory access sequence when the L2 cache
interface is configured with flow-through burst SRAM.

SRAMCIk

L2CE

L2WE

SRAMAddress

SRAMMemory

SRAMData

Note:
R,y indicates where an extra read cycle is signaled to keep the burst RAM driving the
data bus for the last read.

Figure 9-4. Burst Read-Write-Write L2 Cache Access (Flow-Through)

9.1.7.2 Pipelined Burst SRAM

Pipelined burst SRAMSs operate at higher frequencies than flow-through burst SRAMs by
clocking the read data from the memory array into abuffer before driving the data onto the
databus. Thiscausesinitial read accesses by the pipelined burst SRAMsto occur one cycle
later than flow-through burst SRAMS, but the L2 bus frequencies supported can be higher.
Note that the MPC750's L2 cache interface requires the use of single-cycle deselect
pipelined burst SRAM for proper operation.

Figure 9-5 shows a burst read-write-read memory access sequence when the L2 cache
interface is configured with pipelined burst SRAM.

SRAMCIk
L2CE \L\

|

L2WE |
: <——burst rd——"> <—burstw——> <—purstrd——> !
|

SRAMAddress R0 X R1XR2 X R3 XRy) (W4 X W5 X W6 X W7 X R8 X R9 XRIOXRILX Ry )

| | | | | | | | | | | | |
SRAMMemory (RO X R1XR2 X R3 XRyr) (W4 X W5 X W6 X W7 X R8 X R9 XRIOXRLLX Ryr)
| | [l [l [l [ [l | | [l [l [l [l [l [l [l [l [l |
SRAMData (RO i iZ Ry X R8 X R XRIOXR1L)—]

Notes:
Rgyry indicates where some burst RAMs may begin driving the data bus.
R,y indicates where an extra read cycle is signaled to keep the burst RAM driving the
data bus for the last read.

Figure 9-5. Burst Read-Write-Read L2 Cache Access (Pipelined)
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Figure 9-6 shows a burst read-modify-write memory access sequence when the L2 cache
interface is configured with pipelined burst SRAM.

L2CE :_\

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |

L2WE I T T T T T T T T T | | |

| <——burstrd—> <——burstrd——> ~<———id modify wi——> <—burstwr——>
|

SRAMAddress —(ROXRLY RZXRI X RAXR5 X R6 X RTXREX Rur)———

SRAMMemory

SRAMData

Notes:
Rqry indicates where some burst RAMs may begin driving the data bus.
Ryt indicates where an extra read cycle is signaled to keep the burst RAM driving the
data bus for the last read.

Figure 9-6. Burst Read-Modify-Write L2 Cache Access (Pipelined)
Figure 9-7 shows a burst read-write-write memory access sequence when the L2 cache
interface is configured with pipelined burst SRAM.

SRAMCIkK
L2CE

L2WE

SRAMAddress

SRAMMemory

SRAMData

Notes:
Rgry indicates where some burst RAMs may begin driving the data bus.
Ry indicates where an extra read cycle is signaled to keep the burst RAM driving the
data bus for the last read.

Figure 9-7. Burst Read-Write-Write L2 Cache Access (Pipelined)

9.1.7.3 Late-Write SRAM

Late-write SRAMs offer improved performance when compared to pipelined burst SRAMs
by not requiring an extra read cycle during read operations, and requiring one cycle less
when transitioning from a read to write operation. Late-write SRAMs implement an
internal write queue, allowing write data to be provided one cycle after the write operation
issignaled on the address and control buses. In this way write operations are queued on the
address and data bus in the same way as read operations, allowing transitions between read
and write operations to occur more efficiently.
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Figure 9-8 shows a burst read-write-read memory access sequence when the L2 cache
interface is configured with late-write SRAM.

| |
L2WE M T— T
~<——burst rd——> < burstwr—> <——burst rd——>

|
SRAMAddress —(RO X RLXRZXR3) {W4 X W5 X W6 X W7 X R8 X R9 XR10XR11
| | | | | | | | | | | | |
SRAMMemory {ROXRLXR2XR3) (WQ)X( W4 X W5 X W6 X R8 X R9 XRIOXR11)
| | | | | | | | | | | | | | | |
SRAMData ! L

Note:
WQ is the last previous write that was queued in the late-write RAM.

Figure 9-8. Burst Read-Write-Read L2 Cache Access (Late-Write SRAM)

Figure 9-9 shows a burst read-modify-write memory access sequence when the L2 cache
interface is configured with late-write SRAM.

| | | | | | | | | | | | | | | | |
L2CE | | | | | | | | | I I | | | | | I I
I | | | | | | | | | | | | | | | | | |
L2WE 1 T T T T T T T T T T T | | | | | T T
| <——burstrd——> <——burstrd——> <—dmodify wr—> <—burstw——> | |
SRAMAddress (RO Y(RLY R2XREXRAXR6 X R6XRT X RE)——— —
| | | | | | | | | | | | | | | | | | |
SRAMMemory (RO X_RLX R2 X R3 X R4 X R5 X R6 X R7 X R8) {(WQX W9 XW10XW1IXW12)
I I T T T T T T T T T I I T T T T T I
SRAMData  —————(R0 X RT X R2 X R3 X R4 X R5 X R6 X R7 X R8 Y hiZ 1
Note:

WQ is the last previous write that was queued in the late-write RAM.

Figure 9-9. Burst Read-Modify-Write L2 Cache Access (Late-Write SRAM)
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Figure 9-10 shows a burst read-write-write memory access sequence when the L2 cache
interface is configured with late-write SRAM.

sramcik ML LML LML L L L L L L L L L L
|
L2CE L\‘_/_‘_\

|

| |
L2WE ™7

|

|

<——hurst rd——>

aborted rd <——hurst w—> <——bhurstwr——>

SRAMAddress —(R0)

SRAMMemory

SRAMData

Note:
WQ is the last previous write that was queued in the late-write RAM.

Figure 9-10. Burst Read-Write-Write L2 Cache Access (Late-Write SRAM)
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Chapter 10
Power and Thermal Management

The MPC750 microprocessor is specifically designed for low-power operation. It provides
both automatic and program-controlled power reduction modes for progressive reduction
of power consumption. It also providesathermal assist unit (TAU) to allow on-chip thermal
measurement, allowing sophisticated thermal management for high-performance portable
systems. This chapter describes the hardware support provided by the MPC750 for power
and thermal management.

10.1 Dynamic Power Management

Dynamic power management (DPM) automatically powers up and down the individual
execution units of the MPC750, based upon the contents of the instruction stream. For
example, if no floating-point instructions are being executed, the floating-point unit is
automatically powered down. Power is not actually removed from the execution unit;
instead, each execution unit has an independent clock input, which is automatically
controlled on aclock-by-clock basis. Since CMOS circuits consume negligible power when
they are not switching, stopping the clock to an execution unit effectively eliminates its
power consumption. The operation of DPM is completely transparent to software or any
external hardware. Dynamic power management is enabled by setting HIDO[DPM] to 1.

10.2 Programmable Power Modes

The MPC750 provides four programmabl e power states—full power, doze, nap, and sleep.
Software sel ects these modes by setting one (and only one) of the three power saving mode
bitsin the HIDO register. Hardware can enable a power management state through external
asynchronous interrupts. Such a hardware interrupt causes the transfer of program flow to
interrupt handler code that then invokes the appropriate power saving mode. The MPC750
provides a separate interrupt and interrupt vector for power management—the system
management interrupt (SM1). The MPC750 also contains a decrementer which allowsit to
enter the nap or doze mode for a predetermined amount of time and then returnto full power
operation through a decrementer interrupt. Note that the MPC750 cannot switch from one
power management mode to another without first returning to full-power mode. The Sleep
mode disables bus snooping; therefore, a hardware handshake is provided to ensure
coherency before the MPC750 enters this power management mode. Table 10-1
summarizes the four power states.
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Table 10-1. MPC750 Microprocessor Programmable Power Modes

PM Mode Functioning Units Activation Method Full-Power Wake Up Method
Full power All units active — —
Full power Requested logic by By instruction dispatch —
(with DPM) demand
Doze * Bus snooping Controlled by SW External asynchronous exceptions*
« Data cache as needed Decrementer interrupt
« Decrementer timer Performance monitor interrupt
Thermal management interrupt
Reset
Nap * Bus snooping Controlled by hardware External asynchronous exceptions
— enabled by deassertion | and software Decrementer interrupt
of QACK Performance monitor interrupt
« Decrementer timer Thermal management interrupt
Reset
Sleep None Controlled by hardware External asynchronous exceptions
and software Performance monitor interrupt
Thermal management interrupt
Reset

Note: * Exceptions are referred to as interrupts in the architecture specification.

10.2.1 Power Management Modes

The following sections describe the characteristics of the MPC750’s power management
modes, the requirements for entering and exiting the various modes, and the system
capabilities provided by the MPC750 while the power management modes are active.

10.2.1.1 Full-Power Mode with DPM Disabled
Full-power mode with DPM disabled is selected when the DPM enable bit (bit 11) in HIDO
is cleared.

« Default state following power-up and HRESET

e All functional units are operating at full processor speed at all times.

10.2.1.2 Full-Power Mode with DPM Enabled
Full-power mode with DPM enabled (HIDO[DPM] = 1) provides on-chip power
management without affecting the functionality or performance of the MPC750.

¢ Required functional units are operating at full processor speed.

* Functiona units are clocked only when needed.

« No software or hardware intervention is required after mode is set.

e Software/hardware and performance transparent
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10.2.1.3 Doze Mode

Doze mode disables most functional units but maintains cache coherency by enabling the
bus interface unit and snooping. A snoop hit causes the MPC750 to enable the data cache,
copy the data back to memory, disable the cache, and fully return to the doze state.

« Most functional units disabled

¢ Bus snooping and time base/decrementer still enabled

« Doze mode sequence
— Set doze it (HIDQ[8] = 1), clear nap and sleep bits (HIDO[9] and HIDO[10] = 0)
— MPC750 enters doze mode after several processor clocks

e Severa methods of returning to full-power mode

— Assert INT, SMI, MCP, decrementer, performance monitor, or thermal
management interrupts

— Assert hard reset or soft reset

e Transition to full-power state takes no more than afew processor cycles
e PLL running and locked to SY SCLK

10.2.1.4 Nap Mode

The nap mode disables the MPC750 but still maintains the phase-locked loop (PLL), delay
locked loop (DLL), L2CLK_OUTA and L2CLK_OUTB output signals, and the time base/
decrementer. The time base can be used to restore the MPC750 to full-power state after a
programmed amount of time. To maintain data coherency, bus snooping is disabled for nap
and sleep modes through a hardware handshake sequence using the quiesce request
(QREQ) and quiesce acknowledge (QACK) signals. The MPC750 asserts the QREQ signal
to indicate that it is ready to disable bus snooping. When the system has ensured that
snooping is no longer necessary, it will assert QACK and the MPC750 will enter the nap
mode. If the system determines that a bus snoop cycle is required, QACK is deasserted to
the MPC750 for at least eight bus clock cycles, and the MPC750 will then be able respond
to a snoop cycle. Assertion of QACK following the snoop cycle will again disable the
MPC750's snoop capability. The MPC750's power dissipation while in nap mode with
QACK deasserted is the same as the power dissipation while in doze mode.

Note that when in nap mode the DLL should be kept locked to enable a quick recovery to
full-power mode without having to wait for the DLL to re-lock. Additionally, an L2ZZ
signal is provided by the MPC750’s L2 cache interface to drive external SRAM into alow
power mode when the nap or sleep modes are invoked. The L2ZZ signal is enabled by
setting the L2CR[CTL] bit to 1. Note that if bus snooping is to be performed through
deassertion of the QACK signal, the L2CR[CTL] bit should always be cleared to 0.

* Time base/decrementer still enabled
¢ Most functional units disabled
¢ All nonessential input receivers disabled
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« Nap mode sequence
— Set nap bit (HIDO[9] = 1), clear doze and sleep bits (HIDO[8] and HIDO[10] = 0)
— MPC750 asserts quiesce request (QREQ) signal
— System asserts quiesce acknowledge (QACK) signal
— MPC750 enters sleep mode after several processor clocks
« Nap mode bus snoop sequence
— System deasserts QACK signal for eight or more bus clock cycles
— MPC750 snoops address tenure(s) on bus
— System asserts QACK signal to restore full nap mode
» Severa methods of returning to full-power mode
— Assert INT, SMI, MCP, decrementer, performance monitor, or thermal
management interrupts
— Assert hard reset or soft reset
e Transition to full-power takes no more than afew processor cycles
e PLL and DLL running and locked to SY SCLK

10.2.1.5 Sleep Mode

Sleep mode consumes the least amount of power of the four modes sinceall functional units
are disabled. To conserve the maximum amount of power, the PLL may be disabled by
placing the PLL_CFG signalsin the PLL bypass mode, and disabling SY SCLK. Note that
forcing the SYSCLK signal into a static state does not disable the MPC750's PLL, which
will continue to operate internally at an undefined frequency unless placed in PLL bypass
mode. Additionally, if the PLL is not disabled, the L2 cache interface DLL will remain
locked and the L2CLK_OUTA and L2CLK_OUTB signalswill remain active. The DLL is
disabled by clearing the L2CR[L 2E] bit to 0.

Dueto the fully static design of the MPC750, internal processor state is preserved when no
internal clock is present. Because the time base and decrementer are disabled while the
MPC750 isin sleep mode, the MPC750’s time base contents will have to be updated from
an external time base after exiting sleep mode if maintaining an accurate time-of-day is
required. Before entering the sleep mode, the MPC750 asserts the QREQ signal to indicate
that it is ready to disable bus snooping. When the system has ensured that snooping is no
longer necessary, it asserts QACK and the MPC750 will enter sleep mode.

e All functional units disabled (including bus snooping and time base)
« All nonessential input receivers disabled

— Internal clock regenerators disabled

— PLL and DLL still running (see below)
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» Sleep mode sequence
— Set deep bit (HIDO[10] = 1), clear doze and nap bits (HIDO[8] and HIDO[9])
— MPC750 asserts quiesce request (QREQ)
— System asserts quiesce acknowledge (QACK)
— MPC750 enters sleep mode after several processor clocks
« Severa methods of returning to full-power mode
— Assert INT, SMI, or MCP interrupts
— Assert hard reset or soft reset
e PLL and DLL may be disabled and SY SCLK may be removed whilein sleep mode
* Return to full-power mode after PLL and SY SCLK are disabled in sleep mode
— Enable SYSCLK
— Reconfigure PLL into desired processor clock mode
— System logic waits for PLL startup and relock time (100 psec)
— System logic asserts one of the sleep recovery signals (for example, INT or SMI)

— Reconfigure DLL, wait for DLL relock (640 L2 clock cycles) and re-enable L2
cache through the L2CR

10.2.2 Power Management Software Considerations

Since the MPC750 is a dual-issue processor with out-of-order execution capability, care
must be taken in how the power management mode is entered. Furthermore, nap and sleep
modes require al outstanding bus operations to be completed before these power
management modes are entered. Normally, during system configuration time, one of the
power management modes would be selected by setting the appropriate HIDO mode bit.
Later on, the power management modeisinvoked by setting the M SR[POW] bit. To ensure
aclean transition into and out of a power management mode, set the MSR[EE] bit to 1 and
execute the following code sequence:

sync
mtmsr[POW = 1]
isync

loop: b loop
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10.3 Thermal Assist Unit

With the increasing power dissipation of high-performance processors and operating
conditions that span a wider range of temperatures than desktop systems, thermal
management becomes an essential part of system design to ensure reliable operation of
portable systems. One key aspect of thermal management is ensuring that the junction
temperature of the microprocessor does not exceed the operating specification. While the
case temperature can be measured with an external thermal sensor, the thermal constant
from the junction to the case can be large, and accuracy can be aproblem. Thismay lead to
lower overall system performance due to the necessary compensation to alleviate
measurement deficiencies.

The MPC750 provides the system designer an efficient means of monitoring junction
temperature through the incorporation of an on-chip thermal sensor and programmable
control logic to enable a thermal management implementation tightly coupled to the
processor for improved performance and reliability.

10.3.1 Thermal Assist Unit Overview

The on-chip thermal assist unit (TAU) is composed of athermal sensor, a digital-to-analog
converter (DAC), a comparator, control logic, and three dedicated SPRs. See Figure 10-1
for ablock diagram of the TAU.

Thermal Sensor|
Interrupt Control =Thermal Interrupt
Request
(0x1700)

DAC

Thermal Sensor 2
> Control Logic [ %

[ THRM1 | [ THRMZ ]

Figure 10-1. Thermal Assist Unit Block Diagram

The TAU provides thermal control by periodically comparing the MPC750’s junction
temperature against user-programmed thresholds, and generating a thermal management
interrupt if the threshold values are crossed. The TAU also enables the user to determine the
junction temperature through a software successive approximation routine.
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The TAU is controlled through three supervisor-level SPRs, accessed through the mtspr/
mfspr instructions. Two of the SPRs(THRM 1 and THRM2) provide temperature threshold
values that can be compared to the junction temperature value, and control bits that enable
comparison and thermal interrupt generation. The third SPR (THRM3) provides a TAU
enable bit and a sample interval timer. Note that all the bits in THRM1, THRM2, and
THRM3 are cleared to 0 during a hard reset, and the TAU remainsidle and in alow-power
state until configured and enabled.

The bit fieldsin the THRM1 and THRM?2 SPRs are described in Table 10-2.

Table 10-2. THRM1 and THRM2 Bit Field Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read only. This bit is set if the thermal sensor output
crosses the threshold specified in the SPR. The state of this bit is valid only if TIV is set. The
interpretation of the TIN bit is controlled by the TID bit.

1 TIV Thermal management interrupt valid. Read only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid.

2-8 Threshold Threshold value that the output of the thermal sensor is compared to. The threshold range is
between 0° and 127° C, and each bit represents 1° C. Note that this is not the resolution of
the thermal sensor.

9-28 | — Reserved. System software should clear these bits to 0.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature
comparison to set TIN. If TID is cleared to O, TIN is set and an interrupt occurs if the junction
temperature exceeds the threshold. If TID is set to 1, TIN is set and an interrupt is indicated
if the junction temperature is below the threshold.

30 TIE Thermal management interrupt enable. Enables assertion of the thermal management
interrupt signal. The thermal management interrupt is maskable by the MSR[EE] bit. If TIE is
cleared to 0 and THRMn is valid, the TIN bit records the status of the junction temperature
vs. threshold comparison without asserting an interrupt signal. This feature allows system
software to make a successive approximation to estimate the junction temperature.

31 \% SPR valid bit. This bit is set to indicate that the SPR contains a valid threshold, TID, and TIE
controls bits. Setting THRM1/2[V] and THRM3J[E] to 1 enables operation of the thermal
Sensor.

The bit fieldsin the THRM 3 SPR are described in Table 10-3.

Table 10-3. THRM3 Bit Field Settings

Bits Name Description
0-17 — Reserved for future use. System software should clear these bits to 0.
18-30 | SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction

temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to
allow a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set to 1.
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10.3.2 Thermal Assist Unit Operation

The TAU can be programmed to operatein single or dual threshold modes, which resultsin
the TAU generating athermal management interrupt when one or both threshold values are
crossed. In addition, with the appropriate software routine, the TAU can also directly
determine the junction temperature. The following sections describe the configuration of
the TAU to support these modes of operation.

10.3.2.1 TAU Single Threshold Mode

When the TAU is configured for single threshold mode, either THRM 1 or THRM2 can be
used to contain the threshold value, and athermal management interrupt is generated when
the threshold value is crossed. To configure the TAU for single threshold operation, set the
desired temperature threshold, TID, TIE, and V bits for either THRM1 or THRM2. The
unused THRMnN threshold SPR should be disabled by clearing the V bit to 0. In this
discussion THRMn refers to the THRM threshold SPR (THRM1 or THRM2) selected to
contain the active threshold value.

After setting the desired operational parameters, the TAU is enabled by setting the
THRM3[E] bit to 1, and placing a value alowing a sample interval of 20 microseconds or
greater in the THRM3[SITV] field. The THRM3[SITV] setting determines the number of
processor clock cycles between input to the DAC and sampling of the comparator output;
accordingly, the use of avalue smaller than recommended in the THRM3[SITV] field can
cause inaccuracies in the sensed temperature.

If the junction temperature does not cross the programmed threshold, the THRMnN[TIN] bit
iscleared to O to indicate that no interrupt isrequired, and the THRMn[TIV] bitissetto 1
to indicate that the TIN bit state is valid. If the threshold value has been crossed, the
THRMN[TIN] and THRMN[TIV] bits are set to 1, and a therma management interrupt is
generated if both the THRMN[TIE] and MSR[EE] bits are set to 1.

A therma management interrupt is held asserted internally until recognized by the
MPC750's interrupt unit. Once a thermal management interrupt is recognized, further
temperature sampling is suspended, and the THRMn[TIN] and THRMn[TIV] vaues are
held until an mtspr instruction is executed to THRMn.

The execution of an mtspr instruction to THRMn anytime during TAU operation will clear
the THRMnN[TIV] bit to 0 and restart the temperature comparison. Executing an mtspr
instruction to THRM3 will clear both THRM1[TIV] and THRM2[TIV] bitsto 0, and restart
temperature comparison in THRMn if the THRM3[E] bit is set to 1.

Examples of valid THRM 1 and THRM 2 bit settings are shown in Table 10-4.
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Table 10-4. Valid THRM1 and THRM2 Bit Settings

TNt | vt | TID | TIE Y Description

X X X X 0 The threshold in the SPR will not be used for comparison.

X X X 0 1 Threshold is used for comparison, thermal management interrupt
assertion is disabled.

X X 0 0 1 Set TIN and do not assert thermal management interrupt if the
junction temperature exceeds the threshold.

X X 0 1 1 Set TIN and assert thermal management interrupt if the junction
temperature exceeds the threshold.

X X 1 0 1 Set TIN and do not assert thermal management interrupt if the
junction temperature is less than the threshold.

X X 1 1 1 Set TIN and assert thermal management interrupt if the junction
temperature is less than the threshold.

X 0 X X 1 The state of the TIN bit is not valid.

0 1 0 X 1 The junction temperature is less than the threshold and as a result

the thermal management interrupt is not generated for TIE = 1.

1 1 0 X 1 The junction temperature is greater than the threshold and as a
result the thermal management interrupt is generated if TIE = 1.

0 1 1 X 1 The junction temperature is greater than the threshold and as a
result the thermal management interrupt is not generated for TIE = 1.

1 1 1 X 1 The junction temperature is less than the threshold and as a result
the thermal management interrupt is generated if TIE = 1.

Note: 1The TIN and TIV bits are read-only status bits.

10.3.2.2 TAU Dual-Threshold Mode

The configuration and operation of the TAU'’s dual-threshold mode is similar to single
threshold mode, except both THRM1 and THRM2 are configured with desired threshold
and TID values, and the TIE and V bits are set to 1. When the THRM3[E] bit is set to 1 to
enable temperature measurement and comparison, the first comparison is made with
THRML. If no thermal management interrupt results from the comparison, the number of
processor cycles specifiedin THRM3[SITV] elapses, and the next comparison is made with
THRMZ2. If no thermal management interrupt results from the THRM2 comparison, the
time specified by THRM3[SITV] again elapses, and the comparison returnsto THRM 1.

This sequence of comparisons continues until a thermal management interrupt occurs, or
the TAU is disabled. When a comparison results in an interrupt, the comparison with the
threshold SPR causing the interrupt is halted, but comparisons continue with the other
threshold SPR. Following a thermal management interrupt, the interrupt service routine
must read both THRM 1 and THRM 2 to determine which threshold was crossed. Note that
it is possible for both threshold values to have been crossed, in which case the TAU ceases
making temperature comparisons until an mtspr instruction is executed to one or both of
the threshold SPRs.
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10.3.2.3 MPC750 Junction Temperature Determination

While the MPC750's TAU does not implement an analog-to-digital converter to enable the
direct determination of the junction temperature, system software can execute a smple
successive approximation routine to find the junction temperature.

The TAU configuration used to approximate the junction temperature is the same required
for single-threshold mode, except that the threshold SPR selected hasits TIE bit cleared to
0 to disable therma management interrupt generation. Once the TAU is enabled, the
successive approximation routine loads a threshold val ue into the active threshold SPR, and
then continuously pollsthe threshold SPRsTIV bit until itissetto 1, indicating avalid TIN
bit. The successive approximation routine can then evaluate the TIN bit value, and then
increment or decrement the threshold value for another comparison. This process is
continued until the junction temperature is determined.

10.3.2.4 Power Saving Modes and TAU Operation

The static power saving modes provided by the MPC750 (the nap, doze, and sleep modes)
alow the temperature of the processor to be lowered quickly, and can be invoked through
the use of the TAU and associated thermal management interrupt. The TAU remains
operationa in the nap and doze modes, and in sleep mode as long as the SY SCLK signa
input remains active. If the SY SCLK signal is made static when sleep mode isinvoked, the
TAU isrendered inactive. If the MPC750 is entering sleep mode with SY SCLK disabled,
the TAU should be configured to disable thermal management interrupts to avoid an
unwanted thermal management interrupt when the SY SCLK input signal is restored.

10.4 Instruction Cache Throttling

The MPC750 provides an instruction cache throttling mechanism to effectively reduce the
instruction execution rate without the complexity and overhead of dynamic clock contral.
Instruction cachethrottling, when used in conjunction with the TAU and the dynamic power
management capability of the MPC750, provides the system designer with aflexible means
of controlling device temperature while allowing the processor to continue operating.

The instruction cache throttling mechanism simply reduces the instruction forwarding rate
from the instruction cache to the instruction dispatcher. Normally, the instruction cache
forwards four instructions to the instruction dispatcher every clock cycle if al the
instructions hit in the cache. For therma management the MPC750 provides a supervisor-
level instruction cache throttling control (ICTC) SPR. The instruction forwarding rate is
reduced by writing a nonzero value into the ICTC[FI] field, and enabling instruction cache
throttling by setting the ICTC[E] bit to 1. The overall junction temperature reduction results
from dynamic power management reducing the power to the execution units while waiting
for instructions to be forwarded from the instruction cache; thus, instruction cache
throttling does not provide thermal reduction unless HIDO[DPM] is set to 1. Note that
during instruction cache throttling the configuration of the PLL and DLL remain
unchanged.
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The bit field settings of the ICTC SPR are shown in Table 10-5.

Table 10-5. ICTC Bit Field Settings

Bits

Name

Description

23-30

Fl

Instruction forwarding interval expressed in processor clocks.

0x00—o0 clock cycle
0x01—1 clock cycle

OxFF—255 clock cycles

31

Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.
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Chapter 11
Performance Monitor

The performance monitor facility provides the ability to monitor and count predefined
events such as processor clocks, misses in the instruction cache, data cache, or L2 cache,
types of instructions dispatched, mispredicted branches, and other occurrences. The count
of such events (which may be an approximation) can be used to trigger the performance
monitor exception. The performance monitor facility is not defined by the PowerPC
architecture.

The performance monitor can be used for the following:

To increase system performance with efficient software, especialy in a

multi processing system. Memory hierarchy behavior may be monitored and studied
in order to develop algorithms that schedul e tasks (and perhaps partition them) and
that structure and distribute data optimally.

To improve processor architecture, the detailed behavior of the MPC750’s structure
must be known and understood in many software environments. Some environments
may not be easily characterized by a benchmark or trace.

To help system devel opers bring up and debug their systems.

The performance monitor uses the following MPC750-specific special-purpose registers
(SPRs):

The performance monitor counter registers (PMC1-PMC4) are used to record the
number of times a certain event has occurred. UPM C1-UPM C4 provide user-level
read access to these registers.

The monitor mode control registers (MMCRO-MMCR1) are used to enable various
performance monitor interrupt functions and select events to count.
UMMCRO-UMMCRL provide user-level read access to these registers.

The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. USIA provides user-level read accessto
the SIA.
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Four 32-bit countersin the MPC750 count occurrences of software-selectable events. Two
control registers (MMCRO and MMCR1) are used to control performance monitor
operation. The counters and the control registers are supervisor-level SPRs; however, inthe
MPC750, the contents of these registers can be read by user-level software using separate
SPRs (UMMCRO and UMMCRY). Control fields in the MMCRO and MM CRL select the
events to be counted, can enable a counter overflow to initiate a performance monitor
exception, and specify the conditions under which counting is enabled.

As with other PowerPC exceptions, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (OxOOFQ0). Its priority is
below the external interrupt and above the decrementer interrupt.

11.1 Performance Monitor Interrupt

The performance monitor provides the ability to generate a performance monitor interrupt
triggered by a counter overflow condition in one of the performance monitor counter
registers (PMC1-PMC4), shown in Figure11-3. A counter is considered to have
overflowed when its most-significant bit is set. A performance monitor interrupt may also
be caused by theflipping from 0to 1 of certain bitsin the time base register, which provides
away to generate atime reference-based interrupt.

Although the interrupt signal condition may occur with MSR[EE] = 0, the actua exception
cannot be taken until MSR[EE] = 1.

Asaresult of aperformance monitor exception being signaled, the action taken depends on
the type of event that caused the condition, which are as follows:

¢ Threshold-related events—When athreshold event signals a performance monitor
exception, the addresses of the instruction that caused the counter to overflow is
saved in the SIA register.

« Programmable events—To help track which part of the code was being executed
when an exception was signaled, the address of the last compl eted instruction during
that cycleis saved in the SIA.

Exception handling for the performance monitor interrupt exception is described in Section
4.5.13, “Performance Monitor Interrupt (Ox00F00)."
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11.2 Special-Purpose Registers Used by
Performance Monitor

The performance monitor incorporates the SPRs listed in Table11-1. All of these
supervisor-level registers are accessed through mtspr and mfspr instructions. The
following table shows more information about all performance monitor SPRs.

Table 11-1. Performance Monitor SPRs

SPR Number spr[5-9] || spr[0-4] Register Name Access Level
952 0b11101 11000 MMCRO Supervisor
953 0b11101 11001 PMC1 Supervisor
954 0b11101 11010 PMC2 Supervisor
955 0b11101 11011 SIA Supervisor
956 0b11101 11100 MMCR1 Supervisor
957 0b11101 11101 PMC3 Supervisor
958 0b11101 11110 PMC4 Supervisor
936 0b11101 01000 UMMCRO User (read only)
937 0b11101 01001 UPMC1 User (read only)
938 0b11101 01010 uPMC2 User (read only)
939 0b11101 01011 USIA User (read only)
940 0b11101 01100 UMMCR1 User (read only)
941 0b11101 01101 UPMC3 User (read only)
942 0b11101 01110 UPMC4 User (read only)

11.2.1 Performance Monitor Registers
This section describes the registers used by the performance monitor.

11.2.1.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO), shown in Figure 11-1, is a 32-bit SPR
provided to specify events to be counted and recorded. MM CRO can be written to only in
supervisor mode. User-level software can read the contents of MMCRO by issuing an
mfspr instruction to UMMCRO, described in Section 11.2.1.2, “User Monitor Mode
Control Register 0 (UMMCRO).”
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INTONBITTRANS
RTCSELECT

DISCOUNT PMC2INTCONTROL
ENINT PMC1INTCONTROL PMCTRIGGER
1 Y —¢ Y r
DIS| DP | DU DM%DMRI | | | | THRESHOLD | | | | PMC1SELECT | PMC2SELECT
01 23 45 8 9 10 15 16 17 18 19 25 26 31

Figure 11-1. Monitor Mode Control Register 0 (MMCRO)

This register must be cleared at power up. Reading this register does not change its
contents. Table 11-2 describes the bits of the MM CRO register.

Table 11-2. MMCRO Bit Settings

Bit Name Description
0 DIS Disables counting unconditionally.
0  The values of the PMCn counters can be changed by hardware.
1  The values of the PMCn counters cannot be changed by hardware.
1 DP Disables counting while in supervisor mode.
0  The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not
changed by hardware.
2 DU Disables counting while in user mode.
0  The PMCn counters can be changed by hardware.
1  If the processor is in user mode (MSR[PR] is set), the PMCn counters are not
changed by hardware.
3 DMS Disables counting while MSR[PM] is set.
0  The PMCn counters can be changed by hardware.
1  If MSR[PM] is set, the PMCn counters are not changed by hardware.
4 DMR Disables counting while MSR[PM] is zero.
0  The PMCn counters can be changed by hardware.
1  If MSR[PM] is cleared, the PMCn counters are not changed by hardware.
5 ENINT Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1  Interrupt signaling is enabled.
Cleared by hardware when a performance monitor interrupt is signaled. To re-enable
these interrupt signals, software must set this bit after servicing the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.
6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is,
((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with (INTONBITTRANS =1) & (ENINT = 1)).
0 Signaling a performance monitor interrupt does not affect counting status of
PMCn.
1  The signaling of a performance monitor interrupt prevents changing of PMC1
counter. The PMCn counter does not change if PMC2COUNTCTL = 0.
Because a time base signal could have occurred along with an enabled counter
overflow condition, software should always reset INTONBITTRANS to zero, if the value
in INTONBITTRANS was a one.
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Table 11-2. MMCRO Bit Settings (Continued)

Bit Name Description

7-8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11  Pick bit 47 to count

9 INTONBITTRANS Causes interrupt signaling on bit transition (identified in RTCSELECT) from off to on.
0 Do not allow interrupt signal on the transition of a chosen bit.

1  Signal interrupt on the transition of a chosen bit.

Software is responsible for setting and clearing INTONBITTRANS.

10-15 | THRESHOLD Threshold value. All 6 bits are supported by the MPC750; allowing threshold values
from 0 to 63. The intent of the THRESHOLD support is to characterize L1 data cache
misses.

16 PMC1INTCONTROL | Enables interrupt signaling due to PMC1 counter overflow.
0  Disable PMC1 interrupt signaling due to PMC1 counter overflow.
1  Enable PMCL1 Interrupt signaling due to PMC1 counter overflow.

17 PMCINTCONTROL [ Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the
setting of DISCOUNT.

0 Disable PMC2-PMCA4 interrupt signaling due to PMC2—PMC4 counter overflow.
1  Enable PMC2-PMC4 interrupt signaling due to PMC2—-PMC4 counter overflow.

18 PMCTRIGGER Can be used to trigger counting of PMC2-PMC4 after PMC1 has overflowed or after a

performance monitor interrupt is signaled.

0  Enable PMC2-PMC4 counting.

1  Disable PMC2-PMC4 counting until either PMC1[0] = 1 or a performance monitor
interrupt is signaled.

19-25 | PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 11-5.

26-31 | PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 11-6.

MM CRO can be accessed with the mtspr and mfspr instructions using SPR 952.

11.2.1.2 User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level
software. UMM CRO can be accessed with the mfspr instructions using SPR 936.

11.2.1.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCRL1) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MM CRL1 register
isshownin Figure 11-2.

|:| Reserved

[PmcaseLECT| PMcasELECT 00 0000 0000 0000 0000 0000 |
0 45 910 31

Figure 11-2. Monitor Mode Control Register 1 (MMCR1)
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Bit settings for MM CRL are shown in Table 11-3. The corresponding events are described
in Section 11.2.1.5, “Performance Monitor Counter Registers (PMC1-PMC4)."

Table 11-3. MMCRL1 Bit Settings

Bits Name Description
0-4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 11-7 for defined selections.
5-9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 11-8 for defined selections.
10-31 — Reserved

MM CRL can be accessed with the mtspr and mfspr instructions using SPR 956. User-level
software can read the contents of MM CRL1 by issuing an mfspr instruction to UMMCR1,
described in Section 11.2.1.4, “User Monitor Mode Control Register 1 (UMMCRL1).”

11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCRL1 are reflected to UMMCRL1, which can be read by user-level
software. UMMCRL can be accessed with the mfspr instructions using SPR 940.

11.2.1.5 Performance Monitor Counter Registers (PMC1-PMC4)
PMC1-PMC4, shown in Figure 11-3, are 32-bit counters that can be programmed to
generate interrupt signals when they overflow.

|0V| Counter Value |

0 1 31

Figure 11-3. Performance Monitor Counter Registers (PMC1-PMC4)

The bits contained in the PMC registers are described in Table 11-4.
Table 11-4. PMCn Bit Settings

Bits Name Description

0 oV Overflow. When this bit is set, it indicates this counter has reached its maximum value.

1-31 | Counter value | Indicates the number of occurrences of the specified event.

Counters overflow when the high-order bit (the sign bit) becomes set; that is, they reach the
value 2147483648 (0x8000_0000). However, an interrupt is not signaled unless both
MMCRO[ENINT] and either PMCLINTCONTROL or PMCINTCONTROL in the
MMCRO register are also set as appropriate.

Note that the interrupts can be masked by clearing M SR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the exception is not taken until MSR[EE] is set.
Setting MM CRO[DISCOUNT] forces counters to stop counting when a counter interrupt
ocCurs.
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Software is expected to use the mtspr instruction to explicitly set PMC to non-overflowed
values. Setting an overflowed value may cause an erroneous exception. For example, if both
MMCRO[ENINT] and either PMC1INTCONTROL or PMCINTCONTROL are set and the
mtspr instruction loads an overflow value, an interrupt signal may be generated without an
event counting having taken place.

The event to be monitored can be chosen by setting MM CRO0[19-31]. The selected events
are counted beginning when MMCRO is set until either MMCRO is reset or a performance
monitor interrupt is generated. Table 11-5 lists the selectable events and their encodings.

Table 11-5. PMC1 Events—MMCRO0[19-25] Select Encodings

Encoding Description

000 0000 Register holds current value.

000 0001 Number of processor cycles

000 0010 Number of instructions that have completed. Does not include folded branches.

0000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT, MMRCO[7-8]. 00 = 15,01 =19,10=23,11=31

0000100 Number of instructions dispatched—o0, 1, or 2 instructions per cycle

0000101 Number of eieio instructions completed

0000110 Number of cycles spent performing table search operations for the ITLB

0000111 Number of accesses that hit the L2

0001000 Number of valid instruction EAs delivered to the memory subsystem

0001001 Number of times the address of an instruction being completed matches the address in the IABR

0001010 Number of loads that miss the L1 with latencies that exceeded the threshold value

0001011 Number of branches that are unresolved when processed

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others Reserved. May be used in a later revision.

Bits MM CRO[26-31] specify events associated with PMC2, as shown in Table 11-6.

Table 11-6. PMC2 Events—MMCRO0[26—31] Select Encodings

Encoding Description

00 0000 Register holds current value.

00 0001 Number of processor cycles

00 0010 Number of instructions that have completed. Does not include folded branches

00 0011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT, MMRCO[7-8]. 00 = 15, 01 =19, 10 = 23, 11 = 31.

00 0100 Number of instructions dispatched. 0, 1, or 2 instructions per cycle

00 0101 Number of eieio instructions completed
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Table 11-6. PMC2 Events—MMCRO0[26—31] Select Encodings (Continued)

Encoding Description

00 0110 Number of cycles spent performing table search operations for the ITLB

000111 Number of accesses that hit the L2

00 1000 Number of valid instruction EAs delivered to the memory subsystem

00 1001 Number of times that the address of an instruction being completed matches the address in the IABR
00 1010 Number of loads that miss the L1 and have latencies that exceeded the threshold value

001011 Number of branches that are unresolved when processed

00 1100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream
All others | Reserved. May be used in a later revision.

Bits MM CR1[0-4] specify events associated with PMC3, as shown in Table 11-7.

Table 11-7. PMC3 Events—MMCR1[0-4] Select Encodings

Encoding Description

0 0000 Register holds current value.

0 0001 Number of processor cycles

00010 Number of completed instructions, not including folded branches.

00011 Number of TBL bit transitions from 0 to 1 of specified bits in time base lower register. Bits are
specified through RTCSELECT (MMRCO[7-8]). 0 = 47, 1 =51, 2 = 55, 3 = 63.

00100 Number of instructions dispatched. 0, 1, or 2 per cycle.

00101 Number of L1 data cache misses

00110 Number of DTLB misses

00111 Number of L2 data misses

0 1000 Number of taken branches, including predicted branches.

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in user mode.

01010 Number of store conditional instructions completed

01011 Number of instructions completed from the FPU

0 1100 Number of L2 castouts caused by snoops to modified lines

01101 Number of cache operations that hit in the L2 cache

01110 Reserved

01111 Number of cycles generated by L1 load misses

1 0000 Number of branches in the second speculative stream that resolve correctly

10001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies

All others Reserved. May be used in a later revision.
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Bits MM CR1[5-9] specify events associated with PMC4, as shown in Table 11-8.
Table 11-8. PMC4 Events—MMCR1[5-9] Select Encodings

Encoding Comments

00000 Register holds current value

00001 Number of processor cycles

00010 Number of completed instructions, not including folded branches

00011 Number of TBL bit transitions from 0 to 1 of specified bits in time-base lower register. Bits are specified

through RTCSELECT (MMRCO[7-8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63,

00100 Number of instructions dispatched. 0, 1, or 2 per cycle

00101 Number of L2 castouts

00110 Number of cycles spent performing table searches for DTLB accesses.

00111 Reserved. May be used in a later revision.

01000 Number of mispredicted branches

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in supervisor mode.

01010 Number of store conditional instructions completed with reservation intact

01011 Number of completed sync instructions

01100 Number of snoop request retries

01101 Number of completed integer operations

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches

All others Reserved. May be used in a later revision.

The PMC registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

» PMC1lisSPR 953

« PMC2isSPR 954

» PMC3isSPR 957

» PMC4isSPR 958
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11.2.1.6 User Performance Monitor Counter Registers
(UPMC1-UPMC4)

The contents of the PMC1-PMC4 are reflected to UPM C1-UPM C4, which can be read by
user-level software. The UPMC registers can be read with the mfspr instructions using the
following SPR numbers:

« UPMC1lisSPR 937

e UPMC2isSPR 938

+ UPMC3isSPR 941

» UPMC4isSPR 942

11.2.1.7 Sampled Instruction Address Register (SIA)

The sampled instruction address register (SIA) is a supervisor-level register that contains
the effective address of an instruction executing at or around the time that the processor
signals the performance monitor interrupt condition. The SIA is shown in Figure 11-4.

Instruction Address

Figure 11-4. Sampled instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by athreshold event, the SIA containsthe
address of the exact instruction (called the sampled instruction) that caused the counter to
overflow.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. SIA can be
accessed with the mtspr and mfspr instructions using SPR 955.

11.2.1.8 User Sampled Instruction Address Register (USIA)

The contents of SIA arereflected to USIA, which can be read by user-level software. USIA
can be accessed with the mfspr instructions using SPR 939.
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11.3 Event Counting

Counting can be enabled if conditions in the processor state match a software-specified
condition. Because a software task scheduler may switch a processor’s execution among
multiple processes and because statistics on only a particular process may be of interest, a
facility is provided to mark a process. The performance monitor (PM) bit, MSR[29] isused
for this purpose. System software may set this bit when a marked process is running. This
enables statistics to be gathered only during the execution of the marked process. The states
of MSR[PR] and MSR[PM] together define a state that the processor (supervisor or
program) and the process (marked or unmarked) may bein at any time. If this state matches
a state specified by the MMCR, the state for which monitoring is enabled, counting is
enabled.

The following are states that can be monitored:
¢ (Supervisor) only
e (User) only
¢ (Marked and user) only
¢ (Not marked and user) only
¢ (Marked and supervisor) only
¢ (Not marked and supervisor) only
¢ (Marked) only
¢ (Not marked) only

In addition, one of two unconditional counting modes may be specified:

¢ Counting is unconditionally enabled regardless of the states of MSR[PM] and
MSR[PR]. This can be accomplished by clearing MM CRO[0-4].

¢ Counting is unconditionally disabled regardless of the states of MSR[PM] and
MSR[PR]. Thisis done by setting MM CRO[0].

The performance monitor counters count specified events and are used to generate
performance monitor exceptions when an overflow (most-significant bit is a 1) situation
occurs. The MPC750 performance monitor has four, 32-bit registers that can count up to
OX7FFFFFFF (2,147,483,648 in decimal) before overflowing. Bit O of the registersis used
to determine when an interrupt condition exists.
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11.4 Event Selection

Event selection is handled through MMCRO and MMCR1, described in Table 11-2 and
Table 11-3, respectively. Event selection is described as follows:

The four event-select fieldsin MMCRO and MMCR1 are as follows;

— MMCRO0[19-25] PMC1SELECT—PMC1 input selector, 128 events selectable;
25 defined. See Table 11-5.

— MMCRQ[26-31] PMC2SELECT—PMC2 input selector, 64 events selectable;
21 defined. See Table 11-6.

— MMCRO[0—4] PMC3SELECT—PMC3 input selector. 32 events selectable,
defined. See Table 11-7.

— MMCRO[5-9] PMC4SELECT—PMC4 input selector. 32 events selectable. See
Table 11-8.

In the tables, acorrelation is established between each counter, events to be traced,
and the pattern required for the desired selection.

Thefirst five events are common to all four counters and are considered to be
reference events. These are as follows:

— 00000—Register holds current value
— 00001—Number of processor cycles
— 00010—Number of completed instructions, not including folded branches

— 00011—Number of TBL bit transitions from 0 to 1 of specified bitsin time base
lower register. Bits are specified through RTCSELECT (MM CRO[ 7-8]). 0= 47,
1=51,2=55,3=63.

— 00100—Number of instructions dispatched. O, 1, or 2 per cycle

Some events can have multiple occurrences per cycle, and therefore need two or
three bits to represent them.

11.5 Warnings

The following warnings should be noted:

Only those load and store in queue position O of their respective load/store queues
are monitored when athreshold event is selected in PMCL.

The MPC750 cannot accurately track threshold events with respect to the following
types of loads and stores:

— Unaligned load and store operations that cross a word boundary
— Load and store multiple operations
— Load and store string operations

11-12
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Appendix A
PowerPC Instruction Set Listings

This appendix lists the MPC750 microprocessor’s instruction set as well as the additional
PowerPC instructions not implemented in the MPC750. Instructions are sorted by
mnemonic, opcode, function, and form. Also included in this appendix isaquick reference
table that contains general information, such as the architecture level, privilege level, and
form, and indicates if the instruction is 64-bit and optional. Note that the MPC750 is a 32-
bit microprocessor, and doesn’t implement any 64-bit instructions.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

A.1l Instructions Sorted by Mnemonic

Table A-1 lists the instructions implemented in the PowerPC architecture in alphabetical
order by mnemonic.

Key:
I:l Reserved bits

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addx 31 D A B OE| 266 Rc
addcx 31 D A B OE| 10 Rc
addex 31 D A B OE| 138 Rc
addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM
addmex 31 D A 00000 (OF 234 Rc
addzex 31 D A 00000 (OF 202 Rc
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Name
andx
andcx
andi.
andis.
bx
bcx
bcetrx
bclrx
cmp
cmpi
cmpl
cmpli
cntlzdx !
cntlzwx
crand
crandc
creqv
crnand
crnor
cror
crorc
crxor
dcba 27
dcbf
dcbi 3
dcbst
dcbt
dcbtst
dcbz
divdx?®
divdux?!
divwx

divwux

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 S A B 28 Rc
31 S A B 60 Rc
28 S A UIMM
29 S A UIMM
18 LI LK
16 BO Bl BD LK
19 BO BI 00000 528 LK
19 BO BI 00000 16 LK
31 cfD |0 A B 0 0
11 cfD |0 A SIMM
31 cfD |0 A B 32 0
10 crfD 0 A UMM
31 S A 00000 58 Rc
31 S A 00000 26 Rc
19 crbD crbA crbB 257 0
19 crbD crbA crbB 129 0
19 crbD crbA crbB 289 0
19 crbD crbA crbB 225 0
19 crbD crbA crbB 33 0
19 crbD crbA crbB 449 0
19 crbD crbA crbB 417 0
19 crbD crbA crbB 193 0
31 00000 A B 758 0
31 00000 A B 86 0
31 00000 A B 470 0
31 00000 A B 54 0
31 00000 A B 278 0
31 00000 A B 246 0
31 00000 A B 1014 0
31 D A B OE| 489 Rc
31 D A B OF| 457 Rc
31 D A B OE| 491 Rc
31 D A B OE| 459 Rc
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Name 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D B 310 0
ecowx 31 S A B 438 0
eieio 31 00000 00000 00000 854 0
eqvx 31 S B 284 Rc
extsbx 31 S 00000 954 Rc
extshx 31 S A 00000 922 Rc
extswx ! 31 S A 00000 986 Rc
fabsx 63 D 00000 B 264 Rc
faddx 63 D A B 00000 21 Rc
faddsx 59 D A B 00000 21 Rc
fefidx t 63 D 00000 B 846 Rc
fempo 63 crfD 00 A B 32 0
fcmpu 63 crfD 00 A B 0 0
fetidx t 63 D 00000 B 814 Rc
fetidzx ! 63 D 00000 B 815 Rc
fetiwx 63 D 00000 B 14 Rc
fetiwzx 63 D 00000 B 15 Rc
fdivx 63 D A B 00000 18 Rc
fdivsx 59 D A B 00000 18 Rc
fmaddx 63 D A B C 29 Rc
fmaddsx 59 D A B C 29 Rc
fmrx 63 D 00000 B 72 Rc
fmsubx 63 D A B C 28 Rc
fmsubsx 59 D A B C 28 Rc
fmulx 63 D A 00000 C 25 Rc
fmulsx 59 D A 00000 C 25 Rc
fnabsx 63 D 00000 B 136 Rc
fnegx 63 D 00000 B 40 Rc
fnmaddx 63 D A B C 31 Rc
fnmaddsx 59 D A B C 31 Rc
fnmsubx 63 D A B C 30 Rc
fnmsubsx 59 D A B C 30 Rc
fresx? 59 D 00000 B 00000 24 Rc
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Name
frspx
frsqrtex 2
fselx?
fsqrix 27
fsqrtsx 27
fsubx
fsubsx
icbi
isync
Ibz
Ibzu
Ibzux
Ibzx
Id
Idarx 1
Idu
Idux *
ldx *
Ifd
Ifdu
Ifdux
Ifdx
Ifs
Ifsu
Ifsux
Ifsx
lha
lhau
lhaux
lhax
Ihbrx
lhz

lhzu

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
63 D 00000 B 12 Rc
63 D 00000 B 00000 26 Rc
63 D A B C 23 Rc
63 D 00000 B 00000 22 Rc
59 D 00000 B 00000 22 Rc
63 D A B 00000 20 Rc
59 D A B 00000 20 Rc
31 00000 A B 982 0
19 00000 00000 00000 150 0
34 D A d
35 D A d
31 D A B 119 0
31 D A B 87 0
58 D A ds 0
31 D A B 84 ‘ 0
58 D A ds 1
31 D A B 53 0
31 D A B 21 0
50 D A d
51 D A d
31 D A B 631 0
31 D A B 599 0
48 D A d
49 D A d
31 D A B 567 0
31 D A B 535 0
42 D A d
43 D A d
31 D A B 375 0
31 D A B 343 0
31 D A B 790 0
40 D A d
41 D A d

A4
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Name 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ihzux 31 D A B 311 0
Ihzx 31 D A B 279 0

Imw 4 46 D A
Iswi 4 31 D A NB 597 0
Iswx 4 31 D A B 533 0

Iwa t 58 D A ds 2

lwarx 31 D A B 20 0
Iwaux * 31 D A B 373 0
Iwax 1 31 D A B 341 0
Iwbrx 31 D A B 534 0

lwz 32 D A

lwzu 33 D A
lwzux 31 D A B 55 0
Iwzx 31 D A B 23 0
mcrf 19 cfd | 00 | cfS | 00 00000 0 0
mcrfs 63 crfD 00 crfS 00 00000 64 0
merxr 31 cfdD | 00 00000 00000 512 0
mfcr 31 D 00000 00000 19 0
mffsx 63 D 00000 00000 583 Rc
mfmsr 3 31 D 00000 00000 83 0
mfspr 5 31 D spr 339 0
mfsr 36 31 D 0 ‘ SR 00000 595 0
mfsrin 36 31 D 00000 B 659 0
mftb 31 D thr 371 0
mtcrf 31 S 0 ‘ CRM 144 0
mtfsbOx 63 crbD 00000 00000 70 Rc
mtfsb1x 63 crbD 00000 00000 38 Rc
mtfsfx 63 0 ‘ FM ‘ 0 B 711 Rc
mtfsfix 63 crfD ‘ 00 00000 IMM 134 Rc
mtmsr 36 31 S 00000 00000 146 0
mtmsrd 13 31 S 00000 00000 178 0
mtspr 5 31 S spr 467 0
mtsr 36 31 S 0 ‘ SR ‘ 00000 210 0
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mtsrd 36 31 S 0 SR 00000 82 0
mtsrdin 36 31 S 00000 B 114 0
mtsrin 36 31 S 00000 B 242 0
mulhdx® 31 D A B 0 73 Rc
mulhduxt 31 D A B 0 9 Rc
mulhwx 31 D A B 0 75 Rc
mulhwux 31 D A B 0 11 Rc
mulldx ! 31 D A B OE| 233 Rc

mulli 7 D A SIMM
mullwx 31 D A B OE‘ 235 Rc
nandx 31 S A B 476 Rc
negx 31 D A 00000 OE‘ 104 Rc
norx 31 S A B 124 Rc
orx 31 S A B 444 Rc
orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM
rfi 36 19 00000 00000 00000 50 0
rfid 18 19 00000 00000 00000 18 0
ridclx? 30 S A B mb 8 Rc
riderx® 30 S A B me 9 Rc
ridicx® 30 S A sh mb 2 sh|Rc
ridiclx ! 30 S A sh mb 0 sh|Rc
ridicrx® 30 S A sh me 1 sh|Rc
ridimix® 30 S A sh mb 3 sh|Rc
rlwimix 20 S A SH MB ME Rc
rlwinmx 21 S A SH MB ME Rc
rlwnmx 23 S A B MB ME Rc
sc 17 00000 00000 00000000000000 1|0
slbia 123 31 00000 00000 00000 498 0
slbie 123 31 00000 00000 B 434 0
sldx?! 31 S A B 27 Rc
slwx 31 S A B 24 Rc
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
sradx?® 31 S A B 794 Rc
sradix ! 31 S A sh 413 sh|Rc
srawx 31 S A B 792 Rc
srawix 31 S A SH 824 Rc
srdx?! 31 S A B 539 Rc
Srwx 31 S A B 536 Rc
stb 38 S A
stbu 39 S A
stbux 31 S A B 247 0
stbx 31 S A B 215
std ! 62 S A ds ‘ 0
stdex. * 31 S A B 214 ‘ 1
stdu ! 62 S A ds ‘ 1
stdux ! 31 S A B 181 0
stdx ! 31 S A B 149 0
stfd 54 S A
stfdu 55 S A
stfdux 31 S A B 759 0
stfdx 31 S A B 727 0
stfiwx 2 31 S A B 983 0
stfs 52 S A
stfsu 53 S A
stfsux 31 S A B 695 0
stfsx 31 S A B 663 0
sth 44 S A
sthbrx 31 S A B 918 0
sthu 45 S A
sthux 31 S A B 439 0
sthx 31 S A B 407 0
stmw 4 47 S A
stswi 4 31 S A NB 725 0
stswx 4 31 S A B 661 0
stw 36 S A
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Name 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stwbrx 31 S A B 662 0
stwcex. 31 S A B 150 1
stwu 37 S A d
stwux 31 S A B 183 0
stwx 31 S A B 151 0
subfx 31 D A B OE| 40 Rc
subfcx 31 D A B OE| 8 Rc
subfex 31 D A B OF| 136 Rc
subfic 08 D A SIMM
subfmex 31 D A 00000 [OF 232 Rc
subfzex 31 D A 00000 [OF 200 Rc
sync 31 00000 00000 00000 598 0
td! 31 TO A B 68 0
tdi 02 TO A SIMM
tibia 237 31 00000 00000 00000 370 0
tibie 23 31 00000 00000 B 306 0
tlbsync?3 31 00000 00000 00000 566 0
tw 31 TO A B 4 0
twi 03 TO A SIMM
XOorx 31 S A B 316 Rc
xori 26 S A UIMM
xoris 27 S A UMM
Notes:
1 64-bit instruction
2 Optional instruction
3 Supervisor-level instruction
4 Load/store string/multiple instruction
5 Supervisor- and user-level instruction
6 Optional 64-bit bridge instruction
7 32-bit instruction not implemented by the MPC750
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A.2 Instructions Sorted by Opcode
Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by

opcode.
Key:
I:I Reserved bits
Table A-2. Complete Instruction List Sorted by Opcode
Name 0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
tdi 1 000010 TO A SIMM
twi 000011 TO A SIMM
mulli 000111 D A SIMM
subfic 001000 D A SIMM
cmpli 001010 crfD oL A UIMM
cmpi 001011 crfD oL A SIMM
addic 001100 D A SIMM
addic. 001101 D A SIMM
addi 001110 D A SIMM
addis 001111 D A SIMM
bex 010000 BO Bl BD AA|LK
sc 010001 00000 00000 00000000000Q0OOCOO 1|0
bx 010010 LI AAILK
mcrf 010011 crfD 00 crfS 00 00000 0000000000 0
belrx 010011 BO Bl 00000 0000010000 LK
rfid 12 010011 00000 00000 00000 0000010010 0
crnor 010011 crbD crbA crbB 0000100001 0
rfi 23 010011 00000 00000 00000 0000110010 0
crandc 010011 crbD crbA crbB 0010000001 0
isync 010011 00000 00000 00000 0010010110 0
crxor 010011 crbD crbA crbB 0011000001 0
crnand 010011 crbD crbA crbB 0011100001 0
crand 010011 crbD crbA crbB 0100000001 0
creqv 010011 crbD crbA crbB 0100100001 0
crorc 010011 crbD crbA crbB 0110100001 0
cror 010011 crbD crbA crbB 0111000001 0
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Name 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcetrx 010011 BO BI 00000 1000010000 LK
rlwimix 010100 S A SH MB ME Rc
rlwinmx 010101 S A SH MB ME Rc
rlwnmx 010111 S A B MB ME Rc
ori 011000 S A UIMM
oris 011001 S A UIMM
xori 011010 S A UIMM
xoris 011011 S A UIMM
andi. 011100 S A UIMM
andis. 011101 S A UIMM
ridicix® 011110 s A sh mb 000 |sh|Rc
ridicrx® 011110 S A sh me 001 |sh|Rc
ridicx 011110 s A sh mb 010 |sh|Rc
ridimix 011110 s A sh mb 011 |sh|Rc
ridclx? 011110 S A B mb ‘ 01000 |Rc
riderx® 011110 S A B me ‘ 01001 [Rc
cmp 011111 crfD ‘O‘L A B 0000000000 0
tw 011111 TO A B 0000000100 0
subfcx 011111 D A B OE 0000001000 Rc
mulhdux ! 011111 D A B 0 0000001001 Rc
addcx 011111 D A B OE 0000001010 Rc
mulhwux 011111 D A B 0 0000001011 Rc
mfcr 011111 D 00000 00000 0000010011 0
lwarx 011111 D A B 0000010100 0
ldx * 011111 D A B 0000010101 0
Iwzx 011111 D A B 0000010111 0
slwx 011111 S A B 0000011000 Rc
cntlzwx 011111 S A 00000 0000011010 Rc
sldx? 011111 S A B 0000011011 Rc
andx 011111 S A B 0000011100 Rc
cmpl 011111 crfD ‘O‘L A B 0000100000 0
subfx 011111 D A B ol= 0000101000 Rc
Idux * 011111 D A B 0000110101 0
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Name 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbst 011111 00000 A B 0000110110 0
lwzux 011111 D A B 0000110111 0
cntlzdx? 011111 S A 00000 0000111010 Rc
andcx| 011111 s A B 0000111100 Rc
td ! 011111 TO A B 0001000100 0
mulhdx? 011111 D A B 0 0001001001 Rc
mulhwx| 011111 D A B 0 0001001011 Rc
mtsrd 23 011111 S SR 00000 0001010010 0
mfmsr2 011111 D 00000 00000 0001010011 0
Idarx 1 011111 D A B 0001010100 0
dcbf 011111 00000 A B 0001010110 0
lbzx 011111 D A B 0001010111 0
negx| 011111 D A 00000 [OF 0001101000 Rc
mtsrdin 23 011111 s 00000 B 0001110010 0
lbzux 011111 D A B 0001110111 0
norx| 011111 s A B 0001111100 Rc
subfex| 011111 D A B OF| 0010001000 Rc
addex| 011111 D A B OE| 0010001010 Rc
mtcrf 011111 s CRM 0010010000 0
mtmsr 23 011111 s 00000 00000 0010010010 0
stdx ! 011111 S A B 0010010101 0
stwex. 011111 s A B 0010010110 1
stwx 011111 s A B 0010010111 0
mtmsrd 12 011111 S 00000 00000 0010110010 0
stdux ! 011111 s A B 0010110101 0
stwux 011111 s A B 0010110111 0
subfzex| 011111 D A 00000 [OF 0011001000 Rc
addzex| 011111 D A 00000 [OF 0011001010 Rc
mtsr 23 011111 S SR 00000 0011010010 0
stdex. ! 011111 s A B 0011010110 1
stbx 011111 s A B 0011010111 0
subfmex| 011111 D A 00000 [OF 0011101000 Rc
mulld? 011111 D A B OF| 0011101001 Rc
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Name 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31

addmex| 011111 D A 00000 [OF 0011101010 Rc
mullwx| 011111 D A B ol= 0011101011 Rc
mtsrin 23 011111 S 00000 B 0011110010 0
dcbtst 011111 00000 A B 0011110110 0
stbux 011111 S A B 0011110111 0
addx| 011111 D A B OE| 0100001010 Rc
dcht 011111 00000 A B 0100010110 0
Ihzx 011111 D A B 0100010111 0
eqvx 011111 S A B 0100011100 Rc
tibie 24 011111 00000 00000 B 0100110010 0
eciwx 011111 D A B 0100110110 0
Ihzux 011111 D A B 0100110111 0
xorx| 011111 S A B 0100111100 Rc
mfspr 5 011111 D spr 0101010011 0
Iwax 1 011111 D A B 0101010101 0
Ihax 011111 D A B 0101010111 0
tibia 247 011111 00000 00000 00000 0101110010 0
mftb 011111 D tbr 0101110011 0
Iwaux * 011111 D A B 0101110101 0
Ihaux 011111 D A B 0101110111 0
sthx 011111 s A B 0110010111 0
orcx] 011111 S A B 0110011100 Rc
sradix?! 011111 S A sh 1100111011 sh|Rc
slbie 124 011111 00000 00000 B 0110110010 0
ecowx 011111 S A B 0110110110 0
sthux 011111 S A B 0110110111 0
orx| 011111 s A B 0110111100 Rc
divdux? 011111 D A B OE 0111001001 Rc
divwux| 011111 D A B ol= 0111001011 Rc
mtspr 5 011111 S spr 0111010011 0
dcbi 2 011111 00000 A B 0111010110 0
nandx| 011111 S B 0111011100 Rc
divdx?® 011111 D B OE| 0111101001 Rc
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Name 0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

divwx| 011111 D A B OE| 0111101011 Rc
slhia 124 011111 00000 00000 00000 0111110010 0
merxr 011111 cfD | 00 00000 00000 1000000000 0
Iswx © 011111 D A B 1000010101 0
Iwbrx 011111 D A B 1000010110 0
Ifsx 011111 D A B 1000010111 0
srwx| 011111 s A B 1000011000 Rc
srdx?! 011111 s A B 1000011011 Rc
tibsync 2# 011111 00000 00000 00000 1000110110 0
Ifsux 011111 D A B 1000110111 0
mfsr 23 011111 D 0 SR 00000 1001010011 0
Iswi © 011111 D A NB 1001010101 0
sync 011111 00000 00000 00000 1001010110 0
Ifdx 011111 D A B 1001010111 0
Ifdux 011111 D A B 1001110111 0
mfsrin 23 011111 D 00000 B 1010010011 0
stswx 8 011111 s A B 1010010101 0
stwbrx 011111 S A B 1010010110 0
stfsx 011111 s A B 1010010111 0
stfsux 011111 s A B 1010110111 0
stswi © 011111 S A NB 1011010101 0
stfdx 011111 s A B 1011010111 0
dcba %7 011111 00000 A B 1011110110 0
stfdux 011111 S A B 1011110111 0
Ihbrx 011111 D A B 1100010110 0
srawx| 011111 s A B 1100011000 Rc
sradx ! 011111 S A B 1100011010 Rc
srawix| 011111 s A SH 1100111000 Rc
eieio 011111 00000 00000 00000 1101010110 0
sthbrx 011111 S A B 1110010110 0
extshx| 011111 s A 00000 1110011010 Rc
extsbx| 011111 s A 00000 1110111010 Rc
ichi 011111 00000 A B 1111010110 0
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stfiwx 4 011111 S A B 1111010111 0
extsw 1 011111 S A 00000 1111011010 Rc
dcbz 011111 00000 A B 1111110110 0

Iwz 100000 D A d

Iwzu 100001 D A d

Ibz 100010 D A d

Ibzu 100011 D A d

stw 100100 S A d

stwu 100101 S A d

stb 100110 S A d

stbu 100111 S A d

Ihz 101000 D A d

Ihzu 101001 D A d

Iha 101010 D A d

Ihau 101011 D A d

sth 101100 S A d

sthu 101101 S A d

Imw © 101110 D A d

stmw & 101111 S A d

Ifs 110000 D A d

Ifsu 110001 D A d

Ifd 110010 D A d

Ifdu 110011 D A d

stfs 110100 S A d

stfsu 110101 S A d

stfd 110110 S A d

stfdu 110111 S A d

Id?® 111010 D A ds 00
Idut 111010 D A ds 01
lwal 111010 D A ds 10
fdivsx 111011 D A B 00000 10010 |Rc
fsubsx 111011 D A B 00000 10100 |Rc
faddsx 111011 D A B 00000 10101 |Rc
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fsqrtsx 7 111011 D 00000 B 00000 10110 |Rc
fresx? 111011 D 00000 B 00000 11000 |Rc
fmulsx 111011 D A 00000 C 11001 Rc
fmsubsx| 111011 D A B c 11100 |Re
fmaddsx| 111011 D A B c 11101 |Rc
fnmsubsx 111011 D A B C 11110 Rc
fnmaddsx| 111011 D A B c 11111 |Re
std ! 111110 s A ds 00
stdu ! 111110 s A ds 01
fempu 111111 cfd | 00 A B 0000000000 0
frspx| 111111 D 00000 B 0000001100 Rc
fetiwx| 111111 D 00000 B 0000001110
fctiwzx| 111111 D 00000 B 0000001111 Rc
fdivx| 111111 D A B 00000 10010 |Rc
fsubx| 111111 D A B 00000 10100 |Rc
faddx| 111111 D A B 00000 10101 |Rc
fsqrtx 7 111111 D 00000 B 00000 10110 |Rc
fselx* 111111 D A B c 10111 |Rc
fmulx| 111111 D A 00000 c 11001 |Rc
frsqrtex 111111 D 00000 B 00000 11010 |Rc
fmsubx| 111111 D A B c 11100 |Rc
fmaddx| 111111 D A B c 11101 |Re
famsubx| 111111 D A B c 11110 |Rc
famaddx| 111111 D A B c 11111 |Rc
fcmpo 111111 crfD ‘oo A B 0000100000 0
mtfsbix| 111111 crbD 00000 00000 0000100110 Rc
fnegx 111111 D 00000 B 0000101000 Rc
mcrfs 111111 crfD ‘oo cfs | 00 00000 0001000000 0
mtfsbOx| 111111 crbD 00000 00000 0001000110 Rc
fmrx| 111111 D 00000 B 0001001000 Rc
mtfsfix| 111111 crfD ‘oo 00000 IMM 0010000110 Rc
fnabsx| 111111 D 00000 B 0010001000 Rc
fabsx| 111111 D 00000 B 0100001000 Rc
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Name
mffsx
mtfsfx
fetidx !
ftidzx

fcfidx 1

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
111111 D 00000 00000 1001000111 Rc
111111 0 FM 0 B 1011000111 Rc
111111 D 00000 B 1100101110 Rc
111111 D 00000 B 1100101111 Rc
111111 D 00000 B 1101001110 Rc

Notes:

1 64-bit instruction

2 Supervisor-level instruction

3 Optional 64-bit bridge instruction

4 Optional instruction

5 Supervisor- and user-level instruction

6 Load/store string/multiple instruction

7 32-bit instruction not implemented by the MPC750
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A.3 Instructions Grouped by Functional Categories

Table A-3 through Table A-30 list the PowerPC instructions grouped by function.

Key: I:I Reserved bits

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addx 31 D B OFE| 266 Rc
addcx 31 D A B IOF| 10 Rc
addex 31 D A B IOE 138 Rc
addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM
addmex 31 D A 00000 OFE| 234 Rc
addzex 31 D A 00000 OFE| 202 Rc
divdx? 31 D A B OE 489 Rc
divdux? 31 D A B o]= 457 Rc
divwx 31 D A B IOE 491 Rc
divwux 31 D A B OFE| 459 Rc
mulhdx? 31 D A B 0 73 Rc
mulhduxt 31 D A B 0 9 Rc
mulhwx 31 D A B 0 75 Rc
mulhwux 31 D A B 0 11 Rc
mulld 31 D A B OE 233 Rc
mulli 07 D A SIMM
mullwx 31 D A B IOF| 235 Rc
negx 31 D A 00000 OFE| 104 Rc
subfx 31 D A B OFE| 40 Rc
subfcx 31 D A B IOF| 8 Rc
subficx 08 D A SIMM
subfex 31 D A B OFE| 136 Rc
subfmex 31 D A 00000 [OHF 232 Rc
subfzex 31 D A 00000 |OH 200 Rc
Note:
1 64-bit instruction
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Table A-4. Integer Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
cmp 31 cfD |O|L A B ‘ 0000000000 ‘O
cmpi 11 cfD |0]|L A SIMM
cmpl 31 cfD |O|L A B ‘ 32 ‘ 0
cmpli 10 cfD |0]|L A UIMM

Table A-5. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
andx 31 S A B 28 Rc
andcx 31 S A B 60 Rc
andi. 28 S A UIMM
andis. 29 S A UMM
cntlzdx ! 31 S A 00000 58 Rc
cntlzwx 31 S A 00000 26 Rc
eqvx 31 S A B 284 Rc
extsbhx 31 S A 00000 954 Rc
extshx 31 S A 00000 922 Rc
extswx ! 31 S A 00000 986 Rc
nandx 31 S A B 476 Rc
norx 31 S A B 124 Rc
orx 31 S A B 444 Rc
orcx 31 S A B 412 Rc
ori 24 S A UIMM
oris 25 S A UMM
XO0rx 31 S A B 316 Rc
xori 26 S A UIMM
Xoris 27 S A UIMM
Note:

1 64-bit instruction
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Table A-6. Integer Rotate Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ridclix?® 30 S A B mb 8 Rc
riderx? 30 S A B me 9 Rc
ridicx ! 30 S A sh mb 2 |sh|Rc
ridicix ® 30 S A sh mb 0 sh|Rc
ridicrx ® 30 S A sh me 1 sh|Rc
ridimix® 30 S A sh mb 3 |sh|Rc
riwimix 22 S A SH MB ME Rc
rlwinmx 20 S A SH MB ME Rc
rlwnmx 21 S A SH MB ME Rc
Note:
1 64-hit instruction
Table A-7. Integer Shift Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
sldx?! 31 S A B 27 Rc
slwx 31 S A B 24 Rc
sradx ! 31 S A B 794 Rc
sradix ! 31 S A sh 413 sh|Rc
srawx 31 S A B 792 Rc
srawix 31 S A SH 824 Rc
srdx?! 31 S A B 539 Rc
Srwx 31 S A B 536 Rc
Note:
1 64-bit instruction
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Table A-8. Floating-Point Arithmetic Instructions

Name O 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
faddx 63 D A B 00000 21 Rc
faddsx 59 D A B 00000 21 Rc
fdivx 63 D A B 00000 18 Rc
fdivsx 59 D A B 00000 18 Rc
fmulx 63 D A 00000 C 25 Rc
fmulsx 59 D A 00000 (3 25 Rc
fresx® 59 D 00000 B 00000 24 Rc
frsqrtex1 63 D 00000 B 00000 26 Rc
fsubx 63 D A B 00000 20 Rc
fsubsx 59 D A B 00000 20 Rc
fselx® 63 D A B C 23 Rc
fsqrtx 12 63 D 00000 B 00000 22 Rc
fsqrtsx 12 59 D 00000 B 00000 22 Rc
Note:

1 Optional instruction
2 32-bit instruction not implemented by the MPC750

Table A-9. Floating-Point Multiply-Add Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fmaddx 63 D A B C 29 Rc
fmaddsx 59 D A B C 29 Rc
fmsubx 63 D A B C 28 Rc
fmsubsx 59 D A B C 28 Rc
fnmaddx 63 D A B Cc 31 Rc
fnmaddsx 59 D A B C 31 Rc
fnmsubx 63 D A B C 30 Rc
fnmsubsx 59 D A B C 30 Rc
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Table A-10. Floating-Point Rounding and Conversion Instructions

Name
fefidx
fetidx

fetidzx t
fctiwx
fetiwzx

frspx

Name

fcmpo

fempu

Table A-12. Floating-Point Status and Control Register Instructions

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
63 D 00000 B 846 Rc
63 D 00000 B 814 Rc
63 D 00000 B 815 Rc
63 D 00000 B 14 Rc
63 D 00000 B 15 Rc
63 D 00000 B 12 Rc

Note:
1 64-bit instruction

Table A-11. Floating-Point Compare Instructions

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
63 cfdD | 00 A B 32 o
63 cfD | 00 A B 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mcrfs 63 crfD 00 crfS 00 00000 64 0
mffsx 63 D 00000 00000 583 Rc

mtfsbOx 63 crbD 00000 00000 70 Rc

mtfsblx 63 crbD 00000 00000 38 Rc

mtfsfx 31 0 ‘ FM ‘ 0 B 711 Rc

mtfsfix 63 crfD ‘ 00 ‘ 00000 IMM 134 Rc
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Table A-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ibz 34 D A d
lbzu 35 D A d
Ibzux 31 D A B 119 0
Ibzx 31 D A B 87 0
Idt 58 D A ds 0
Idut 58 D A ds 1
Idux t 31 D A B 53 0
ldx 1 31 D A B 21 0
lha 42 D A d
lhau 43 D A d
Ihaux 31 D A B 375 0
lhax 31 D A B 343 0
Ihz 40 D A d
lhzu 41 D A d
lhzux 31 D A B 311 0
Ihzx 31 D A B 279 0
lwa t 58 D A ds 2
lwaux 1 31 D A B 373 0
Iwax 1 31 D A B 341 0
lwz 32 D A d
lwzu 33 D A d
lwzux 31 D A B 55 0
Iwzx 31 D A B 23 0
Note:

1 64-bit instruction
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Table A-14. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stb 38 S A d
stbu 39 S A d
stbux 31 S A B 247 0
stbx 31 S A B 215 0
std t 62 S A ds 0
stdu ! 62 S A ds 1
stdux ! 31 S A B 181 0
stdx 1 31 S A B 149 0
sth 44 S A d
sthu 45 S A d
sthux 31 S A B 439 0
sthx 31 S A B 407 0
stw 36 S A d
stwu 37 S A d
stwux 31 S A B 183 0
stwx 31 S A B 151 0
Note:

1 64-bit instruction

Table A-15. Integer Load and Store with Byte Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ihbrx 31 D A B 790 0
Iwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Table A-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Imw 46 D A d
stmw 47 S A d
Note:
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Table A-17. Integer Load and Store String Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Iswi 31 D A NB 597 0
Iswx 31 D A B 533 0

stswi 31 S A NB 725 0
stswx 31 S A B 661 0

Table A-18. Memory Synchronization Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
eieio 31 00000 00000 00000 854 0
isync 19 00000 00000 00000 150 0

Idarx * 31 D A B 84 0
lwarx 31 D A B 20 0

stdex.t 31 S A B 214 1

stwcex. 31 S A B 150 1
sync 31 00000 00000 00000 598 0

Note:

1 64-bit instruction

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ifd 50 D A d

Ifdu 51 D A d
Ifdux 31 D A B 631 0
Ifdx 31 D A B 599 0

Ifs 48 D A d

Ifsu 49 D A d
Ifsux 31 D A B 567 0
Ifsx 31 D A B 535 0
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Table A-20. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stfd 54 S A d
stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx * 31 S A B 983 0
stfs 52 S A d
stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Note:

1 Optional instruction

Table A-21. Floating-Point Move Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fabsx 63 D 00000 B 264 Rc
fmrx 63 D 00000 B 72 Rc
fnabsx 63 D 00000 B 136 Rc
fnegx 63 D 00000 B 40 Rc

Table A-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
bx 18 LI AA|LK

bex 16 BO Bl BD AA|LK
beetrx 19 BO Bl 00000 528 LK
belrx 19 BO Bl 00000 16 LK
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Table A-23. Condition Register Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
crand 19 crbD crbA crbB 257 0
crandc 19 crbD crbA crbB 129 0
creqv 19 crbD crbA crbB 289 0
crnand 19 crbD crbA crbB 225 0
crnor 19 crbD crbA crbB 33 0
cror 19 crbD crbA crbB 449 0
crorc 19 crbD crbA crbB 417 0
crxor 19 crbD crbA crbB 193 0
mcrf 19 crfD 00 crfS 00 00000 0000000000 0

Table A-24. System Linkage Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
rfi 12 19 00000 00000 00000 50 0
rfid 13 19 00000 00000 00000 18 0

sc 17 00000 00000 000000000000000 1]0
Notes:

1 Supervisor-level instruction
2 Optional 64-bit bridge instruction
3 64-bit instruction

Table A-25. Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
td ! 31 TO A B ‘ 68 ‘ 0
tdi 03 TO A SIMM

tw 31 TO A B ‘ 4 ‘o
twi 03 TO A SIMM
Note:

1 64-bit instruction

A-26 MPC750 RISC Microprocessor User’'s Manual



Table A-26. Processor Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
merxr 31 cfs | 00 00000 00000 512 0
mfcr 31 D 00000 00000 19 0
mfmsr 1 31 D 00000 00000 83 0
mfspr 2 31 D spr 339 0
mftb 31 D tpr 371 0
mtcrf 31 S 0 CRM 0 144 0
mtmsr 1.3 31 s 00000 00000 146 0
mtmsrd 14 31 s 00000 00000 178 0
mtspr 2 31 D spr 467 0
Notes:

1 Supervisor-level instruction

2 Supervisor- and user-level instruction
3 Optional 64-bit bridge instruction

4 64-bit instruction

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
dcba 12 31 00000 A B 758 0
dcbf 31 00000 A B 86 0
dcbi 2 31 00000 A B 470 0
dcbst 31 00000 A B 54 0
dcbt 31 00000 A B 278 0
dcbtst 31 00000 A B 246 0
dcbz 31 00000 A B 1014 0
icbi 31 00000 A B 982 0
Notes:
1 Optional instruction
2 Supervisor-level instruction
3 32-bit instruction not implemented by the MPC750
Appendix A. PowerPC Instruction Set Listings A-27



Table A-28. Segment Register Manipulation Instructions.

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mfsr 1.2 31 D 0 SR 00000 595 0
mfsrin 12 31 D 00000 B 659 0
mtsr 12 31 S 0 SR 00000 210 0
mtsrd 12 31 S 0 SR 00000 82 0
mtsrdin 12 31 S 00000 B 114 0
mtsrin 1.2 31 S 00000 B 242 0
Notes:

1 Supervisor-level instruction
2 Optional 64-bit bridge instruction

Table A-29. Lookaside Buffer Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbial23 31 00000 00000 00000 498 0

slbiel 23 31 00000 00000 B 434 0

tibia 124 31 00000 00000 00000 370 0

tibie 1:2 31 00000 00000 B 306 0

tlbsyncl? 31 00000 00000 00000 566 0
Notes:

1 Supervisor-level instruction

2 Optional instruction

3 64-bit instruction

4 32-bit instruction not implemented by the MPC750

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
eciwx 31 D A B 310 0
ecowx 31 S A B 438 0
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A.4 Instructions Sorted by Form
Table A-31 through Table A-45 list the PowerPC instructions grouped by form.

Key:
I:I Reserved bits

Table A-31. I-Form

’ OPCD ‘ LI ‘AA‘LK‘

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bX’ 18 ‘ LI ‘AA‘LK‘

Table A-32. B-Form

’ OPCD ‘ BO ‘ Bl ‘ BD ‘AA‘LK‘

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx’ 16 ‘ BO ‘ Bl ‘ BD ‘AA‘LK‘

Table A-33. SC-Form

’ OPCD ‘ 00000 ‘ 00000 ‘ 000000000000000 ‘1‘0‘

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc’ 17 ‘ 00000 ‘ 00000 ‘ 000000000000000 ‘1‘0‘

Table A-34. D-Form

OPCD D A d

OPCD D A SIMM
OPCD S A d

OPCD S A UIMM
OPCD cfD |O|L A SIMM
OPCD cfD |O|L A UIMM
OPCD TO A SIMM
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Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM
andi. 28 S A UIMM
andis. 29 S A UIMM
cmpi 11 crfD A SIMM
cmpli 10 crfD A UIMM
bz 34 D A d
lbzu 35 D A d
Ifd 50 D A d
Ifdu 51 D A d
Ifs 48 D A d
Ifsu 49 D A d
lha 42 D A d
lhau 43 D A d
lhz 40 D A d
lhzu 41 D A d
Imw 1 46 D A d
lwz 32 D A d
lwzu 33 D A d
mulli 7 D A SIMM
ori 24 S A UIMM
oris 25 S A UIMM
stb 38 S A d
stbu 39 S A d
stfd 54 S A d
stfdu 55 S A d
stfs 52 S A d
stfsu 53 S A d
sth 44 S A d
sthu 45 S A d
stmw ! 47 S A d
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stw 36 S A d
stwu 37 S A d
subfic 08 D A SIMM
tdi 2 02 TO A SIMM
twi 03 TO A SIMM
Xori 26 S A UIMM
Xoris 27 S A UIMM
Note:
1 Load/store string/multiple instruction
2 64-bit instruction
Table A-35. DS-Form
OPCD D ds XO
OPCD S ds XO
Specific Instructions
Name 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Id? 58 D A ds 0
Idut 58 D A ds 1
lwa * 58 D A ds 2
std * 62 S A ds 0
stdu! 62 S A ds 1
Note:
1 64-bit instruction
Table A-36. X-Form
OPCD D A B X0 0
OPCD D A NB X0 0
OPCD D 00000 B X0 0
OPCD D 00000 00000 XO 0
OPCD D 0 SR 00000 XO 0
OPCD S A B X0 Rc
OPCD S A B XO 1
OPCD S A B X0 0
OPCD S A NB XO 0
OPCD S A 00000 X0 Rc
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OPCD S 00000 B X0 0

OPCD S 00000 00000 X0 0

OPCD S 0 ‘ SR 00000 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 ‘ L A B X0 0

OPCD crfD 00 A B X0 0

OPCD crfD 00 crfS ‘ 00 00000 X0 0

OPCD crfD 00 00000 00000 X0 0

OPCD crfD 00 00000 IMM XO Rc

OPCD TO A B XO 0

OPCD D 00000 B XO Rc

OPCD D 00000 00000 XO Rc

OPCD crbD 00000 00000 X0 Rc

OPCD 00000 A B XO 0

OPCD 00000 00000 B XO 0

OPCD 00000 00000 00000 XO 0

Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
andx 31 S A B 28 Rc
andcx 31 S A B 60 Rc
cmp 31 cfD |0]|L A B 0 0
cmpl 31 cfD |O|L A B 32 0
cntlzdx ! 31 S A 00000 58 Rc
cntlzwx 31 S A 00000 26 Rc
dcba 2® 31 00000 A B 758 0
dcbf 31 00000 A B 86 0
dcbi 3 31 00000 A B 470 0
dcbst 31 00000 A B 54 0
dcbt 31 00000 A B 278 0
dcbtst 31 00000 A B 246 0
dcbz 31 00000 A B 1014 0
eciwx 31 D A B 310 0
ecowx 31 S A B 438 0
eieio 31 00000 00000 00000 854 0
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eqvx 31 S A B 284 Rc
extsbx 31 S A 00000 954 Rc
extshx 31 S A 00000 922 Rc
extswx t 31 S A 00000 986 Rc
fabsx 63 D 00000 B 264 Rc
fefidx t 63 D 00000 B 846 Rc
fcmpo 63 crfD 00 A B 32 0
fcmpu 63 crfD 00 A B 0 0
fetidx t 63 D 00000 B 814 Rc
fetidzx t 63 D 00000 B 815 Rc
fctiwx 63 D 00000 B 14 Rc
fctiwzx 63 D 00000 B 15 Rc
fmrx 63 D 00000 B 72 Rc
fnabsx 63 D 00000 B 136 Rc
fnegx 63 D 00000 B 40 Rc
frspx 63 D 00000 B 12 Rc
icbi 31 00000 A B 982 0
Ibzux 31 D A B 119 0
Ibzx 31 D A B 87 0
Idarx * 31 D A B 84 0
Idux * 31 D A B 53 0
ldx * 31 D A B 21 0
Ifdux 31 D A B 631 0
Ifdx 31 D A B 599 0
Ifsux 31 D A B 567 0
Ifsx 31 D A B 535 0
lhaux 31 D A B 375 0
lhax 31 D A B 343 0
Ihbrx 31 D A B 790 0
lhzux 31 D A B 311 0
lhzx 31 D A B 279 0
Iswi 4 31 D A NB 597 0
Iswx 4 31 D A B 533 0
lwarx 31 D A B 20 0
Iwaux 1 31 D A B 373 0
Appendix A. PowerPC Instruction Set Listings A-33



Iwax * 31 D A B 341 0
lwbrx 31 D A B 534 0
lwzux 31 D A B 55 0
Iwzx 31 D A B 23 0
mcrfs 63 cfd |00 | cfS | 00 00000 64 0
merxr 31 cfdb | 00 00000 00000 512 0
mfcr 31 D 00000 00000 19 0
mffsx 63 D 00000 00000 583 Rc
mfmsr 3 31 D 00000 00000 83 0
mfsr 35 31 D 0 SR 00000 595 0
mfsrin 35 31 D 00000 B 659 0
mtfsbOx 63 crbD 00000 00000 70 Rc
mtfsblx 63 crfD 00000 00000 38 Rc
mtfsfix 63 crbD 00 00000 IMM 0 134 Rc
mtmsr 35 31 S 00000 00000 146 0
mtmsrd 13 31 S 00000 00000 178 0
mtsr 35 31 S 0 SR 00000 210 0
mtsrd 35 31 S 0 SR 00000 82 0
mtsrin 33 31 S 00000 B 242 0
mtsrdin 3° 31 S 00000 B 114 0
nandx 31 S A B 476 Rc
norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc
slbia 123 31 00000 00000 00000 498 0
slbie 123 31 00000 00000 B 434 0
sldx ! 31 S A B 27 Rc
slwx 31 S A B 24 Rc
sradx?® 31 S A B 794 Rc
srawx 31 S A B 792 Rc
srawix 31 S A SH 824 Rc
srdx?! 31 S A B 539 Rc
Srwx 31 S A B 536 Rc
stbux 31 S A B 247 0
stbx 31 S A B 215 0
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stdex. ! 31 s A B 214 1
stdux * 31 s A B 181 0
stdx ! 31 s A B 149 0
stfdux 31 S A B 759 0
stfdx 31 S A B 727 0
stfiwx 2 31 s A B 983 0
stfsux 31 S A B 695 0
stfsx 31 S A B 663 0
sthbrx 31 S A B 918 0
sthux 31 S A B 439 0
sthx 31 S A B 407 0
stswi 4 31 s A NB 725 0
stswx 4 31 s A B 661 0
stwbrx 31 S A B 662 0
stwcx. 31 S A B 150 1
stwux 31 S A B 183 0
stwx 31 S A B 151 0
sync 31 00000 00000 00000 598 0
td ! 31 TO A B 68 0
tibia 236 31 00000 00000 00000 370 0
tibie 23 31 00000 00000 B 306 0
tlbsync 23 31 00000 00000 00000 566 0
tw 31 TO A B 4 0
Xorx 31 S A B 316 Rc
Notes:
1 64-bit instruction
2 Optional instruction
3 Supervisor-level instruction
4 Load/store string/multiple instruction
5 Optional 64-bit bridge instruction
6 32-bit instruction not implemented by the MPC750
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Table A-37. XL-Form
OPCD BO BI 00000 X0 LK
OPCD crbD crbA crbB X0 0
OPCD cfd | 00| cfs | 00 00000 X0 0
OPCD 00000 00000 00000 X0 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
beetrx 19 BO Bl 00000 528 LK
belrx 19 BO Bl 00000 16 LK
crand 19 crbD crbA crbB 257 0
crandc 19 crbD crbA crbB 129 0
creqv 19 crbD crbA crbB 289 0
crnand 19 crbD crbA crbB 225 0
crnor 19 crbD crbA crbB 33 0
cror 19 crbD crbA crbB 449 0
crorc 19 crbD crbA crbB 417 0
crxor 19 crbD crbA crbB 193 0
isync 19 00000 00000 00000 150 0
mcrf 19 crfD 00 crfS 00 00000 0 0
rfi 1.2 19 00000 00000 00000 50 0
rfid -3 19 00000 00000 00000 18 0
Notes:
1 Supervisor-level instruction
2 Optional 64-bit bridge instruction
8 64-bit instruction
Table A-38. XFX-Form
OPCD D spr X0 0
OPCD D 0 CRM 0 XO 0
OPCD S spr XO 0
OPCD D tbr XO 0
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mfspr 1’ 31 ‘ D spr 339 ‘ 0 ‘
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mftb 31 D tbr 371 0
mtcrf 31 S 0 CRM 144 0
mtspr 1 31 D spr 467 0
Note:
1 Supervisor- and user-level instruction
Table A-39. XFL-Form
’ OPCD ‘ 0 ‘ FM ‘ 0 ‘ B ‘ X0 ‘Rc‘
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mtfsfx’ 63 ‘ 0 ‘ FM ‘ 0 ‘ B ‘ 711 ‘Rc‘
Table A-40. XS-Form
’ oPCD ‘ s ‘ A ‘ sh ‘ X0 sh Rc‘
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
sradix® ’ 31 ‘ S ‘ A ‘ sh ‘ 413 ‘sh ‘Rc‘
Note:
1 64-bit instruction
Table A-41. XO-Form
OPCD D B IOF XO Rc
OPCD D B 0 XO Rc
OPCD D 00000 [OF X0 Rc
Specific Instructions
Name 0 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addx 31 D A B IOF 266 Rc
addcx 31 D A B IOF| 10 Rc
addex 31 D A B IOF| 138 Rc
addmex 31 D A 00000 IOF 234 Rc
addzex 31 D A 00000 IOE 202 Rc
divdx?! 31 D A B OE 489 Rc
divdux? 31 D A B o]= 457 Rc
divwx 31 D A B IOE 491 Rc
Appendix A. PowerPC Instruction Set Listings A-37



divwux 31 D A B IOE| 459 Rc
mulhdx ! 31 D A B 0 73 Rc
mulhdux?® 31 D A B 0 9 Rc
mulhwx 31 D A B 0 75 Rc
mulhwux 31 D A B 0 11 Rc
mulldx 31 D A B OE 233 Rc
mullwx 31 D A B IOE| 235 Rc
negx 31 D A 00000 [OH 104 Rc
subfx 31 D A B IOE| 40 Rc
subfcx 31 D A B IOE| 8 Rc
subfex 31 D A B IOE| 136 Rc
subfmex 31 D A 00000 [OH 232 Rc
subfzex 31 D A 00000 [OF 200 Rc
Note:
1 64-bit instruction
Table A-42. A-Form
OPCD D A B 00000 X0 Rc
OPCD D A B C X0 Rc
OPCD D A 00000 C XO Rc
OPCD D 00000 B 00000 X0 Rc
Specific Instructions
Name 0 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
faddx 63 D B 00000 21 Rc
faddsx 59 D A B 00000 21 Rc
fdivx 63 D A B 00000 18 Rc
fdivsx 59 D A B 00000 18 Rc
fmaddx 63 D A B C 29 Rc
fmaddsx 59 D A B C 29 Rc
fmsubx 63 D A B C 28 Rc
fmsubsx 59 D A B C 28 Rc
fmulx 63 D A 00000 Cc 25 Rc
fmulsx 59 D A 00000 C 25 Rc
fnmaddx 63 D A B C 31 Rc
fnmaddsx 59 D A B C 31 Rc
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fnmsubx 63 D A B Cc 30 Rc
fnmsubsx 59 D A B C 30 Rc
fresx?! 59 D 00000 B 00000 24 Rc
frsqrtex1 63 D 00000 B 00000 26 Rc
fselx! 63 D A B c 23 Rc
fsqrtx 12 63 D 00000 B 00000 22 Rc
fsqrtsx 12 59 D 00000 B 00000 22 Rc
fsubx 63 D A B 00000 20 Rc
fsubsx 59 D A B 00000 20 Rc
Note:
1 Optional instruction
2 32-bit instruction not implemented by the MPC750
Table A-43. M-Form
OPCD S SH MB ME Rc
OPCD S B MB ME Rc
Specific Instructions
Name O 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
riwimix 20 S A SH MB ME Rc
riwinmx 21 S A SH MB ME Rc
rlwnmx 23 S A B MB ME Rc
Table A-44. MD-Form
OPCD S sh mb XO [sh|Rc
OPCD S sh me XO [sh|Rc
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ridicx ! 30 S A sh mb 2 sh|Rc
ridicix ® 30 S A sh mb 0 sh|Rc
ridicrx ! 30 S A sh me 1 |sh|Rc
ridimix ! 30 S A sh mb 3 sh|Rc
Note:
1 64-bit instruction
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Table A-45. MDS-Form

OPCD S A B mb X0 Rc

OPCD S A B me XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ridclx * 30 S A B mb 8 Rc

riderx ! 30 S A B me 9 Rc
Note:

1 64-bit instruction
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A.5 Instruction Set Legend

Table A-46 provides genera information on the PowerPC instruction set (such as the
architectural level, privilege level, and form).

Table A-46. PowerPC Instruction Set Legend

uisA | VEA | OEA S“"L‘zr\)’eilsor 63;]?;t g:li-ngi; Optional | Form
addx v XO
addcx v X0
addex v X0
addi v D
addic v D
addic. v D
addis v D
addmex v X0
addzex v X0
andx v X
andcx v X
andi. v D
andis. v D
bx v |
bcx v B
beetrx v XL
belrx v XL
cmp v X
cmpi v D
cmpl v X
cmpli v D
cntlzdx v v X
cntlzwx v X
crand v XL
crandc v XL
creqv v XL
crnand v XL
crnor v XL
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Table A-46. PowerPC Instruction Set Legend (Continued)

Supervisor 64-Bit 64-Bit

VISA VEA OEA Level Only Bridge

Optional Form

cror v XL

crorc v XL

crxor v XL

dcha® v v
dcbf v

dcbi v v

dcbst

dchbt

dcbtst

< | < <] <

dchz

divdx

divdux

divwx

LS IR N S

divwux

eciwx v v

ecowx v v

eieio v

eqvx

extsbx

extshx

extswx

fabsx

faddx

faddsx

fefidx

fcmpo

fcmpu

fetidx

fetidzx

fetiwx

fetiwzx

S I B B e N YRS AR R Y E Y YRS RS
<
> X|X| XXX X[X]|>]|>|X|X|X]|X|X|X]X]X

fdivx
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Table A-46. PowerPC Instruction Set Legend (Continued)

UISA

VEA

OEA

Supervisor
Level

64-Bit
Only

64-Bit
Bridge

Optional

Form

fdivsx

fmaddx

fmaddsx

fmrx

fmsubx

fmsubsx

fmulx

fmulsx

fnabsx

fnegx

fnmaddx

fnmaddsx

fnmsubx

fnmsubsx

fresx

frspx

frsqrtex

fselx

fsqrtx 3

fsqrtsx 3

< | <| <] <

fsubx

fsubsx

S N N Y Y Y Y Y Y RN Y Y Y Y Y Y Y Y Y Y S

icbi

X2 222|222 X|[>]|>2|2|>2| 2| X[X]|>|>|2|>|X]|>|>]|>

isync

x
]

Ibz

O

Ibzu

Ibzux

Ibzx

Id

DS

Idarx

Idu

DS

Idux

S R YN R Y YR YRS RS

<| < <] <
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Table A-46. PowerPC Instruction Set Legend (Continued)

Supervisor 64-Bit 64-Bit

VISA VEA OEA Level Only Bridge

Optional Form

ldx v

Ifd

Ifdu

Ifdux

Ifdx

Ifs

Ifsu

Ifsux

Ifsx

lha

lhau

lhaux

lhax

lhbrx

lhz

lhzu

lhzux

lhzx

Imw

Iswi

X| X|O| X| X|O|O| X|X|X]|O|O|X|X|O|O|X|X|O|O]| X

Iswx

<
lw)
(]

lwa

lwarx

lwaux

lwax

Iwbrx

lwz

lwzu

lwzux

X| X|O|O| X[ X]| X]| X

lwzx

mcrf

LS IR B B IR Y Y Y Y S I N B S S BN S S N I O N S S N S B N BN S B N B B RN

mcrfs
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Table A-46. PowerPC Instruction Set Legend (Continued)

uisA | VEA | OEA S“"L‘zr\)’eflsor 63;]?;t g:li-ngi; Optional | Form
mcerxr v X
mfcr v X
mffs v X
mfmsr v v X
mfspr 1 v v v XFX
mfsr 4 v v v v X
mfsrin 4 v v Vv v X
mftb v XFX
mtcrf v XFX
mtfsbOx v X
mtfsblx v X
mtfsfx v XFL
mtfsfix v X
mtmsr 4 v v v v X
mtmsrd v v v X
mtspr 1 v v v XFX
mtsr 4 v v v v X
mtsrd 4 v v v v v X
mtsrdin 4 v v v v v X
mtsrin 4 v v v v X
mulhdx v v XO
mulhdux v v X0
mulhwx v XO
mulhwux v X0
mulldx v v XO
mulli v D
mullwx v XO
nandx v X
negx v X0
norx v X
orx v X
orcx v X
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Table A-46. PowerPC Instruction Set Legend (Continued)

uisA | VEA | OEA S“"L‘zr\)’eflsor 63;]?;t g:li-ngi; Optional | Form
ori v D
oris v D
rfi 4 v v v v XL
rfid v v v XL
rldclx v v MDS
rlderx v v MDS
rldicx v v MD
rldiclx v v MD
rldicrx v v MD
rldimix v v MD
rlwimix v
rlwinmx v
rlwnmx v
sc v v sSC
slbia v v v v X
slbie v v v v X
sldx v v X
slwx v X
sradx v v X
sradix v v XS
srawx v X
srawix v X
srdx v v X
Srwx v X
stb v D
stbu v D
stbux v X
stbx v X
std v v DS
stdex. v v X
stdu v v DS
stdux v v X
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Table A-46. PowerPC Instruction Set Legend (Continued)

UISA

VEA

OEA

Supervisor
Level

64-Bit
Only

64-Bit
Bridge

Optional

Form

stdx

v

stfd

stfdu

stfdux

stfdx

stfiwx

stfs

stfsu

stfsux

stfsx

sth

sthbrx

sthu

sthux

sthx

stmw 2

stswi 2

Stswx 2

stw

stwbrx

stwcx.

stwu

stwux

stwx

X| X|O| X| X|O|IX|X|O|X|X|O|X|O|X|X]|O|O|X|X|X|O|O]| X

subfx

x
(]

subfcx

x
(o]

subfex

x
o]

subfic

subfmex

X0

subfzex

X0

sync

td

LS IR B I RN Y S N I S I S B N N N N N N R NSRS A YRS RS A YRS E Y Y Y N S S S BN
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Table A-46. PowerPC Instruction Set Legend (Continued)

uisA | VEA | OEA S“"Lzr\)’eilsor 63;]?;t g:li-ngi; Optional | Form
tdi v Vv D
tibiax® v v v X
tibiex v v v X
tibsync v v v X
tw v X
twi v D
Xorx v X
xori v D
Xoris v D
Notes:

1 supervisor- and user-level instruction

2 Loadl/store string or multiple instruction

3 32-bit instruction not implemented by the MPC750

4 Instruction is optional for 64-bit implementations only
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Appendix B
Instructions Not Implemented

This appendix provides a list of the 32-bit and 64-bit PowerPC instructions that are not
implemented in the MPC750 microprocessor. Note that any attempt to execute instructions
that are not implemented on the MPC750 will generate an illegal instruction exception.
Note that exceptions are referred to as interrupts in the architecture specification.

Table B-1 provides the 32-bit PowerPC instructions that are optional to the PowerPC
architecture but not implemented by the MPC750.

Table B-1. 32-Bit Instructions Not Implemented by the MPC750 Processor

Mnemonic Instruction
dcba Data Cache Block Allocate
fsqrt Floating Square Root (Double-Precision)
fsqrts Floating Square Root Single
tibia TLB Invalidate All

Table B-2 provides alist of 64-bit instructions that are not implemented by the MPC750.

Table B-2. 64-Bit Instructions Not Implemented by the MPC750 Processor

Mnemonic Instruction
cntlzd Count Leading Zeros Double Word
divd Divide Double Word
divdu Divide Double Word Unsigned
extsw Extend Sign Word
fcfid Floating Convert From Integer Double Word
fctid Floating Convert to Integer Double Word
fctidz Floating Convert to Integer Double Word with Round toward Zero
Id Load Double Word
Idarx Load Double Word and Reserve Indexed
Idu Load Double Word with Update
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Table B-2. 64-Bit Instructions Not Implemented by the MPC750 Processor

Mnemonic Instruction
Idux Load Double Word with Update Indexed
ldx Load Double Word Indexed
lwa Load Word Algebraic
lwaux Load Word Algebraic with Update Indexed
Iwax Load Word Algebraic Indexed
mtmsrd Move to Machine State Register Double Word
mtsrd Move to Segment Register Double Word
mtsrdin Move to Segment Register Double Word Indirect
mulld Multiply Low Double Word
mulhd Multiply High Double Word
mulhdu Multiply High Double Word Unsigned
ridcl Rotate Left Double Word then Clear Left
rider Rotate Left Double Word then Clear Right
rldic Rotate Left Double Word Immediate then Clear
ridicl Rotate Left Double Word Immediate then Clear Left
rldicr Rotate Left Double Word Immediate then Clear Right
rldimi Rotate Left Double Word Immediate then Mask Insert
slbia SLB Invalidate All
slbie SLB Invalidate Entry
sld Shift Left Double Word
srad Shift Right Algebraic Double Word
sradi Shift Right Algebraic Double Word Immediate
srd Shift Right Double Word
std Store Double Word
stdcx. Store Double Word Conditional Indexed
stdu Store Double Word with Update
stdux Store Double Word Indexed with Update
stdx Store Double Word Indexed
td Trap Double Word
tdi Trap Double Word Immediate
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Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Sd 754-1985, |IEEE Sandard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Ingtitute of Electrical and Electronics Engineers, Inc. with the permission of the |IEEE.

A Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for afamily of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to
the processor’s execution. In this document, the term * asynchronous
exception’ is used interchangeably with the word interrupt.

Atomic access. A bus accessthat attemptsto be part of aread-write operation
to the same address uninterrupted by any other accessto that address
(the term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
Iwar x/stwex. instruction pair.

B BAT (block address trandglation) mechanism. A software-controlled array
that stores the available block address trandlations on-chip.

Biased exponent. An exponent whose range of valuesis shifted by a constant
(bias). Typicaly abiasisprovided to alow arange of positive values
to express a range that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) O, 1, 2, 3, with 0
being the most-significant byte. See Little-endian.

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte whose
size, trandation, and protection attributes are controlled by the BAT
mechanism.
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Boundedly undefined. A characteristic of certain operation results that are

not rigidly prescribed by the PowerPC architecture. Boundedly-
undefined results for a given operation may vary among
implementations and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are allowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a branch

instruction and any instructions along the not-taken path when a
branch is either taken or predicted as taken.

Branch prediction—The process of guessing whether a branch will be

taken. Such predictions can be correct or incorrect; the term
‘predicted’ as it is used here does not imply that the prediction is
correct (successful). The PowerPC architecture defines a means for
static branch prediction as part of the instruction encoding.

Branch resolution—The determination of whether a branch is taken or not

taken. A branch is said to be resolved when the processor can
determine which instruction path to take. If the branch isresolved as
predicted, the instructions following the predicted branch that may
have been speculatively executed can complete (see completion). If
the branch is not resolved as predicted, instructions on the
mispredicted path, and any results of speculative execution, are
purged from the pipeline and fetching continues from the
nonpredicted path.

Burst. A multiple-beat data transfer whose total size is typically equal to a

cache block.

Cache. High-speed memory containing recently accessed data and/or

instructions (subset of main memory).
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Cache block. A small region of contiguous memory that is copied from
memory into a cache. The size of a cache block may vary among
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block basis.
Note that the term *cache block’ is often used interchangeably with
‘cacheline.

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to al devices that share the same memory
system. Caches are coherent if a processor performing a read from
itscacheis supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cacheis bypassed
and the load or store is performed to or from main memory.

Cast-outs. Cache blocks that must be written to memory when a cache miss
causes a cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed hit if any store is performed
into the page. See also Page access history bits and Referenced bit.

Clear. To cause a hit or bit field to register avalue of zero. See also Set.

Completion—Completion occurs when an instruction has finished
executing, written back any results, and is removed from the
completion queue. When an instruction completes, it is guaranteed
that this instruction and all previous instructions can cause no
exceptions.

Context synchronization. An operation that ensures that al instructions in
execution complete past the point where they can produce an
exception, that al instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
arefetched and executed in the new context. Context synchronization
may result from executing specific instructions (such asisync or rfi)
or when certain events occur (such as an exception).

Copy-back. An operation in which modified datain a cache block is copied
back to memory.

Glossary of Terms and Abbreviations Glossary-3



Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usualy the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Effective address (EA). The 32- or 64-bit address specified for aload, store,
or an instruction fetch. This address is then submitted to the MMU
for trandlation to either a physical memory address or an I/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected viathe
MSR.

Exclusive state. MEI state (E) in which only one caching device contains
datathat is also in system memory.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Fall-through (branch fall-through)—A not-taken branch. On the MPC750,
fall-through branch instructions are removed from the instruction
stream at dispatch. That is, these instructions are alowed to fal
through the instruction queue via the dispatch mechanism, without
either being passed to an execution unit and or given aposition inthe
completion queue.
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Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs and store instructions move data
from FPRsto memory. The FPRs are 64 bits wide and store floating-
point values in double-precision format

Flush. An operation that causes a modified cache block to beinvalidated and
the data to be written to memory.

Fraction. In the binary representation of afloating-point number, the field of
the significand that lies to the right of itsimplied binary point.

G General-purpose register (GPR). Any of the 32 registers in the genera-
purpose register file. These registers provide the source operands and
destination results for al integer data manipulation instructions.
Integer load instructions move data from memory to GPRs and store
instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a
page is designated as guarded, instructions and data cannot be
accessed out-of-order.

H Harvard architecture. An architectural model featuring separate caches for
instruction and data.

Hashing. An agorithm used in the page table search process.

| |EEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a
particular PowerPC processor. Theseinclude instructions not defined
by the PowerPC architecture. In addition, for 32-bit
implementations, instructions that are defined only for 64-bit
implementations are considered to beillegal instructions. For 64-bit
implementations instructions that are defined only for 32-bit
implementations are considered to beillegal instructions.
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Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The PowerPC architecture has
many different implementations.

I mprecise exception. A type of synchronous exception that is alowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.

Instruction queue. A holding place for instructions fetched from the current
instruction stream.

Integer unit. A functional unit in the MPC750 responsible for executing
integer instructions.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, at the time that it is
performed, it is known to be required by the sequential execution
model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Interrupt. An asynchronous exception. On PowerPC processors, interrupts
are aspecial case of exceptions. See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a valid
copy of acache block from memory.

K Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access a page within that segment or block.

Kill. An operation that causes a cache block to be invalidated.
L L 2 cache. See Secondary cache.
L east-significant bit (Isb). The bit of least value in an address, register, data
element, or instruction encoding.
L east-significant byte (L SB). The byte of least value in an address, register,
data element, or instruction encoding.
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Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (l€eft to right) 3, 2, 1, 0, with 3
being the most-significant byte. See Big-endian.

M MESI (modified/exclusive/shared/invalid). Cache coherency protocol used
to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

M emory-mapped accesses. Accesses whose addresses use the page or block
address trandation mechanisms provided by the MMU and that
occur externally with the bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory isprovided to all devicesthat share system
memory.

Memory consistency. Refersto agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).

Memory management unit (MM U). The functional unit that is capable of
translating an effective (logical) address to a physical address,
providing protection mechanisms, and defining caching methods.

Modified state. MEI state (M) in which one, and only one, caching device
hasthevalid datafor that address. The data at thisaddressin external
memory is not valid. See MESI.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

N NaN. An abbreviation for not a number; a symbolic entity encoded in
floating-point format. There aretwo types of NaNs—signaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.
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Normalization. A process by which a floating-point value is manipulated
such that it can be represented in the format for the appropriate
precision (single- or double-precision). For a floating-point value to
be representable in the single- or double-precision format, the
leading implied bit must be a 1.

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, supervisor-
level registers, synchronization requirements, and the exception
model. It aso defines the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, aregister, or an exception, that is
defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allowsit to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An condition that occurs during arithmetic operations when the
result cannot be stored accurately in the destination register(s). For
example, if two 32-bit numbers are multiplied, the result may not be
representable in 32 bits.

Packet. A term used in the MPC750 with respect to direct-store operations.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep
track of the access history within the page. The referenced bit is set
by the MMU whenever the page is accessed for a read or write
operation. The changed hit is set when the page is stored into. See
Changed bit and Referenced bit.
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Page fault. A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident in physical memory. On PowerPC
processors, a page fault exception condition occurs when a
matching, valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTES.
It is further organized into eight PTES per PTEG (page table entry
group). The number of PTEGsin the page table depends on the size
of the page table (as specified in the SDR1 register).

Page table entry (PTE). Data structures containing information used to
translate effective address to physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a 32-bit processor
and 16 bytes of information in a 64-bit processor.

Physical memory. The actual memory that can be accessed through the
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has compl eted.

Precise exceptions. A category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete, and subsequent instructions can be flushed and
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0-5) of the instruction
encoding that identifies the type of instruction. See Secondary
opcode.

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, avirtua page, aBAT
area, or arange of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Q Quiesce. To cometo rest. The processor is said to quiesce when an exception
is taken or a sync instruction is executed. The instruction stream is
stopped at the decode stage and executing instructions are allowed to
complete to create a controlled context for instructions that may be
affected by out-of-order, paralel execution. See Context
synchronization.
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Quiet NaN. A type of NaN that can propagate through most arithmetic
operations without signaling exceptions. A quiet NaN is used to
represent the results of certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs, when invalid. See
Signaling NaN.

rA. TherA instruction field is used to specify a GPR to be used as a source
or destination.

rB. TherB instruction field is used to specify a GPR to be used as a source.

rD. The rD ingtruction field is used to specify a GPR to be used as a
destination.

rS. TherSinstruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address trandlation is
performed and the effective address specified is the same as the
physical address. The processor's MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the M SR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Referenced bit. One of two page history bits found in each page table entry
(PTE). The processor sets the referenced bit whenever the page is
accessed for aread or write. See also Page access history hits.

Register indirect addressing. A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Register indirect with index addressing. A form of addressing that specifies
that the contents of two GPRs be added together to yield the target
addressfor the load or store.

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx instruction to read a
memory semaphore into a GPR.
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RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
acCesses.

S Secondary cache. A cache memory that is typically larger and has a longer
access time than the primary cache. A secondary cache may be
shared by multiple devices. Also referred to as L2, or level-2, cache.

Set (V). Towriteanonzero valueto abit or bit field; the opposite of clear. The
term ‘set’ may also be used to generally describe the updating of a
bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its lower-
order address bits. Because several memory locations can map to the
same location, cached dataistypically placed in the set whose cache
block corresponding to that address was used |east recently. See Set-
associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation program
exception when it is specified as arithmetic operands. See Quiet
NaN.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of itsimplied binary
point and afraction field to theright.

Simplified mnemonics. Assembler mnemonics that represent a more
complex form of a common operation.

Slave. The device addressed by a master device. The daveisidentified in the
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need for
coherency actions.

Snoop push. Write-backs due to a snoop hit. The block will transition to an
invalid or exclusive state.

Glossary of Terms and Abbreviations Glossary-11



Split-transaction. A transaction with independent request and response
tenures.

Split-transaction bus. A bus that allows address and data transactions from
different processors to occur independently.

Static branch prediction. Mechanism by which software (for example,
compilers) can hint to the machine hardware about the direction a
branchislikely to take.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

T Tenure. A tenure consists of three phases: arbitration, transfer, termination.
There can be separate address bus tenures and data bus tenures.

TLB (trandation lookaside buffer) A cache that holds recently-used page
table entries.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Transaction. A complete exchange between two bus devices. A transaction
is minimally comprised of an address tenure; one or more data
tenures may be involved in the exchange.

Transfer termination. Signal that refersto both signalsthat acknowledge the
transfer of individual beats (of both single-beat transfer and
individual beats of a burst transfer) and to signals that mark the end
of the tenure.
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U UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Underflow. A condition that occurs during arithmetic operations when the
result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other
words, the result istoo small to be represented accurately.

User mode. The operating state of a processor used typically by application
software. In user mode, software can access only certain control
registers and can access only user memory space. No privileged
operations can be performed. Also referred to as problem state.

V VEA (virtual environment architecture). The level of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Virtual address. An intermediate address used in the trandlation of an
effective address to a physical address.

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides with physical memory.

W Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when amadified cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.
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A

AACK (address acknowledge) signal, 7-14
ABB (address bus busy) signd, 7-5, 8-8
Address bus
address tenure, 8-7
address transfer
An, 7-7
APE, 8-13
APn, 7-7
address transfer attribute
Cl, 7-12
GBL, 7-13
TBST, 7-12, 8-14
TSIZn, 7-11, 8-13
TTn, 7-8, 8-13
WT, 7-13
address transfer start (TS), 7-6, 8-12
address transfer termination
AACK, 7-14
ARTRY, 7-14
terminating address transfer, 8-17
arbitration signals, 7-4, 8-8
bus parking, 8-11
Address translation, see Memory management unit
Addressing modes, 2-35
Aligned data transfer, 8-15, 8-17
Alignment
datatransfers, 8-15
exception, 4-18
misaligned accesses, 2-29
rules, 2-29
An (address bus) signals, 7-7
APE (address parity error) signal, 8-13
APn (address parity) signals, 7-7
Arbitration, system bus, 8-10, 8-19
Arithmetic instructions
floating-point, A-20
integer, A-17
ARTRY (addressretry) signal, 7-14

B

BG (bus grant) signal, 7-4, 8-8

Block address translation
block address trandation flow, 5-12
definition, 1-12

INDEX

registers
description, 2-5
initialization, 5-21
selection of block address translation, 5-9
Boundedly undefined, definition, 2-33
BR (bus request) signal, 7-4, 8-8
Branch fall-through, 6-18
Branch folding, 6-18
Branch instructions
address calculation, 2-53
condition register logical, 2-54, A-26
description, A-25
list of instructions, 2-54, A-25
system linkage, 2-55, 2-65, A-26
trap, 2-55, A-26
Branch prediction, 6-1, 6-22
Branch processing unit
branch instruction timing, 6-23
execution timing, 6-18
latency, branch instructions, 6-31
overview, 1-9
Branch resolution
definition, 6-1
resource reguirements, 6-30
BTIC (branch target instruction cache), 6-9
Burst data transfers
64-bit data bus, 8-15
transfers with data delays, timing, 8-32
Bus arbitration, see Data bus
Bus configurations, 8-34
Businterface unit (BIU), 3-2, 3-30
Bus transactions and L1 cache, 3-22
Byte ordering, 2-35

C

Cache

bus interface unit, 3-2, 3-30
cache arbitration, 6-11
cache block, definition, 3-3
cache characteristics, 3-1
cache coherency

description, 3-5

overview, 3-25

reaction to bus operations, 3-26
cache control, 3-13

Index
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cache control instructions
bus operations, 3-24
cache control, 3-13
dcbhi, 2-66
dcht, 2-63
cache hit, 6-11
cache integration, 3-2
cache management instructions, A-27
cache miss, 6-14
cache operations
cache block push operations, 9-4
data cache transactions, 3-22
instruction cache block fill, 3-21
|oad/store operations, processor initiated, 3-10
operations, 3-18
overview, 3-1, 8-2
snoop response to bus transactions, 3-26
cache unit overview, 3-3
cache-inhibited accesses (I bit), 3-6
data cache configuration, 3-3
dcbf/dcbst execution, 9-4
ichi, 9-4
instruction cache configuration, 3-4
instruction cache throttling, 10-10
L1 cache and bus transactions, 3-22
L2 interface
cache configuration, 9-2
cache globd invalidation, 9-7
cacheinitialization, 9-6
cache testing, 9-8
clock configuration, 9-9
dchi, 9-4
eieio, 9-4
L2 cache considerations, 6-15
L2 cache interface signals, 7-25
operation, 9-2
overview, 9-1
SRAM timing examples, 9-9
stwex. execution, 9-4
sync, 9-4
|oad/store operations, processor initiated, 3-10
PLRU replacement, 3-19
stwex. execution, 9-4
Changed (C) bit maintenance recording, 5-12, 5-23
Checkstop
signal, 7-22, 8-35
state, 4-16
CI (cacheinhibit) signal, 7-12
CKSTP_IN/CKSTP_OUT (checkstop input/output)
signals, 7-22
Classes of instructions, 2-32
Clean block operation, 3-26
CLK_OUT signal, 7-29

Clock signals
PLL_CFGn, 7-30
SYSCLK, 7-29
Compare instructions
floating-point, A-21
integer, A-18
Completion
completion unit resource requirements, 6-30
considerations, 6-16
definition, 6-1
Context synchronization, 2-36
Conventions, xxxiii, xxxvii, 6-1
COP/scan interface, 8-37
Copy-back mode, 6-27
CR (condition register)
CRlogical instructions, 2-54, A-26
CR, description, 2-3
CTRregister, 2-4

D

DABR (data address breakpoint register), 2-7
DAR (data address register), 2-6
Data bus
arbitration signals, 7-15, 8-8
bus arbitration, 8-19
datatenure, 8-7
datatransfer, 7-17, 8-21
data transfer termination, 7-19, 8-22
Data cache
block push operation, 3-22
configuration, 3-3
DCFI, DCE, DLOCK hits, 3-13
organization, 3-4
Data organization in memory, 2-28
Datatransfers
alignment, 8-15
burst ordering, 8-15
eciwx and ecowx instructions, alignment, 8-17
operand conventions, 2-28
signals, 8-21
DBB (data bus busy) signa, 7-16, 8-8, 8-20
DBDIS (data bus disable) signal, 7-19
DBG (data bus grant) signal, 7-15, 8-8
DBWO (data bus write only) signal, 7-16, 8-8,
8-21, 8-37
dcbi, 2-66
dchbt, 2-63
DEC (decrementer register), 2-7
Decrementer exception, 4-19
Defined instruction class, 2-33
DHn/DLn (data bus) signals, 7-17
Dispatch
considerations, 6-16
dispatch unit resource requirements, 6-30
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DPn (data bus parity) signals, 7-18

DRTRY (dataretry) signal, 7-20, 8-22, 8-25
DSl exception, 4-17

DSISR register, 2-6

DTLB organization, 5-25

Dynamic branch prediction, 6-9

E
EAR (external accessregister), 2-7
Effective address calculation
address trandlation, 5-4
branches, 2-35
loads and stores, 2-35, 2-46, 2-51
eieio, 2-62
EMI protocol, enforcing memory coherency, 8-26
Enveloped high-priority cache block
push operation, 3-22
Error termination, 8-26
Event
counting, 11-11
selection, 11-12
Exceptions
alignment exception, 4-18
decrementer exception, 4-19
definitions, 4-12
DSl exception, 4-17
enabling and disabling exceptions, 4-10
exception classes, 4-2
exception prefix (1P) bit, 4-13
exception priorities, 4-4
exception processing, 4-7, 4-10
externa interrupt, 4-17
FP assist exception, 4-20
FP unavailable exception, 4-19
instruction-related exceptions, 2-37
ISl exception, 4-17
machine check exception, 4-14
performance monitor interrupt, 4-20
program exception, 4-18
register settings
MSR, 4-8, 4-12
SRRO/SRR1, 4-7
reset exception, 4-13
returning from an exception handler, 4-11
summary table, 4-3
system call exception, 4-19
system management interrupt, 4-22
terminology, 4-2
thermal management interrupt exception, 4-24
Execution synchronization, 2-36
Execution unit timing examples, 6-18
Execution units, 1-10
External control instructions, 2-64, 8-17, A-28

INDEX

=
Features, list, 1-4
Finish cycle, definition, 6-2
Floating-point model
FEO/FE1 bits, 4-10
FP arithmetic instructions, 2-42, A-20
FP assist exceptions, 4-20
FP compare instructions, 2-43, A-21
FPload instructions, A-24
FP moveinstructions, A-25
FP multiply-add instructions, 2-42, A-20
FP operand, 2-30
FP rounding/conversion instructions, 2-43, A-21
FP store instructions, 2-52, A-25
FP unavailable exception, 4-19
FPSCR instructions, 2-44, A-21
|EEE-754 compatibility, 2-28
NI bitin FPSCR, 2-30
Floating-point unit
execution timing, 6-24
latency, FP instructions, 6-34
overview, 1-10, 1-11
Flush block operation, 3-26
FPRn (floating-point registers), 2-3
FPSCR (floating-point status and control register)
FPSCR instructions, 2-44, A-21
FPSCR register description, 2-3
NI bit, 2-29

G

GBL (global) signal, 7-13

GPRn (general-purpose registers), 2-3
Guarded memory bit (G hit), 3-6

H

HIDn (hardware implementation-dependent) registers
HIDO
description, 2-9
doze bit, 10-3
DPM enable bit, 10-2
nap hit, 10-4
HID1
description, 2-13
PLL configuration, 2-13, 7-30
HRESET (hard reset) signal, 7-23, 8-35

IABR (instruction address breakpoint register), 2-8
ICTC (instruction cache throttling control)
register, 2-21, 10-11
|EEE 1149.1-compliant interface, 8-37
Illegal instruction class, 2-33
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Instruction cache
configuration, 3-4
instruction cache block fill operations, 3-21
organization, 3-5
Instruction cache throttling, 10-10
Instruction timing
examples
cache hit, 6-12
cache miss, 6-15
execution unit, 6-18
instruction flow, 6-8
memory performance considerations, 6-27
overview, 6-3
terminology, 6-1
Instructions
branch address calculation, 2-53
branch instructions, 6-9, 6-18, 6-20, A-25
cache control instructions, 9-4
cache management instructions, A-27
classes, 2-32
condition register logical, 2-54, A-26
defined instructions, 2-33
external control instructions, 2-64, A-28
floating-point
arithmetic, 2-42, A-20
compare, 2-43, A-21
FP load instructions, A-24
FP moveinstructions, A-25
FP rounding and conversion, 2-43, A-21
FP status and control register, 2-44
FP storeinstructions, A-25
FPSCR instructions, A-21
multiply-add, 2-42, A-20
illegal instructions, 2-33
instruction cache throttling, 10-10
instruction flow diagram, 6-10
instruction serialization, 6-17
instruction serialization types, 6-17
instruction set summary, 2-31
instructions not implemented, B-1
integer
arithmetic, 2-38, A-17
compare, 2-39, A-18
load, A-22
load/store multiple, A-23
load/store string, A-24
load/store with byte reverse, A-23
logical, 2-40, A-18
rotate and shift, 2-40, A-19
store, A-23
integer instructions, 6-33
isync, 4-12
latency summary, 6-31

INDEX

load and store
address generation
floating-point, 2-51
integer, 2-46
byte reverse instructions, 2-49, A-23
floating-point load, A-24
floating-point move, 2-44, A-25
floating-point store, 2-51
handling misalignment, 2-45
integer load, 2-46, A-22
integer multiple, 2-49
integer store, 2-47, A-23
memory synchronization, 2-59, 2-61, A-24
multiple instructions, A-23
string instructions, 2-50, A-24
lookaside buffer management instructions, A-28
memory control instructions, 2-62, 2-66
memory synchronization instructions, 2-59,
2-61, A-24
PowerPC instructions, list, A-1, A-9, A-17
processor control instructions, 2-56, 2-60, 2-65,
A-27
reserved instructions, 2-34
rfi, 4-11
segment register manipulation instructions, A-28
SLB management instructions, A-28
stwex., 4-12
support for Iwarx/stwcx., 8-36
sync, 4-12
system linkage instructions, 2-55, A-26
TLB management instructions, A-28
tlbie, 2-67
tibsync, 2-67
trap instructions, 2-55, A-26
INT (interrupt) signal, 7-21, 8-35
Integer arithmetic instructions, 2-38, A-17
Integer compare instructions, 2-39, A-18
Integer load instructions, 2-46, A-22
Integer logical instructions, 2-40, A-18
Integer rotate/shift instructions, 2-40, A-19
Integer store gathering, 6-26
Integer store instructions, 2-47, A-23
Integer unit execution timing, 6-24
Interrupt, external, 4-17
1S exception, 4-17
isync, 2-62, 4-12
ITLB organization, 5-25

K
Kill block operation, 3-26
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L1/L 2 interface operation, see Cache
L2ADDRnN (L2 address) signals, 7-25
L2CE (L2 chip enable) signals, 7-26
L2CLK_OUTA (L2 clock out A) signdl, 7-27
L2CLK_OUTB (L2 clock out B) signal, 7-27
L2CR (L2 cache control register), 2-24, 9-4
L2DATAN (L2 data) signals, 7-25
L2DPn (L2 data parity) signals, 7-26
L2SYNC_IN (L2 syncin) signal, 7-28
L2SYNC_OUT (L2 sync out) signal, 7-27
L2WE (L2 write enable) signal, 7-27
L2ZZ (L2 low-power mode enable) signal, 7-28
Latency, 8-21
Latency
definition, 6-2
load/store instructions, 6-36
Load/store
address generation, 2-46
byte reverse instructions, 2-49, A-23
execution timing, 6-25
floating-point load instructions, 2-51, A-24
floating-point move instructions, 2-44, A-25
floating-point store instructions, 2-52, A-25
handling misalignment, 2-45
integer load instructions, 2-46, A-22
integer store instructions, 2-47, A-23
latency, load/store instructions, 6-36
load/store multiple instructions, 2-49, A-23
memory synchronization instructions, A-24
string instructions, 2-50, A-24
Logical address trandation, 5-1
Logical instructions, integer, A-18
L ookaside buffer management instructions, A-28
LR (link register), 2-4
lwarx/stwex. support, 8-36

M

Machine check exception, 4-14
MCP (machine check interrupt) signal, 7-21
MEI protocol
hardware considerations, 3-9
read operations, 3-23
state transitions, 3-32
Memory accesses, 8-4
Memory coherency bit (M bit)
cache interactions, 3-6
timing considerations, 6-27
Memory contral instructions
description, 2-62, 2-66
segment register manipulation, A-28
SLB management, A-28

INDEX

Memory management unit
address trandation flow, 5-12
address translation mechanisms, 5-9, 5-12
block address trandation, 5-9, 5-12, 5-21
block diagrams
32-bit implementations, 5-6
DMMU, 5-8
IMMU, 5-7
exceptions summary, 5-16
features summary, 5-3
implementation-specific features, 5-2
instructions and registers, 5-18
memory protection, 5-11
overview, 1-12, 5-2
page address tranglation, 5-9, 5-12, 5-28
page history status, 5-12, 5-21-5-25
real addressing mode, 5-12, 5-20
segment model, 5-21
Memory synchronization instructions, 2-59, 2-61,
A-24
Misalignment
misaligned accesses, 2-29
misaligned data transfer, 8-17
MMCRn (monitor mode control registers), 2-14,
4-20, 11-3
MSR (machine state register)
bit settings, 4-8
FEO/FEL bits, 4-10
IP bit, 4-13
PM bit, 2-4
RI bit, 4-11
settings due to exception, 4-12
Multiple-precision shifts, 2-41
Multiply-add instructions, A-20

z

No-DRTRY mode, 8-34

o

OEA
exception mechanism, 4-1
memory management specifications, 5-1
registers, 2-4
Operand conventions, 2-28
Operand placement and performance, 6-25
Operating environment architecture (OEA), xxviii,
1-21
Operations
bus operations caused by cache control
instructions, 3-24
cache operations, 3-1
data cache block push, 3-22
enveloped high-priority cache block push, 3-22
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instruction cache block fill, 3-21
read operation, 3-23
response to snooped bus transactions, 3-26
single-beat write operations, 8-29
Optional instructions, A-41
Overview, 1-1

P

Page address translation
definition, 1-12
page address tranglation flow, 5-28
pagesize, 5-21
selection of page address trandation, 5-9, 5-16
TLB organization, 5-26
Page history status
cases of dcbt and dcbtst misses, 5-22
R and C bit recording, 5-12, 5-21-5-25
Page table updates, 5-34
Performance monitor
event counting, 11-11
event selecting, 11-12
performance monitor interrupt, 4-20, 11-2
performance monitor SPRs, 11-3
purposes, 11-1
registers, 11-3
warnings, 11-12
Phase-locked loop, 10-3
Physical address generation, 5-1
Pipeline
instruction timing, definition, 6-2
pipeline stages, 6-7
pipelined execution unit, 6-4
superscal ar/pipeline diagram, 6-5
PMC1 and PMC2 registers, 1-26
PMCn (performance monitor counter)
registers, 2-16, 4-20, 11-6
Power and ground signals, 7-30
Power management
doze mode, 10-3
doze, nap, sleep, DPM bits, 2-13
dynamic power management, 10-1
full-power mode, 10-2
nap mode, 10-3
programmabl e power modes, 10-2
sleep mode, 10-4
software considerations, 10-5
PowerPC architecture
instruction list, A-1, A-9, A-17
operating environment architecture (OEA), xxviii,

Priorities, exception, 4-4
Process switching, 4-12
Processor control instructions, 2-56, 2-60, 2-65, A-27
Program exception, 4-18
Program order, definition, 6-2
Programmable power states
doze mode, 10-3
full-power mode with DPM enabled/disabled, 10-2
nap mode, 10-3
sleep mode, 10-4
Protection of memory areas
no-execute protection, 5-14
options available, 5-11
protection violations, 5-16
PVR (processor version register), 2-5

Q

QACK (quiescent acknowledge) signal, 7-24
QREQ (quiescent request) signal, 7-24, 8-35
Qualified bus grant, 8-8

Qualified data bus grant, 8-20

R
Read operation, 3-26
Read-atomic operation, 3-26
Read-with-intent-to-modify operation, 3-26
Real address (RA), see Physical address generation
Real addressing mode (translation disabled)
data accesses, 5-12, 5-20
instruction accesses, 5-12, 5-20
support for real addressing mode, 5-2
Referenced (R) bit maintenance recording, 5-12,
5-22,5-31
Registers
implementation-specific
ICTC, 2-21, 10-11
L2CR, 2-24,9-4
MMCRO, 2-14, 4-20, 11-3
MMCR1, 2-16, 4-20, 11-5
SIA, 2-20, 4-21
THRMn, 2-21, 10-7
UMMCRO, 2-15
UMMCRY, 2-16
UPMChn, 2-20
USIA, 2-20
MPC750 programming model, 2-2
performance monitor registers, 2-14
reset settings, 2-27
SPR encodings, 2-58

1-21 .
user instruction set architecture (UISA), xxviii, superwsor—_le\/el
1-21 BAT registers, 2-5
virtual environment architecture (VEA), xxviii, DABR, 2-7
1.1 DAR, 2-6
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DEC, 2-7
DSISR, 2-6
EAR, 2-7
HIDO, 2-9, 10-2
HID1, 2-13
IABR, 2-8
ICTC, 2-21, 10-11
L2CR, 2-24,9-4
MMCRQO, 2-14, 4-20, 11-3
MMCRY, 2-16, 4-20, 11-5
MSR, 2-4
PMC1 and PMC2, 1-26
PMCn, 2-16, 4-20
PVR, 2-5
SDR1, 2-5
SIA, 2-20, 4-21, 11-10
SPRGn, 2-6
SPRs for performance monitor, 11-1
SRn, 2-5
SRRO/SRR1, 2-6
THRMn, 2-21, 10-7
time base (TB), 2-6
user-level
CR, 2-3
CTR, 2-4
FPRn, 2-3
FPSCR, 2-3
GPRn, 2-3
LR, 2-4
time base (TB), 2-4, 2-6
UMMCRQO, 2-15
UMMCRL1, 2-16
UPMChn, 2-20
USIA, 2-20, 11-10
XER, 2-3
Rename buffer, definition, 6-2
Rename register operation, 6-17
Reservation station, definition, 6-2
Reserved instruction class, 2-34
Reset
HRESET signal, 7-23, 8-35
reset exception, 4-13
SRESET signal, 7-23, 8-35
Retirement, definition, 6-2
rfi, 4-11
Rotate/shift instructions, 2-40, A-19
RSRV (reserve) signd, 7-24, 8-36

S

SDR1 register, 2-5
Segment registers
SR description, 2-5
SR manipulation instructions, 2-67, A-28

INDEX

Segmented memory model, see Memory management
unit
Serializing instructions, 6-17
Shift/rotate instructions, 2-40, A-19
SIA (sampled instruction address) register, 2-20, 4-
21,11-10
Signals
AACK, 7-14
ABB, 7-5, 8-8
address arbitration, 7-4, 8-8
address transfer, 8-12
address transfer attribute, 8-13
An, 7-7
APn, 7-7
ARTRY, 7-14, 8-22
BG, 7-4,8-8
BR, 7-4,8-8
checkstop, 8-35
Cl, 7-12
CKSTP_IN, 7-22
CKSTP_OUT, 7-22
CLK_OUT, 7-29
configuration, 7-3
COPI/scan interface, 8-37
data arbitration, 8-8, 8-19
data transfer termination, 8-22
DBB, 7-16, 8-8, 8-20
DBDIS, 7-19
DBG, 7-15, 8-8
DBWO, 7-16, 8-8, 8-21, 8-37
DHn/DLn, 7-17
DPn, 7-18
DRTRY, 7-20, 8-22, 8-25
GBL, 7-13
HRESET, 7-23
INT, 7-21, 8-35
L2 cache interface signds, 7-25
L2ADDRn, 7-25
L2CE, 7-26
L2CLK_OUTA, 7-27
L2CLK_OUTB, 7-27
L2DATAN, 7-25
L2DP, 7-26
L2SYNC_IN, 7-28
L2SYNC_OUT, 7-27
L2WE, 7-27
L2zZ,7-28
MCP, 7-21
PLL_CFGn, 7-30
power and ground signals, 7-30
QACK, 7-24
QREQ, 7-24, 8-35
reset, 8-35
RSRV, 7-24, 8-36
SMI, 4-23,7-21
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SRESET, 7-23, 8-35
system quiesce control, 8-35
TA, 7-19
TBEN, 7-24
TBST, 7-12, 8-14, 8-21
TEA, 7-20, 8-22, 8-26
TLBISYNC, 7-25
transfer encoding, 7-9
TS, 7-6
TSIZn, 7-11, 8-13
TTn, 7-8, 8-13
WT, 7-13
Single-beat transfer
reads with data delays, timing, 8-30
reads, timing, 8-28
termination, 8-22
writes, timing, 8-29
SLB management instructions, A-28
SMT (system management interrupt) signal, 4-23, 7-21
Snooping, 3-25
Split-bus transaction, 8-9
SPRGn registers, 2-6
SRESET (soft reset) signal, 7-23, 8-35
SRRO/SRRL1 (status save/restore registers)
description, 2-6
exception processing, 4-7
Stage, definition, 6-2
Stall, definition, 6-3
Static branch prediction, 6-9, 6-22
stwex., 4-12
Superscalar, definition, 6-3
sync, 4-12
SYNC operation, 3-26
Synchronization
context/execution synchronization, 2-36
execution of rfi, 4-11
memory synchronization instructions, 2-59,
2-61, A-24
SYSCLK (system clock) signal, 7-29
System call exception, 4-19
System linkage instructions, 2-55, 2-65, A-26
System management interrupt, 4-22, 10-1
System quiesce control signals (QACK/QREQ), 8-35
System register unit
execution timing, 6-27
latency, CR logica instructions, 6-32
latency, system register instructions, 6-31

T

TA (transfer acknowledge) signal, 7-19

Table search flow (primary and secondary), 5-31
TBEN (time base enable) signal, 7-24

TBL/TBU (time base lower/upper) registers, 2-4, 2-6
TBST (transfer burst) signal, 7-12, 8-14, 8-21

TEA (transfer error acknowledge) signal, 7-20, 8-26
Termination, 8-17, 8-22
Thermal assist unit (TAU), 10-6
Thermal management interrupt exception, 4-24
THRMn (thermal management) registers, 2-21, 10-7
Throughput, definition, 6-3
Timing considerations, 6-7
Timing diagrams, interface
address transfer signals, 8-12
burst transfers with data delays, 8-32
L2 cache SRAM timing, 9-9
single-beat reads, 8-28
single-beat reads with data delays, 8-30
single-beat writes, 8-29
single-beat writes with data delays, 8-31
useof TEA, 8-33
using DBWO, 8-37
Timing, instruction
BPU execution timing, 6-18
branch timing example, 6-23
cache hit, 6-12
cache miss, 6-15
execution unit, 6-18
FPU execution timing, 6-24
instruction dispatch, 6-16
instruction flow, 6-8
instruction scheduling guidelines, 6-29
1U execution timing, 6-24
latency summary, 6-31
load/store unit execution timing, 6-25
overview, 6-3
SRU execution timing, 6-27
stage, definition, 6-2
TLB
description, 5-25
invalidate (tIbie instruction), 5-27, 5-34
LRU replacement, 5-27
organization for ITLB and DTLB, 5-25
TLB miss and table search operation, 5-26, 5-30
TLB invaidate
description, 5-27
TLB management instructions, 2-67, A-28
TLB miss, effect, 6-28
tibie, 2-67
TLBISYNC (TLBI sync) signal, 7-25
tibsync, 2-67
Transactions, data cache, 3-22
Transfer, 8-12, 8-21
Trap instructions, 2-55
TS (transfer start) signd, 7-6, 8-12
TSIZn (transfer size) signals, 7-11, 8-13
TTn (transfer type) signals, 7-8, 8-13
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U

UMMCRO (user monitor mode control
register 0), 2-15, 11-5
UMMCR1 (user monitor mode control
register 1), 2-16, 11-6
UPMCn (user performance monitor
counter) registers, 2-20, 11-10
Use of TEA, timing, 8-33
User instruction set architecture (UISA)
description, xxviii, 1-21
registers, 2-3
USIA (user sampled instruction address)
register, 2-20, 11-10
Using DBWO, timing, 8-37

\%
Virtual environment architecture (VEA), xxviii, 1-21

W

WIMG bits, 8-26

Write-back, definition, 6-3

Write-through mode (W bit) cache interactions, 3-6
Write-with-atomic operation, 3-26
Write-with-flush operation, 3-26

Write-with-kill operation, 3-26

WT (write-through) signal, 7-13

X
XER register, 2-3
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Attention!

This book is a companion to the PowerPC Microprocessor Family: The Programming
Environments, referred to as The Programming Environments Manual. Note that the
companion Programming Environments Manual existsin two versions. See the Preface for
adescription of the following two versions:

¢ PowerPC Microprocessor Family: The Programming Environments, Rev 1
Order #: MPCFPE/AD

* PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev 1
Order # MPCFPE32B/AD

Call the Motorola LDC at 1-800-441-2447 (website: http://Idc.nmd.com) or contact your
local sales office to obtain copies.
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