
IA-32 Intel® Architecture
Software Developer’s

Manual
Volume 2A:

Instruction Set Reference, A-M

NOTE: The IA-32 Intel Architecture Software Developer’s Manual
consists of four volumes: Basic Architecture, Order Number
253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; and the
System Programming Guide, Order Number 253668. Refer to all
four volumes when evaluating your design needs.

2004

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Improper use of reserved or undefined features or instructions may cause unpredictable behavior or
failure in developer's software code when running on an Intel processor. Intel reserves these features or instructions
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from their
unauthorized use.

The Intel® IA-32 architecture processors (e.g., Pentium® 4 and Pentium III processors) may contain design defects or
errors known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary
depending on the specific hardware and software you use. See http://www.intel.com/info/hyperthreading/ for more
information including details on which processors support HT Technology.

Intel, Intel386, Intel486, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep, OverDrive, MMX, Celeron, and Itanium
are trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997 - 2004 Intel Corporation

CONTENTS FOR VOLUME 2A AND 2B
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1. IA-32 PROCESSORS COVERED IN THIS MANUAL . 1-1
1.2. OVERVIEW OF THE IA-32 INTEL® ARCHITECTURE SOFTWARE

DEVELOPER’S MANUAL, VOLUMES 2A & 2B: INSTRUCTION SET
REFERENCE . 1-2

1.3. NOTATIONAL CONVENTIONS. 1-2
1.3.1. Bit and Byte Order .1-2
1.3.2. Reserved Bits and Software Compatibility .1-3
1.3.3. Instruction Operands .1-4
1.3.4. Hexadecimal and Binary Numbers .1-4
1.3.5. Segmented Addressing .1-5
1.3.6. Exceptions. .1-5
1.4. RELATED LITERATURE . 1-6

CHAPTER 2
INSTRUCTION FORMAT
2.1. GENERAL INSTRUCTION FORMAT . 2-1
2.2. SUMMARY OF INSTRUCTION PREFIXES. 2-2
2.3. OPCODES . 2-3
2.4. MODR/M AND SIB BYTES . 2-4
2.5. DISPLACEMENT AND IMMEDIATE BYTES. 2-4
2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB BYTES 2-5

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M
3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES 3-1
3.1.1. Instruction Format .3-1
3.1.1.1. Opcode Column .3-1
3.1.1.2. Instruction Column .3-2
3.1.1.3. Description Column .3-5
3.1.1.4. Description .3-5
3.1.2. Operation. .3-5
3.1.3. Intel® C/C++ Compiler Intrinsics Equivalents .3-9
3.1.3.1. The Intrinsics API .3-9
3.1.3.2. MMX™ Technology Intrinsics .3-9
3.1.3.3. SSE/SSE2/SSE3 Intrinsics .3-10
3.1.4. Flags Affected .3-11
3.1.5. FPU Flags Affected .3-12
3.1.6. Protected Mode Exceptions. .3-12
3.1.7. Real-Address Mode Exceptions .3-14
3.1.8. Virtual-8086 Mode Exceptions. .3-14
3.1.9. Floating-Point Exceptions .3-14
3.1.10. SIMD Floating-Point Exceptions .3-14
3.2. INSTRUCTION REFERENCE . 3-15

AAA—ASCII Adjust After Addition. .3-16
AAD—ASCII Adjust AX Before Division .3-17
AAM—ASCII Adjust AX After Multiply .3-18
Vol. 2A iii

CONTENTS

PAGE
AAS—ASCII Adjust AL After Subtraction .3-19
ADC—Add with Carry .3-20
ADD—Add. .3-22
ADDPD—Add Packed Double-Precision Floating-Point Values3-24
ADDPS—Add Packed Single-Precision Floating-Point Values3-26
ADDSD—Add Scalar Double-Precision Floating-Point Values3-28
ADDSS—Add Scalar Single-Precision Floating-Point Values.3-30
ADDSUBPD: Packed Double-FP Add/Subtract. .3-32
ADDSUBPS: Packed Single-FP Add/Subtract .3-35
AND—Logical AND .3-38
ANDPD—Bitwise Logical AND of Packed Double-Precision

Floating-Point Values. .3-40
ANDPS—Bitwise Logical AND of Packed Single-Precision

Floating-Point Values. .3-42
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision

Floating-Point Values. .3-44
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision

Floating-Point Values. .3-46
ARPL—Adjust RPL Field of Segment Selector .3-48
BOUND—Check Array Index Against Bounds .3-50
BSF—Bit Scan Forward .3-52
BSR—Bit Scan Reverse .3-54
BSWAP—Byte Swap. .3-56
BT—Bit Test .3-57
BTC—Bit Test and Complement .3-59
BTR—Bit Test and Reset .3-61
BTS—Bit Test and Set .3-63
CALL—Call Procedure .3-65
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.3-76
CDQ—Convert Double to Quad .3-77
CLC—Clear Carry Flag .3-78
CLD—Clear Direction Flag .3-79
CLFLUSH—Flush Cache Line. .3-80
CLI — Clear Interrupt Flag .3-82
CLTS—Clear Task-Switched Flag in CR0. .3-84
CMC—Complement Carry Flag. .3-85
CMOVcc—Conditional Move. .3-86
CMP—Compare Two Operands .3-89
CMPPD—Compare Packed Double-Precision Floating-Point Values.3-91
CMPPS—Compare Packed Single-Precision Floating-Point Values 3-95
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands 3-99
CMPSD—Compare Scalar Double-Precision Floating-Point Values 3-102
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-106
CMPXCHG—Compare and Exchange .3-110
CMPXCHG8B—Compare and Exchange 8 Bytes .3-112
COMISD—Compare Scalar Ordered Double-Precision Floating-Point

Values and Set EFLAGS .3-114
iv Vol. 2A

CONTENTS

PAGE
COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS . 3-117

CPUID—CPU Identification . 3-120
CVTDQ2PD—Convert Packed Doubleword Integers to Packed

Double-Precision Floating-Point Values. 3-142
CVTDQ2PS—Convert Packed Doubleword Integers to Packed

Single-Precision Floating-Point Values . 3-144
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values

to Packed Doubleword Integers . 3-146
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values

to Packed Doubleword Integers . 3-148
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values

to Packed Single-Precision Floating-Point Values 3-150
CVTPI2PD—Convert Packed Doubleword Integers to Packed

Double-Precision Floating-Point Values. 3-152
CVTPI2PS—Convert Packed Doubleword Integers to Packed

Single-Precision Floating-Point Values . 3-154
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values

to Packed Doubleword Integers . 3-156
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values

to Packed Double-Precision Floating-Point Values 3-158
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values

to Packed Doubleword Integers . 3-160
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value

to Doubleword Integer . 3-162
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value

to Scalar Single-Precision Floating-Point Value. 3-164
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision

Floating-Point Value. 3-166
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision

Floating-Point Value. 3-168
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to

Scalar Double-Precision Floating-Point Value . 3-170
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to

Doubleword Integer . 3-172
CVTTPD2PI—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-174
CVTTPD2DQ—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-176
CVTTPS2DQ—Convert with Truncation Packed Single-Precision

Floating-Point Values to Packed Doubleword Integers 3-178
CVTTPS2PI—Convert with Truncation Packed Single-Precision

Floating-Point Values to Packed Doubleword Integers 3-180
CVTTSD2SI—Convert with Truncation Scalar Double-Precision

Floating-Point Value to Signed Doubleword Integer 3-182
CVTTSS2SI—Convert with Truncation Scalar Single-Precision

Floating-Point Value to Doubleword Integer . 3-184
Vol. 2A v

CONTENTS

PAGE
CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword .3-186

CWDE—Convert Word to Doubleword .3-187
DAA—Decimal Adjust AL after Addition .3-188
DAS—Decimal Adjust AL after Subtraction. .3-190
DEC—Decrement by 1 .3-192
DIV—Unsigned Divide. .3-194
DIVPD—Divide Packed Double-Precision Floating-Point Values3-197
DIVPS—Divide Packed Single-Precision Floating-Point Values3-199
DIVSD—Divide Scalar Double-Precision Floating-Point Values3-201
DIVSS—Divide Scalar Single-Precision Floating-Point Values.3-203
EMMS—Empty MMX Technology State .3-205
ENTER—Make Stack Frame for Procedure Parameters 3-206
F2XM1—Compute 2x–1 .3-209
FABS—Absolute Value .3-211
FADD/FADDP/FIADD—Add .3-212
FBLD—Load Binary Coded Decimal .3-215
FBSTP—Store BCD Integer and Pop .3-217
FCHS—Change Sign .3-220
FCLEX/FNCLEX—Clear Exceptions .3-221
FCMOVcc—Floating-Point Conditional Move .3-223
FCOM/FCOMP/FCOMPP—Compare Floating Point Values 3-225
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values

and Set EFLAGS .3-228
FCOS—Cosine .3-231
FDECSTP—Decrement Stack-Top Pointer. .3-233
FDIV/FDIVP/FIDIV—Divide .3-234
FDIVR/FDIVRP/FIDIVR—Reverse Divide. .3-237
FFREE—Free Floating-Point Register .3-240
FICOM/FICOMP—Compare Integer .3-241
FILD—Load Integer .3-243
FINCSTP—Increment Stack-Top Pointer .3-245
FINIT/FNINIT—Initialize Floating-Point Unit .3-246
FIST/FISTP—Store Integer .3-248
FISTTP: Store Integer with Truncation .3-251
FLD—Load Floating Point Value .3-253
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant 3-255
FLDCW—Load x87 FPU Control Word .3-257
FLDENV—Load x87 FPU Environment. .3-259
FMUL/FMULP/FIMUL—Multiply .3-261
FNOP—No Operation .3-264
FPATAN—Partial Arctangent .3-265
FPREM—Partial Remainder .3-267
FPREM1—Partial Remainder .3-270
FPTAN—Partial Tangent. .3-273
FRNDINT—Round to Integer .3-275
FRSTOR—Restore x87 FPU State .3-276
vi Vol. 2A

CONTENTS

PAGE
FSAVE/FNSAVE—Store x87 FPU State . 3-278
FSCALE—Scale . 3-281
FSIN—Sine . 3-283
FSINCOS—Sine and Cosine . 3-285
FSQRT—Square Root . 3-287
FST/FSTP—Store Floating Point Value. 3-289
FSTCW/FNSTCW—Store x87 FPU Control Word . 3-292
FSTENV/FNSTENV—Store x87 FPU Environment. 3-294
FSTSW/FNSTSW—Store x87 FPU Status Word . 3-297
FSUB/FSUBP/FISUB—Subtract . 3-299
FSUBR/FSUBRP/FISUBR—Reverse Subtract . 3-302
FTST—TEST . 3-305
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point

 Values . 3-307
FWAIT—Wait . 3-310
FXAM—Examine . 3-311
FXCH—Exchange Register Contents . 3-313
FXRSTOR—Restore x87 FPU, MMX Technology, SSE, and SSE2 State . . . 3-315
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State 3-318
FXTRACT—Extract Exponent and Significand . 3-325
FYL2X—Compute y * log2x . 3-327
FYL2XP1—Compute y * log2(x +1) . 3-329
HADDPD: Packed Double-FP Horizontal Add . 3-331
HADDPS: Packed Single-FP Horizontal Add. 3-334
HLT—Halt . 3-338
HSUBPD: Packed Double-FP Horizontal Subtract . 3-339
HSUBPS: Packed Single-FP Horizontal Subtract . 3-342
IDIV—Signed Divide . 3-346
IMUL—Signed Multiply . 3-349
IN—Input from Port . 3-352
INC—Increment by 1 . 3-354
INS/INSB/INSW/INSD—Input from Port to String . 3-356
INT n/INTO/INT 3—Call to Interrupt Procedure . 3-359
INVD—Invalidate Internal Caches . 3-370
INVLPG—Invalidate TLB Entry . 3-372
IRET/IRETD—Interrupt Return . 3-373
Jcc—Jump if Condition Is Met . 3-380
JMP—Jump . 3-384
LAHF—Load Status Flags into AH Register . 3-391
LAR—Load Access Rights Byte . 3-392
LDDQU: Load Unaligned Integer 128 Bits . 3-395
LDMXCSR—Load MXCSR Register . 3-397
LDS/LES/LFS/LGS/LSS—Load Far Pointer . 3-399
LEA—Load Effective Address . 3-402
LEAVE—High Level Procedure Exit . 3-404
LES—Load Far Pointer . 3-406
LFENCE—Load Fence . 3-407
Vol. 2A vii

CONTENTS

PAGE
LFS—Load Far Pointer .3-408
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register3-409
LLDT—Load Local Descriptor Table Register. .3-411
LIDT—Load Interrupt Descriptor Table Register .3-413
LMSW—Load Machine Status Word. .3-414
LOCK—Assert LOCK# Signal Prefix .3-416
LODS/LODSB/LODSW/LODSD—Load String .3-418
LOOP/LOOPcc—Loop According to ECX Counter .3-421
LSL—Load Segment Limit. .3-423
LSS—Load Far Pointer .3-426
LTR—Load Task Register .3-427
MASKMOVDQU—Store Selected Bytes of Double Quadword3-429
MASKMOVQ—Store Selected Bytes of Quadword. .3-431
MAXPD—Return Maximum Packed Double-Precision Floating-Point

Values .3-434
MAXPS—Return Maximum Packed Single-Precision Floating-Point

Values .3-437
MAXSD—Return Maximum Scalar Double-Precision Floating-Point

Value .3-440
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value3-442
MFENCE—Memory Fence .3-444
MINPD—Return Minimum Packed Double-Precision Floating-Point Values . .3-445
MINPS—Return Minimum Packed Single-Precision Floating-Point Values . . .3-448
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value 3-451
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value3-453
MONITOR: Setup Monitor Address .3-455
MOV—Move .3-458
MOV—Move to/from Control Registers .3-462
MOV—Move to/from Debug Registers .3-464
MOVAPD—Move Aligned Packed Double-Precision Floating-Point

Values .3-466
MOVAPS—Move Aligned Packed Single-Precision Floating-Point

Values .3-468
MOVD—Move Doubleword .3-470
MOVDDUP: Move One Double-FP and Duplicate .3-473
MOVDQA—Move Aligned Double Quadword .3-476
MOVDQU—Move Unaligned Double Quadword. .3-478
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register3-480
MOVHLPS— Move Packed Single-Precision Floating-Point Values

High to Low .3-481
MOVHPD—Move High Packed Double-Precision Floating-Point Value3-482
MOVHPS—Move High Packed Single-Precision Floating-Point Values3-484
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low

to High .3-486
MOVLPD—Move Low Packed Double-Precision Floating-Point Value.3-487
MOVLPS—Move Low Packed Single-Precision Floating-Point Values 3-489
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask . .3-491
viii Vol. 2A

CONTENTS

PAGE
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask . . 3-492
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint. 3-493
MOVNTI—Store Doubleword Using Non-Temporal Hint 3-495
MOVNTPD—Store Packed Double-Precision Floating-Point Values

Using Non-Temporal Hint. 3-497
MOVNTPS—Store Packed Single-Precision Floating-Point Values

Using Non-Temporal Hint. 3-499
MOVNTQ—Store of Quadword Using Non-Temporal Hint 3-501
MOVSHDUP: Move Packed Single-FP High and Duplicate 3-503
MOVSLDUP: Move Packed Single-FP Low and Duplicate 3-506
MOVQ—Move Quadword . 3-509
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register 3-511
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String 3-512
MOVSD—Move Scalar Double-Precision Floating-Point Value 3-515
MOVSS—Move Scalar Single-Precision Floating-Point Values 3-517
MOVSX—Move with Sign-Extension . 3-519
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point

Values . 3-520
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point

Values . 3-522
MOVZX—Move with Zero-Extend . 3-524
MUL—Unsigned Multiply . 3-525
MULPD—Multiply Packed Double-Precision Floating-Point Values 3-527
MULPS—Multiply Packed Single-Precision Floating-Point Values 3-529
MULSD—Multiply Scalar Double-Precision Floating-Point Values 3-531
MULSS—Multiply Scalar Single-Precision Floating-Point Values 3-533
MWAIT: Monitor Wait. 3-535

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

NEG—Two's Complement Negation . 4-1
NOP—No Operation . 4-3
NOT—One's Complement Negation . 4-4
OR—Logical Inclusive OR . 4-6
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values 4-8
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values. 4-10
OUT—Output to Port . 4-12
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port 4-14
PACKSSWB/PACKSSDW—Pack with Signed Saturation 4-17
PACKUSWB—Pack with Unsigned Saturation . 4-21
PADDB/PADDW/PADDD—Add Packed Integers . 4-24
PADDQ—Add Packed Quadword Integers . 4-27
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation . . . 4-29
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned

Saturation. 4-32
PAND—Logical AND . 4-35
PANDN—Logical AND NOT . 4-37
Vol. 2A ix

CONTENTS

PAGE
PAUSE—Spin Loop Hint .4-39
PAVGB/PAVGW—Average Packed Integers .4-40
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal4-43
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers

for Greater Than .4-47
PEXTRW—Extract Word. .4-51
PINSRW—Insert Word .4-53
PMADDWD—Multiply and Add Packed Integers .4-55
PMAXSW—Maximum of Packed Signed Word Integers 4-58
PMAXUB—Maximum of Packed Unsigned Byte Integers.4-61
PMINSW—Minimum of Packed Signed Word Integers.4-64
PMINUB—Minimum of Packed Unsigned Byte Integers4-67
PMOVMSKB—Move Byte Mask .4-70
PMULHUW—Multiply Packed Unsigned Integers and Store High Result4-72
PMULHW—Multiply Packed Signed Integers and Store High Result4-75
PMULLW—Multiply Packed Signed Integers and Store Low Result.4-78
PMULUDQ—Multiply Packed Unsigned Doubleword Integers4-81
POP—Pop a Value from the Stack .4-83
POPA/POPAD—Pop All General-Purpose Registers .4-88
POPF/POPFD—Pop Stack into EFLAGS Register .4-90
POR—Bitwise Logical OR .4-93
PREFETCHh—Prefetch Data Into Caches .4-95
PSADBW—Compute Sum of Absolute Differences .4-97
PSHUFD—Shuffle Packed Doublewords .4-100
PSHUFHW—Shuffle Packed High Words. .4-102
PSHUFLW—Shuffle Packed Low Words .4-104
PSHUFW—Shuffle Packed Words .4-106
PSLLDQ—Shift Double Quadword Left Logical .4-108
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical4-109
PSRAW/PSRAD—Shift Packed Data Right Arithmetic4-113
PSRLDQ—Shift Double Quadword Right Logical .4-117
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical4-118
PSUBB/PSUBW/PSUBD—Subtract Packed Integers.4-122
PSUBQ—Subtract Packed Quadword Integers .4-125
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed

Saturation. .4-127
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with

Unsigned Saturation .4-130
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—

Unpack High Data .4-133
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—

Unpack Low Data. .4-137
PUSH—Push Word or Doubleword Onto the Stack .4-141
PUSHA/PUSHAD—Push All General-Purpose Registers.4-144
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack4-146
PXOR—Logical Exclusive OR. .4-148
RCL/RCR/ROL/ROR-—Rotate .4-150
x Vol. 2A

CONTENTS

PAGE
RCPPS—Compute Reciprocals of Packed Single-Precision
Floating-Point Values . 4-154

RCPSS—Compute Reciprocal of Scalar Single-Precision
Floating-Point Values . 4-156

RDMSR—Read from Model Specific Register. 4-158
RDPMC—Read Performance-Monitoring Counters . 4-159
RDTSC—Read Time-Stamp Counter . 4-162
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix 4-164
RET—Return from Procedure . 4-167
ROL/ROR—Rotate . 4-173
RSM—Resume from System Management Mode. 4-174
RSQRTPS—Compute Reciprocals of Square Roots of Packed

Single-Precision Floating-Point Values . 4-175
RSQRTSS—Compute Reciprocal of Square Root of Scalar

Single-Precision Floating-Point Value . 4-177
SAHF—Store AH into Flags. 4-179
SAL/SAR/SHL/SHR—Shift . 4-180
SBB—Integer Subtraction with Borrow . 4-184
SCAS/SCASB/SCASW/SCASD—Scan String . 4-186
SETcc—Set Byte on Condition . 4-189
SFENCE—Store Fence . 4-191
SGDT—Store Global Descriptor Table Register . 4-192
SHL/SHR—Shift Instructions . 4-194
SHLD—Double Precision Shift Left . 4-195
SHRD—Double Precision Shift Right . 4-197
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values. 4-199
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values 4-201
SIDT—Store Interrupt Descriptor Table Register . 4-204
SLDT—Store Local Descriptor Table Register . 4-206
SMSW—Store Machine Status Word . 4-208
SQRTPD—Compute Square Roots of Packed Double-Precision

Floating-Point Values . 4-210
SQRTPS—Compute Square Roots of Packed Single-Precision

Floating-Point Values . 4-212
SQRTSD—Compute Square Root of Scalar Double-Precision

Floating-Point Value. 4-214
SQRTSS—Compute Square Root of Scalar Single-Precision

Floating-Point Value. 4-216
STC—Set Carry Flag . 4-218
STD—Set Direction Flag . 4-219
STI—Set Interrupt Flag . 4-220
STMXCSR—Store MXCSR Register State . 4-223
STOS/STOSB/STOSW/STOSD—Store String . 4-225
STR—Store Task Register . 4-228
SUB—Subtract. 4-229
SUBPD—Subtract Packed Double-Precision Floating-Point Values 4-231
SUBPS—Subtract Packed Single-Precision Floating-Point Values. 4-233
Vol. 2A xi

CONTENTS

PAGE
SUBSD—Subtract Scalar Double-Precision Floating-Point Values 4-235
SUBSS—Subtract Scalar Single-Precision Floating-Point Values 4-237
SYSENTER—Fast System Call .4-239
SYSEXIT—Fast Return from Fast System Call. .4-243
TEST—Logical Compare. .4-246
UCOMISD—Unordered Compare Scalar Double-Precision

Floating-Point Values and Set EFLAGS .4-248
UCOMISS—Unordered Compare Scalar Single-Precision

Floating-Point Values and Set EFLAGS .4-251
UD2—Undefined Instruction .4-254
UNPCKHPD—Unpack and Interleave High Packed Double-Precision

Floating-Point Values. .4-255
UNPCKHPS—Unpack and Interleave High Packed Single-Precision

Floating-Point Values. .4-257
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision

Floating-Point Values. .4-259
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision

Floating-Point Values .4-261
VERR, VERW—Verify a Segment for Reading or Writing.4-263
WAIT/FWAIT—Wait. .4-265
WBINVD—Write Back and Invalidate Cache .4-266
WRMSR—Write to Model Specific Register .4-268
XADD—Exchange and Add. .4-270
XCHG—Exchange Register/Memory with Register .4-272
XLAT/XLATB—Table Look-up Translation .4-274
XOR—Logical Exclusive OR .4-276
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point

Values .4-278
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point

Values .4-280

APPENDIX A
OPCODE MAP
A.1. NOTES ON USING OPCODE TABLES. A-1
A.2. KEY TO ABBREVIATIONS . A-1
A.2.1. Codes for Addressing Method. A-2
A.2.2. Codes for Operand Type. A-3
A.2.3. Register Codes . A-3
A.3. OPCODE LOOK-UP EXAMPLES . A-4
A.3.1. One-Byte Opcode Instructions . A-4
A.3.2. Two-Byte Opcode Instructions . A-5
A.3.3. Opcode Map Notes . A-6
A.3.4. Opcode Extensions For One- And Two-byte Opcodes A-13
A.3.5. Escape Opcode Instructions . A-14
A.3.5.1. Opcodes with ModR/M Bytes in the 00H through BFH Range. A-15
A.3.5.2. Opcodes with ModR/M Bytes outside the 00H through BFH Range A-15
A.3.5.3. Escape Opcodes with D8 as First Byte . A-15
A.3.5.4. Escape Opcodes with D9 as First Byte . A-17
A.3.5.5. Escape Opcodes with DA as First Byte . A-18
xii Vol. 2A

CONTENTS

PAGE
A.3.5.6. Escape Opcodes with DB as First Byte . A-19
A.3.5.7. Escape Opcodes with DC as First Byte . A-20
A.3.5.8. Escape Opcodes with DD as First Byte . A-21
A.3.5.9. Escape Opcodes with DE as First Byte . A-22
A.3.5.10. Escape Opcodes with DF As First Byte . A-23

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1. MACHINE INSTRUCTION FORMAT . B-1
B.1.1. Reg Field (reg) . B-2
B.1.2. Encoding of Operand Size Bit (w) . B-3
B.1.3. Sign Extend (s) Bit . B-3
B.1.4. Segment Register Field (sreg) . B-4
B.1.5. Special-Purpose Register (eee) Field . B-4
B.1.6. Condition Test Field (tttn) . B-5
B.1.7. Direction (d) Bit . B-5
B.1.8. Other Notes . B-6
B.2. GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS B-6
B.3. PENTIUM FAMILY INSTRUCTION FORMATS AND ENCODINGS B-19
B.4. MMX INSTRUCTION FORMATS AND ENCODINGS . B-20
B.4.1. Granularity Field (gg) . B-20
B.4.2. MMX Technology and General-Purpose Register Fields (mmxreg

and reg) . B-20
B.4.3. MMX Instruction Formats and Encodings Table . B-20
B.5. P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS B-24
B.6. SSE INSTRUCTION FORMATS AND ENCODINGS. B-25
B.7. SSE2 INSTRUCTION FORMATS AND ENCODINGS. B-33
B.7.1. Granularity Field (gg) . B-33
B.7.2. SSE3 Formats and Encodings Table. B-46
B.8. FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS. B-48

APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.1. SIMPLE INTRINSICS . C-3
C.2. COMPOSITE INTRINSICS. C-32
Vol. 2A xiii

CONTENTS

PAGE
xiv Vol. 2A

FIGURES
PAGE
Figure 1-1. Bit and Byte Order .1-3
Figure 2-1. IA-32 Instruction Format .2-1
Figure 3-1. Bit Offset for BIT[EAX,21] .3-8
Figure 3-2. Memory Bit Indexing. .3-8
Figure 3-3. ADDSUBPD: Packed Double-FP Add/Subtract .3-32
Figure 3-4. ADDSUBPS: Packed Single-FP Add/Subtract .3-35
Figure 3-5. Version Information Returned by CPUID in EAX .3-125
Figure 3-6. Extended Feature Information Returned in the ECX Register3-127
Figure 3-7. Feature Information Returned in the EDX Register 3-128
Figure 3-8. Determination of Support for the Processor Brand String 3-135
Figure 3-9. Algorithm for Extracting Maximum Processor Frequency.3-137
Figure 3-10. HADDPD: Packed Double-FP Horizontal Add .3-331
Figure 3-11. HADDPS: Packed Single-FP Horizontal Add .3-335
Figure 3-12. HSUBPD: Packed Double-FP Horizontal Subtract .3-339
Figure 3-13. HSUBPS: Packed Single-FP Horizontal Subtract. .3-343
Figure 3-14. MOVDDUP: Move One Double-FP and Duplicate .3-473
Figure 3-15. MOVSHDUP: Move Packed Single-FP High and Duplicate3-503
Figure 3-16. MOVSLDUP: Move Packed Single-FP Low and Duplicate 3-506
Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands..4-17
Figure 4-2. PMADDWD Execution Model Using 64-bit Operands 4-55
Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands . . .4-72
Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands4-78
Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands.4-98
Figure 4-6. PSHUFD Instruction Operation. .4-100
Figure 4-7. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit

Operand .4-109
Figure 4-8. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand4-113
Figure 4-9. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit

Operand .4-118
Figure 4-10. PUNPCKHBW Instruction Operation Using 64-bit Operands4-133
Figure 4-11. PUNPCKLBW Instruction Operation Using 64-bit Operands4-137
Figure 4-12. SHUFPD Shuffle Operation .4-199
Figure 4-13. SHUFPS Shuffle Operation .4-201
Figure 4-14. UNPCKHPD Instruction High Unpack and Interleave Operation4-255
Figure 4-15. UNPCKHPS Instruction High Unpack and Interleave Operation 4-257
Figure 4-16. UNPCKLPD Instruction Low Unpack and Interleave Operation4-259
Figure 4-17. UNPCKLPS Instruction Low Unpack and Interleave Operation4-261
Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3). A-13
Figure B-1. General Machine Instruction Format . B-1
Vol. 2A xv

TABLE OF FIGURES

PAGE
xvi Vol. 2A

TABLES
PAGE
Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte .2-6
Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte .2-7
Table 2-3. 32-Bit Addressing Forms with the SIB Byte .2-8
Table 3-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature. . . .3-2
Table 3-2. IA-32 General Exceptions. .3-13
Table 3-3. x87 FPU Floating-Point Exceptions .3-14
Table 3-4. SIMD Floating-Point Exceptions .3-15
Table 3-5. Decision Table for CLI Results .3-82
Table 3-6. Comparison Predicate for CMPPD and CMPPS Instructions.3-91
Table 3-7. Pseudo-Op and CMPPD Implementation .3-92
Table 3-8. Pseudo-Ops and CMPPS. .3-96
Table 3-9. Pseudo-Ops and CMPSD. .3-103
Table 3-10. Pseudo-Ops and CMPSS. .3-107
Table 3-11. Information Returned by CPUID Instruction .3-121
Table 3-12. Highest CPUID Source Operand for IA-32 Processors 3-123
Table 3-13. Processor Type Field .3-125
Table 3-14. More on Extended Feature Information Returned in the ECX Register3-127
Table 3-15. More on Feature Information Returned in the EDX Register3-128
Table 3-16. Encoding of Cache and TLB Descriptors .3-132
Table 3-17. Processor Brand String Returned with Pentium 4 Processor3-135
Table 3-18. Mapping of Brand Indices and IA-32 Processor Brand Strings 3-138
Table 3-19. DIV Action. .3-194
Table 3-20. Results Obtained from F2XM1 .3-209
Table 3-21. Results Obtained from FABS .3-211
Table 3-22. FADD/FADDP/FIADD Results .3-213
Table 3-23. FBSTP Results .3-217
Table 3-24. FCHS Results .3-220
Table 3-25. FCOM/FCOMP/FCOMPP Results .3-225
Table 3-26. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results .3-228
Table 3-27. FCOS Results. .3-231
Table 3-28. FDIV/FDIVP/FIDIV Results. .3-235
Table 3-29. FDIVR/FDIVRP/FIDIVR Results .3-238
Table 3-30. FICOM/FICOMP Results .3-241
Table 3-31. FIST/FISTP Results .3-248
Table 3-32. FISTTP Results .3-251
Table 3-33. FMUL/FMULP/FIMUL Results .3-262
Table 3-34. FPATAN Results. .3-265
Table 3-35. FPREM Results .3-267
Table 3-36. FPREM1 Results .3-270
Table 3-37. FPTAN Results .3-273
Table 3-38. FSCALE Results. .3-281
Table 3-39. FSIN Results. .3-283
Table 3-40. FSINCOS Results. .3-285
Table 3-41. FSQRT Results. .3-287
Table 3-42. FSUB/FSUBP/FISUB Results. .3-300
Table 3-43. FSUBR/FSUBRP/FISUBR Results. .3-303
Table 3-44. FTST Results .3-305
Table 3-45. FUCOM/FUCOMP/FUCOMPP Results .3-307
Table 3-46. FXAM Results. .3-311
Vol. 2A xvii

TABLE OF TABLES

PAGE
Table 3-47. Layout of FXSAVE and FXRSTOR Memory Region 3-319
Table 3-48. Recreating FSAVE Format .3-323
Table 3-49. FYL2X Results .3-327
Table 3-50. FYL2XP1 Results .3-329
Table 3-51. IDIV Results .3-346
Table 3-52. Decision Table .3-360
Table 3-53. Segment and Gate Types. .3-393
Table 3-54. Address and Operand Size Attributes .3-402
Table 3-55. Segment and Gate Descriptor Types .3-424
Table 3-56. MUL Results .3-525
Table 4-1. Repeat Prefixes .4-165
Table 4-2. Decision Table for STI Results .4-221
Table 4-3. MSRs Used By the SYSENTER and SYSEXIT Instructions 4-239
Table A-1. Notes on Instruction Encoding in Opcode Map Tables. A-6
Table A-2. One-byte Opcode Map† †† . A-7
Table A-3. Two-byte Opcode Map (First Byte is 0FH) . A-9
Table A-4. Opcode Extensions for One- and Two-byte Opcodes

by Group Number . A-13
Table A-5. D8 Opcode Map When ModR/M Byte is Within 00H to BFH1 A-15
Table A-6. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-16
Table A-7. D9 Opcode Map When ModR/M Byte is Within 00H to BFH1. A-17
Table A-8. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-17
Table A-9. DA Opcode Map When ModR/M Byte is Within 00H to BFH1 A-18
Table A-10. DA Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-18
Table A-11. DB Opcode Map When ModR/M Byte is Within 00H to BFH1 A-19
Table A-12. DB Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-19
Table A-13. DC Opcode Map When ModR/M Byte is Within 00H to BFH1 A-20
Table A-14. DC Opcode Map When ModR/M Byte is Outside 00H to BFH4. A-20
Table A-15. DD Opcode Map When ModR/M Byte is Within 00H to BFH1 A-21
Table A-16. DD Opcode Map When ModR/M Byte is Outside 00H to BFH1. A-21
Table A-17. DE Opcode Map When ModR/M Byte is Within 00H to BFH1 A-22
Table A-18. DE Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-22
Table A-19. DF Opcode Map When ModR/M Byte is Within 00H to BFH1 A-23
Table A-20. DF Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-23
Table B-1. Special Fields Within Instruction Encodings . B-2
Table B-2. Encoding of reg Field When w Field is Not Present in Instruction B-2
Table B-3. Encoding of reg Field When w Field is Present in Instruction. B-3
Table B-4. Encoding of Operand Size (w) Bit. B-3
Table B-5. Encoding of Sign-Extend (s) Bit . B-3
Table B-6. Encoding of the Segment Register (sreg) Field . B-4
Table B-7. Encoding of Special-Purpose Register (eee) Field. B-4
Table B-8. Encoding of Conditional Test (tttn) Field. B-5
Table B-9. Encoding of Operation Direction (d) Bit . B-6
Table B-10. Notes on Instruction Encoding . B-6
Table B-11. General Purpose Instruction Formats and Encodings B-6
Table B-12. Pentium Family Instruction Formats and Encodings B-19
Table B-13. Encoding of Granularity of Data Field (gg) . B-20
Table B-14. MMX Instruction Formats and Encodings. B-20
Table B-15. Formats and Encodings of P6 Family Instructions . B-24
Table B-16. Formats and Encodings of SSE Floating-Point Instructions B-25
Table B-17. Formats and Encodings of SSE Integer Instructions B-31
xviii Vol. 2A

TABLE OF TABLES

PAGE
Table B-18. Format and Encoding of SSE Cacheability and Memory Ordering
Instructions . B-32

Table B-19. Encoding of Granularity of Data Field (gg) . B-33
Table B-20. Formats and Encodings of SSE2 Floating-Point Instructions B-33
Table B-21. Formats and Encodings of SSE2 Integer Instructions B-40
Table B-22. Format and Encoding of SSE2 Cacheability Instructions B-45
Table B-23. Formats and Encodings of SSE3 Floating-Point Instructions B-46
Table B-24. Formats and Encodings for SSE3 Event Management Instructions B-47
Table B-25. Formats and Encodings for SSE3 Integer and Move Instructions B-47
Table B-26. General Floating-Point Instruction Formats . B-48
Table B-27. Floating-Point Instruction Formats and Encodings . B-49
Table C-1. Simple Intrinsics . C-3
Table C-2. Composite Intrinsics . C-32
Vol. 2A xix

TABLE OF TABLES

PAGE
xx Vol. 2A

1

About This Manual

CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volumes 2A & 2B: Instruction Set
Reference (Order Numbers 253666 and 253667) are part of a set that describes the architecture
and programming environment of all IA-32 Intel Architecture processors. Other volumes in this
set are:

• The IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 253665).

• The IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Programing
Guide (Order Number 253668).

The IA-32 Intel Architecture Software Developer’s Manual, Volume 1 describes the basic archi-
tecture and programming environment of an IA-32 processor. The IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volumes 2A & 2B describe the instructions set of the processor and
the opcode structure. These volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The IA-32 Intel Architecture
Software Developer’s Manual, Volume 3 describes the operating-system support environment
of an IA-32 processor and IA-32 processor compatibility information. This volume is aimed at
operating-system and BIOS designers.

1.1. IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual includes information pertaining primarily to the most recent IA-32 processors,
which include the Pentium® processors, the P6 family processors, the Pentium 4 processors, the
Intel® Xeon™ processors, and the Pentium M processors. The P6 family processors are those
IA-32 processors based on the P6 family microarchitecture, which include the Pentium Pro,
Pentium II, and Pentium III processors. The Pentium 4 and Intel Xeon processors are based on
the Intel NetBurst® microarchitecture.
Vol. 2A 1-1

ABOUT THIS MANUAL
1.2. OVERVIEW OF THE IA-32 INTEL® ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUMES 2A & 2B:
INSTRUCTION SET REFERENCE

A description of IA-32 Intel Architecture Software Developer’s Manual, Volumes 2A & 2B
content follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all
IA-32 instructions and gives the allowable encodings of prefixes, the operand-identifier byte
(ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement and
immediate bytes.

Chapter 3 — Instruction Set Reference, A-M. Describes IA-32 instructions in detail,
including an algorithmic description of operations, the effect on flags, the effect of operand- and
address-size attributes, and the exceptions that may be generated. The instructions are arranged
in alphabetical order. General-purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3
extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, N-Z. This chapter continues the description of IA-32
instructions started in Chapter 3. It provides the balance of the alphabetized list of instructions
and starts IA-32 Intel Architecture Software Developer’s Manual, Volume 2B.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form
of each IA-32 instruction.

Appendix C — Intel C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel
C/C++ compiler intrinsics and their assembly code equivalents for each of the IA-32 MMX and
SSE/SSE2/SSE3 instructions.

1.3. NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.3.1. Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. IA-32 proces-
1-2 Vol. 2A

ABOUT THIS MANUAL
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

1.3.2. Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE
Avoid any software dependence upon the state of reserved bits in IA-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28
24
20
16
12
8
4
0 Address

Byte Offset
Vol. 2A 1-3

ABOUT THIS MANUAL
1.3.3. Instruction Operands
When instructions are represented symbolically, a subset of the IA-32 assembly language is
used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.3.4. Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.
1-4 Vol. 2A

ABOUT THIS MANUAL
1.3.5. Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes in memory. The range of memory that can be addressed is called an
address space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:
Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:
DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions
An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.
#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.
#GP(0)
Vol. 2A 1-5

ABOUT THIS MANUAL
1.4. RELATED LITERATURE
Literature related to IA-32 processors is listed on-line at this link:

http://developer.intel.com/design/processor/

Some of the documents listed at this web site can be viewed on-line; others can be ordered. The
literature available is listed by Intel processor and then by the following literature types: appli-
cations notes, data sheets, manuals, papers, and specification updates.

See also:

• The data sheet for a particular Intel IA-32 processor

• The specification update for a particular Intel IA-32 processor

• AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618

• IA-32 Intel® Architecture Optimization Reference Manual, Order Number 248966
1-6 Vol. 2A

2

Instruction Format

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all IA-32 processors.

2.1. GENERAL INSTRUCTION FORMAT
All IA-32 instruction encodings are subsets of the format shown in Figure 2-1. Instructions
consist of optional instruction prefixes (in any order), primary opcode bytes of up to three
opcode bytes, an addressing-form specifier (if required) consisting of the ModR/M byte and
sometimes the SIB (Scale-Index-Base) byte, a displacement (if required), and an immediate data
field (if required).

Figure 2-1. IA-32 Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of

1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4

bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Up to four
prefixes of

1 byte each
(optional)
Vol. 2A 2-1

INSTRUCTION FORMAT
2.2. SUMMARY OF INSTRUCTION PREFIXES
The instruction prefixes are divided into four groups, each with a set of allowable prefix codes.
For each instruction, one prefix may be used from each of four groups (Groups 1, 2, 3, 4) and
be placed in any order.

NOTE
Developers must not rely on the absence or characteristics of any features or
instructions marked reserved or undefined. Improper use of reserved features
may cause code to exhibit unpredictable behavior or fail when the code is
running on an Intel processor.

• Group 1

— Lock and repeat prefixes:

• F0H—LOCK

• F2H—REPNE/REPNZ (used only with string instructions; when used with the
escape opcode 0FH, this prefix is treated as a mandatory prefix for some SIMD
instructions)

• F3H—REP or REPE/REPZ (used only with string instructions; when used with
the escape opcode 0FH, this prefix is treated as an mandatory prefix for some
SIMD instructions)

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved)

• 36H—SS segment override prefix (use with any branch instruction is reserved)

• 3EH—DS segment override prefix (use with any branch instruction is reserved)

• 26H—ES segment override prefix (use with any branch instruction is reserved)

• 64H—FS segment override prefix (use with any branch instruction is reserved)

• 65H—GS segment override prefix (use with any branch instruction is reserved)

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions)

• 3EH—Branch taken (used only with Jcc instructions)

• Group 3

• 66H—Operand-size override prefix (when used with the escape opcode 0FH, this
is treated as a mandatory prefix for some SIMD instructions)
2-2 Vol. 2A

INSTRUCTION FORMAT
• Group 4

• 67H—Address-size override prefix

The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a
multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, Instruc-
tion Set Reference, A-M for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use
these prefixes only with string instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and
OUTS). Their use, followed by 0FH, is treated as a mandatory prefix by a number of
SSE/SSE2/SSE3 instructions. Use of repeat prefixes and/or undefined opcodes with other IA-32
instructions is reserved; such use may cause unpredictable behavior.

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most
likely code path for a branch. Use these prefixes only with conditional branch instructions (Jcc).
Other use of branch hint prefixes and/or other undefined opcodes with IA-32 instructions is
reserved; such use may cause unpredictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit operand
sizes. Either size can be the default; use of the prefix selects the non-default size. Use of 66H
followed by 0FH is treated as a mandatory prefix by some SSE/SSE2/SSE3 instructions. Other
use of the 66H prefix with MMX/SSE/SSE2/SSE3 instructions is reserved; such use may cause
unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and 32-bit
addressing. Either size can be the default; the prefix selects the non-default size. Using this
prefix and/or other undefined opcodes when operands for the instruction do not reside in
memory is reserved; such use may cause unpredictable behavior.

2.3. OPCODES
A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes
encoded in the ModR/M byte. Smaller fields can be defined within the primary opcode. Such
fields define the direction of operation, size of displacements, register encoding, condition
codes, or sign extension. The encoding fields used by an opcode vary depending on the class of
operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of:

• An escape opcode byte 0FH as the primary opcode and a second opcode byte

• A mandatory prefix (66FH, F2H, F3H), an escape opcode byte, and a second opcode byte

For example, CVTDQ2PD consists of the following byte sequence: F3 OF E6. The first byte of
this expression is a mandatory prefix for SSE/SSE2/SSE3 instructions. It is not considered as a
repeat prefix. Note that all three byte opcodes are reserved.

The ModR/M byte consists of three bit fields (see Section 2.4.). In addition to the reg field being
treated as an extended opcode field for some instructions, some patterns of the other two bit
Vol. 2A 2-3

INSTRUCTION FORMAT
fields in the ModR/M byte may also be used to express opcode information. Using undefined
expression of the primary opcode bytes, and/or undefined expression in the opcode extension
field in the ModR/M byte, and/or undefined expression in other bit fields of the ModR/M byte
is reserved. Valid opcode expressions are defined in Appendix A and Appendix B. Use of any
of reserved opcode expression can cause unpredictable behavior.

2.4. MODR/M AND SIB BYTES
Many instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three
fields of information:

• The mod field combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

• The reg/opcode field specifies either a register number or three more bits of opcode infor-
mation. The purpose of the reg/opcode field is specified in the primary opcode.

• The r/m field can specify a register as an operand or it can be combined with the mod field
to encode an addressing mode. Sometimes, certain combinations of the mod field and the
r/m field is used to express opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The
base-plus-index and scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB
byte includes the following fields:

• The scale field specifies the scale factor.

• The index field specifies the register number of the index register.

• The base field specifies the register number of the base register.

See Section 2.6., “Addressing-Mode Encoding of ModR/M and SIB Bytes” for the encodings
of the ModR/M and SIB bytes.

2.5. DISPLACEMENT AND IMMEDIATE BYTES
Some addressing forms include a displacement immediately following the ModR/M byte (or the
SIB byte if one is present). If a displacement is required, it can require 1, 2, or 4 bytes.

If the instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2 or 4 bytes.
2-4 Vol. 2A

INSTRUCTION FORMAT
2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB
BYTES

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shown in
Table 2-1 through Table 2-3. The 16-bit addressing forms specified by the ModR/M byte are in
Table 2-1, 32-bit addressing forms are in Table 2-2. Table 2-3 shows the 32-bit addressing forms
specified by the SIB byte. In cases where the reg/opcode field in the ModR/M byte represents
an extended opcode, valid instruction encodings are shown in Appendix B.

In Table 2-1 and Table 2-2, the first column (labeled “Effective Address”) lists 32 effective
addresses that can be assigned to one operand of an instruction by using the Mod and R/M fields
of the ModR/M byte. The first 24 effective addresses provide ways of specifying a memory
location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX tech-
nology, and XMM registers. For example, the first register-encoding (Mod = 11B, R/M = 000B)
indicates general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM
register XMM0. The register used is determined by the opcode byte and the operand-size
attribute. These may select either the EAX register (32 bits) or AX register (16 bits).

The second and third columns in Table 2-1 and 2-2 gives the binary encodings of the Mod and
R/M fields in the ModR/M byte, respectively, required to obtain the associated effective address
listed in the first column. All 32 possible combinations of the Mod and R/M fields are listed.

Across the top of Table 2-1 and 2-2, the eight possible values of the 3-bit Reg/Opcode field are
listed, in decimal (sixth row from top) and in binary (seventh row from top). The seventh row is
labeled “REG =”, which represents the use of these 3 bits to give the location of a second
operand, which must be a general-purpose, MMX technology, or XMM register. If the instruc-
tion does not require a second operand to be specified, then the 3 bits of the Reg/Opcode field
may be used as an extension of the opcode, which is represented by the sixth row, labeled “/digit
(Opcode)”. The five rows above give the byte, word, and doubleword general-purpose registers,
the MMX technology registers, and the XMM registers that correspond to the register numbers,
with the same assignments as for the R/M field when Mod field encoding is 11B. As with the
R/M field register options, which of the five possible registers is used is determined by the
opcode byte along with the operand-size attribute.

The body of Table 2-1 and 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”)
contains a 32 by 8 array giving all of the 256 values of the ModR/M byte, in hexadecimal. Bits
3, 4 and 5 are specified by the column of the table in which a byte resides. The row specifies bits
0, 1 and 2; also bits 6 and 7.
Vol. 2A 2-5

INSTRUCTION FORMAT
NOTES:
1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-

tive addresses.
2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added

to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-

extended and added to the index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
2-6 Vol. 2A

INSTRUCTION FORMAT
NOTES:
1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if

one is present) and that is added to the index.
3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if

one is present) and that is sign-extended and added to the index.

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1
disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
Vol. 2A 2-7

INSTRUCTION FORMAT
Table 2-3 is organized similarly to Tables 2-1 and 2-2, except that its body gives the 256 possible
values of the SIB byte, in hexadecimal. Which of the eight general-purpose registers will be used
as base is indicated across the top of the table, along with the corresponding values of the base
field (bits 0, 1 and 2) in decimal and binary. The rows indicate which register is used as the index
(determined by bits 3, 4 and 5) along with the scaling factor (determined by bits 6 and 7).

NOTE:
1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or

disp32 + [EBP]. This provides the following address modes:
MOD bits Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
Base =
Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
2-8 Vol. 2A

3

Instruction Set
Reference, A-M

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the IA-32 instruction set, including the general-purpose, x87 FPU, MMX,
SSE/SSE2/SSE3, and system instructions. The descriptions in this chapter are arranged in alpha-
betical order (A-M). This discussion is continued in Chapter 4 for the balance of the IA-32
instruction set (N-Z). See also Chapter 4, IA-32 Intel Architecture Software Developer’s Manual,
Volume 2B.

For each instruction, the forms are given for each operand combination, including the opcode,
operands required, and a description. Also given for each instruction are a description of the
instruction and its operands, an operational description, a description of the effect of the instruc-
tions on flags in the EFLAGS register, and a summary of the exceptions that can be generated.

3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES
This section describes the information contained in the various sections of the instruction refer-
ence pages that make up the majority of this chapter. It also explains the notational conventions
and abbreviations used in these sections.

3.1.1. Instruction Format
The following is an example of the format used for each IA-32 instruction description in this
chapter. Each heading is followed by a usage description.

CMC—Complement Carry Flag [this is an example with usage
description]

3.1.1.1. OPCODE COLUMN

The “Opcode” column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear
in memory. Definitions of entries other than hexadecimal bytes are as follows:

• /digit—A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

Opcode Instruction Description
F5 CMC Complement carry flag
Vol. 2A 3-1

INSTRUCTION SET REFERENCE, A-M
• /r—Indicates that the ModR/M byte of the instruction contains both a register operand and
an r/m operand.

• cb, cw, cd, cp—A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code segment
register.

• ib, iw, id—A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if
the operand is a signed value. All words and doublewords are given with the low-order
byte first.

• +rb, +rw, +rd—A register code, from 0 through 7, added to the hexadecimal byte given
at the left of the plus sign to form a single opcode byte. The register codes are given in
Table 3-1.

• +i—A number used in floating-point instructions when one of the operands is ST(i) from
the FPU register stack. The number i (which can range from 0 to 7) is added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.

3.1.1.2. INSTRUCTION COLUMN

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

• rel8—A relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

• rel16 and rel32—A relative address within the same code segment as the instruction
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16
bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.

• ptr16:16 and ptr16:32—A far pointer, typically in a code segment different from that of
the instruction. The notation 16:16 indicates that the value of the pointer has two parts. The

Table 3-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature
rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7
3-2 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset within the destination segment.
The ptr16:16 symbol is used when the instruction's operand-size attribute is 16 bits; the
ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8—One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16—One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32—One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP,
EBP, ESI, or EDI.

• imm8—An immediate byte value. The imm8 symbol is a signed number between –128
and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or doubleword.
The upper byte of the word is filled with the topmost bit of the immediate value.

• imm16—An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32—An immediate doubleword value used for instructions whose operand-
size attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
–2,147,483,648 inclusive.

• r/m8—A byte operand that is either the contents of a byte general-purpose register (AL,
BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

• r/m16—A word general-purpose register or memory operand used for instructions whose
operand-size attribute is 16 bits. The word general-purpose registers are: AX, BX, CX,
DX, SP, BP, SI, and DI. The contents of memory are found at the address provided by the
effective address computation.

• r/m32—A doubleword general-purpose register or memory operand used for instructions
whose operand-size attribute is 32 bits. The doubleword general-purpose registers are:
EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The contents of memory are found at
the address provided by the effective address computation.

• m—A 16- or 32-bit operand in memory.

• m8—A byte operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions and the XLAT instruction.

• m16—A word operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions.

• m32—A doubleword operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with
the string instructions.

• m64—A memory quadword operand in memory. This nomenclature is used only with the
CMPXCHG8B instruction.
Vol. 2A 3-3

INSTRUCTION SET REFERENCE, A-M
• m128—A memory double quadword operand in memory. This nomenclature is used only
with the SSE/SSE2/SSE3 instructions.

• m16:16, m16:32—A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

• m16&32, m16&16, m32&32—A memory operand consisting of data item pairs whose
sizes are indicated on the left and the right side of the ampersand. All memory addressing
modes are allowed. The m16&16 and m32&32 operands are used by the BOUND
instruction to provide an operand containing an upper and lower bounds for array indices.
The m16&32 operand is used by LIDT and LGDT to provide a word with which to load
the limit field, and a doubleword with which to load the base field of the corresponding
GDTR and IDTR registers.

• moffs8, moffs16, moffs32—A simple memory variable (memory offset) of type byte,
word, or doubleword used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte is used in the
instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

• Sreg—A segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

• m32fp, m64fp, m80fp—A single-precision, double-precision, and double extended-
precision (respectively) floating-point operand in memory. These symbols designate
floating-point values that are used as operands for x87 FPU floating-point instructions.

• m16int, m32int, m64int—A word, doubleword, and quadword integer (respectively)
operand in memory. These symbols designate integers that are used as operands for x87
FPU integer instructions.

• ST or ST(0)—The top element of the FPU register stack.

• ST(i)—The ith element from the top of the FPU register stack. (i ← 0 through 7)

• mm—An MMX technology register. The 64-bit MMX technology registers are: MM0
through MM7.

• mm/m32—The low order 32 bits of an MMX technology register or a 32-bit memory
operand. The 64-bit MMX technology registers are: MM0 through MM7. The contents of
memory are found at the address provided by the effective address computation.

• mm/m64—An MMX technology register or a 64-bit memory operand. The 64-bit MMX
technology registers are: MM0 through MM7. The contents of memory are found at the
address provided by the effective address computation.

• xmm—An XMM register. The 128-bit XMM registers are: XMM0 through XMM7.

• xmm/m32—An XMM register or a 32-bit memory operand. The 128-bit XMM registers
are XMM0 through XMM7. The contents of memory are found at the address provided by
the effective address computation.
3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
• xmm/m64—An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-
point registers are XMM0 through XMM7. The contents of memory are found at the
address provided by the effective address computation.

• xmm/m128—An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMM0 through XMM7. The contents of memory are found at the address
provided by the effective address computation.

3.1.1.3. DESCRIPTION COLUMN

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following “Description” and “Operation” sections contain more
details of the instruction's operation.

3.1.1.4. DESCRIPTION

The “Description” section describes the purpose of the instructions and the required operands.
It also discusses the effect of the instruction on flags.

3.1.2. Operation
The “Operation” section contains an algorithmic description (written in pseudo-code) of the
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The algo-
rithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for an if
statement, DO and OD for a do statement, or CASE ... OF and ESAC for a case statement.

• A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative address
is in register DI. [SI] indicates the contents of the address contained in register SI relative
to the SI register’s default segment (DS) or overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates
that an offset is read from the SI register if the current address-size attribute is 16 or is read
from the ESI register if the address-size attribute is 32.

• Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
contents of the source operand is a segment-relative offset.

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, ≠, ≥, and ≤ are relational operators used to compare two values, meaning
equal, not equal, greater or equal, and less or equal, respectively. A relational expression
such as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE.
Vol. 2A 3-5

INSTRUCTION SET REFERENCE, A-M
• The expression “<< COUNT” and “>> COUNT” indicates that the destination operand
should be shifted left or right, respectively, by the number of bits indicated by the count
operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize—The OperandSize identifier represents the operand-size
attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier
represents the address-size attribute, which is either 16 or 32 bits. For example, the
following pseudo-code indicates that the operand-size attribute depends on the form of the
CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize ← 16;
ELSE

IF instruction = CMPSD
THEN OperandSize ← 32;

FI;
FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1, for general guidelines on how these
attributes are determined.

• StackAddrSize—Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for Stack” in
Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1).

• SRC—Represents the source operand.

• DEST—Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value)—Returns a value zero-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of
–10 converts the byte from F6H to a doubleword value of 000000F6H. If the value passed
to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

• SignExtend(value)—Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte
containing the value –10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute
are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte—Converts a signed 16-bit value to a signed 8-bit
value. If the signed 16-bit value is less than –128, it is represented by the saturated value –
128 (80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord—Converts a signed 32-bit value to a signed 16-
bit value. If the signed 32-bit value is less than –32768, it is represented by the saturated
3-6 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
value –32768 (8000H); if it is greater than 32767, it is represented by the saturated value
32767 (7FFFH).

• SaturateSignedWordToUnsignedByte—Converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero, it is represented by the saturated
value zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

• SaturateToSignedByte—Represents the result of an operation as a signed 8-bit value. If
the result is less than –128, it is represented by the saturated value –128 (80H); if it is
greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord—Represents the result of an operation as a signed 16-bit value.
If the result is less than –32768, it is represented by the saturated value –32768 (8000H); if
it is greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte—Represents the result of an operation as a signed 8-bit value.
If the result is less than zero, it is represented by the saturated value zero (00H); if it is
greater than 255, it is represented by the saturated value 255 (FFH).

• SaturateToUnsignedWord—Represents the result of an operation as a signed 16-bit
value. If the result is less than zero, it is represented by the saturated value zero (00H); if it
is greater than 65535, it is represented by the saturated value 65535 (FFFFH).

• RoundTowardsZero()—Returns the operand rounded towards zero to the nearest integral
value.

• LowOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and
stores the most significant word of the doubleword result in the destination operand.

• Push(value)—Pushes a value onto the stack. The number of bytes pushed is determined by
the operand-size attribute of the instruction. See the “Operation” section in “PUSH—Push
Word or Doubleword Onto the Stack” in Chapter 4 for more information on the push
operation.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ←
Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return either a
word or a doubleword depending on the operand-size attribute. See the “Operation”
section in Chapter 4, “POP—Pop a Value from the Stack” for more information on the pop
operation.

• PopRegisterStack—Marks the FPU ST(0) register as empty and increments the FPU
register stack pointer (TOP) by 1.

• Switch-Tasks—Performs a task switch.

• Bit(BitBase, BitOffset)—Returns the value of a bit within a bit string, which is a sequence
of bits in memory or a register. Bits are numbered from low-order to high-order within
registers and within memory bytes. If the base operand is a register, the offset can be in the
Vol. 2A 3-7

INSTRUCTION SET REFERENCE, A-M
range 0..31. This offset addresses a bit within the indicated register. An example, the
function Bit [EAX, 21] is illustrated in Figure 3-1.

If BitBase is a memory address, BitOffset can range from –2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset
DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD
returns a positive number. This operation is illustrated in Figure 3-2.

Figure 3-1. Bit Offset for BIT[EAX,21]

Figure 3-2. Memory Bit Indexing

02131

BitOffset ← 21

BitBase + 1

0777 5 0 0

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset ←

BitOffset ← −

BitBase − 1BitBase
3-8 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
3.1.3. Intel® C/C++ Compiler Intrinsics Equivalents
The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions that allow
using the syntax of C function calls and C variables instead of hardware registers. Using these
intrinsics frees programmers from having to manage registers and assembly programming.
Further, the compiler optimizes the instruction scheduling so that executable run faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD floating-
point intrinsics. Each intrinsic equivalent is listed with the instruction description. There may be
additional intrinsics that do not have an instruction equivalent. It is strongly recommended that
the reader reference the compiler documentation for the complete list of supported intrinsics.

Please refer to the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD
Extensions 2 (Order Number 718195-2001). See Appendix C, Intel C/C++ Compiler Intrinsics
and Functional Equivalents for more information on using intrinsics.

3.1.3.1. THE INTRINSICS API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrinsics is
that you can use the syntax of C function calls and C variables instead of hardware registers.
This frees you from managing registers and programming assembly. Further, the compiler opti-
mizes the instruction scheduling so that your executable runs faster. For each computational and
data manipulation instruction in the new instruction set, there is a corresponding C intrinsic that
implements it directly. The intrinsics allow you to specify the underlying implementation
(instruction selection) of an algorithm yet leave instruction scheduling and register allocation to
the compiler.

3.1.3.2. MMX™ TECHNOLOGY INTRINSICS

The MMX technology intrinsics are based on a __m64 data type that represents the specific
contents of an MMX technology register. You can specify values in bytes, short integers, 32-bit
values, or a 64-bit object. The __m64 data type, however, is not a basic ANSI C data type, and
therefore you must observe the following usage restrictions:

• Use __m64 data only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (“+”, “>>”, and so on).

• Use __m64 objects in aggregates, such as unions to access the byte elements and
structures; the address of an __m64 object may be taken.

• Use __m64 data only with the MMX technology intrinsics described in this manual and the
Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD Extensions 2
(Order Number 718195-2001). Refer to Appendix C, Intel C/C++ Compiler Intrinsics and
Functional Equivalents for more information on using intrinsics.
Vol. 2A 3-9

INSTRUCTION SET REFERENCE, A-M
3.1.3.3. SSE/SSE2/SSE3 INTRINSICS

SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium III, Pentium 4, and
Intel Xeon processors. There are three data types supported by these intrinsics: __m128,
__m128d, and __m128i.

• The __m128 data type is used to represent the contents of an XMM register used by an
SSE intrinsic. This is either four packed single-precision floating-point values or a scalar
single-precision floating-point value.

• The __m128d data type holds two packed double-precision floating-point values or a
scalar double-precision floating-point value.

• The __m128i data type can hold sixteen byte, eight word, or four doubleword, or two
quadword integer values.

The compiler aligns __m128, __m128d, and __m128i local and global data to 16-byte bound-
aries on the stack. To align integer, float, or double arrays, you can use the declspec statement
as described in the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD
Extensions 2 (Order Number 718195-2001).

The __m128, __m128d, and __m128i data types are not basic ANSI C data types and therefore
some restrictions are placed on its usage:

• Use __m128, __m128d, and __m128i only on the left-hand side of an assignment, as a
return value, or as a parameter. Do not use it in other arithmetic expressions such as “+”
and “>>.”

• Do not initialize __m128, __m128d, and __m128i with literals; there is no way to express
128-bit constants.

• Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for example,
to access the float elements) and structures. The address of these objects may be taken.

• Use __m128, __m128d, and __m128i data only with the intrinsics described in this user’s
guide. Refer to Appendix C, Intel C/C++ Compiler Intrinsics and Functional Equivalents
for more information on using intrinsics.

The compiler aligns __m128, __m128d, and __m128i local data to 16-byte boundaries on the
stack. Global __m128 data is also aligned on 16-byte boundaries. (To align float arrays, you can
use the alignment declspec described in the following section.) Because the new instruction set
treats the SIMD floating-point registers in the same way whether you are using packed or scalar
data, there is no __m32 data type to represent scalar data as you might expect. For scalar oper-
ations, you should use the __m128 objects and the “scalar” forms of the intrinsics; the compiler
and the processor implement these operations with 32-bit memory references.
3-10 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
The suffixes ps and ss are used to denote “packed single” and “scalar single” precision opera-
tions. The packed floats are represented in right-to-left order, with the lowest word (right-most)
being used for scalar operations: [z, y, x, w]. To explain how memory storage reflects this,
consider the following example.

The operation
float a[4] ← { 1.0, 2.0, 3.0, 4.0 };
__m128 t ← _mm_load_ps(a);

produces the same result as follows:
__m128 t ← _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words,

t ← [4.0, 3.0, 2.0, 1.0]

where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to implement
them. You should be familiar with the hardware features provided by the SSE, SSE2, SSE3, and
MMX technology when writing programs with the intrinsics.

Keep the following important issues in mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported
by the instruction set. While these intrinsics are convenient programming aids, be mindful
of their implementation cost.

• Data loaded or stored as __m128 objects must generally be 16-byte-aligned.

• Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number) arguments is
undefined. Therefore, floating-point operations using NaN arguments may not match the
expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to its usage,
refer to the Intel C/C++ Compiler User’s Guide With Support for the Streaming SIMD Exten-
sions 2 (Order Number 718195-2001). Refer to Appendix C, Intel C/C++ Compiler Intrinsics
and Functional Equivalents for more information on using intrinsics.

3.1.4. Flags Affected
The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic
and logical instructions usually assign values to the status flags in a uniform manner (see
Appendix A, EFLAGS Cross-Reference, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1). Non-conventional assignments are described in the “Operation” section.
The values of flags listed as undefined may be changed by the instruction in an indeterminate
manner. Flags that are not listed are unchanged by the instruction.
Vol. 2A 3-11

INSTRUCTION SET REFERENCE, A-M
3.1.5. FPU Flags Affected
The floating-point instructions have an “FPU Flags Affected” section that describes how each
instruction can affect the four condition code flags of the FPU status word.

3.1.6. Protected Mode Exceptions
The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruc-
tion is executed in protected mode and the reasons for the exceptions. Each exception is given
a mnemonic that consists of a pound sign (#) followed by two letters and an optional error code
in parentheses. For example, #GP(0) denotes a general protection exception with an error code
of 0. Table 3-2 associates each two-letter mnemonic with the corresponding interrupt vector
number and exception name. See Chapter 5, Interrupt and Exception Handling, in the IA-32
Intel Architecture Software Developer’s Manual, Volume 3, for a detailed description of the
exceptions.

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.
3-12 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
NOTE:
* In the real-address mode, vector 13 is the segment overrun exception.

Table 3-2. IA-32 General Exceptions

Vector
No. Name Source

Protected
Mode

Real
Address

Mode

Virtual
8086
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND Range
Exceeded

BOUND instruction. Yes Yes Yes

 6 #UD—Invalid Opcode
(Undefined Opcode)

UD2 instruction or reserved
opcode.

Yes Yes Yes

 7 #NM—Device Not
Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes

 8 #DF—Double Fault Any instruction that can
generate an exception, an NMI,
or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not
Present

Loading segment registers or
accessing system segments.

Yes Reserved Yes

12 #SS—Stack Segment
Fault

Stack operations and SS
register loads.

Yes Yes Yes

13 #GP—General
Protection*

Any memory reference and
other protection checks.

Yes Yes Yes

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point
Error (Math Fault)

Floating-point or WAIT/FWAIT
instruction.

Yes Yes Yes

17 #AC—Alignment
Check

Any data reference in memory. Yes Reserved Yes

18 #MC—Machine
Check

Model dependent machine
check errors.

Yes Yes Yes

19 #XF—SIMD Floating-
Point Numeric Error

SSE/SSE2/SSE3 floating-point
instructions.

Yes Yes Yes
Vol. 2A 3-13

INSTRUCTION SET REFERENCE, A-M
3.1.7. Real-Address Mode Exceptions
The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in real-address mode (see Table 3-2).

3.1.8. Virtual-8086 Mode Exceptions
The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in virtual-8086 mode (see Table 3-2).

3.1.9. Floating-Point Exceptions
The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU
floating-point instruction is executed. All of these exception conditions result in a floating-point
error exception (#MF, vector number 16) being generated. Table 3-3 associates a one- or two-
letter mnemonic with the corresponding exception name. See “Floating-Point Exception Condi-
tions” in Chapter 8 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for
a detailed description of these exceptions.

3.1.10. SIMD Floating-Point Exceptions
The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception conditions result
in an SIMD floating-point error exception (#XF, vector number 19) being generated. Table 3-4
associates a one-letter mnemonic with the corresponding exception name. For a detailed descrip-
tion of these exceptions, refer to ”SSE and SSE2 Exceptions”, in Chapter 11 of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1.

Table 3-3. x87 FPU Floating-Point Exceptions
Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- x87 FPU stack overflow or underflow
- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result (precision) Inexact result (precision)
3-14 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
3.2. INSTRUCTION REFERENCE
The remainder of this chapter provides detailed descriptions of IA-32 instruction.

Table 3-4. SIMD Floating-Point Exceptions
Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
Vol. 2A 3-15

INSTRUCTION SET REFERENCE, A-M
AAA—ASCII Adjust After Addition

Description
Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA instruction
is only useful when it follows an ADD instruction that adds (binary addition) two unpacked
BCD values and stores a byte result in the AL register. The AAA instruction then adjusts the
contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF
flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH register
is unchanged. In either case, bits 4 through 7 of the AL register are set to 0.

Operation
IF ((AL AND 0FH) > 9) OR (AF = 1)

THEN
AL ← AL + 6;
AH ← AH + 1;
AF ← 1;
CF ← 1;

ELSE
AF ← 0;
CF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected
The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are
set to 0. The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
37 AAA ASCII adjust AL after addition
3-16 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
AAD—ASCII Adjust AX Before Division

Description
Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-
significant digit in the AH register) so that a division operation performed on the result will yield
a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted value in the AX register by an unpacked
BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the
AH register to 00H. The value in the AX register is then equal to the binary equivalent of the
original unpacked two-digit (base 10) number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any
number base (see the “Operation” section below), by setting the imm8 byte to the selected
number base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The
AAD mnemonic is interpreted by all assemblers to mean adjust ASCII (base 10) values. To
adjust values in another number base, the instruction must be hand coded in machine code (D5
imm8).

Operation
tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic *)
AH ← 0

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected
The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the
OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
D5 0A AAD ASCII adjust AX before division
D5 ib (No mnemonic) Adjust AX before division to number base imm8
Vol. 2A 3-17

INSTRUCTION SET REFERENCE, A-M
AAM—ASCII Adjust AX After Multiply

Description
Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked
(base 10) BCD values. The AX register is the implied source and destination operand for this
instruction. The AAM instruction is only useful when it follows an MUL instruction that multi-
plies (binary multiplication) two unpacked BCD values and stores a word result in the AX
register. The AAM instruction then adjusts the contents of the AX register to contain the correct
2-digit unpacked (base 10) BCD result.

The generalized version of this instruction allows adjustment of the contents of the AX to create
two unpacked digits of any number base (see the “Operation” section below). Here, the imm8
byte is set to the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH
for base 12 numbers). The AAM mnemonic is interpreted by all assemblers to mean adjust to
ASCII (base 10) values. To adjust to values in another number base, the instruction must be hand
coded in machine code (D4 imm8).

Operation
tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL ← tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected
The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The
OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)
None with the default immediate value of 0AH. If, however, an immediate value of 0 is used, it
will cause a #DE (divide error) exception.

Opcode Instruction Description
D4 0A AAM ASCII adjust AX after multiply
D4 ib (No mnemonic) Adjust AX after multiply to number base imm8
3-18 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
AAS—ASCII Adjust AL After Subtraction

Description
Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD
result. The AL register is the implied source and destination operand for this instruction. The
AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtrac-
tion) one unpacked BCD value from another and stores a byte result in the AL register. The
AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH
register is unchanged. In either case, the AL register is left with its top nibble set to 0.

Operation
IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN

AL ← AL – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;

ELSE
CF ← 0;
AF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected
The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are set to 0. The
OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
3F AAS ASCII adjust AL after subtraction
Vol. 2A 3-19

INSTRUCTION SET REFERENCE, A-M
ADC—Add with Carry

Description
Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The state of the
CF flag represents a carry from a previous addition. When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which
an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

DEST ← DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Opcode Instruction Description
14 ib ADC AL,imm8 Add with carry imm8 to AL
15 iw ADC AX,imm16 Add with carry imm16 to AX
15 id ADC EAX,imm32 Add with carry imm32 to EAX
80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8
81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16
81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32
83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16
83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32
10 /r ADC r/m8,r8 Add with carry byte register to r/m8
11 /r ADC r/m16,r16 Add with carry r16 to r/m16
11 /r ADC r/m32,r32 Add with CF r32 to r/m32
12 /r ADC r8,r/m8 Add with carry r/m8 to byte register
13 /r ADC r16,r/m16 Add with carry r/m16 to r16
13 /r ADC r32,r/m32 Add with CF r/m32 to r32
3-20 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-21

INSTRUCTION SET REFERENCE, A-M
ADD—Add

Description
Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, a register, or a memory location. (However,
two memory operands cannot be used in one instruction.) When an immediate value is used as
an operand, it is sign-extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate a carry (overflow) in the
signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST ← DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Opcode Instruction Description
04 ib ADD AL,imm8 Add imm8 to AL
05 iw ADD AX,imm16 Add imm16 to AX
05 id ADD EAX,imm32 Add imm32 to EAX
80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8
81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16
81 /0 id ADD r/m32,imm32 Add imm32 to r/m32
83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16
83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32
00 /r ADD r/m8,r8 Add r8 to r/m8
01 /r ADD r/m16,r16 Add r16 to r/m16
01 /r ADD r/m32,r32 Add r32 to r/m32
02 /r ADD r8,r/m8 Add r/m8 to r8
03 /r ADD r16,r/m16 Add r/m16 to r16
03 /r ADD r32,r/m32 Add r/m32 to r32
3-22 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-23

INSTRUCTION SET REFERENCE, A-M
ADDPD—Add Packed Double-Precision Floating-Point Values

Description
Performs an SIMD add of the two packed double-precision floating-point values from the source
operand (second operand) and the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source operand can be an
XMM register or a 128-bit memory location. The destination operand is an XMM register. See
Figure 11-3 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illus-
tration of an SIMD double-precision floating-point operation.

Operation

DEST[63-0] ← DEST[63-0] + SRC[63-0];
DEST[127-64] ← DEST[127-64] + SRC[127-64];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPD __m128d _mm_add_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

Opcode Instruction Description
66 0F 58 /r ADDPD xmm1, xmm2/m128 Add packed double-precision floating-point values

from xmm2/m128 to xmm1.
3-24 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.
Vol. 2A 3-25

INSTRUCTION SET REFERENCE, A-M
ADDPS—Add Packed Single-Precision Floating-Point Values

Description
Performs an SIMD add of the four packed single-precision floating-point values from the source
operand (second operand) and the destination operand (first operand), and stores the packed
single-precision floating-point results in the destination operand. The source operand can be an
XMM register or a 128-bit memory location. The destination operand is an XMM register. See
Figure 10-5 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illus-
tration of an SIMD single-precision floating-point operation.

Operation
DEST[31-0] ← DEST[31-0] + SRC[31-0];
DEST[63-32] ← DEST[63-32] + SRC[63-32];
DEST[95-64] ← DEST[95-64] + SRC[95-64];
DEST[127-96] ← DEST[127-96] + SRC[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

Opcode Instruction Description
0F 58 /r ADDPS xmm1, xmm2/m128 Add packed single-precision floating-point values from

xmm2/m128 to xmm1.
3-26 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.
Vol. 2A 3-27

INSTRUCTION SET REFERENCE, A-M
ADDSD—Add Scalar Double-Precision Floating-Point Values

Description
Adds the low double-precision floating-point values from the source operand (second operand)
and the destination operand (first operand), and stores the double-precision floating-point result
in the destination operand. The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The high quadword of the destination
operand remains unchanged. See Figure 11-4 in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1 for an illustration of a scalar double-precision floating-point opera-
tion.

Operation
DEST[63-0] ← DEST[63-0] + SRC[63-0];
* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
ADDSD __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Opcode Instruction Description
F2 0F 58 /r ADDSD xmm1, xmm2/m64 Add the low double-precision floating-point value from

xmm2/m64 to xmm1.
3-28 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-29

INSTRUCTION SET REFERENCE, A-M
ADDSS—Add Scalar Single-Precision Floating-Point Values

Description
Adds the low single-precision floating-point values from the source operand (second operand)
and the destination operand (first operand), and stores the single-precision floating-point result
in the destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order doublewords of the
destination operand remain unchanged. See Figure 10-6 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1 for an illustration of a scalar single-precision floating-point
operation.

Operation
DEST[31-0] ← DEST[31-0] + SRC[31-0];
* DEST[127-32] remain unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Opcode Instruction Description
F3 0F 58 /r ADDSS xmm1, xmm2/m32 Add the low single-precision floating-point value from

xmm2/m32 to xmm1.
3-30 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-31

INSTRUCTION SET REFERENCE, A-M
ADDSUBPD: Packed Double-FP Add/Subtract

Description
Adds the double-precision floating-point values in the high quadword of the source and desti-
nation operands and stores the result in the high quadword of the destination operand.

Subtracts the double-precision floating-point value in the low quadword of the source operand
from the low quadword of the destination operand and stores the result in the low quadword of
the destination operand. See

Operation
xmm1[63-0] = xmm1[63-0] - xmm2/m128[63-0];
xmm1[127-64] = xmm1[127-64] + xmm2/m128[127-64];

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

Exceptions
When the source operand is a memory operand, it must be aligned on a 16-byte boundary or a
general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Opcode Instruction Description
66,0F,D0,/r ADDSUBPD xmm1, xmm2/m128 Add/Subtract packed DP FP numbers from

xmm2/m128 to xmm1.

Figure 3-3. ADDSUBPD: Packed Double-FP Add/Subtract

[127-64]

xmm1[127-64] + xmm2/m128[127-64] xmm1[63-0] - xmm2/m128[63-0]

[63-0]

[127-64] [63-0]

ADDSUBPD xmm1, xmm2/m128

RESULT:
xmm1

xmm2/m128
3-32 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0);

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.
Vol. 2A 3-33

INSTRUCTION SET REFERENCE, A-M
#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-34 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
ADDSUBPS: Packed Single-FP Add/Subtract

Description
Adds odd-numbered single-precision floating-point values of the source operand (second
operand) with the corresponding single-precision floating-point values from the destination
operand (first operand); stores the result in the odd-numbered values of the destination operand.

Subtracts the even-numbered single-precision floating-point values in the source operand from
the corresponding single-precision floating values in the destination operand; stores the result
into the even-numbered values of the destination operand. See Figure 3-4.

Operation
xmm1[31-0] = xmm1[31-0] - xmm2/m128[31-0];
xmm1[63-32] = xmm1[63-32] + xmm2/m128[63-32];
xmm1[95-64] = xmm1[95-64] - xmm2/m128[95-64];
xmm1[127-96] = xmm1[127-96] + xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

Opcode Instruction Description
F2,0F,D0,/r ADDSUBPS xmm1, xmm2/m128 Add/Subtract packed SP FP numbers from

xmm2/m128 to xmm1.

Figure 3-4. ADDSUBPS: Packed Single-FP Add/Subtract

OM15992

ADDSUBPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

xmm1[31-0] -
xmm2/m128[31-0]

[31-0]

xmm1[63-32] +
xmm2/m128[63-32]

[63-32]

xmm1[95-64] - xmm2/
m128[95-64]

[95-64]

xmm1[127-96] +
xmm2/m128[127-96]

[127-96]

[127-96] [95-64] [63-32] [31-0]
Vol. 2A 3-35

INSTRUCTION SET REFERENCE, A-M
Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).
3-36 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
Vol. 2A 3-37

INSTRUCTION SET REFERENCE, A-M
AND—Logical AND

Description
Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit of the result is set to
1 if both corresponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomically.

Operation
DEST ← DEST AND SRC;

Flags Affected
The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description
24 ib AND AL,imm8 AL AND imm8
25 iw AND AX,imm16 AX AND imm16
25 id AND EAX,imm32 EAX AND imm32
80 /4 ib AND r/m8,imm8 r/m8 AND imm8
81 /4 iw AND r/m16,imm16 r/m16 AND imm16
81 /4 id AND r/m32,imm32 r/m32 AND imm32
83 /4 ib AND r/m16,imm8 r/m16 AND imm8 (sign-extended)
83 /4 ib AND r/m32,imm8 r/m32 AND imm8 (sign-extended)
20 /r AND r/m8,r8 r/m8 AND r8
21 /r AND r/m16,r16 r/m16 AND r16
21 /r AND r/m32,r32 r/m32 AND r32
22 /r AND r8,r/m8 r8 AND r/m8
23 /r AND r16,r/m16 r16 AND r/m16
23 /r AND r32,r/m32 r32 AND r/m32
3-38 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-39

INSTRUCTION SET REFERENCE, A-M
ANDPD—Bitwise Logical AND of Packed Double-Precision
Floating-Point Values

Description
Performs a bitwise logical AND of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

Operation
DEST[127-0] ← DEST[127-0] BitwiseAND SRC[127-0];

Intel C/C++ Compiler Intrinsic Equivalent
ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction Description
66 0F 54 /r ANDPD xmm1, xmm2/m128 Bitwise logical AND of xmm2/m128 and xmm1.
3-40 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-41

INSTRUCTION SET REFERENCE, A-M
ANDPS—Bitwise Logical AND of Packed Single-Precision
Floating-Point Values

Description
Performs a bitwise logical AND of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

Operation
DEST[127-0] ← DEST[127-0] BitwiseAND SRC[127-0];

Intel C/C++ Compiler Intrinsic Equivalent
ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction Description
0F 54 /r ANDPS xmm1, xmm2/m128 Bitwise logical AND of xmm2/m128 and xmm1.
3-42 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-43

INSTRUCTION SET REFERENCE, A-M
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Description
Inverts the bits of the two packed double-precision floating-point values in the destination
operand (first operand), performs a bitwise logical AND of the two packed double-precision
floating-point values in the source operand (second operand) and the temporary inverted result,
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

Operation
DEST[127-0] ← (NOT(DEST[127-0])) BitwiseAND (SRC[127-0]);

Intel C/C++ Compiler Intrinsic Equivalent
ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction Description
66 0F 55 /r ANDNPD xmm1, xmm2/m128 Bitwise logical AND NOT of xmm2/m128 and xmm1.
3-44 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-45

INSTRUCTION SET REFERENCE, A-M
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

Description
Inverts the bits of the four packed single-precision floating-point values in the destination
operand (first operand), performs a bitwise logical AND of the four packed single-precision
floating-point values in the source operand (second operand) and the temporary inverted result,
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

Operation
DEST[127-0] ← (NOT(DEST[127-0])) BitwiseAND (SRC[127-0]);

Intel C/C++ Compiler Intrinsic Equivalent
ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

A If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

Opcode Instruction Description
0F 55 /r ANDNPS xmm1, xmm2/m128 Bitwise logical AND NOT of xmm2/m128 and xmm1.
3-46 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-47

INSTRUCTION SET REFERENCE, A-M
ARPL—Adjust RPL Field of Segment Selector

Description
Compares the RPL fields of two segment selectors. The first operand (the destination operand)
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand
is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the desti-
nation operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared
and no change is made to the destination operand. (The destination operand can be a word
register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also
be used by applications). It is generally used to adjust the RPL of a segment selector that has
been passed to the operating system by an application program to match the privilege level of
the application program. Here the segment selector passed to the operating system is placed in
the destination operand and segment selector for the application program’s code segment is
placed in the source operand. (The RPL field in the source operand represents the privilege level
of the application program.) Execution of the ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower (does not have a higher privilege)
than the privilege level of the application program (the segment selector for the application
program’s code segment can be read from the stack following a procedure call).

See “Checking Caller Access Privileges” in Chapter 4 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information about the use of this instruction.

Operation
IF DEST[RPL) < SRC[RPL)
THEN

ZF ← 1;
DEST[RPL) ← SRC[RPL);

ELSE
ZF ← 0;

FI;

Flags Affected
The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

Opcode Instruction Description
63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16
3-48 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.
Vol. 2A 3-49

INSTRUCTION SET REFERENCE, A-M
BOUND—Check Array Index Against Bounds

Description
Determines if the first operand (array index) is within the bounds of an array specified the
second operand (bounds operand). The array index is a signed integer located in a register. The
bounds operand is a memory location that contains a pair of signed doubleword-integers (when
the operand-size attribute is 32) or a pair of signed word-integers (when the operand-size
attribute is 16). The first doubleword (or word) is the lower bound of the array and the second
doubleword (or word) is the upper bound of the array. The array index must be greater than or
equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes.
If the index is not within bounds, a BOUND range exceeded exception (#BR) is signaled. When
this exception is generated, the saved return instruction pointer points to the BOUND
instruction.

The bounds limit data structure (two words or doublewords containing the lower and upper
limits of the array) is usually placed just before the array itself, making the limits addressable
via a constant offset from the beginning of the array. Because the address of the array already
will be present in a register, this practice avoids extra bus cycles to obtain the effective address
of the array bounds.

Operation
IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound)

(* Below lower bound or above upper bound *)
THEN

#BR;
FI;

Flags Affected
None.

Protected Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description
62 /r BOUND r16, m16&16 Check if r16 (array index) is within bounds specified by

m16&16
62 /r BOUND r32, m32&32 Check if r32 (array index) is within bounds specified by

m32&32
3-50 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-51

INSTRUCTION SET REFERENCE, A-M
BSF—Bit Scan Forward

Description
Searches the source operand (second operand) for the least significant set bit (1 bit). If a least
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the content of the source
operand is 0, the content of the destination operand is undefined.

Operation
IF SRC = 0

THEN
ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;
FI;

Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description
0F BC BSF r16,r/m16 Bit scan forward on r/m16
0F BC BSF r32,r/m32 Bit scan forward on r/m32
3-52 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-53

INSTRUCTION SET REFERENCE, A-M
BSR—Bit Scan Reverse

Description
Searches the source operand (second operand) for the most significant set bit (1 bit). If a most
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the content source operand is
0, the content of the destination operand is undefined.

Operation
IF SRC = 0

THEN
ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp − 1;
DEST ← temp;

OD;
FI;

Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description
0F BD BSR r16,r/m16 Bit scan reverse on r/m16
0F BD BSR r32,r/m32 Bit scan reverse on r/m32
3-54 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-55

INSTRUCTION SET REFERENCE, A-M
BSWAP—Byte Swap

Description
Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped with bits
24 through 31, and bits 8 through 15 are swapped with bits 16 through 23. This instruction is
provided for converting little-endian values to big-endian format and vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP
instruction references a 16-bit register, the result is undefined.

IA-32 Architecture Compatibility
The BSWAP instruction is not supported on IA-32 processors earlier than the Intel486
processor family. For compatibility with this instruction, include functionally equivalent
code for execution on Intel processors earlier than the Intel486 processor family.

Operation
TEMP ← DEST
DEST[7..0] ← TEMP(31..24]
DEST[15..8] ← TEMP(23..16]
DEST[23..16] ← TEMP(15..8]
DEST[31..24] ← TEMP(7..0]

Flags Affected
None.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.
3-56 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
BT—Bit Test

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand) and stores the value of the bit in
the CF flag. The bit base operand can be a register or a memory location; the bit offset operand
can be a register or an immediate value. If the bit base operand specifies a register, the instruc-
tion takes the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively (see Figure 3-1). If the bit
base operand specifies a memory location, it represents the address of the byte in memory that
contains the bit base (bit 0 of the specified byte) of the bit string (see Figure 3-2). The offset
operand then selects a bit position within the range −231 to 231 − 1 for a register offset and 0 to
31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-
order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are
stored in the immediate bit offset field, and the high-order bits are shifted and combined with
the byte displacement in the addressing mode by the assembler. The processor will ignore the
high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory
address for a 32-bit operand size, using by the following relationship:
Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this rela-
tionship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When
using this bit addressing mechanism, software should avoid referencing areas of memory close
to address space holes. In particular, it should avoid references to memory-mapped I/O registers.
Instead, software should use the MOV instructions to load from or store to these addresses, and
use the register form of these instructions to manipulate the data.

Operation
CF ← Bit(BitBase, BitOffset)

Opcode Instruction Description
0F A3 BT r/m16,r16 Store selected bit in CF flag
0F A3 BT r/m32,r32 Store selected bit in CF flag
0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag
0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag
Vol. 2A 3-57

INSTRUCTION SET REFERENCE, A-M
Flags Affected
The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-58 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
BTC—Bit Test and Complement

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and complements the selected bit in the bit string. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 3-1). If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string (see Figure 3-2). The offset operand then selects a bit position within the
range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected
The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description
0F BB BTC r/m16,r16 Store selected bit in CF flag and complement
0F BB BTC r/m32,r32 Store selected bit in CF flag and complement
0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement
0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement
Vol. 2A 3-59

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-60 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
BTR—Bit Test and Reset

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and clears the selected bit in the bit string to 0. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 3-1). If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string (see Figure 3-2). The offset operand then selects a bit position within the
range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 0;

Flags Affected
The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and
PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description
0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear
0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear
0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear
0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear
Vol. 2A 3-61

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-62 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
BTS—Bit Test and Set

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or
a memory location; the bit offset operand can be a register or an immediate value. If the bit base
operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the register
size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register,
respectively (see Figure 3-1). If the bit base operand specifies a memory location, it represents
the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the
bit string (see Figure 3-2). The offset operand then selects a bit position within the range −231 to
231 − 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 1;

Flags Affected
The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF
flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description
0F AB BTS r/m16,r16 Store selected bit in CF flag and set
0F AB BTS r/m32,r32 Store selected bit in CF flag and set
0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set
0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set
Vol. 2A 3-63

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-64 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CALL—Call Procedure

Description
Saves procedure linking information on the stack and branches to the procedure (called proce-
dure) specified with the destination (target) operand. The target operand specifies the address of
the first instruction in the called procedure. This operand can be an immediate value, a general-
purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call — A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

• Far call — A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call — A far call to a procedure in a segment at a different
privilege level than that of the currently executing program or procedure.

• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See the section titled “Calling Procedures Using Call and RET” in Chapter 6 of
the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for additional information
on near, far, and inter-privilege-level calls. See Chapter 6, Task Management, in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 3, for information on performing task
switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register
(which contains the offset of the instruction following the CALL instruction) onto the stack (for
use later as a return-instruction pointer). The processor then branches to the address in the
current code segment specified with the target operand. The target operand specifies either an
absolute offset in the code segment (that is an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in
the EIP register, which points to the instruction following the CALL instruction). The CS
register is not changed on near calls.

Opcode Instruction Description
E8 cw CALL rel16 Call near, relative, displacement relative to next instruction
E8 cd CALL rel32 Call near, relative, displacement relative to next instruction
FF /2 CALL r/m16 Call near, absolute indirect, address given in r/m16
FF /2 CALL r/m32 Call near, absolute indirect, address given in r/m32
9A cd CALL ptr16:16 Call far, absolute, address given in operand
9A cp CALL ptr16:32 Call far, absolute, address given in operand
FF /3 CALL m16:16 Call far, absolute indirect, address given in m16:16
FF /3 CALL m16:32 Call far, absolute indirect, address given in m16:32
Vol. 2A 3-65

INSTRUCTION SET REFERENCE, A-M
For a near call, an absolute offset is specified indirectly in a general-purpose register or a
memory location (r/m16 or r/m32). The operand-size attribute determines the size of the target
operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP register. If the operand-
size attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. (When accessing an absolute offset indirectly using the stack
pointer [ESP] as a base register, the base value used is the value of the ESP before the instruction
executes.)

A relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at the
machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added
to the value in the EIP register. As with absolute offsets, the operand-size attribute determines
the size of the target operand (16 or 32 bits).

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS and EIP
registers onto the stack for use as a return-instruction pointer. The processor then performs a “far
branch” to the code segment and offset specified with the target operand for the called proce-
dure. Here the target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the
pointer method, the segment and offset of the called procedure is encoded in the instruction,
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following three types of far calls:

• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruc-
tion is loaded into the EIP register.
3-66 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Note that a call gate (described in the next paragraph) can also be used to perform a far call to a
code segment at the same privilege level. Using this mechanism provides an extra level of indi-
rection and is the preferred method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a call gate. The segment selector specified by the target operand iden-
tifies the call gate. Here again, the target operand can specify the call gate segment selector
either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location
(m16:16 or m16:32). The processor obtains the segment selector for the new code segment and
the new instruction pointer (offset) from the call gate descriptor. (The offset from the target
operand is ignored when a call gate is used.) On inter-privilege-level calls, the processor
switches to the stack for the privilege level of the called procedure. The segment selector for the
new stack segment is specified in the TSS for the currently running task. The branch to the new
code segment occurs after the stack switch. (Note that when using a call gate to perform a far
call to a segment at the same privilege level, no stack switch occurs.) On the new stack, the
processor pushes the segment selector and stack pointer for the calling procedure’s stack, an
(optional) set of parameters from the calling procedures stack, and the segment selector and
instruction pointer for the calling procedure’s code segment. (A value in the call gate descriptor
determines how many parameters to copy to the new stack.) Finally, the processor branches to
the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction, is somewhat similar to executing a call
through a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to (and the offset in the target operand is ignored.) The task gate in turn
points to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The TSS also contains the EIP value for the next instruction that was to be executed
before the task was suspended. This instruction pointer value is loaded into the EIP register so
that the task begins executing again at this next instruction.

The CALL instruction can also specify the segment selector of the TSS directly, which elimi-
nates the indirection of the task gate. See Chapter 6, Task Management, in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3, for detailed information on the mechanics of
a task switch.

Note that when you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS’s previous task link field is loaded with the old
tasks TSS selector. Code is expected to suspend this nested task by executing an IRET instruc-
tion, which, because the NT flag is set, will automatically use the previous task link to return to
the calling task. (See “Task Linking” in Chapter 6 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information on nested tasks.) Switching tasks with the
CALL instruction differs in this regard from the JMP instruction which does not set the NT flag
and therefore does not expect an IRET instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, the calls should be made through a call gate. If the far call is from a 32-bit code
segment to a 16-bit code segment, the call should be made from the first 64 KBytes of the 32-
bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only
a 16-bit return address offset is saved. Also, the call should be made using a 16-bit call gate so
that 16-bit values will be pushed on the stack. See Chapter 17, Mixing 17-Bit and 32-Bit Code,
in IA-32 Intel Architecture Software Developer’s Manual, Volume 3 for more information.
Vol. 2A 3-67

INSTRUCTION SET REFERENCE, A-M
Operation
IF near call

THEN IF near relative call
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

THEN IF OperandSize = 32
THEN

IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← EIP + DEST; (* DEST is rel32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI;
FI;

ELSE (* near absolute call *)
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI;
FI:

FI;

IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
3-68 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)
FI;

FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

THEN #GP(new code segment selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(Offset);

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(Offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
END;

NONCONFORMING-CODE-SEGMENT:
Vol. 2A 3-69

INSTRUCTION SET REFERENCE, A-M
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF stack not large enough for return address THEN #SS(0); FI;
tempEIP ← DEST(Offset)
IF OperandSize=16

THEN
tempEIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS ← DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

FI;
END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
3-70 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
TSSstackAddress ← new code segment (DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
newSS ← TSSstackAddress + 4;
newESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← new code segment (DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector's RPL ≠ DPL of code segment

OR stack segment DPL ≠ DPL of code segment
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Vol. 2A 3-71

INSTRUCTION SET REFERENCE, A-M
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF EIP not within code segment limit then #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for 4 bytes

THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

FI;
CS(RPL) ← CPL

END;
TASK-GATE:

IF task gate DPL < CPL or RPL
THEN #GP(task gate selector);

FI;
IF task gate not present

THEN #NP(task gate selector);
FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
3-72 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment

limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table
limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.
Vol. 2A 3-73

INSTRUCTION SET REFERENCE, A-M
If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or
TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
3-74 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-75

INSTRUCTION SET REFERENCE, A-M
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Description
Double the size of the source operand by means of sign extension (see Figure 7-6 in the IA-32
Intel Architecture Software Developer’s Manual, Volume 1). The CBW (convert byte to word)
instruction copies the sign (bit 7) in the source operand into every bit in the AH register. The
CWDE (convert word to doubleword) instruction copies the sign (bit 15) of the word in the AX
register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is intended
for use when the operand-size attribute is 16 and the CWDE instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and
to 32 when CWDE is used. Others may treat these mnemonics as synonyms (CBW/CWDE) and
use the current setting of the operand-size attribute to determine the size of values to be
converted, regardless of the mnemonic used.

The CWDE instruction is different from the CWD (convert word to double) instruction. The
CWD instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE
instruction uses the EAX register as a destination.

Operation
IF OperandSize = 16 (* instruction = CBW *)

THEN AX ← SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX ← SignExtend(AX);
FI;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
98 CBW AX ← sign-extend of AL
98 CWDE EAX ← sign-extend of AX
3-76 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Doubleword/Convert Doubleword to Quadword.
Vol. 2A 3-77

INSTRUCTION SET REFERENCE, A-M
CLC—Clear Carry Flag

Description
Clears the CF flag in the EFLAGS register.

Operation
CF ← 0;

Flags Affected
The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
F8 CLC Clear CF flag.
3-78 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CLD—Clear Direction Flag

Description
Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation
DF ← 0;

Flags Affected
The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
FC CLD Clear DF flag.
Vol. 2A 3-79

INSTRUCTION SET REFERENCE, A-M
CLFLUSH—Flush Cache Line

Description
Invalidates the cache line that contains the linear address specified with the source operand from
all levels of the processor cache hierarchy (data and instruction). The invalidation is broadcast
throughout the cache coherence domain. If, at any level of the cache hierarchy, the line is incon-
sistent with memory (dirty) it is written to memory before invalidation. The source operand is a
byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH
(bit 19 of the EDX register, see Section , CPUID—CPU Identification). The aligned cache line
size affected is also indicated with the CPUID instruction (bits 8 through 15 of the EBX register
when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of
this instruction. It should be noted that processors are free to speculatively fetch and cache data
from system memory regions assigned a memory-type allowing for speculative reads (such as,
the WB, WC, and WT memory types). PREFETCHh instructions can be used to provide the
processor with hints for this speculative behavior. Because this speculative fetching can occur
at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with
respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execution of a
CLFLUSH instruction that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be ordered by
any other fencing or serializing instructions or by another CLFLUSH instruction. For example,
software can use an MFENCE instruction to insure that previous stores are included in the write-
back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission
checking and faults associated with a byte load (and in addition, a CLFLUSH instruction is
allowed to flush a linear address in an execute-only segment). Like a load, the CLFLUSH
instruction sets the A bit but not the D bit in the page tables.

The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has
its own CPUID feature flag, it can be implemented in IA-32 processors that do not include the
SSE2 extensions. Also, detecting the presence of the SSE2 extensions with the CPUID instruc-
tion does not guarantee that the CLFLUSH instruction is implemented in the processor.

Operation
Flush_Cache_Line(SRC)

Opcode Instruction Description
0F AE /7 CLFLUSH m8 Flushes cache line containing m8.
3-80 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalents
CLFLUSH void_mm_clflush(void const *p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID feature flag CLFSH is 0.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#UD If CPUID feature flag CLFSH is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-81

INSTRUCTION SET REFERENCE, A-M
CLI — Clear Interrupt Flag

Description
If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the EFLAGS
register. No other flags are affected. Clearing the IF flag causes the processor to ignore maskable
external interrupts. The IF flag and the CLI and STI instruction have no affect on the generation
of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI
clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 3-5 indicates the action of the CLI instruction depending on the processor operating mode
and the CPL/IOPL of the running program or procedure.

Operation
IF PE = 0

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF VM = 0;

THEN
IF IOPL ≥ CPL

THEN
IF ← 0; (* Reset Interrupt Flag *)

ELSE
IF ((IOPL < CPL) AND (CPL < 3) AND (PVI = 1))

THEN

Opcode Instruction Description
FA CLI Clear interrupt flag; interrupts disabled when interrupt flag

cleared.

Table 3-5. Decision Table for CLI Results
PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0
1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0
1 1 < 3 X X X 0 GP Fault

X = This setting has no impact.
3-82 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
VIF ← 0; (* Reset Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
ELSE

IF IOPL = 3
THEN

IF ← 0; (* Reset Interrupt Flag *)
ELSE

IF (IOPL < 3) AND (VME = 1)
THEN

VIF ← 0; (* Reset Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
FI;

FI;

Flags Affected
If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal to or less
than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS register are unaf-
fected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI
clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.
Vol. 2A 3-83

INSTRUCTION SET REFERENCE, A-M
CLTS—Clear Task-Switched Flag in CR0

Description
Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of
0. It is allowed to be executed in real-address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize
the saving of FPU context in multitasking applications. See the description of the TS flag in the
section titled “Control Registers” in Chapter 2 of the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3, for more information about this flag.

Operation
CR0(TS) ← 0;

Flags Affected
The TS flag in CR0 register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.

Opcode Instruction Description
0F 06 CLTS Clears TS flag in CR0.
3-84 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CMC—Complement Carry Flag

Description
Complements the CF flag in the EFLAGS register.

Operation
CF ← NOT CF;

Flags Affected
The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags
are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
F5 CMC Complement CF flag.
Vol. 2A 3-85

INSTRUCTION SET REFERENCE, A-M
CMOVcc—Conditional Move

Opcode Instruction Description
0F 47 /r CMOVA r16, r/m16 Move if above (CF=0 and ZF=0).
0F 47 /r CMOVA r32, r/m32 Move if above (CF=0 and ZF=0).
0F 43 /r CMOVAE r16, r/m16 Move if above or equal (CF=0).
0F 43 /r CMOVAE r32, r/m32 Move if above or equal (CF=0).
0F 42 /r CMOVB r16, r/m16 Move if below (CF=1).
0F 42 /r CMOVB r32, r/m32 Move if below (CF=1).
0F 46 /r CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1).
0F 46 /r CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1).
0F 42 /r CMOVC r16, r/m16 Move if carry (CF=1).
0F 42 /r CMOVC r32, r/m32 Move if carry (CF=1).
0F 44 /r CMOVE r16, r/m16 Move if equal (ZF=1).
0F 44 /r CMOVE r32, r/m32 Move if equal (ZF=1).
0F 4F /r CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF).
0F 4F /r CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF).
0F 4D /r CMOVGE r16, r/m16 Move if greater or equal (SF=OF).
0F 4D /r CMOVGE r32, r/m32 Move if greater or equal (SF=OF).
0F 4C /r CMOVL r16, r/m16 Move if less (SF<>OF).
0F 4C /r CMOVL r32, r/m32 Move if less (SF<>OF).
0F 4E /r CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF).
0F 4E /r CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF).
0F 46 /r CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1).
0F 46 /r CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1).
0F 42 /r CMOVNAE r16, r/m16 Move if not above or equal (CF=1).
0F 42 /r CMOVNAE r32, r/m32 Move if not above or equal (CF=1).
0F 43 /r CMOVNB r16, r/m16 Move if not below (CF=0).
0F 43 /r CMOVNB r32, r/m32 Move if not below (CF=0).
0F 47 /r CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0).
0F 47 /r CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0).
0F 43 /r CMOVNC r16, r/m16 Move if not carry (CF=0).
0F 43 /r CMOVNC r32, r/m32 Move if not carry (CF=0).
0F 45 /r CMOVNE r16, r/m16 Move if not equal (ZF=0).
0F 45 /r CMOVNE r32, r/m32 Move if not equal (ZF=0).
0F 4E /r CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF).
0F 4E /r CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF).
0F 4C /r CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF.)
0F 4C /r CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF).
0F 4D /r CMOVNL r16, r/m16 Move if not less (SF=OF).
0F 4D /r CMOVNL r32, r/m32 Move if not less (SF=OF).
0F 4F /r CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF).
0F 4F /r CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF).
3-86 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Description
The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified
state (or condition). A condition code (cc) is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, a move is not performed and execu-
tion continues with the instruction following the CMOVcc instruction.

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are
not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode 0F 47H.

The CMOVcc instructions were introduced in the P6 family processors; however, these instruc-
tions may not be supported by all IA-32 processors. Software can determine if the CMOVcc
instructions are supported by checking the processor’s feature information with the CPUID

0F 41 /r CMOVNO r16, r/m16 Move if not overflow (OF=0).
0F 41 /r CMOVNO r32, r/m32 Move if not overflow (OF=0).
0F 4B /r CMOVNP r16, r/m16 Move if not parity (PF=0).
0F 4B /r CMOVNP r32, r/m32 Move if not parity (PF=0).
0F 49 /r CMOVNS r16, r/m16 Move if not sign (SF=0).
0F 49 /r CMOVNS r32, r/m32 Move if not sign (SF=0).
0F q5 /r CMOVNZ r16, r/m16 Move if not zero (ZF=0).
0F 45 /r CMOVNZ r32, r/m32 Move if not zero (ZF=0).
0F 40 /r CMOVO r16, r/m16 Move if overflow (OF=1).
0F 40 /r CMOVO r32, r/m32 Move if overflow (OF=1).
0F 4A /r CMOVP r16, r/m16 Move if parity (PF=1).
0F 4A /r CMOVP r32, r/m32 Move if parity (PF=1).
0F 4A /r CMOVPE r16, r/m16 Move if parity even (PF=1).
0F 4A /r CMOVPE r32, r/m32 Move if parity even (PF=1).
0F 4B /r CMOVPO r16, r/m16 Move if parity odd (PF=0).
0F 4B /r CMOVPO r32, r/m32 Move if parity odd (PF=0).
0F 48 /r CMOVS r16, r/m16 Move if sign (SF=1).
0F 48 /r CMOVS r32, r/m32 Move if sign (SF=1).
0F 44 /r CMOVZ r16, r/m16 Move if zero (ZF=1).
0F 44 /r CMOVZ r32, r/m32 Move if zero (ZF=1).

Opcode Instruction Description
Vol. 2A 3-87

INSTRUCTION SET REFERENCE, A-M
instruction (see “COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values
and Set EFLAGS” in this chapter).

Operation
temp ← SRC
IF condition TRUE

THEN
DEST ← temp

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-88 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CMP—Compare Two Operands

Description
Compares the first source operand with the second source operand and sets the status flags in
the EFLAGS register according to the results. The comparison is performed by subtracting the
second operand from the first operand and then setting the status flags in the same manner as the
SUB instruction. When an immediate value is used as an operand, it is sign-extended to the
length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), condition
move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, CMOVcc, and
SETcc instructions are based on the results of a CMP instruction. Appendix B, EFLAGS Condi-
tion Codes, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, shows the
relationship of the status flags and the condition codes.

Operation
temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description
3C ib CMP AL, imm8 Compare imm8 with AL.
3D iw CMP AX, imm16 Compare imm16 with AX.
3D id CMP EAX, imm32 Compare imm32 with EAX.
80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8.
81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16.
81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32.
83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16.
83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32.
38 /r CMP r/m8,r8 Compare r8 with r/m8.
39 /r CMP r/m16,r16 Compare r16 with r/m16.
39 /r CMP r/m32,r32 Compare r32 with r/m32.
3A /r CMP r8,r/m8 Compare r/m8 with r8.
3B /r CMP r16,r/m16 Compare r/m16 with r16.
3B /r CMP r32,r/m32 Compare r/m32 with r32.
Vol. 2A 3-89

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-90 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CMPPD—Compare Packed Double-Precision Floating-Point
Values

Description
Performs an SIMD compare of the two packed double-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and returns the
results of the comparison to the destination operand. The comparison predicate operand (third
operand) specifies the type of comparison performed on each of the pairs of packed values. The
result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison
false). The source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. The comparison predicate operand is an 8-bit immediate the
first 3 bits of which define the type of comparison to be made (see Table 3-6); bits 4 through 7
of the immediate are reserved.

Opcode Instruction Description
66 0F C2 /r ib CMPPD xmm1, xmm2/m128, imm8 Compare packed double-precision floating-

point values in xmm2/m128 and xmm1 using
imm8 as comparison predicate.

Table 3-6. Comparison Predicate for CMPPD and CMPPS Instructions

Predi-
cate

imm8
Encod-
ing Description

Relation where:
A Is 1st Operand
B Is 2nd Operand Emulation

Result if
NaN
Operand

QNaN Oper-
and Signals
Invalid

EQ 000B Equal A = B False No

LT 001B Less-than A < B False Yes

LE 010B Less-than-or-equal A ≤ B False Yes

Greater than A > B Swap
Operands,
Use LT

False Yes

Greater-than-or-equal A ≥ B Swap
Operands,
Use LE

False Yes

UNORD 011B Unordered A, B = Unordered True No

NEQ 100B Not-equal A ≠ B True No

NLT 101B Not-less-than NOT(A < B) True Yes

NLE 110B Not-less-than-or-
equal

NOT(A ≤ B) True Yes

Not-greater-than NOT(A > B) Swap
Operands,
Use NLT

True Yes
Vol. 2A 3-91

INSTRUCTION SET REFERENCE, A-M
The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate an exception, because a mask of all 0s corresponds to a
floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that the processor does not implement the greater-than, greater-than-or-equal, not-greater-
than, and not-greater-than-or-equal relations. These comparisons can be made either by using
the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the program must
swap the operands (copying registers when necessary to protect the data that will now be in the
destination), and then perform the compare using a different predicate. The predicate to be used
for these emulations is listed in Table 3-6 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPPD instruction. See Table 3-7.

:

The greater-than relations that the processor does not implement require more than one instruc-
tion to emulate in software and therefore should not be implemented as pseudo-ops. (For these,
the programmer should reverse the operands of the corresponding less than relations and use
move instructions to ensure that the mask is moved to the correct destination register and that
the source operand is left intact.)

Not-greater-than-or-
equal

NOT(A ≥ B) Swap
Operands,
Use NLE

True Yes

ORD 111B Ordered A , B = Ordered False No

Table 3-7. Pseudo-Op and CMPPD Implementation
Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

Table 3-6. Comparison Predicate for CMPPD and CMPPS Instructions (Contd.)

Predi-
cate

imm8
Encod-
ing Description

Relation where:
A Is 1st Operand
B Is 2nd Operand Emulation

Result if
NaN
Operand

QNaN Oper-
and Signals
Invalid
3-92 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;

4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
DEFAULT: Reserved;

CMP0 ← DEST[63-0] OP SRC[63-0];
CMP1 ← DEST[127-64] OP SRC[127-64];
IF CMP0 = TRUE

THEN DEST[63-0] ← FFFFFFFFFFFFFFFFH
ELSE DEST[63-0] ← 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127-64] ← FFFFFFFFFFFFFFFFH
ELSE DEST[127-64] ← 0000000000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents
CMPPD for equality __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

CMPPD for less-than __m128d _mm_cmplt_pd(__m128d a, __m128d b)

CMPPD for less-than-or-equal __m128d _mm_cmple_pd(__m128d a, __m128d b)

CMPPD for greater-than __m128d _mm_cmpgt_pd(__m128d a, __m128d b)

CMPPD for greater-than-or-equal __m128d _mm_cmpge_pd(__m128d a, __m128d b)

CMPPD for inequality __m128d _mm_cmpneq_pd(__m128d a, __m128d b)

CMPPD for not-less-than __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than __m128d _mm_cmpngt_pd(__m128d a, __m128d b)

CMPPD for not-greater-than-or-equal __m128d _mm_cmpnge_pd(__m128d a, __m128d b)

CMPPD for ordered __m128d _mm_cmpord_pd(__m128d a, __m128d b)

CMPPD for unordered __m128d _mm_cmpunord_pd(__m128d a, __m128d b)

CMPPD for not-less-than-or-equal __m128d _mm_cmpnle_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.
Vol. 2A 3-93

INSTRUCTION SET REFERENCE, A-M
If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment. #PF(fault-code)

For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-94 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CMPPS—Compare Packed Single-Precision Floating-Point Values

Description
Performs an SIMD compare of the four packed single-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and returns the
results of the comparison to the destination operand. The comparison predicate operand (third
operand) specifies the type of comparison performed on each of the pairs of packed values. The
result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison
false). The source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. The comparison predicate operand is an 8-bit immediate the
first 3 bits of which define the type of comparison to be made (see Table 3-6); bits 4 through 7
of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, because a mask of all 0s corresponds to a floating-
point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-6 (such as the greater-than, greater-than-or-equal, not-
greater-than, and not-greater-than-or-equal relations) can be made only through software emula-
tion. For these comparisons the program must swap the operands (copying registers when neces-
sary to protect the data that will now be in the destination), and then perform the compare using
a different predicate. The predicate to be used for these emulations is listed in Table 3-6 under
the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPPS instruction. See Table 3-8.

Opcode Instruction Description
0F C2 /r ib CMPPS xmm1, xmm2/m128, imm8 Compare packed single-precision floating-point

values in xmm2/mem and xmm1 using imm8 as
comparison predicate.
Vol. 2A 3-95

INSTRUCTION SET REFERENCE, A-M
The greater-than relations not implemented by the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NE;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;

EASC
CMP0 ← DEST[31-0] OP SRC[31-0];
CMP1 ← DEST[63-32] OP SRC[63-32];
CMP2 ← DEST [95-64] OP SRC[95-64];
CMP3 ← DEST[127-96] OP SRC[127-96];
IF CMP0 = TRUE

THEN DEST[31-0] ← FFFFFFFFH
ELSE DEST[31-0] ← 00000000H; FI;

IF CMP1 = TRUE
THEN DEST[63-32] ← FFFFFFFFH
ELSE DEST[63-32] ← 00000000H; FI;

IF CMP2 = TRUE
THEN DEST95-64] ← FFFFFFFFH
ELSE DEST[95-64] ← 00000000H; FI;

IF CMP3 = TRUE
THEN DEST[127-96] ← FFFFFFFFH
ELSE DEST[127-96] ← 00000000H; FI;

Table 3-8. Pseudo-Ops and CMPPS
Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7
3-96 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalents
CMPPS for equality __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

CMPPS for less-than __m128 _mm_cmplt_ps(__m128 a, __m128 b)

CMPPS for less-than-or-equal __m128 _mm_cmple_ps(__m128 a, __m128 b)

CMPPS for greater-than __m128 _mm_cmpgt_ps(__m128 a, __m128 b)

CMPPS for greater-than-or-equal __m128 _mm_cmpge_ps(__m128 a, __m128 b)

CMPPS for inequality __m128 _mm_cmpneq_ps(__m128 a, __m128 b)

CMPPS for not-less-than __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than __m128 _mm_cmpngt_ps(__m128 a, __m128 b)

CMPPS for not-greater-than-or-equal __m128 _mm_cmpnge_ps(__m128 a, __m128 b)

CMPPS for ordered __m128 _mm_cmpord_ps(__m128 a, __m128 b)

CMPPS for unordered __m128 _mm_cmpunord_ps(__m128 a, __m128 b)

CMPPS for not-less-than-or-equal __m128 _mm_cmpnle_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
Vol. 2A 3-97

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-98 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Description
Compares the byte, word, or double word specified with the first source operand with the byte,
word, or double word specified with the second source operand and sets the status flags in the
EFLAGS register according to the results. Both source operands are located in memory. The
address of the first source operand is read from either the DS:ESI or the DS:SI registers
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The address
of the second source operand is read from either the ES:EDI or the ES:DI registers (again
depending on the address-size attribute of the instruction). The DS segment may be overridden
with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the CMPS
mnemonic) allows the two source operands to be specified explicitly. Here, the source operands
should be symbols that indicate the size and location of the source values. This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbols must specify the correct type (size)
of the operands (bytes, words, or doublewords), but they do not have to specify the correct loca-
tion. The locations of the source operands are always specified by the DS:(E)SI and ES:(E)DI
registers, which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
CMPS instructions. Here also the DS:(E)SI and ES:(E)DI registers are assumed by the processor
to specify the location of the source operands. The size of the source operands is selected with
the mnemonic: CMPSB (byte comparison), CMPSW (word comparison), or CMPSD (double-
word comparison).

After the comparison, the (E)SI and (E)DI registers increment or decrement automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI
and (E)DI register increment; if the DF flag is 1, the (E)SI and (E)DI registers decrement.) The
registers increment or decrement by 1 for byte operations, by 2 for word operations, or by 4 for
doubleword operations.

Opcode Instruction Description
A6 CMPS m8, m8 Compares byte at address DS:(E)SI with byte at address

ES:(E)DI and sets the status flags accordingly.
A7 CMPS m16, m16 Compares word at address DS:(E)SI with word at address

ES:(E)DI and sets the status flags accordingly.
A7 CMPS m32, m32 Compares doubleword at address DS:(E)SI with doubleword

at address ES:(E)DI and sets the status flags accordingly.
A6 CMPSB Compares byte at address DS:(E)SI with byte at address

ES:(E)DI and sets the status flags accordingly.
A7 CMPSW Compares word at address DS:(E)SI with word at address

ES:(E)DI and sets the status flags accordingly.
A7 CMPSD Compares doubleword at address DS:(E)SI with doubleword

at address ES:(E)DI and sets the status flags accordingly.
Vol. 2A 3-99

INSTRUCTION SET REFERENCE, A-M
The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in Chapter 4 for a description of the REP prefix.

Operation
temp ←SRC1 − SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
THEN

(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword comparison*)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the compar-
ison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
3-100 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-101

INSTRUCTION SET REFERENCE, A-M
CMPSD—Compare Scalar Double-Precision Floating-Point Values

Description
Compares the low double-precision floating-point values in the source operand (second
operand) and the destination operand (first operand) and returns the results of the comparison to
the destination operand. The comparison predicate operand (third operand) specifies the type of
comparison performed. The comparison result is a quadword mask of all 1s (comparison true)
or all 0s (comparison false). The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The result is stored in the low quadword
of the destination operand; the high quadword remains unchanged. The comparison predicate
operand is an 8-bit immediate the first 3 bits of which define the type of comparison to be made
(see Table 3-6); bits 4 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, because a mask of all 0s corresponds to a floating-
point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-6 can be achieved only through software emulation.
For these comparisons the program must swap the operands (copying registers when necessary
to protect the data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in Table 3-6
under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPSD instruction. See Table 3-9.

Opcode Instruction Description
F2 0F C2 /r ib CMPSD xmm1, xmm2/m64, imm8 Compare low double-precision floating-point

value in xmm2/m64 and xmm1 using imm8 as
comparison predicate.
3-102 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
.

The greater-than relations not implemented in the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
DEFAULT: Reserved;

CMP0 ← DEST[63-0] OP SRC[63-0];
IF CMP0 = TRUE

THEN DEST[63-0] ← FFFFFFFFFFFFFFFFH
ELSE DEST[63-0] ← 0000000000000000H; FI;

* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalents
CMPSD for equality __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

CMPSD for less-than __m128d _mm_cmplt_sd(__m128d a, __m128d b)

CMPSD for less-than-or-equal __m128d _mm_cmple_sd(__m128d a, __m128d b)

CMPSD for greater-than __m128d _mm_cmpgt_sd(__m128d a, __m128d b)

CMPSD for greater-than-or-equal __m128d _mm_cmpge_sd(__m128d a, __m128d b)

CMPSD for inequality __m128d _mm_cmpneq_sd(__m128d a, __m128d b)

Table 3-9. Pseudo-Ops and CMPSD
Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1,xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1,xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 7
Vol. 2A 3-103

INSTRUCTION SET REFERENCE, A-M
CMPSD for not-less-than __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

CMPSD for not-greater-than __m128d _mm_cmpngt_sd(__m128d a, __m128d b)

CMPSD for not-greater-than-or-equal __m128d _mm_cmpnge_sd(__m128d a, __m128d b)

CMPSD for ordered __m128d _mm_cmpord_sd(__m128d a, __m128d b)

CMPSD for unordered __m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSD for not-less-than-or-equal __m128d _mm_cmpnle_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.
3-104 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-105

INSTRUCTION SET REFERENCE, A-M
CMPSS—Compare Scalar Single-Precision Floating-Point Values

Description
Compares the low single-precision floating-point values in the source operand (second operand)
and the destination operand (first operand) and returns the results of the comparison to the desti-
nation operand. The comparison predicate operand (third operand) specifies the type of compar-
ison performed. The comparison result is a doubleword mask of all 1s (comparison true) or all
0s (comparison false). The source operand can be an XMM register or a 32-bit memory location.
The destination operand is an XMM register. The result is stored in the low doubleword of the
destination operand; the 3 high-order doublewords remain unchanged. The comparison predi-
cate operand is an 8-bit immediate the first 3 bits of which define the type of comparison to be
made (see Table 3-6); bits 4 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands being compared
is a NaN; the ordered relationship is true when neither source operand is a NaN

A subsequent computational instruction that uses the mask result in the destination operand as
an input operand will not generate a fault, since a mask of all 0s corresponds to a floating-point
value of +0.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-6 can be achieved only through software emulation.
For these comparisons the program must swap the operands (copying registers when necessary
to protect the data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in Table 3-6
under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to
the three-operand CMPSS instruction. See Table 3-10

Opcode Instruction Description
F3 0F C2 /r ib CMPSS xmm1, xmm2/m32, imm8 Compare low single-precision floating-point

value in xmm2/m32 and xmm1 using imm8 as
comparison predicate.
3-106 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
The greater-than relations not implemented in the processor require more than one instruction
to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Operation
CASE (COMPARISON PREDICATE) OF

0: OP ← EQ;
1: OP ← LT;
2: OP ← LE;
3: OP ← UNORD;
4: OP ← NEQ;
5: OP ← NLT;
6: OP ← NLE;
7: OP ← ORD;
DEFAULT: Reserved;

CMP0 ← DEST[31-0] OP SRC[31-0];
IF CMP0 = TRUE

THEN DEST[31-0] ← FFFFFFFFH
ELSE DEST[31-0] ← 00000000H; FI;

* DEST[127-32] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalents
CMPSS for equality __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

CMPSS for less-than __m128 _mm_cmplt_ss(__m128 a, __m128 b)

CMPSS for less-than-or-equal __m128 _mm_cmple_ss(__m128 a, __m128 b)

CMPSS for greater-than __m128 _mm_cmpgt_ss(__m128 a, __m128 b)

CMPSS for greater-than-or-equal __m128 _mm_cmpge_ss(__m128 a, __m128 b)

CMPSS for inequality __m128 _mm_cmpneq_ss(__m128 a, __m128 b)

Table 3-10. Pseudo-Ops and CMPSS
Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7
Vol. 2A 3-107

INSTRUCTION SET REFERENCE, A-M
CMPSS for not-less-than __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

CMPSS for not-greater-than __m128 _mm_cmpngt_ss(__m128 a, __m128 b)

CMPSS for not-greater-than-or-equal __m128 _mm_cmpnge_ss(__m128 a, __m128 b)

CMPSS for ordered __m128 _mm_cmpord_ss(__m128 a, __m128 b)

CMPSS for unordered __m128 _mm_cmpunord_ss(__m128 a, __m128 b)

CMPSS for not-less-than-or-equal __m128 _mm_cmpnle_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.
3-108 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-109

INSTRUCTION SET REFERENCE, A-M
CMPXCHG—Compare and Exchange

Description
Compares the value in the AL, AX, or EAX register (depending on the size of the operand) with
the first operand (destination operand). If the two values are equal, the second operand (source
operand) is loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

IA-32 Architecture Compatibility
This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation
(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)
IF accumulator = DEST

THEN
ZF ← 1
DEST ← SRC

ELSE
ZF ← 0
accumulator ← DEST

FI;

Flags Affected
The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

Opcode Instruction Description
0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded

into r/m8. Else, clear ZF and load r/m8 into AL.
0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is

loaded into r/m16. Else, clear ZF and load r/m16 into AX
0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is

loaded into r/m32. Else, clear ZF and load r/m32 into EAX
3-110 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-111

INSTRUCTION SET REFERENCE, A-M
CMPXCHG8B—Compare and Exchange 8 Bytes

Description
Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX is stored in the destination operand. Otherwise, the
value in the destination operand is loaded into EDX:EAX. The destination operand is an 8-byte
memory location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the
high-order 32 bits and EAX and EBX contain the low-order 32 bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

IA-32 Architecture Compatibility
This instruction is not supported on Intel processors earlier than the Pentium processors.

Operation
IF (EDX:EAX = DEST)

ZF ← 1
DEST ← ECX:EBX

ELSE
ZF ← 0
EDX:EAX ← DEST

Flags Affected
The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description
0F C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load

ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.
3-112 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-113

INSTRUCTION SET REFERENCE, A-M
COMISD—Compare Scalar Ordered Double-Precision Floating-
Point Values and Set EFLAGS

Description
Compares the double-precision floating-point values in the low quadwords of source operand 1
(first operand) and source operand 2 (second operand), and sets the ZF, PF, and CF flags in the
EFLAGS register according to the result (unordered, greater than, less than, or equal). The OF,
SF and AF flags in the EFLAGS register are set to 0. The unordered result is returned if either
source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit
memory location.

The COMISD instruction differs from the UCOMISD instruction in that it signals an SIMD
floating-point invalid operation exception (#I) when a source operand is either a QNaN or
SNaN. The UCOMISD instruction signals an invalid numeric exception only if a source operand
is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is gener-
ated.

Operation
RESULT ← OrderedCompare(DEST[63-0] <> SRC[63-0]) {
* Set EFLAGS *CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalents
int_mm_comieq_sd(__m128d a, __m128d b)

int_mm_comilt_sd(__m128d a, __m128d b)

int_mm_comile_sd(__m128d a, __m128d b)

int_mm_comigt_sd(__m128d a, __m128d b)

int_mm_comige_sd(__m128d a, __m128d b)

int_mm_comineq_sd(__m128d a, __m128d b)

Opcode Instruction Description
66 0F 2F /r COMISD xmm1, xmm2/m64 Compare low double-precision floating-point values in

xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
3-114 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
Vol. 2A 3-115

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-116 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
COMISS—Compare Scalar Ordered Single-Precision Floating-
Point Values and Set EFLAGS

Description
Compares the single-precision floating-point values in the low doublewords of source operand
1 (first operand) and source operand 2 (second operand), and sets the ZF, PF, and CF flags in
the EFLAGS register according to the result (unordered, greater than, less than, or equal). The
OF, SF, and AF flags in the EFLAGS register are set to 0. The unordered result is returned if
either source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 32 bit
memory location.

The COMISS instruction differs from the UCOMISS instruction in that it signals an SIMD
floating-point invalid operation exception (#I) when a source operand is either a QNaN or
SNaN. The UCOMISS instruction signals an invalid numeric exception only if a source operand
is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is gener-
ated.

Operation
RESULT ← OrderedCompare(SRC1[31-0] <> SRC2[31-0]) {
* Set EFLAGS *CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalents
int_mm_comieq_ss(__m128 a, __m128 b)

int_mm_comilt_ss(__m128 a, __m128 b)

int_mm_comile_ss(__m128 a, __m128 b)

int_mm_comigt_ss(__m128 a, __m128 b)

int_mm_comige_ss(__m128 a, __m128 b)

int_mm_comineq_ss(__m128 a, __m128 b)

Opcode Instruction Description
0F 2F /r COMISS xmm1, xmm2/m32 Compare low single-precision floating-point values in

xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
Vol. 2A 3-117

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
3-118 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-119

INSTRUCTION SET REFERENCE, A-M
CPUID—CPU Identification

Description
The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a
software procedure can set and clear this flag, the processor executing the procedure supports
the CPUID instruction.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and
EDX registers. The instruction’s output is dependent on the contents of the EAX register upon
execution. For example, the following pseudocode loads EAX with 00H and causes CPUID to
return a Maximum Return Value and the Vendor Identification String in the appropriate regis-
ters:

MOV EAX, 00H
CPUID

Table 3-11 shows information returned, depending on the initial value loaded into the EAX
register. Table 3-12 shows the maximum CPUID input value recognized for each family of IA-
32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a higher
value entered than is valid for a particular processor, the information for the highest useful basic
information value is returned. For example, if an input value of 5 is entered in EAX for a
Pentium 4 processor, the information for an input value of 2 is returned. The exception to this
rule is the input values that return extended function information. For a Pentium 4 processor,
entering an input value of 80000005H or above returns the information for an input value of 2.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing
instruction execution guarantees that any modifications to flags, registers, and memory for
previous instructions are completed before the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 7 of the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3

AP-485, Intel Processor Identification and the CPUID Instruction (Order Number
241618)

Opcode Instruction Description
0F A2 CPUID Returns processor identification and feature information

to the EAX, EBX, ECX, and EDX registers, according to
the input value entered initially in the EAX register.
3-120 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Table 3-11. Information Returned by CPUID Instruction
Initial EAX

Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-12)
“Genu”
“ntel”
“ineI”

01H EAX
EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)
Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor; two for the
Pentium 4 processor supporting Hyper-Threading Technology
Bits 31-24: Local APIC ID
Extended Feature Information (see Figure 3-6 and Table 3-14)
Feature Information (see Figure 3-7 and Table 3-15)

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-16)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

NOTE: Processor serial number (PSN) is not supported in the Pentium 4
processor or later. On all models, use the PSN flag (returned using CPUID)
to check for PSN support before accessing the feature. See AP-485, Intel
Processor Identification and the CPUID Instruction (Order Number 241618)
for more information on PSN.

04H
EAX

EBX

ECX

Deterministic Cache Parameters Leaf
Bits 4-0: Cache Type**
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bits 13-10: Reserved
Bits 25-14: Number of threads sharing this cache*
Bits 31-26: Number of processor cores on this die (Multicore)*
Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*
Bits 31-00: S = Number of Sets*
Vol. 2A 3-121

INSTRUCTION SET REFERENCE, A-M
EDX Reserved = 0

*Add one to the value in the register file to get the number. For example, the
number of processor cores is EAX[31:26]+1.
** Cache Types fields

0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

NOTE: CPUID leaves > 3 < 80000000 are only visible when
IA32_CR_MISC_ENABLES.BOOT_NT4 (bit 22) is clear (Default)

5H
EAX

EBX

ECX
EDX

MONITOR/MWAIT Leaf
Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor
granularity)
Bits 31-16: Reserved = 0
Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor
granularity)
Bits 31-16: Reserved = 0
Reserved = 0
Reserved = 0

Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see Table
3-12).
Reserved
Reserved
Reserved

80000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently
Reserved
Reserved
Reserved
Reserved

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

Table 3-11. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
3-122 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the
Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID
recognizes for returning basic processor information. The value is returned in the EAX register
(see Table 3-12) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the
string is “GenuineIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)
EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Proces-
sor Information
When CPUID executes with EAX set to 0, the processor returns the highest value the processor
recognizes for returning extended processor information. The value is returned in the EAX
register (see Table 3-12) and is processor specific.

80000006H EAX
EBX
ECX

EDX

Reserved = 0
Reserved = 0
Bits 0-7: Cache Line Size
Bits 15-12: L2 Associativity
Bits 31-16: Cache size in 1K units
Reserved = 0

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000008H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

Table 3-12. Highest CPUID Source Operand for IA-32 Processors

IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and
Pentium Processors

01H Not Implemented

Table 3-11. Information Returned by CPUID Instruction (Contd.)
Initial EAX

Value Information Provided about the Processor
Vol. 2A 3-123

INSTRUCTION SET REFERENCE, A-M
Returns Microcode Update Signature
For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is
loaded with the update signature whenever CPUID executes. The signature is returned in the
upper DWORD. For details, see Chapter 9 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3.

INPUT EAX = 1: Returns Model, Family, Stepping Information
\When CPUID executes with EAX set to 1, version information is returned in EAX (see Figure
3-5). For example: model, family, and processor type for the first processor in the Intel Pentium
4 family is returned as follows:

• Model—0000B

• Family—1111B

• Processor Type—00B

See Table 3-13 for available processor type values. Stepping IDs are provided as needed.

Pentium Pro and Pentium II
Processors, Intel® Celeron™
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor supporting
Hyper-Threading Technology

05H 80000008H

Table 3-12. Highest CPUID Source Operand for IA-32 Processors (Contd.)

IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information
3-124 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
NOTE
See AP-485, Intel Processor Identification and the CPUID Instruction
(Order Number 241618) and Chapter 14 in the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for information on identifying
earlier IA-32 processors.

The Extended Family ID and Extended Model ID need be examined only if the Family ID reaches
0FH. Always display processor information as a combination of family, model, and stepping.

Integrate the ID fields into a display as:

Displayed family = ((Extended Family ID(4-bits) << 4)) (8-bits)
+ Family ID (4-bits zero extended to 8-bits)

Figure 3-5. Version Information Returned by CPUID in EAX

Table 3-13. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486
processors)

10B

Intel reserved 11B

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
Vol. 2A 3-125

INSTRUCTION SET REFERENCE, A-M
Compute the displayed model from the Model ID and the Extended Model ID as:

Displayed Model = ((Extended Model ID (4-bits) << 4))(8-bits)
+ Model (4-bits zero extended to 8-bits)

INPUT EAX = 1: Returns Additional Information in EBX
When CPUID executes with EAX set to 1, additional information is returned to the EBX
register:

• Brand index (low byte of EBX) — this number provides an entry into a brand string table
that contains brand strings for IA-32 processors. More information about this field is
provided later in this section.

• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the
size of the cache line flushed with CLFLUSH instruction in 8-byte increments. This field
was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the
local APIC on the processor during power up. This field was introduced in the Pentium 4
processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX
When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.

• Figure 3-6 and Table 3-14 show encodings for ECX.

• Figure 3-7 and Table 3-15 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret
feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags
returned by CPUID prior to using the feature. Software should not depend on
future offerings retaining all features.
3-126 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Figure 3-6. Extended Feature Information Returned in the ECX Register

Table 3-14. More on Extended Feature Information Returned in the ECX Register
Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor
supports this technology.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the
extensions to the Debug Store feature to allow for branch message storage
qualified by CPL.

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the
processor supports this technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this
technology.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to
either adaptive mode or shared mode. A value of 0 indicates this feature is not
supported. See definition of the IA32_MISC_ENABLE MSR Bit 24 (L1 Data
Cache Context Mode) for details.

OM16524

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® technology
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
SSE3 — SSE3 extensions

Reserved
Vol. 2A 3-127

INSTRUCTION SET REFERENCE, A-M
Figure 3-7. Feature Information Returned in the EDX Register

Table 3-15. More on Feature Information Returned in the EDX Register
Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including
CR4.VME for controlling the feature, CR4.PVI for protected mode virtual
interrupts, software interrupt indirection, expansion of the TSS with the software
indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Hyper-Threading Tech.
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
3-128 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory
Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD
for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and
WRMSR instructions are supported. Some of the MSRs are implementation
dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4 Mbyte
pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined,
and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define the
model-specific implementations of machine-check error logging, reporting, and
processor shutdowns. Machine Check exception handlers may have to depend on
processor version to do model specific processing of the exception, or test for the
presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors permit
the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how many
variable MTRRs are supported, and whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to different
processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides
a compatible mechanism for error reporting in P6 family, Pentium 4, Intel Xeon
processors, and future processors, is supported. The MCG_CAP MSR contains
feature bits describing how many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments
the Memory Type Range Registers (MTRRs), allowing an operating system to
specify attributes of memory on a 4K granularity through a linear address.

Table 3-15. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
Vol. 2A 3-129

INSTRUCTION SET REFERENCE, A-M
17 PSE-36 36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte page is
encoded by bits 13-16 of the page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a
memory resident buffer. This feature is used by the branch trace store (BTS) and
precise event-based sampling (PEBS) facilities (see Chapter 15, Debugging and
Performance Monitoring, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored and
processor performance to be modulated in predefined duty cycles under software
control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating point context. Presence of
this bit also indicates that CR4.OSFXSR is available for an operating system to
indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions issued to
the bus.

Table 3-15. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
3-130 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX
When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description
of the processor’s caches and TLBs. The first member of the family of Pentium 4
processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains
valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.
Table 3-16 shows the encoding of these descriptors. Note that the order of descriptors in
the EAX, EBX, ECX, and EDX registers is not defined; that is, specific bytes are not
designated to contain descriptors for specific cache or TLB types. The descriptors may
appear in any order.

28 HTT Hyper-Threading Technology. The processor supports Hyper-Threading
Technology.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin
when the processor is in the stop-clock state (STPCLK# is asserted) to signal the
processor that an interrupt is pending and that the processor should return to
normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 3-15. More on Feature Information Returned in the EDX Register (Contd.)
Bit # Mnemonic Description
Vol. 2A 3-131

INSTRUCTION SET REFERENCE, A-M
Table 3-16. Encoding of Cache and TLB Descriptors
Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte Pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte Pages, 4-way set associative, 2 entries

03H Data TLB: 4KByte Pages, 4-way set associative, 64 entries

04H Data TLB: 4MByte Pages, 4-way set associative, 8 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per
sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H 3rd-level cache: 4M Bytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH 1st-level data cache: 32K Bytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32K Bytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level
cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size
3-132 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about
caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-µop, 8-way set associative

71H Trace cache: 16 K-µop, 8-way set associative

72H Trace cache: 32 K-µop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte Pages, 4-way set associative, 128 entries

B3H Data TLB: 4 KByte Pages, 4-way set associative, 128 entries

F0H 64-Byte Prefetching

F1H 128-Byte Prefetching

Table 3-16. Encoding of Cache and TLB Descriptors (Contd.)
Descriptor Value Cache or TLB Description
Vol. 2A 3-133

INSTRUCTION SET REFERENCE, A-M
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID
needs to be executed once with an input value of 2 to retrieve complete information about
caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte
pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache
line size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - a 12-KByte 1st level code cache, 4-way set associative, with a 64-byte cache
line size.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte
cache line size.

— 00H - NULL descriptor.

METHODS FOR RETURNING BRANDING INFORMATION
Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum
operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in
early processors, see Section: “Identification of Earlier IA-32 Processors” in Chapter 14 of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1.

The Processor Brand String Method
Figure 3-8 describes the algorithm used for detection of the brand string. Processor brand iden-
tification software should execute this algorithm on all IA-32 architecture compatible proces-
sors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification
string and the maximum operating frequency of the processor to the EAX, EBX, ECX, and EDX
registers.
3-134 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
How Brand Strings Work
To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX, EBX, ECX,
and EDX. The returned string will be NULL terminated.

Table 3-17 shows the brand string that is returned by the first processor in the Pentium 4
processor family.

Figure 3-8. Determination of Support for the Processor Brand String

Table 3-17. Processor Brand String Returned with Pentium 4 Processor
EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H
EBX = 20202020H
ECX = 20202020H
EDX = 6E492020H

“ ”
“ ”
“ ”
“nI ”

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
>= 0x80000004)

CPUID
Function

Supported

True =>
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=1

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
Vol. 2A 3-135

INSTRUCTION SET REFERENCE, A-M
Extracting the Maximum Processor Frequency from Brand Strings
Figure 3-9 provides an algorithm which software can use to extract the maximum processor
operating frequency from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum qualified
frequency of the processor, not the frequency at which the processor is
currently running.

80000003H EAX = 286C6574H
EBX = 50202952H
ECX = 69746E65H
EDX = 52286D75H

“(let”
“P)R”
“itne”
“R(mu”

80000004H EAX = 20342029H
EBX = 20555043H
ECX = 30303531H
EDX = 007A484DH

“ 4)”
“ UPC”
“0051”
“\0zHM”

Table 3-17. Processor Brand String Returned with Pentium 4 Processor
3-136 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
The Processor Brand Index Method
The brand index method (introduced with Pentium III Xeon processors) provides an entry point
into a brand identification table that is maintained in memory by system software and is acces-
sible from system- and user-level code. In this table, each brand index is associate with an ASCII
brand identification string that identifies the official Intel family and model number of a
processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte
in EBX. Software can then use this index to locate the brand identification string for the
processor in the brand identification table. The first entry (brand index 0) in this table is

Figure 3-9. Algorithm for Extracting Maximum Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Max. Qualified
Frequency =

"Freq" x "Multiplier" "Freq" = XY.Z if
Digits = "Z.YX"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
Vol. 2A 3-137

INSTRUCTION SET REFERENCE, A-M
reserved, allowing for backward compatibility with processors that do not support the brand
identification feature.

Table 3-18 shows brand indices that have identification strings associated with them.

† Indicates versions of these processors that were introduced after the Pentium III

IA-32 Architecture Compatibility
CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor
earlier than the Intel486 processor.

Table 3-18. Mapping of Brand Indices and IA-32 Processor Brand Strings
Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor†

02H Intel(R) Pentium(R) III processor†

03H Intel(R) Pentium(R) III XeonTM processor; If processor signature = 000006B1h, then
Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor†

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor†

0BH Intel(R) Xeon(TM) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(TM) processor MP

0CH Intel(R) Xeon(TM) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h,
then Intel(R) Xeon(TM) processor

0FH Mobile Intel(R) Celeron(R) processor†

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor†

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor†

18H – 0FFH RESERVED
3-138 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number.
CASE (EAX) OF

EAX = 0:
EAX ← highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[23:20] ← Extended Family;
EAX[31:24] ← Reserved;
EBX[7:0] ← Brand Index;
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved;
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6 *)
EDX ← Feature flags; (* See Figure 3-7 *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; /* see page 3-121 */
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; /* see page 3-122 */
Vol. 2A 3-139

INSTRUCTION SET REFERENCE, A-M
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 80000000H:

EAX ← highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Extended Processor Signature and Feature Bits (*Currently Reserved*);
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:
3-140 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000008H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← Reserved; (* undefined*)
EBX ← Reserved; (* undefined*)
ECX ← Reserved; (* undefined*)
EDX ← Reserved; (* undefined*)

BREAK;
ESAC;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

NOTE
In earlier IA-32 processors that do not support the CPUID instruction,
execution of the instruction results in an invalid opcode (#UD) exception
being generated.
Vol. 2A 3-141

INSTRUCTION SET REFERENCE, A-M
CVTDQ2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values

Description
Converts two packed signed doubleword integers in the source operand (second operand) to two
packed double-precision floating-point values in the destination operand (first operand). The
source operand can be an XMM register or a 64-bit memory location. The destination operand
is an XMM register. When the source operand is an XMM register, the packed integers are
located in the low quadword of the register.

Operation
DEST[63-0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31-0]);
DEST[127-64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128di a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description
F3 0F E6 CVTDQ2PD xmm1, xmm2/m64 Convert two packed signed doubleword integers from

xmm2/m128 to two packed double-precision floating-
point values in xmm1.
3-142 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-143

INSTRUCTION SET REFERENCE, A-M
CVTDQ2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values

Description
Converts four packed signed doubleword integers in the source operand (second operand) to
four packed single-precision floating-point values in the destination operand (first operand). The
source operand can be an XMM register or a 128-bit memory location. The destination operand
is an XMM register. When a conversion is inexact, rounding is performed according to the
rounding control bits in the MXCSR register.

Operation
DEST[31-0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31-0]);
DEST[63-32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63-32]);
DEST[95-64] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[95-64]);
DEST[127-96] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTDQ2PS __m128d _mm_cvtepi32_ps(__m128di a)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

Opcode Instruction Description
0F 5B /r CVTDQ2PS xmm1, xmm2/m128 Convert four packed signed doubleword integers

from xmm2/m128 to four packed single-precision
floating-point values in xmm1.
3-144 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-145

INSTRUCTION SET REFERENCE, A-M
CVTPD2DQ—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand
and the high quadword is cleared to all 0s.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Operation
DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[127-64]);
DEST[127-64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
CVTPD2DQ __m128d _mm_cvtpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
F2 0F E6 CVTPD2DQ xmm1, xmm2/m128 Convert two packed double-precision floating-point

values from xmm2/m128 to two packed signed
doubleword integers in xmm1.
3-146 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-147

INSTRUCTION SET REFERENCE, A-M
CVTPD2PI—Convert Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPD2PI instruction is executed.

Operation
DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[127-64]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTPD1PI __m64 _mm_cvtpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction Description
66 0F 2D /r CVTPD2PI mm, xmm/m128 Convert two packed double-precision floating-point

values from xmm/m128 to two packed signed
doubleword integers in mm.
3-148 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-149

INSTRUCTION SET REFERENCE, A-M
CVTPD2PS—Convert Packed Double-Precision Floating-Point
Values to Packed Single-Precision Floating-Point Values

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed single-precision floating-point values in the destination operand (first
operand). The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the destination
operand, and the high quadword is cleared to all 0s. When a conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.

Operation
DEST[31-0] ← Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_To_Single_Precision_

Floating_Point(SRC[127-64]);
DEST[127-64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
CVTPD2PS __m128d _mm_cvtpd_ps(__m128d a)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
66 0F 5A /r CVTPD2PS xmm1, xmm2/m128 Convert two packed double-precision floating-point

values in xmm2/m128 to two packed single-
precision floating-point values in xmm1.
3-150 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-151

INSTRUCTION SET REFERENCE, A-M
CVTPI2PD—Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point Values

Description
Converts two packed signed doubleword integers in the source operand (second operand) to two
packed double-precision floating-point values in the destination operand (first operand). The
source operand can be an MMX technology register or a 64-bit memory location. The destina-
tion operand is an XMM register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPI2PD instruction is executed.

Operation
DEST[63-0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31-0]);
DEST[127-64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Opcode Instruction Description
66 0F 2A /r CVTPI2PD xmm, mm/m64 Convert two packed signed doubleword integers from

mm/mem64 to two packed double-precision floating-point
values in xmm.
3-152 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-153

INSTRUCTION SET REFERENCE, A-M
CVTPI2PS—Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point Values

Description
Converts two packed signed doubleword integers in the source operand (second operand) to two
packed single-precision floating-point values in the destination operand (first operand). The
source operand can be an MMX technology register or a 64-bit memory location. The destina-
tion operand is an XMM register. The results are stored in the low quadword of the destination
operand, and the high quadword remains unchanged. When a conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPI2PS instruction is executed.

Operation
DEST[31-0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31-0]);
DEST[63-32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63-32]);
* high quadword of destination remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
CVTPI2PS __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
0F 2A /r CVTPI2PS xmm, mm/m64 Convert two signed doubleword integers from mm/m64 to two

single-precision floating-point values in xmm.
3-154 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-155

INSTRUCTION SET REFERENCE, A-M
CVTPS2DQ—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

Description
Converts four packed single-precision floating-point values in the source operand (second
operand) to four packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Operation
DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31-0]);
DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63-32]);
DEST[95-64] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[95-64]);
DEST[127-96] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_cvtps_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
66 0F 5B /r CVTPS2DQ xmm1, xmm2/m128 Convert four packed single-precision floating-

point values from xmm2/m128 to four packed
signed doubleword integers in xmm1.
3-156 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-157

INSTRUCTION SET REFERENCE, A-M
CVTPS2PD—Convert Packed Single-Precision Floating-Point
Values to Packed Double-Precision Floating-Point Values

Description
Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed double-precision floating-point values in the destination operand (first
operand). The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the packed
single-precision floating-point values are contained in the low quadword of the register.

Operation
DEST[63-0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31-0]);
DEST[127-64] ← Convert_Single_Precision_To_Double_Precision_

Floating_Point(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

Opcode Instruction Description
0F 5A /r CVTPS2PD xmm1, xmm2/m64 Convert two packed single-precision floating-point

values in xmm2/m64 to two packed double-precision
floating-point values in xmm1.
3-158 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-159

INSTRUCTION SET REFERENCE, A-M
CVTPS2PI—Convert Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

Description
Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register. When the source operand is an XMM register, the two
single-precision floating-point values are contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTPS2PI instruction is executed.

Operation
DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31-0]);
DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent
__m64 _mm_cvtps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Description
0F 2D /r CVTPS2PI mm, xmm/m64 Convert two packed single-precision floating-point values

from xmm/m64 to two packed signed doubleword
integers in mm.
3-160 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-161

INSTRUCTION SET REFERENCE, A-M
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value
to Doubleword Integer

Description
Converts a double-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 64-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the double-precision floating-point value
is contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Operation
DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63-0]);

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

Opcode Instruction Description
F2 0F 2D /r CVTSD2SI r32, xmm/m64 Convert one double-precision floating-point value from

xmm/m64 to one signed doubleword integer r32.
3-162 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-163

INSTRUCTION SET REFERENCE, A-M
CVTSD2SS—Convert Scalar Double-Precision Floating-Point
Value to Scalar Single-Precision Floating-Point Value

Description
Converts a double-precision floating-point value in the source operand (second operand) to a
single-precision floating-point value in the destination operand (first operand). The source
operand can be an XMM register or a 64-bit memory location. The destination operand is an
XMM register. When the source operand is an XMM register, the double-precision floating-
point value is contained in the low quadword of the register. The result is stored in the low
doubleword of the destination operand, and the upper 3 doublewords are left unchanged. When
the conversion is inexact, the value returned is rounded according to the rounding control bits in
the MXCSR register.

Operation
DEST[31-0] ← Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63-0]);
* DEST[127-32] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
CVTSD2SS __m128_mm_cvtsd_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
F2 0F 5A /r CVTSD2SS xmm1, xmm2/m64 Convert one double-precision floating-point value in

xmm2/m64 to one single-precision floating-point
value in xmm1.
3-164 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-165

INSTRUCTION SET REFERENCE, A-M
CVTSI2SD—Convert Doubleword Integer to Scalar Double-
Precision Floating-Point Value

Description
Converts a signed doubleword integer in the source operand (second operand) to a double-preci-
sion floating-point value in the destination operand (first operand). The source operand can be
a general-purpose register or a 32-bit memory location. The destination operand is an XMM
register. The result is stored in the low quadword of the destination operand, and the high quad-
word left unchanged.

Operation
DEST[63-0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31-0]);
* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Opcode Instruction Description
F2 0F 2A /r CVTSI2SD xmm, r/m32 Convert one signed doubleword integer from r/m32 to one

double-precision floating-point value in xmm.
3-166 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-167

INSTRUCTION SET REFERENCE, A-M
CVTSI2SS—Convert Doubleword Integer to Scalar Single-
Precision Floating-Point Value

Description
Converts a signed doubleword integer in the source operand (second operand) to a single-preci-
sion floating-point value in the destination operand (first operand). The source operand can be
a general-purpose register or a 32-bit memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand, and the upper
three doublewords are left unchanged. When a conversion is inexact, the value returned is
rounded according to the rounding control bits in the MXCSR register.

Operation
DEST[31-0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31-0]);
* DEST[127-32] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
__m128_mm_cvtsi32_ss(__m128d a, int b)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Opcode Instruction Description
F3 0F 2A /r CVTSI2SS xmm, r/m32 Convert one signed doubleword integer from r/m32 to one

single-precision floating-point value in xmm.
3-168 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-169

INSTRUCTION SET REFERENCE, A-M
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value
to Scalar Double-Precision Floating-Point Value

Description
Converts a single-precision floating-point value in the source operand (second operand) to a
double-precision floating-point value in the destination operand (first operand). The source
operand can be an XMM register or a 32-bit memory location. The destination operand is an
XMM register. When the source operand is an XMM register, the single-precision floating-point
value is contained in the low doubleword of the register. The result is stored in the low quadword
of the destination operand, and the high quadword is left unchanged.

Operation
DEST[63-0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31-0]);
* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
CVTSS2SD __m128d_mm_cvtss_sd(__m128d a, __m128 b)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

Opcode Instruction Description
F3 0F 5A /r CVTSS2SD xmm1, xmm2/m32 Convert one single-precision floating-point value in

xmm2/m32 to one double-precision floating-point
value in xmm1.
3-170 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-171

INSTRUCTION SET REFERENCE, A-M
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value
to Doubleword Integer

Description
Converts a single-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 32-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-point value
is contained in the low doubleword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register. If a converted result is larger than the maximum signed doubleword
integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

Operation
DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31-0]);

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvtss_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

Opcode Instruction Description
F3 0F 2D /r CVTSS2SI r32, xmm/m32 Convert one single-precision floating-point value from

xmm/m32 to one signed doubleword integer in r32.
3-172 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-173

INSTRUCTION SET REFERENCE, A-M
CVTTPD2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Description
Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an MMX technology register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTTPD2PI instruction is executed.

Operation
DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer_

Truncate(SRC[127-64]);

Intel C/C++ Compiler Intrinsic Equivalent
CVTTPD1PI __m64 _mm_cvttpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction Description
66 0F 2C /r CVTTPD2PI mm, xmm/m128 Convert two packer double-precision floating-point

values from xmm/m128 to two packed signed
doubleword integers in mm using truncation.
3-174 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-175

INSTRUCTION SET REFERENCE, A-M
CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Converts two packed double-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The result is stored in the low quadword of the destination operand
and the high quadword is cleared to all 0s.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Operation
DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63-0]);
DEST[63-32] ← Convert_Double_Precision_Floating_Point_To_Integer_

Truncate(SRC[127-64]);
DEST[127-64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
66 0F E6 CVTTPD2DQ xmm1, xmm2/m128 Convert two packed double-precision floating-point

values from xmm2/m128 to two packed signed
doubleword integers in xmm1 using truncation.
3-176 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-177

INSTRUCTION SET REFERENCE, A-M
CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Converts four packed single-precision floating-point values in the source operand (second
operand) to four packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. When a conversion is inexact, a truncated (round toward zero)
result is returned. If a converted result is larger than the maximum signed doubleword integer,
the floating-point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

Operation
DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31-0]);
DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63-32]);
DEST[95-64] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95-64]);
DEST[127-96] ← Convert_Single_Precision_Floating_Point_To_Integer_

Truncate(SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_cvttps_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
F3 0F 5B /r CVTTPS2DQ xmm1, xmm2/m128 Convert four single-precision floating-point

values from xmm2/m128 to four signed
doubleword integers in xmm1 using truncation.
3-178 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-179

INSTRUCTION SET REFERENCE, A-M
CVTTPS2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Description
Converts two packed single-precision floating-point values in the source operand (second
operand) to two packed signed doubleword integers in the destination operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The destination
operand is an MMX technology register. When the source operand is an XMM register, the two
single-precision floating-point values are contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the CVTTPS2PI instruction is executed.

Operation
DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31-0]);
DEST[63-32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent
__m64 _mm_cvttps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

Opcode Instruction Description
0F 2C /r CVTTPS2PI mm, xmm/m64 Convert two single-precision floating-point values from

xmm/m64 to two signed doubleword signed integers in
mm using truncation.
3-180 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-181

INSTRUCTION SET REFERENCE, A-M
CVTTSD2SI—Convert with Truncation Scalar Double-Precision
Floating-Point Value to Signed Doubleword Integer

Description
Converts a double-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 64-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the double-precision floating-point value
is contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Operation
DEST[31-0] ← Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63-0]);

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvttsd_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
F2 0F 2C /r CVTTSD2SI r32, xmm/m64 Convert one double-precision floating-point value from

xmm/m64 to one signed doubleword integer in r32 using
truncation.
3-182 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-183

INSTRUCTION SET REFERENCE, A-M
CVTTSS2SI—Convert with Truncation Scalar Single-Precision
Floating-Point Value to Doubleword Integer

Description
Converts a single-precision floating-point value in the source operand (second operand) to a
signed doubleword integer in the destination operand (first operand). The source operand can be
an XMM register or a 32-bit memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-point value
is contained in the low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted
result is larger than the maximum signed doubleword integer, the floating-point invalid excep-
tion is raised, and if this exception is masked, the indefinite integer value (80000000H) is
returned.

Operation
DEST[31-0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31-0]);

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_cvttss_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

Opcode Instruction Description
F3 0F 2C /r CVTTSS2SI r32, xmm/m32 Convert one single-precision floating-point value from

xmm/m32 to one signed doubleword integer in r32 using
truncation.
3-184 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-185

INSTRUCTION SET REFERENCE, A-M
CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword

Description
Doubles the size of the operand in register AX or EAX (depending on the operand size) by
means of sign extension and stores the result in registers DX:AX or EDX:EAX, respectively.
The CWD instruction copies the sign (bit 15) of the value in the AX register into every bit posi-
tion in the DX register (see Figure 7-6 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1). The CDQ instruction copies the sign (bit 31) of the value in the EAX
register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before a word
division, and the CDQ instruction can be used to produce a quadword dividend from a double-
word before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended
for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

Operation
IF OperandSize = 16 (* CWD instruction *)

THEN DX ← SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX ← SignExtend(EAX);
FI;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
99 CWD DX:AX ← sign-extend of AX
99 CDQ EDX:EAX ← sign-extend of EAX
3-186 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
CWDE—Convert Word to Doubleword

See the entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.
Vol. 2A 3-187

INSTRUCTION SET REFERENCE, A-M
DAA—Decimal Adjust AL after Addition

Description
Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is
the implied source and destination operand. The DAA instruction is only useful when it follows
an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte
result in the AL register. The DAA instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF
flags are set accordingly.

Operation

old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) OR AF = 1)
 THEN
 AL ← AL + 6;
 CF ← old_CF OR (Carry from AL ← AL + 6);
 AF ← 1;
 ELSE
 AF ← 0;
FI;
IF ((old_AL > 99H) OR (old_CF = 1))
 THEN
 AL ← AL + 60H;
 CF ← 1;
 ELSE
 CF ← 0;
FI;

Example
ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX

After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000
DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000

After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111
DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000

After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

Opcode Instruction Description
27 DAA Decimal adjust AL after addition.
3-188 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal carry in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Exceptions (All Operating Modes)
None.
Vol. 2A 3-189

INSTRUCTION SET REFERENCE, A-M
DAS—Decimal Adjust AL after Subtraction

Description
Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result.
The AL register is the implied source and destination operand. The DAS instruction is only
useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed
BCD value from another and stores a byte result in the AL register. The DAS instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a
decimal borrow is detected, the CF and AF flags are set accordingly.

Operation

old_AL ← AL;
old_CF ← CF;
CF ← 0;
IF (((AL AND 0FH) > 9) OR AF = 1)
 THEN
 AL ← AL − 6;
 CF ← old_CF OR (Borrow from AL ← AL − 6);
 AF ← 1;
 ELSE
 AF ← 0;
FI;
IF ((old_AL > 99H) OR (old_CF = 1))
 THEN
 AL ← AL − 60H;
 CF ← 1;
 ELSE
 CF ← 0;
FI;

Example
SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX

After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111
DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111

After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Opcode Instruction Description
2F DAS Decimal adjust AL after subtraction.
3-190 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Flags Affected
The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Exceptions (All Operating Modes)
None.
Vol. 2A 3-191

INSTRUCTION SET REFERENCE, A-M
DEC—Decrement by 1

Description
Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destina-
tion operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (To perform a decrement operation that updates the CF
flag, use a SUB instruction with an immediate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST ← DEST – 1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description
FE /1 DEC r/m8 Decrement r/m8 by 1.
FF /1 DEC r/m16 Decrement r/m16 by 1.
FF /1 DEC r/m32 Decrement r/m32 by 1.
48+rw DEC r16 Decrement r16 by 1.
48+rd DEC r32 Decrement r32 by 1.
3-192 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-193

INSTRUCTION SET REFERENCE, A-M
DIV—Unsigned Divide

Description
Divides (unsigned) the value in the AX, DX:AX, or EDX:EAX registers (dividend) by the
source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX regis-
ters. The source operand can be a general-purpose register or a memory location. The action of
this instruction depends on the operand size (dividend/divisor). See Table 3-19.

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

Operation
IF SRC = 0

THEN #DE; (* divide error *)
FI;
IF OperandSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;
ELSE

IF OperandSize = 16 (* doubleword/word operation *)
THEN

Opcode Instruction Description
F6 /6 DIV r/m8 Unsigned divide AX by r/m8, with result stored in

AL ← Quotient, AH ← Remainder.
F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16, with result stored in

AX ← Quotient, DX ← Remainder.
F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32, with result stored in

EAX ← Quotient, EDX ← Remainder.

Table 3-19. DIV Action

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1
3-194 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
temp ← DX:AX / SRC;

IF temp > FFFFH
THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
FI;

FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
Vol. 2A 3-195

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-196 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
DIVPD—Divide Packed Double-Precision Floating-Point Values

Description
Performs an SIMD divide of the four packed double-precision floating-point values in the desti-
nation operand (first operand) by the four packed double-precision floating-point values in the
source operand (second operand), and stores the packed double-precision floating-point results
in the destination operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 11-3 in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1 for an illustration of an SIMD double-precision
floating-point operation.

Operation
DEST[63-0] ← DEST[63-0] / (SRC[63-0]);
DEST[127-64] ← DEST[127-64] / (SRC[127-64]);

Intel C/C++ Compiler Intrinsic Equivalent
DIVPD __m128 _mm_div_pd(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
66 0F 5E /r DIVPD xmm1, xmm2/m128 Divide packed double-precision floating-point values in

xmm1 by packed double-precision floating-point values
xmm2/m128.
Vol. 2A 3-197

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-198 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
DIVPS—Divide Packed Single-Precision Floating-Point Values

Description
Performs an SIMD divide of the two packed single-precision floating-point values in the desti-
nation operand (first operand) by the two packed single-precision floating-point values in the
source operand (second operand), and stores the packed single-precision floating-point results
in the destination operand. The source operand can be an XMM register or a 128-bit memory
location. The destination operand is an XMM register. See Figure 10-5 in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1 for an illustration of an SIMD single-precision
floating-point operation.

Operation
DEST[31-0] ← DEST[31-0] / (SRC[31-0]);
DEST[63-32] ← DEST[63-32] / (SRC[63-32]);
DEST[95-64] ← DEST[95-64] / (SRC[95-64]);
DEST[127-96] ← DEST[127-96] / (SRC[127-96]);

Intel C/C++ Compiler Intrinsic Equivalent
DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

Opcode Instruction Description
0F 5E /r DIVPS xmm1, xmm2/m128 Divide packed single-precision floating-point values in

xmm1 by packed single-precision floating-point values
xmm2/m128.
Vol. 2A 3-199

INSTRUCTION SET REFERENCE, A-M
If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-200 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
DIVSD—Divide Scalar Double-Precision Floating-Point Values

Description
Divides the low double-precision floating-point value in the destination operand (first operand)
by the low double-precision floating-point value in the source operand (second operand), and
stores the double-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 64-bit memory location. The destination operand is an XMM
register. The high quadword of the destination operand remains unchanged. See Figure 11-4 in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illustration of a
scalar double-precision floating-point operation.

Operation
DEST[63-0] ← DEST[63-0] / SRC[63-0];
* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
DIVSD __m128d _mm_div_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Opcode Instruction Description
F2 0F 5E /r DIVSD xmm1, xmm2/m64 Divide low double-precision floating-point value n xmm1

by low double-precision floating-point value in
xmm2/mem64.
Vol. 2A 3-201

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-202 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
DIVSS—Divide Scalar Single-Precision Floating-Point Values

Description
Divides the low single-precision floating-point value in the destination operand (first operand)
by the low single-precision floating-point value in the source operand (second operand), and
stores the single-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain unchanged. See
Figure 10-6 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illus-
tration of a scalar single-precision floating-point operation.

Operation
DEST[31-0] ← DEST[31-0] / SRC[31-0];
* DEST[127-32] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Opcode Instruction Description
F3 0F 5E /r DIVSS xmm1, xmm2/m32 Divide low single-precision floating-point value in xmm1

by low single-precision floating-point value in
xmm2/m32.
Vol. 2A 3-203

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-204 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
EMMS—Empty MMX Technology State

Description
Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This operation marks
the x87 FPU data registers (which are aliased to the MMX technology registers) as available for
use by x87 FPU floating-point instructions. (See Figure 8-7 in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1, for the format of the x87 FPU tag word.) All other MMX
instructions (other than the EMMS instruction) set all the tags in x87 FPU tag word to valid (all
0s).
The EMMS instruction must be used to clear the MMX technology state at the end of all MMX
technology procedures or subroutines and before calling other procedures or subroutines that
may execute x87 floating-point instructions. If a floating-point instruction loads one of the regis-
ters in the x87 FPU data register stack before the x87 FPU tag word has been reset by the EMMS
instruction, an x87 floating-point register stack overflow can occur that will result in an x87
floating-point exception or incorrect result.

Operation
x87FPUTagWord ← FFFFH;

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_empty()

Flags Affected
None.

Protected Mode Exceptions
#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions
Same as for protected mode exceptions.

Virtual-8086 Mode Exceptions
Same as for protected mode exceptions.

Opcode Instruction Description
0F 77 EMMS Set the x87 FPU tag word to empty.
Vol. 2A 3-205

INSTRUCTION SET REFERENCE, A-M
ENTER—Make Stack Frame for Procedure Parameters

Description
Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the proce-
dure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the
procedure. The nesting level determines the number of stack frame pointers that are copied into
the “display area” of the new stack frame from the preceding frame. Both of these operands are
immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies
the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. The ENTER instruction (when used) is typically the first instruction in a procedure
and is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at
the end of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the
ESP register with the current stack-pointer value minus the value in the size operand. For nesting
levels of 1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called procedure with
access points to other nested frames on the stack. See “Procedure Calls for Block-Structured
Languages” in Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual, Volume
1, for more information about the actions of the ENTER instruction.

Operation
NestingLevel ← NestingLevel MOD 32
IF StackSize = 32

THEN
Push(EBP) ;
FrameTemp ← ESP;

ELSE (* StackSize = 16*)
Push(BP);
FrameTemp ← SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;
IF (NestingLevel > 0)

Opcode Instruction Description
C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure.
C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure.
C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure.
3-206 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FOR i ← 1 TO (NestingLevel − 1)
DO

IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP − 4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP ← BP − 4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

EBP ← EBP − 2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP ← BP − 2;
Push([BP]); (* word push *)

FI;
FI;

OD;
IF OperandSize = 32

THEN
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32

THEN
EBP ← FrameTemp
ESP ← EBP − Size;

ELSE (* StackSize = 16*)
BP ← FrameTemp
SP ← BP − Size;

FI;
END;

Flags Affected
None.
Vol. 2A 3-207

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment

limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment

limit.

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment

limit.

#PF(fault-code) If a page fault occurs.
3-208 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
F2XM1—Compute 2x–1

Description
Computes the exponential value of 2 to the power of the source operand minus 1. The source
operand is located in register ST(0) and the result is also stored in ST(0). The value of the source
operand must lie in the range –1.0 to +1.0. If the source value is outside this range, the result is
undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Values other than 2 can be exponentiated using the following formula:
xy ← 2(y ∗ log2x)

Operation
ST(0) ← (2ST(0) − 1);

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source is a denormal value.

#U Result is too small for destination format.

Opcode Instruction Description
D9 F0 F2XM1 Replace ST(0) with (2ST(0) – 1).

Table 3-20. Results Obtained from F2XM1
ST(0) SRC ST(0) DEST

−1.0 to −0 −0.5 to −0

−0 −0

+0 +0

+0 to +1.0 +0 to 1.0
Vol. 2A 3-209

INSTRUCTION SET REFERENCE, A-M
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-210 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FABS—Absolute Value

Description
Clears the sign bit of ST(0) to create the absolute value of the operand. The following table
shows the results obtained when creating the absolute value of various classes of numbers.

NOTE:
F Means finite floating-point value.

Operation
ST(0) ← |ST(0)|

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 E1 FABS Replace ST with its absolute value.

Table 3-21. Results Obtained from FABS
ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 +0

+F +F

+∞ +∞

NaN NaN
Vol. 2A 3-211

INSTRUCTION SET REFERENCE, A-M
FADD/FADDP/FIADD—Add

Description
Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location. Source operands in memory can be in single-precision or double-precision floating-
point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either a floating-
point or an integer value) to the contents of the ST(0) register. The two-operand version, adds
the contents of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be
doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-precision
floating-point format before performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated. See Table
3-22.

Opcode Instruction Description
D8 /0 FADD m32fp Add m32fp to ST(0) and store result in ST(0).
DC /0 FADD m64fp Add m64fp to ST(0) and store result in ST(0).
D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0).
DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i).
DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the

register stack.
DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the

register stack.
DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0).
DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0).
3-212 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
.

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FIADD

THEN
DEST ← DEST + ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* source operand is floating-point value *)
DEST ← DEST + SRC;

FI;
IF instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Table 3-22. FADD/FADDP/FIADD Results
DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ -∞ -∞ -∞ -∞ -∞ * NaN

−F or −I -∞ −F SRC SRC ±F or ±0 +∞ NaN

SRC −0 -∞ DEST −0 ±0 DEST +∞ NaN

+0 -∞ DEST ±0 +0 DEST +∞ NaN

+F or +I -∞ ±F or ±0 SRC SRC +F +∞ NaN

+∞ * +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN
Vol. 2A 3-213

INSTRUCTION SET REFERENCE, A-M
#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-214 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FBLD—Load Binary Coded Decimal

Description
Converts the BCD source operand into double extended-precision floating-point format and
pushes the value onto the FPU stack. The source operand is loaded without rounding errors. The
sign of the source operand is preserved, including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not
check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an
undefined result.

Operation
TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

Opcode Instruction Description
DF /4 FBLD m80 dec Convert BCD value to floating-point and push onto the

FPU stack.
Vol. 2A 3-215

INSTRUCTION SET REFERENCE, A-M
#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-216 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FBSTP—Store BCD Integer and Pop

Description
Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in
the destination operand, and pops the register stack. If the source value is a non-integral value,
it is rounded to an integer value, according to rounding mode specified by the RC field of the
FPU control word. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be
stored. The BCD value (including its sign bit) requires 10 bytes of space in memory.

The following table shows the results obtained when storing various classes of numbers in
packed BCD format.

NOTES:
F Means finite floating-point value.
D Means packed-BCD number.
* Indicates floating-point invalid-operation (#IA) exception.
** ±0 or ±1, depending on the rounding mode.

If the converted value is too large for the destination format, or if the source operand is an ∞,
SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand condition is
signaled. If the invalid-operation exception is not masked, an invalid-arithmetic-operand excep-
tion (#IA) is generated and no value is stored in the destination operand. If the invalid-operation
exception is masked, the packed BCD indefinite value is stored in memory.

Opcode Instruction Description
DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

Table 3-23. FBSTP Results
ST(0) DEST

-∞ or Value Too Large for DEST Format *

F ≤ −1 −D

−1 < F < −0 **

−0 −0

+0 +0

+0 < F < +1 **

F ≥ +1 +D

+∞ or Value Too Large for DEST Format *

NaN *
Vol. 2A 3-217

INSTRUCTION SET REFERENCE, A-M
Operation
DEST ← BCD(ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Converted value that exceeds 18 BCD digits in length.

Source operand is an SNaN, QNaN, ±∞, or in an unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a segment register is being loaded with a segment selector that points to

a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.
3-218 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-219

INSTRUCTION SET REFERENCE, A-M
FCHS—Change Sign

Description
Complements the sign bit of ST(0). This operation changes a positive value into a negative value
of equal magnitude or vice versa. The following table shows the results obtained when changing
the sign of various classes of numbers.

NOTE:
F Means finite floating-point value.

Operation
SignBit(ST(0)) ← NOT (SignBit(ST(0)))

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 E0 FCHS Complements sign of ST(0)

Table 3-24. FCHS Results
ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 −0

+F −F

+∞ −∞

NaN NaN
3-220 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FCLEX/FNCLEX—Clear Exceptions

Description
Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The
FCLEX instruction checks for and handles any pending unmasked floating-point exceptions
before clearing the exception flags; the FNCLEX instruction does not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction
followed by an FNCLEX instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible
(under unusual circumstances) for an FNCLEX instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNCLEX instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not affect the
SIMD floating-point exception flags in the MXCRS register.

Operation
FPUStatusWord[0..7] ← 0;
FPUStatusWord[15] ← 0;

FPU Flags Affected
The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0,
C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
9B DB E2 FCLEX Clear floating-point exception flags after checking for

pending unmasked floating-point exceptions.
DB E2 FNCLEX* Clear floating-point exception flags without checking for

pending unmasked floating-point exceptions. See the IA-
32 Architecture Compatibility section below.
Vol. 2A 3-221

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-222 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FCMOVcc—Floating-Point Conditional Move

Description
Tests the status flags in the EFLAGS register and moves the source operand (second operand)
to the destination operand (first operand) if the given test condition is true. The condition for
each mnemonic os given in the Description column above and in Table 7-4 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1. The source operand is always in the
ST(i) register and the destination operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF operations and the possibility of branch mispredictions by
the processor.

A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values
and Set EFLAGS” in this chapter). If both the CMOV and FPU feature bits are set, the
FCMOVcc instructions are supported.

IA-32 Architecture Compatibility
The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family proces-
sors and are not available in earlier IA-32 processors.

Operation
IF condition TRUE

ST(0) ← ST(i)
FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Opcode Instruction Description
DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1).
DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1).
DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1).
DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1).
DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0).
DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0).
DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0).
DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0).
Vol. 2A 3-223

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

Integer Flags Affected
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-224 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Description
Compares the contents of register ST(0) and source value and sets condition code flags C0, C2,
and C3 in the FPU status word according to the results (see the table below). The source operand
can be a data register or a memory location. If no source operand is given, the value in ST(0) is
compared with the value in ST(1). The sign of zero is ignored, so that –0.0 is equal to +0.0.

NOTE:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

This instruction checks the class of the numbers being compared (see “FXAM—Examine” in
this chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-
operand exception (#IA) is raised and, if the exception is masked, the condition flags are set to
“unordered.” If the invalid-arithmetic-operand exception is unmasked, the condition code flags
are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arith-
metic-operand exception (#IA) when either or both of the operands is a NaN value or is in an

Opcode Instruction Description
D8 /2 FCOM m32fp Compare ST(0) with m32fp.
DC /2 FCOM m64fp Compare ST(0) with m64fp.
D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).
D8 D1 FCOM Compare ST(0) with ST(1).
D8 /3 FCOMP m32fp Compare ST(0) with m32fp and pop register stack.
DC /3 FCOMP m64fp Compare ST(0) with m64fp and pop register stack.
D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.
D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.
DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Table 3-25. FCOM/FCOMP/FCOMPP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1
Vol. 2A 3-225

INSTRUCTION SET REFERENCE, A-M
unsupported format. The FUCOM instructions perform the same operation as the FCOM
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs.

Operation
CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
3-226 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-227

INSTRUCTION SET REFERENCE, A-M
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point
Values and Set EFLAGS

Description
Performs an unordered comparison of the contents of registers ST(0) and ST(i) and sets the
status flags ZF, PF, and CF in the EFLAGS register according to the results (see the table
below). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.

NOTE:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine” in this chapter). The FUCOMI/FUCOMIP instructions perform the same
operations as the FCOMI/FCOMIP instructions. The only difference is that the
FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand exception (#IA) only
when either or both operands are an SNaN or are in an unsupported format; QNaNs cause the
condition code flags to be set to unordered, but do not cause an exception to be generated. The
FCOMI/FCOMIP instructions raise an invalid-operation exception when either or both of the
operands are a NaN value of any kind or are in an unsupported format.

If the operation results in an invalid-arithmetic-operand exception being raised, the status flags
in the EFLAGS register are set only if the exception is masked.

The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions clear the OF flag in the EFLAGS
register (regardless of whether an invalid-operation exception is detected).

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty and incre-
ments the stack pointer (TOP) by 1.

Opcode Instruction Description
DB F0+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly.
DF F0+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and

pop register stack.
DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and

set status flags accordingly.
DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set

status flags accordingly, and pop register stack.

Table 3-26. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results
Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered* 1 1 1
3-228 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32 Archi-
tecture in the P6 family processors and are not available in earlier IA-32 processors.

Operation
CASE (relation of operands) OF

ST(0) > ST(i): ZF, PF, CF ← 000;
ST(0) < ST(i): ZF, PF, CF ← 001;
ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;
IF instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF, PF, CF ← 111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FCOMIP or FUCOMIP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 Not affected.
Vol. 2A 3-229

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or
have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a QNaN
value does not raise an invalid-operand exception.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-230 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FCOS—Cosine

Description
Computes the cosine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following
table shows the results obtained when taking the cosine of various classes of numbers.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

Operation
IF |ST(0)| < 263

THEN
C2 ← 0;
ST(0) ← cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

Opcode Instruction Description
D9 FF FCOS Replace ST(0) with its cosine.

Table 3-27. FCOS Results
ST(0) SRC ST(0) DEST

−∞ *

−F −1 to +1

−0 +1

+0 +1

+F −1 to +1

+∞ *

NaN NaN
Vol. 2A 3-231

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

Undefined if C2 is 1.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-232 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FDECSTP—Decrement Stack-Top Pointer

Description
Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer).
If the TOP field contains a 0, it is set to 7. The effect of this instruction is to rotate the stack by
one position. The contents of the FPU data registers and tag register are not affected.

Operation
IF TOP = 0

THEN TOP ← 7;
ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected
The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 F6 FDECSTP Decrement TOP field in FPU status word.
Vol. 2A 3-233

INSTRUCTION SET REFERENCE, A-M
FDIV/FDIVP/FIDIV—Divide

Description
Divides the destination operand by the source operand and stores the result in the destination
location. The destination operand (dividend) is always in an FPU register; the source operand
(divisor) can be a register or a memory location. Source operands in memory can be in single-
precision or double-precision floating-point format, word or doubleword integer format.

The no-operand version of the instruction divides the contents of the ST(1) register by the
contents of the ST(0) register. The one-operand version divides the contents of the ST(0) register
by the contents of a memory location (either a floating-point or an integer value). The two-
operand version, divides the contents of the ST(0) register by the contents of the ST(i) register
or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to double extended-precision
floating-point format before performing the division. When the source operand is an integer 0,
it is treated as a +0.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description
D8 /6 FDIV m32fp Divide ST(0) by m32fp and store result in ST(0).
DC /6 FDIV m64fp Divide ST(0) by m64fp and store result in ST(0).
D8 F0+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0).
DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i).
DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the

register stack.
DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the

register stack.
DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0).
DE /6 FIDIV m16int Divide ST(0) by m64int and store result in ST(0).
3-234 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

Operation
IF SRC = 0

THEN
#Z

ELSE
IF instruction is FIDIV

THEN
DEST ← DEST / ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* source operand is floating-point value *)
DEST ← DEST / SRC;

FI;
FI;
IF instruction = FDIVP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Table 3-28. FDIV/FDIVP/FIDIV Results
DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ * +0 +0 −0 −0 * NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 +∞ ** * * ** −∞ NaN

+0 −∞ ** * * ** +∞ NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ * −0 −0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
Vol. 2A 3-235

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Source is a denormal value.

#Z DEST / ±0, where DEST is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-236 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description
Divides the source operand by the destination operand and stores the result in the destination
location. The destination operand (divisor) is always in an FPU register; the source operand
(dividend) can be a register or a memory location. Source operands in memory can be in single-
precision or double-precision floating-point format, word or doubleword integer format.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions.
They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version divides the contents of a memory loca-
tion (either a floating-point or an integer value) by the contents of the ST(0) register. The two-
operand version, divides the contents of the ST(i) register by the contents of the ST(0) register
or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
divide instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to double extended-precision
floating-point format before performing the division.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description
D8 /7 FDIVR m32fp Divide m32fp by ST(0) and store result in ST(0)
DC /7 FDIVR m64fp Divide m64fp by ST(0) and store result in ST(0)
D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)
DC F0+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)
DE F0+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the

register stack
DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the

register stack
DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)
DE /7 FIDIVR m16int Divide m16int by ST(0) and store result in ST(0)
Vol. 2A 3-237

INSTRUCTION SET REFERENCE, A-M
NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation
IF DEST = 0

THEN
#Z

ELSE
IF instruction is FIDIVR

THEN
DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) / DEST;

ELSE (* source operand is floating-point value *)
DEST ← SRC / DEST;

FI;
FI;
IF instruction = FDIVRP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Table 3-29. FDIVR/FDIVRP/FIDIVR Results
DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ * +∞ +∞ −∞ −∞ * NaN

SRC −F +0 +F ** ** -F −0 NaN

−I +0 +F ** ** -F −0 NaN

−0 +0 +0 * * −0 −0 NaN

+0 −0 −0 * * +0 +0 NaN

+I −0 -F ** ** +F +0 NaN

+F −0 -F ** ** +F +0 NaN

+∞ * −∞ −∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
3-238 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Source is a denormal value.

#Z SRC / ±0, where SRC is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-239

INSTRUCTION SET REFERENCE, A-M
FFREE—Free Floating-Point Register

Description
Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents
of ST(i) and the FPU stack-top pointer (TOP) are not affected.

Operation
TAG(i) ← 11B;

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
DD C0+i FFREE ST(i) Sets tag for ST(i) to empty.
3-240 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FICOM/FICOMP—Compare Integer

Description
Compares the value in ST(0) with an integer source operand and sets the condition code flags
C0, C2, and C3 in the FPU status word according to the results (see table below). The integer
value is converted to double extended-precision floating-point format before the comparison is
made.

These instructions perform an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—Examine” in this chapter). If either
operand is a NaN or is in an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 ← +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the register
stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

Operation
CASE (relation of operands) OF

ST(0) > SRC: C3, C2, C0 ← 000;
ST(0) < SRC: C3, C2, C0 ← 001;
ST(0) = SRC: C3, C2, C0 ← 100;
Unordered: C3, C2, C0 ← 111;

ESAC;
IF instruction = FICOMP

THEN
PopRegisterStack;

FI;

Opcode Instruction Description
DE /2 FICOM m16int Compare ST(0) with m16int.
DA /2 FICOM m32int Compare ST(0) with m32int.
DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register.
DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register.

Table 3-30. FICOM/FICOMP Results
Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1
Vol. 2A 3-241

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-242 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FILD—Load Integer

Description
Converts the signed-integer source operand into double extended-precision floating-point
format and pushes the value onto the FPU register stack. The source operand can be a word,
doubleword, or quadword integer. It is loaded without rounding errors. The sign of the source
operand is preserved.

Operation
TOP ← TOP − 1;
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description
DF /0 FILD m16int Push m16int onto the FPU register stack.
DB /0 FILD m32int Push m32int onto the FPU register stack.
DF /5 FILD m64int Push m64int onto the FPU register stack.
Vol. 2A 3-243

INSTRUCTION SET REFERENCE, A-M
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-244 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FINCSTP—Increment Stack-Top Pointer

Description
Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). If the
TOP field contains a 7, it is set to 0. The effect of this instruction is to rotate the stack by one
position. The contents of the FPU data registers and tag register are not affected. This operation
is not equivalent to popping the stack, because the tag for the previous top-of-stack register is
not marked empty.

Operation
IF TOP = 7

THEN TOP ← 0;
ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected
The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 F7 FINCSTP Increment the TOP field in the FPU status register.
Vol. 2A 3-245

INSTRUCTION SET REFERENCE, A-M
FINIT/FNINIT—Initialize Floating-Point Unit

Description
Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default
states. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers
in the register stack are left unchanged, but they are all tagged as empty (11B). Both the instruc-
tion and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions
before performing the initialization; the FNINIT instruction does not.

The assembler issues two instructions for the FINIT instruction (an FWAIT instruction followed
by an FNINIT instruction), and the processor executes each of these instructions in separately.
If an exception is generated for either of these instructions, the save EIP points to the instruction
that caused the exception.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNINIT instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNINIT instruction
cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction
and data pointers.

This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR registers.

Operation
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

Opcode Instruction Description
9B DB E3 FINIT Initialize FPU after checking for pending unmasked

floating-point exceptions.
DB E3 FNINIT Initialize FPU without checking for pending unmasked

floating-point exceptions. See the IA-32 Architecture
Compatibility section below.
3-246 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C0, C1, C2, C3 set to 0.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
Vol. 2A 3-247

INSTRUCTION SET REFERENCE, A-M
FIST/FISTP—Store Integer

Description
The FIST instruction converts the value in the ST(0) register to a signed integer and stores the
result in the destination operand. Values can be stored in word or doubleword integer format.
The destination operand specifies the address where the first byte of the destination value is to
be stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FISTP instruction also stores values in quadword
integer format.

The following table shows the results obtained when storing various classes of numbers in
integer format.

NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-operation (#IA) exception.
** 0 or ±1, depending on the rounding mode.

Opcode Instruction Description
DF /2 FIST m16int Store ST(0) in m16int.
DB /2 FIST m32int Store ST(0) in m32int.
DF /3 FISTP m16int Store ST(0) in m16int and pop register stack.
DB /3 FISTP m32int Store ST(0) in m32int and pop register stack.
DF /7 FISTP m64int Store ST(0) in m64int and pop register stack.

Table 3-31. FIST/FISTP Results
ST(0) DEST

−∞ or Value Too Large for DEST Format *

F ≤ −1 −I

−1 < F < −0 **

−0 0

+0 0

+0 < F < +1 **

F ≥ +1 +I

+∞ or Value Too Large for DEST Format *

NaN *
3-248 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If the source value is a non-integral value, it is rounded to an integer value, according to the
rounding mode specified by the RC field of the FPU control word.

If the converted value is too large for the destination format, or if the source operand is an ∞,
SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand condition is
signaled. If the invalid-operation exception is not masked, an invalid-arithmetic-operand excep-
tion (#IA) is generated and no value is stored in the destination operand. If the invalid-operation
exception is masked, the integer indefinite value is stored in memory.

Operation
DEST ← Integer(ST(0));
IF instruction = FISTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated:
0 ← not roundup; 1 ← roundup.

Set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Converted value is too large for the destination format.

Source operand is an SNaN, QNaN, ±∞, or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-249

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-250 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FISTTP: Store Integer with Truncation

Description
FISTTP converts the value in ST into a signed integer using truncation (chop) as rounding mode,
transfers the result to the destination, and pop ST. FISTTP accepts word, short integer, and long
integer destinations.

The following table shows the results obtained when storing various classes of numbers in
integer format.

Notes:
F Means finite floating-point value.
Ι Means integer.
∗ Indicates floating-point invalid-operation (#IA) exception.

Operation
DEST ← ST;
pop ST;

Flags Affected
C1 is cleared; C0, C2, C3 undefined.

Numeric Exceptions
Invalid, Stack Invalid (stack underflow), Precision.

Opcode Instruction Description
DF /1
DB /1
DD /1

FISTTP m16int
FISTTP m32int
FISTTP m64int

Store ST as a signed integer (truncate) in
m16int and pop ST.
Store ST as a signed integer (truncate) in
m32int and pop ST.
Store ST as a signed integer (truncate) in
m64int and pop ST.

Table 3-32. FISTTP Results
ST(0) DEST

− ∞ or Value Too Large for DEST Format ∗

F ≤ − 1 − Ι

− 1 < F < +1 0

F ≥ +1 + Ι

+ ∞ or Value Too Large for DEST Format ∗

NaN ∗
Vol. 2A 3-251

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the destination is in a nonwritable segment.

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#NM If CR0.EM = 1.

If TS bit in CR0 is set.

#UD If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.EM = 1.

If TS bit in CR0 is set.

#UD If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If CR0.EM = 1.

If TS bit in CR0 is set.

#UD If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.

#AC(0) For unaligned memory reference if the current privilege is 3.
3-252 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FLD—Load Floating Point Value

Description
Pushes the source operand onto the FPU register stack. The source operand can be in single-
precision, double-precision, or double extended-precision floating-point format. If the source
operand is in single-precision or double-precision floating-point format, it is automatically
converted to the double extended-precision floating-point format before being pushed on the
stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack.
Here, pushing register ST(0) duplicates the stack top.

Operation
IF SRC is ST(i)

THEN
temp ← ST(i)

FI;
TOP ← TOP − 1;
IF SRC is memory-operand

THEN
ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* SRC is ST(i) *)
ST(0) ← temp;

FI;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

#IA Source operand is an SNaN. Does not occur if the source operand is in
double extended-precision floating-point format (FLD m80fp or FLD
ST(i)).

Opcode Instruction Description
D9 /0 FLD m32fp Push m32fp onto the FPU register stack.
DD /0 FLD m64fp Push m64fp onto the FPU register stack.
DB /5 FLD m80fp Push m80fp onto the FPU register stack.
D9 C0+i FLD ST(i) Push ST(i) onto the FPU register stack.
Vol. 2A 3-253

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#D Source operand is a denormal value. Does not occur if the source operand

is in double extended-precision floating-point format.

#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-254 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Description
Push one of seven commonly used constants (in double extended-precision floating-point
format) onto the FPU register stack. The constants that can be loaded with these instructions
include +1.0, +0.0, log210, log2e, π, log102, and loge2. For each constant, an internal 66-bit
constant is rounded (as specified by the RC field in the FPU control word) to double extended-
precision floating-point format. The inexact-result exception (#P) is not generated as a result of
the rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up.

See the section titled “Pi” in Chapter 8 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, for a description of the π constant.

Operation
TOP ← TOP − 1;
ST(0) ← CONSTANT;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack overflow occurred.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 E8 FLD1 Push +1.0 onto the FPU register stack.
D9 E9 FLDL2T Push log210 onto the FPU register stack.
D9 EA FLDL2E Push log2e onto the FPU register stack.
D9 EB FLDPI Push π onto the FPU register stack.
D9 EC FLDLG2 Push log102 onto the FPU register stack.
D9 ED FLDLN2 Push loge2 onto the FPU register stack.
D9 EE FLDZ Push +0.0 onto the FPU register stack.
Vol. 2A 3-255

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

IA-32 Architecture Compatibility
When the RC field is set to round-to-nearest, the FPU produces the same constants that is
produced by the Intel 8087 and Intel 287 math coprocessors.
3-256 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FLDCW—Load x87 FPU Control Word

Description
Loads the 16-bit source operand into the FPU control word. The source operand is a memory
location. This instruction is typically used to establish or change the FPU’s mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU control
word and the new control word unmasks one or more of those exceptions, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see the section titled “Software Exception Handling” in
Chapter 8 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1). To avoid
raising exceptions when changing FPU operating modes, clear any pending exceptions (using
the FCLEX or FNCLEX instruction) before loading the new control word.

Operation
FPUControlWord ← SRC;

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None; however, this operation might unmask a pending exception in the FPU status word. That
exception is then generated upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description
D9 /5 FLDCW m2byte Load FPU control word from m2byte.
Vol. 2A 3-257

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-258 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FLDENV—Load x87 FPU Environment

Description
Loads the complete x87 FPU operating environment from memory into the FPU registers. The
source operand specifies the first byte of the operating-environment data in memory. This data
is typically written to the specified memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1, show the layout in memory of the loaded
environment, depending on the operating mode of the processor (protected or real) and the
current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are
used.

The FLDENV instruction should be executed in the same operating mode as the corresponding
FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see the section titled “Software Exception Handling” in
Chapter 8 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1). To avoid
generating exceptions when loading a new environment, clear all the exception flags in the FPU
status word that is being loaded.

If a page or limit fault occurs during the execution of this instruction, the state of the x87 FPU
registers as seen by the fault handler may be different than the state being loaded from memory.
In such situations, the fault handler should ignore the status of the x87 FPU registers, handle the
fault, and return. The FLDENV instruction will then complete the loading of the x87 FPU regis-
ters with no resulting context inconsistency.

Operation
FPUControlWord ← SRC[FPUControlWord);
FPUStatusWord ← SRC[FPUStatusWord);
FPUTagWord ← SRC[FPUTagWord);
FPUDataPointer ← SRC[FPUDataPointer);
FPUInstructionPointer ← SRC[FPUInstructionPointer);
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode);

FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.

Opcode Instruction Description
D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.
Vol. 2A 3-259

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
None; however, if an unmasked exception is loaded in the status word, it is generated upon
execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-260 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FMUL/FMULP/FIMUL—Multiply

Description
Multiplies the destination and source operands and stores the product in the destination location.
The destination operand is always an FPU data register; the source operand can be an FPU data
register or a memory location. Source operands in memory can be in single-precision or double-
precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction multiplies the contents of the ST(1) register by the
contents of the ST(0) register and stores the product in the ST(1) register. The one-operand
version multiplies the contents of the ST(0) register by the contents of a memory location (either
a floating point or an integer value) and stores the product in the ST(0) register. The two-operand
version, multiplies the contents of the ST(0) register by the contents of the ST(i) register, or vice
versa, with the result being stored in the register specified with the first operand (the destination
operand).

The FMULP instructions perform the additional operation of popping the FPU register stack
after storing the product. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point multiply instructions always results in the register stack being popped. In some assem-
blers, the mnemonic for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to double extended-precision
floating-point format before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the
values being multiplied is 0 or ∞. When the source operand is an integer 0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description
D8 /1 FMUL m32fp Multiply ST(0) by m32fp and store result in ST(0)
DC /1 FMUL m64fp Multiply ST(0) by m64fp and store result in ST(0)
D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)
DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)
DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the

register stack
DE C9 FMULP Multiply ST(1) by ST(0), store result in ST(1), and pop the

register stack
DA /1 FIMUL m32int Multiply ST(0) by m32int and store result in ST(0)
DE /1 FIMUL m16int Multiply ST(0) by m16int and store result in ST(0)
Vol. 2A 3-261

INSTRUCTION SET REFERENCE, A-M
NOTES:
F Means finite floating-point value.
I Means Integer.
* Indicates invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FIMUL

THEN
DEST ← DEST ∗ ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* source operand is floating-point value *)
DEST ← DEST ∗ SRC;

FI;
IF instruction = FMULP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.

Table 3-33. FMUL/FMULP/FIMUL Results
DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ +∞ +∞ * * −∞ −∞ NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 * +0 +0 −0 −0 * NaN

+0 * −0 −0 +0 +0 * NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ −∞ −∞ * * +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN
3-262 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-263

INSTRUCTION SET REFERENCE, A-M
FNOP—No Operation

Description
Performs no FPU operation. This instruction takes up space in the instruction stream but does
not affect the FPU or machine context, except the EIP register.

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 D0 FNOP No operation is performed.
3-264 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FPATAN—Partial Arctangent

Description
Computes the arctangent of the source operand in register ST(1) divided by the source operand
in register ST(0), stores the result in ST(1), and pops the FPU register stack. The result in register
ST(0) has the same sign as the source operand ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the origin to
the point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is ST(0). The angle
depends on the sign of X and Y independently, not just on the sign of the ratio Y/X. This is
because a point (−X,Y) is in the second quadrant, resulting in an angle between π/2 and π, while
a point (X,−Y) is in the fourth quadrant, resulting in an angle between 0 and −π/2. A point (−
X,−Y) is in the third quadrant, giving an angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of various
classes of numbers, assuming that underflow does not occur.

NOTES:
F Means finite floating-point value.

* Table 8-10 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, specifies that the
ratios 0/0 and ∞/∞ generate the floating-point invalid arithmetic-operation exception and, if this exception
is masked, the floating-point QNaN indefinite value is returned. With the FPATAN instruction, the 0/0 or
∞/∞ value is actually not calculated using division. Instead, the arctangent of the two variables is derived
from a standard mathematical formulation that is generalized to allow complex numbers as arguments. In
this complex variable formulation, arctangent(0,0) etc. has well defined values. These values are needed
to develop a library to compute transcendental functions with complex arguments, based on the FPU
functions that only allow floating-point values as arguments.

There is no restriction on the range of source operands that FPATAN can accept.

Opcode Instruction Description
D9 F3 FPATAN Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register stack.

Table 3-34. FPATAN Results
ST(0)

−∞ −F −0 +0 +F +∞ NaN

−∞ −3π/4* −π/2 −π/2 −π/2 −π/2 −π/4* NaN

ST(1) −F −π −π to −π/2 −π/2 −π/2 −π/2 to −0 -0 NaN

−0 −π −π −π* −0* −0 −0 NaN

+0 +π +π +π* +0* +0 +0 NaN

+F +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4* +π/2 +π/2 +π/2 +π/2 +π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN
Vol. 2A 3-265

INSTRUCTION SET REFERENCE, A-M
IA-32 Architecture Compatibility
The source operands for this instruction are restricted for the 80287 math coprocessor to the
following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

Operation
ST(1) ← arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-266 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FPREM—Partial Remainder

Description
Computes the remainder obtained from dividing the value in the ST(0) register (the dividend)
by the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0). The
remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the floating-point number quotient of
[ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the sign of the dividend.
The magnitude of the remainder is less than that of the modulus, unless a partial remainder was
computed (as described below).

This instruction produces an exact result; the inexact-result exception does not occur and the
rounding control has no effect. The following table shows the results obtained when computing
the remainder of various classes of numbers, assuming that underflow does not occur.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE
specified remainder can be computed with the FPREM1 instruction. The FPREM instruction is
provided for compatibility with the Intel 8087 and Intel287 math coprocessors.

Opcode Instruction Description
D9 F8 FPREM Replace ST(0) with the remainder obtained from

dividing ST(0) by ST(1).

Table 3-35. FPREM Results
ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) −F or −0 ** ** −F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
Vol. 2A 3-267

INSTRUCTION SET REFERENCE, A-M
The FPREM instruction gets its name “partial remainder” because of the way it computes the
remainder. This instructions arrives at a remainder through iterative subtraction. It can,
however, reduce the exponent of ST(0) by no more than 63 in one execution of the instruction.
If the instruction succeeds in producing a remainder that is less than the modulus, the operation
is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result
in ST(0) is called the partial remainder. The exponent of the partial remainder will be less than
the exponent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine that needs
the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

Operation
D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsup-
ported format.
3-268 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
Vol. 2A 3-269

INSTRUCTION SET REFERENCE, A-M
FPREM1—Partial Remainder

Description
Computes the IEEE remainder obtained from dividing the value in the ST(0) register (the divi-
dend) by the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0).
The remainder represents the following value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the floating-point number quotient of
[ST(0) / ST(1)] toward the nearest integer value. The magnitude of the remainder is less than or
equal to half the magnitude of the modulus, unless a partial remainder was computed (as
described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not
occur.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

Opcode Instruction Description
D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained from

dividing ST(0) by ST(1).

Table 3-36. FPREM1 Results
ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) ±F or −0 ** ** ±F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) ±F or +0 ** ** ±F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
3-270 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
The FPREM1 instruction computes the remainder specified in IEEE Standard 754. This instruc-
tion operates differently from the FPREM instruction in the way that it rounds the quotient of
ST(0) divided by ST(1) to an integer (see the “Operation” section below).

Like the FPREM instruction, FPREM1 computes the remainder through iterative subtraction,
but can reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If
the instruction succeeds in producing a remainder that is less than one half the modulus, the
operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set,
and the result in ST(0) is called the partial remainder. The exponent of the partial remainder
will be less than the exponent of the original dividend by at least 32. Software can re-execute
the instruction (using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note
that while executing such a remainder-computation loop, a higher-priority interrupting routine
that needs the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

Operation
D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected
C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions
#IS Stack underflow occurred.
Vol. 2A 3-271

INSTRUCTION SET REFERENCE, A-M
#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞,
or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-272 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FPTAN—Partial Tangent

Description
Computes the tangent of the source operand in register ST(0), stores the result in ST(0), and
pushes a 1.0 onto the FPU register stack. The source operand must be given in radians and must
be less than ±263. The following table shows the unmasked results obtained when computing the
partial tangent of various classes of numbers, assuming that underflow does not occur.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain
compatibility with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies
the calculation of other trigonometric functions. For instance, the cotangent (which is the recip-
rocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN
instruction.

Opcode Instruction Description
D9 F2 FPTAN Replace ST(0) with its tangent and push 1 onto the FPU stack.

Table 3-37. FPTAN Results
ST(0) SRC ST(0) DEST

−∞ *

−F −F to +F

−0 −0

+0 +0

+F −F to +F

+∞ *

NaN NaN
Vol. 2A 3-273

INSTRUCTION SET REFERENCE, A-M
Operation
IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← tan(ST(0));
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-274 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FRNDINT—Round to Integer

Description
Rounds the source value in the ST(0) register to the nearest integral value, depending on the
current rounding mode (setting of the RC field of the FPU control word), and stores the result
in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral value, the
floating-point inexact-result exception (#P) is generated.

Operation
ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 FC FRNDINT Round ST(0) to an integer.
Vol. 2A 3-275

INSTRUCTION SET REFERENCE, A-M
FRSTOR—Restore x87 FPU State

Description
Loads the FPU state (operating environment and register stack) from the memory area specified
with the source operand. This state data is typically written to the specified memory location by
a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1, show the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real) and the
current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are
used. The contents of the FPU register stack are stored in the 80 bytes immediately following
the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding
FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point
exception will be generated. To avoid raising exceptions when loading a new operating environ-
ment, clear all the exception flags in the FPU status word that is being loaded.

Operation
FPUControlWord ← SRC[FPUControlWord);
FPUStatusWord ← SRC[FPUStatusWord);
FPUTagWord ← SRC[FPUTagWord);
FPUDataPointer ← SRC[FPUDataPointer);
FPUInstructionPointer ← SRC[FPUInstructionPointer);
FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode);
ST(0) ← SRC[ST(0));
ST(1) ← SRC[ST(1));
ST(2) ← SRC[ST(2));
ST(3) ← SRC[ST(3));
ST(4) ← SRC[ST(4));
ST(5) ← SRC[ST(5));
ST(6) ← SRC[ST(6));
ST(7) ← SRC[ST(7));

FPU Flags Affected
The C0, C1, C2, C3 flags are loaded.

Opcode Instruction Description
DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.
3-276 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
None; however, this operation might unmask an existing exception that has been detected but
not generated, because it was masked. Here, the exception is generated at the completion of the
instruction.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-277

INSTRUCTION SET REFERENCE, A-M
FSAVE/FNSAVE—Store x87 FPU State

Description
Stores the current FPU state (operating environment and register stack) at the specified destina-
tion in memory, and then re-initializes the FPU. The FSAVE instruction checks for and handles
pending unmasked floating-point exceptions before storing the FPU state; the FNSAVE instruc-
tion does not.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1, show the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real) and the
current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are
used. The contents of the FPU register stack are stored in the 80 bytes immediately follow the
operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the
FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with
the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” in this
chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application program
needs to pass a “clean” FPU to a procedure.

The assembler issues two instructions for the FSAVE instruction (an FWAIT instruction
followed by an FNSAVE instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

IA-32 Architecture Compatibility
For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruc-
tion should be executed before attempting to read from the memory image stored with a prior
FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that the storage operation
has been completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSAVE instruction to be interrupted prior to being

Opcode Instruction Description
9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for

pending unmasked floating-point exceptions. Then re-
initialize the FPU.

DD /6 FNSAVE m94/108byte Store FPU environment to m94byte or m108byte without
checking for pending unmasked floating-point exceptions.
Then re-initialize the FPU. See the IA-32 Architecture
Compatibility section below.
3-278 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSAVE instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation
(* Save FPU State and Registers *)
DEST[FPUControlWord) ← FPUControlWord;
DEST[FPUStatusWord) ← FPUStatusWord;
DEST[FPUTagWord) ← FPUTagWord;
DEST[FPUDataPointer) ← FPUDataPointer;
DEST[FPUInstructionPointer) ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode) ← FPULastInstructionOpcode;
DEST[ST(0)) ← ST(0);
DEST[ST(1)) ← ST(1);
DEST[ST(2)) ← ST(2);
DEST[ST(3)) ← ST(3);
DEST[ST(4)) ← ST(4);
DEST[ST(5)) ← ST(5);
DEST[ST(6)) ← ST(6);
DEST[ST(7)) ← ST(7);
(* Initialize FPU *)
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected
The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
Vol. 2A 3-279

INSTRUCTION SET REFERENCE, A-M
#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-280 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FSCALE—Scale

Description
Truncates the value in the source operand (toward 0) to an integral value and adds that value to
the exponent of the destination operand. The destination and source operands are floating-point
values located in registers ST(0) and ST(1), respectively. This instruction provides rapid multi-
plication or division by integral powers of 2. The following table shows the results obtained
when scaling various classes of numbers, assuming that neither overflow nor underflow occurs.

NOTES:
F Means finite floating-point value.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged.
However, when the value being scaled in ST(0) is a denormal value, the mantissa is also changed
and the result may turn out to be a normalized number. Similarly, if overflow or underflow
results from a scale operation, the resulting mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as
shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from the value
in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then scales the signif-
icand in ST(0) by the exponent in ST(1), recreating the original value before the FXTRACT
operation was performed. The FSTP ST(1) instruction overwrites the exponent (extracted by the

Opcode Instruction Description
D9 FD FSCALE Scale ST(0) by ST(1).

Table 3-38. FSCALE Results
ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ NaN −∞ −∞ −∞ −∞ −∞ NaN

ST(0) −F −0 −F −F −F −F −∞ NaN

−0 −0 −0 −0 −0 −0 NaN NaN

+0 +0 +0 +0 +0 +0 NaN NaN

+F +0 +F +F +F +F +∞ NaN

+∞ NaN +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN
Vol. 2A 3-281

INSTRUCTION SET REFERENCE, A-M
FXTRACT instruction) with the recreated value, which returns the stack to its original state with
only one register [ST(0)] occupied.

Operation
ST(0) ← ST(0) ∗ 2RoundTowardZero(ST(1));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-282 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FSIN—Sine

Description
Computes the sine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine of various classes of numbers,
assuming that underflow does not occur.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

Opcode Instruction Description
D9 FE FSIN Replace ST(0) with its sine.

Table 3-39. FSIN Results
SRC (ST(0)) DEST (ST(0))

−∞ *

−F −1 to +1

−0 −0

+0 +0

+F −1 to +1

+∞ *

NaN NaN
Vol. 2A 3-283

INSTRUCTION SET REFERENCE, A-M
Operation
IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← sin(ST(0));

ELSE (* source operand out of range *)
C2 ← 1;

FI:

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-284 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FSINCOS—Sine and Cosine

Description
Computes both the sine and the cosine of the source operand in register ST(0), stores the sine in
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster
than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine and cosine of various classes of
numbers, assuming that underflow does not occur.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

Opcode Instruction Description
D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with

the sine, and push the cosine onto the register stack.

Table 3-40. FSINCOS Results
SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

−∞ * *

−F −1 to +1 −1 to +1

−0 +1 −0

+0 +1 +0

+F −1 to +1 −1 to +1

+∞ * *

NaN NaN NaN
Vol. 2A 3-285

INSTRUCTION SET REFERENCE, A-M
Operation
IF ST(0) < 263

THEN
C2 ← 0;
TEMP ← cosine(ST(0));
ST(0) ← sine(ST(0));

TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* source operand out of range *)
C2 ← 1;

FI:

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.

C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-286 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FSQRT—Square Root

Description
Computes the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of
numbers, assuming that neither overflow nor underflow occurs.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
ST(0) ← SquareRoot(ST(0));

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).

Opcode Instruction Description
D9 FA FSQRT Computes square root of ST(0) and stores the result in

ST(0).

Table 3-41. FSQRT Results
SRC (ST(0)) DEST (ST(0))

−∞ *

−F *

−0 −0

+0 +0

+F +F

+∞ +∞

NaN NaN
Vol. 2A 3-287

INSTRUCTION SET REFERENCE, A-M
#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-288 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FST/FSTP—Store Floating Point Value

Description
The FST instruction copies the value in the ST(0) register to the destination operand, which can
be a memory location or another register in the FPU register stack. When storing the value in
memory, the value is converted to single-precision or double-precision floating-point format.

The FSTP instruction performs the same operation as the FST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FSTP instruction can also store values in memory
in double extended-precision floating-point format.

If the destination operand is a memory location, the operand specifies the address where the first
byte of the destination value is to be stored. If the destination operand is a register, the operand
specifies a register in the register stack relative to the top of the stack.

If the destination size is single-precision or double-precision, the significand of the value being
stored is rounded to the width of the destination (according to the rounding mode specified by
the RC field of the FPU control word), and the exponent is converted to the width and bias of
the destination format. If the value being stored is too large for the destination format, a numeric
overflow exception (#O) is generated and, if the exception is unmasked, no value is stored in the
destination operand. If the value being stored is a denormal value, the denormal exception (#D)
is not generated. This condition is simply signaled as a numeric underflow exception (#U)
condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the
exponent are truncated to fit the destination format. This operation preserves the value’s identity
as a 0, ∞, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not
generated.

Operation
DEST ← ST(0);
IF instruction = FSTP

THEN
PopRegisterStack; FI;

Opcode Instruction Description
D9 /2 FST m32fp Copy ST(0) to m32fp.
DD /2 FST m64fp Copy ST(0) to m64fp.
DD D0+i FST ST(i) Copy ST(0) to ST(i).
D9 /3 FSTP m32fp Copy ST(0) to m32fp and pop register stack.
DD /3 FSTP m64fp Copy ST(0) to m64fp and pop register stack.
DB /7 FSTP m80fp Copy ST(0) to m80fp and pop register stack.
DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack.
Vol. 2A 3-289

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P)
is generated: 0 ← not roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format. Does not occur
if the source operand is in double extended-precision floating-point
format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
3-290 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-291

INSTRUCTION SET REFERENCE, A-M
FSTCW/FNSTCW—Store x87 FPU Control Word

NOTE:
*

Description
Stores the current value of the FPU control word at the specified destination in memory. The
FSTCW instruction checks for and handles pending unmasked floating-point exceptions before
storing the control word; the FNSTCW instruction does not.

The assembler issues two instructions for the FSTCW instruction (an FWAIT instruction
followed by an FNSTCW instruction), and the processor executes each of these instructions in
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTCW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSTCW instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation
DEST ← FPUControlWord;

FPU Flags Affected
The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Opcode Instruction Description
9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for

pending unmasked floating-point exceptions.
D9 /7 FNSTCW m2byte Store FPU control word to m2byte without checking for

pending unmasked floating-point exceptions. See IA-32
Architecture Compatibility section below.
3-292 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-293

INSTRUCTION SET REFERENCE, A-M
FSTENV/FNSTENV—Store x87 FPU Environment

Description
Saves the current FPU operating environment at the memory location specified with the desti-
nation operand, and then masks all floating-point exceptions. The FPU operating environment
consists of the FPU control word, status word, tag word, instruction pointer, data pointer, and
last opcode. Figures 8-9 through 8-12 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, show the layout in memory of the stored environment, depending on the
operating mode of the processor (protected or real) and the current operand-size attribute (16-
bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point excep-
tions before storing the FPU environment; the FNSTENV instruction does not. The saved
image reflects the state of the FPU after all floating-point instructions preceding the
FSTENV/FNSTENV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to the FPU
instruction and data pointers. The environment is typically saved in the stack. Masking all
exceptions after saving the environment prevents floating-point exceptions from interrupting the
exception handler.

The assembler issues two instructions for the FSTENV instruction (an FWAIT instruction
followed by an FNSTENV instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTENV instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSTENV
instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Opcode Instruction Description
9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after

checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV* m14/28byte Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point excep-
tions. Then mask all floating-point exceptions. See the
IA-32 Architecture Compatibility section below.
3-294 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
DEST[FPUControlWord) ← FPUControlWord;
DEST[FPUStatusWord) ← FPUStatusWord;
DEST[FPUTagWord) ← FPUTagWord;
DEST[FPUDataPointer) ← FPUDataPointer;
DEST[FPUInstructionPointer) ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode) ← FPULastInstructionOpcode;

FPU Flags Affected
The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.
Vol. 2A 3-295

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-296 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FSTSW/FNSTSW—Store x87 FPU Status Word

NOTE:
* See IA-32 Architecture Compatibility section below.

Description
Stores the current value of the x87 FPU status word in the destination location. The destination
operand can be either a two-byte memory location or the AX register. The FSTSW instruction
checks for and handles pending unmasked floating-point exceptions before storing the status
word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM instruction),
where the direction of the branch depends on the state of the FPU condition code flags. (See the
section titled “Branching and Conditional Moves on FPU Condition Codes” in Chapter 8 of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1.) This instruction can also be
used to invoke exception handlers (by examining the exception flags) in environments that do
not use interrupts. When the FNSTSW AX instruction is executed, the AX register is updated
before the processor executes any further instructions. The status stored in the AX register is
thus guaranteed to be from the completion of the prior FPU instruction.

The assembler issues two instructions for the FSTSW instruction (an FWAIT instruction
followed by an FNSTSW instruction), and the processor executes each of these instructions
separately. If an exception is generated for either of these instructions, the save EIP points to the
instruction that caused the exception.

IA-32 Architecture Compatibility
When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTSW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for a description of these circumstances. An FNSTSW instruc-
tion cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Operation
DEST ← FPUStatusWord;

Opcode Instruction Description
9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for

pending unmasked floating-point exceptions.
9B DF E0 FSTSW AX Store FPU status word in AX register after checking for

pending unmasked floating-point exceptions.
DD /7 FNSTSW* m2byte Store FPU status word at m2byte without checking for

pending unmasked floating-point exceptions.
DF E0 FNSTSW* AX Store FPU status word in AX register without checking for

pending unmasked floating-point exceptions.
Vol. 2A 3-297

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-298 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FSUB/FSUBP/FISUB—Subtract

Description
Subtracts the source operand from the destination operand and stores the difference in the desti-
nation location. The destination operand is always an FPU data register; the source operand can
be a register or a memory location. Source operands in memory can be in single-precision or
double-precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the
ST(1) register and stores the result in ST(1). The one-operand version subtracts the contents of
a memory location (either a floating-point or an integer value) from the contents of the ST(0)
register and stores the result in ST(0). The two-operand version, subtracts the contents of the
ST(0) register from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point subtract instructions always results in the register stack being popped. In some assemblers,
the mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to double extended-precision
floating-point format before performing the subtraction.

Table 3-42 shows the results obtained when subtracting various classes of numbers from one
another, assuming that neither overflow nor underflow occurs. Here, the SRC value is subtracted
from the DEST value (DEST − SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

Opcode Instruction Description
D8 /4 FSUB m32fp Subtract m32fp from ST(0) and store result in ST(0).
DC /4 FSUB m64fp Subtract m64fp from ST(0) and store result in ST(0).
D8 E0+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0).
DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i).
DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop

register stack.
DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop

register stack.
DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0).
DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0).
Vol. 2A 3-299

INSTRUCTION SET REFERENCE, A-M
NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FISUB

THEN
DEST ← DEST − ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* source operand is floating-point value *)
DEST ← DEST − SRC;

FI;
IF instruction is FSUBP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Table 3-42. FSUB/FSUBP/FISUB Results
SRC

−∞ −F or −I −0 +0 +F or +I +∞ NaN

−∞ * −∞ −∞ −∞ −∞ −∞ NaN

−F +∞ ±F or ±0 DEST DEST −F −∞ NaN

DEST −0 +∞ −SRC ±0 −0 −SRC −∞ NaN

+0 +∞ −SRC +0 ±0 −SRC −∞ NaN

+F +∞ +F DEST DEST ±F or ±0 −∞ NaN

+∞ +∞ +∞ +∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
3-300 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-301

INSTRUCTION SET REFERENCE, A-M
FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description
Subtracts the destination operand from the source operand and stores the difference in the desti-
nation location. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory can be in single-precision or double-
precision floating-point format or in word or doubleword integer format.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instruc-
tions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the
ST(0) register and stores the result in ST(1). The one-operand version subtracts the contents of
the ST(0) register from the contents of a memory location (either a floating-point or an integer
value) and stores the result in ST(0). The two-operand version, subtracts the contents of the
ST(i) register from the ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point reverse subtract instructions always results in the register stack being popped. In some
assemblers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to double extended-precision
floating-point format before performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the DEST value
is subtracted from the SRC value (SRC − DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

Opcode Instruction Description
D8 /5 FSUBR m32fp Subtract ST(0) from m32fp and store result in ST(0).
DC /5 FSUBR m64fp Subtract ST(0) from m64fp and store result in ST(0).
D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0).
DC E0+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0) and store result in ST(i).
DE E0+i FSUBRP ST(i), ST(0) Subtract ST(i) from ST(0), store result in ST(i), and pop

register stack.
DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop

register stack.
DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0).
DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0).
3-302 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
NOTES:
F Means finite floating-point value.
I Means integer.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation
IF instruction is FISUBR

THEN
DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) − DEST;

ELSE (* source operand is floating-point value *)
DEST ← SRC − DEST;

FI;
IF instruction = FSUBRP

THEN
PopRegisterStack

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Table 3-43. FSUBR/FSUBRP/FISUBR Results
SRC

−∞ −F or −I −0 +0 +F or +I +∞ NaN

−∞ * +∞ +∞ +∞ +∞ +∞ NaN

−F −∞ ±F or ±0 −DEST −DEST +F +∞ NaN

DEST −0 −∞ SRC ±0 +0 SRC +∞ NaN

+0 −∞ SRC −0 ±0 SRC +∞ NaN

+F −∞ −F −DEST −DEST ±F or ±0 +∞ NaN

+∞ −∞ −∞ −∞ −∞ −∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN
Vol. 2A 3-303

INSTRUCTION SET REFERENCE, A-M
#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-304 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FTST—TEST

Description
Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, C2, and
C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—Examine” in this chapter). If the value
in register ST(0) is a NaN or is in an undefined format, the condition flags are set to “unordered”
and the invalid operation exception is generated.

The sign of zero is ignored, so that –0.0 ← +0.0.

Operation
CASE (relation of operands) OF

Not comparable: C3, C2, C0 ← 111;
ST(0) > 0.0: C3, C2, C0 ← 000;
ST(0) < 0.0: C3, C2, C0 ← 001;
ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See Table 3-44.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA The source operand is a NaN value or is in an unsupported format.

#D The source operand is a denormal value.

Opcode Instruction Description
D9 E4 FTST Compare ST(0) with 0.0.

Table 3-44. FTST Results
Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1
Vol. 2A 3-305

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-306 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point
Values

Description
Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition
code flags C0, C2, and C3 in the FPU status word according to the results (see the table below).
If no operand is specified, the contents of registers ST(0) and ST(1) are compared. The sign of
zero is ignored, so that –0.0 is equal to +0.0.

NOTE:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine” in this chapter). The FUCOM/FUCOMP/FUCOMPP instructions perform
the same operations as the FCOM/FCOMP/FCOMPP instructions. The only difference is that
the FUCOM/FUCOMP/FUCOMPP instructions raise the invalid-arithmetic-operand exception
(#IA) only when either or both operands are an SNaN or are in an unsupported format; QNaNs
cause the condition code flags to be set to unordered, but do not cause an exception to be gener-
ated. The FCOM/FCOMP/FCOMPP instructions raise an invalid-operation exception when
either or both of the operands are a NaN value of any kind or are in an unsupported format.

As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalid-arith-
metic-operand exception being raised, the condition code flags are set only if the exception is
masked.

The FUCOMP instruction pops the register stack following the comparison operation and the
FUCOMPP instruction pops the register stack twice following the comparison operation. To
pop the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

Opcode Instruction Description
DD E0+i FUCOM ST(i) Compare ST(0) with ST(i).
DD E1 FUCOM Compare ST(0) with ST(1).
DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.
DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack.
DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Table 3-45. FUCOM/FUCOMP/FUCOMPP Results
Comparison Results C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1
Vol. 2A 3-307

INSTRUCTION SET REFERENCE, A-M
Operation
CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

THEN
C3, C2, C0 ← 111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FUCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FUCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See Table 3-45.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported formats.
Detection of a QNaN value in and of itself does not raise an invalid-
operand exception.

#D One or both operands are denormal values.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.
3-308 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
Vol. 2A 3-309

INSTRUCTION SET REFERENCE, A-M
FWAIT—Wait

See entry for WAIT/FWAIT—Wait.
3-310 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FXAM—Examine

Description
Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in
the FPU status word to indicate the class of value or number in the register (see the table below).

.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty
or full.

Operation
C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0 ← 000;
NaN: C3, C2, C0 ← 001;
Normal: C3, C2, C0 ← 010;
Infinity: C3, C2, C0 ← 011;
Zero: C3, C2, C0 ← 100;
Empty: C3, C2, C0 ← 101;
Denormal: C3, C2, C0 ← 110;

ESAC;

FPU Flags Affected
C1 Sign of value in ST(0).

C0, C2, C3 See Table 3-46.

Opcode Instruction Description
D9 E5 FXAM Classify value or number in ST(0).

Table 3-46. FXAM Results
Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0
Vol. 2A 3-311

INSTRUCTION SET REFERENCE, A-M
Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-312 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FXCH—Exchange Register Contents

Description
Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the
contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top
of the stack [ST(0)], so that they can be operated on by those floating-point instructions that can
only operate on values in ST(0). For example, the following instruction sequence takes the
square root of the third register from the top of the register stack:
FXCH ST(3);
FSQRT;
FXCH ST(3);

Operation
IF number-of-operands is 1

THEN
temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Opcode Instruction Description
D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i).
D9 C9 FXCH Exchange the contents of ST(0) and ST(1).
Vol. 2A 3-313

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-314 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FXRSTOR—Restore x87 FPU, MMX Technology, SSE, and SSE2
State

Description
Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte
memory image specified in the source operand. This data should have been written to memory
previously using the FXSAVE instruction, and the first byte of the data should be located on a
16-byte boundary. Table 3-47 shows the layout of the state information in memory and describes
the fields in the memory image for the FXRSTOR and FXSAVE instructions.

The state image referenced with an FXRSTOR instruction must have been saved using an
FXSAVE instruction or be in the same format as that shown in Table 3-47. Referencing a state
image saved with an FSAVE or FNSAVE instruction will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise
exceptions when loading x87 FPU state information with the FXRSTOR instruction, use an
FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not restore
the states of the XMM and MXCSR registers. This behavior is implementation dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag also set,
loading the register with the FXRSTOR instruction will not result in an SIMD floating-point
error condition being generated. Only the next occurrence of this unmasked exception will result
in the exception being generated.

Bit 6 and bits 16 through 32 of the MXCSR register are defined as reserved and should be set to
0. Attempting to write a 1 in any of these bits from the saved state image will result in a general
protection exception (#GP) being generated.

Operation
(x87 FPU, MMX, XMM7-XMM0, MXCSR) ← Load(SRC);

x87 FPU and SIMD Floating-Point Exceptions

None.

Opcode Instruction Description
0F AE /1 FXRSTOR m512byte Restore the x87 FPU, MMX technology, XMM, and MXCSR

register state from m512byte.
Vol. 2A 3-315

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment. (See alignment check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK prefix.

#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte boundary, as
described above. If the alignment check exception (#AC) is enabled (and
the CPL is 3), signaling of #AC is not guaranteed and may vary with
implementation, as follows. In all implementations where #AC is not
signaled, a general protection exception is signaled in its place. In addi-
tion, the width of the alignment check may also vary with implementation.
For instance, for a given implementation, an alignment check exception
might be signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If CPUID feature flag SSE2 is 0.

If instruction is preceded by a LOCK override prefix.
3-316 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.
Vol. 2A 3-317

INSTRUCTION SET REFERENCE, A-M
FXSAVE—Save x87 FPU, MMX Technology, SSE, and SSE2 State

Description
Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a
512-byte memory location specified in the destination operand. Table 3-47 shows the layout of
the state information in memory.

Opcode Instruction Description
0F AE /0 FXSAVE m512byte Save the x87 FPU, MMX technology, XMM, and MXCSR register

state to m512byte.
3-318 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

The destination operand contains the first byte of the memory image, and it must be aligned on
a 16-byte boundary. A misaligned destination operand will result in a general-protection (#GP)
exception being generated (or in some cases, an alignment check exception [#AC]).

Table 3-47. Layout of FXSAVE and FXRSTOR Memory Region
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS FPU IP FOP FT
W

FSW FCW 0

MXCSR_MASK MXCSR Rsrvd DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496
Vol. 2A 3-319

INSTRUCTION SET REFERENCE, A-M
The FXSAVE instruction is used when an operating system needs to perform a context switch
or when an exception handler needs to save and examine the current state of the x87 FPU, MMX
technology, and/or XMM and MXCSR registers.

The fields in Table 3-47 are as follows:

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the IA-32 Intel Architec-
ture Software Developer’s Manual, Volume 1, for the layout of the x87 FPU
control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the IA-32 Intel Architec-
ture Software Developer’s Manual, Volume 1, for the layout of the x87 FPU
status word.

FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as
described in the following paragraphs. See Figure 8-7 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1, for the layout of the
x87 FPU tag word.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the
opcode, upper 5 bits are reserved. See Figure 8-8 in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1, for the layout of the x87
FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field differ
depending on the current addressing mode (32-bit or 16-bit) of the
processor when the FXSAVE instruction was executed:

• 32-bit mode—32-bit IP offset.

• 16-bit mode—low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for a
description of the x87 FPU instruction pointer.

CS x87 FPU Instruction Pointer Selector (16 bits).
3-320 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field
(unlike the FSAVE instruction, which saves the complete tag word). The tag information is
saved in physical register order (R0 through R7), rather than in top-of-stack (TOS) order. With
the FXSAVE instruction, however, only a single bit (1 for valid or 0 for empty) is saved for each
tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0

11 xx xx xx 11 11 11 11

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents
of this field differ depending on the current addressing mode (32-bit or 16-
bit) of the processor when the FXSAVE instruction was executed:

• 32-bit mode—32-bit IP offset.

• 16-bit mode—low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for a
description of the x87 FPU operand pointer.

DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).
MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the IA-32 Intel Archi-

tecture Software Developer’s Manual, Volume 1, for the layout of the
MXCSR register. If the OSFXSR bit in control register CR4 is not set, the
FXSAVE instruction may not save this register. This behavior is implemen-
tation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written
to the MXCSR register, ensuring that reserved bits are set to 0. Set the mask
bits and flags in MXCSR to the mode of operation desired for SSE and
SSE2 SIMD floating-point instructions. See “Guidelines for Writing to the
MXCSR Register” in Chapter 11 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1, for instructions for how to determine and
use the MXCSR_MASK value.

ST0/MM0
through
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87
FPU data registers or the MMX technology registers, depending on the state
of the processor prior to the execution of the FXSAVE instruction. If the
processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing
MMX instructions (or SSE or SSE2 instructions that operated on the MMX
technology registers), the MMX technology registers are saved. When the
MMX technology registers are saved, the high 16 bits of the field are
reserved.

XMM0 through
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register
CR4 is not set, the FXSAVE instruction may not save these registers. This
behavior is implementation dependent.
Vol. 2A 3-321

INSTRUCTION SET REFERENCE, A-M
Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special
(10B).

For this example, the FXSAVE instruction saves only the following 8 bits of information:

R7 R6 R5 R4 R3 R2 R1 R0

0 1 1 1 0 0 0 0

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as
follows:

• FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The
FXSAVE operation in this regard is similar to the operation of the FNSAVE instruction).

• After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology,
XMM, and MXCSR registers, the processor retains the contents of the registers. Because
of this behavior, the FXSAVE instruction cannot be used by an application program to
pass a “clean” x87 FPU state to a procedure, since it retains the current state. To clean the
x87 FPU state, an application must explicitly execute an FINIT instruction after an
FXSAVE instruction to reinitialize the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same
regardless of the current addressing mode (32-bit or 16-bit) and operating mode (protected,
real address, or system management). This behavior differs from the FSAVE instructions,
where the memory image format is different depending on the addressing mode and
operating mode. Because of the different image formats, the memory image saved with the
FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and
likewise the state saved with the FSAVE instruction cannot be restored correctly with the
FXRSTOR instruction.

Note that The FSAVE format for FTW can be recreated from the FTW valid bits and the stored
80-bit FP data (assuming the stored data was not the contents of MMX technology registers)
using Table 3-48:
3-322 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the signifi-
cand. The M-bit is defined to be the most significant bit of the fractional portion of the signifi-
cand (i.e., the bit immediately to the right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it must be
0 if the fraction is all 0’s.

Operation
DEST ← Save(x87 FPU, MMX, XMM7-XMM0, MXCSR);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment. (See the description of the alignment check exception [#AC]
below.)

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK override prefix.

Table 3-48. Recreating FSAVE Format

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid
bit x87 FTW

0 0 0 0x 1 Special 10
0 0 0 1x 1 Valid 00
0 0 1 00 1 Special 10
0 0 1 10 1 Valid 00
0 1 0 0x 1 Special 10
0 1 0 1x 1 Special 10
0 1 1 00 1 Zero 01
0 1 1 10 1 Special 10
1 0 0 1x 1 Special 10
1 0 0 1x 1 Special 10
1 0 1 00 1 Special 10
1 0 1 10 1 Special 10

For all legal combinations above 0 Empty 11
Vol. 2A 3-323

INSTRUCTION SET REFERENCE, A-M
#AC If this exception is disabled a general protection exception (#GP) is
signaled if the memory operand is not aligned on a 16-byte boundary, as
described above. If the alignment check exception (#AC) is enabled (and
the CPL is 3), signaling of #AC is not guaranteed and may vary with
implementation, as follows. In all implementations where #AC is not
signaled, a general protection exception is signaled in its place. In addi-
tion, the width of the alignment check may also vary with implementation.
For instance, for a given implementation, an alignment check exception
might be signaled for a 2-byte misalignment, whereas a general protection
exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK override prefix.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault (#PF) excep-
tions when they both occur on an instruction boundary is given in Table 5-2 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 3. This order vary for the FXSAVE instruc-
tion for different IA-32 processor implementations.
3-324 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FXTRACT—Extract Exponent and Significand

Description
Separates the source value in the ST(0) register into its exponent and significand, stores the
exponent in ST(0), and pushes the significand onto the register stack. Following this operation,
the new top-of-stack register ST(0) contains the value of the original significand expressed as a
floating-point value. The sign and significand of this value are the same as those found in the
source operand, and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(1)
register contains the value of the original operand’s true (unbiased) exponent expressed as a
floating-point value. (The operation performed by this instruction is a superset of the IEEE-
recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling
operations. The FXTRACT instruction is also useful for converting numbers in double
extended-precision floating-point format to decimal representations (e.g., for printing or
displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an
exponent value of –∞ is stored in register ST(1) and 0 with the sign of the source operand is
stored in register ST(0).

Operation
TEMP ← Significand(ST(0));
ST(0) ← Exponent(ST(0));
TOP← TOP − 1;
ST(0) ← TEMP;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is ±0.

#D Source operand is a denormal value.

Opcode Instruction Description
D9 F4 FXTRACT Separate value in ST(0) into exponent and significand,

store exponent in ST(0), and push the significand onto the
register stack.
Vol. 2A 3-325

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-326 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FYL2X—Compute y ∗ log2x

Description
Computes (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the FPU register
stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.
** Indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns
∞ with a sign that is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of
logarithms with an arbitrary positive base (b):
logbx ← (log2b)–1 ∗ log2x

Operation
ST(1) ← ST(1) ∗ log2ST(0);
PopRegisterStack;

Opcode Instruction Description
D9 F1 FYL2X Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the

register stack.

Table 3-49. FYL2X Results
ST(0)

−∞ −F ±0 +0 < +F < +1 +1 +F > +1 +∞ NaN

−∞ * * +∞ +∞ * −∞ −∞ NaN

ST(1) −F * * ** +F −0 −F −∞ NaN

−0 * * * +0 −0 −0 * NaN

+0 * * * −0 +0 +0 * NaN

+F * * ** −F +0 +F +∞ NaN

+∞ * * −∞ −∞ ∗ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN
Vol. 2A 3-327

INSTRUCTION SET REFERENCE, A-M
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not −0).

#Z Source operand in register ST(0) is ±0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-328 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
FYL2XP1—Compute y ∗ log2(x +1)

Description
Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops the FPU
register stack. The source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside of its
acceptable range, the result is undefined and software should not rely on an exception being
generated. Under some circumstances exceptions may be generated when ST(0) is out of range,
but this behavior is implementation specific and not guaranteed.

The following table shows the results obtained when taking the log epsilon of various classes of
numbers, assuming that underflow does not occur.

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that
are close to 0. For small epsilon (ε) values, more significant digits can be retained by using the
FYL2XP1 instruction than by using (ε+1) as an argument to the FYL2X instruction. The (ε+1)
expression is commonly found in compound interest and annuity calculations. The result can be
simply converted into a value in another logarithm base by including a scale factor in the ST(1)
source operand. The following equation is used to calculate the scale factor for a particular loga-
rithm base, where n is the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor ← logn 2

Opcode Instruction Description
D9 F9 FYL2XP1 Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop the

register stack.

Table 3-50. FYL2XP1 Results
ST(0)

−(1 − ()) to −0 −0 +0 +0 to +(1 − ()) NaN

−∞ +∞ * * −∞ NaN

ST(1) −F +F +0 −0 −F NaN

−0 +0 +0 −0 −0 NaN

+0 −0 −0 +0 +0 NaN

+F −F −0 +0 +F NaN

+∞ −∞ * * +∞ NaN

NaN NaN NaN NaN NaN NaN

1 2 2⁄–())to 1 2 2⁄–()–

2 2⁄ 2 2⁄
Vol. 2A 3-329

INSTRUCTION SET REFERENCE, A-M
Operation
ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions
#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions
#NM EM or TS in CR0 is set.
3-330 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
HADDPD: Packed Double-FP Horizontal Add

Description
Adds the double-precision floating-point values in the high and low quadwords of the destina-
tion operand and stores the result in the low quadword of the destination operand.

Adds the double-precision floating-point values in the high and low quadwords of the source
operand and stores the result in the high quadword of the destination operand.

See Figure 3-10.

Operation
xmm1[63-0] = xmm1[63-0] + xmm1[127-64];
xmm1[127-64] = xmm2/m128[63-0] + xmm2/m128[127-64];

Opcode Instruction Description
66,0F,7C,/r HADDPD xmm1, xmm2/m128 Add horizontally packed DP FP numbers from

xmm2/m128 to xmm1.

Figure 3-10. HADDPD: Packed Double-FP Horizontal Add

OM15993

HADDPD xmm1, xmm2/m128

xmm1

xmm2
/m128

[63-0][127-64]

[127-64] [63-0]

[63-0][127-64]

Result:
xmm1

xmm2/m128[63-0] +
xmm2/m128[127-64]

xmm1[63-0] + xmm1[127-64]
Vol. 2A 3-331

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0);

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).
3-332 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
Vol. 2A 3-333

INSTRUCTION SET REFERENCE, A-M
HADDPS: Packed Single-FP Horizontal Add

Description
Adds the single-precision floating-point values in the first and second dwords of the destination
operand and stores the result in the first dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the destination
operand and stores the result in the second dword of the destination operand.

Adds single-precision floating-point values in the first and second dword of the source operand
and stores the result in the third dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the source operand
and stores the result in the fourth dword of the destination operand.

See Figure 3-11.

Opcode Instruction Description
F2,0F,7C,/r HADDPS xmm1, xmm2/m128 Add horizontally packed SP FP numbers from

xmm2/m128 to xmm1.
3-334 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[31-0] = xmm1[31-0] + xmm1[63-32];
xmm1[63-32] = xmm1[95-64] + xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] + xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] + xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Figure 3-11. HADDPS: Packed Single-FP Horizontal Add

OM15994

HADDPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x mm1 [3 1 - 0] +
x mm1 [6 3 - 3 2]

[31-0]

x mm1 [9 5 - 6 4] +
x mm1 [1 2 7 - 9 6]

[63-32]

[63-32] [31-0]

xmm1[31-0][63-32]

x m m 2 / m 1 2 8
[31 -0] + xmm2/

m1 2 8 [6 3 - 3 2]

[95-64]

x m m 2 / m 1 2 8
[95 -64] + xmm2/

m1 2 8 [1 2 7 - 9 6]

[127-96]

[127-96] [95-64]

[95-64][127-96]
Vol. 2A 3-335

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.
3-336 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
Vol. 2A 3-337

INSTRUCTION SET REFERENCE, A-M
HLT—Halt

Description
Stops instruction execution and places the processor in a HALT state. An enabled interrupt
(including NMI and SMI), a debug exception, the BINIT# signal, the INIT# signal, or the
RESET# signal will resume execution. If an interrupt (including NMI) is used to resume execu-
tion after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction
following the HLT instruction.

When a HLT instruction is executed on an IA-32 processor supporting Hyper-Threading Tech-
nology, only the logical processor that executes the instruction is halted. The other logical
processors in the physical processor remain active, unless they are each individually halted by
executing a HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or
virtual-8086 mode, the privilege level of a program or procedure must be 0 to execute the HLT
instruction.

Operation
Enter Halt state;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the current privilege level is not 0.

Opcode Instruction Description
F4 HLT Halt.
3-338 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
HSUBPD: Packed Double-FP Horizontal Subtract

Description
The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both operands.

Subtracts the double-precision floating-point value in the high quadword of the destination
operand from the low quadword of the destination operand and stores the result in the low quad-
word of the destination operand.

Subtracts the double-precision floating-point value in the high quadword of the source operand
from the low quadword of the source operand and stores the result in the high quadword of the
destination operand.

See Figure 3-12.

Operation
xmm1[63-0] = xmm1[63-0] - xmm1[127-64];

Opcode Instruction Description
66,0F,7D,/r HSUBPD xmm1, xmm2/m128 Subtract horizontally packed DP FP numbers

in xmm2/m128 from xmm1.

Figure 3-12. HSUBPD: Packed Double-FP Horizontal Subtract

OM15995

HSUBPD xmm1, xmm2/m128

xmm1

xmm2
/m128

[63-0][127-64]

[127-64] [63-0]

[63-0][127-64]

Result:
xmm1

xmm2/m128[63-0] -
xmm2/m128[127-64]

xmm1[63-0] - xmm1[127-64]
Vol. 2A 3-339

INSTRUCTION SET REFERENCE, A-M
xmm1[127-64] = xmm2/m128[63-0] - xmm2/m128[127-64];

Intel C/C++ Compiler Intrinsic Equivalent
HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.
3-340 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
Vol. 2A 3-341

INSTRUCTION SET REFERENCE, A-M
HSUBPS: Packed Single-FP Horizontal Subtract

Description
Subtracts the single-precision floating-point value in the second dword of the destination
operand from the first dword of the destination operand and stores the result in the first dword
of the destination operand.

Subtracts the single-precision floating-point value in the fourth dword of the destination operand
from the third dword of the destination operand and stores the result in the second dword of the
destination operand.

Subtracts the single-precision floating-point value in the second dword of the source operand
from the first dword of the source operand and stores the result in the third dword of the desti-
nation operand.

Subtracts the single-precision floating-point value in the fourth dword of the source operand
from the third dword of the source operand and stores the result in the fourth dword of the desti-
nation operand.

See Figure 3-13.

Opcode Instruction Description
F2,0F,7D,/r HSUBPS xmm1, xmm2/m128 Subtract horizontally packed SP FP numbers

in xmm2/m128 from xmm1.
3-342 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
xmm1[31-0] = xmm1[31-0] - xmm1[63-32];
xmm1[63-32] = xmm1[95-64] - xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

Exceptions
When the source operand is a memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

Numeric Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Figure 3-13. HSUBPS: Packed Single-FP Horizontal Subtract

OM15996

HSUBPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

xmm1[31-0] -
x mm1 [6 3 - 3 2]

[31-0]

xmm1[95-64] -
x mm1 [1 2 7 - 9 6]

[63-32]

[63-32] [31-0]

xmm1[31-0][63-32]

x m m 2 / m 1 2 8
[31-0] - xmm2/
m1 2 8 [6 3 - 3 2]

[95-64]

x m m 2 / m 1 2 8
[95-64] - xmm2/
m1 2 8 [1 2 7 - 9 6]

[127-96]

[127-96] [95-64]

[95-64][127-96]
Vol. 2A 3-343

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.

#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#NM If TS bit in CR0 is set.
3-344 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#XM For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 1).

#UD If CR0.EM = 1.

For an unmasked Streaming SIMD Extensions numeric exception
(CR4.OSXMMEXCPT = 0).

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
Vol. 2A 3-345

INSTRUCTION SET REFERENCE, A-M
IDIV—Signed Divide

Description
Divides (signed) the value in the AX, DX:AX, or EDX:EAX registers (dividend) by the source
operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX registers. The
source operand can be a general-purpose register or a memory location. The action of this
instruction depends on the operand size (dividend/divisor), as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is always the
same as the sign of the dividend. The absolute value of the remainder is always less than the
absolute value of the divisor. Overflow is indicated with the #DE (divide error) exception rather
than with the OF (overflow) flag.

Operation
IF SRC = 0

THEN #DE; (* divide error *)
FI;
IF OperandSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC; (* signed division *)
IF (temp > 7FH) OR (temp < 80H)
(* if a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX SignedModulus SRC;

FI;
ELSE

IF OperandSize = 16 (* doubleword/word operation *)

Opcode Instruction Description
F6 /7 IDIV r/m8 Signed divide AX by r/m8, with result stored in

AL ← Quotient, AH ← Remainder.
F7 /7 IDIV r/m16 Signed divide DX:AX by r/m16, with result stored in

AX ← Quotient, DX ← Remainder.
F7 /7 IDIV r/m32 Signed divide EDX:EAX by r/m32, with result stored in

EAX ← Quotient, EDX ← Remainder.

Table 3-51. IDIV Results
Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 232 − 1
3-346 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
THEN
temp ← DX:AX / SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)

THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX SignedModulus SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDXE:AX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
Vol. 2A 3-347

INSTRUCTION SET REFERENCE, A-M
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-348 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
IMUL—Signed Multiply

Description
Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction. Here, the
source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in the destination operand location.

• Three-operand form. This form requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or a memory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

Opcode Instruction Description
F6 /5 IMUL r/m8 AX← AL ∗ r/m byte.
F7 /5 IMUL r/m16 DX:AX ← AX ∗ r/m word.
F7 /5 IMUL r/m32 EDX:EAX ← EAX ∗ r/m doubleword.
0F AF /r IMUL r16,r/m16 word register ← word register ∗ r/m word.
0F AF /r IMUL r32,r/m32 doubleword register ← doubleword register ∗ r/m

doubleword.
6B /r ib IMUL r16,r/m16,imm8 word register ← r/m16 ∗ sign-extended immediate byte.
6B /r ib IMUL r32,r/m32,imm8 doubleword register ← r/m32 ∗ sign-extended immediate

byte.
6B /r ib IMUL r16,imm8 word register ← word register ∗ sign-extended immediate

byte.
6B /r ib IMUL r32,imm8 doubleword register ← doubleword register ∗ sign-

extended immediate byte.
69 /r iw IMUL r16,r/

m16,imm16
word register ← r/m16 ∗ immediate word.

69 /r id IMUL r32,r/
m32,imm32

doubleword register ← r/m32 ∗ immediate doubleword.

69 /r iw IMUL r16,imm16 word register ← r/m16 ∗ immediate word.
69 /r id IMUL r32,imm32 doubleword register ← r/m32 ∗ immediate doubleword.
Vol. 2A 3-349

INSTRUCTION SET REFERENCE, A-M
The CF and OF flags are set when significant bit (including the sign bit) are carried into the
upper half of the result. The CF and OF flags are cleared when the result (including the sign bit)
fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, the result is truncated to the
length of the destination before it is stored in the destination register. Because of this truncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

Operation
IF (NumberOfOperands = 1)

THEN IF (OperandSize = 8)
THEN

AX ← AL ∗ SRC (* signed multiplication *)
IF AL = AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1;

FI;
ELSE IF OperandSize = 16

THEN
DX:AX ← AX ∗ SRC (* signed multiplication *)
IF sign_extend_to_32 (AX) = DX:AX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1;

FI;
ELSE (* OperandSize = 32 *)

EDX:EAX ← EAX ∗ SRC (* signed multiplication *)
IF EAX = EDX:EAX

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp ← DEST ∗ SRC (* signed multiplication; temp is double DEST size*)
DEST ← DEST ∗ SRC (* signed multiplication *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0;

FI;

ELSE (* NumberOfOperands = 3 *)
DEST ← SRC1 ∗ SRC2 (* signed multiplication *)
3-350 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
temp ← SRC1 ∗ SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0;

FI;
FI;

FI;

Flags Affected
For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are unde-
fined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-351

INSTRUCTION SET REFERENCE, A-M
IN—Input from Port

Description
Copies the value from the I/O port specified with the second operand (source operand) to the
destination operand (first operand). The source operand can be a byte-immediate or the DX
register; the destination operand can be register AL, AX, or EAX, depending on the size of the
port being accessed (8, 16, or 32 bits, respectively). Using the DX register as a source operand
allows I/O port addresses from 0 to 65,535 to be accessed; using a byte immediate allows I/O
port addresses 0 to 255 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and
32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 13, Input/Output, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

Operation
IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)
#GP(0);

ELSE (* I/O operation is allowed *)
DEST ← SRC; (* Reads from selected I/O port *)

FI;
ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Reads from selected I/O port *)
FI;

Flags Affected
None.

Opcode Instruction Description
E4 ib IN AL,imm8 Input byte from imm8 I/O port address into AL.
E5 ib IN AX,imm8 Input byte from imm8 I/O port address into AX.
E5 ib IN EAX,imm8 Input byte from imm8 I/O port address into EAX.
EC IN AL,DX Input byte from I/O port in DX into AL.
ED IN AX,DX Input word from I/O port in DX into AX.
ED IN EAX,DX Input doubleword from I/O port in DX into EAX.
3-352 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)

and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed

is 1.
Vol. 2A 3-353

INSTRUCTION SET REFERENCE, A-M
INC—Increment by 1

Description
Adds 1 to the destination operand, while preserving the state of the CF flag. The destination
operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of
1 to perform an increment operation that does updates the CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST ← DEST + 1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description
FE /0 INC r/m8 Increment r/m byte by 1.
FF /0 INC r/m16 Increment r/m word by 1.
FF /0 INC r/m32 Increment r/m doubleword by 1.
40+ rw INC r16 Increment word register by 1.
40+ rd INC r32 Increment doubleword register by 1.
3-354 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-355

INSTRUCTION SET REFERENCE, A-M
INS/INSB/INSW/INSD—Input from Port to String

Description
Copies the data from the I/O port specified with the source operand (second operand) to the
destination operand (first operand). The source operand is an I/O port address (from 0 to 65,535)
that is read from the DX register. The destination operand is a memory location, the address of
which is read from either the ES:EDI or the ES:DI registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). (The ES segment cannot be overridden with
a segment override prefix.) The size of the I/O port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-
size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the INS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand must be “DX,” and the destination operand should be a symbol that indicates the
size of the I/O port and the destination address. This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be misleading.
That is, the destination operand symbol must specify the correct type (size) of the operand (byte,
word, or doubleword), but it does not have to specify the correct location. The location is always
specified by the ES:(E)DI registers, which must be loaded correctly before the INS instruction
is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
INS instructions. Here also DX is assumed by the processor to be the source operand and
ES:(E)DI is assumed to be the destination operand. The size of the I/O port is specified with the
choice of mnemonic: INSB (byte), INSW (word), or INSD (doubleword).

After the byte, word, or doubleword is transfer from the I/O port to the memory location, the
(E)DI register is incremented or decremented automatically according to the setting of the DF
flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incremented; if the DF
flag is 1, the (E)DI register is decremented.) The (E)DI register is incremented or decremented
by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations.

Opcode Instruction Description
6C INS m8, DX Input byte from I/O port specified in DX into memory

location specified in ES:(E)DI.
6D INS m16, DX Input word from I/O port specified in DX into memory

location specified in ES:(E)DI.
6D INS m32, DX Input doubleword from I/O port specified in DX into

memory location specified in ES:(E)DI.
6C INSB Input byte from I/O port specified in DX into memory

location specified with ES:(E)DI.
6D INSW Input word from I/O port specified in DX into memory

location specified in ES:(E)DI.
6D INSD Input doubleword from I/O port specified in DX into

memory location specified in ES:(E)DI.
3-356 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block
input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 13, Input/Output, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

Operation
IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)
#GP(0);

ELSE (* I/O operation is allowed *)
DEST ← SRC; (* Reads from I/O port *)

FI;
ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Reads from I/O port *)
FI;
IF (byte transfer)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (word transfer)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword transfer *)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)

and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.
Vol. 2A 3-357

INSTRUCTION SET REFERENCE, A-M
If the destination is located in a non-writable segment.

If an illegal memory operand effective address in the ES segments is
given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed

is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-358 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
INT n/INTO/INT 3—Call to Interrupt Procedure

Description
The INT n instruction generates a call to the interrupt or exception handler specified with the
destination operand (see the section titled “Interrupts and Exceptions” in Chapter 6 of the IA-32
Intel Architecture Software Developer’s Manual, Volume 1). The destination operand specifies
an interrupt vector number from 0 to 255, encoded as an 8-bit unsigned intermediate value. Each
interrupt vector number provides an index to a gate descriptor in the IDT. The first 32 interrupt
vector numbers are reserved by Intel for system use. Some of these interrupts are used for inter-
nally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception
(#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in the EFLAGS
register and calls the overflow interrupt handler if the OF flag is set to 1.

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the
debug exception handler. (This one byte form is valuable because it can be used to replace the
first byte of any instruction with a breakpoint, including other one byte instructions, without
over-writing other code). To further support its function as a debug breakpoint, the interrupt
generated with the CC opcode also differs from the regular software interrupts as follows:

• Interrupt redirection does not happen when in VME mode; the interrupt is handled by a
protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting
at any IOPL level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features.
Intel and Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this
opcode can be created by direct numeric code definition or by self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that
of a far call made with the CALL instruction. The primary difference is that with the INT n
instruction, the EFLAGS register is pushed onto the stack before the return address. (The return
address is a far address consisting of the current values of the CS and EIP registers.) Returns
from interrupt procedures are handled with the IRET instruction, which pops the EFLAGS
information and return address from the stack.

The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor table
(IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn contains
a pointer to an interrupt or exception handler procedure. In protected mode, the IDT contains
an array of 8-byte descriptors, each of which is an interrupt gate, trap gate, or task gate. In real-
address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and

Opcode Instruction Description
CC INT 3 Interrupt 3—trap to debugger.
CD ib INT imm8 Interrupt vector number specified by immediate byte.
CE INTO Interrupt 4—if overflow flag is 1.
Vol. 2A 3-359

INSTRUCTION SET REFERENCE, A-M
a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment.
(Note that in real-address mode, the IDT is called the interrupt vector table, and its pointers
are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table. Each Y in the lower section of the decision
table represents a procedure defined in the “Operation” section for this instruction (except #GP).

NOTES:
− Don't Care.
Y Yes, Action Taken.
Blank Action Not Taken.

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the
INT n instruction. If the IOPL is less than 3, the processor generates a general protection excep-
tion (#GP); if the IOPL is 3, the processor executes a protected mode interrupt to privilege level
0. The interrupt gate's DPL must be set to 3 and the target CPL of the interrupt handler procedure
must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the
IDT. The initial base address value of the IDTR after the processor is powered up or reset is 0.

Table 3-52. Decision Table
PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL &
NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-
MODE

Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

Y Y Y Y Y

INTER-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-
MODE

Y

TASK-GATE Y

#GP Y Y Y
3-360 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
The following operational description applies not only to the INT n and INTO instructions, but
also to external interrupts and exceptions.
IF PE = 0

THEN
GOTO REAL-ADDRESS-MODE;

ELSE (* PE = 1 *)
IF (VM = 1 AND IOPL < 3 AND INT n)

THEN
#GP(0);

ELSE (* protected mode or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;

FI;
FI;

REAL-ADDRESS-MODE:
IF ((DEST ∗ 4) + 3) is not within IDT limit THEN #GP; FI;
IF stack not large enough for a 6-byte return information THEN #SS; FI;
Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (*Clear AC flag*)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS ← IDT(Descriptor (vector_number ∗ 4), selector));
EIP ← IDT(Descriptor (vector_number ∗ 4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:
IF ((DEST ∗ 8) + 7) is not within IDT limits

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST ∗ 8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* generated by INT n, INT 3, or INTO *)

THEN
IF gate descriptor DPL < CPL

THEN #GP((vector_number ∗ 8) + 2);
(* PE = 1, DPL<CPL, software interrupt *)

FI;
FI;
IF gate not present THEN #NP((vector_number ∗ 8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)
Vol. 2A 3-361

INSTRUCTION SET REFERENCE, A-M
FI;
END;

TASK-GATE: (* PE = 1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local
OR index not within GDT limits

THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(0);
FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;
TRAP-OR-INTERRUPT-GATE

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null

THEN #GP(0H + EXT); (* null selector with EXT flag set *)
FI;
IF segment selector is not within its descriptor table limits

THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment

OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);

FI;
IF trap or interrupt gate segment is not present,

THEN #NP(selector + EXT);
FI;
IF code segment is non-conforming AND DPL < CPL

THEN IF VM=0
THEN
3-362 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM = 0 *)

ELSE (* VM = 1 *)
IF code segment DPL ≠ 0 THEN #GP(new code segment selector); FI;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE = 1, interrupt or trap gate, DPL<CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1 THEN #GP(new code segment selector); FI;
IF code segment is conforming OR code segment DPL = CPL

THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE
#GP(CodeSegmentSelector + EXT);
(* PE = 1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)

FI;
FI;

END;

INTER-PRIVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← (new code segment DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Read segment descriptor for stack segment in GDT or LDT;

IF stack segment DPL ≠ DPL of code segment,
OR stack segment does not indicate writable data segment,

THEN #TS(SS selector + EXT);
Vol. 2A 3-363

INSTRUCTION SET REFERENCE, A-M
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed)

OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP ← TSS(NewSS:NewESP) (* segment descriptor information also loaded *)
IF 32-bit gate

THEN
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)

ELSE (* 16-bit gate *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)

FI;
IF 32-bit gate

THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS(15..0]);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)

FI;
CPL ← CodeSegmentDescriptor(DPL);
CS(RPL) ← CPL;
IF interrupt gate

THEN IF ← 0 (*interrupt flag set to 0: disabled*);
FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS
3-364 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← (new code segment DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,

OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present

THEN #SS(SS selector+EXT);
FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed)

OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 20 bytes (error code pushed)
OR 18 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits

THEN #GP(0);
FI;
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
RF ← 0;
NT ← 0;
IF service through interrupt gate
Vol. 2A 3-365

INSTRUCTION SET REFERENCE, A-M
THEN IF = 0;
FI;
TempSS ← SS;
TempESP ← ESP;
SS:ESP ← TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (*segment registers nullified, invalid in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS ← Gate(CS);
IF OperandSize = 32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Starts execution of new routine in Protected Mode *)

END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate

THEN
IF current stack does not have room for 16 bytes (error code pushed)

OR 12 bytes (no error code pushed); THEN #SS(0);
FI;

ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)

OR 6 bytes (no error code pushed); THEN #SS(0);
FI;

FI;
IF instruction pointer not within code segment limit

THEN #GP(0);
FI;
IF 32-bit gate

THEN
3-366 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

FI;
CS(RPL) ← CPL;
IF interrupt gate

THEN IF ← 0; (*interrupt flag set to 0: disabled*)
FI;
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

END;

Flags Affected
The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction is
executed (see the “Operation” section). If the interrupt uses a task gate, any flags may be set or
cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions
#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate

is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If an interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n, INT 3, or INTO instruction and
the DPL of an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.
Vol. 2A 3-367

INSTRUCTION SET REFERENCE, A-M
#SS(0) If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment and no stack switch occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, or stack segment pointer
exceeds the bounds of the new stack segment when a stack switch occurs.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment
selector in the TSS is not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment.

Virtual-8086 Mode Exceptions
#GP(0) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or

the DPL of the interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
3-368 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If an interrupt is generated by the INT n instruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, stack segment pointer, or
data segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not
equal to the DPL of the code segment descriptor for the interrupt or trap
gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#BP If the INT 3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.
Vol. 2A 3-369

INSTRUCTION SET REFERENCE, A-M
INVD—Invalidate Internal Caches

Description
Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that
directs external caches to also flush themselves. Data held in internal caches is not written back
to main memory.

After executing this instruction, the processor does not wait for the external caches to complete
their flushing operation before proceeding with instruction execution. It is the responsibility of
hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

Use this instruction with care. Data cached internally and not written back to main memory will
be lost. Unless there is a specific requirement or benefit to flushing caches without writing back
modified cache lines (for example, testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.

IA-32 Architecture Compatibility
The INVD instruction is implementation dependent; it may be implemented differently on
different families of IA-32 processors. This instruction is not supported on IA-32 processors
earlier than the Intel486 processor.

Operation
Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Opcode Instruction Description
0F 08 INVD Flush internal caches; initiate flushing of external caches.
3-370 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.
Vol. 2A 3-371

INSTRUCTION SET REFERENCE, A-M
INVLPG—Invalidate TLB Entry

Description
Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source
operand. The source operand is a memory address. The processor determines the page that
contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however,
in some cases, it flushes the entire TLB. See “MOV—Move to/from Control Registers” in this
chapter for further information on operations that flush the TLB.

IA-32 Architecture Compatibility
The INVLPG instruction is implementation dependent, and its function may be implemented
differently on different families of IA-32 processors. This instruction is not supported on IA-32
processors earlier than the Intel486 processor.

Operation
Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real-Address Mode Exceptions
#UD Operand is a register.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

Opcode Instruction Description
0F 01/7 INVLPG m Invalidate TLB Entry for page that contains m.
3-372 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
IRET/IRETD—Interrupt Return

Description
Returns program control from an exception or interrupt handler to a program or procedure that
was interrupted by an exception, an external interrupt, or a software-generated interrupt. These
instructions are also used to perform a return from a nested task. (A nested task is created when
a CALL instruction is used to initiate a task switch or when an interrupt or exception causes a
task switch to an interrupt or exception handler.) See the section titled “Task Linking” in
Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return
double) is intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on
the current stack. Depending on the setting of these flags, the processor performs the following
types of interrupt returns:

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code
segment selector popped from the stack). As with a real-address mode interrupt return, the IRET
instruction pops the return instruction pointer, return code segment selector, and EFLAGS
image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes
execution of the interrupted program or procedure. If the return is to another privilege level, the
IRET instruction also pops the stack pointer and SS from the stack, before resuming program
execution. If the return is to virtual-8086 mode, the processor also pops the data segment regis-
ters from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a
task called with a CALL instruction, an interrupt, or an exception) back to the calling or inter-

Opcode Instruction Description
CF IRET Interrupt return (16-bit operand size).
CF IRETD Interrupt return (32-bit operand size).
Vol. 2A 3-373

INSTRUCTION SET REFERENCE, A-M
rupted task. The updated state of the task executing the IRET instruction is saved in its TSS. If
the task is re-entered later, the code that follows the IRET instruction is executed.

Operation
IF PE = 0

THEN
GOTO REAL-ADDRESS-MODE;

ELSE
GOTO PROTECTED-MODE;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)

FI;
IF OperandSize=32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
3-374 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
IF top 6 bytes of stack are not within stack limits
THEN #SS(0);

FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 AND CPL=0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)

FI;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS is not modified by pop *)

FI;
ELSE

#GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)

IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);

FI;
Vol. 2A 3-375

INSTRUCTION SET REFERENCE, A-M
IF instruction pointer not within code segment limits
THEN #GP(0);

FI;
CS ← tempCS;
EIP ← tempEIP;
EFLAGS ← tempEFLAGS
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* pop 2 words; throw away high-order word *)
DS ← Pop(); (* pop 2 words; throw away high-order word *)
FS ← Pop(); (* pop 2 words; throw away high-order word *)
GS ← Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local

OR index not within GDT limits
THEN #TS (TSS selector);

FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0);
FI;

END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector; FI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
3-376 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;
CS ← tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) ← tempEFLAGS;

FI;
IF CPL ≤ IOPL

THEN
EFLAGS(IF) ← tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS;
FI;

FI;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:
IF OperandSize=32

THEN
IF top 8 bytes on stack are not within limits THEN #SS(0); FI;

ELSE (* OperandSize=16 *)
IF top 4 bytes on stack are not within limits THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector

IF stack segment selector RPL ≠ RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector);
FI;
Vol. 2A 3-377

INSTRUCTION SET REFERENCE, A-M
IF stack segment is not present THEN #SS(SS selector); FI;
IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP ← tempEIP;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) ← tempEFLAGS;

FI;
IF CPL ≤ IOPL

THEN
EFLAGS(IF) ← tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS;
FI;

FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector ← 0; (* null segment selector *)

FI;
OD;

END:

Flags Affected
All the flags and fields in the EFLAGS register are potentially modified, depending on the mode
of operation of the processor. If performing a return from a nested task to a previous task, the
EFLAGS register will be modified according to the EFLAGS image stored in the previous task’s
TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.
3-378 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is not busy.

If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is
enabled.
Vol. 2A 3-379

INSTRUCTION SET REFERENCE, A-M
Jcc—Jump if Condition Is Met

Opcode Instruction Description
77 cb JA rel8 Jump short if above (CF=0 and ZF=0).
73 cb JAE rel8 Jump short if above or equal (CF=0).
72 cb JB rel8 Jump short if below (CF=1).
76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1).
72 cb JC rel8 Jump short if carry (CF=1).
E3 cb JCXZ rel8 Jump short if CX register is 0.
E3 cb JECXZ rel8 Jump short if ECX register is 0.
74 cb JE rel8 Jump short if equal (ZF=1).
7F cb JG rel8 Jump short if greater (ZF=0 and SF=OF).
7D cb JGE rel8 Jump short if greater or equal (SF=OF).
7C cb JL rel8 Jump short if less (SF<>OF).
7E cb JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF).
76 cb JNA rel8 Jump short if not above (CF=1 or ZF=1).
72 cb JNAE rel8 Jump short if not above or equal (CF=1).
73 cb JNB rel8 Jump short if not below (CF=0).
77 cb JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0).
73 cb JNC rel8 Jump short if not carry (CF=0).
75 cb JNE rel8 Jump short if not equal (ZF=0).
7E cb JNG rel8 Jump short if not greater (ZF=1 or SF<>OF).
7C cb JNGE rel8 Jump short if not greater or equal (SF<>OF).
7D cb JNL rel8 Jump short if not less (SF=OF).
7F cb JNLE rel8 Jump short if not less or equal (ZF=0 and SF=OF).
71 cb JNO rel8 Jump short if not overflow (OF=0).
7B cb JNP rel8 Jump short if not parity (PF=0).
79 cb JNS rel8 Jump short if not sign (SF=0).
75 cb JNZ rel8 Jump short if not zero (ZF=0).
70 cb JO rel8 Jump short if overflow (OF=1).
7A cb JP rel8 Jump short if parity (PF=1).
7A cb JPE rel8 Jump short if parity even (PF=1).
7B cb JPO rel8 Jump short if parity odd (PF=0).
78 cb JS rel8 Jump short if sign (SF=1).
74 cb JZ rel8 Jump short if zero (ZF = 1).
0F 87 cw/cd JA rel16/32 Jump near if above (CF=0 and ZF=0).
0F 83 cw/cd JAE rel16/32 Jump near if above or equal (CF=0).
0F 82 cw/cd JB rel16/32 Jump near if below (CF=1).
0F 86 cw/cd JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1).
0F 82 cw/cd JC rel16/32 Jump near if carry (CF=1).
0F 84 cw/cd JE rel16/32 Jump near if equal (ZF=1).
0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1).
0F 8F cw/cd JG rel16/32 Jump near if greater (ZF=0 and SF=OF).
3-380 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Description
Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and
ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruc-
tion specified by the destination operand. A condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is
generally specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction
coding is most efficient for offsets of –128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16
bits.

The conditions for each Jcc mnemonic are given in the “Description” column of the table on the
preceding page. The terms “less” and “greater” are used for comparisons of signed integers and
the terms “above” and “below” are used for unsigned integers.

Opcode Instruction Description
0F 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF).
0F 8C cw/cd JL rel16/32 Jump near if less (SF<>OF).
0F 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF).
0F 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1).
0F 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1).
0F 83 cw/cd JNB rel16/32 Jump near if not below (CF=0).
0F 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0).
0F 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0).
0F 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0).
0F 8E cw/cd JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF).
0F 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF).
0F 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF).
0F 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=OF).
0F 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0).
0F 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0).
0F 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0).
0F 85 cw/cd JNZ rel16/32 Jump near if not zero (ZF=0).
0F 80 cw/cd JO rel16/32 Jump near if overflow (OF=1).
0F 8A cw/cd JP rel16/32 Jump near if parity (PF=1).
0F 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1).
0F 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0).
0F 88 cw/cd JS rel16/32 Jump near if sign (SF=1).
0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1).
Vol. 2A 3-381

INSTRUCTION SET REFERENCE, A-M
Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for the Jcc instruction, and then access the target with an unconditional far jump
(JMP instruction) to the other segment. For example, the following conditional far jump is
illegal:
JZ FARLABEL;

To accomplish this far jump, use the following two instructions:
JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differ from the other Jcc instructions because they do not
check the status flags. Instead they check the contents of the ECX and CX registers, respec-
tively, for 0. Either the CX or ECX register is chosen according to the address-size attribute.
These instructions are useful at the beginning of a conditional loop that terminates with a condi-
tional loop instruction (such as LOOPNE). They prevent entering the loop when the ECX or CX
register is equal to 0, which would cause the loop to execute 232 or 64K times, respectively,
instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines, regardless
of jump address or cacheability.

Operation
IF condition

THEN
 EIP ← EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP ← EIP AND 0000FFFFH;
FI;

ELSE (* OperandSize = 32 *)
IF EIP < CS.Base OR EIP > CS.Limit

#GP
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
3-382 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is

outside of the effective address space from 0 to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
Vol. 2A 3-383

INSTRUCTION SET REFERENCE, A-M
JMP—Jump

Description
Transfers program control to a different point in the instruction stream without recording return
information. The destination (target) operand specifies the address of the instruction being
jumped to. This operand can be an immediate value, a general-purpose register, or a memory
location.

This instruction can be used to execute four different types of jumps:

• Near jump—A jump to an instruction within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment jump.

• Short jump—A near jump where the jump range is limited to –128 to +127 from the
current EIP value.

• Far jump—A jump to an instruction located in a different segment than the current code
segment but at the same privilege level, sometimes referred to as an intersegment jump.

• Task switch—A jump to an instruction located in a different task.

A task switch can only be executed in protected mode (see Chapter 6, Task Management, in the
IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for information on
performing task switches with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address
(within the current code segment) that is specified with the target operand. The target operand
specifies either an absolute offset (that is an offset from the base of the code segment) or a rela-
tive offset (a signed displacement relative to the current value of the instruction pointer in the
EIP register). A near jump to a relative offset of 8-bits (rel8) is referred to as a short jump. The
CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location
(r/m16 or r/m32). The operand-size attribute determines the size of the target operand (16 or 32
bits). Absolute offsets are loaded directly into the EIP register. If the operand-size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction
pointer size of 16 bits.

Opcode Instruction Description
EB cb JMP rel8 Jump short, relative, displacement relative to next instruction.
E9 cw JMP rel16 Jump near, relative, displacement relative to next instruction.
E9 cd JMP rel32 Jump near, relative, displacement relative to next instruction.
FF /4 JMP r/m16 Jump near, absolute indirect, address given in r/m16.
FF /4 JMP r/m32 Jump near, absolute indirect, address given in r/m32.
EA cd JMP ptr16:16 Jump far, absolute, address given in operand.
EA cp JMP ptr16:32 Jump far, absolute, address given in operand.
FF /5 JMP m16:16 Jump far, absolute indirect, address given in m16:16.
FF /5 JMP m16:32 Jump far, absolute indirect, address given in m16:32.
3-384 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at
the machine code level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value
is added to the value in the EIP register. (Here, the EIP register contains the address of the
instruction following the JMP instruction). When using relative offsets, the opcode (for short vs.
near jumps) and the operand-size attribute (for near relative jumps) determines the size of the
target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumps to the code segment and offset specified with
the target operand. Here the target operand specifies an absolute far address either directly with
a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With
the pointer method, the segment and address of the called procedure is encoded in the instruc-
tion, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate.
With the indirect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is loaded
directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of
the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP
instruction can be used to perform the following three types of far jumps:

• A far jump to a conforming or non-conforming code segment.

• A far jump through a call gate.

• A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privi-
lege level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far jump to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruc-
tion is loaded into the EIP register. Note that a call gate (described in the next paragraph) can
also be used to perform far call to a code segment at the same privilege level. Using this mech-
anism provides an extra level of indirection and is the preferred method of making jumps
between 16-bit and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the target
operand identifies the call gate. (The offset part of the target operand is ignored.) The processor
then jumps to the code segment specified in the call gate descriptor and begins executing the
instruction at the offset specified in the call gate. No stack switch occurs. Here again, the target
Vol. 2A 3-385

INSTRUCTION SET REFERENCE, A-M
operand can specify the far address of the call gate either directly with a pointer (ptr16:16 or
ptr16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a jump
through a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to (and the offset part of the target operand is ignored). The task gate in
turn points to the TSS for the task, which contains the segment selectors for the task’s code and
stack segments. The TSS also contains the EIP value for the next instruction that was to be
executed before the task was suspended. This instruction pointer value is loaded into the EIP
register so that the task begins executing again at this next instruction.

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates
the indirection of the task gate. See Chapter 6, Task Management, in IA-32 Intel Architecture
Software Developer’s Manual, Volume 3, for detailed information on the mechanics of a task
switch.

Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is
not set in the EFLAGS register and the new TSS’s previous task link field is not loaded with the
old task’s TSS selector. A return to the previous task can thus not be carried out by executing
the IRET instruction. Switching tasks with the JMP instruction differs in this regard from the
CALL instruction which does set the NT flag and save the previous task link information,
allowing a return to the calling task with an IRET instruction.

Operation
IF near jump

THEN IF near relative jump
THEN

tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*)
ELSE (* near absolute jump *)

tempEIP ← DEST;
FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← tempEIP;

ELSE (* OperandSize=16 *)
EIP ← tempEIP AND 0000FFFFH;

FI;
FI:

IF far jump AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN

tempEIP ← DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS ← DEST[segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32

THEN
EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *)
3-386 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
ELSE (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
FI;
IF far jump AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)

THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

OR segment selector in target operand null
THEN #GP(0);

FI;
IF segment selector index not within descriptor table limits

THEN #GP(new selector);
FI;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

ELSE
#GP(segment selector);

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP ← DEST(Offset);
IF OperandSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST[SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(code segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP ← DEST(Offset);
IF OperandSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
Vol. 2A 3-387

INSTRUCTION SET REFERENCE, A-M
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST[SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

CALL-GATE:
IF call gate DPL < CPL

OR call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); FI;

IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment

OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;
IF code segment is not present THEN #NP(code-segment selector); FI;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP ← DEST(Offset);
IF GateSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST[SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

TASK-GATE:
IF task gate DPL < CPL

OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); FI;

IF task gate not present THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
IF TSS not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;

END;
3-388 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
TASK-STATE-SEGMENT:
IF TSS DPL < CPL

OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;

END;

Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment

limits.

If the segment selector in the destination operand, call gate, task gate, or
TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If the segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment
selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for selector in a call gate does not indicate it is a
code segment.

If the segment descriptor for the segment selector in a task gate does not
indicate an available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.
Vol. 2A 3-389

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made. (Only occurs when fetching target from memory.)
3-390 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LAHF—Load Status Flags into AH Register

Description
Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, and
CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH
register as shown in the “Operation” section below.

Operation
AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected
None (that is, the state of the flags in the EFLAGS register is not affected).

Exceptions (All Operating Modes)
None.

Opcode Instruction Description
9F LAHF Load: AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF).
Vol. 2A 3-391

INSTRUCTION SET REFERENCE, A-M
LAR—Load Access Rights Byte

Description
Loads the access rights from the segment descriptor specified by the second operand (source
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS
register. The source operand (which can be a register or a memory location) contains the
segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can perform additional checks on the access rights information.

When the operand size is 32 bits, the access rights for a segment descriptor include the type and
DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in the second double-
word (bytes 4 through 7) of the segment descriptor. The doubleword is masked by 00FXFF00H
before it is loaded into the destination operand. When the operand size is 16 bits, the access
rights include the type and DPL fields. Here, the two lower-order bytes of the doubleword are
masked by FF00H before being loaded into the destination operand.

This instruction performs the following checks before it loads the access rights in the destination
register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LAR instruction. The valid system
segment and gate descriptor types are given in Table 3-53.

• If the segment is not a conforming code segment, it checks that the specified segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are
less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Opcode Instruction Description
0F 02 /r LAR r16,r/m16 r16 ← r/m16 masked by FF00H.
0F 02 /r LAR r32,r/m32 r32 ← r/m32 masked by 00FxFF00H.
3-392 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
IF SRC(Offset) > descriptor table limit THEN ZF = 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
IF OperandSize = 32

THEN
DEST ← [SRC] AND 00FxFF00H;

ELSE (*OperandSize = 16*)
DEST ← [SRC] AND FF00H;

FI;
FI;

Flags Affected
The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is set to 0.

Table 3-53. Segment and Gate Types
Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate Yes

5 16-bit/32-bit task gate Yes

6 16-bit interrupt gate No

7 16-bit trap gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate Yes

D Reserved No

E 32-bit interrupt gate No

F 32-bit trap gate No
Vol. 2A 3-393

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.
3-394 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LDDQU: Load Unaligned Integer 128 Bits

Description
The instruction is functionally similar to MOVDQU xmm, m128 for loading from memory. That
is: 16 bytes of data starting at an address specified by the source memory operand (second
operand) are fetched from memory and placed in a destination register (first operand). The
source operand need not be aligned on a 16-byte boundary. Up to 32 bytes may be loaded from
memory; this is implementation dependent.

This instruction may improve performance relative to MOVDQU if the source operand crosses
a cache line boundary. In situations that require the data loaded by LDDQU be modified and
stored to the same location, use MOVDQU or MOVDQA instead of LDDQU. To move a double
quadword to or from memory locations that are known to be aligned on 16-byte boundaries, use
the MOVDQA instruction.

Implementation Notes
• If the source is aligned to a 16-byte boundary, based on the implementation, the 16 bytes

may be loaded more than once. For that reason, the usage of LDDQU should be avoided
when using uncached or write-combining (WC) memory regions. For uncached or WC
memory regions, keep using MOVDQU.

• This instruction is a replacement for MOVDQU (load) in situations where cache line splits
significantly affect performance. It should not be used in situations where store-load
forwarding is performance critical. If performance of store-load forwarding is critical to
the application, use MOVDQA store-load pairs when data is 128-bit aligned or MOVDQU
store-load pairs when data is 128-bit unaligned.

• If the memory address is not aligned on 16-byte boundary, some implementations may
load up to 32 bytes and return 16 bytes in the destination. Some processor implementations
may issue multiple loads to access the appropriate 16 bytes. Developers of multi-threaded
or multi-processor software should be aware that on these processors the loads will be
performed in a non-atomic way.

Operation
xmm[127-0] = m128;

Intel C/C++ Compiler Intrinsic Equivalent
HADDPS __m128i _mm_lddqu_si128(__m128i const *p)

Numeric Exceptions
None.

Opcode Instruction Description
F2,0F,F0,/r LDDQU xmm, mem Load data from mem and return 128 bits in

an xmm register.
Vol. 2A 3-395

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR4.OSFXSR(bit 9) = 0.

If CR0.EM = 1.

If CPUID.SSE3(ECX bit 0) = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-396 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LDMXCSR—Load MXCSR Register

Description
Loads the source operand into the MXCSR control/status register. The source operand is a 32-
bit memory location. See “MXCSR Control and Status Register” in Chapter 10, of the IA-32
Intel Architecture Software Developer’s Manual, Volume 1, for a description of the MXCSR
register and its contents.

The LDMXCSR instruction is typically used in conjunction with the STMXCSR instruction,
which stores the contents of the MXCSR register in memory.

The default MXCSR value at reset is 1F80H.

If a LDMXCSR instruction clears an SIMD floating-point exception mask bit and sets the corre-
sponding exception flag bit, an SIMD floating-point exception will not be immediately gener-
ated. The exception will be generated only upon the execution of the next SSE or SSE2
instruction that causes that particular SIMD floating-point exception to be reported.

Operation
MXCSR ← m32;

C/C++ Compiler Intrinsic Equivalent
_mm_setcsr(unsigned int i)

Numeric Exceptions
None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS, or

GS segments.

For an attempt to set reserved bits in MXCSR.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Opcode Instruction Description
0F AE /2 LDMXCSR m32 Load MXCSR register from m32.
Vol. 2A 3-397

INSTRUCTION SET REFERENCE, A-M
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective address space
from 0 to FFFFH.

For an attempt to set reserved bits in MXCSR.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-398 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description
Loads a far pointer (segment selector and offset) from the second operand (source operand) into
a segment register and the first operand (destination operand). The source operand specifies a
48-bit or a 32-bit pointer in memory depending on the current setting of the operand-size
attribute (32 bits or 16 bits, respectively). The instruction opcode and the destination operand
specify a segment register/general-purpose register pair. The 16-bit segment selector from the
source operand is loaded into the segment register specified with the opcode (DS, SS, ES, FS,
or GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination
operand.

If one of these instructions is executed in protected mode, additional information from the
segment descriptor pointed to by the segment selector in the source operand is loaded in the
hidden part of the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into DS, ES,
FS, or GS registers without causing a protection exception. (Any subsequent reference to a
segment whose corresponding segment register is loaded with a null selector, causes a general-
protection exception (#GP) and no memory reference to the segment occurs.)

Operation
IF ProtectedMode

THEN IF SS is loaded
THEN IF SegementSelector = null

THEN #GP(0);
FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL ≠ CPL
OR Access rights indicate nonwritable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;

Opcode Instruction Description
C5 /r LDS r16,m16:16 Load DS:r16 with far pointer from memory.
C5 /r LDS r32,m16:32 Load DS:r32 with far pointer from memory.
0F B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory.
0F B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory.
C4 /r LES r16,m16:16 Load ES:r16 with far pointer from memory.
C4 /r LES r32,m16:32 Load ES:r32 with far pointer from memory.
0F B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory.
0F B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory.
0F B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory.
0F B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory.
Vol. 2A 3-399

INSTRUCTION SET REFERENCE, A-M
ELSE IF Segment marked not present
THEN #SS(selector);

FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector
THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #NP(selector);
FI;
SegmentRegister ← SegmentSelector(SRC) AND RPL;
SegmentRegister ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with a null selector:
SegmentRegister ← NullSelector;
SegmentRegister(DescriptorValidBit) ← 0; (*hidden flag; not accessible by software*)

FI;
FI;
IF (Real-Address or Virtual-8086 Mode)

THEN
SegmentRegister ← SegmentSelector(SRC);

FI;
DEST ← Offset(SRC);

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true: the
segment selector index is not within the descriptor table limits, the
segment selector RPL is not equal to CPL, the segment is a non-writable
data segment, or DPL is not equal to CPL.
3-400 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If the DS, ES, FS, or GS register is being loaded with a non-null segment
selector and any of the following is true: the segment selector index is not
within descriptor table limits, the segment is neither a data nor a readable
code segment, or the segment is a data or nonconforming-code segment
and both RPL and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment
selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-401

INSTRUCTION SET REFERENCE, A-M
LEA—Load Effective Address

Description
Computes the effective address of the second operand (the source operand) and stores it in the
first operand (destination operand). The source operand is a memory address (offset part) spec-
ified with one of the processors addressing modes; the destination operand is a general-purpose
register. The address-size and operand-size attributes affect the action performed by this instruc-
tion, as shown in the following table. The operand-size attribute of the instruction is determined
by the chosen register; the address-size attribute is determined by the attribute of the code
segment.

Different assemblers may use different algorithms based on the size attribute and symbolic
reference of the source operand.

Operation
IF OperandSize = 16 AND AddressSize = 16

THEN
DEST ← EffectiveAddress(SRC); (* 16-bit address *)

ELSE IF OperandSize = 16 AND AddressSize = 32
THEN

temp ← EffectiveAddress(SRC); (* 32-bit address *)
DEST ← temp[0..15]; (* 16-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 16
THEN

temp ← EffectiveAddress(SRC); (* 16-bit address *)
DEST ← ZeroExtend(temp); (* 32-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 32
THEN

Opcode Instruction Description
8D /r LEA r16,m Store effective address for m in register r16.
8D /r LEA r32,m Store effective address for m in register r32.

Table 3-54. Address and Operand Size Attributes
Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested
16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.
3-402 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
DEST ← EffectiveAddress(SRC); (* 32-bit address *)
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.
Vol. 2A 3-403

INSTRUCTION SET REFERENCE, A-M
LEAVE—High Level Procedure Exit

Description
Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruction copies
the frame pointer (in the EBP register) into the stack pointer register (ESP), which releases the
stack space allocated to the stack frame. The old frame pointer (the frame pointer for the calling
procedure that was saved by the ENTER instruction) is then popped from the stack into the EBP
register, restoring the calling procedure’s stack frame.

A RET instruction is commonly executed following a LEAVE instruction to return program
control to the calling procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 6 of the IA-32 Intel Architec-
ture Software Developer’s Manual, Volume 1, for detailed information on the use of the ENTER
and LEAVE instructions.

Operation
IF StackAddressSize = 32

THEN
ESP ← EBP;

ELSE (* StackAddressSize = 16*)
SP ← BP;

FI;
IF OperandSize = 32

THEN
EBP ← Pop();

ELSE (* OperandSize = 16*)
BP ← Pop();

FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the EBP register points to a location that is not within the limits of the

current stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description
C9 LEAVE Set SP to BP, then pop BP.
C9 LEAVE Set ESP to EBP, then pop EBP.
3-404 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If the EBP register points to a location outside of the effective address

space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
#GP(0) If the EBP register points to a location outside of the effective address

space from 0 to FFFFH.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-405

INSTRUCTION SET REFERENCE, A-M
LES—Load Far Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.
3-406 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LFENCE—Load Fence

Description
Performs a serializing operation on all load-from-memory instructions that were issued prior the
LFENCE instruction. This serializing operation guarantees that every load instruction that
precedes in program order the LFENCE instruction is globally visible before any load instruc-
tion that follows the LFENCE instruction is globally visible. The LFENCE instruction is
ordered with respect to load instructions, other LFENCE instructions, any MFENCE instruc-
tions, and any serializing instructions (such as the CPUID instruction). It is not ordered with
respect to store instructions or the SFENCE instruction.

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue and speculative reads. The degree to which a consumer of
data recognizes or knows that the data is weakly ordered varies among applications and may be
unknown to the producer of this data. The LFENCE instruction provides a performance-efficient
way of insuring load ordering between routines that produce weakly-ordered results and
routines that consume that data.

It should be noted that processors are free to speculatively fetch and cache data from system
memory regions that are assigned a memory-type that permits speculative reads (that is, the WB,
WC, and WT memory types). The PREFETCHh instruction is considered a hint to this specula-
tive behavior. Because this speculative fetching can occur at any time and is not tied to instruc-
tion execution, the LFENCE instruction is not ordered with respect to PREFETCHh instructions
or any other speculative fetching mechanism (that is, data could be speculative loaded into the
cache just before, during, or after the execution of an LFENCE instruction).

Operation
Wait_On_Following_Loads_Until(preceding_loads_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_lfence(void)

Exceptions (All Modes of Operation)
None.

Opcode Instruction Description
0F AE /5 LFENCE Serializes load operations.
Vol. 2A 3-407

INSTRUCTION SET REFERENCE, A-M
LFS—Load Far Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.
3-408 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Description
Loads the values in the source operand into the global descriptor table register (GDTR) or the
interrupt descriptor table register (IDTR). The source operand specifies a 6-byte memory loca-
tion that contains the base address (a linear address) and the limit (size of table in bytes) of the
global descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size attribute is
32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base address (upper
4 bytes of the data operand) are loaded into the register. If the operand-size attribute is 16
bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are
loaded. Here, the high-order byte of the operand is not used and the high-order byte of the base
address in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used
in application programs. They are the only instructions that directly load a linear address (that
is, not a segment-relative address) and a limit in protected mode. They are commonly executed
in real-address mode to allow processor initialization prior to switching to protected mode.

See “SGDT—Store Global Descriptor Table Register” in Chapter 4 for information on storing
the contents of the GDTR and IDTR.

Operation
IF instruction is LIDT

THEN
IF OperandSize = 16

THEN
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47];

FI;
ELSE (* instruction is LGDT *)

IF OperandSize = 16
THEN

GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47];

FI; FI;

Opcode Instruction Description
0F 01 /2 LGDT m16&32 Load m into GDTR.
0F 01 /3 LIDT m16&32 Load m into IDTR.
Vol. 2A 3-409

INSTRUCTION SET REFERENCE, A-M
Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) The LGDT and LIDT instructions are not recognized in virtual-8086

mode.

#GP If the current privilege level is not 0.
3-410 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LLDT—Load Local Descriptor Table Register

Description
Loads the source operand into the segment selector field of the local descriptor table register
(LDTR). The source operand (a general-purpose register or a memory location) contains a
segment selector that points to a local descriptor table (LDT). After the segment selector is
loaded in the LDTR, the processor uses the segment selector to locate the segment descriptor for
the LDT in the global descriptor table (GDT). It then loads the segment limit and base address
for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS,
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment
(TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors in the
LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general protection excep-
tion (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be used in
application programs. Also, this instruction can only be executed in protected mode.

Operation
IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector) ← SRC;
LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or
if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

Opcode Instruction Description
0F 00 /2 LLDT r/m16 Load segment selector r/m16 into LDTR.
Vol. 2A 3-411

INSTRUCTION SET REFERENCE, A-M
#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LLDT instruction is not recognized in virtual-8086 mode.
3-412 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global/Interrupt Descriptor Table Register.
Vol. 2A 3-413

INSTRUCTION SET REFERENCE, A-M
LMSW—Load Machine Status Word

Description
Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The
source operand can be a 16-bit general-purpose register or a memory location. Only the low-
order 4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded
into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are not affected. The operand-
size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to
switch to protected mode. While in protected mode, the LMSW instruction cannot be used to
clear the PE flag and force a switch back to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used
in application programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286™ processor; programs and
procedures intended to run on the Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and
Intel386 processors should use the MOV (control registers) instruction to load the whole CR0
register. The MOV CR0 instruction can be used to set and clear the PE flag in CR0, allowing a
procedure or program to switch between protected and real-address modes.

This instruction is a serializing instruction.

Operation
CR0[0:3] ← SRC[0:3];

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description
0F 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CR0.
3-414 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.
Vol. 2A 3-415

INSTRUCTION SET REFERENCE, A-M
LOCK—Assert LOCK# Signal Prefix

Description
Causes the processor’s LOCK# signal to be asserted during execution of the accompanying
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment,
the LOCK# signal insures that the processor has exclusive use of any shared memory while the
signal is asserted.

Note that in later IA-32 processors (including the Pentium 4, Intel Xeon, and P6 family proces-
sors), locking may occur without the LOCK# signal being asserted. See IA-32 Architecture
Compatibility below.

The LOCK prefix can be prepended only to the following instructions and only to those forms
of the instructions where the destination operand is a memory operand: ADD, ADC, AND,
BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR,
XADD, and XCHG. If the LOCK prefix is used with one of these instructions and the source
operand is a memory operand, an undefined opcode exception (#UD) may be generated. An
undefined opcode exception will also be generated if the LOCK prefix is used with any instruc-
tion not in the above list. The XCHG instruction always asserts the LOCK# signal regardless of
the presence or absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write
operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory
locking is observed for arbitrarily misaligned fields.

IA-32 Architecture Compatibility
Beginning with the P6 family processors, when the LOCK prefix is prefixed to an instruction
and the memory area being accessed is cached internally in the processor, the LOCK# signal is
generally not asserted. Instead, only the processor’s cache is locked. Here, the processor’s cache
coherency mechanism insures that the operation is carried out atomically with regards to
memory. See “Effects of a Locked Operation on Internal Processor Caches” in Chapter 7 of IA-
32 Intel Architecture Software Developer’s Manual, Volume 3, the for more information on
locking of caches.

Operation
AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected
None.

Opcode Instruction Description
F0 LOCK Asserts LOCK# signal for duration of the accompanying

instruction.
3-416 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-

tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-

tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-

tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.
Vol. 2A 3-417

INSTRUCTION SET REFERENCE, A-M
LODS/LODSB/LODSW/LODSD—Load String

Description
Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location, the address of which is read from the
DS:EDI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). The DS segment may be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the LODS
mnemonic) allows the source operand to be specified explicitly. Here, the source operand should
be a symbol that indicates the size and location of the source value. The destination operand is
then automatically selected to match the size of the source operand (the AL register for byte
operands, AX for word operands, and EAX for doubleword operands). This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword), but it does not have to specify the correct location.
The location is always specified by the DS:(E)SI registers, which must be loaded correctly
before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
LODS instructions. Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or
EAX register is assumed to be the destination operand. The size of the source and destination
operands is selected with the mnemonic: LODSB (byte loaded into register AL), LODSW (word
loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX,
or EAX register, the (E)SI register is incremented or decremented automatically according to
the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incre-
mented; if the DF flag is 1, the ESI register is decremented.) The (E)SI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because further processing of the data moved into the register
is usually necessary before the next transfer can be made. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” in Chapter 4 for a description of the REP prefix.

Opcode Instruction Description
AC LODS m8 Load byte at address DS:(E)SI into AL.
AD LODS m16 Load word at address DS:(E)SI into AX.
AD LODS m32 Load doubleword at address DS:(E)SI into EAX.
AC LODSB Load byte at address DS:(E)SI into AL.
AD LODSW Load word at address DS:(E)SI into AX.
AD LODSD Load doubleword at address DS:(E)SI into EAX.
3-418 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
IF (byte load)

THEN
AL ← SRC; (* byte load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
ELSE IF (word load)

THEN
AX ← SRC; (* word load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
ELSE (* doubleword transfer *)

EAX ← SRC; (* doubleword load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
Vol. 2A 3-419

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-420 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LOOP/LOOPcc—Loop According to ECX Counter

Description
Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0,
the loop is terminated and program execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is
32 bits, the ECX register is used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this instruc-
tion.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

Operation
IF AddressSize = 32

THEN
Count is ECX;

ELSE (* AddressSize = 16 *)
Count is CX;

FI;
Count ← Count – 1;

IF instruction is not LOOP
THEN

IF (instruction ← LOOPE) OR (instruction ← LOOPZ)
THEN

IF (ZF =1) AND (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

Opcode Instruction Description
E2 cb LOOP rel8 Decrement count; jump short if count ≠ 0.
E1 cb LOOPE rel8 Decrement count; jump short if count ≠ 0 and ZF=1.
E1 cb LOOPZ rel8 Decrement count; jump short if count ≠ 0 and ZF=1.
E0 cb LOOPNE rel8 Decrement count; jump short if count ≠ 0 and ZF=0.
E0 cb LOOPNZ rel8 Decrement count; jump short if count ≠ 0 and ZF=0.
Vol. 2A 3-421

INSTRUCTION SET REFERENCE, A-M
FI;
FI;
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)

THEN
IF (ZF =0) AND (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF BranchCond = 1

THEN
 EIP ← EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP ← EIP AND 0000FFFFH;
ELSE (* OperandSize = 32 *)

IF EIP < CS.Base OR EIP > CS.Limit
#GP

FI;
ELSE

Terminate loop and continue program execution at EIP;
FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is

outside of the effective address space from 0 to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
3-422 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LSL—Load Segment Limit

Description
Loads the unscrambled segment limit from the segment descriptor specified with the second
operand (source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location) contains
the segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can compare the segment limit with the offset of a pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of
the segment descriptor. If the descriptor has a byte granular segment limit (the granularity flag
is set to 0), the destination operand is loaded with a byte granular value (byte limit). If the
descriptor has a page granular segment limit (the granularity flag is set to 1), the LSL instruction
will translate the page granular limit (page limit) into a byte limit before loading it into the desti-
nation operand. The translation is performed by shifting the 20-bit “raw” limit left 12 bits and
filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When
the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are trun-
cated and only the low-order 16 bits are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the desti-
nation register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LSL instruction. The valid special
segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, the instruction checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no value is loaded in the destination operand.

Opcode Instruction Description
0F 03 /r LSL r16,r/m16 Load: r16 ← segment limit, selector r/m16.
0F 03 /r LSL r32,r/m32 Load: r32 ← segment limit, selector r/m32).
Vol. 2A 3-423

INSTRUCTION SET REFERENCE, A-M
Operation
IF SRC(Offset) > descriptor table limit

THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
temp ← SegmentLimit([SRC]);
IF (G ← 1)

THEN
temp ← ShiftLeft(12, temp) OR 00000FFFH;

FI;
IF OperandSize = 32

THEN
DEST ← temp;

ELSE (*OperandSize = 16*)

DEST ← temp AND FFFFH;
FI;

FI;

Table 3-55. Segment and Gate Descriptor Types
Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate No

5 16-bit/32-bit task gate No

6 16-bit interrupt gate No

7 16-bit trap gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate No

D Reserved No

E 32-bit interrupt gate No

F 32-bit trap gate No
3-424 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Flags Affected
The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The LSL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LSL instruction is not recognized in virtual-8086 mode.
Vol. 2A 3-425

INSTRUCTION SET REFERENCE, A-M
LSS—Load Far Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.
3-426 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
LTR—Load Task Register

Description
Loads the source operand into the segment selector field of the task register. The source operand
(a general-purpose register or a memory location) contains a segment selector that points to a
task state segment (TSS). After the segment selector is loaded in the task register, the processor
uses the segment selector to locate the segment descriptor for the TSS in the global descriptor
table (GDT). It then loads the segment limit and base address for the TSS from the segment
descriptor into the task register. The task pointed to by the task register is marked busy, but a
switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in
application programs. It can only be executed in protected mode when the CPL is 0. It is
commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation
IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global

THEN #GP(segment selector);
FI;
Read segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy) ← 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a
task that is already busy.

Opcode Instruction Description
0F 00 /3 LTR r/m16 Load r/m16 into task register.
Vol. 2A 3-427

INSTRUCTION SET REFERENCE, A-M
If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LTR instruction is not recognized in virtual-8086 mode.
3-428 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MASKMOVDQU—Store Selected Bytes of Double Quadword

Description
Stores selected bytes from the source operand (first operand) into an 128-bit memory location.
The mask operand (second operand) selects which bytes from the source operand are written to
memory. The source and mask operands are XMM registers. The location of the first byte of the
memory location is specified by DI/EDI and DS registers. The memory location does not need
to be aligned on a natural boundary. (The size of the store address depends on the address-size
attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding
byte in the source operand is written to the corresponding byte location in memory: 0 indicates
no write and 1 indicates write.

The MASKMOVEDQU instruction generates a non-temporal hint to the processor to minimize
cache pollution. The non-temporal hint is implemented by using a write combining (WC)
memory type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10, of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1). Because the WC protocol
uses a weakly-ordered memory consistency model, a fencing operation implemented with the
SFENCE or MFENCE instruction should be used in conjunction with MASKMOVEDQU
instructions if multiple processors might use different memory types to read/write the destina-
tion memory locations.

Behavior with a mask of all 0s is as follows:

• No data will be written to memory.

• Signaling of breakpoints (code or data) is not guaranteed; different processor implementa-
tions may signal or not signal these breakpoints.

• Exceptions associated with addressing memory and page faults may still be signaled
(implementation dependent).

• If the destination memory region is mapped as UC or WP, enforcement of associated
semantics for these memory types is not guaranteed (that is, is reserved) and is implemen-
tation-specific.

The MASKMOVDQU instruction can be used to improve performance of algorithms that need
to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a read for ownership;
doing so generates unnecessary bandwidth since data is to be written directly using the byte-
mask without allocating old data prior to the store.

Opcode Instruction Description
66 0F F7 /r MASKMOVDQU xmm1, xmm2 Selectively write bytes from xmm1 to memory

location using the byte mask in xmm2.
Vol. 2A 3-429

INSTRUCTION SET REFERENCE, A-M
Operation
IF (MASK[7] = 1)

THEN DEST[DI/EDI] ← SRC[7-0] ELSE * memory location unchanged *; FI;
IF (MASK[15] = 1)

THEN DEST[DI/EDI+1] ← SRC[15-8] ELSE * memory location unchanged *; FI;
* Repeat operation for 3rd through 14th bytes in source operand *;

IF (MASK[127] = 1)
THEN DEST[DI/EDI+15] ← SRC[127-120] ELSE * memory location unchanged *; FI;

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments. (even if mask is all 0s).

If the destination operand is in a nonwritable segment.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) For an illegal address in the SS segment (even if mask is all 0s).

#PF(fault-code) For a page fault (implementation specific).

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH. (even if mask is all 0s).

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault (implementation specific).
3-430 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MASKMOVQ—Store Selected Bytes of Quadword

Description
Stores selected bytes from the source operand (first operand) into a 64-bit memory location. The
mask operand (second operand) selects which bytes from the source operand are written to
memory. The source and mask operands are MMX technology registers. The location of the first
byte of the memory location is specified by DI/EDI and DS registers. (The size of the store
address depends on the address-size attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding
byte in the source operand is written to the corresponding byte location in memory: 0 indicates
no write and 1 indicates write.

The MASKMOVQ instruction generates a non-temporal hint to the processor to minimize cache
pollution. The non-temporal hint is implemented by using a write combining (WC) memory
type protocol (see “Caching of Temporal vs. Non-Temporal Data” in Chapter 10, of the IA-32
Intel Architecture Software Developer’s Manual, Volume 1). Because the WC protocol uses a
weakly-ordered memory consistency model, a fencing operation implemented with the
SFENCE or MFENCE instruction should be used in conjunction with MASKMOVEDQU
instructions if multiple processors might use different memory types to read/write the destina-
tion memory locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is, the x87
FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:

• No data will be written to memory.

• Transition from x87 FPU to MMX technology state will occur.

• Exceptions associated with addressing memory and page faults may still be signaled
(implementation dependent).

• Signaling of breakpoints (code or data) is not guaranteed (implementation dependent).

• If the destination memory region is mapped as UC or WP, enforcement of associated
semantics for these memory types is not guaranteed (that is, is reserved) and is implemen-
tation-specific.

The MASKMOVQ instruction can be used to improve performance for algorithms that need to
merge data on a byte-by-byte basis. It should not cause a read for ownership; doing so generates
unnecessary bandwidth since data is to be written directly using the byte-mask without allo-
cating old data prior to the store.

Opcode Instruction Description
0F F7 /r MASKMOVQ mm1, mm2 Selectively write bytes from mm1 to memory location using

the byte mask in mm2.
Vol. 2A 3-431

INSTRUCTION SET REFERENCE, A-M
Operation
IF (MASK[7] = 1)

THEN DEST[DI/EDI] ← SRC[7-0] ELSE * memory location unchanged *; FI;
IF (MASK[15] = 1)

THEN DEST[DI/EDI+1] ← SRC[15-8] ELSE * memory location unchanged *; FI;
* Repeat operation for 3rd through 6th bytes in source operand *;

IF (MASK[63] = 1)
THEN DEST[DI/EDI+15] ← SRC[63-56] ELSE * memory location unchanged *; FI;

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_maskmove_si64(__m64d, __m64n, char * p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments. (even if mask is all 0s).

If the destination operand is in a nonwritable segment.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) For an illegal address in the SS segment (even if mask is all 0s).

#PF(fault-code) For a page fault (implementation specific).

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

If Mod field of the ModR/M byte not 11B

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH. (even if mask is all 0s).

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
3-432 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault (implementation specific).

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-433

INSTRUCTION SET REFERENCE, A-M
MAXPD—Return Maximum Packed Double-Precision Floating-
Point Values

Description
Performs an SIMD compare of the packed double-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the maximum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is
forwarded unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXPD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[63-0] ← IF ((DEST[63-0] = 0.0) AND (SRC[63-0] = 0.0)) THEN SRC[63-0]

ELSE IF (DEST[63-0] = SNaN) THEN SRC[63-0];
 ELSE IF SRC[63-0] = SNaN) THEN SRC[63-0];

 ELSE IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0]
ELSE SRC[63-0];

FI;
DEST[127-64] ← IF ((DEST[127-64] = 0.0) AND (SRC[127-64] = 0.0))

THEN SRC[127-64]
ELSE IF (DEST[127-64] = SNaN) THEN SRC[127-64];

 ELSE IF SRC[127-64] = SNaN) THEN SRC[127-64];
 ELSE IF (DEST[127-64] > SRC[63-0])

THEN DEST[127-64]
ELSE SRC[127-64];

FI;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_max_pd(__m128d a, __m128d b)

Opcode Instruction Description
66 0F 5F /r MAXPD xmm1, xmm2/m128 Return the maximum double-precision floating-point

values between xmm2/m128 and xmm1.
3-434 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
Vol. 2A 3-435

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-436 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MAXPS—Return Maximum Packed Single-Precision Floating-Point
Values

Description
Performs an SIMD compare of the packed single-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the maximum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXPS can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[31-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]

ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
 ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];

 ELSE IF (DEST[31-0] > SRC[31-0])
THEN DEST[31-0]
ELSE SRC[31-0];

FI;
* repeat operation for 2nd and 3rd doublewords *;
DEST[127-64] ← IF ((DEST[127-96] = 0.0) AND (SRC[127-96] = 0.0))

THEN SRC[127-96]
ELSE IF (DEST[127-96] = SNaN) THEN SRC[127-96];

 ELSE IF SRC[127-96] = SNaN) THEN SRC[127-96];
 ELSE IF (DEST[127-96] > SRC[127-96])

THEN DEST[127-96]
ELSE SRC[127-96];

FI;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_max_ps(__m128d a, __m128d b)

Opcode Instruction Description
0F 5F /r MAXPS xmm1, xmm2/m128 Return the maximum single-precision floating-point

values between xmm2/m128 and xmm1.
Vol. 2A 3-437

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
3-438 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-439

INSTRUCTION SET REFERENCE, A-M
MAXSD—Return Maximum Scalar Double-Precision Floating-Point
Value

Description
Compares the low double-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the maximum value to the low
quadword of the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only 64 bits are accessed. The high quadword of the destination operand
remains unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXSD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[63-0] ← IF ((DEST[63-0] = 0.0) AND (SRC[63-0] = 0.0)) THEN SRC[63-0]

IF (DEST[63-0] = SNaN) THEN SRC[63-0];
 ELSE IF SRC[63-0] = SNaN) THEN SRC[63-0];

 ELSE IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0]
ELSE SRC[63-0];

FI;
* DEST[127-64] is unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_max_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Opcode Instruction Description
F2 0F 5F /r MAXSD xmm1, xmm2/m64 Return the maximum scalar double-precision floating-

point value between xmm2/mem64 and xmm1.
3-440 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-441

INSTRUCTION SET REFERENCE, A-M
MAXSS—Return Maximum Scalar Single-Precision Floating-Point
Value

Description
Compares the low single-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the maximum value to the low
doubleword of the destination operand. The source operand can be an XMM register or a 32-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only 32 bits are accessed. The three high-order doublewords of the destination
operand remain unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MAXSS can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[63-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]

ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
 ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];

 ELSE IF (DEST[31-0] > SRC[31-0])
THEN DEST[31-0]
ELSE SRC[31-0];

FI;
* DEST[127-32] is unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_max_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Opcode Instruction Description
F3 0F 5F /r MAXSS xmm1, xmm2/m32 Return the maximum scalar single-precision floating-

point value between xmm2/mem32 and xmm1.
3-442 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-443

INSTRUCTION SET REFERENCE, A-M
MFENCE—Memory Fence

Description
Performs a serializing operation on all load-from-memory and store-to-memory instructions that
were issued prior the MFENCE instruction. This serializing operation guarantees that every load
and store instruction that precedes in program order the MFENCE instruction is globally visible
before any load or store instruction that follows the MFENCE instruction is globally visible. The
MFENCE instruction is ordered with respect to all load and store instructions, other MFENCE
instructions, any SFENCE and LFENCE instructions, and any serializing instructions (such as
the CPUID instruction).

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing.
The degree to which a consumer of data recognizes or knows that the data is weakly ordered
varies among applications and may be unknown to the producer of this data. The MFENCE
instruction provides a performance-efficient way of ensuring load and store ordering between
routines that produce weakly-ordered results and routines that consume that data.

It should be noted that processors are free to speculatively fetch and cache data from system
memory regions that are assigned a memory-type that permits speculative reads (that is, the WB,
WC, and WT memory types). The PREFETCHh instruction is considered a hint to this specula-
tive behavior. Because this speculative fetching can occur at any time and is not tied to instruc-
tion execution, the MFENCE instruction is not ordered with respect to PREFETCHh
instructions or any other speculative fetching mechanism (that is, data could be speculatively
loaded into the cache just before, during, or after the execution of an MFENCE instruction).

Operation
Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_mfence(void)

Exceptions (All Modes of Operation)
None.

Opcode Instruction Description
0F AE /6 MFENCE Serializes load and store operations.
3-444 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MINPD—Return Minimum Packed Double-Precision Floating-Point
Values

Description
Performs an SIMD compare of the packed double-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the minimum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINPD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[63-0] ← IF ((DEST[63-0] = 0.0) AND (SRC[63-0] = 0.0)) THEN SRC[63-0]

ELSE IF (DEST[63-0] = SNaN) THEN SRC[63-0];
 ELSE IF SRC[63-0] = SNaN) THEN SRC[63-0];

 ELSE IF (DEST[63-0] < SRC[63-0])
THEN DEST[63-0]
ELSE SRC[63-0];

FI;
DEST[127-64] ← IF ((DEST[127-64] = 0.0) AND (SRC[127-64] = 0.0))

THEN SRC[127-64]
ELSE IF (DEST[127-64] = SNaN) THEN SRC[127-64];

 ELSE IF SRC[127-64] = SNaN) THEN SRC[127-64];
 ELSE IF (DEST[127-64] < SRC[63-0])

THEN DEST[127-64]
ELSE SRC[127-64];

FI;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_min_pd(__m128d a, __m128d b)

Opcode Instruction Description
66 0F 5D /r MINPD xmm1, xmm2/m128 Return the minimum double-precision floating-point

values between xmm2/m128 and xmm1.
Vol. 2A 3-445

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
3-446 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-447

INSTRUCTION SET REFERENCE, A-M
MINPS—Return Minimum Packed Single-Precision Floating-Point
Values

Description
Performs an SIMD compare of the packed single-precision floating-point values in the destina-
tion operand (first operand) and the source operand (second operand), and returns the minimum
value for each pair of values to the destination operand. The source operand can be an XMM
register or a 128-bit memory location. The destination operand is an XMM register.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINPS can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[63-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]

ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
 ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];

 ELSE IF (DEST[31-0] > SRC[31-0])
THEN DEST[31-0]
ELSE SRC[31-0];

FI;
* repeat operation for 2nd and 3rd doublewords *;
DEST[127-64] ← IF ((DEST127-96] = 0.0) AND (SRC[127-96] = 0.0))

THEN SRC[127-96]
ELSE IF (DEST[127-96] = SNaN) THEN SRC[127-96];

 ELSE IF SRC[127-96] = SNaN) THEN SRC[127-96];
 ELSE IF (DEST[127-96] < SRC[127-96])

THEN DEST[127-96]
ELSE SRC[127-96];

FI;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_min_ps(__m128d a, __m128d b)

Opcode Instruction Description
0F 5D /r MINPS xmm1, xmm2/m128 Return the minimum single-precision floating-point

values between xmm2/m128 and xmm1.
3-448 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
Vol. 2A 3-449

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-450 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MINSD—Return Minimum Scalar Double-Precision Floating-Point
Value

Description
Compares the low double-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the minimum value to the low
quadword of the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only the 64 bits are accessed. The high quadword of the destination operand
remains unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINSD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[63-0] ← IF ((DEST[63-0] = 0.0) AND (SRC[63-0] = 0.0)) THEN SRC[63-0]

ELSE IF (DEST[63-0] = SNaN) THEN SRC[63-0];
 ELSE IF SRC[63-0] = SNaN) THEN SRC[63-0];

 ELSE IF (DEST[63-0] < SRC[63-0])
THEN DEST[63-0]
ELSE SRC[63-0];

FI;
* DEST[127-64] is unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_min_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Opcode Instruction Description
F2 0F 5D /r MINSD xmm1, xmm2/m64 Return the minimum scalar double-precision floating-point

value between xmm2/mem64 and xmm1.
Vol. 2A 3-451

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-452 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MINSS—Return Minimum Scalar Single-Precision Floating-Point
Value

Description
Compares the low single-precision floating-point values in the destination operand (first
operand) and the source operand (second operand), and returns the minimum value to the low
doubleword of the destination operand. The source operand can be an XMM register or a 32-bit
memory location. The destination operand is an XMM register. When the source operand is a
memory operand, only 32 bits are accessed. The three high-order doublewords of the destination
operand remain unchanged.

If the values being compared are both 0.0s (of either sign), the value in the second operand
(source operand) is returned. If a value in the second operand is an SNaN, that SNaN is returned
unchanged to the destination (that is, a QNaN version of the SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source
operand), either a NaN or a valid floating-point value, is written to the result. If instead of this
behavior, it is required that the NaN source operand (from either the first or second operand) be
returned, the action of MINSD can be emulated using a sequence of instructions, such as, a
comparison followed by AND, ANDN and OR.

Operation
DEST[63-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]

ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
 ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];

 ELSE IF (DEST[31-0] < SRC[31-0])
THEN DEST[31-0]
ELSE SRC[31-0];

FI;
* DEST[127-32] is unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
__m128d _mm_min_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Opcode Instruction Description
F3 0F 5D /r MINSS xmm1, xmm2/m32 Return the minimum scalar single-precision floating-

point value between xmm2/mem32 and xmm1.
Vol. 2A 3-453

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-454 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MONITOR: Setup Monitor Address

Description
The MONITOR instruction arms the address monitoring hardware using the address specified
in EAX. The address range that the monitoring hardware will check for store operations can be
determined by the CPUID instruction. The monitoring hardware will detect stores to an address
within the address range and triggers the monitor hardware when the write is detected. The state
of the monitor hardware is used by the MWAIT instruction.

The content of EAX is an effective address. By default, the DS segment is used to create a linear
address that is then monitored. Segment overrides can be used with the MONITOR instruction.

ECX and EDX are used to communicate other information to the MONITOR instruction. ECX
specifies optional extensions for the MONITOR instruction. EDX specifies optional hints for
the MONITOR instruction and does not change the architectural behavior of the instruction. For
the Pentium 4 processor with CPUID signature of family = 15 and model = 3, no extensions or
hints are defined. Specifying undefined hints in EDX are ignored by the processor, whereas
specifying undefined extensions in ECX will raise a general protection fault exception on the
execution of the MONITOR instruction.

The address range must be in memory of write-back type. Only write-back memory type stores
to the monitored address range will trigger the monitoring hardware. If the address range is not
in memory of write-back type, the address monitor hardware may not be armed properly. The
MONITOR instruction is ordered as a load operation with respect to other memory transactions.
Additional information for determining the address range to prevent false wake-ups is described
in Chapter 7 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3.

The MONITOR instruction can be used at all privilege levels and is subject to all permission
checking and faults associated with a byte load. Like a load, the MONITOR instruction sets the
A-bit but not the D-bit in the page tables. The MONITOR CPUID feature flag (bit 3 of ECX
when CPUID is executed with EAX=1) indicates the availability of MONITOR and MWAIT
instructions in the processor. When set, the unconditional execution of MONITOR is supported
at privilege levels 0 and conditional execution at privilege levels 1 through 3 (software should
test for the appropriate support of these instructions before unconditional use). The operating
system or system BIOS may disable this instruction through the IA32_MISC_ENABLES MSR;
disabling the instruction clears the CPUID feature flag and causes execution of the MONITOR
instruction to generate an illegal opcode exception.

Opcode Instruction Description
0F,01,C8 MONITOR Sets up a linear address range to be monitored by

hardware and activates the monitor. The address
range should be of a write-back memory caching
type.
Vol. 2A 3-455

INSTRUCTION SET REFERENCE, A-M
Operation
MONITOR sets up an address range for the monitor hardware using the content of EAX as an
effective address and puts the monitor hardware in armed state. The memory address range
should be within memory of the write-back caching type. A store to the specified address range
will trigger the monitor hardware. The content of ECX and EDX are used to communicate other
information to the monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent
MONITOR void _mm_monitor(void const *p, unsigned extensions,unsigned
hints)

Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#GP(0) For ECX has a value other than 0.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault (TBD).

#UD If CPUID feature flag MONITOR is 0.

If executed at privilege level 1 through 3 when the instruction is not avail-
able.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

Real Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

Virtual 8086 Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#GP(0) For ECX has a value other than 0.
3-456 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If CPUID feature flag MONITOR is 0.

If executed at privilege level 1 through 3 when the instruction is not avail-
able.

If LOCK, REP, REPNE/NZ and Operand Size override prefixes are used.

#PF(fault-code) For a page fault.
Vol. 2A 3-457

INSTRUCTION SET REFERENCE, A-M
MOV—Move

NOTES:
* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where

8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size
of the offset, either 16 or 32 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the fol-
lowing “Description” section for further information).

Description
Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, general-purpose register, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the far JMP, CALL, or RET
instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment

Opcode Instruction Description
88 /r MOV r/m8,r8 Move r8 to r/m8.
89 /r MOV r/m16,r16 Move r16 to r/m16.
89 /r MOV r/m32,r32 Move r32 to r/m32.
8A /r MOV r8,r/m8 Move r/m8 to r8.
8B /r MOV r16,r/m16 Move r/m16 to r16.
8B /r MOV r32,r/m32 Move r/m32 to r32.
8C /r MOV r/m16,Sreg** Move segment register to r/m16.
8E /r MOV Sreg,r/m16** Move r/m16 to segment register.
A0 MOV AL,moffs8* Move byte at (seg:offset) to AL.
A1 MOV AX,moffs16* Move word at (seg:offset) to AX.
A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX.
A2 MOV moffs8*,AL Move AL to (seg:offset).
A3 MOV moffs16*,AX Move AX to (seg:offset).
A3 MOV moffs32*,EAX Move EAX to (seg:offset).
B0+ rb MOV r8,imm8 Move imm8 to r8.
B8+ rw MOV r16,imm16 Move imm16 to r16.
B8+ rd MOV r32,imm32 Move imm32 to r32.
C6 /0 MOV r/m8,imm8 Move imm8 to r/m8.
C7 /0 MOV r/m16,imm16 Move imm16 to r/m16.
C7 /0 MOV r/m32,imm32 Move imm32 to r/m32.
3-458 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers
without causing a protection exception. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a null value causes a general
protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register
with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs1. Be aware
that the LSS instruction offers a more efficient method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-
purpose register, the 32-bit IA-32 processors do not require the use of the 16-bit operand-size
prefix (a byte with the value 66H) with this instruction, but most assemblers will insert it if the
standard form of the instruction is used (for example, MOV DS, AX). The processor will
execute this instruction correctly, but it will usually require an extra clock. With most assem-
blers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the
processor executes the instruction with a 32-bit general-purpose register, it assumes that the 16
least-significant bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of the register
is implementation dependent. For the Pentium 4, Intel Xeon, and P6 family processors, the two
high-order bytes are filled with zeros; for earlier 32-bit IA-32 processors, the two high order
bytes are undefined.

Operation
DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.
IF SS is loaded;

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately
after a MOV SS instruction, the breakpoint may not be triggered.

Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:

STI
MOV SS, EAX
MOV ESP, EBP

interrupts may be recognized before MOV ESP, EBP executes, because STI also delays interrupts for
one instruction.
Vol. 2A 3-459

INSTRUCTION SET REFERENCE, A-M
THEN
IF segment selector is null

THEN #GP(0);
FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;
IF DS, ES, FS, or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF DS, ES, FS, or GS is loaded with a null selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
3-460 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If attempt is made to load the CS register.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

#UD If attempt is made to load the CS register.
Vol. 2A 3-461

INSTRUCTION SET REFERENCE, A-M
MOV—Move to/from Control Registers

Description
Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose register
or vice versa. The operand size for these instructions is always 32 bits, regardless of the operand-
size attribute. (See “Control Registers” in Chapter 2 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for a detailed description of the flags and fields in the control
registers.) This instruction can be executed only when the current privilege level is 0.

When loading control registers, programs should not attempt to change the reserved bits; that is,
always set reserved bits to the value previously read. An attempt to change CR4's reserved bits
will cause a general protection fault. Reserved bits in CR0 and CR3 remain clear after any load
of those registers; attempts to set them have no impact. On Pentium 4, Intel Xeon and P6 family
processors, CR0.ET remains set after any load of CR0; attempts to clear this bit have no impact.

At the opcode level, the reg field within the ModR/M byte specifies which of the control regis-
ters is loaded or read. The 2 bits in the mod field are always 11B. The r/m field specifies the
general-purpose register loaded or read.

These instructions have the following side effect:

• When writing to control register CR3, all non-global TLB entries are flushed (see “Trans-
lation Lookaside Buffers (TLBs)” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3).

The following side effects are implementation specific for the Pentium 4, Intel Xeon, and P6
family processors. Software should not depend on this functionality in all IA-32 processors:

• When modifying any of the paging flags in the control registers (PE and PG in register
CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, including
global entries.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 (to
enable the physical address extension mode), the pointers in the page-directory pointers
table (PDPT) are loaded into the processor (into internal, non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 will
cause the PDPTRs to be reloaded into the processor. If the PAE flag is set to 1 and control
register CR0 is written to set the PG flag, the PDPTRs are reloaded into the processor.

Opcode Instruction Description
0F 22 /r MOV CR0,r32 Move r32 to CR0.
0F 22 /r MOV CR2,r32 Move r32 to CR2.
0F 22 /r MOV CR3,r32 Move r32 to CR3.
0F 22 /r MOV CR4,r32 Move r32 to CR4.
0F 20 /r MOV r32,CR0 Move CR0 to r32.
0F 20 /r MOV r32,CR2 Move CR2 to r32.
0F 20 /r MOV r32,CR3 Move CR3 to r32.
0F 20 /r MOV r32,CR4 Move CR4 to r32.
3-462 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
DEST ← SRC;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as
setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag
to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR4.

If any of the reserved bits are set in the page-directory pointers table
(PDPT) and the loading of a control register causes the PDPT to be loaded
into the processor.

Real-Address Mode Exceptions
#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write invalid bit combinations in CR0 (such as
setting the PG flag to 1 when the PE flag is set to 0).

Virtual-8086 Mode Exceptions
#GP(0) These instructions cannot be executed in virtual-8086 mode.
Vol. 2A 3-463

INSTRUCTION SET REFERENCE, A-M
MOV—Move to/from Debug Registers

Description
Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or DR7) to a
general-purpose register or vice versa. The operand size for these instructions is always 32 bits,
regardless of the operand-size attribute. (See Chapter 15, Debugging and Performance Moni-
toring, of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for a detailed
description of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug
registers in a manner that is compatible with Intel386 and Intel486 processors. In this mode,
references to DR4 and DR5 refer to DR6 and DR7, respectively. When the DE flag in CR4 is
set, attempts to reference DR4 and DR5 result in an undefined opcode (#UD) exception. (The
CR4 register was added to the IA-32 Architecture beginning with the Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers
is loaded or read. The two bits in the mod field are always 11. The r/m field specifies the general-
purpose register loaded or read.

Operation
IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST ← SRC;

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is
executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Opcode Instruction Description
0F 21/r MOV r32, DR0-DR7 Move debug register to r32.
0F 23 /r MOV DR0-DR7,r32 Move r32 to debug register.
3-464 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is

executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Virtual-8086 Mode Exceptions
#GP(0) The debug registers cannot be loaded or read when in virtual-8086 mode.
Vol. 2A 3-465

INSTRUCTION SET REFERENCE, A-M
MOVAPD—Move Aligned Packed Double-Precision Floating-Point
Values

Description
Moves a double quadword containing two packed double-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the contents of
an XMM register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on
a 16-byte boundary or a general-protection exception (#GP) will be generated.

To move double-precision floating-point values to and from unaligned memory locations, use
the MOVUPD instruction.

Operation
DEST ← SRC;
* #GP if SRC or DEST unaligned memory operand *;

Intel C/C++ Compiler Intrinsic Equivalent
__m128 _mm_load_pd(double * p)

void_mm_store_pd(double *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

Opcode Instruction Description
66 0F 28 /r MOVAPD xmm1, xmm2/m128 Move packed double-precision floating-point values

from xmm2/m128 to xmm1.
66 0F 29 /r MOVAPD xmm2/m128, xmm1 Move packed double-precision floating-point values

from xmm1 to xmm2/m128.
3-466 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-467

INSTRUCTION SET REFERENCE, A-M
MOVAPS—Move Aligned Packed Single-Precision Floating-Point
Values

Description
Moves a double quadword containing four packed single-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the contents of
an XMM register into a 128-bit memory location, or to move data between two XMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on
a 16-byte boundary or a general-protection exception (#GP) is generated.

To move packed single-precision floating-point values to or from unaligned memory locations,
use the MOVUPS instruction.

Operation
DEST ← SRC;
* #GP if SRC or DEST unaligned memory operand *;

Intel C/C++ Compiler Intrinsic Equivalent
__m128 _mm_load_ps (float * p)

void_mm_store_ps (float *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
0F 28 /r MOVAPS xmm1, xmm2/m128 Move packed single-precision floating-point values from

xmm2/m128 to xmm1.
0F 29 /r MOVAPS xmm2/m128, xmm1 Move packed single-precision floating-point values from

xmm1 to xmm2/m128.
3-468 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-469

INSTRUCTION SET REFERENCE, A-M
MOVD—Move Doubleword

Description
Copies a doubleword from the source operand (second operand) to the destination operand (first
operand). The source and destination operands can be general-purpose registers, MMX tech-
nology registers, XMM registers, or 32-bit memory locations. This instruction can be used to
move a doubleword to and from the low doubleword of an MMX technology register and a
general-purpose register or a 32-bit memory location, or to and from the low doubleword of an
XMM register and a general-purpose register or a 32-bit memory location. The instruction
cannot be used to transfer data between MMX technology registers, between XMM registers,
between general-purpose registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is written to
the low doubleword of the register, and the register is zero-extended to 64 bits. When the desti-
nation operand is an XMM register, the source operand is written to the low doubleword of the
register, and the register is zero-extended to 128 bits.

Operation
MOVD instruction when destination operand is MMX technology register:

DEST[31-0] ← SRC;
DEST[63-32] ← 00000000H;

MOVD instruction when destination operand is XMM register:
DEST[31-0] ← SRC;
DEST[127-32] ← 000000000000000000000000H;

MOVD instruction when source operand is MMX technology or XMM register:
DEST ← SRC[31-0];

Intel C/C++ Compiler Intrinsic Equivalent
MOVD __m64 _mm_cvtsi32_si64 (int i)

MOVD int _mm_cvtsi64_si32 (__m64m)

MOVD __m128i _mm_cvtsi32_si128 (int a)

MOVD int _mm_cvtsi128_si32 (__m128i a)

Flags Affected
None.

Opcode Instruction Description
0F 6E /r MOVD mm, r/m32 Move doubleword from r/m32 to mm.
0F 7E /r MOVD r/m32, mm Move doubleword from mm to r/m32.
66 0F 6E /r MOVD xmm, r/m32 Move doubleword from r/m32 to xmm.
66 0F 7E /r MOVD r/m32, xmm Move doubleword from xmm register to r/m32.
3-470 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is
MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CR0 is set.

#MF (MMX technology register operations only.) If there is a pending FPU
exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is
MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CR0 is set.

#MF (MMX technology register operations only.) If there is a pending FPU
exception.
Vol. 2A 3-471

INSTRUCTION SET REFERENCE, A-M
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-472 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVDDUP: Move One Double-FP and Duplicate

Description
The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 8 bytes of data at memory location m64
are loaded. When the register-register form of this operation is used, the lower half of the 128-
bit source register is duplicated and copied into the 128-bit destination register. See Figure 3-14.

Operation
if (source == m64) {

// load instruction
xmm1[63-0] = m64;
xmm1[127-64] = m64;

}
else {

// move instruction
xmm1[63-0] = xmm2[63-0];
xmm1[127-64] = xmm2[63-0];

}

Opcode Instruction Description
F2,0F,12,/r MOVDDUP xmm1, xmm2/m64 Move 64 bits representing the lower DP

data element from xmm2/m64 to xmm1
register and duplicate.

Figure 3-14. MOVDDUP: Move One Double-FP and Duplicate

OM15997

xmm1[127-64] xmm2/m64[63-0] xmm1[63-0] xmm2/m64[63-0]

[63-0]

[127-64] [63-0]

MOVDDUP xmm1, xmm2/m64

RESULT:
xmm1

xmm2/m64
Vol. 2A 3-473

INSTRUCTION SET REFERENCE, A-M
Intel C/C++ Compiler Intrinsic Equivalent
MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

Exceptions
None

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.
3-474 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-475

INSTRUCTION SET REFERENCE, A-M
MOVDQA—Move Aligned Double Quadword

Description
Moves a double quadword from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move
data between two XMM registers. When the source or destination operand is a memory operand,
the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

To move a double quadword to or from unaligned memory locations, use the MOVDQU instruc-
tion.

Operation
DEST ← SRC;
* #GP if SRC or DEST unaligned memory operand *;

Intel C/C++ Compiler Intrinsic Equivalent
MOVDQA __m128i _mm_load_si128 (__m128i *p)

MOVDQA void _mm_store_si128 (__m128i *p, __m128i a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#PF(fault-code) If a page fault occurs.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM If TS in CR0 is set.

Opcode Instruction Description
66 0F 6F /r MOVDQA xmm1, xmm2/m128 Move aligned double quadword from xmm2/m128 to

xmm1.
66 0F 7F /r MOVDQA xmm2/m128, xmm1 Move aligned double quadword from xmm1 to

xmm2/m128.
3-476 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.SSE2 = 0

Real-Address Mode Exceptions
#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.SSE2 = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-477

INSTRUCTION SET REFERENCE, A-M
MOVDQU—Move Unaligned Double Quadword

Description
Moves a double quadword from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move
data between two XMM registers. When the source or destination operand is a memory operand,
the operand may be unaligned on a 16-byte boundary without causing a general-protection
exception (#GP) to be generated.

To move a double quadword to or from memory locations that are known to be aligned on 16-
byte boundaries, use the MOVDQA instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that over-
laps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific
processor implementation may or may not generate a general-protection exception (#GP) in this
situation, and the address that spans the end of the segment may or may not wrap around to the
beginning of the segment.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVDQU void _mm_storeu_si128 (__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128 (__m128i *p)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM If TS in CR0 is set.

Opcode Instruction Description
F3 0F 6F /r MOVDQU xmm1, xmm2/m128 Move unaligned double quadword from

xmm2/m128 to xmm1.
F3 0F 7F /r MOVDQU xmm2/m128, xmm1 Move unaligned double quadword from xmm1 to

xmm2/m128.
3-478 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.SSE = 0.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.SSE = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-479

INSTRUCTION SET REFERENCE, A-M
MOVDQ2Q—Move Quadword from XMM to MMX Technology
Register

Description
Moves the low quadword from the source operand (second operand) to the destination operand
(first operand). The source operand is an XMM register and the destination operand is an MMX
technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the MOVDQ2Q instruction is executed.

Operation
DEST ← SRC[63-0]

Intel C/C++ Compiler Intrinsic Equivalent
MOVDQ2Q __m64 _mm_movepi64_pi64 (__m128i a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode

Opcode Instruction Description
F2 0F D6 MOVDQ2Q mm, xmm Move low quadword from xmm to MMX technology register.
3-480 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVHLPS— Move Packed Single-Precision Floating-Point Values
High to Low

Description
Moves two packed single-precision floating-point values from the high quadword of the source
operand (second operand) to the low quadword of the destination operand (first operand). The
high quadword of the destination operand is left unchanged.

Operation
DEST[63-0] ← SRC[127-64];
* DEST[127-64] unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual 8086 Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction Description
0F 12 /r MOVHLPS xmm1, xmm2 Move two packed single-precision floating-point values from

high quadword of xmm2 to low quadword of xmm1.
Vol. 2A 3-481

INSTRUCTION SET REFERENCE, A-M
MOVHPD—Move High Packed Double-Precision Floating-Point
Value

Description
Moves a double-precision floating-point value from the source operand (second operand) to the
destination operand (first operand). The source and destination operands can be an XMM
register or a 64-bit memory location. This instruction allows a double-precision floating-point
value to be moved to and from the high quadword of an XMM register and memory. It cannot
be used for register to register or memory to memory moves. When the destination operand is
an XMM register, the low quadword of the register remains unchanged.

Operation
MOVHPD instruction for memory to XMM move:

DEST[127-64] ← SRC ;
* DEST[63-0] unchanged *;

MOVHPD instruction for XMM to memory move:
DEST ← SRC[127-64] ;

Intel C/C++ Compiler Intrinsic Equivalent
MOVHPD __m128d _mm_loadh_pd (__m128d a, double *p)

MOVHPD void _mm_storeh_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
66 0F 16 /r MOVHPD xmm, m64 Move double-precision floating-point value from m64 to high

quadword of xmm.
66 0F 17 /r MOVHPD m64, xmm Move double-precision floating-point value from high quadword

of xmm to m64.
3-482 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-483

INSTRUCTION SET REFERENCE, A-M
MOVHPS—Move High Packed Single-Precision Floating-Point
Values

Description
Moves two packed single-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). The source and destination operands can be
an XMM register or a 64-bit memory location. This instruction allows two single-precision
floating-point values to be moved to and from the high quadword of an XMM register and
memory. It cannot be used for register to register or memory to memory moves. When the desti-
nation operand is an XMM register, the low quadword of the register remains unchanged.

Operation
MOVHPD instruction for memory to XMM move:

DEST[127-64] ← SRC ;
* DEST[63-0] unchanged *;

MOVHPD instruction for XMM to memory move:
DEST ← SRC[127-64] ;

Intel C/C++ Compiler Intrinsic Equivalent
MOVHPS __m128d _mm_loadh_pi (__m128d a, __m64 *p)

MOVHPS void _mm_storeh_pi (__m64 *p, __m128d a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
0F 16 /r MOVHPS xmm, m64 Move two packed single-precision floating-point values

from m64 to high quadword of xmm.
0F 17 /r MOVHPS m64, xmm Move two packed single-precision floating-point values

from high quadword of xmm to m64.
3-484 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2A 3-485

INSTRUCTION SET REFERENCE, A-M
MOVLHPS—Move Packed Single-Precision Floating-Point Values
Low to High

Description
Moves two packed single-precision floating-point values from the low quadword of the source
operand (second operand) to the high quadword of the destination operand (first operand). The
low quadword of the destination operand is left unchanged.

Operation
DEST[127-64] ← SRC[63-0];
* DEST[63-0] unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual 8086 Mode Exceptions
Same exceptions as in Protected Mode.

Opcode Instruction Description
0F 16 /r MOVLHPS xmm1, xmm2 Move two packed single-precision floating-point values from

low quadword of xmm2 to high quadword of xmm1.
3-486 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVLPD—Move Low Packed Double-Precision Floating-Point
Value

Description
Moves a double-precision floating-point value from the source operand (second operand) to the
destination operand (first operand). The source and destination operands can be an XMM
register or a 64-bit memory location. This instruction allows a double-precision floating-point
value to be moved to and from the low quadword of an XMM register and memory. It cannot be
used for register to register or memory to memory moves. When the destination operand is an
XMM register, the high quadword of the register remains unchanged.

Operation
MOVLPD instruction for memory to XMM move:

DEST[63-0] ← SRC ;
* DEST[127-64] unchanged *;

MOVLPD instruction for XMM to memory move:
DEST ← SRC[63-0] ;

Intel C/C++ Compiler Intrinsic Equivalent
MOVLPD __m128d _mm_loadl_pd (__m128d a, double *p)

MOVLPD void _mm_storel_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
66 0F 12 /r MOVLPD xmm, m64 Move double-precision floating-point value from m64 to low

quadword of xmm register.
66 0F 13 /r MOVLPD m64, xmm Move double-precision floating-point nvalue from low quadword

of xmm register to m64.
Vol. 2A 3-487

INSTRUCTION SET REFERENCE, A-M
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-488 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVLPS—Move Low Packed Single-Precision Floating-Point
Values

Description
Moves two packed single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand). The source and destination operands can
be an XMM register or a 64-bit memory location. This instruction allows two single-precision
floating-point values to be moved to and from the low quadword of an XMM register and
memory. It cannot be used for register to register or memory to memory moves. When the desti-
nation operand is an XMM register, the high quadword of the register remains unchanged.

Operation
MOVLPD instruction for memory to XMM move:

DEST[63-0] ← SRC ;
* DEST[127-64] unchanged *;

MOVLPD instruction for XMM to memory move:
DEST ← SRC[63-0] ;

Intel C/C++ Compiler Intrinsic Equivalent
MOVLPS __m128 _mm_loadl_pi (__m128 a, __m64 *p)

MOVLPS void _mm_storel_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
0F 12 /r MOVLPS xmm, m64 Move two packed single-precision floating-point values

from m64 to low quadword of xmm.
0F 13 /r MOVLPS m64, xmm Move two packed single-precision floating-point values

from low quadword of xmm to m64.
Vol. 2A 3-489

INSTRUCTION SET REFERENCE, A-M
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-490 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVMSKPD—Extract Packed Double-Precision Floating-Point
Sign Mask

Description
Extracts the sign bits from the packed double-precision floating-point values in the source
operand (second operand), formats them into a 2-bit mask, and stores the mask in the destination
operand (first operand). The source operand is an XMM register, and the destination operand is
a general-purpose register. The mask is stored in the 2 low-order bits of the destination operand.

Operation
DEST[0] ← SRC[63];
DEST[1] ← SRC[127];
DEST[3-2] ← 00B;
DEST[31-4] ← 0000000H;

Intel C/C++ Compiler Intrinsic Equivalent
MOVMSKPD int _mm_movemask_pd (__m128 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode

Opcode Instruction Description
66 0F 50 /r MOVMSKPD r32, xmm Extract 2-bit sign mask of from xmm and store in r32.
Vol. 2A 3-491

INSTRUCTION SET REFERENCE, A-M
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign
Mask

Description
Extracts the sign bits from the packed single-precision floating-point values in the source
operand (second operand), formats them into a 4-bit mask, and stores the mask in the destination
operand (first operand). The source operand is an XMM register, and the destination operand is
a general-purpose register. The mask is stored in the 4 low-order bits of the destination operand.

Operation
DEST[0] ← SRC[31];
DEST[1] ← SRC[63];
DEST[2] ← SRC[95];
DEST[3] ← SRC[127];
DEST[31-4] ← 000000H;

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_movemask_ps(__m128 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode

Virtual 8086 Mode Exceptions

Same exceptions as in Protected Mode.

Opcode Instruction Description
0F 50 /r MOVMSKPS r32, xmm Extract 4-bit sign mask of from xmm and store in r32.
3-492 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

Description
Moves the double quadword in the source operand (second operand) to the destination operand
(first operand) using a non-temporal hint to prevent caching of the data during the write to
memory. The source operand is an XMM register, which is assumed to contain integer data
(packed bytes, words, doublewords, or quadwords). The destination operand is a 128-bit
memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTDQ instructions if multiple processors might use different memory types to read/write
the destination memory locations.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_si128 (__m128i *p, __m128i a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction Description
66 0F E7 /r MOVNTDQ m128, xmm Move double quadword from xmm to m128 using non-

temporal hint.
Vol. 2A 3-493

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-494 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVNTI—Store Doubleword Using Non-Temporal Hint

Description
Moves the doubleword integer in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to minimize cache pollution during the write
to memory. The source operand is a general-purpose register. The destination operand is a 32-
bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTI instructions if multiple processors might use different memory types to read/write the
destination memory locations.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_si32 (int *p, int a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID feature flag SSE2 is 0.

Opcode Instruction Description
0F C3 /r MOVNTI m32, r32 Move doubleword from r32 to m32 using non-temporal hint.
Vol. 2A 3-495

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#UD If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-496 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVNTPD—Store Packed Double-Precision Floating-Point Values
Using Non-Temporal Hint

Description
Moves the double quadword in the source operand (second operand) to the destination operand
(first operand) using a non-temporal hint to minimize cache pollution during the write to
memory. The source operand is an XMM register, which is assumed to contain two packed
double-precision floating-point values. The destination operand is a 128-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTPD instructions if multiple processors might use different memory types to read/write
the destination memory locations.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_pd(double *p, __m128i a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction Description
66 0F 2B /r MOVNTPD m128, xmm Move packed double-precision floating-point values from

xmm to m128 using non-temporal hint.
Vol. 2A 3-497

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-498 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVNTPS—Store Packed Single-Precision Floating-Point Values
Using Non-Temporal Hint

Description
Moves the double quadword in the source operand (second operand) to the destination operand
(first operand) using a non-temporal hint to minimize cache pollution during the write to
memory. The source operand is an XMM register, which is assumed to contain four packed
single-precision floating-point values. The destination operand is a 128-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTPS instructions if multiple processors might use different memory types to read/write
the destination memory locations.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTDQ void_mm_stream_ps(float * p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction Description
0F 2B /r MOVNTPS m128, xmm Move packed single-precision floating-point values from xmm

to m128 using non-temporal hint.
Vol. 2A 3-499

INSTRUCTION SET REFERENCE, A-M
#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-500 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVNTQ—Store of Quadword Using Non-Temporal Hint

Description
Moves the quadword in the source operand (second operand) to the destination operand (first
operand) using a non-temporal hint to minimize cache pollution during the write to memory.
The source operand is an MMX technology register, which is assumed to contain packed integer
data (packed bytes, words, or doublewords). The destination operand is a 64-bit memory loca-
tion.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol
when writing the data to memory. Using this protocol, the processor does not write the data into
the cache hierarchy, nor does it fetch the corresponding cache line from memory into the cache
hierarchy. The memory type of the region being written to can override the non-temporal hint,
if the memory address specified for the non-temporal store is in an uncacheable (UC) or write
protected (WP) memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with
MOVNTQ instructions if multiple processors might use different memory types to read/write
the destination memory locations.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

Opcode Instruction Description
0F E7 /r MOVNTQ m64, mm Move quadword from mm to m64 using non-temporal hint.
Vol. 2A 3-501

INSTRUCTION SET REFERENCE, A-M
#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-502 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVSHDUP: Move Packed Single-FP High and Duplicate

Description
The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 16 bytes of data at memory location
m128 are loaded and the single-precision elements in positions 1 and 3 are duplicated. When the
register-register form of this operation is used, the same operation is performed but with data
coming from the 128-bit source register. See Figure 3-15.

Operation
if (source == m128) {

// load instruction
xmm1[31-0] = m128[63-32];
xmm1[63-32] = m128[63-32]
xmm1[95-64] = m128[127-96];
xmm1[127-96] = m128[127-96];

}
else {

Opcode Instruction Description
F3,0F,16,/r MOVSHDUP xmm1, xmm2/m128 Move two single-precision floating-point

values from the higher 32-bit operand of
each qword in xmm2/m128 to xmm1 and
duplicate each 32-bit operand to the lower
32-bits of each qword.

Figure 3-15. MOVSHDUP: Move Packed Single-FP High and Duplicate

OM15998

MOVSHDUP xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x mm1 [3 1 - 0]
 xmm2/

m1 2 8 [6 3 - 3 2]

[31-0]

x mm1 [6 3 - 3 2]
 xmm2/
m1 2 8 [6 3 - 3 2]

[63-32]

x mm1 [9 5 - 6 4]
 xmm2/
m1 2 8 [1 2 7 - 9 6]

[95-64]

x mm1 [1 2 7 - 9 6]
 xmm2/
m1 2 8 [1 2 7 - 9 6]

[127-96]

[127-96] [95-64] [63-32] [31-0]
Vol. 2A 3-503

INSTRUCTION SET REFERENCE, A-M
// move instruction
xmm1[31-0] = xmm2[63-32];
xmm1[63-32] = xmm2[63-32];
xmm1[95-64] = xmm2[127-96];
xmm1[127-96] = xmm2[127-96];

}

Intel C/C++ Compiler Intrinsic Equivalent
MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.
3-504 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
Vol. 2A 3-505

INSTRUCTION SET REFERENCE, A-M
MOVSLDUP: Move Packed Single-FP Low and Duplicate

Description
The linear address corresponds to the address of the least-significant byte of the referenced
memory data. When a memory address is indicated, the 16 bytes of data at memory location
m128 are loaded and the single-precision elements in positions 0 and 2 are duplicated. When the
register-register form of this operation is used, the same operation is performed but with data
coming from the 128-bit source register. Figure 3-16.

Operation
if (source == m128) {

// load instruction
xmm1[31-0] = m128[31-0];
xmm1[63-32] = m128[31-0]
xmm1[95-64] = m128[95-64];
xmm1[127-96] = m128[95-64];

}
else {

// move instruction

Opcode Instruction Description
F3,0F,12,/r MOVSLDUP xmm1, xmm2/m128 Move 128 bits representing packed SP

data elements from xmm2/m128 to xmm1
register and duplicate low.

Figure 3-16. MOVSLDUP: Move Packed Single-FP Low and Duplicate

OM15999

MOVSLDUP xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

x mm1 [3 1 - 0]
 xmm2/
m1 2 8 [3 1 - 0]

[31-0]

x mm1 [6 3 - 3 2]
 xmm2/
m1 2 8 [3 1 - 0]

[63-32]

x mm1 [9 5 - 6 4]
 xmm2/
m1 2 8 [9 5 - 6 4]

[95-64]

x mm1 [1 2 7 - 9 6]
 xmm2/
m1 2 8 [9 5 - 6 4]

[127-96]

[127-96] [95-64] [63-32] [31-0]
3-506 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
xmm1[31-0] = xmm2[31-0];
xmm1[63-32] = xmm2[31-0];
xmm1[95-64] = xmm2[95-64];
xmm1[127-96] = xmm2[95-64];

}

Intel C/C++ Compiler Intrinsic Equivalent
MOVSLDUP__m128 _mm_moveldup_ps(__m128 a)

Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

Virtual 8086 Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#NM If TS bit in CR0 is set.
Vol. 2A 3-507

INSTRUCTION SET REFERENCE, A-M
#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSE3(ECX bit 0) = 0.

#PF(fault-code) For a page fault.
3-508 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVQ—Move Quadword

Description
Copies a quadword from the source operand (second operand) to the destination operand (first
operand). The source and destination operands can be MMX technology registers, XMM regis-
ters, or 64-bit memory locations. This instruction can be used to move a quadword between two
MMX technology registers or between an MMX technology register and a 64-bit memory loca-
tion, or to move data between two XMM registers or between an XMM register and a 64-bit
memory location. The instruction cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low quadword is moved; when the destination
operand is an XMM register, the quadword is stored to the low quadword of the register, and the
high quadword is cleared to all 0s.

Operation
MOVQ instruction when operating on MMX technology registers and memory locations:

DEST ← SRC;
MOVQ instruction when source and destination operands are XMM registers:

DEST[63-0] ← SRC[63-0];
MOVQ instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63-0];
MOVQ instruction when source operand is memory location and destination
operand is XMM register:

DEST[63-0] ← SRC;
DEST[127-64] ← 0000000000000000H;

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Opcode Instruction Description
0F 6F /r MOVQ mm, mm/m64 Move quadword from mm/m64 to mm.
0F 7F /r MOVQ mm/m64, mm Move quadword from mm to mm/m64.
F3 0F 7E MOVQ xmm1, xmm2/m64 Move quadword from xmm2/mem64 to xmm1.
66 0F D6 MOVQ xmm2/m64, xmm1 Move quadword from xmm1 to xmm2/mem64.
Vol. 2A 3-509

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is
MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CR0 is set.

#MF (MMX technology register operations only.) If there is a pending FPU
exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#UD If EM in CR0 is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is
MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CR0 is set.

#MF (MMX technology register operations only.) If there is a pending FPU
exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-510 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVQ2DQ—Move Quadword from MMX Technology to XMM
Register

Description
Moves the quadword from the source operand (second operand) to the low quadword of the
destination operand (first operand). The source operand is an MMX technology register and the
destination operand is an XMM register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this
instruction is executed while an x87 FPU floating-point exception is pending, the exception is
handled before the MOVQ2DQ instruction is executed.

Operation
DEST[63-0] ← SRC[63-0];
DEST[127-64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
MOVQ2DQ __128i _mm_movpi64_pi64 (__m64 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in Protected Mode

Virtual-8086 Mode Exceptions

Same exceptions as in Protected Mode

Opcode Instruction Description
F3 0F D6 MOVQ2DQ xmm, mm Move quadword from mmx to low quadword of xmm.
Vol. 2A 3-511

INSTRUCTION SET REFERENCE, A-M
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Description
Moves the byte, word, or doubleword specified with the second operand (source operand) to the
location specified with the first operand (destination operand). Both the source and destination
operands are located in memory. The address of the source operand is read from the DS:ESI or
the DS:SI registers (depending on the address-size attribute of the instruction, 32 or 16, respec-
tively). The address of the destination operand is read from the ES:EDI or the ES:DI registers
(again depending on the address-size attribute of the instruction). The DS segment may be over-
ridden with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the MOVS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source and destination operands should be symbols that indicate the size and location of the
source value and the destination, respectively. This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be misleading.
That is, the source and destination operand symbols must specify the correct type (size) of the
operands (bytes, words, or doublewords), but they do not have to specify the correct location.
The locations of the source and destination operands are always specified by the DS:(E)SI and
ES:(E)DI registers, which must be loaded correctly before the move string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to be the source and desti-
nation operands, respectively. The size of the source and destination operands is selected with
the mnemonic: MOVSB (byte move), MOVSW (word move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decremented auto-
matically according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0,
the (E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers
are decremented.) The registers are incremented or decremented by 1 for byte operations, by 2
for word operations, or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” in Chapter 4) for
block moves of ECX bytes, words, or doublewords.

Opcode Instruction Description
A4 MOVS m8, m8 Move byte at address DS:(E)SI to address ES:(E)DI.
A5 MOVS m16, m16 Move word at address DS:(E)SI to address ES:(E)DI.
A5 MOVS m32, m32 Move doubleword at address DS:(E)SI to address

ES:(E)DI.
A4 MOVSB Move byte at address DS:(E)SI to address ES:(E)DI.
A5 MOVSW Move word at address DS:(E)SI to address ES:(E)DI.
A5 MOVSD Move doubleword at address DS:(E)SI to address

ES:(E)DI.
3-512 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Operation
DEST ←SRC;
IF (byte move)

THEN IF DF = 0
THEN

(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (word move)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword move*)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2A 3-513

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-514 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVSD—Move Scalar Double-Precision Floating-Point Value

Description
Moves a scalar double-precision floating-point value from the source operand (second operand)
to the destination operand (first operand). The source and destination operands can be XMM
registers or 64-bit memory locations. This instruction can be used to move a double-precision
floating-point value to and from the low quadword of an XMM register and a 64-bit memory
location, or to move a double-precision floating-point value between the low quadwords of two
XMM registers. The instruction cannot be used to transfer data between memory locations.

When the source and destination operands are XMM registers, the high quadword of the desti-
nation operand remains unchanged. When the source operand is a memory location and desti-
nation operand is an XMM registers, the high quadword of the destination operand is cleared to
all 0s.

Operation
MOVSD instruction when source and destination operands are XMM registers:

DEST[63-0] ← SRC[63-0];
* DEST[127-64] remains unchanged *;

MOVSD instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[63-0];
MOVSD instruction when source operand is memory location and destination
operand is XMM register:

DEST[63-0] ← SRC;
DEST[127-64] ← 0000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
MOVSD __m128d _mm_load_sd (double *p)

MOVSD void _mm_store_sd (double *p, __m128d a)

MOVSD __m128d _mm_store_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Opcode Instruction Description
F2 0F 10 /r MOVSD xmm1, xmm2/m64 Move scalar double-precision floating-point value from

xmm2/m64 to xmm1 register.
F2 0F 11 /r MOVSD xmm2/m64, xmm Move scalar double-precision floating-point value from

xmm1 register to xmm2/m64.
Vol. 2A 3-515

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-516 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVSS—Move Scalar Single-Precision Floating-Point Values

Description
Moves a scalar single-precision floating-point value from the source operand (second operand)
to the destination operand (first operand). The source and destination operands can be XMM
registers or 32-bit memory locations. This instruction can be used to move a single-precision
floating-point value to and from the low doubleword of an XMM register and a 32-bit memory
location, or to move a single-precision floating-point value between the low doublewords of two
XMM registers. The instruction cannot be used to transfer data between memory locations.

When the source and destination operands are XMM registers, the three high-order doublewords
of the destination operand remain unchanged. When the source operand is a memory location
and destination operand is an XMM registers, the three high-order doublewords of the destina-
tion operand are cleared to all 0s.

Operation
MOVSS instruction when source and destination operands are XMM registers:

DEST[31-0] ← SRC[31-0];
* DEST[127-32] remains unchanged *;

MOVSS instruction when source operand is XMM register and destination
operand is memory location:

DEST ← SRC[31-0];
MOVSS instruction when source operand is memory location and destination
operand is XMM register:

DEST[31-0] ← SRC;
DEST[127-32] ← 000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
MOVSS __m128 _mm_load_ss(float * p)

MOVSS void_mm_store_ss(float * p, __m128 a)

MOVSS __m128 _mm_move_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Opcode Instruction Description
F3 0F 10 /r MOVSS xmm1, xmm2/m32 Move scalar single-precision floating-point value from

xmm2/m32 to xmm1 register.
F3 0F 11 /r MOVSS xmm2/m32, xmm1 Move scalar single-precision floating-point value from

xmm1 register to xmm2/m32.
Vol. 2A 3-517

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-518 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MOVSX—Move with Sign-Extension

Description
Copies the contents of the source operand (register or memory location) to the destination
operand (register) and sign extends the value to 16 or 32 bits (see Figure 7-6 in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 1). The size of the converted value depends
on the operand-size attribute.

Operation
DEST ← SignExtend(SRC);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description
0F BE /r MOVSX r16,r/m8 Move byte to word with sign-extension.
0F BE /r MOVSX r32,r/m8 Move byte to doubleword, sign-extension.
0F BF /r MOVSX r32,r/m16 Move word to doubleword, sign-extension.
Vol. 2A 3-519

INSTRUCTION SET REFERENCE, A-M
MOVUPD—Move Unaligned Packed Double-Precision Floating-
Point Values

Description
Moves a double quadword containing two packed double-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, store the contents of an
XMM register into a 128-bit memory location, or move data between two XMM registers. When
the source or destination operand is a memory operand, the operand may be unaligned on a 16-
byte boundary without causing a general-protection exception (#GP) to be generated.

To move double-precision floating-point values to and from memory locations that are known
to be aligned on 16-byte boundaries, use the MOVAPD instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that over-
laps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific
processor implementation may or may not generate a general-protection exception (#GP) in this
situation, and the address that spans the end of the segment may or may not wrap around to the
beginning of the segment.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVUPD __m128 _mm_loadu_pd(double * p)

MOVUPD void_mm_storeu_pd(double *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction Description
66 0F 10 /r MOVUPD xmm1, xmm2/m128 Move packed double-precision floating-point values

from xmm2/m128 to xmm1.
66 0F 11 /r MOVUPD xmm2/m128, xmm Move packed double-precision floating-point values

from xmm1 to xmm2/m128.
3-520 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-521

INSTRUCTION SET REFERENCE, A-M
MOVUPS—Move Unaligned Packed Single-Precision Floating-
Point Values

Description
Moves a double quadword containing four packed single-precision floating-point values from
the source operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, store the contents of an
XMM register into a 128-bit memory location, or move data between two XMM registers. When
the source or destination operand is a memory operand, the operand may be unaligned on a 16-
byte boundary without causing a general-protection exception (#GP) to be generated.

To move packed single-precision floating-point values to and from memory locations that are
known to be aligned on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that over-
laps the end of a 16-bit segment is not allowed and is defined as reserved behavior. A specific
processor implementation may or may not generate a general-protection exception (#GP) in this
situation, and the address that spans the end of the segment may or may not wrap around to the
beginning of the segment.

Operation
DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent
MOVUPS __m128 _mm_loadu_ps(double * p)

MOVUPS void_mm_storeu_ps(double *p, __m128 a)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction Description
0F 10 /r MOVUPS xmm1, xmm2/m128 Move packed single-precision floating-point values

from xmm2/m128 to xmm1.
0F 11 /r MOVUPS xmm2/m128, xmm1 Move packed single-precision floating-point values

from xmm1 to xmm2/m128.
3-522 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
Vol. 2A 3-523

INSTRUCTION SET REFERENCE, A-M
MOVZX—Move with Zero-Extend

Description
Copies the contents of the source operand (register or memory location) to the destination
operand (register) and zero extends the value to 16 or 32 bits. The size of the converted value
depends on the operand-size attribute.

Operation
DEST ← ZeroExtend(SRC);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

Opcode Instruction Description
0F B6 /r MOVZX r16,r/m8 Move byte to word with zero-extension.
0F B6 /r MOVZX r32,r/m8 Move byte to doubleword, zero-extension.
0F B7 /r MOVZX r32,r/m16 Move word to doubleword, zero-extension.
3-524 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MUL—Unsigned Multiply

Description
Performs an unsigned multiplication of the first operand (destination operand) and the second
operand (source operand) and stores the result in the destination operand. The destination
operand is an implied operand located in register AL, AX or EAX (depending on the size of the
operand); the source operand is located in a general-purpose register or a memory location. The
action of this instruction and the location of the result depends on the opcode and the operand
size as shown in Table 3-56.

:

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending
on the operand size), with the high-order bits of the product contained in register AH, DX, or
EDX, respectively. If the high-order bits of the product are 0, the CF and OF flags are cleared;
otherwise, the flags are set.

Operation
IF byte operation

THEN
AX ← AL ∗ SRC

ELSE (* word or doubleword operation *)
IF OperandSize = 16

THEN
DX:AX ← AX ∗ SRC

ELSE (* OperandSize = 32 *)
EDX:EAX ← EAX ∗ SRC

FI;
FI;

Opcode Instruction Description
F6 /4 MUL r/m8 Unsigned multiply (AX ← AL ∗ r/m8).
F7 /4 MUL r/m16 Unsigned multiply (DX:AX ← AX ∗ r/m16).
F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX ← EAX ∗ r/m32).

Table 3-56. MUL Results
Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX
Vol. 2A 3-525

INSTRUCTION SET REFERENCE, A-M
Flags Affected
The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they are set to 1.
The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
3-526 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MULPD—Multiply Packed Double-Precision Floating-Point Values

Description
Performs an SIMD multiply of the two packed double-precision floating-point values from the
source operand (second operand) and the destination operand (first operand), and stores the
packed double-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Figure 11-3 in the IA-32 Intel Architecture Software Developer’s Manual, Volume
1 for an illustration of an SIMD double-precision floating-point operation.

Operation
DEST[63-0] ← DEST[63-0] ∗ SRC[63-0];
DEST[127-64] ← DEST[127-64] ∗ SRC[127-64];

Intel C/C++ Compiler Intrinsic Equivalent
MULPD __m128d _mm_mul_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
66 0F 59 /r MULPD xmm1, xmm2/m128 Multiply packed double-precision floating-point values in

xmm2/m128 by xmm1.
Vol. 2A 3-527

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-528 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MULPS—Multiply Packed Single-Precision Floating-Point Values

Description
Performs an SIMD multiply of the four packed single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand), and stores the
packed single-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Figure 10-5 in the IA-32 Intel Architecture Software Developer’s Manual, Volume
1 for an illustration of an SIMD single-precision floating-point operation.

Operation
DEST[31-0] ← DEST[31-0] ∗ SRC[31-0];
DEST[63-32] ← DEST[63-32] ∗ SRC[63-32];
DEST[95-64] ← DEST[95-64] ∗ SRC[95-64];
DEST[127-96] ← DEST[127-96] ∗ SRC[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
MULPS __m128 _mm_mul_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

Opcode Instruction Description
0F 59 /r MULPS xmm1, xmm2/m128 Multiply packed single-precision floating-point values in

xmm2/mem by xmm1.
Vol. 2A 3-529

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.
3-530 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MULSD—Multiply Scalar Double-Precision Floating-Point Values

Description
Multiplies the low double-precision floating-point value in the source operand (second operand)
by the low double-precision floating-point value in the destination operand (first operand), and
stores the double-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 64-bit memory location. The destination operand is an XMM
register. The high quadword of the destination operand remains unchanged. See Figure 11-4 in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 1 for an illustration of a
scalar double-precision floating-point operation.

Operation
DEST[63-0] ← DEST[63-0] * xmm2/m64[63-0];
* DEST[127-64] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
MULSD __m128d _mm_mul_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

Opcode Instruction Description
F2 0F 59 /r MULSD xmm1, xmm2/m64 Multiply the low double-precision floating-point value in

xmm2/mem64 by low double-precision floating-point
value in xmm1.
Vol. 2A 3-531

INSTRUCTION SET REFERENCE, A-M
#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.
3-532 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MULSS—Multiply Scalar Single-Precision Floating-Point Values

Description
Multiplies the low single-precision floating-point value from the source operand (second
operand) by the low single-precision floating-point value in the destination operand (first
operand), and stores the single-precision floating-point result in the destination operand. The
source operand can be an XMM register or a 32-bit memory location. The destination operand
is an XMM register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 1 for an illustration of a scalar single-precision floating-point operation.

Operation
DEST[31-0] ← DEST[31-0] ∗ SRC[31-0];
* DEST[127-32] remains unchanged *;

Intel C/C++ Compiler Intrinsic Equivalent
MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

Opcode Instruction Description
F3 0F 59 /r MULSS xmm1, xmm2/m32 Multiply the low single-precision floating-point value in

xmm2/mem by the low single-precision floating-point
value in xmm1.
Vol. 2A 3-533

INSTRUCTION SET REFERENCE, A-M
If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 1.

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in
CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.
3-534 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
MWAIT: Monitor Wait

Description
The MWAIT instruction is designed to operate with the MONITOR instruction. The two
instructions allow the definition of an address at which to ‘wait’ (MONITOR) and an instruction
that causes a predefined ‘implementation-dependent-optimized operation’ to commence at the
‘wait’ address (MWAIT). The execution of MWAIT is a hint to the processor that it can enter
an implementation-dependent-optimized state while waiting for an event or a store operation to
the address range armed by the preceding MONITOR instruction in program flow.

EAX and ECX is used to communicate other information to the MWAIT instruction, such as the
kind of optimized state the processor should enter. ECX specifies optional extensions for the
MWAIT instruction. EAX may contain hints such as the preferred optimized state the processor
should enter. For Pentium 4 processors with CPUID signature family = 15 and model = 3, all
non-zero values for EAX and ECX are reserved. The processor will raise a general protection
fault on the execution of MWAIT with reserved values in ECX, whereas it ignores the setting
of reserved bits in EAX.

A store to the address range armed by the MONITOR instruction, an interrupt, an NMI or SMI,
a debug exception, a machine check exception, the BINIT# signal, the INIT# signal, or the
RESET# signal will exit the implementation-dependent-optimized state. Note that an interrupt
will cause the processor to exit only if the state was entered with interrupts enabled.

If a store to the address range causes the processor to exit, execution will resume at the instruc-
tion following the MWAIT instruction. If an interrupt (including NMI) caused the processor to
exit the implementation-dependent-optimized state, the processor will exit the state and handle
the interrupt. If an SMI caused the processor to exit the implementation-dependent-optimized
state, execution will resume at the instruction following MWAIT after handling of the SMI.
Unlike the HLT instruction, the MWAIT instruction does not support a restart at the MWAIT
instruction. There may also be other implementation-dependent events or time-outs that may
take the processor out of the implementation-dependent-optimized state and resume execution
at the instruction following the MWAIT.

If the preceding MONITOR instruction did not successfully arm an address range or if the
MONITOR instruction has not been executed prior to executing MWAIT, then the processor
will not enter the implementation-dependent-optimized state. Execution will resume at the
instruction following the MWAIT.

The MWAIT instruction can be executed at any privilege level. The MONITOR CPUID feature
flag (ECX[bit 3] when CPUID is executed with EAX = 1) indicates the availability of the
MONITOR and MWAIT instruction in a processor. When set, the unconditional execution of
MWAIT is supported at privilege level 0 and conditional execution is supported at privilege

Opcode Instruction Description
0F,01,C9 MWAIT A hint that allows the processor to stop instruction

execution and enter an implementation-dependent
optimized state until occurrence of a class of events; it is
architecturally identical to a NOP instruction.
Vol. 2A 3-535

INSTRUCTION SET REFERENCE, A-M
levels 1 through 3 (software should test for the appropriate support of these instructions before
unconditional use).

The operating system or system BIOS may disable this instruction using the
IA32_MISC_ENABLES MSR; disabling the instruction clears the CPUID feature flag and
causes execution of the MWAIT instruction to generate an illegal opcode exception.

Operation

// MWAIT takes the argument in EAX as a hint extension and is
// architected to take the argument in ECX as an instruction extension
// MWAIT EAX, ECX
{
WHILE (! ("Monitor Hardware is in armed state")) {

implementation_dependent_optimized_state(EAX, ECX);
}
Set the state of Monitor Hardware as Triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent
MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

Example
The Monitor and MWAIT instructions must be coded in the same loop because execution of the
MWAIT instruction will trigger the monitor hardware. It is not a proper usage to execute
MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without executing
MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 // Hints
EDX = 0 // Hints
If (!trigger_store_happened) {

MONITOR EAX, ECX, EDX
If (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen between the first
check of the trigger and the execution of the monitor instruction. Without the second check that
triggering store would go un-noticed. Typical usage of MONITOR and MWAIT would have the
above code sequence within a loop.
3-536 Vol. 2A

INSTRUCTION SET REFERENCE, A-M
Exceptions
None

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0.

If executed at privilege level 1 through 3 when the instruction is not avail-
able.

If LOCK prefixes are used.

If REPE, REPNE or operand size prefixes are used.

Real Address Mode Exceptions
#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0;

If LOCK prefix is used.

If REPE, REPNE or operand size prefixes are used.

Virtual 8086 Mode Exceptions
#GP(0) For ECX has a value other than 0.

#UD If CPUID feature flag MONITOR is 0; or instruction is executed at privi-
lege level 1-2-3 when the instruction is not available.

If LOCK prefix is used.

If REPE, REPNE or operand size prefixes are used.
Vol. 2A 3-537

INSTRUCTION SET REFERENCE, A-M
3-538 Vol. 2A

INTEL SALES OFFICES

ASIA PACIFIC
Australia
Intel Corp.
Level 2
448 St Kilda Road
Melbourne VIC
3004
Australia
Fax:613-9862 5599

China
Intel Corp.
Rm 709, Shaanxi
Zhongda Int'l Bldg
No.30 Nandajie Street
Xian AX710002
China
Fax:(86 29) 7203356

Intel Corp.
Rm 2710, Metropolian
Tower
68 Zourong Rd
Chongqing CQ
400015
China

Intel Corp.
C1, 15 Flr, Fujian
Oriental Hotel
No. 96 East Street
Fuzhou FJ
350001
China

Intel Corp.
Rm 5803 CITIC Plaza
233 Tianhe Rd
Guangzhou GD
510613
China

Intel Corp.
Rm 1003, Orient Plaza
No. 235 Huayuan Street
Nangang District
Harbin HL
150001
China

Intel Corp.
Rm 1751 World Trade
Center, No 2
Han Zhong Rd
Nanjing JS
210009
China

Intel Corp.
Hua Xin International
Tower
215 Qing Nian St.
ShenYang LN
110015
China

Intel Corp.
Suite 1128 CITIC Plaza
Jinan
150 Luo Yuan St.
Jinan SN
China

Intel Corp.
Suite 412, Holiday Inn
Crowne Plaza
31, Zong Fu Street
Chengdu SU
610041
China
Fax:86-28-6785965

Intel Corp.
Room 0724, White Rose
Hotel
No 750, MinZhu Road
WuChang District
Wuhan UB
430071
China

India
Intel Corp.
Paharpur Business
Centre
21 Nehru Place
New Delhi DH
110019
India

Intel Corp.
Hotel Rang Sharda, 6th
Floor
Bandra Reclamation
Mumbai MH
400050
India
Fax:91-22-6415578

Intel Corp.
DBS Corporate Club
31A Cathedral Garden
Road
Chennai TD
600034
India

Intel Corp.
DBS Corporate Club
2nd Floor, 8 A.A.C. Bose
Road
Calcutta WB
700017
India

Japan
Intel Corp.
Kokusai Bldg 5F, 3-1-1,
Marunouchi
Chiyoda-Ku, Tokyo
1000005
Japan

Intel Corp.
2-4-1 Terauchi
Toyonaka-Shi
Osaka
5600872
Japan

Malaysia
Intel Corp.
Lot 102 1/F Block A
Wisma Semantan
12 Jalan Gelenggang
Damansara Heights
Kuala Lumpur SL
50490
Malaysia

Thailand
Intel Corp.
87 M. Thai Tower, 9th Fl.
All Seasons Place,
Wireless Road
Lumpini, Patumwan
Bangkok
10330
Thailand

Viet Nam
Intel Corp.
Hanoi Tung Shing
Square, Ste #1106
2 Ngo Quyen St
Hoan Kiem District
Hanoi
Viet Nam

EUROPE & AFRICA
Belgium
Intel Corp.
Woluwelaan 158
Diegem
1831
Belgium

Czech Rep
Intel Corp.
Nahorni 14
Brno
61600
Czech Rep

Denmark
Intel Corp.
Soelodden 13
Maaloev
DK2760
Denmark

Germany
Intel Corp.
Sandstrasse 4
Aichner
86551
Germany

Intel Corp.
Dr Weyerstrasse 2
Juelich
52428
Germany

Intel Corp.
Buchenweg 4
Wildberg
72218
Germany

Intel Corp.
Kemnader Strasse 137
Bochum
44797
Germany

Intel Corp.
Klaus-Schaefer Strasse
16-18
Erfstadt NW
50374
Germany

Intel Corp.
Heldmanskamp 37
Lemgo NW
32657
Germany

Italy
Intel Corp Italia Spa
Milanofiori Palazzo E/4
Assago
Milan
20094
Italy
Fax:39-02-57501221

Netherland
Intel Corp.
Strausslaan 31
Heesch
5384CW
Netherland

Poland
Intel Poland
Developments, Inc
Jerozolimskie Business
Park
Jerozolimskie 146c
Warsaw
2305
Poland
Fax:+48-22-570 81 40

Portugal
Intel Corp.
PO Box 20
Alcabideche
2765
Portugal

Spain
Intel Corp.
Calle Rioja, 9
Bajo F Izquierda
Madrid
28042
Spain

South Africa
Intel SA Corporation
Bldg 14, South Wing,
2nd Floor
Uplands, The Woodlands
Western Services Road
Woodmead
2052
Sth Africa
Fax:+27 11 806 4549

Intel Corp.
19 Summit Place,
Halfway House
Cnr 5th and Harry
Galaun Streets
Midrad
1685
Sth Africa

United Kingdom
Intel Corp.
The Manse
Silver Lane
Needingworth CAMBS
PE274SL
UK

Intel Corp.
2 Cameron Close
Long Melford SUFFK
CO109TS
UK

Israel
Intel Corp.
MTM Industrial Center,
P.O.Box 498
Haifa
31000
Israel
Fax:972-4-8655444

LATIN AMERICA &
CANADA
Argentina
Intel Corp.
Dock IV - Bldg 3 - Floor 3
Olga Cossentini 240
Buenos Aires
C1107BVA
Argentina

Brazil
Intel Corp.
Rua Carlos Gomez
111/403
Porto Alegre
90480-003
Brazil

Intel Corp.
Av. Dr. Chucri Zaidan
940 - 10th Floor
San Paulo
04583-904
Brazil

Intel Corp.
Av. Rio Branco,
1 - Sala 1804
Rio de Janeiro
20090-003
Brazil

Columbia
Intel Corp.
Carrera 7 No. 71021
Torre B, Oficina 603
Santefe de Bogota
Columbia

Mexico
Intel Corp.
Av. Mexico No. 2798-9B,
S.H.
Guadalajara
44680
Mexico

Intel Corp.
Torre Esmeralda II,
7th Floor
Blvd. Manuel Avila
Comacho #36
Mexico Cith DF
11000
Mexico

Intel Corp.
Piso 19, Suite 4
Av. Batallon de San
Patricio No 111
Monterrey, Nuevo le
66269
Mexico

Canada
Intel Corp.
168 Bonis Ave, Suite 202
Scarborough
MIT3V6
Canada
Fax:416-335-7695

Intel Corp.
3901 Highway #7,
Suite 403
Vaughan
L4L 8L5
Canada
Fax:905-856-8868

Intel Corp.
999 CANADA PLACE,
Suite 404,#11
Vancouver BC
V6C 3E2
Canada
Fax:604-844-2813

Intel Corp.
2650 Queensview Drive,
Suite 250
Ottawa ON
K2B 8H6
Canada
Fax:613-820-5936

Intel Corp.
190 Attwell Drive,
Suite 500
Rexcdale ON
M9W 6H8
Canada
Fax:416-675-2438

Intel Corp.
171 St. Clair Ave. E,
Suite 6
Toronto ON
Canada

Intel Corp.
1033 Oak Meadow Road
Oakville ON
L6M 1J6
Canada

USA
California
Intel Corp.
551 Lundy Place
Milpitas CA
95035-6833
USA
Fax:408-451-8266

Intel Corp.
1551 N. Tustin Avenue,
Suite 800
Santa Ana CA
92705
USA
Fax:714-541-9157

Intel Corp.
Executive Center del Mar
12230 El Camino Real
Suite 140
San Diego CA
92130
USA
Fax:858-794-5805

Intel Corp.
1960 E. Grand Avenue,
Suite 150
El Segundo CA
90245
USA
Fax:310-640-7133

Intel Corp.
23120 Alicia Parkway,
Suite 215
Mission Viejo CA
92692
USA
Fax:949-586-9499

Intel Corp.
30851 Agoura Road
Suite 202
Agoura Hills CA
91301
USA
Fax:818-874-1166

Intel Corp.
28202 Cabot Road,
Suite #363 & #371
Laguna Niguel CA
92677
USA

Intel Corp.
657 S Cendros Avenue
Solana Beach CA
90075
USA

Intel Corp.
43769 Abeloe Terrace
Fremont CA
94539
USA

Intel Corp.
1721 Warburton, #6
Santa Clara CA
95050
USA

Colorado
Intel Corp.
600 S. Cherry Street,
Suite 700
Denver CO
80222
USA
Fax:303-322-8670

Connecticut
Intel Corp.
Lee Farm Corporate Pk
83 Wooster Heights
Road
Danbury CT
6810
USA
Fax:203-778-2168

Florida
Intel Corp.
7777 Glades Road
Suite 310B
Boca Raton FL
33434
USA
Fax:813-367-5452

Georgia
Intel Corp.
20 Technology Park,
Suite 150
Norcross GA
30092
USA
Fax:770-448-0875

Intel Corp.
Three Northwinds Center
2500 Northwinds
Parkway, 4th Floor
Alpharetta GA
30092
USA
Fax:770-663-6354

Idaho
Intel Corp.
910 W. Main Street, Suite
236
Boise ID
83702
USA
Fax:208-331-2295

Illinois
Intel Corp.
425 N. Martingale Road
Suite 1500
Schaumburg IL
60173
USA
Fax:847-605-9762

Intel Corp.
999 Plaza Drive
Suite 360
Schaumburg IL
60173
USA

Intel Corp.
551 Arlington Lane
South Elgin IL
60177
USA

Indiana
Intel Corp.
9465 Counselors Row,
Suite 200
Indianapolis IN
46240
USA
Fax:317-805-4939

Massachusetts
Intel Corp.
125 Nagog Park
Acton MA
01720
USA
Fax:978-266-3867

Intel Corp.
59 Composit Way
suite 202
Lowell MA
01851
USA

Intel Corp.
800 South Street,
Suite 100
Waltham MA
02154
USA

Maryland
Intel Corp.
131 National Business
Parkway, Suite 200
Annapolis Junction MD
20701
USA
Fax:301-206-3678

Michigan
Intel Corp.
32255 Northwestern
Hwy., Suite 212
Farmington Hills MI
48334
USA
Fax:248-851-8770

MInnesota
Intel Corp.
3600 W 80Th St
Suite 450
Bloomington MN
55431
USA
Fax:952-831-6497

North Carolina
Intel Corp.
2000 CentreGreen Way,
Suite 190
Cary NC
27513
USA
Fax:919-678-2818

New Hampshire
Intel Corp.
7 Suffolk Park
Nashua NH
03063
USA

New Jersey
Intel Corp.
90 Woodbridge Center
Dr, Suite. 240
Woodbridge NJ
07095
USA
Fax:732-602-0096

New York
Intel Corp.
628 Crosskeys Office Pk
Fairport NY
14450
USA
Fax:716-223-2561

Intel Corp.
888 Veterans Memorial
Highway
Suite 530
Hauppauge NY
11788
USA
Fax:516-234-5093

Ohio
Intel Corp.
3401 Park Center Drive
Suite 220
Dayton OH
45414
USA
Fax:937-890-8658

Intel Corp.
56 Milford Drive
Suite 205
Hudson OH
44236
USA
Fax:216-528-1026

Oregon
Intel Corp.
15254 NW Greenbrier
Parkway, Building B
Beaverton OR
97006
USA
Fax:503-645-8181

Pennsylvania
Intel Corp.
925 Harvest Drive
Suite 200
Blue Bell PA
19422
USA
Fax:215-641-0785

Intel Corp.
7500 Brooktree
Suite 213
Wexford PA
15090
USA
Fax:714-541-9157

Texas
Intel Corp.
5000 Quorum Drive,
Suite 750
Dallas TX
75240
USA
Fax:972-233-1325

Intel Corp.
20445 State Highway
249, Suite 300
Houston TX
77070
USA
Fax:281-376-2891

Intel Corp.
8911 Capital of Texas
Hwy, Suite 4230
Austin TX
78759
USA
Fax:512-338-9335

Intel Corp.
7739 La Verdura Drive
Dallas TX
75248
USA

Intel Corp.
77269 La Cabeza Drive
Dallas TX
75249
USA

Intel Corp.
3307 Northland Drive
Austin TX
78731
USA

Intel Corp.
15190 Prestonwood
Blvd. #925
Dallas TX
75248
USA
Intel Corp.

Washington
Intel Corp.
2800 156Th Ave. SE
Suite 105
Bellevue WA
98007
USA
Fax:425-746-4495

Intel Corp.
550 Kirkland Way
Suite 200
Kirkland WA
98033
USA

Wisconsin
Intel Corp.
405 Forest Street
Suites 109/112
Oconomowoc Wi
53066
USA

	IA-32 Intel® Architecture Software Developer’s Manual
	Disclaimer
	CONTENTS FOR VOLUME 2A AND 2B
	CHAPTER 1 About This Manual
	1.1. IA-32 Processors Covered in this Manual
	1.2. Overview of the IA-32 Intel® Architecture Software Developer’s Manual, Volumes 2A & 2B: Instruction Set Reference
	1.3. NOTATIONAL CONVENTIONS
	1.3.1. Bit and Byte Order
	1.3.2. Reserved Bits and Software Compatibility
	1.3.3. Instruction Operands
	1.3.4. Hexadecimal and Binary Numbers
	1.3.5. Segmented Addressing
	1.3.6. Exceptions

	1.4. Related Literature

	CHAPTER 2 Instruction Format
	2.1. General INSTRUCTION FORMAT
	2.2. Summary Of Instruction Prefixes
	2.3. Opcodes
	2.4. ModR/M and SIB Bytes
	2.5. Displacement and Immediate Bytes
	2.6. Addressing-Mode Encoding of ModR/M and SIB Bytes

	CHAPTER 3 Instruction Set Reference, A-M
	3.1. Interpreting the Instruction Reference Pages
	3.1.1. Instruction Format
	3.1.1.1. Opcode Column
	3.1.1.2. Instruction Column
	3.1.1.3. Description Column
	3.1.1.4. Description

	3.1.2. Operation
	3.1.3. Intel® C/C++ Compiler Intrinsics Equivalents
	3.1.3.1. The Intrinsics API
	3.1.3.2. MMX™ Technology Intrinsics
	3.1.3.3. SSE/SSE2/SSE3 Intrinsics

	3.1.4. Flags Affected
	3.1.5. FPU Flags Affected
	3.1.6. Protected Mode Exceptions
	3.1.7. Real-Address Mode Exceptions
	3.1.8. Virtual-8086 Mode Exceptions
	3.1.9. Floating-Point Exceptions
	3.1.10. SIMD Floating-Point Exceptions

	3.2. Instruction reference
	AAA-ASCII Adjust After Addition
	AAD-ASCII Adjust AX Before Division
	AAM-ASCII Adjust AX After Multiply
	AAS-ASCII Adjust AL After Subtraction
	ADC-Add with Carry
	ADD-Add
	ADDPD-Add Packed Double-Precision Floating-Point Values
	ADDPS-Add Packed Single-Precision Floating-Point Values
	ADDSD-Add Scalar Double-Precision Floating-Point Values
	ADDSS-Add Scalar Single-Precision Floating-Point Values
	ADDSUBPD: Packed Double-FP Add/Subtract
	ADDSUBPS: Packed Single-FP Add/Subtract
	AND-Logical AND
	ANDPD-Bitwise Logical AND of Packed Double-Precision Floating-Point Values
	ANDPS-Bitwise Logical AND of Packed Single-Precision Floating-Point Values
	ANDNPD-Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
	ANDNPS-Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
	ARPL-Adjust RPL Field of Segment Selector
	BOUND-Check Array Index Against Bounds
	BSF-Bit Scan Forward
	BSR-Bit Scan Reverse
	BSWAP-Byte Swap
	BT-Bit Test
	BTC-Bit Test and Complement
	BTR-Bit Test and Reset
	BTS-Bit Test and Set
	CALL-Call Procedure
	CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword
	CDQ-Convert Double to Quad
	CLC-Clear Carry Flag
	CLD-Clear Direction Flag
	CLFLUSH-Flush Cache Line
	CLI - Clear Interrupt Flag
	CLTS-Clear Task-Switched Flag in CR0
	CMC-Complement Carry Flag
	CMOVcc-Conditional Move
	CMP-Compare Two Operands
	CMPPD-Compare Packed Double-Precision Floating-Point Values
	CMPPS-Compare Packed Single-Precision Floating-Point Values
	CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands
	CMPSD-Compare Scalar Double-Precision Floating-Point Values
	CMPSS-Compare Scalar Single-Precision Floating-Point Values
	CMPXCHG-Compare and Exchange
	CMPXCHG8B-Compare and Exchange 8 Bytes
	COMISD-Compare Scalar Ordered Double-Precision Floating- Point Values and Set EFLAGS
	COMISS-Compare Scalar Ordered Single-Precision Floating- Point Values and Set EFLAGS
	CPUID-CPU Identification
	CVTDQ2PD-Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTDQ2PS-Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPD2DQ-Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PI-Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PS-Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
	CVTPI2PD-Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTPI2PS-Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPS2DQ-Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPS2PD-Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
	CVTPS2PI-Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTSD2SI-Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
	CVTSD2SS-Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
	CVTSI2SD-Convert Doubleword Integer to Scalar Double- Precision Floating-Point Value
	CVTSI2SS-Convert Doubleword Integer to Scalar Single- Precision Floating-Point Value
	CVTSS2SD-Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
	CVTSS2SI-Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CVTTPD2PI-Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPD2DQ-Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPS2DQ-Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPS2PI-Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTSD2SI-Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Doubleword Integer
	CVTTSS2SI-Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CWD/CDQ-Convert Word to Doubleword/Convert Doubleword to Quadword
	CWDE-Convert Word to Doubleword
	DAA-Decimal Adjust AL after Addition
	DAS-Decimal Adjust AL after Subtraction
	DEC-Decrement by 1
	DIV-Unsigned Divide
	DIVPD-Divide Packed Double-Precision Floating-Point Values
	DIVPS-Divide Packed Single-Precision Floating-Point Values
	DIVSD-Divide Scalar Double-Precision Floating-Point Values
	DIVSS-Divide Scalar Single-Precision Floating-Point Values
	EMMS-Empty MMX Technology State
	ENTER-Make Stack Frame for Procedure Parameters
	F2XM1-Compute 2x-1
	FABS-Absolute Value
	FADD/FADDP/FIADD-Add
	FBLD-Load Binary Coded Decimal
	FBSTP-Store BCD Integer and Pop
	FCHS-Change Sign
	FCLEX/FNCLEX-Clear Exceptions
	FCMOVcc-Floating-Point Conditional Move
	FCOM/FCOMP/FCOMPP-Compare Floating Point Values
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP-Compare Floating Point Values and Set EFLAGS
	FCOS-Cosine
	FDECSTP-Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV-Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide
	FFREE-Free Floating-Point Register
	FICOM/FICOMP-Compare Integer
	FILD-Load Integer
	FINCSTP-Increment Stack-Top Pointer
	FINIT/FNINIT-Initialize Floating-Point Unit
	FIST/FISTP-Store Integer
	FISTTP: Store Integer with Truncation
	FLD-Load Floating Point Value
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant
	FLDCW-Load x87 FPU Control Word
	FLDENV-Load x87 FPU Environment
	FMUL/FMULP/FIMUL-Multiply
	FNOP-No Operation
	FPATAN-Partial Arctangent
	FPREM-Partial Remainder
	FPREM1-Partial Remainder
	FPTAN-Partial Tangent
	FRNDINT-Round to Integer
	FRSTOR-Restore x87 FPU State
	FSAVE/FNSAVE-Store x87 FPU State
	FSCALE-Scale
	FSIN-Sine
	FSINCOS-Sine and Cosine
	FSQRT-Square Root
	FST/FSTP-Store Floating Point Value
	FSTCW/FNSTCW-Store x87 FPU Control Word
	FSTENV/FNSTENV-Store x87 FPU Environment
	FSTSW/FNSTSW-Store x87 FPU Status Word
	FSUB/FSUBP/FISUB-Subtract
	FSUBR/FSUBRP/FISUBR-Reverse Subtract
	FTST-TEST
	FUCOM/FUCOMP/FUCOMPP-Unordered Compare Floating Point Values
	FWAIT-Wait
	FXAM-Examine
	FXCH-Exchange Register Contents
	FXRSTOR-Restore x87 FPU, MMX Technology, SSE, and SSE2 State
	FXSAVE-Save x87 FPU, MMX Technology, SSE, and SSE2 State
	FXTRACT-Extract Exponent and Significand
	FYL2X-Compute y * log2x
	FYL2XP1-Compute y * log2(x +1)
	HADDPD: Packed Double-FP Horizontal Add
	HADDPS: Packed Single-FP Horizontal Add
	HLT-Halt
	HSUBPD: Packed Double-FP Horizontal Subtract
	HSUBPS: Packed Single-FP Horizontal Subtract
	IDIV-Signed Divide
	IMUL-Signed Multiply
	IN-Input from Port
	INC-Increment by 1
	INS/INSB/INSW/INSD-Input from Port to String
	INT n/INTO/INT 3-Call to Interrupt Procedure
	INVD-Invalidate Internal Caches
	INVLPG-Invalidate TLB Entry
	IRET/IRETD-Interrupt Return
	Jcc-Jump if Condition Is Met
	JMP-Jump
	LAHF-Load Status Flags into AH Register
	LAR-Load Access Rights Byte
	LDDQU: Load Unaligned Integer 128 Bits
	LDMXCSR-Load MXCSR Register
	LDS/LES/LFS/LGS/LSS-Load Far Pointer
	LEA-Load Effective Address
	LEAVE-High Level Procedure Exit
	LES-Load Far Pointer
	LFENCE-Load Fence
	LFS-Load Far Pointer
	LGDT/LIDT-Load Global/Interrupt Descriptor Table Register
	LLDT-Load Local Descriptor Table Register
	LIDT-Load Interrupt Descriptor Table Register
	LMSW-Load Machine Status Word
	LOCK-Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD-Load String
	LOOP/LOOPcc-Loop According to ECX Counter
	LSL-Load Segment Limit
	LSS-Load Far Pointer
	LTR-Load Task Register
	MASKMOVDQU-Store Selected Bytes of Double Quadword
	MASKMOVQ-Store Selected Bytes of Quadword
	MAXPD-Return Maximum Packed Double-Precision Floating- Point Values
	MAXPS-Return Maximum Packed Single-Precision Floating-Point Values
	MAXSD-Return Maximum Scalar Double-Precision Floating-Point Value
	MAXSS-Return Maximum Scalar Single-Precision Floating-Point Value
	MFENCE-Memory Fence
	MINPD-Return Minimum Packed Double-Precision Floating-Point Values
	MINPS-Return Minimum Packed Single-Precision Floating-Point Values
	MINSD-Return Minimum Scalar Double-Precision Floating-Point Value
	MINSS-Return Minimum Scalar Single-Precision Floating-Point Value
	MONITOR: Setup Monitor Address
	MOV-Move
	MOV-Move to/from Control Registers
	MOV-Move to/from Debug Registers
	MOVAPD-Move Aligned Packed Double-Precision Floating-Point Values
	MOVAPS-Move Aligned Packed Single-Precision Floating-Point Values
	MOVD-Move Doubleword
	MOVDDUP: Move One Double-FP and Duplicate
	MOVDQA-Move Aligned Double Quadword
	MOVDQU-Move Unaligned Double Quadword
	MOVDQ2Q-Move Quadword from XMM to MMX Technology Register
	MOVHLPS- Move Packed Single-Precision Floating-Point Values High to Low
	MOVHPD-Move High Packed Double-Precision Floating-Point Value
	MOVHPS-Move High Packed Single-Precision Floating-Point Values
	MOVLHPS-Move Packed Single-Precision Floating-Point Values Low to High
	MOVLPD-Move Low Packed Double-Precision Floating-Point Value
	MOVLPS-Move Low Packed Single-Precision Floating-Point Values
	MOVMSKPD-Extract Packed Double-Precision Floating-Point Sign Mask
	MOVMSKPS-Extract Packed Single-Precision Floating-Point Sign Mask
	MOVNTDQ-Store Double Quadword Using Non-Temporal Hint
	MOVNTI-Store Doubleword Using Non-Temporal Hint
	MOVNTPD-Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTPS-Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
	MOVNTQ-Store of Quadword Using Non-Temporal Hint
	MOVSHDUP: Move Packed Single-FP High and Duplicate
	MOVSLDUP: Move Packed Single-FP Low and Duplicate
	MOVQ-Move Quadword
	MOVQ2DQ-Move Quadword from MMX Technology to XMM Register
	MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to String
	MOVSD-Move Scalar Double-Precision Floating-Point Value
	MOVSS-Move Scalar Single-Precision Floating-Point Values
	MOVSX-Move with Sign-Extension
	MOVUPD-Move Unaligned Packed Double-Precision Floating- Point Values
	MOVUPS-Move Unaligned Packed Single-Precision Floating- Point Values
	MOVZX-Move with Zero-Extend
	MUL-Unsigned Multiply
	MULPD-Multiply Packed Double-Precision Floating-Point Values
	MULPS-Multiply Packed Single-Precision Floating-Point Values
	MULSD-Multiply Scalar Double-Precision Floating-Point Values
	MULSS-Multiply Scalar Single-Precision Floating-Point Values
	MWAIT: Monitor Wait

	INTEL SALES OFFICES

