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About the I1A-64 Application Developer’s
Architecture Guide 1

The |A-64 architecture is a unique combination of innovative features, such as explicit parallelism,
predication, speculation and much more. The architecture is designed to be highly scalable to fill
the ever increasing performance requirements of various server and workstation market segments.
The | A-64 architecture features arevolutionary 64-hit instruction set architecture (ISA) which
applies anew processor architecture technology called EPIC, or Explicitly Paralléel Instruction
Computing. A key feature of the |A-64 architecture is 1A-32 instruction set compatibility.

Thefirst part of this document (Part |, “IA-64 Application Architecture Guidgprovides a
comprehensive description of the | A-64 architecture which is exposed to application software. This
includes information on application level resources (registers, etc.), the application environment,
detailed application (non-privileged) instruction descriptions, formats and encodings. The |A-64
architecture supports | A-32 instruction set compatibility which is covered in this document.

The second portion of this document (Part Il, “IA-64 Optimization Guide’) providesarefresher on
the 1A-64 application architecture before describing certain | A-64 architectural features and
elaborates on applying these features to generate highly optimized code. Each section describes
how specific | A-64 features can be used to reduce or eliminate performance barriers.

Full details of the | A-64 programming environment including the system architecture and software
conventions will be provided in IA-64 Programmer’s Reference Manual to be available later.

1.1 Overview of the 1A-64 Application Developer’s
Architecture Guide

Chapter 1, “About the 1A-64 Application Developer’s Architecture Guid&Ves an overview of
this guide.

Chapter 2, “Introduction to the 1A-64 Processor ArchitectuRebvides an overview of key
features of IA-64 architecture.

Chapter 3, “IA-64 Execution EnvironmeniDescribes the IA-64 application architectural state
(registers, memory, etc.).

Chapter 4, “IA-64 Application Programming ModeDescribes the 1A-64 architecture from the
perspective of the application programmer. 1A-64 instructions are grouped into related functions
and an overview of their behavior is given.

Chapter 5, “IA-64 Floating-point Programming ModeThis chapter provides a description of
IA-64 floating-point registers, data types and formats and floating-point instructions.

Chapter 6, “IA-32 Application Execution Model in an 1A-64 System Environm@8iriti's chapter
describes execution of 1A-32 applications running in 1A-64 System Environment.

Chapter 7, “IA-64 Instruction ReferenceProvides detailed description of 1A-64 application
instructions, operation, and instruction format.
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Chapter 8, “About the 1A-64 Optimization Guide3ives an overview of the |1A-64 optimization
guide.

Chapter 9, “Introduction to 1A-64 ProgrammindProvides an overview of the IA-64 application
programming environment.

Chapter 10, “Memory ReferenceDiscusses features and optimizations related to control and data
speculation.

Chapter 11, “Predication, Control Flow, and Instruction Stre@mescribes optimization features
related to predication, control flow, and branch hints.

Chapter 12, “Software Pipelining and Loop Suppdetovides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 13, “Floating-point ApplicationsDiscusses current performance limitations in
floating-point applications and 1A-64 features that address these limitations.

Appendix A, “Instruction Sequencing Consideratiari3gscribes instruction sequencing in I1A-64
architecture.

Appendix B, “IA-64 Pseudo-Code Function®escribes pseudo-code functions usedhapter 7,
“IA-64 Instruction Reference”

Appendix C, “IA-64 Instruction FormatsDescribes the encoding and instruction format of
instructions covered iG@hapter 7

Terminology

The following definitions are for terms related to the |A-64 architecture and will be used in the rest
of this document:

Instruction Set Architecture (ISA) — Defines application and system level resources. These
resources include instructions and registers.

IA-64 Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the 1A-32 instruction set.

I A-32 Architecture — The 32-bit and 16-bit Intel Architecture as described in the Intel
Architecture Software Developer's Manual

| A-64 Processor —An Intel 64-bit processor that implements both the |A-64 and the 1A-32
instruction sets.

IA-64 System Environment —| A-64 operating system privileged environment that supports the
execution of both |A-64 and 1A-32 code.

IA-32 System Environment —Operating system privileged environment and resources as defined
by the Intel Architecture Software Developer’s Manugésources include virtual paging, control
registers, debugging, performance monitoring, machine checks, and the set of privileged
instructions.
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1.3 Related Documents

* Intel Architecture Software Developer’s Manual This reference set provides detailed
information on Intel 32-bit architecture and isreadily available from the Intel Literature
Center.
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Introduction to the IA-64 Processor
Architecture 2

2.1

The |A-64 architecture was designed to overcome the performance limitations of traditional
architectures and provide maximum headroom for the future. To achieve this, |A-64 was designed
with an array of innovative features to extract greater instruction level parallelism including:
speculation, predication, large register files, aregister stack, advanced branch architecture, and
many others. 64-bit memory addressability was added to meet the increasing large memory
footprint requirements of data warehousing, e-business, and other high performance server
applications. The IA-64 architecture has an innovative floating-point architecture and other
enhancements that support the high performance requirements of workstation applications such as
digital content creation, design engineering, and scientific analysis.

The | A-64 architecture also provides binary compatibility with the IA-32 instruction set. |A-64
processors can run | A-32 applications on an | A-64 operating system that supports execution of

I A-32 applications. 1A-64 processors can run 1A-32 application binaries on | A-32 legacy operating
systems assuming the platform and firmware support exists in the system. The |A-64 architecture
also provides the capability to support mixed |A-32 and | A-64 code execution.

|A-64 Operating Environments

The | A-64 architecture supports two operating system environments:
* |A-32 System Environment; supports |A-32 32-hit operating systems, and
* |A-64 System Environment: supports |A-64 operating systems.
The architectural model also supports a mixture of 1A-32 and | A-64 applications within asingle

| A-64 operating system. Table 2-1 defines the major operating environments supported on 1A-64
processors.

Table 2-1. IA-64 Processor Operating Environments

System Application
Environment Environment Usage
1A-32 IA-32 Instruction Set | IA-32 Protected Mode, Real Mode and Virtual 8086 Mode
application and operating system environment. Compatible with
IA-32 Pentium®, Pentium Pro, Pentium 11, and Pentium Il
processors.
1A-64 IA-32 Protected 1A-32 Protected Mode applications in the IA-64 system
Mode environment, if supported by OS.
IA-32 Real Mode IA-32 Real Mode applications in the IA-64 system environment, if
supported by OS.
1A-32 Virtual Mode IA-32 Virtual 86 Mode applications in the IA-64 system
environment, if supported by OS.
IA-64 Instruction Set | IA-64 Applications on |A-64 operating systems.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 2-1



intel.

2.2 Instruction Set Transition Model Overview

Within the 1A-64 System Environment, the processor can execute either 1A-32 or I1A-64
instructions at any time. Three special instructions and interruptions are defined to transition the
processor between the A-32 and the 1A-64 instruction set.

* j npe (IA-32 instruction) Jump to an | A-64 target instruction, and change the instruction set to
IA-64.

* br.ia (IA-64instruction) |A-64 branch to an | A-32 target instruction, and change the
instruction set to |A-32.

i Inte&ruptionstransition the processor to the | A-64 instruction set for handling al interruption
conditions.

e rfi (IA-64 instruction) “return from interruption”, is defined to return to an IA-32 or |IA-64
instruction.

Thej npe andbr . i a instructions provide a low overhead mechanism to transfer control between
the instruction sets. These instructions are typically incorporated into “thunks” or “stubs” that
implement the required call linkage and calling conventions to call dynamic or statically linked
libraries. Please refer ©hapter 6, “IA-32 Application Execution Model in an 1A-64 System
Environment“for additional details.

2.3 |A-64 Instruction Set Features

IA-64 incorporates architecture features which enable high sustained performance and remove
barriers to further performance increases. The 1A-64 architecture is based on the following
principles:

e Explicit parallelism
— Mechanisms for synergy between the compiler and the processor
— Massive resources to take advantage of instruction level parallelism
— 128 Integer and Floating-point registers, 64 1-bit predicate registers, 8 branch registers
— Support for many execution units and memory ports
¢ Features that enhance instruction level parallelism
— Speculation (which minimizes memory latency impact).
— Predication (which removes branches).
— Software pipelining of loops with low overhead
— Branch prediction to minimize the cost of branches
¢ Focussed enhancements for improved software performance
— Special support for software modularity
— High performance floating-point architecture
— Specific multimedia instructions

The following sections highlight these important features of 1A-64.
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2.5

2.6

2.6.1

Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the sametime.
The 1A-64 architecture allows issuing of independent instructionsin bundles (three instructions per
bundle) for parallel execution and can issue multiple bundles per clock. Supported by alarge
number of parallel resources such as large register files and multiple execution units, the |A-64
architecture enables the compiler to manage work in progress and schedul e simultaneous threads of
computation.

The | A-64 architecture incorporates mechanisms to take advantage of ILP. Compilers for
traditional architectures are often limited in their ability to utilize speculative information because
it cannot always be guaranteed to be correct. The | A-64 architecture enables the compiler to exploit
speculative information without sacrificing the correct execution of an application (see

Section 2.6). In traditional architectures, procedure calls limit performance since registers need be
spilled and filled. 1A-64 enables procedures to communicate register usage to the processor. This
allows the processor to schedule procedure register operations even when there is alow degree of
ILP. See Section 2.7, “Register Stack” on page .2-5

Compiler to Processor Communication

The 1A-64 architecture provides mechanisms, such as instruction templates, branch hints, and
cache hints to enable the compiler to communicate compile-time information to the processor. In
addition, IA-64 allows compiled code to manage the processor hardware using run-time
information. These communication mechanisms are vital in minimizing the performance penalties
associated with branches and cache misses.

Every memory load and store in I1A-64 has a 2-bit cache hint field in which the compiler encodes

its prediction of the spatial and/or temporal locality of the memory area being accessed. An IA-64
processor can use this information to determine the placement of cache lines in the cache hierarchy.
This leads to better utilization of the hierarchy since the relative cost of cache misses continues to
grow.

Speculation

There are two types of speculation: control and data. In both control and data speculation, the
compiler exposes ILP by issuing an operation early and removing the latency of this operation
from critical path. The compiler will issue an operation speculatively if it is reasonably sure that the
speculation will be beneficial. To be beneficial two conditions should hold: it must be statistically
frequent enough that the probability it will require recovery is small, and issuing the operation
early should expose further ILP-enhancing optimization. Speculation is one of the primary
mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore tolerating, the
latencies of operations.

Control Speculation

Control speculation is the execution of an operation before the branch which guards it. Consider
the code sequence below:

if (a>b) load(ld_addrl,targetl)
el se | oad(ld_addr2, target?2)
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If the operation | oad(| d_addr 1, t ar get 1) were to be performed prior to the determination of
(a>b) , then the operation would be control speculative with respect to the controlling condition
(a>b) . Under normal execution, the operation | oad(| d_addr 1, t ar get 1) may or may not
execute. If the new control speculative load causes an exception then the exception should only be
serviced if (a>b) istrue. When the compiler uses control speculation it leaves a check operation at
the original location. The check verifies whether an exception has occurred and if so it branchesto
recovery code. The code sequence above now translates into:

/* off critical path */
sl oad(| d_addr 1, targetl)
sl oad(| d_addr 2, t ar get 2)

/* other operations including uses of targetl/target2 */
if (a>b) scheck(targetl, recovery_addrl)
el se scheck(target2, recovery_addr2)

Data Speculation

Data speculation is the execution of amemory load prior to a store that preceded it and that may
potentially alias with it. Data speculative loads are also referred to as “advanced loads”. Consider
the code sequence below:

store(st_addr, dat a)
| oad(1ld_addr, target)
use(target)

The process of determining at compile time the relationship between memory addresses is called
disambiguation. In the example abovéd,df addr andst _addr cannot be disambiguated, and if

the load were to be performed prior to the store, then the load would be data speculative with
respect to the store. If memory addresses overlap during execution, a data-speculative load issued
before the store might return a different value than a regular load issued after the store. Therefore
analogous to control speculation, when the compiler data speculates a load, it leaves a check
instruction at the original location of the load. The check verifies whether an overlap has occurred
and if so it branches to recovery code. The code sequence above now translates into:

/* off critical path */
al oad(| d_addr, target)

/* other operations including uses of target */
store(st_addr, dat a)

acheck(target, recovery_addr)
use(target)

Predication
Predication is the conditional execution of instructions. Conditional execution is implemented
through branches in traditional architectures. 1A-64 implements this function through the use of

predicated instructions. Predication removes branches used for conditional execution resulting in
larger basic blocks and the elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction

rl =r2 +r3
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when predicated, would be of the form

if (pb5) r1 =r2 +r3

In this example p5 is the controlling predicate that decides whether or not the instruction executes
and updates state. If the predicate value is true, then the instruction updates state. Otherwise it
generaly behaveslike a nop. Predicates are assigned val ues by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by converting a
control dependence to a data dependence. Consider the original code:

if (a>b)

+ 1
el se d + f

cC =2¢
d* e
The branch at (a>b) can be avoided by converting the code above to the predicated code:

pT, pF = conpare(a>b)
i c +1
d* e+ f

-
—
©

_i
~

o

I

The predicate pT is set to 1 if the condition evaluates to true, and to O if the condition evaluatesto
false. The predicate pF is the complement of pT. The control dependence of theinstructionsc = ¢
+ landd = d * e + f onthebranch with the condition (a>b) isnow converted into adata
dependence on conpar e(a>b) through predicates pT and pF (the branch is eliminated). An added
benefit isthat the compiler can schedule the instructions under pT and pF to executein parallel. Itis
also worth noting that there are several different types of compare instructions that write predicates
in different manners including unconditional compares and parallel compares.

Register Stack

| A-64 avoids the unnecessary spilling and filling of registers at procedure call and return interfaces
through compiler-controlled renaming. At a call site, a new frame of registersis available to the

called procedure without the need for register spill and fill (either by the caller or by the calleg).

Register access occurs by renaming the virtual register identifiersin theinstructions through abase
register into the physical registers. The callee can freely use available registers without having to

spill and eventually restore the caller’s registers. The callee executesaninstruction

specifying the number of registers it expects to use in order to ensure that enough registers are
available. If sufficient registers are not available (stack overflow)lthec stalls the processor

and spills the caller’s registers until the requested number of registers are available.

At the return site, the base register is restored to the value that the caller was using to access
registers prior to the call. Some of the caller’s registers may have been spilled by the hardware and
not yet restored. In this case (stack underflow), the return stalls the processor until the processor
has restored an appropriate number of the caller’s registers. The hardware can exploit the explicit
register stack frame information to spill and fill registers from the register stack to memory at the
best opportunity (independent of the calling and called procedures).
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Branching

In addition to removing branches through the use of predication, several mechanisms are provided
to decrease the branch misprediction rate and the cost of the remaining mispredicted branches.
These mechanisms provide ways for the compiler to communicate information about branch
conditions to the processor.

For indirect branches, a branch register is used to hold the target address.

Special loop-closing branches are provided to accelerate counted |oops and modul o-scheduled
loops. These branches provide information that allows for perfect prediction of loop termination,
thereby eliminating costly mispredict penalties and areduction of the loop overhead.

Register Rotation

M odulo scheduling of aloop is analogous to hardware pipelining of afunctional unit since the next
iteration of theloop starts before the previousiteration hasfinished. Theiteration is split into stages
similar to the stages of an execution pipeline. Modulo scheduling allows the compiler to execute
loop iterationsin parallel rather than sequentially. The concurrent execution of multiple iterations
traditionally requires unrolling of the loop and software renaming of registers. |A-64 allows the
renaming of registers which provide every iteration with its own set of registers, avoiding the need
for unrolling. Thiskind of register renaming is called register rotation. The result is that software
pipelining can be applied to a much wider variety of loops - both small aswell as large with
significantly reduced overhead.

Floating-point Architecture

| A-64 defines a floating-point architecture with full IEEE support for the single, double, and
double-extended (80-hit) data types. Some extensions, such as a fused multiply and add operation,
minimum and maximum functions, and a register file format with alarger range than the
double-extended memory format, are also included. 128 floating-point registers are defined. Of
these, 96 registers are rotating (not stacked) and can be used to modulo schedul e loops compactly.
Muultiple floating-point status registers are provided for speculation.

I A-64 has parallel FP instructions which operate on two 32-bit single precision numbers, resident
in asingle floating-point register, in parallel and independently. These instructions significantly
increase the single precision floating-point computation throughput and enhance the performance
of 3D intensive applications and games.

Multimedia Support

| A-64 has multimediainstructions which treat the general registers as concatenations of eight 8-hit,
four 16-bit, or two 32-bit elements. These instructions operate on each element in parallel,

independent of the others. IA-64 multimedia instructions are semantically compatible with Intel's

MMX™ technology instructions and Streaming SIMD Extensions instruction technology.
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IA-64 Execution Environment 3

3.1

3.1.1

The architectural state consists of registers and memory. The results of instruction execution
become architecturally visible according to a set of execution sequencing rules. This chapter
describes the 1 A-64 application architectural state and the rules for execution sequencing.

Application Register State

Thefollowing isalist of the registers available to application programs (see Figure 3-1):

* General Registers(GRs) — General purpose 64-bit register file, GRO — GR127. I1A-32 integer
and segment registers are contained in GR8 - GR31 when executing 1A-32 instructions.

* Floating-point Registers (FRs) — Floating-point register file, FRO — FR127. IA-32
floating-point and multi-media registers are contained in FR8 - RR@h executing 1A-32
instructions.

* Predicate Registers (PRs) — Single-bit registers, used in IA-64 predication and branching,
PRO — PR63.

* Branch Registers (BRs) — Registers used in IA-64 branching, BRO — BR7.

¢ Instruction Pointer (1P) — Register which holds the bundle address of the currently executing
IA-64 instruction, or byte address of the currently executing 1A-32 instruction.

* Current Frame Marker (CFM) — State that describes the current general register stack
frame, and FR/PR rotation.

* Application Registers (ARs) — A collection of special-purpose 1A-64 and 1A-32 application
registers.

* Performance Monitor Data Registers (PM D) — Data registers for performance monitor
hardware.

¢ User Mask (UM) — A set of single-bit values used for alignment traps, performance monitors,
and to monitor floating-point register usage.

* Processor |dentifiers (CPUID) — Registers that describe processor
implementation-dependent 1A-64 features.

IA-32 application register state is entirely contained within the larger IA-64 application register set
and is accessible by IA-64 instructions. 1A-32 instructions cannot access the 1A-64 specific register
set.

Reserved and Ignored Registers

Registers which are not defined are either reserved or ignored. An accessetoeal register

raises an lllegal Operation fault. A read ofigmored register returns zero. Software may write

any value to an ignored register and the hardware will ignore the value written. In variable-sized
register sets, registers which are unimplemented in a particular processor are also reserved
registers. An access to one of these unimplemented registers causes a Reserved Register/Field
fault.
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Within defined registers, fields which are not defined are either reserved or ignored. For reserved
fields, hardware will always return a zero on aread. Software must always write zeros to these
fields. Any attempt to write a non-zero value into a reserved field will raise a Reserved register/
field fault. Reserved fields may have a possible future use.

For ignored fields, hardware will return a0 on aread, unless noted otherwise. Software may write
any value to these fields since the hardware will ignore any value written. Except where noted
otherwise some | A-32 ignored fields may have a possible future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and fields.

Reserved and Ignored Registers and Fields

Type Read Write
Reserved register lllegal operation fault lllegal operation fault
Ignored register 0 Value written is discarded
Reserved field 0 Write of non-zero causes Reserved Reg/Field fault
Ignored field 0 (unless noted otherwise) | Value written is discarded

For defined fields in registers, values which are not defined are reserved. Software must always
write defined values to these fields. Any attempt to write areserved value will raise a Reserved
Register/Field fault. Certain registers are read-only registers. A write to aread-only register raises
an lllegal Operation fault.

When fields are marked asreserved, it is essentia for compatibility with future processors that
software treat these fields as having afuture, though unknown effect. Software should follow these
guidelines when dealing with reserved fields:

¢ Do not depend on the state of any reserved fields. Mask all reserved fields before testing.
* Do not depend on the states of any reserved fields when storing to memory or aregister.
¢ Do not depend on the ability to retain information written into reserved or ignored fields.

* Where possible reload reserved or ignored fields with values previously returned from the
same register, otherwise load zeros.

General Registers

A set of 128 (64-hit) general registers provide the central resource for all integer and integer
multimedia computation. They are numbered GRO through GR127, and are available to all
programs at all privilege levels. Each general register has 64 bits of normal data storage plus an
additional bit, the NaT bit (Not a Thing), which is used to track deferred specul ative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 are termed the
static general registers. Of these, GRO is special inthat it always reads as zero when sourced as an
operand and attempting to write to GR 0 causes an Illegal Operation fault. General registers 32
through 127 are termed the stacked general registers. The stacked registers are made available to
aprogram by allocating aregister stack frame consisting of a programmable number of local and
output registers. See Chapter 4.1 for adescription. A portion of the stacked registers can be
programmatically renamed to accel erate loops. See “Modulo-Scheduled Loop Support” on
page 4-26
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Figure 3-1. Application Register Model
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General registers 8 through 31 contain the |A-32 integer, segment selector and segment descriptor
registers when executing 1A-32 instructions.
3.1.3 Floating-point Registers

A set of 128 (82-hit) floating-point registersare used for all floating-point computation. They are
numbered FRO through FR127, and are available to all programs at all privilege levels. The
floating-point registers are partitioned into two subsets. Floating-point registers 0 through 31 are
termed the static floating-point registers. Of these, FRO and FR1 are special. FRO always reads as
+0.0 when sourced as an operand, and FR 1 always reads as +1.0. When either of theseisused asa
destination, afault israised. Deferred speculative exceptions are recorded with a special register

value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point registers. These
registers can be programmatically renamed to accel erate loops. See “Modulo-Scheduled Loop
Support” on page 4-26

Floating-point registers 8 through 31 contain the IA-32 floating-point and multi-media registers
when executing | A-32 instructions.
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Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of 1A-64 compare instructions.
These registers are numbered PRO through PR63, and are available to all programs at all privilege
levels. These registers are used for conditional execution of instructions.

The predicate registers are partitioned into two subsets. Predicate registers 0 through 15 are termed

the static predicateregisters. Of these, PRO always reads as ‘1’ when sourced as an operand, and
when used as a destination, the result is discarded. The static predicate registers are also used in
conditional branching. Sé@redication” on page 4-7

Predicate registers 16 through 63 are termeddtating predicate registers. These registers can
be programmatically renamed to accelerate loops'8edulo-Scheduled Loop Support” on
page 4-26

Branch Registers

A set of 8 (64-bithranch registers are used to hold 1A-64 branching information. They are

numbered BR 0 through BR 7, and are available to all programs at all privilege levels. The branch
registers are used to specify the branch target addresses for indirect branches. For more information
see"Branch Instructions” on page 4-24

Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current executing
IA-64 instruction. The IP can be read directly with a mov ip instruction. The IP cannot be directly
written, but is incremented as instructions are executed, and can be set to a new value with a
branch. Because IA-64 instruction bundles are 16 bytes, and are 16-byte aligned, the least
significant 4 bits of IP are always zero. Skwstruction Encoding Overview” on page 3-1Hor

IA-32 instruction set execution, IP holds the zero extended 32-bit virtual linear address of the
currently executing IA-32 instruction. IA-32 instructions are byte-aligned, therefore the least
significant 4 bits of IP are preserved for IA-32 instruction set execution.

Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker describes
the state of the IA-64 general register stack. The Current Frame Marker (CFM) holds the state of
the current stack frame. The CFM cannot be directly read or writtetiRsgéster Stack” on

page 4-1.

The frame markers contain the sizes of the various portions of the stack frame, plus three Register
Rename Base values (used in register rotation). The layout of the frame markers is shown in
Figure 3-2and the fields are describedTiable 3-2

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function State
register (se&ection 3.1.8.10 A new value is written to the CFM, creating a new stack frame with
no locals or rotating registers, but with a set of output registers which are the caller’s output
registers. Additionally, all Register Rename Base registers (RRBs) are set to 0. See
“Modulo-Scheduled Loop Support” on page 4-26
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Figure 3-2. Frame Marker Format

37 32 31 25 24 18 17 14 13 7 6 0
rrb.pr rrb.gr sor sol sof
6 7 4 7 7
Table 3-2. Frame Marker Field Description
Field Bit Range Description
sof 6:0 Size of stack frame
sol 13:7 Size of locals portion of stack frame
sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)
rrb.gr 24:18 Register Rename Base for general registers
rrb.fr 31:25 Register Rename Base for floating-point registers
rrb.pr 37:32 Register Rename Base for predicate registers

3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers for
application-visible processor functions for both the |A-32 and | A-64 instruction sets. These
registers can be accessed by |A-64 application software (except where noted). Table 3-3 contains a
list of the application registers.

Application registers can only be accessed by either aM or | execution unit. Thisis specified inthe
last column of the table. The ignored registers are for future backward-compatible extensions.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 3-5




3-6

Table 3-3. Application Registers

intel.

Execution Unit

Register Name Description Type
AR 0-7 KR 0-72 Kernel Registers 0-7
AR 8-15 Reserved
AR 16 RSC Register Stack Configuration Register
AR 17 BSP Backing Store Pointer (read-only)
AR 18 BSPSTORE Backing Store Pointer for Memory Stores
AR 19 RNAT RSE NAT Collection Register
AR 20 Reserved
AR 21 FCR IA-32 Floating-point Control Register
AR 22 — AR 23 Reserved
AR 24 EFLAGP IA-32 EFLAG register
AR 25 Csb IA-32 Code Segment Descriptor
AR 26 SSD IA-32 Stack Segment Descriptor
AR 27 CFLG? IA-32 Combined CRO and CR4 register M
AR 28 FSR IA-32 Floating-point Status Register
AR 29 FIR IA-32 Floating-point Instruction Register
AR 30 FDR IA-32 Floating-point Data Register
AR 31 Reserved
AR 32 ccv Compare and Exchange Compare Value Register
AR 33-AR 35 Reserved
AR 36 UNAT User NAT Collection Register
AR 37 — AR 39 Reserved
AR 40 FPSR Floating-point Status Register
AR 41 — AR 43 Reserved
AR 44 ITC Interval Time Counter
AR 45 — AR 47 Reserved
AR 48 — AR 63 Ignored Morl
AR 64 PFS Previous Function State
AR 65 LC Loop Count Register
AR 66 EC Epilog Count Register !
AR 67 — AR 111 Reserved
AR 112 — AR 127 Ignored Morl

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are always allowed.
b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0



3.1.8.1 Kernel Registers (KR 0-7 —AR 0-7)

Eight user-visible | A-64 64-bit data kernel registers are provided to convey information from the
operating system to the application. These registers can be read at any privilege level but are
writable only at the most privileged level. KRO - KR2 are also used to hold additional 1A-32
register state when the |A-32 instruction set is executing.

3.1.8.2 Register Stack Configuration Register (RSC —AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation
of the |A-64 Register Stack Engine (RSE). The RSC format is shown in Figure 3-3 and the field
description is contained in Table 3-4. Instructions that modify the RSC can never set the privilege
level field to amore privileged level than the currently executing process.

Figure 3-3. RSC Format

63 30 29 16 15 5 4 3 2 1 0
rv loadrs rv ‘be‘ pl ‘mode‘
34 14 11 1 2 2
Table 3-4. RSC Field Description
Field Bit Range Description
mode 1:0 RSE mode — controls how aggressively the RSE saves and restores register
frames. Eager and intensive settings are hints and can be implemented as
lazy.
Bit Pattern RSE Mode Bit 1: eager loads | Bit O: eager stores
00 enforced lazy disabled disabled
10 load intensive enabled disabled
01 store intensive disabled enabled
11 eager enabled enabled
pl 3:2 RSE privilege level — loads and stores issued by the RSE are at this privilege
level
be 4 RSE endian mode — loads and stores issued by the RSE use this byte ordering
(O: little endian; 1: big endian)
loadrs 29:16 RSE load distance to tear point — value used in the | oadr s instruction for
synchronizing the RSE to a tear point
rv 15:5, 63:30 | Reserved

3.1.8.3 RSE Backing Store Pointer (BSP —AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the address of
the location in memory which is the save location for GR 32 in the current stack frame.

Figure 3-4. BSP Register Format

63 3 210
pointer ’ ig ‘
61 3
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RSE Backing Store Pointer for Memory Stores (BSPSTORE —AR 18)

The RSE Backing Store Pointer for memory storesis a 64-bit register (Figure 3-5). It holds the
address of the location in memory to which the RSE will spill the next value.

Figure 3-5. BSPSTORE Register Format

3.1.8.5

3 2 10
‘ pointer ‘ ig ‘
61 3

RSE NAT Collection Register (RNAT —AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to temporarily
hold NaT bitswhen it is spilling general registers. Bit 63 always reads as zero and ignores all
writes.

Figure 3-6. RNAT Register Format

3.1.8.6

3.1.8.7

3.1.8.8

3.1.8.9

3-8

RSE NaT Collection
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1

63

Compare and Exchange Value Register (CCV —AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the compare value
used as the third source operand in the |A-64 cnpxchg instruction.

User NAT Collection Register (UNAT —AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits when
saving and restoring general registerswiththelA-641d8. fill andst 8. spil | instructions.

Floating-point Status Register (FPSR —AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision control, flags,
and other control bits for |A-64 floating-point instructions. FPSR does not control or reflect the
status of 1A-32 floating-point instructions. For more details on the FPSR, see Section 5.2.

Interval Time Counter (ITC —AR 44)

The Interval Time Counter (ITC) is a64-hit register which counts up at a fixed relationship to the
processor clock frequency. Applications can directly sample the ITC for time-based cal culations
and performance measurements. System software can secure the interval time counter from
non-privileged 1A-64 access. When secured, aread of the ITC at any privilege level other than the
most privileged causes a Privileged Register fault. The ITC can be written only at the most
privileged level. The 1A-32 Time Stamp Counter (TSC) isequivalent to ITC. ITC can directly be
read by the IA-32 r dt sc (read time stamp counter) instruction. System software can secure the
ITC from non-privileged | A-32 access. When secured, an |A-32 read of the ITC at any privilege
level other than the most privileged raises an 1A-32_Exception(GPfault).
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Previous Function State (PFS —AR 64)

The |A-64 Previous Function State register (PFS) contains multiple fields: Previous Frame Marker
(pfm), Previous Epilog Count (pec), and Previous Privilege Level (ppl). Figure 3-7 diagrams the
PFS format and Table 3-5 describes the PFS fields. These values are copied automatically on acall
from the CFM register, Epilog Count Register (EC) and PSR.cpl (Current Privilege Level in the
Processor Status Register) to accel erate procedure calling.

WhenanlA-64br. cal | isexecuted, the CFM, EC, and PSR.cpl are copied to the PFS and the old
contents of the PFS are discarded. When an |A-64 br . r et is executed, the PFSis copied to the
CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would increase the privilege level.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7), and the PFS.pec has the same
layout asthe EC (see Section 3.1.8.12).

Figure 3-7. PFS Format

6362 61 58 57 52 51 38 37 0

rv ‘ pec ‘ rv pfm

L
2

4 6 14 38

Table 3-5. PFS Field Description

3.1.8.11

3.1.8.12

Field Bit Range Description
pfm 37:0 Previous Frame Marker
pec 57:52 Previous Epilog Count
ppl 63:62 Previous Privilege Level
rv 51:38, 61:58 Reserved

Loop Count Register (LC —AR 65)

The Loop Count register (LC) is a 64-bit register used in 1A-64 counted loops. LC is decremented
by counted-loop-type branches.

Epilog Count Register (EC —AR 66)

The Epilog Count register (EC) is a 6-hit register used for counting the final (epilog) stagesin
| A-64 modul o-scheduled loops. See “Modulo-Scheduled Loop Support” on page 4-26diagram
of the EC register is shown kigure 3-8

Figure 3-8. Epilog Count Register Format

3.1.9

6 5 0

ig ‘ epilog count

58 6

Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to be
accessible at all privilege levels. Performance monitor data can be directly sampled from within the
application. The operating system is allowed to secure user-configured performance monitors.
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Secured performance counters return zeros when read, regardless of the current privilegelevel. The
performance monitors can only be written at the most privileged level. Performance monitors can
be used to gather performance information for both 1A-32 and 1A-64 instruction set execution.

User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to 1A-64 application
programs. The user mask controls memory access alignment, byte-ordering and user-configured
performance monitors. It also records the modification state of 1A-64 floating-point registers.
Figure 3-9 show the user mask format and Table 3-6 describes the user mask fields.

Figure 3-9. User Mask Format

5 4 3 2 1 o0
‘mfh’mfl’ ac ’ up‘be‘ rv ‘
1

Table 3-6. User Mask Field Descriptions

3.1.11

3-10

Field Bit Range Description
rv 0 Reserved
be 1 IA-64 Big-endian memory access enable

(controls loads and stores but not RSE memory accesses)

0: accesses are done little-endian

1: accesses are done big-endian

This bit is ignored for 1A-32 data memory accesses. |1A-32 data references are
always performed little-endian.

up 2 User performance monitor enable for IA-32 and 1A-64 instruction set execution
0: user performance monitors are disabled
1: user performance monitors are enabled

ac 3 Alignment check for IA-32 and 1A-64 data memory references

0: unaligned data memory references may cause an Unaligned Data Reference
fault.

1: all unaligned data memory references cause an Unaligned Data Reference fault.

mfl 4 Lower (f2 .. f31) floating-point registers written — This bit is set to one when an IA-64
instruction that uses register f2..f31 as a target register, completes. This bit is sticky
and is only cleared by an explicit write of the user mask.

mfh 5 Upper (f32 .. f127) floating-point registers written — This bit is set to one when an
IA-64 instruction that uses register f32..f127 as a target register, completes. This bit
is sticky and only cleared by an explicit write of the user mask.

Processor Identification Registers

Application level processor identification information is available in an 1A-64 register file termed:
CPUID. Thisregister fileisdivided into afixed region, registers 0 to 4, and a variable region,
register 5 and above. The CPUID[3].number field indicates the maximum number of 8-byte
registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from) instruction. All

registers beyond register CPUID[3].number are reserved and raise a Reserved Register/Field fault
if they are accessed. Writes are not permitted and no instruction exists for such an operation.
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Vendor information islocated in CPUID registers 0 and 1 and specify avendor name, in ASCII, for
the processor implementation (Figure 3-10). All bytes after the end of the string up to the 16th byte
are zero. Earlier ASCII characters are placed in lower number register and lower numbered byte

positions.

Figure 3-10. CPUID Registers 0 and 1 —Vendor Information

63

CPUIDIO0] \ \

| | | | | | byteo |

CPUID[l]‘ byte 15 \

64

A Processor Serial Number islocated in CPUID register 2. If Processor Serial Numbers are
supported by the processor model and are not disabled, this register returns a 64-bit number
Processor Serial Number (Figure 3-11), otherwise zero is returned. The Processor Serial Number
(64-bits) must be combined with the 32-bit version information (CPUID register 3; processor
archrev, family, model, and revision numbers) to form a 96-bit Processor Identifier.

The 96-bit Processor Identifier is designed to be unique.

Figure 3-11. CPUID Register 2 —Processor Serial Number

63 0
Processor Serial Number
64
CPUID register 3 contains several fields indicating version information related to the processor
implementation. Figure 3-12 and Table 3-7 specify the definitions of each field.
Figure 3-12. CPUID Register 3 —Version Information
63 40 39 32 31 24 23 16 15 8 7 0
rv archrev family model revision number
24 8 8 8 8 8
Table 3-7. CPUID Register 3 Fields
Field Bits Description
number 7:0 The index of the largest implemented CPUID register (one less than the number of
implemented CPUID registers). This value will be at least 4.
revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping of
this processor implementation within the processor model.
model 23:16 | Processor model number. A unique 8-bit value representing the processor model within
the processor family.
family 31:24 Processor family number. A unique 8-bit value representing the processor family.
archrev 39:32 | Architecture revision. An 8-bit value that represents the architecture revision number
that the processor implements.
rv 63:40 | Reserved.

CPUID register 4 provides general application level information about | A-64 features. Asshownin
Figure 3-13, it isa set of flag bits used to indicate if a given |A-64 feature is supported in the
processor model. When a bit is one the feature is supported; when 0 the feature is not supported.
Thisregister does not contain |A-32 instruction set features. | A-32 instruction set features can be
acquired by the |A-32 cpui d instruction. There are no defined feature bits in the current

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 3-11



intel.

architecture. As new features are added (or removed) from future processor models the presence
(or removal) of new features will be indicated by new feature bits. A value of zero in this register
indicates all features defined in the first |A-64 architectural revision are implemented.

Figure 3-13. CPUID Register 4 —General Features/Capability Bits

3.2

3.2.1

3.2.2

3.2.3

3-12

v

64

Memory

This section describes an | A-64 application program’s view of memory. This includes a description
of how memory is accessed, for both 32-bit and 64-bit applications. The size and alignment of
addressable units in memory is also given, along with a description of how byte ordering is
handled.

Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer model without a
hardware mode is supported architecturally. Pointers which are 32 bits in memory are loaded and
manipulated in 64-bit registers. Software must explicitly convert 32-bit pointers into 64-bit

pointers before use.

Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned boundaries.
Hardware and/or operating system software may have support for unaligned accesses, possibly
with some performance cost. 10-byte floating-point values should be stored on 16-byte aligned
boundaries.

Bits within larger units are always numbered from O starting with the least-significant bit.
Quantities loaded from memory to general registers are always placed in the least-significant
portion of the register (loaded values are placed right justified in the target general register).

Instruction bundles (3 IA-64 instructions per bundle) are 16-byte units that are always aligned on
16-byte boundaries.

Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or big-endian
byte ordering for IA-64 references. When the UM.be bit is 0, larger-than-byte loads and stores are
little endian (lower-addressed bytes in memory correspond to the lower-order bytes in the register).
When the UM.be bit is 1, larger-than-byte loads and stores are big endian (lower-addressed bytes in
memory correspond to the higher-order bytes in the register). Load byte and store byte are not
affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32 references, or the
RSE. IA-64 instructions are always accessed by the processor as little-endian units. When
instructions are referenced as big-endian data, the instruction will appear reversed in a register.
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Figure 3-14 shows various loads in little-endian format. Figure 3-15 shows various loads in big
endian format. Stores are not shown but behave similarly.

Figure 3-14. Little-endian Loads

Memory Registers
7 0 63 0
Add(;ess N ip=>|0|o|o|o|o|o]o]lob
1 b
63 0
2 c
LD2[2]=> | O 0 0 0 0 0 d c
3 d
4 e 63 0
5 f LD4[4=>| 0| 0| O0O| O | h|g]| f]e
6 g
7 h 63 0
LD8[0]=> | h g f e d C b a

Figure 3-15. Big-endian Loads

Memory Registers
Address 7 0 63 0
0 a LD1[1]=> | ©O 0 0 0 0 0 0 b
1 b
2 c 63 0
3 d LD2 [2] => 0 0 0 0 0 0 c d
4 e
63 0
5 f
LD4 [4] => 0 0 0 0 e f g h
6 g
7 h 63 0
LD8 [0] => a b c d e f g h
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3.3 Instruction Encoding Overview

Each |A-64 instruction is categorized into one of six types; each instruction type may be executed
on one or more execution unit types. Table 3-8 lists the instruction types and the execution unit
type on which they are executed:

Table 3-8. Relationship Between Instruction Type and Execution Unit Type

InsErr;Jpc;ion Description Execution Unit Type
A Integer ALU I-unit or M-unit
| Non-ALU integer l-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended l-unit

Three instructions are grouped together into 128-bit sized and aligned containers called bundles.
Each bundle contains three 41-bit instruction slots and a 5-bit template field. The format of a
bundleis depicted in Figure 3-16.

Figure 3-16. Bundle Format

127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 ‘template‘
41 41 41 5

During execution, architectural stopsin the program indicate to the hardware that one or more
instructions before the stop may have certain kinds of resource dependencies with one or more
instructions after the stop. A stop is present after each slot having adouble line to theright of itin
Table 3-9. For example, template 00 has no stops, while template 03 has a stop after slot 1 and
another after slot 2.

In addition to the location of stops, the template field specifies the mapping of instruction slots to
execution unit types. Not all possible mappings of instructionsto units are available. Table 3-9
indicates the defined combinations. The three rightmost columns correspond to the three
instruction slotsin abundle. Listed within each column isthe execution unit type controlled by that
instruction dlot.

Table 3-9. Template Field Encoding and Instruction Slot Mapping?

Template Slot 0 Slot 1 Slot 2
00 M-unit l-unit l-unit
01 M-unit I-unit I-unit H
02 M-unit l-unit l-unit |
03 M-unit I-unit I-unit H
04 M-unit L-unit X-unit |
05 M-unit L-unit X-unit H
06
07
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Table 3-9. Template Field Encoding and Instruction Slot Mapping? (Cont’d)

3.4

Template Slot 0 Slot 1 Slot 2
08 M-unit M-unit l-unit
09 M-unit M-unit I-unit H
0A M-unit M-unit l-unit ‘
0B M-unit M-unit I-unit H
oc M-unit F-unit l-unit ‘
oD M-unit F-unit I-unit H
OE M-unit M-unit F-unit ‘
OF M-unit M-unit F-unit H
10 M-unit l-unit B-unit ‘
1 M-unit I-unit B-unit H
12 M-unit B-unit B-unit ‘
13 M-unit B-unit B-unit H
14
15
16 B-unit B-unit B-unit
17 B-unit B-unit B-unit H
18 M-unit M-unit B-unit ‘
19 M-unit M-unit B-unit H
1A
1B
1C M-unit F-unit B-unit
1D M-unit F-unit B-unit H
1E
1F

a. Extended instructions, used for long immediate integer, occupy two instruction slots.

Instruction Sequencing

An 1A-64 program consists of a sequence of instructions and stops packed in bundles. Instruction
execution is ordered as follows:

* Bundles are ordered from lowest to highest memory address. Instructions in bundles with
lower memory addresses are considered to precede instructions in bundles with higher
memory addresses. The byte order of each bundle in memory is little-endian (the template
field is contained in byte 0 of abundle).

¢ Within abundle, instructions are ordered from instruction slot O to instruction slot 2 as
specified in Figure 3-16.

For additional details on Instruction sequencing, refer to Appendix A, “Instruction Sequencing
Considerations”
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IA-64 Application Programming
Model 4

4.1

4.1.1

This section describes the | A-64 architectural functionality from the perspective of the application
programmer. 1A-64 instructions are grouped into related functions and an overview of their
behavior is given. Unless otherwise noted, all immediates are sign extended to 64 bits before use.
Thefloating-point programming model is described separately in Chapter 5, “IA-64 Floating-point
Programming Model”

The main features of the I1A-64 programming model covered here are:
* General Register Stack
* Integer Computation Instructions
¢ Compare Instructions and Predication
* Memory Access Instructions and Speculation
¢ Branch Instructions and Branch Prediction
* Multimedia Instructions
* Register File Transfer Instructions
* Character Strings and Population Count

Register Stack

Asdescribed in “General Registers” on page 3iBe general register file is divided into static and
stacked subsets. The static subset is visible to all procedures and consists of the 32 registers from
GR 0 through GR 31. The stacked subset is local to each procedure and may vary in size from zero
to 96 registers beginning at GR 32. The register stack mechanism is implemented by renaming
register addresses as a side-effect of procedure calls and returns. The implementation of this
rename mechanism is not otherwise visible to application programs. The register stack is disabled
during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to software
convention. The stacked subset is automatically saved and restored by the Register Stack Engine
(RSE) without explicit software intervention. All other register files are visible to all procedures
and must be saved/restored by software according to software convention.

Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register stack frame.
The frame is further partitioned into two variable-size areas: the local area and the output area.
Immediately after a call, the size of the local area of the newly activated frame is zero and the size
of the output area is equal to the size of the caller’s output area and overlays the caller’s output
area.

The local and output areas of a frame can be re-sized usiagltbe instruction which specifies
immediates that determine the size of frame (sof) and size of locals (sol).
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In the assembly language, al | oc specifies three operands: the size of inputsimmediate; the size of
locals immediate; and the size of outputs immediate. The value of sol is determined by adding the
size of inputs immediate and the size of locals immediate; the value of sof is determined by adding
all three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current procedure; the
value of sol specifiesthe size of the local area. The size of the output areais determined by the
difference between sof and sol. The values of these parameters for the currently active procedure
are maintained in the Current Frame Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. Writing a
stacked register outside the current frame will cause an Illegal Operation fault.

When a call-type branch is executed, the CFM is copied to the Previous Frame Marker (PFM) field
in the Previous Function State application register (PFS), and the callee’s frame is created as
follows:

* The stacked registers are renamed such that the first register in the caller’s output area
becomes GR 32 for the callee.

* Thesize of thelocal areais set to zero.
* The size of the callee’s frame (gofis set to the size of the caller’s output area,(safo},).

Values in the output area of the caller’s register stack frame are visible to the callee. This overlap
permits parameter and return value passing between procedures to take place entirely in registers.

Procedure frames may be dynamically re-sized by issuimagjlast instruction. Anal | oc

instruction causes no renaming, but only changes the size of the register stack frame and the
partitioning between local and output areas. Typically, when a procedure is called, it will allocate
some number of local registers for its use (which will include the parameters passed to it in the
caller’s output registers), plus an output area (for passing parameters to procedures it will call).
Newly allocated registers (including their NaT bits) have undefined values.

When a return-type branch is executed, CFM is restored from PFM and the register renaming is
restored to the caller’s configuration. The PFM is procedure local state and must be saved and
restored by non-leaf procedures. The CFM is not directly accessible in application programs and is
updated only through the execution of calls, retushspc, andcl rrrb.

Figure 4-1depicts the behavior of the register stack on a procedure call from procA (caller) to

procB (callee). The state of the register stack is shown at four points: prior to the call, immediately
following the call, after procB has executedahhoc, and after procB returns to procA.
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Figure 4-1. Register Stack Behavior on Procedure Call and Return

Instruction Execution Stacked GRs Frame Markers
CFM PFM
32 46 52 sol sof sol sof
Caller’s frame (procA) Local A Output A 14 21 X X
j—»‘ sof,=21
call sol,=14 | 2
v l32 38
Callee’s frame (procB)
after call Output By 0 7| |14 21
‘ &
alloc | SOfpy=7
v |32 48 50
Callee’s frame (procB)
after alloc Local B Output B, 16 19| |14 21
|< — >
- » SOfyy=19
return | sol,,=16
|
v 32 46 52
Caller’s frame (procA)
after return Local A Output A 14 21 14 21

4.1.2

The majority of application programs need only issue al | oc instructions and save/restore PFM in
order to effectively utilize the register stack. A detailed knowledge of the RSE (Register Stack
Engine) is required only by certain specialized application software such as user-level thread
packages, debuggers, etc.

Register Stack Instructions

Theal | oc instruction is used to change the size of the current register stack frame. Anal | oc
instruction must be the first instruction in an instruction group otherwise the results are undefined.
Anal | oc instruction affects the register stack frame seen by al instructions in an instruction
group, including the al | oc itself. Anal | oc cannot be predicated. An al | oc does not affect the
values or NaT hits of the allocated registers. When aregister stack frame is expanded, newly
allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of the register
stack. These instructions are used in thread and context switching which necessitate a
corresponding switch of the backing store for the register stack.

Thef |l ushrs instruction is used to force al previous stack frames out to backing store memory. It
stalls instruction execution until all active framesin the physical register stack up to, but not
including the current frame are spilled to the backing store by the RSE. A f | ushr s instruction
must be the first instruction in an instruction group; otherwise, the results are undefined. A

f1 ushrs cannot be predicated.
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Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 summarizesthe
register stack management instructions. Call- and return-type branches, which affect the stack, are
described in “Branch Instructions” on page 4-24

Architectural Visible State Related to the Register Stack
Register Description
AR[PFS].pfm Previous Frame Marker field
AR[RSC] Register Stack Configuration application register
AR[BSP] Backing store pointer application register
AR[BSPSTORE] Backing store pointer application register for memory stores
AR[RNAT] RSE NaT collection application register

Register Stack Management Instructions

Mnemonic Operation
al |l oc Allocate register stack frame
flushrs Flush register stack to backing store

Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and bit-field-manipulation
instructions. Additionally, they provide a set of instructions to accelerate operations on 32-bit data
and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and M-units

Arithmetic Instructions

Addition and subtractiora@id, sub) are supported with regular two input forms and special three
input forms. The three input addition form adds one to the sum of two input registers. The three
input subtraction form subtracts one from the difference of two input registers. The three input
forms share the same mnemonics as the two input forms and are specified by appending a “1” as a
third source operand.

Immediate forms of addition and subtraction use a register and a 15-bit immediate. The immediate
form is obtained simply by specifying an immediate rather than a register as the first operand. Also,
addition can be performed between a register and a 22-bit immediate; however, the source register

must be GR 0, 1, 2 or 3.

A shift left and add instructiors kil add) shifts one register operand to the left by 1 to 4 bits and
adds the result to a second register operatole 4-3summarizes the integer arithmetic
instructions.
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Table 4-3.

4.2.2

Table 4-4.

4.2.3

Integer Arithmetic Instructions
Mnemonic Operation
add Addition
add....1 Three input addition
sub Subtraction
sub..,1 Three input subtraction
shl add Shift left and add

Note that an integer multiply instruction is defined which uses the floating-point registers. See
“Integer Multiply and Add Instructions” on page 5-fof details. Integer divide is performed in
software similarly to floating-point divide.

Logical Instructions

Instructions to perform logical ANDafd), OR (r), and exclusive ORx6r ) between two
registers or between a register and an immediate are definednddre instruction performs a
logical AND of a register or an immediate with the complement of another regesibée. 4-4
summarizes the integer logical instructions.

Integer Logical Instructions

Mnemonic Operation
and Logical and
or Logical or
andcm Logical and complement
xor Logical exclusive or

32-bit Addresses and Integers

Support for 1A-64 32-bit addresses is provided in the form of add instructions that perform region
bit copying. This supports the virtual address translation model. The add 32-bit pointer instruction
(addp) adds two registers or a register and an immediate, zeroes the most significant 32-bits of the
result, and copies bits 31:30 of the second source to bits 62:61 of the resull atiep

instruction operates similarly but shifts the first source to the left by 1 to 4 bits before performing
the add, and is provided only in the two-register form.

In addition, support for 32-bit integers is provided through 32-bit compare instructions and
instructions to perform sign and zero extension. Compare instructions are desctibemhrare
Instructions and Predication” on page 4Ffe sign and zero extengk( , zxt ) instructions take an
8-bit, 16-bit, or 32-bit value in a register, and produce a properly extended 64-bit result.

Table 4-5summarizes 32-bit pointer and 32-bit integer instructions.
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4.2.4

4-6

Mnemonic Operation
addp 32-bit pointer addition
shl addp Shift left and add 32-bit pointer
sxt Sign extend
zXt Zero extend

Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a general
register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input funnel shift, and special
compare operations to test an individual bit within a general register. The compare instructions for
testing asingle bit (t bi t ), or for testing the NaT bit (t nat ) are described in “Compare Instructions
and Predication” on page 4-7

The variable shift instructions shift the contents of a general register by an amount specified by
another general register. The shift right sigregd Y and shift right unsignedkir . u) instructions

shift the contents of a register to the right with the vacated bit positions filled with the sign bit or
zeroes respectively. The shift lesh( ) instruction shifts the contents of a register to the left.

The fixed shift-and-mask instructiorex( r , dep) are generalized forms of fixed shifts. The extract
instruction éxt r ) copies an arbitrary bit field from a general register to the least-significant bits of
the target register. The remaining bits of the target are written with either the sign of the bit field
(extr) or with zero éxt r. u). The length and starting position of the field are specified by two
immediates. This is essentially a shift-right-and-mask operation. A simple right shift by a fixed
amount can be specified by usitg with an immediate value for the shift amount. This is just an
assembly pseudo-op for an extract instruction where the field to be extracted extends all the way to
the left-most register bit.

The deposit instructiondép) takes a field from either the least-significant bits of a general register,
or from an immediate value of all zeroes or all ones, places it at an arbitrary position, and fills the
result to the left and right of the field with either bits from a second general redigieo( with
zeroesdep. z). The length and starting position of the field are specified by two immediates. This
is essentially a shift-left-mask-merge operation. A simple left shift by a fixed amount can be
specified by usinghl with an immediate value for the shift amount. This is just an assembly
pseudo-op fodep. z where the deposited field extends all the way to the left-most register bit.

The shift right pairghr p) instruction performs a 128-bit-input funnel shift. It extracts an arbitrary
64-bit field from a 128-bit field formed by concatenating two source general registers. The starting
position is specified by an immediate. This can be used to accelerate the adjustment of unaligned
data. A bit rotate operation can be performed by usting and specifying the same register for

both operands.

Table 4-6summarizes the bit field and shift instructions.
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Table 4-6. Bit Field and Shift Instructions

4.2.5

Table 4-7.

4.3

4.3.1

Mnemonic Operation
shr Shift right signed
shr.u Shift right unsigned
shl Shift left
extr Extract signed (shift right and mask)
extr.u Extract unsigned (shift right and mask)
dep Deposit (shift left, mask and merge)
dep. z Deposit in zeroes (shift left and mask)
shrp Shift right pair

Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For constants up to
22 hitsin size, the add instruction can be used, or the nov pseudo-op (pseudo-op of add with GRO,
which always reads 0). For larger constants, the move long immediate instruction (novl ) is defined
to write a 64-bit immediate into a general register. Thisinstruction occupies two instruction slots
within the same bundle, and is the only such instruction.

Instructions to Generate Large Constants

Mnemonic

Operation

nov

Move 22-bit immediate

nov|

Move 64-bit immediate

Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and affect the
dynamic execution of instructions. A compare instruction tests for asingle specified condition and
generates a boolean result. These results are written to predicate registers. The predicate registers
can then be used to affect dynamic execution in two ways: as conditions for conditional branches,
or as qualifying predicates for predication.

Predication

Predication is the conditional execution of instructions. The execution of most |A-64 instructions
is gated by aqualifying predicate. If the predicate is true, the instruction executes normally; if the
predicate is false, the instruction does not modify architectural state (except for the unconditional
type of compare instructions, floating-point approximation instructions and while-loop branches).
Predicates are one-bit values and are stored in the predicate register file. A zero predicate is
interpreted as false and a one predicate is interpreted as true (predicate register PRO is hardwired to
one).

A few [A-64 instructions cannot be predicated. These instructions are: alocate stack frame
(al I oc), clear rrb (cl rrrb), flush register stack (f | ushrs), and counted branches (c! oop, ct op,
cexit).

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 4-7



4.3.2

intel.

Compare Instructions

Predicate registers are written by the following instructions. general register compare (cnp, cnp4),
floating-point register compare (f cnp), test bit and test NaT (t bi t, t nat ), floating-point class

(f cl ass), and floating-point reciprocal approximation and reciprocal square root approximation
(frcpa, frsgrta). Most of these compare instructions (all but f r cpa and f rsqgrt a) set two
predicate registers based on the outcome of the comparison. The setting of the two target registers
is described below in “Compare Types” on page 4-8ompare instructions are summarized in
Table 4-8

Table 4-8. Compare Instructions

4.3.3

Mnemonic Operation
cnp, cnp4 GR compare
thit Test bitin a GR
t nat Test GR NaT bit
fcnp FR compare
fclass FR class
frcpa, fprcpa Floating-point reciprocal approximation
frsgrta, fprsqrta Floating-point reciprocal square root approximation

The 64-bit ¢np) and 32-bit {np4) compare instructions compare two registers, or a register and an
immediate, for one of ten relations (e.g., >, <=). The compare instructions set two predicate targets
according to the result. Thep4 instruction compares the least-significant 32-bits of both sources
(the most significant 32-bits are ignored).

The test bitt(bi t ) instruction sets two predicate registers according to the state of a single bit in a
general register (the position of the bit is specified by an immediate). The testidaY (

instruction sets two predicate registers according to the state of the NaT bit corresponding to a
general register.

Thef cnp instruction compares two floating-point registers and sets two predicate targets
according to one of eight relations. Tihg ass instruction sets two predicate targets according to
the classification of the number contained in the floating-point register source.

Thefrcpa andfrsqgrt a instructions set a single predicate target if their floating-point register
sources are such that a valid approximation can be produced, otherwise the predicate target is
cleared.

Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional, AND, OR,
or DeMorgan. The type defines how the instruction writes its target predicate registers based on the
outcome of the comparison and on the qualifying predicate. The description of these types is
contained infable 4-9 In the table, “qp” refers to the value of the qualifying predicate of the
compare and “result” refers to the outcome of the compare relation (one if the compare relation is
true and zero if the compare relation is false).
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Table 4-9. Compare Type Function

Operation
Compare Type Completer
First Predicate Target Second Predicate Target
Normal none if (gp) {target = result} if (qp) {target = result}
. if (qp) {target = result} if (qp) {target = Iresult}

Unconditional unc else {target = 0} else {target = 0}

and if (qp && !result) {target = 0} if (qp && !result) {target = 0}
AND

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

or if (qp && result) {target = 1} if (qp && result) {target = 1}
OR

orcm if (qp && !result) {target = 1} if (qp && !'result) {target = 1}

or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}
DeMorgan

and.orcm if (qp && !result) {target = 0} if (qp && !'result) {target = 1}

The Normal compare type simply writes the compare result to the first predicate target and the
complement of the result to the second predicate target.

The Unconditional compare type behaves the same asthe Normal type, except that if the qualifying
predicateis0, both predicate targets are written with 0. This can be thought of as an initialization of
the predicate targets, combined with a Normal compare. Note that compare instructions with the
Unconditional type modify architectural state when their qualifying predicate isfalse.

The AND, OR and DeMorgan types are termed “parallel” compare types because they allow
multiple simultaneous compares (of the same type) to target a single predicate register. This
provides the ability to compute a logical equation sugibas (r4 == 0) || (r5 == r6) ina

single cycle (assuming p5 was initialized to 0 in an earlier cycle). The DeMorgan compare type is
just a combination of an OR type to one predicate target and an AND type to the other predicate
target. Multiple OR-type compares (including the OR part of the DeMorgan type) may specify the
same predicate target in the same instruction group. Multiple AND-type compares (including the
AND part of the DeMorgan type) may also specify the same predicate target in the same instruction

group.

For all compare instructions (except forat andf cl ass), if one or both of the source registers
contains a deferred exception token (NaT or NaTVal “Gertrol Speculation” on page 4-},3

the result of the compare is different. Both predicate targets are treated the same, and are either
written to O or left unchanged. In combination with speculation, this allows predicated code to be
turned off in the presence of a deferred exceptiar.gss behaves this way as well if NaTVal is

not one of the classes being tested fiable 4-10describes the behavior.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation
Normal if (qp) {target = O}
Unconditional target =0
AND if (qp) {target = O}
OR (not written)
DeMorgan (not written)

Only a subset of the compare types are provided for some of the compare instrligahtmng-11
lists the compare types which are available for each of the instructions.
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Table 4-11. Instructions and Compare Types Provided

4.3.4

4.4

4-10

Instruction Relation Types Provided

cnp, cnp4 a==b,al=b, Normal, Unconditional, AND, OR, DeMorgan
a>0,a>=0,a<0,a<=0,
0>a,0>=a,0<a,0<=a

All other relations Normal, Unconditional
thit,tnat All Normal, Unconditional, AND, OR, DeMorgan
fcrp, fcl ass All Normal, Unconditional
frcpa, Not Applicable Unconditional
frsgrta,
fprcpa,
fprsgrta

Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and ageneral register. These
instructions operate in a “broadside” manner whereby multiple predicate registers are transferred in
parallel, such that predicate register N is transferred to/from bit N of a general register.

The move to predicates instructioroy pr =) loads multiple predicate registers from a general
register according to a mask specified by an immediate. The mask contains one bit for each of PR 1
through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16 through PR63 (the rotating
predicates). A predicate register is written from the corresponding bit in a general register if the
corresponding mask bit is 1; if the mask bit is 0 the predicate register is not modified.

The move to rotating predicates instructionV pr. r ot =) copies 48 bits from an immediate

value into the 48 rotating predicates (PR 16 through PR 63). The immediate value includes 28 bits,
and is sign-extended. Thus PR 16 through PR 42 can be independently set to new values, and PR
43 through PR 63 are all set to either 0 or 1.

The move from predicates instructiory =pr) transfers the entire predicate register file into a
general register target.

For all of these predicate register transfers, the predicate registers are accessed as though the
register rename base (CFM.rrb.pr) were 0. Typically, therefore, software should clear CFM.rrb.pr
before initializing rotating predicates.

Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer data to and
from general registers or floating-point registers. The memory address is specified by the contents
of a general register.

Most load and store instructions can also specify base-address-register update. Base update adds
either an immediate value or the contents of a general register to the address register, and places the
result back in the address register. The update is done after the load or store operation, i.e., it is
performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a 4K-byte

boundary, accesses misaligned with respect to their natural boundaries will always fault if UM.ac
(alignment check bit in the User Mask register) is 1. If UM.ac is 0, then an unaligned access will
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succeed if it is supported by the implementation; otherwise it will cause an Unaligned Data

Reference fault. All memory accesses that cross a 4K -byte boundary will cause an Unaligned Data

Reference fault independent of UM.ac. Additionally, all semaphore instructionswill cause an
Unaligned Data Reference fault if the accessis not aligned to its natural boundary, independent of

UM.ac.

Accesses to memory quantities larger than a byte may be donein abig-endian or little-endian
fashion. The byte ordering for all memory access instructions is determined by UM.be in the User
Mask register for |A-64 memory references. All |A-32 memory references are performed

little-endian.

Load, store and semaphore instructions are summarized in Table 4-12.

Table 4-12. Memory Access Instructions

4.4.1

Mnemonic
Floating-point Operation
General
Normal Load Pair
Id | df I df p Load
ld.s ldf.s I dfp.s Speculative load
Id. a I df.a | df p. a Advanced load
I d.sa | df . sa | df p. sa Speculative advanced load
I d.c.nc, I df.c.nc, | df p. c. nc, Check load
Id.c.clr Idf.c.clr Idfp.c.clr
Id.c.clr.acq Ordered check load
I d. acq Ordered load
| d. bi as Biased load
[ d8.fill Idf.fill Fill
st stf Store
st.rel Ordered store
st.spill stf.spill Spill
cnpxchg Compare and exchange
xchg Exchange memory and GR
f et chadd Fetch and add

Load Instructions

Load instructions transfer data from memory to ageneral register, afloating-point register or apair
of floating-point registers.

For general register loads, access sizes of 1, 2, 4, and 8 bytes are defined. For sizesless than eight
bytes, the loaded valueis zero extended to 64-hits.

For floating-point loads, five access sizes are defined: single precision (4 bytes), double precision

(8 bytes), double-extended precision (10 bytes), single precision pair (8 bytes), and double

precision pair (16 bytes). The value(s) loaded from memory are converted into floating-point
register format (see “Memory Access Instructions” on page Jeof details). The floating-point load
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4.4.2

4.4.3

4-12

intel.

pair instructions load two adjacent single or double precision numbers into two independent
floating-point registers (seethel df p[ s/ d] instruction description for restrictions on target register
specifiers). The floating-point load pair instructions cannot specify base register update.

Variants of both general and floating-point register loads are defined for supporting
compiler-directed control and data speculation. These use the general register NaT bits and the
ALAT. See“Control Speculation” on page 4-Ehd“Data Speculation” on page 4-16

Variants are also provided for controlling the memory/cache subsystem. An ordered load can be
used to force ordering in memory accesses. Beenory Access Ordering” on page 4-28

biased load provides a hint to acquire exclusive ownership of the accessed liveiBery

Hierarchy Control and Consistency” on page 4-20

Special-purpose loads are defined for restoring register values that were spilled to memory. The

I d8.fill instruction loads a general register and the corresponding NaT bit (defined for an 8-byte
access only). Thedf . fil | instruction loads a value in floating-point register format from

memory without conversion (defined for 16-byte access onlyYReggster Spill and Fill” on

page 4-15

Store Instructions

Store instructions transfer data from a general or floating-point register to memory. Store
instructions are always non-speculative. Store instructions can specify base-address-register
update, but only by an immediate value. A variant is also provided for controlling the memaory/
cache subsystem. An ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes as their load
counterparts. The only exception is that there are no floating-point store pair instructions.

Special purpose stores are defined for spilling register values to memosy.8Tkei | |

instruction stores a general register and the corresponding NaT bit (defined for 8-byte access only).
This allows the result of a speculative calculation to be spilled to memory and restored. The
stf.spill instruction stores a floating-point register in memory in the floating-point register
format without conversion. This allows register spill and restore code to be written to be
compatible with possible future extensions to the floating-point register formadt Thepi | |

instruction also does not fault if the register contains a NaTVal, and is defined for 16-byte access
only. SeéRegister Spill and Fill” on page 4-15

Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an operation and
then store a result to the same memory location. Semaphore instructions are always
non-speculative. No base register update is provided.

Three types of atomic semaphore operations are defined: exclkahg €compare and exchange
(cnpxchg); and fetch and add ¢t chadd).

Thexchg target is loaded with the zero-extended contents of the memory location addressed by the
first source and then the second source is stored into the same memory location.

Thecnpxchg target is loaded with the zero-extended contents of the memory location addressed by
the first source; if the zero-extended value is equal to the contents of the Compare and Exchange
Compare Value application register (CCV), then the second source is stored into the same memory
location.
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Thef et chadd instruction specifies one general register source, one general register target, and an
immediate. Thef et chadd target isloaded with the zero-extended contents of the memory location
addressed by the source and then the immediate is added to the loaded value and the result is stored
into the same memory location.

Table 4-13. State Relating to Memory Access

Register Function
UM.be User mask byte ordering
UM.ac User mask Unaligned Data Reference fault enable
UNAT GR NaT collection
ccv Compare and Exchange Compare Value application register

4.4.4 Control Speculation

Special mechanisms are provided to alow for compiler-directed speculation. This speculation
takes two forms, control speculation and data speculation, with a separate mechanism to support
each. See also “Data Speculation” on page 4-16

44.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a sequence of
instructions is executed before it is known that the dynamic control flow of the program will
actually reach the point in the program where the sequence of instructions is needed. This is done
with instruction sequences that have long execution latencies. Starting the execution early allows
the compiler to overlap the execution with other work, increasing the parallelism and decreasing
overall execution time. The compiler performs this optimization when it determines that it is very
likely that the dynamic control flow of the program will eventually require this calculation. In cases
where the control flow is such that the calculation turns out not to be needed, its results are simply
discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no exceptions
encountered that would be visible to the program can be signalled until it is determined that the
program'’s control flow does require the execution of this instruction sequence. For this reason, a
mechanism is provided for recording the occurrence of an exception so that it can be signalled later
if and when it is necessary. In such a situation, the exception is said to be deferred. When an
exception is deferred by an instruction, a special token is written into the target register to indicate
the existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point register
files. In general registers, an additional bit is defined for each register called the NaT bit (Not a
Thing). Thus general registers are 65 bits wide. A NaT bit equal to 1 indicates that the register
contains a deferred exception token, and that its 64-bit data portion contains an implementation
specific value that software cannot rely upon. In floating-point registers, a deferred exception is
indicated by a specific pseudo-zero encoding called the NaTValRspeesentation of Values in
Floating-point Registers” on page &t details).

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 4-13



intel.

4442 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be used
speculatively) and non-speculative (instructions which cannot). Non-speculative instructions will
raise exceptions if they occur and are therefore unsafe to schedule before they are known to be
executed. Speculative instructions defer exceptions (they do not raise them) and are therefore safe
to schedule before they are know to be executed.

Loads to general and floating-point registers have both non-speculative (I d, | df , | df p) and
speculative (1 d. s, | df . s, | df p. s) variants. Generally, all computation instructions which write
their results to general or floating-point registers are speculative. Any instruction that modifies
state other than ageneral or floating-point register is non-speculative, since there would be no way
to represent the deferred exception (there are afew exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A speculative
instruction that reads a register containing a deferred exception token will propagate a deferred
exception token into its target. Thus a chain of instructions can be executed speculatively, and only
the result register need be checked for a deferred exception token to determine whether any
exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation is needed, a
speculation check (chk. s) instruction is used. Thisinstruction tests for adeferred exception token.
If noneisfound, then the speculative cal cul ation was successful, and execution continues normally.
If a deferred exception token is found, then the speculative cal cul ation was unsuccessful and must
be re-done. In this case, the chk. s instruction branches to a new address (specified by an
immediate offset in the chk. s instruction). Software can use this mechanism to invoke code that
contains a copy of the speculative calculation (but with non-speculative loads). Sinceit is now
known that the calculation is required, any exceptions which now occur can be signalled and
handled normally.

Since computational instructions do not generally cause exceptions, the only instructions which

generate deferred exception tokens are specul ative |oads. (IEEE floating-point exceptions are

handled specially through a set of aternate status fields. See “Floating-point Status Register” on

page 5-5 Other speculative instructions propagate deferred exception tokens, but do not generate
them.

4.44.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general registers or the
floating-point registers are non-speculative. The compang, €np4, f cnp), test bit { bi t ),
floating-point classf(cl ass), and floating-point approximatiofir(cpa, f r sqr t a) instructions are
special cases. These instructions read general or floating-point registers and write one or two
predicate registers.

For these instructions, if any source contains a deferred exception token, all predicate targets are
either cleared or left unchanged, depending on the compare typeatdeel-10 on page 4}9

Software can use this behavior to ensure that any dependent conditional branches are not taken and
any dependent predicated instructions are nullified."Besalication” on page 4:7

Deferred exception tokens can also be tested for with certain compare instructions. The test NaT

(t nat) instruction tests the NaT bit corresponding to the specified general register and writes two
predicate results. The floating-point classl (ass) instruction can be used to test for a NaTVal in

a floating-point register and write the result to two predicate registetsass does not clear both
predicate targets in the presence of a NaTVal input if NaTVal is one of the classes being tested for.)
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4.4.4.4

4.4.4.5

Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception token will raise
a Register NaT Consumption fault. Such instructions can be thought of as performing a
non-recoverable speculation check operation. In some compilation environments, it may be true
that the only exceptions that are deferred are fatal errors. In such a program, if the result of a
speculative calculation is checked and a deferred exception token is found, execution of the
program is terminated. For such a program, the results of speculative calculations can be checked
simply by using non-speculative instructions.

Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and preserving
any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st 8. spi | | ,1d8. fil|) aredefinedto save/restore a
general register along with the corresponding NaT hit.

Thest 8. spi | | instruction writes a general register’s NaT bit into the User NaT Collection
application register (UNAT), and, if the NaT bit was 0, writes the register’s 64-bit data portion to
memory. If the register's NaT bit was 1, the UNAT is updated, but the memory update is
implementation specific, and must consistently follow one of three spill behaviors:

* Thest8.spi || may not update memory with the register’s 64-bit data portion, or
* Thest 8. spi || may writeazero to the specified memory location, or

* Thest 8. spi |l may write the register’s 64-bit data portion to memory, only if that
implementation returns a zero into the target register of all NaTed speculative loads, and that
implementation also guarantees that all NaT propagating instructions perform all
computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

Thel d8.fill instruction loads a general register from memory taking the corresponding NaT bit
from the bit in the UNAT register addressed by bits 8:3 of the memory address. The UNAT register
must be saved and restored by software. It is the responsibility of software to ensure that the
contents of the UNAT register are correct while execwtirgy spi I | andl d8.fill instructions.

The floating-point spill and fill instructions(f. spil | ,1df.fill) are defined to save/restore a
floating-point register (saved as 16 bytes) without surfacing an exception if the FR contains a
NaTVal (these instructions do not affect the UNAT register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that are targets

of a speculative instruction and may therefore contain a deferred exception token. Note also that
transfers between the general and floating-point register files cause a conversion between the two
deferred exception token formats.

Table 4-14lists the state relating to control speculatitaible 4-15summarizes the instructions
related to control speculation.
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Table 4-14. State Related to Control Speculation

Register Description
NaT bits 65th bit associated with each GR indicating a deferred exception
NaTVal Pseudo-Zero encoding for FR indicating a deferred exception
UNAT User NaT collection application register
Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation
Id.s, Idf.s, Idfp.s GR and FR speculative loads
1d8.fill, Idf.fill Fill GR with NaT collection, fill FR
st8.spill, stf.spill Spill GR with NaT collection, spill FR
chk.s Test GR or FR for deferred exception token
t nat Test GR NaT bit and set predicate

4.4.5

4451

4-16

Data Speculation

Just as control speculative |oads and checks allow the compiler to schedule instructions across
control dependences, data specul ative |oads and checks allow the compiler to schedule instructions
across some types of ambiguous data dependences. This section detail s the usage model and
semantics of data speculation and related instructions.

Data Speculation Concepts

An ambiguous memory dependence is said to exist between a store (or any operation that may
update memory state) and aload when it cannot be statically determined whether the load and store
might access overlapping regions of memory. For convenience, a store that cannot be statically
disambiguated relative to a particular load is said to be ambiguous relative to that load. In such
cases, the compiler cannot change the order in which the load and store instructions were originally
specified inthe program. To overcome this scheduling limitation, aspecia kind of load instruction
called an advanced load can be scheduled to execute earlier than one or more stores that are
ambiguous relative to that load.

Aswith control speculation, the compiler can al so specul ate operations that are dependent upon the
advanced load and later insert a check instruction that will determine whether the speculation was
successful or not. For data speculation, the check can be placed anywhere the original non-data
speculative load could have been schedul ed.

Thus, a data-specul ative sequence of instructions consists of an advanced load, zero or more
instructions dependent on the value of that load, and a check instruction. This means that any
sequence of stores followed by aload can be transformed into an advanced load followed by a
sequence of stores followed by a check. The decision to perform such atransformation is highly
dependent upon the likelihood and cost of recovering from an unsuccessful data specul ation.
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4.45.2 Data Speculation and Instructions

Advanced loads are availablein integer (I d. a), floating-point (I df . a), and floating-point pair

(I df p. a) forms. When an advanced load is executed, it allocates an entry in a structure called the
Advanced Load Address Table (ALAT). Later, when a corresponding check instruction is executed,
the presence of an entry indicates that the data speculation succeeded; otherwise, the speculation
failed and one of two kinds of compiler-generated recovery is performed:

1. Thecheck load instruction (I d. ¢, | df . c, or | df p. ¢) isused for recovery when the only
instruction scheduled before a store that is ambiguous relative to the advanced load is the
advanced load itself. The check load searches the ALAT for a matching entry. If found, the
speculation was successful; if a matching entry was not found, the speculation was
unsuccessful and the check load rel oads the correct value from memory. Figure 4-2 shows this

transformation.

Figure 4-2. Data Speculation Recovery Using Id.c

Before Data Speculation

After Data Speculation

/! other instructions
st 8 [rd4] =r12

1 d8 ré =[r8];;
add r5 =16, r7;;
st 8 [r18] =715

Id8.a r6 =1[r8];; [/ advanced |oad
/] other instructions

st8 [rd4] =r12

Id8.c.clr r6 = [r8] // check |oad
add r5 =r6, r7;;

st8 [r18] =r5

2. Theadvanced load check (chk. a) is used when an advanced load and several instructions that
depend on the loaded value are scheduled before a store that is ambiguous relative to the

advanced load. The advanced load check works like the speculation check (chk. s) in that, if
the specul ation was successful, execution continues inline and no recovery is necessary; if
speculation was unsuccessful, the chk. a branches to compiler-generated recovery code. The
recovery code contains instructions that will re-execute all the work that was dependent on the
failed data speculative load up to the point of the check instruction. Aswith the check load, the
success of a data speculation using an advanced load check is determined by searching the
ALAT for amatching entry. This transformation is shown in Figure 4-3.

Figure 4-3. Data Speculation Recovery Using chk.a

Before Data Speculation

After Data Speculation

/! other instructions
st8 [rd4] =r12

| d8 ré =[r8];;
add r5 =16, r7;;
st8 [r18] =75

Id8.a r6 =[r8];;

/1 other instructions
add r5 =r6, r7;;
/] other instructions
st8 [rd4] =r12
chk.a.clr r6, recover

back:
st8 [r18] =r5

/'l somewhere el se in program
recover:

| d8 ré =1[r8];;
add r5 =r6, r7
br back

Recovery code may use either anormal or advanced load to obtain the correct value for the failed
advanced load. An advanced load is used only when it is advantageous to have an ALAT entry
reallocated after afailed speculation. The last instruction in the recovery code should branch to the

instruction following the chk. a.
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Detailed Functionality of the ALAT and Related Instructions

The ALAT isthe structure that holds the state necessary for advanced |oads and checks to operate
correctly. The ALAT is searched in two different ways: by physical addresses and by ALAT
register tags. An ALAT register tag is a unique number derived from the physical target register
number and type in conjunction with other implementation-specific state. |mplementation-specific
state might include register stack wrap-around information to distinguish one instance of a physical
register that may have been spilled by the RSE from the current instance of that register, thus
avoiding the need to purge the ALAT on all register stack wrap-arounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely
on ALAT values being preserved across an instruction set transition. On entry to |A-32 instruction
set, existing entriesin the ALAT are ignored.

4.45.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For | df p. a, atag is computed
only for thefirst target register.)

2. If an entry with amatching ALAT register tag exists, it is removed.

3. A new entry isalocated in the ALAT which contains the new ALAT register tag, the load
access size, and atag derived from the physical memory address.

4. Thevalue at the address specified in the advanced |oad isloaded into the target register and, if
specified, the base register is updated and an implicit prefetch is performed.

Since the success of a check is determined by finding amatching register tag in the ALAT, both the
chk. a and the target register of al d. ¢ must specify the same register as their corresponding
advanced load. Additionally, the check load must use the same address and operand size asthe
corresponding advanced load; otherwise, the value written into the target register by the check load
is undefined.

An advanced load check performs the following actions:
1. Itlooksfor amatching ALAT entry and if found, falls through to the next instruction.
2. If no matching entry isfound, the chk. a branches to the specified address.

An implementation may choose to implement afailing advanced load check directly as abranch or
as afault where the fault-handler emulates the branch. Although the expected mode of operationis
for an implementation to detect matching entriesin the ALAT during checks, an implementation
may fail acheck instruction even when an entry with amatching ALAT register tag exists. This
will be arare occurrence but software must not assume that the ALAT does hot contain the entry.

A check load checks for amatching entry in the ALAT. If no matching entry isfound, it reloads the
value from memory and any faults that occur during the memory reference are raised. When a
matching entry is found, the target register is left unchanged

If the check load was an ordered check load (1 d. c. cl r. acq), then it is performed with the
semantics of an ordered load (I d. acq). ALAT register tag lookups by advanced load checks and
check loads are subject to memory ordering constraints as outlined in “Memory Access Ordering”
on page 4-23
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4.4.5.5

In addition to the flexibility described above, the size, organization, matching algorithm, and
replacement algorithm of the ALAT are implementation dependent. Thus, the success or failure of
specific advanced loads and checksin a program may change: when the program isrun on different
processor implementations, within the execution of a single program on the same implementation,
or between different runs on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur implicitly
by events that alter memory state or explicitly by any of the following instructions: | d. c. cl r,

I d.c.clr.acq,chk.a.clr,inval a,inval a. e. Eventsthat may implicitly invalidate ALAT
entries include those that change memory state or memory translation state such as:

1. The execution of stores or semaphores on other processors in the coherence domain.
2. Theexecution of store or semaphore instructionsissued on the local processor.

When one of these events occurs, hardware checks each memory region represented by an entry in
the ALAT to seeif it overlaps with the locations affected by the invalidation event. ALAT entries
whose memory regions overlap with the invalidation event locations are removed.

Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may be both
control and data speculative. Both control speculative (I d. sa, | df . sa, | df p. sa) and non-control
speculative (1 d. a, | df . a, | df p. a) variants of advanced |loads are defined for general and
floating-point registers. If a speculative advanced load generates a deferred exception token then:

1. Any existing ALAT entry with the same ALAT register tag isinvalidated.
2. No new ALAT entry is allocated.

3. If thetarget of the load was a general-purpose register, its NaT bit is set.
4

. If the target of the load was a floating-point register, then NaT Val iswritten to the target
register.

If a speculative advanced |oad does not generate a deferred exception, then its behavior is the same
as the corresponding non-control speculative advanced load.

Since there can be no matching entry in the ALAT after a deferred fault, a single advanced |oad
check or check load is sufficient to check both for data speculation failures and to detect deferred
exceptions.

Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two variants of
advanced load checks and check loads are provided: variantswith clear (chk.a.clr,ld.c.clr,
Id.c.clr.acq,ldf.c.clr,ldfp.c.clr)andvariantswith no clear (chk. a. nc, | d. c. nc,

| df . c. nc, | df p. c. nc).

The clear variants are used when the compiler knows that the ALAT entry will not be used again
and wants the entry explicitly removed. This allows software to indicate when entries are
unneeded, making it less likely that a useful entry will be unnecessarily forced out because all
entries are currently allocated.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 4-19



intel.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is
invalidated independently of whether the address or size fields of the check load and the
corresponding advanced |oad match. For chk. a. cl r, the entry is guaranteed to be invalidated only
when the instruction falls through (the recovery codeis not executed). Thus, afailingchk. a. cl r
may or may not clear any matching ALAT entries. In such cases, the recovery code must explicitly
invalidate the entry in question if program correctness depends on the entry being absent after a
failedchk. a. cl r.

Non-clear variants of both kinds of data speculation checks act as a hint to the processor that an

existing entry should be maintained in the ALAT or that a new entry should be allocated when a

matching ALAT entry doesn't exist. Such variants can be used within loops to check advanced
loads which were presumed loop-invariant and moved out of the loop by the compiler. This
behavior ensures that if the check load fails on one iteration, then the check load will not
necessarily fail on all subsequent iterations. Whenever a new entry is inserted into the ALAT or
when the contents of an entry are updated, the information written into the ALAT only uses
information from the check load and does not use any residual information from a prior entry. The
non-clear variant afhk. a, chk. a. nc, does not allocate entries and the' ‘completer acts as a

hint to the processor that the entry should not be cleared.

Table 4-16andTable 4-17summarize state and instructions relating to data speculation.

Table 4-16. State Relating to Data Speculation

Structure Function
ALAT Advanced load address table
Table 4-17. Instructions Relating to Data Speculation
Mnemonic Operation
Id.a, Idf.a, Idfp.a GR and FR advanced load
st, st.rel, st8.spill, stf, stf.spill GR and FR store
cnmpxchg, fetchadd, xchg GR semaphore
Id.c.clr, Id.c.clr.acq, Idf.c.clr, GR and FR check load, clear on ALAT hit
Idfp.c.clr
Id.c.nc, |df.c.nc, Idfp.c.nc GR and FR check load, re-allocate on ALAT miss
Id.sa, |df.sa, Idfp.sa GR and FR speculative advanced load
chk.a.clr, chk.a.nc GR and FR advanced load check
inval a Invalidate all ALAT entries
inval a. e Invalidate individual ALAT entry for GR or FR

4.4.6 Memory Hierarchy Control and Consistency

4.46.1 Hierarchy Control and Hints

IA-64 memory access instructions are defined to specify whether the data being accessed possesses
temporal locality. In addition, memory access instructions can specify which levels of the memory
hierarchy are affected by the access. This leads to an architectural view of the memory hierarchy
depicted irFigure 4-4composed of zero or more levels of cache between the register files and
memory where each level may consist of two parallel structures: a temporal structure and a
non-temporal structure. Note that this view applies to data accesses and not instruction accesses.
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Figure 4-4.  Memory Hierarchy
Level 1 Level 2 Level N
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| \ | \ | \
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\ Non- \ \ Non- \ \ Non- \
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| Structure | | Structure | | Structure |
| L _ |
| |
Cache

The temporal structures cache memory accessed with temporal locality; the non-temporal
structures cache memory accessed without temporal locality. Both structures assume that memory
accesses possess spatial locality. The existence of separate temporal and non-temporal structures,
aswell asthe number of levels of cache, isimplementation dependent.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; and implicit
prefetch. Locality hints are specified by load, store, and explicit prefetch (I f et ch) instructions. A
locality hint specifies ahierarchy level (e.g., 1, 2, al). An access that is temporal with respect to a
given hierarchy level istreated as temporal with respect to all lower (higher numbered) levels. An
access that is non-temporal with respect to agiven hierarchy level istreated as temporal with
respect to al lower levels. Finding a cache line closer in the hierarchy than specified in the hint
does not demote the line. This enables the precise management of linesusing | f et ch and then
subsequent uses by . nt a loads and stores to retain that level in the hierarchy. For example,
specifying the . nt 2 hint by a prefetch indicates that the data should be cached at level 3.
Subsequent loads and stores can specify . nt a and have the dataremain at level 3.

Locality hints do not affect the functional behavior of the program and may be ignored by the
implementation. The locality hints available to loads, stores, and explicit prefetch instructions are
givenin Table 4-18. Instruction accesses are considered to possess both temporal and spatial
locality with respect to level 1.

Table 4-18. Locality Hints Specified by Each Instruction Class

Instruction Type
Mnemonic Locality Hint
Ifetch,
Load Store Ifetch.fault
none Temporal, level 1 X X X
ntl Non-temporal, level 1 X X
nt 2 Non-temporal, level 2 X
nta Non-temporal, all levels X X X
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Each locality hintimpliesaparticular allocation path in the memory hierarchy. The allocation paths
corresponding to the locality hints are depicted in Figure 4-5. The alocation path specifies the
structures in which the line containing the data being referenced would best be allocated. If theline
isaready at the same or higher level in the hierarchy no movement occurs. Hinting that a datum
should be cached in atemporal structure indicatesthat it islikely to be read in the near future.

Figure 4-5.  Allocation Paths Supported in the Memory Hierarchy
Level 1 Level 2 Level 3
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Explicit prefetch is defined in the form of the line prefetch instruction (I f et ch, | fet ch. faul t).
The Ifetch instructions moves the line containing the addressed byte to alocation in the memory
hierarchy specified by the locality hint. If the line is already at the same or higher level in the
hierarchy, no movement occurs. Both immediate and register post-increment are defined for
Ifetchand! fetch. faul t. Thel f et ch instruction does not cause any exceptions, does not
affect program behavior, and may be ignored by the implementation. Thel f et ch. f aul t
instruction affects the memory hierarchy in exactly the same way as| f et ch but takes exceptions
asif it were a 1-byte load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, | f et ch and

| f et ch. faul t. The line containing the post-incremented address is moved in the memory
hierarchy based on the locality hint of the originating load, store, | fet ch or | f et ch. faul t. If the
lineis already at the same or higher level in the hierarchy then no movement occurs. Implicit
prefetch does not cause any exceptions, does not affect program behavior, and may be ignored by
the implementation.

Another form of hint that can be provided on loadsisthel d. bi as load type. Thisisahint to the
implementation to acquire exclusive ownership of the line containing the addressed data. The bias
hint does not affect program functionality and may be ignored by the implementation.

Thef ¢ instruction invalidates the cache linein all levels of the memory hierarchy above memory.
If the cache line is not consistent with memory, then it is copied into memory before invalidation.

Table 4-19 summarizes the memory hierarchy control instructions and hint mechanisms.
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Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

4.4.6.2

4.4.7

Mnemonic Operation
. nt 1 and .nt a completer on loads Load usage hints
. Nt a completer on stores Store usage hints
prefetch line at post-increment address on loads and stores Prefetch hint
| fetch, | fetch.fault with.nt1,.nt2, and. nt a hints Prefetch line
fc Flush cache

Memory Consistency

| A-64 instruction accesses made by a processor are not coherent with respect to instruction and/or

data accesses made by any other processor, nor are instruction accesses made by a processor

coherent with respect to data accesses made by that same processor. Therefore, hardwareis not

required to keep a processor’s instruction caches consistent with respect to any processor’s data
caches, including that processor’s own data caches; nor is hardware required to keep a processor’s
instruction caches consistent with respect to any other processor’s instruction caches. Data
accesses from different processors in the same coherence domain are coherent with respect to each
other; this consistency is provided by the hardware. Data accesses from the same processor are
subject to data dependency rules; ‘®¢emory Access Orderingbelow.

The mechanism(s) by which coherence is maintained is implementation dependent. Separate or
unified structures for caching data and instructions are not architecturally visible. Within this
context there are two categories of data memory hierarchy control: allocation and flush. Allocation
refers to movement towards the processor in the hierarchy (lower numbered levels) and flush refers
to movement away from the processor in the hierarchy (higher numbered levels). Allocation and
flush occur in line-sized units; the minimum architecturally visible line size is 32-bytes (aligned on

a 32-byte boundary). The line size in an implementation may be smaller in which case the
implementation will need to move multiple lines for each allocation and flush event. An
implementation may allocate and flush in units larger than 32-bytes.

In order to guarantee that a write from a given processor becomes visible to the instruction stream
of that same, and other, processors, the affected line(s) must be flushed to memory. Software may
use thé c instruction for this purpose. Memory updates by DMA devices are coherent with respect

to instruction and data accesses of processors. The consistency between instruction and data caches
of processors with respect to memory updates by DMA devices is provided by the hardware. In

case a program modifies its own instructions,sthec. i andsrl z.i instructions are used to

ensure that prior coherency actions are observed by a given point in the program. Refer to the
descriptionsync. i onpage 7-177or an example of self-modifying code.

Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write (WAW), and
write-after-read (WAR) data dependencies to the same memory location. In addition, memory

writes and flushes must observe control dependencies. Except for these restrictions, reads, writes,
and flushes may occur in an order different from the specified program order. Note that no ordering
exists between instruction accesses and data accesses or between any two instruction accesses. The
mechanisms described below are defined to enforce a particular memory access order. In the
following discussion, the terms “previous” and “subsequent” are used to refer to the program
specified order. The term “visible” is used to refer to all architecturally visible effects of

performing a memory access (at a minimum this involves reading or writing memory).
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Memory accesses follow one of four memory ordering semantics. unordered, release, acquire or
fence. Unordered data accesses may become visible in any order. Release data accesses guarantee
that all previous data accesses are made visible prior to being made visible themselves. Acquire
data accesses guarantee that they are made visible prior to all subsequent data accesses. Fence
operations combine the release and acquire semantics into a bi-directional fence, i.e., they
guarantee that all previous data accesses are made visible prior to any subsequent data accesses
being made visible.

Explicit memory ordering takes the form of a set of instructions. ordered load and ordered check
load (I d. acq, | d. c. cl r. acq), ordered store (st . r el ), semaphores (cnpxchg, xchg, f et chadd),
and memory fence (nf). Thel d. acq and | d. c. cl r. acq instructions follow acquire semantics.
Thest . rel followsrelease semantics. Thenf instruction is afence operation. The xchg,

f et chadd. acq, and cnpxchg. acq instructions have acquire semantics. The cnpxchg. rel , and

f et chadd. r el instructions have release semantics. The semaphoreinstructions also have implicit
ordering. If thereisawrite, it will always follow the read. In addition, the read and write will be
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different ordering
semantics. “O” indicates that the first and second reference are performed in order with respect to
each other. A “-" indicates that no ordering is implied other than data dependencies (and control
dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

Second Reference
First Reference
Fence Acquire Release Unordered
fence (0] (0] (0] (0]
acquire (0] (0] (0] (0]
release O - (0] -
unordered O - (@] -

Table 4-21summarizes memory ordering instructions related to cacheable memory.

Table 4-21. Memory Ordering Instructions

Mnemonic Operation
Id.acq, Id.c.clr.acq Ordered load and ordered check load
st.rel Ordered store
xchg Exchange memory and general register
cnpxchg. acq, cnpxchg. rel Conditional exchange of memory and general register
f et chadd. acq, f et chadd. r el Add immediate to memory
nf Memory ordering fence
4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets are
bundle-aligned, which means control is always passed to the first instruction slot of the target
bundle (slot 0). Branch instructions are not required to be the last instruction in an instruction
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group. Infact, an instruction group can contain arbitrarily many branches (provided that the normal
RAW and WAW dependency requirements are met). If abranch istaken, only instructions up to the
taken branch will be executed. After ataken branch, the next instruction executed will be at the
target of the branch.

There are two categories of branches: |P-relative branches, and indirect branches. |P-relative
branches specify their target with a signed 21-bit displacement, which is added to the IP of the
bundle containing the branch to give the address of the target bundle. The displacement allows a
branch reach of +16MBytes and is bundle-aligned. Indirect branches use the branch registers to
specify the target address.

There are several branch types, as shown in Table 4-22. The conditional branch br isabranch

which istaken if the specified predicate is 1, and not-taken otherwise. The conditional call branch

br. cal | doesthe samething, and in addition, writes alink address to a specified branch register

and adjusts the general register stack (see “Register Stack” on page 4r1The conditional return

br.ret does the same thing as an indirect conditional branch, plus it adjusts the general register
stack. Unconditional branches, calls and returns are executed by specifying PR 0 (which is always
1) as the predicate for the branch instruction.

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address
br. condor br Conditional branch Qualifying predicate IP-rel or Indirect
br.call Conditional procedure call Qualifying predicate IP-rel or Indirect
br.ret Conditional procedure return Qualifying predicate Indirect
br.ia Invoke the IA-32 instruction set | Unconditional Indirect
br. cl oop Counted loop branch Loop count IP-rel
br. ctop, Modulo-scheduled counted Loop count and Epilog count IP-rel
br.cexit loop
br. wt op, Modulo-scheduled while loop Qualifying predicate and Epilog IP-rel
br. wexi t count

The counted loop type (CLOOP) uses the Loop Count (LC) application register. If LC is non-zero
then it is decremented and the branch is taken. If LC is zero, the branch falls through. The
modulo-scheduled loop type branches (CTOP, CEXIT, WTOP, WEXIT) are described in
“Modulo-Scheduled Loop Support” on page 4-Zée loop type branches (CLOOP, CTOP,

CEXIT, WTOP, WEXIT) are allowed only in slot 2 of a bundle. A loop type branch executed in
slot O or 1 will cause an lllegal Operation fault.

Instructions are provided to move data between branch registers and general registets (
mov br =). Table 4-23summarizes state and instructions relating to branching.

Table 4-23. State Relating to Branching

Register Function
BRs Branch registers
PRs Predicate registers
CFM Current Frame Marker
PFS Previous Function State application register
LC Loop Count application register
EC Epilog Count application register
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Table 4-24. Instructions Relating to Branching

45.1

4-26

Mnemonic Operation
br Branch
mov =br Move from BR to GR
nmov br= Move from GR to BR

Modulo-Scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop branch types.

Software pipelining of aloop is analogous to hardware pipelining of afunctional unit. The loop

body is partitioned into multiple “stages” with zero or more instructions in each stage.
Modulo-scheduled loops have 3 phases: prolog, kernel, and epilog. During the prolog phase, new
loop iterations are started each time around (filling the software pipeline). During the kernel phase,
the pipeline is full. A new loop iteration is started, and another is finished each time around. During
the epilog phase, no new iterations are started, but previous iterations are completed (draining the
software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that stage (this
predicate is called the “stage predicate”). To support the pipelining effect of stage predicates and
registers in a software-pipelined loop, a fixed sized area of the predicate and floating-point register
files (PR16-PR63 and FR32-FR127), and a programmable sized area of the general register file,
are defined to “rotate.” The size of the rotating area in the general register file is determined by an
immediate in thal | oc instruction. This immediate must be either zero or a multiple of 8. The
general register rotating area is defined to start at GR32 and overlay the local and output areas,
depending on their relative sizes. The stage predicates are allocated in the rotating area of the
predicate register file. For counted loops, PR16 is architecturally defined to be the first stage
predicate with subsequent stage predicates extending to higher predicate register numbers. For
while loops, the first stage predicate may be any rotating predicate with subsequent stage
predicates extending to higher predicate register numbers. Software is required to initialize the
stage (rotating) predicates prior to entering the loop. An alloc instruction may not change the size
of the rotating portion of the register stack frame unless all rotating register bases (rrb’s) in the
CFM are zero. All rrb’s can be set to zero with¢her r b instruction. Thel rrrb. pr form can

be used to clear just the rrb for the predicate registersIThe b instruction must be the last
instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is executed.
Registers are rotated towards larger register numbers in a wrap-around fashion. For example, the
value in register X will be located in register X+1 after one rotation. If X is the highest addressed
rotating register its value will wrap to the lowest addressed rotating register. Rotation is
implemented by renaming register numbers based upon the value of a rotating register base (rrb)
contained in CFM. A rrb is defined for each of the three rotating register files: CFM.rrb.gr for the
general registers; CFM.rrb.fr for the floating-point registers; CFM.rrb.pr for the predicate registers.
General registers only rotate when the size of the rotating region is not equal to zero. Floating-point
and predicate registers always rotate. When rotation occurs, two or all three rrb’s are decremented
in unison. Each rrb is decremented modulo the size of their respective rotating regions (e.g., 96 for
rrb.fr). The operation of the rotating register rename mechanism is not otherwise visible to
software. The instructions that modify the rrb’s are listetaiple 4-25
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Table 4-25. Instructions that Modify RRBs

Mnemonic Operation
clrrrb Clears all rrb's
clrrrb. pr Clears rrb.pr
br. call Clears all rrb's
br.ret Restores CFM.rrb’s from PFM.rrb’s
br.ctop, br.cexit, br.wop, and Decrements all rrb’s
br. wexi t

There are two categories of software-pipelined oop branch types: counted and while. Both

categories have two forms: top and exit. The “top” variant is used when the loop decision is located
at the bottom of the loop body. A taken branch will continue the loop while a not-taken branch will
exit the loop. The “exit” variant is used when the loop decision is located somewhere other than the
bottom of the loop. A not-taken branch will continue the loop and a taken branch will exit the loop.
The “exit” variant is also used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted loop type
(ctop or cexit), the value of the loop count application register (LC), and the value of the epilog
count application register (EC). Note that the counted loop branches do not use a qualifying
predicate. LC is initialized to one less than the number of iterations for the counted loop and EC is
initialized to the number of stages into which the loop body has been partitioned. While LC is
greater than zero, the branch direction will continue the loop, LC will be decremented, registers
will be rotated (rrb’s are decremented), and PR 16 will be set to 1 after rotation. (For each of the
loop-type branches, PR 63 is written by the branch, and after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. While in
the epilog and while EC is greater than one, the branch direction will continue the loop, EC will be
decremented, registers will be rotated, and PR 16 will be set to 0 after rotation. Execution of a
counted loop branch with LC equal to zero and EC equal to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to 0 after rotation. A counted loop type branch executed with both LC and EC equal to
zero will have a branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no
rotation) and PR 63 will be setto 0. LC and EC equal to zero can occur in some types of optimized,
unrolled software-pipelined loops if the target of a cexit branch is set to the next sequential bundle
and the loop trip count is not evenly divisible by the unroll amount.

The direction of a while loop branch is determined by the specific while loop type (wtop or wexit),
the value of the qualifying predicate, and the value of EC. The while loop branches do not use LC.
While the qualifying predicate is one, the branch direction will continue the loop, registers will be
rotated, and PR 16 will be set to 0 after rotation. While the qualifying predicate is zero and EC is
greater than one, the branch direction will continue the loop, EC will be decremented, registers will
be rotated, and PR 16 will be set to O after rotation. The qualifying predicate is one during the
kernel and zero during the epilog. During the prolog, the qualifying predicate may be zero or one
depending upon the scheme used to program the pipelined while loop. Execution of a while loop
branch with qualifying predicate equal to zero and EC equal to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to 0 after rotation. A while loop branch executed with a zero qualifying predicate and
with EC equal to zero has a branch direction to exit the loop. EC and the rrb’s will not be modified
(no rotation) and PR 63 will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the pipelined
while loop. Often, the first valid condition for the while loop branch is not computed until several
stages into the prolog. Therefore, software pipelines for while loops often have several speculative
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prolog stages. During these stages, the qualifying predicate can be set to zero or one depending
upon the scheme used to program the loop. If the qualifying predicate is one throughout the prolog,
EC will be decremented only during the epilog phase and isinitialized to one more than the number
of epilog stages. If the qualifying predicate is zero during the speculative stages of the prolog, EC
will be decremented during this part of the prolog, and the initialization value for EC isincreased
accordingly.

Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction.
This information can be encoded with branch hints as part of a branch instruction (referred to as
hints). Hints do not affect the functional behavior of the program and may be ighored by the
processor.

Branch instructions can provide three types of hints:

* Whether prediction strategy: This describes (for COND, CALL and RET type branches)
how the processor should predict the branch condition. (For the loop type branches, prediction
isbased on LC and EC.) The suggested strategies that can be hinted are shown in Table 4-26.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this branch.

sptk Static Taken Always predict taken, do not allocate prediction resources for this
branch.

dpnt Dynamic Not-Taken | Use dynamic prediction hardware. If no dynamic history information

exists for this branch, predict not-taken.

dpt k Dynamic Taken Use dynamic prediction hardware. If no dynamic history information
exists for this branch, predict taken.

¢ Sequential prefetch: Thisindicates how much code the processor should prefetch at the
branch target (shown in Table 4-27).

Table 4-27. Sequential Prefetch Hint on Branches

4-28

Sequential .
Completer Prefetch Hint Operation
few Prefetch few lines When prefetching code at the branch target, stop prefetching after a few
(implementation-dependent number of) lines.
many Prefetch many lines | When prefetching code at the branch target, prefetch more lines (also
an implementation-dependent number).

* Predictor deallocation: This provides re-use information to allow the hardware to better
manage branch prediction resources. Normally, prediction resources keep track of the
most-recently executed branches. However, sometimes the most-recently executed branch is
not useful to remember, either because it will not be re-visited any time soon or because a hint
instruction will re-supply the information prior to re-visiting the branch. In such cases, this
hint can be used to free up the prediction resources.
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Table 4-28. Predictor Deallocation Hint

4.6

4.6.1

Completer Operation
none Don'’t deallocate
clr Deallocate branch information

Multimedia Instructions

Multimediainstructions (see Table 4-29) treat the general registers as concatenations of eight 8-hit,
four 16-hit, or two 32-bit elements. They operate on each element independently and in parallel.
The elements are always aligned on their natural boundaries within a general register. Most
multimediainstructions are defined to operate on multiple element sizes. Three classes of
multimediainstructions are defined: arithmetic, shift and data arrangement.

Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed saturation
(padd. sss, psub. sss), and unsigned saturation (padd. uuu, padd. uus, psub. uuu, psub. uus).
The modulo forms have the result wrap around the largest or smallest representable value in the
range of the result element. In the saturating forms, results larger than the largest representable
value of the range of the result element, or smaller than the smallest representable value of the
range, are clamped to the largest or smallest value in the range of the result element respectively.
The signed saturation form treats both sources as signed and clamps the result to the limits of a
signed range. The unsigned saturation form treats one source as unsigned and clamps the result to
the limits of an unsigned range. Two variants are defined that treat the second source as either
signed (. uus) or unsigned (. uuu).

The parallel average instruction (pavg, pavg. r az) adds corresponding elements from each
source and right shifts each result by one bit. In the ssmple form of the instruction, the carry out of
the most-significant bit of each sum is written into the most significant bit of the result element. In
the round-away-from-zero form, a 1 is added to each sum before shifting. The parallel average
subtract instruction (pavgsub) performs a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshl add) performs aleft shift on the elements of the
first source and then adds them to the corresponding elements from the second source. Signed
saturation is performed on both the shift and the add operations. The paralel shift right and add
instruction (pshr add) is similar to pshl add. Both of these instructions are defined for 2-byte
elements only.

The parallel compare instruction (pcnp) compares the corresponding elements of both sources and
writes al ones (if true) or all zeroes (if false) into the corresponding elements of the target
according to one of two relations (== or >).

The parallel multiply right instruction (pnpy. r) multiplies the corresponding two even-numbered
signed 2-byte elements of both sources and writes the results into two 4-byte elementsin the target.
The pnpy. | instruction performs asimilar operation on odd-numbered 2-byte elements. The
parallel multiply and shift right instruction (pnpyshr, pnpyshr . u) multiplies the corresponding
2-byte elements of both sources producing four 4-byte results. The 4-byte results are shifted right
by 0, 7, 15, or 16 bits as specified by the instruction. The least-significant 2 bytes of the 4-byte
shifted results are then stored in the target register.
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The parallel sum of absolute difference instruction (psad) accumulates the absolute difference of
corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmi n. u, pri n) and the parallel maximum (pmax. u, pnax) instructions
deliver the minimum or maximum, respectively, of the corresponding 1-byte or 2-byte elementsin
thetarget. The 1-byte elements are treated as unsigned val ues and the 2-byte elements are treated as
signed values.

Table 4-29. Parallel Arithmetic Instructions

4.6.2

4-30

Mnemonic Operation 1-byte | 2-byte | 4-byte
padd Parallel modulo addition X X X
padd. sss Parallel addition with signed saturation X X
padd. uuu, Parallel addition with unsigned saturation X X
padd. uus
psub Parallel modulo subtraction X X X
psub. sss Parallel subtraction with signed saturation X X
psub. uuu, Parallel subtraction with unsigned saturation X X
psub. uus
pavg Parallel arithmetic average X X
pavg.raz Parallel arithmetic average with round away from X X

zero

pavgsub Parallel average of a difference X X

pshl add Parallel shift left and add with signed saturation X

pshr add Parallel shift right and add with signed saturation X

pcnp Parallel compare X X X
prpy. | Parallel signed multiply of odd elements X
pmpy. r Parallel signed multiply of even elements X
prpyshr Parallel signed multiply and shift right X
pnmpyshr.u Parallel unsigned multiply and shift right X

psad Parallel sum of absolute difference X

pmin Parallel minimum X X

prmax Parallel maximum X X

Parallel Shifts

The paralle shift left instruction (pshl ) individually shifts each element of the first source by a
count contained in either a general register or an immediate. The parallel shift right instruction
(pshr) performs an individual arithmetic right shift of each element of one source by a count
contained in either a general register or an immediate. Thepshr . u instruction performs an
unsigned right shift. Table 4-30 summarizes the types of parallel shift instructions.
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Table 4-30. Parallel Shift Instructions

4.6.3

Mnemonic Operation 1-byte | 2-byte | 4-byte
pshl Parallel shift left X X
pshr Parallel signed shift right X X
pshr.u Parallel unsigned shift right X X

Data Arrangement

The mix right instruction (m x. r) interleaves the even-numbered elements from both sources into
the target. The mix left instruction (mi x. ') interleaves the odd-numbered elements. The unpack
low instruction (unpack. | ) interleaves the elementsin the least-significant 4 bytes of each source
into the target register. The unpack high instruction (unpack. h) interleaves elementsfrom the most
significant 4 bytes. The pack instructions (pack. sss, pack. uss) convert from 32-bit or 16-bit
elementsto 16-hit or 8-hit elements respectively. The least-significant half of larger elementsin
both sources are extracted and written into smaller elementsin the target register. Thepack. sss
instruction treats the extracted elements as signed values and performs signed saturation on them.
The pack. uss instruction performs unsigned saturation. The mux instruction (mux) copies
individual 2-byte or 1-byte elements in the source to arbitrary positionsin the target according to a
specified function. For 2-byte elements, an 8-bit immediate allows all possible permutationsto be
specified. For 1-byte elements the copy function is selected from one of five possibilities (reverse,
mix, shuffle, alternate, broadcast). Table 4-31 describes the various types of parallel data
arrangement instructions.

Table 4-31. Parallel Data Arrangement Instructions

4.7

Mnemonic Operation 1-byte | 2-byte | 4-byte

m x. | Interleave odd elements from both sources X X X

mXx.r Interleave even elements from both sources X X X

mux Arbitrary copy of individual source elements X X

pack. sss Convert from larger to smaller elements with signed X X
saturation

pack. uss Convert from larger to smaller elements with X
unsigned saturation

unpack. | Interleave least-significant elements from both X X X
sources

unpack. h Interleave most significant elements from both X X X

sources

Register File Transfers

Table 4-32 shows the instructions defined to move val ues between the general register file and the
floating-point, branch, predicate, performance monitor, processor identification, and application
register files. Several of the transfer instructions share the same mnemonic (mov). The value of the
operand identifies which register fileis accessed.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 4-31




Table 4-32. Register File Transfer Instructions

Mnemonic Operation
getf.exp, getf.sig Move FR exponent or significand to GR
getf.s, getf.d Move single/double precision memory format from FR to GR
setf.s, setf.d Move single/double precision memory format from GR to FR
setf.exp, setf.sig Move from GR to FR exponent or significand
nmov =br Move from BR to GR
mov br= Move from GR to BR
nov =pr Move from predicates to GR
mov pr=, nov pr.rot= Move from GR to predicates
mov ar= Move from GR to AR
nov =ar Move from AR to GR
sum rum Set and reset user mask
mov =pmd[ .. .] Move from performance monitor data register to GR
nmov =cpuid[...] Move from processor identification register to GR
mov =ip Move from Instruction Pointer

Memory access instructions only target or source the general and floating-point register files. It is
necessary to use the general register file as an intermediary for transfers between memory and all
other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point registers. The
first type moves the significand or the sign/exponent (get f . si g, set f. si g, get f. exp,

set f. exp). The second type moves entire single or double precision numbers (get f . s, setf. s,
getf. d, setf.d). Theseinstructions also perform a conversion between the deferred exception
token formats.

Instructions are provided to transfer between the branch registers and the general registers.

Instructions are defined to transfer between the predicate register file and a general register. These
instructions operate in a “broadside” manner whereby multiple predicate registers are transferred in
parallel (predicate register N is transferred to and from bit N of a general register). The move to
predicate instructiompv pr =) transfers a general register to multiple predicate registers

according to a mask specified by an immediate. The mask contains one bit for each of the static
predicate registers (PR 1 through PR 15 — PR 0 is hardwired to 1) and one bit for all of the rotating
predicates (PR 16 through PR63). A predicate register is written from the corresponding bit in a
general register if the corresponding mask bit is set. If the mask bit is clear then the predicate
register is not modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The
actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate instruction
(mov =pr) transfers the entire predicate register file into a general register target.

Thenmov =pmd[] instruction is defined to move from a performance monitor data (PMD) register

to a general register. If the operating system has not enabled reading of performance monitor data
registers in user level then all zeroes are returnedmihthe=cpui d[ ] instruction is defined to

move from a processor identification register to a general register.

Thenov =i p instruction is provided for copying the current value of the instruction pointer (IP)
into a general register.
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4.8.1

Character Strings and Population Count

A small set of special instructions accelerate operations on character and bit-field data.

Character Strings

The compute zero index instructions (czx. | , czx. r) treat the general register source as either
eight 1-byte or four 2-byte elements and write the general register target with the index of the first
zero element found. If there are no zero elementsin the source, the target iswritten with a constant
one higher than the largest possible index (8 for the 1-byte form, 4 for the 2-byte form). The czx. |
instruction scans the source from left to right with the left-most element having an index of zero.
Theczx. r instruction scans from right to left with the right-most element having an index of zero.
Table 4-33 summarizes the compute zero index instructions.

Table 4-33. String Support Instructions

4.8.2

Mnemonic Operation 1-byte 2-byte
czx. | Locate first zero element, left to right X X
czX.r Locate first zero element, right to left X X

Population Count

The population count instruction (popcnt ) writes the number of bits which have avalue of 1inthe
source register into the target register.
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intgl.
IA-64 Floating-point Programming
Model 5

The |A-64 floating-point architecture is fully compliant with the ANSI/IEEE Standard for Binary
Floating-point Arithmetic (Std. 754-1985). Thereis full IEEE support for single, double, and
double-extended real formats. The two | EEE methods for controlling rounding precision are
supported. The first method converts results to the double-extended exponent range. The second
method converts results to the destination precision. Some |EEE extensions such as fused multiply
and add, minimum and maximum operations, and aregister file format with alarger range than the
minimum double-extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real types); 64-bit
signed integer, 64-bit unsigned integer, and the 82-bit floating-point register format. A “Parallel
FP” format where a pair of IEEE single precision values occupy a floating-point register’s
significand is also supported. A seventh data type, IEEE-style quad-precision, is supported by
software routines. A future architecture extension may include additional support for the
quad-precision real type.

51.1 Real Types

The parameters for the supported IEEE real types are summarikatolerb-1

Table 5-1. IEEE Real-Type Properties

Single Double Double-Extended Quad-Precision
|IEEE Real-Type Parameters
Sign +or - +or - +or - +or -
Emax +127 +1023 +16383 +16383
Emin -126 -1022 -16382 -16382
Exponent bias +127 +1023 +16383 +16383
Precision (bits) 24 53 64 113
|IEEE Memory Formats
Total memory format width (bits) 32 64 80 128
Sign field width (bits) 1 1 1 1
Exponent field width (bits) 8 11 15 15
Significand field width (bits) 23 52 64 112
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Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The format of data
in the floating-point registersis designed to accommodate both of these types with no loss of
information.

Real numbers reside in 82-bit floating-point registers in a three-field binary format (see
Figure 5-1). The threefields are:

* The 64-bit significand field, bgz. bgobg;  bybg. contains the number’'s significant digits. This
field is composed of an explicit integer bit (significand{63}), and 63 bits of fraction
(significand{ 62:0} ). For Parallel FP data, the significand field holds a pair of 32-bit IEEE
single real numbers.

¢ The 17-bit exponent field locates the binary point within or beyond the significant digits (i.e.,
it determines the number’s magnitude). The exponent field is biased by 65535 (OxFFFF). An
exponent field of all onesis used to encode the special values for |EEE signed infinity and
NaNs. An exponent field of al zeros and a significand field of all zerosis used to encode the
special valuesfor IEEE signed zeros. An exponent field of all zeros and anon-zero significand
field encodes the double-extended real denormals and double-extended real
pseudo-denormals.

* The 1-bit sign field indicateswhether the number is positive (sign=0) or negative (sign=1). For
Parallel FP data, thishbit is aways 0.

Figure 5-1. Floating-point Register Format

5.1.3

5-2

81 80 64 63 0

exponent significand (with explicit integer bit)

17 64

The value of afinite floating-point number, encoded with non-zero exponent field, can be
calculated using the expression:

(-1)(S9M * p(exponent - 65535) (qjgnificand( 63} .significand{ 62:0} ,)

The value of afinite floating-point number, encoded with zero exponent field, can be calculated
using the expression:

(-1)(S19M * (-16382)x (gignificand{ 63} .significand{ 62:0} 5)

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit significand field. In
their canonical form, the exponent field is set to 0x1003E (biased 63) and the sign field is set to 0.

Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed below in
Table 5-2 (shaded encodings are unsupported). The last two table entries contain the values of the
constant floating-point registers, FR 0 and FR 1. The constant value in FR 1 does not change for
the parallel single precision instructions or for the integer multiply accumulate instruction and
would not generally be useful.
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Table 5-2. Floating-point Register Encodings

Biased Significand
Class or Subclass Slg‘n Exponent i.bb...bb (explicit integer bit is
(1 bit) . shown)
(17-bits) (64-bits)

NaNs 0/1 Ox1FFFF | 1.000...01 through 1.111...11
Quiet NaNs 0/1 Ox1FFFF | 1.100...00 through 1.111...11
Quiet NaN Indefinite? 1 Ox1FFFF | 1.100...00
Signaling NaNs 0/1 Ox1FFFF 1.000...01 through 1.011...11

Infinity 0/1 Ox1FFFF | 1.000...00

Pseudo-NaNs 0/1 Ox1FFFF | 0.000...01 through 0.111...11

Pseudo-Infinity 0/1 Ox1FFFF 0.000...00

Normalized Numbers 0/1 0x00001 1.000...00 through 1.111...11

(Floating-point Register Format Normals) through

Ox1FFFE
Integers or Parallel FP 0 0x1003E 1.000...00 through 1.111...11
(large unsigned or negative signed integers)
Integer IndefiniteP 0 0x1003E 1.000...00
IEEE Single Real Normals 0/1 OxOFF81 1.000...00...(40)0s
through through
0x1007E 1.111...11...(40)0s
IEEE Double Real Normals 0/1 OxOFCO01 1.000...00...(12)0s
through through
0x103FE 1.111...11...(11)0s
IEEE Double-Extended Real Normals 0/1 0x0C001 1.000...00 through 1.111...11
through
0x13FFE
Normal numbers with the same value as 0/1 0x0C001 1.000...00 through 1.111...11
Double-Extended Real Pseudo-Denormals
IA-32 Stack Single Real Normals 0/1 0x0C001 1.000...00...(40)0s
(produced when the computation model is thrfgg:;E through
IA-32 Stack Double Real Normals 0/1 0x0C001 1.000...00...(11)0s
(produced when the computation model is E)h;]c_)glggE through

Unnormalized Numbers 0/1 0x00000 0.000...01 through 1.111...11

(Floating-point Register Format unnormalized 0x00001 0.000...01 through 0.111...11

numbers) through

Ox1FFFE

0x00001 0.000...00

through

0x1FFFD

1 Ox1FFFE | 0.000...00

Integers or Parallel FP 0 0x1003E 0.000...00 through 0.111...11
(positive signed/unsigned integers)
Single Real Denormals 0/1 OxOFF81 0.000...01...(40)0s

through
0.111...11...(40)0s
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Table 5-2. Floating-point Register Encodings (Cont'd)

Biased Significand
Class or Subclass Slgn Exponent i.bb...bb (explicit integer bit is
(1 bit) (17-bits) shown)
(64-bits)
Double Real Denormals 0/1 0xO0FCO01 0.000...01...(11)0s
through
0.111...11...(11)0s
Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11
Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11
Unnormal numbers with the same value as 0/1 0x0C001 0.000...01 through 0.111...11
Double-Extended Real Denormals
Double-Extended Real Pseudo-Denormals 0/1 0x00000 1.000...00 through 1.111...11
(IA-32 stack and memory format)
IA-32 Stack Single Real Denormals 0/1 0x00000 0.000...01...(40)0s
(produced when computation model is IA-32 through
IA-32 Stack Double Real Denormals 0/1 0x00000 0.000...01...(12)0s
(produced when computation model is 1A-32 through
Stack Double) 0.111...11...(11)0s
Pseudo-Zeros 0/1 0x00001 0.000...00
through
Ox1FFFD
1 Ox1FFFE | 0.000...00
NaTVal® 0 Ox1FFFE | 0.000...00
Zero 0/1 0x00000 0.000...00
FR O (positive zero) 0 0x00000 0.000...00
FR 1 (positive one) 0 OXOFFFF 1.000...00

a. Default response on a masked real invalid operation.
b. Default response on a masked integer invalid operation.
c. Created by unsuccessful speculative memory operation.

All register file encodings are allowed as inputs to arithmetic operations. The result of an
arithmetic operation is aways the most normalized register file representation of the computed
value, with the exponent range limited from Emin to Emax of the destination type, and the
significand precision limited to the number of precision bits of the destination type. Computed
values, such as zeros, infinities, and NaNs that are outside these bounds are represented by the
corresponding unique register file encoding. Double-extended real denormal results are mapped to
the register file exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs
and Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are never
produced as a result of an arithmetic operation.

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one exception.
Pseudo-zero multiplied by infinity returns the correctly signed infinity instead of an Invalid
Operation Floating-point Exception fault (and QNaN). Also, pseudo-zeros are classified as
unnormalized numbers, not zeros.
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5.2 Floating-point Status Register

The Floating-point Status Register (FPSR) contains the dynamic control and status information for
floating-point operations. Thereis one main set of control and status information (FPSR.sf0), and
three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The FPSR layout is shown in Figure 5-2 and
its fields are defined in Table 5-3. Table 5-4 gives the FPSR'’s status field description and
Figure 5-3shows their layout.

Figure 5-2. Floating-point Status Register Format
63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sfl sf0 ‘ traps

o

13 13 13 13 6

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-point Exception fault (IEEE Trap) disabled when this bit is
set

traps.dd 1 Denormal/Unnormal Operand Floating-point Exception fault disabled when this bit is
set

traps.zd 2 Zero Divide Floating-point Exception fault (IEEE Trap) disabled when this bit is set

traps.od 3 Overflow Floating-point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sfl 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved

Figure 5-3. Floating-point Status Field Format

12 11 10 9 8 7 6 5 4 3 2 1 O
FPSR.sfx

flags controls

i’u‘o’z’d‘v td‘ rc ’ pc ’wre‘ftz
6 7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description
ftz 0 Flush-to-Zero mode
wre 1 Widest range exponent (see Table 5-6)
pc 3:2 Precision control (see Table 5-6)
rc 5:4 Rounding control (see Table 5-5)
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Table 5-4. Floating-point Status Register’s Status Field Description (Cont’d)

Note:

Field Bits Description
td 6 Traps disabled®
v 7 Invalid Operation (IEEE Flag)
d 8 Denormal/Unnormal Operand
z 9 Zero Divide (IEEE Flag)
o] 10 Overflow (IEEE Flag)
u 11 Underflow (IEEE Flag)
i 12 Inexact (IEEE Flag)

a. td is a reserved bit in the main status field, FPSR.sf0.

The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if the valueis

used in an arithmetic instruction and in an arithmetic calculation; e.g. unorm*NaN doesn'’t set the d
flag. Canonical single/double/double-extended denormal/double-extended pseudo-denormal/
register format denormal encodings are a subset of the floating-point register format unnormalized
numbers.

The Floating-point Exception fault/trap occurs only if an enabled floating-point exception occurs
during the processing of the instruction. Hence, setting a flag bit of a status field to 1 in software
will not cause an interruption. The status fields flags are merely indications of the occurrence of
floating-point exceptions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” to be truncated to the
correctly signed zero. Flush-to-Zero mode can be enabled only if Underflow is disabled. This can
be accomplished by disabling all traps (FPSRdtbeing set to 1), or by disabling it individually
(FPSR.traps.ud set to 1). If Underflow is enabled then it takes priority and Flush-to-Zero mode is
ignored. Note that the software exception handler could examine the Flush-to Zero mode bit and
choose to emulate the Flush-to-Zero operation when an enabled Underflow exception arises.

The FPSR.sfu and FPSR.xgfi bits will be set to 1 when a result is flushed to the correctly signed
zero because of Flush-to-Zero mode. If enabled, an inexact result exception is signaled.

A floating-point result is rounded based on the instructige'sompleter and the status field’s

wre, pc, andrc control fields. The result’s significand precision and exponent range are determined
as described ifable 5-6 If the result isn’t exact, FPSRxsfc specifies the rounding direction (see
Table 5-5.

Table 5-5. Floating-point Rounding Control Definitions

Nearest (or even) — Infinity (down) + Infinity (up) Zero (truncate/chop)

FPSR.sfx.rc 00 01 10 11
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Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected
Instruction’s FPSRsiX's | FPSR siX's Significand Exponent
¢ Completer Dynamic Dynamic Pgrecision Rpan o Computational Style
P P pc Field wre Field 9
.S ignored 0 24 bits 8 bits IEEE real single
d ignored 0 53 bits 11 bits IEEE real double
.S ignored 1 24 bits 17 bits Register file range, single
precision
d ignored 1 53 bits 17 bits Register file range, double
precision
none 00 0 24 bits 15 bits IA-32 stack single
none 01 0 N.A. N.A. Reserved
none 10 0 53 bits 15 bits IA-32 stack double
none 11 0 64 bits 15 bits IA-32 double-extended
none 00 1 24 bits 17 bits Register file range, single
precision
none 01 1 N.A. N.A. Reserved
none 10 1 53 bits 17 bits Register file range, double
precision
none 11 1 64 bits 17 bits Register file range,
double-extended precision
not applicable?® ignored ignored 24 bits 8 bits A pair of IEEE real singles
not applicableb ignored ignored 64 bits 17 bits Register file range,
double-extended precision

a. For parallel FP instructions which have no .pc completer (e.g., foma).
b. For non-parallel FP instructions which have no .pc completer (e.g., fmerge).

Thetrap disable (sfx.td) control bit allows oneto easily set up alocal |EEE exception trap default
environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are used. If FPSR.sfx.td is s,
the FPSR.traps bits are treated asif they are all set (disabled). Note that FPSR.sf0.td is areserved
field which returns O when read.

5.3 Floating-point Instructions

This section describes the | A-64 floating-point instructions.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, double-extended
floating-point real datatypes, and the Parallel FP or signed/unsigned integer datatype. The
addressing modes for floating-point load and store instructions are the same as for integer load and
store instructions, except for floating-point load pair instructions which can have an implicit
base-register post increment. The memory hint options for floating-point load and store

instructions are the same as those for integer load and store instructions. (See “Memory Hierarchy
Control and Consistency” on page 4-PTable 5-7lists the types of floating-point load and store
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instructions. The floating-point load pair instructions require the two target registersto be odd/even
or even/odd. The floating-point storeinstructions (st f s, st f d, st f e) require the value in the
floating-point register to have the same type as the store for the format conversion to be correct.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR
Single I df s | df ps stfs
Integer/Parallel FP | df 8 | df p8 stf8
Double | dfd | df pd stfd
Double-extended | df e stfe
Spillfill Idf.fill stf.spill

Unsuccessful speculative loads write a NaTVal into the destination register or registers (see
Section 4.4.4). Storing a NaT Val to memory will cause a Register NaT Consumption fault, except
for the spill instruction (st f . spi | I).

Saving and restoring floating-point registers is accomplished by the spill and fill instructions
(stf.spill,ldf.fill) usingal6-byte memory container. These are the only instructions that
can be used for saving and restoring the actual register contents since they do not fault on NaTVal.
They save and restore all types (single, double, double-extended, register format and integer or
Parallel FP) and will ensure compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6 and Figure 5-7 describe how single precision, double precision,

double-extended precision, and spill/fill datais translated during transfers between floating-point
registers and memory.
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Figure 5-4. Memory to Floating-point Register Data Translation —Single Precision

sign exponent ingiatger significand
FR: k 0
‘ T
Memory:
Single-precision Load — normal numbers
sign exponent iné?tger significand
FR: M‘FFF 0
Memory: 1111117 (1
Single-precision Load — infinities and NaNs
sign exponent iné?tger significand
FR: Q\o' @ 0
Memory: 00000ag 0 O 0 0
Single-precision Load — zeros
sign exponent iné(ietger significand
FR: u’:F81 @ 0
Memory: 0000009 (0
Single-precision Load — denormal numbers
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Figure 5-5. Memory to Floating-point Register Data Translation —Double Precision

) integer
sign exponent bit significand
Memory: 110000 ) U | U | R
Double-precision Load — normal numbers
. integer
sign exponent bit significand
FR: ‘ Ox1FFFF “ 0 ‘
Memory: ke occe S | A | N | N I N .
Double-precision Load — infinities and NaNs
. integer
sign exponent bit significand
FR: ‘ 0 ‘@‘ 0 ‘
wemory: (0995083 e o | [0 J[ o |[ 0 ][0 J[ o ][ o |
Double-precision Load — zeros
) integer
sign exponent bit significand
FR: ‘ OXOFCO1 ‘@‘ 0 ‘
Memory: loogocag oo || | [ [ JL [

Double-precision Load — denormal numbers
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Figure 5-6. Memory to Floating-point Register Data Translation —Double Extended,

Integer and Fill

sign exponent

integer
bitg significand

| U |

ST,

T

Memory:

Double-extended-precision Load — normal/unnormal numbers

. integer N
sign exponent bit significand
FR: I Ox1FFFF | H I |
Memory: pwi ped || [ J[ JL JL JL (L]

Double-extended-precision Load — infinities and NaNs

. integer L

sign exponent bit significand
o]l o [ |
Memory: Llovoooeq ococoed || || [ J| J[ J[ | J[ |

Double-extended-precision Load — denormal/pseudo-denormals and zeros

integer N
bit significand

| (] |

sign exponent
FR: H ‘ 0x1003E
Memory: I

Integer Load

sign exponent

integer N
bit significand

FR: ‘

Register Fill

A\ T
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Figure 5-7. Floating-point Register to Memory Data Translation

sign exponent inkt)?tger significand
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Both little-endian and big-endian byte ordering is supported on floating-point loads and stores. For
both single and double memory formats, the byte ordering is identical to the 32-bit and 64-bit
integer data types (see Section 3.2.3). The byte-ordering for the spill/fill memory and
double-extended formats is shown in Figure 5-8.

Figure 5-8. Spill/Fill and Double-Extended (80-bit) Floating-point Memory Formats

© 00 N oo o b~ W N+, O

=
o

11
12
13
14
15

Memory Formats Floating-point Register Format (82-bit)
Spill/Fill (128-bit) Double-Extended (80-bit) 81 63 0
‘s‘ exp. ‘ significand
LE BE LE BE ‘ ‘ ‘
7 0 7 0 7 0 7 0
s0 olo 0ls0 0lsel’ se2/el|e0|s7|s6|s5|s4|s3|s2|sl|s0
sl 110 1|s1 1| e0 \ ¢
s2 210 2|s2 2|s7
s3 3|0 3 s3 3|6 ‘sel’ e0'|s7 |s6|s5|s4|s3|s2|sl|sO
s4 410 4|4 4185 Double-Extended (80-hit) Interpretation
s5 5 |se2 5]|s5 5|s4
s6 6|el 6 | s6 6|s3
s7 7 |e0 7 |s7 7|s2
el 8 |s7 8| el 8|sl
el 9 | s6 9isel] 9|s0
se2| 10 |s5
0 11 | s4
0 12 | s3
0 13 | s2
0 14 | s1
0 15 | sO

5.3.2

Floating-point Register to/from General Register Transfer
Instructions

Thesetf andget f instructions (see Table 5-8) transfer data between floating-point registers (FR)
and general registers (GR). These instructions will translate a general register NaT to/from a
floating-point register NaTVal. For all other operands, the .s and .d variants of theset f and get f
instructions transl ate to/from FR as per Figure 5-4, Figure 5-5 and Figure 5-7. The memory
representation is read from or written to the GR. The .exp and .si g variants of theset f and get f
instructions operate on the sign/exponent and significand portions of a floating-point register,
respectively, and their translation formats are described in Table 5-9 and Table 5-10.

IA-64 Application eveloper’s Architecture Guide, Rev. 1.0 5-13



Table 5-8. Floating-point Register Transfer Instructions
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Operations GRto FR FRto GR
Single setf.s getf.s
Double setf.d getf.d
Sign and Exponent setf.exp getf.exp
Significand/Integer setf.sig getf.sig

Table 5-9. General Register (Integer) to Floating-point Register Data Translation

Class

General
Register

Floating-point Register (.sig)

Floating-point Register (.exp)

NaT

Integer j Sign

Exponent

Significand Sign

Exponent

Significand

NaT

1

ignore NaTVal

NaTVal

integers

0

000...00 jjo
through
111..11

0x1003E

integer integer{17}

integer{16:0}

0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation

Floating-point Register General Register (.sig) General Register (.exp)
Class
Sign | Exponent | Significand NaT Integer NaT Integer

NaTval |0 Ox1FFFE | 0.000...00 1 0x0000000000000000 Ox1FFFE

integers | 0 0x1003E 0.000...00 0 significand 0x1003E

or through

parallel 1.111.11

FP

other ignore | ignore ignore 0 significand ((sign<<17) |
exponent)

5.3.3 Arithmetic Instructions

All of the arithmetic floating-point instructions (except f cvt . xf which is always exact) have a .sf

specifier. This indicates which of the four FPSR’s status fields will both control and record the

status of the execution of the instruction ($able 5-1). The status field specifies: enabled

exceptions, rounding mode, exponent width, precision control, and which status field’s flags to

update. Se&-loating-point Status Register” on page 5-5

Table 5-11. Floating-point Instruction Status Field Specifier Definition

5-14

.sf Specifier

.s0

sl

.s2

.s3

Status field

FPSR.sf0

FPSR.sfl

FPSR.sf2

FPSR.sf3

Most arithmetic floating-point instructions can specify the precision of the result statically by using

a.pc completer, or dynamically using thee field of the FPSR status field. (séable 5-§.

Arithmetic instructions that do not havepa completer use the floating-point register file range

and precision.
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Table 5-12 lists the floating-point arithmetic instructions and Table 5-13 lists the pseudo-operation
definitions.

Table 5-12. Floating-point Arithmetic Instructions

Operation Normal FP Mnemonic(s) Parallel FP Mnemonic(s)
Floating-point multiply and add f ma. pc. sf f pma. sf
Floating-point multiply and subtract fns. pc. sf fpns. sf
Floating-point negate multiply and add f nma. pc. sf f pnma. sf
Floating-point reciprocal approximation frcpa. sf f prcpa. sf
Floating-point reciprocal square root frsgrta. sf fprsgrta. sf

approximation

Floating-point compare

fcnp. frel. fctype. sf

fpcnp. frel. sf

Floating-point minimum fmn. sf f pm n. sf
Floating-point maximum f max. sf f pmax. sf
Floating-point absolute minimum fam n. sf f pam n. sf
Floating-point absolute maximum f amax. sf f pamax. sf
Convert floating-point to signed integer fcvt. fx. sf fpcvt. fx. sf

fevt.fx.trunc. sf

fpcvt.fx. trunc. sf

Convert floating-point to unsigned integer

fcvt. fxu. sf
fcvt. fxu.trunc. sf

fpevt. fxu. sf
fpcvt. fxu.trunc. sf

Table 5-13.

Convert signed integer to floating-point fcvt. xf N A
Floating-point Pseudo-Operations
Operation Mnemonic Operation Used

Floating-point multiplication (IEEE) f npy. pc. sf f ma, using FR 0 for addend

Parallel FP multiplication f ppy. sf f prma, using FR O for
addend

Floating-point negate multiplication (IEEE) f nnpy. pc. sf f nna, using FR 0O for

Parallel FP negate multiplication f pnmpy. sf addend
f pnma, using FR 0 for
addend

Floating-point addition (IEEE) fadd. pc. sf f ma, using FR 1 for
multiplicand

Floating-point subtraction (IEEE) f sub. pc. sf f s, using FR 1 for
multiplicand

Floating-point negation (IEEE) f nma. pc. sf f nna, using FR 1 for
multiplicand and FR 0 for
addend

Floating-point absolute value f abs f mer ge. s, with sign from

Parallel FP absolute value f pabs FRO
f pner ge. s, with sign from
FRO

Floating-point negate f neg f mer ge. ns

Parallel FP negate f pneg f prrer ge. ns
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Table 5-13. Floating-point Pseudo-Operations (Cont’d)

5.3.4

Operation Mnemonic Operation Used

Floating-point negate absolute value f negabs f mer ge. ns, with sign from

Parallel FP negate absolute value f pnegabs FRO
f prrer ge. ns, with sign
from FR O

Floating-point normalization fnorm pc. sf f ma, using FR 1 for
multiplicand and FR 0 for
addend

Convert unsigned integer to floating-point fcvt. xuf. pc. sf f ma, using FR 1 for
multiplicand and FR 0 for
addend

There are no pseudo-operations for Parallel FP addition, subtraction, negation or normalization
since FR 1 does not contain a packed pair of single precision 1.0 values. A parallel FP addition can
be performed by first forming apair of 1.0 valuesin aregister (using the f pack instruction) and
then using the f pma instruction. Similarly, an integer add operation can be generated by first
forming an integer 1 in afloating-point register and then using the xma instruction.

Non-Arithmetic Instructions

Table 5-14 lists the non-arithmetic floating-point instructions. Thef cl ass instruction is used to
classify the contents of afloating-point register. The f ner ge instruction is used to merge datafrom
two floating-point registers into one floating-point register. Thef m x, f sxt , f pack, and f swap
instructions are used to manipulate the Parallel FP datain the floating-point significand. Thef and,
fandcm f or, and f xor instructions are used to perform logical operations on the floating-point
significand. Thef sel ect instruction is used for conditional selects.

The non-arithmetic floating-point instructions always use the floating-point register (82-bit)
precision since they do not have a .pc completer nor a .sf specifier.

Table 5-14. Non-Arithmetic Floating-point Instructions

5-16

Operation Mnemonic(s)
Floating-point classify fclass. fcrel. fctype
Floating-point merge sign fnerge.s
Parallel FP merge sign f pnerge. s
Floating-point merge negative sign f mer ge. ns
Parallel FP merge negative sign f pner ge. ns
Floating-point merge sign and exponent f ner ge. se
Parallel FP merge sign and exponent f pner ge. se
Floating-point mix left fmx. |
Floating-point mix right fmx.r
Floating-point mix left-right fmx.Ir
Floating-point sign-extend left fsxt.|
Floating-point sign-extend right fsxt.r
Floating-point pack f pack
Floating-point swap f swap
Floating-point swap and negate left f swap. nl
Floating-point swap and negate right f swap. nr
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Table 5-14. Non-Arithmetic Floating-point Instructions (Cont’d)

5.3.5

Operation Mnemonic(s)
Floating-point And fand
Floating-point And Complement fandcm
Floating-point Or for
Floating-point Xor f xor
Floating-point Select fsel ect

Floating-point Status Register (FPSR) Status Field
Instructions

Speculation of floating-point operations requires that the status flags be stored temporarily in one
of the alternate status fields (not FPSR.sf0). After a speculative execution chain has been
committed, af chkf instruction can be used to update the normal flags (FPSR.sf0.flags). This
operation will preserve the correctness of the |EEE flags. The f chkf instruction does this by
comparing the flags of the status field with the FPSR.sf0.flags and FPSR.traps. If the flags of the
alternate status field indicate the occurrence of an event that corresponds to an enabled
floating-point exception in FPSR.traps, or an event that is not already registered in the
FPSR.sfO.flags (i.e., the flag for that event in FPSR.sfO.flagsis clear), then the f chkf instruction
causes a Speculative Operation fault. If neither of these cases arise then the f chkf instruction does
nothing.

Thef set ¢ instruction allows bit-wise modification of a status field’s control bits. The
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit immediate
or-mask to produce the control bits for the status field.fEhef instruction clears all of the status
field’s flags to zero.

Table 5-15. FPSR Status Field Instructions

5.3.6

Operation Mnemonic(s)
Floating-point check flags f chkf .sf
Floating-point clear flags fclrf.sf
Floating-point set controls fsetc. sf

Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the three-operand
instructions. The operands and result of these instructions are floating-point registersa The
instructions ignore the sign and exponent fields of the floating-point register, except for a NaTVal
check. The product of two 64-bit source significands is added to the third 64-bit significand (zero
extended) to produce a 128-bit result. The low and high versions of the instruction select the
appropriate low/high 64-bits of the 128-bit result, respectively, and write it into the destination
register as a canonical integer. The signed and unsigned versions of the instructions treat the input
registers as signed and unsigned 64-bit integers respectively.

Table 5-16. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma. | xma. h

Unsigned xma. | u (pseudo-op) xma. hu
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54 Additional IEEE Considerations

54.1 Definition of SNaNs, QNaNs, and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet NaNs

have a one in the most significant fractional bit of the significand. This definition of signaling and

quiet NaNs easily preserves “NaNness” when converting between different precisions. When
propagating NaNs in operations that have more than one NaN operand, the result NaN is chosen
from one of the operand NaNs in the following priority based on register encoding fieldss,first
thenf 2, and lastlyf 3.

54.2 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:
* String to floating-point conversion.
* Floating-point to string conversion.
* Divide (with help fromf r cpa or f pr cpa instruction).
¢ Square root (with help fromfrsqrta or f prsqrt a instruction).
¢ Remainder (with help from f r cpa or f pr cpa instruction).
* Floating-point to integer valued floating-point conversion.

¢ Correctly wrapping the exponent for single, double, and double-extended overflow and
underflow values, as recommended by the IEEE standard.

5.4.3 Additions beyond the IEEE Standard

¢ Thefused multiply andadd (f ma, fns, fnma, fpma, fpns, fpnma) operationsenable
efficient software divide, square root, and remainder algorithms.

* The extended range of the 17-bit exponent in the register file format allows simplified
implementation of many basic humeric algorithms by the careful numeric programmer.

* TheNaTVal isanatural extension of the IEEE concept of NaNs. It is used to support
speculative execution.

* Fush-to-Zero mode is an industry standard addition.

¢ The minimum and maximum instructions allow the efficient execution of the common Fortran
Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C language idioms such as
a<b?ab.

¢ All mixed precision operations are allowed. The IEEE standard suggests that implementations
allow lower precision operands to produce higher precision results; thisis supported. The
| EEE standard also suggests that implementations not allow higher precision operands to
produce lower precision results; this suggestion is not followed.

* An |EEE style quad-precision real type that is supported in software.
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IA-32 Application Execution Model in
an IA-64 System Environment 6

The 1A-64 architecture enables the execution of 1A-32 application binaries unmodified on |A-32
legacy operating systems provided the required platform and firmware support existsin the system.

This chapter describes |A-32 instruction execution in an |A-64 System Environment. The |A-64
architecture supports 16-bit Real Mode, 16-bit VM 86, and 16-bit/32-hit Protected Mode |A-32
applications running on |A-64 operating system. |A-64 operating system support for these
capabilitiesis defined by the respective operating system vendors.

The main features covered in this chapter are:
* |A-32 and |A-64 instruction set transitions.
* 1A-32 integer, segment, floating-point, MM X technology, and Streaming SIMD Extension
register state mappings.
* |A-32 memory and addressing model overview.

This chapter does not cover the details of 1A-32 application programming model, |A-32
instructions and registers. Refer to the Intel Architecture Software Developer’s Manftied details
regarding | A-32 application programming model.

6.1 Instruction Set Modes

The processor can execute either |A-32 or IA-64 instructions. A bit in Processor Status Register
(PSR) specifiesthe currently executing instruction set. Three special instructions and interruptions
are defined to transition the processor between the | A-32 and the | A-64 instruction sets as shown in
Figure 6-1.

* j npe (IA-32instruction) Jump to an | A-64 target instruction, and change the instruction set to
IA-64.

* br.ia (IA-64instruction) I1A-64 branch to an |A-32 target instruction, and change the
instruction set to 1A-32.

* rfi (IA-64instruction) Return from interruption, is defined to return to either an |A-32 or
| A-64 instruction when resuming from an interruption.

* Interruptions transition the processor to the IA-64 instruction set for all interruption
conditions.

Thej npe and br . i a instructions provide alow overhead mechanism to transfer control between
the instruction sets. These primitives typically are incorporated into “thunks” or “stubs” that

implement the required call linkage and calling conventions to call dynamic or statically linked
libraries.
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Figure 6-1. IA-64 Processor Instruction Set Transition Model
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6.1.1 IA-64 Instruction Set Execution

While the processor executes from the |A-64 instruction set;

| A-64 instructions are fetched, decoded and executed by the processor.

I A-64 instructions can access the entire 1A-64 and 1A-32 application register state. This
includes 1A-32 segment descriptors, selectors, general registers, physical floating-point
registers, MM X technology registers, and Streaming SIMD Extension registers. See
Section 6.2 for adescription of the register state mapping.

Segmentation is disabled. No segmentation protection checks are applied nor are segment
bases added to compute virtual addresses, i.e. all computed addresses are virtual addresses.

254 virtual addresses can be generated and | A-64 memory management is used for all memory
and 1/O references.

6.1.2 IA-32 Instruction Set Execution

While the processor is executing the |A-32 instruction set within the 1A-64 System Environment,
the 1A-32 application architecture as defined by the Pentililn@®ocessor is used, namely:

6-2

| A-32 16/32-bit application level, MM X technology instructions and Streaming SIMD
Extension instructions are fetched, decoded, and executed by the processor. Instructions are
confined to 32/16-bit operations.

Only 1A-32 application level register state isvisible (i.e. I1A-32 general registers, MMX
technology registers and Streaming SIMD Extension registers, selectors, EFLAGS, FP

registers and FP control registers). | A-64 application and control stateis not visible, e.g.
branch, predicate, application, etc.

IA-32 Real Mode, VM86 and Protected Mode segmentation isin effect. Segment protection
checks are applied and virtual addresses generated according to 1A-32 segmentation rules.
GDT and LDT segments are defined to support | A-32 segmented applications. Segmented 16-
and 32-bit codeisfully supported.

| A-64 memory management is used to translate virtual to physical addresses for all 1A-32
instruction set memory and 1/O Port references.

Instruction and Data memory references are forced to be little-endian. Memory ordering uses
the Pentium |11 processor memory ordering model.
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6.1.3

6.1.3.1

6.1.3.2

* |A-32 operating system resources; 1A-32 paging, MTRRs, IDT, control registers, debug
registers and privileged instructions are superceded by 1A-64 defined resources. All accesses
to these resources result in an interception fault.

Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed instruction
description on j npe (IA-32 instruction) and br . i a (IA-64 instruction) should be consulted for
details. Operating systems can disable instruction set transitions.

JMPE Instruction

j npe regl16/ 32; j npe di sp16/ 32 isused tojump and transfer control to the |A-64 instruction
set. There are two forms; register indirect and absolute. The absolute form computes the virtual
| A-64 target address as follows:

I P{31: 0} =displ6/32 + CSD. base
I P{63:32} =0

Theindirect form reads a 16/32-bit register location and then computes the | A-64 target address as
follows:

1 P{31:0} = [regl6/32] + CSD. base
I P{63:32} =0

IA-64 | npe targets are forced to be 16-byte aligned, and are constrained to the lower 4G-bytes of
the 64-hit virtual address space due to limited 1A-32 addressability. If there are any pending |A-32
numeric exceptions, j npe isnullified, and an 1A-32 floating-point exception fault is generated.

Branch to IA Instruction

Unconditional branches to the |A-32 instruction set use the | A-64 defined indirect branch
mechanism. | A-32 targets are specified by a 32-bit virtual address target (not an effective address).
The I|A-32 virtual addressis truncated to 32-bits. The br . i a branch hints should always be set to
predicted static taken. The processor transitions to the I1A-32 instruction set as follows:

| P{31: 0} = BR[b]{31:0}
IP{63:32} =0
EIP{31:0} = IP{31:0} - CSD base

Transitions into the | A-32 instruction set do not change the privilege level of the processor.

Software should ensure the code segment descriptor and selector are properly loaded before issuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an IA-32 GPFault(0) exception is reported on the target 1A-32 instruction.

The processor does not ensure | A-64 instruction set generated writes into the |A-32 instruction

stream are observed by the processor. For details, see “Self Modifying Code” on page 6-28efore
entering the IA-32 instruction set, IA-64 software must ensure all prior register stack frames have
been flushed to memory. All registers left in the current and prior register stack frames are
modified during IA-32 instruction set execution. For details,'se®4 Register Stack Engine” on
page 6-24
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6.2
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IA-32 Operating Mode Transitions

Asdescribed in “IA-32 Instruction Set Execution” on page 6j2we, br.i a, andrfi and

interruptions can transition the processor between the two instruction set modes. Transitions are
allowed between all major 1A-32 modes and IA-Bdpe and interruptions will transition the
processor from either IA-32 VM86, Real Mode or Protected Mode into the 1A-64 instruction set
mode. Mode transitions between IA-32 Real Mode, Protected Mode and VM86 definitions are the
same as those defined in inéel Architecture Software Developer's Manual

| A-64 interface code is responsible for setting up and loading a consistent Protected Mode, Real
Mode, or VM86 environment (e.g. loading segment selectors and descriptors, etc.) as defined in
“Segment Descriptor and Environment Integrity” on page 6¥hb@ processor applies additional
segment descriptor checks to ensure operations are performed in a consistent manner.

IA-32 Application Register State Model

As shown inFigure 6-2andTable 6-1 IA-32 general purpose registers, segment selectors, and
segment descriptors, are mapped into the lower 32-bits of IA-64 general purpose registers GR8 to
GR31. The floating-point register stack, MMX technology registers and Streaming SIMD
Extension registers are mapped on |A-64 floating-point registers FR8 to FR31.

To promote straight-forward parameter passing, 1A-32 and 1A-64 integer and IEEE floating-point
register and memory data types are binary compatible between both 1A-32 and 1A-64 instruction
sets.

Some |A-64 registers are modified as a side-effect during IA-32 instruction set execution as noted
in Figure 6-2andTable 6-1 Generally, IA-64 system state is not affected by 1A-32 instruction set
execution. IA-64 code can reference all IA-64 and IA-32 registers, while IA-32 instruction set
references are confined to the 1A-32 visible application register state.

Registers are assigned the following conventions during transitions between 1A-32 and 1A-64
instruction sets.

* |A-32 state: Theregister contains an 1A-32 register during 1A-32 instruction set execution.
Expected 1A-32 values should be loaded before switching to the |A-32 instruction set. After
completion of 1A-32 instructions, these registers contain the results of the execution of 1A-32
instructions. These registers may contain any value during | A-64 instruction execution
according to | A-64 software conventions. Software should follow |A-32 and |A-64 calling
conventions for these registers.

* Modified: Registers marked as modified are used as scratch areas for execution of 1A-32
instructions by the processor and are not ensured to be preserved across instruction set
transitions.

¢ Shared: Shared registers contain values that have similar functionality in either instruction set.
For example, the stack pointer (ESP) and instruction pointer (1P) are shared.

¢ Unmodified: These registers are not altered by 1A-32 execution. | A-64 code can rely on these
values not being modified during | A-32 instruction set execution. The register will have the
same contents when entering the | A-32 instruction set and when exiting the 1A-32 instruction
set.
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Figure 6-2. 1A-32 Application Register Model
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Table 6-1. IA-32 Application Register Mapping

IA-64 Reg IA-32 Reg Convention | Size Description
General Purpose Integer Registers
GRO constant 0
GR1-3 modified’ scratch for IA-32 execution
GR4-7 unmodified IA-64 preserved registers
GR8 EAX
GR9 ECX
GR10 EDX
GR11 EBX
322 | 1A-32 general purpose registers
GR12 ESP
GR13 EBP
GR14 ESI
GR15 EDI
IA-32 state
GR16{15:0} | DS
GR16{31:16} | ES
GR16{47:32} | FS
GR16{63:48} | GS
64 IA-32 selectors
GR17{15:0} |CS
GR17{31:16} | SS
GR17{47:32} | LDT
GR17{63:48} | TSS
GR18-23 modified" scratch for IA-32 execution
GR24 ESD IA-32 state 64 IA-32 segment descriptors (register format)b
GR25-26 modified’ scratch for IA-32 execution
GR27 DSD
GR28 FSD
GR29 GSD IA-32 state 64 IA-32 segment descriptors (register format)b
GR30 LDTD®
GR31 GDTD
GR32-127 modified? IA-32 code execution space

Process Environment

P P shared 64 ‘ shared IA-32 and IA-64 virtual Instruction Pointer
Floating-point Registers

FRO constant +0.0

FR1 constant +1.0

FR2-5 unmodified IA-64 preserved registers

FR6-7 modified IA-32 code execution space
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Table 6-1. IA-32 Application Register Mapping (Cont'd)

IA-64 Application Developer’s Architecture Guide, Rev. 1.0

IA-64 Reg IA-32 Reg Convention | Size Description
FR8 MMO/FPO
FR9 MM1/ FP1
FR10 MM2/FP2
ER11 MM3/EP3 IA-32 MMX™ technology registers (aliased on 64-bit
IA-32 state gg/ FP mantissa)
FR12 MM4/ FP4 IA-32 FP registers (physical registers mapping)®
FR13 MM5/FP5
FR14 MM6/FP6
FR15 MM7/FP7
FR16-17 XMMO
FR18-19 XMM1
FR20-21 XMM2
FR22-23 XMM3 IA-32 Streaming SIMD Extension registers
IA-32 state 64 low order 64-bits of XMMO are mapped to FR16{63:0}
FR24-25 XMM4 high order 64-bits of XMMO are mapped to FR17{63:0}
FR26-27 XMM5
FR28-29 XMM6
FR30-31 XMM7
FR32-127 modified IA-32 code execution space
Predicate Registers
PRO constant 1
PR1-63 modified IA-32 code execution space
Branch Registers
BRO-5 unmodified IA-64 preserved registers
BR6-7 modified IA-32 code execution space
Application Registers
RSC
BSP o not used for IA-32 execution
unmodified .
BSPSTORE IA-64 preserved registers
RNAT
CCcVv modified 64 IA-32 code execution space
UNAT unmodified not used for IA-32 execution, IA-64 preserved
FPSR.sf0 unmodified IA-64 numeric status and controls
FPSR.sf1,2,3 modified IA-32 code execution space, modified during 1A-32

execution.
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Table 6-1. IA-32 Application Register Mapping (Cont'd)

6.2.1

IA-64 Reg IA-32 Reg Convention | Size Description
FSR FSW,FTW, 64 IA-32 numeric status and tag word and Streaming
MXCSR SIMD Extension status

FCR FCW, MXCSR 64 1A-32 numeric and Streaming SIMD Extension control

FIR FOP, FIP, FCS IA-32 state 64 1A-32 x87 numeric environment opcode, code selector
and IP

FDR FEA, FDS 64 1A-32 x87 numeric environment data selector and
offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC) and 1A-64

Interval Timer

PFS not used for IA-32 code execution, Prior EC is
preserved in PFM

LC unmodified )
IA-64 preserved registers
EC
EFLAG EFLAG 32 IA-32 System/Arithmetic flags,
writes of some bits condition by CPL and EFLAG.iopl.
CSD CsSD 64 1A-32 code segment (register format)b
SSD SSD IA-32 state IA-32 stack segment (register format)?
CFLG CRO/CR4 64 IA-32 control flags
CRO=CFLG{31:0}, CR4=CFLG{63:32}, writable at
CPL=0 only.

a. On transitions into the 1A-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign extended from bit 31.

b. Segment descriptor formats differ from the 1A-32 memory format, see “IA-32 Segment Registers” on page 6-9 for details. Mod-
ification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by I1A-64 user level code.

d. All registers in the current and prior registers frames are modified during |1A-32 execution.

e. |A-32 floating-point register mappings are physical and do not reflect the 1A-32 top of stack value.

f. These registers are used by the processor and may be modified. Software should preserve required values before entering |1A-32
code.

IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of 1A-64 general registers GR8 to GR15. Values
in the upper 32-bits of GR8 to 15 are ignored on entry to | A-32 execution. After the |A-32
instruction set completes execution, the upper 32-bits of GR8 - GR15 are sign-extended from bit
31.

Based on |A-32 and 1A-64 calling conventions, the required | A-32 state must be loaded in memory
or registers by 1A-64 code before entering the |A-32 instruction set.

Figure 6-3. IA-32 General Registers (GR8 to GR15)

6.2.2

6-8

32 31 0

|

sign extended ] EAX.. EDI{31:0}

IA-32 Instruction Pointer

The processor maintains two instruction pointers for 1A-32 instruction set references, EIP (32-bit
effective address) and IP (a 64-hit virtual address equivalent to the IA-64 instruction set IP). IPis
generated by adding the code segment base to EIP and zero extending to 64-bits. IP should not be
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confused with the 16-bit effective address instruction pointer of the 8086. EIP is an offset within
the current code segment, while IP is a 64-bit virtual pointer shared with the 1A-64 instruction set.
The following relationship is defined between EIP and IP while executing 1A-32 instructions.

1 P{63:32} = 0;
IP{31:0} = EIP{31:0} + CSD.Base;

EIP is added to the code segment base and zero extended into a 64-bit virtual address on every
IA-32 instruction fetch. If during an | A-32 instruction fetch, EIP exceeds the code segment limit a
GPFault is generated on the referencing instruction. Effective instruction addresses (sequential
values or jump targets) above 4G-bytes are truncated to 32 bits, resulting in a4-G bytewrap around
condition.

IA-32 Segment Registers

| A-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26.
Descriptors are maintained in an unscrambled format shown in Figure 6-5. This format differs
from the | A-32 scrambled memory descriptor format. The unscrambled register format is designed
to support fast conversion of 1A-32 segmented 16/32-bit pointersinto virtual addresses by 1A-64
code. |A-32 segment register load instructions unscramble the GDT/LDT memory format into the
descriptor register format on a segment register load. |A-64 software can also directly load
descriptor registers provided they are properly unscrambled by software. For acomplete definition
of al bit fields and field semantics refer to the Intel Architecture Software Developer’s Manual.

Figure 6-4. IA-32 Segment Register Selector Format

63

48 47 32 31 16 15 0

GS FS ES DS GR16

TSS LDT SS (O] GR17

Figure 6-5. IA-32 Code/Data Segment Register Descriptor Format
63 62 61 60 59 58 57 56 55 52 51 32 31

\g \d/b\ ig\av\ p\ dpl \s\ type lim{19:0} \

base{31:0}

Table 6-2. IA-32 Segment Register Fields

Field Bits Description
selector | 15:0 | Segment Selector value, see the Intel Architecture Software Developer’s Manual for bit
definition.
base 31:0 | Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for I1A-32 instruction set memory references.
lim 51:3 | Segment Limit. Contains the maximum effective address value within the segment for
2 expand up segments for IA-32 instruction set memory references. For expand down

segments, limit defines the minimum effective address within the segment. See the Intel
Architecture Software Developer’s Manual for details and segment limit fault conditions.
The segment limit is scaled by (lim << 12) | OxFFF if the segment’s g-bit is 1.

type 55:5 | Type identifier for data/code segments, including the Access bit (bit 52). See the Intel
2 Architecture Software Developer’s Manual for encodings and definition.

S 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:5 | Descriptor Privilege Level. The DPL is checked for memory access permission for |1A-32
7 instruction set memory references.
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Table 6-2. IA-32 Segment Register Fields (Cont'd)

Field Bits Description

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an
IA_Exception (GPFault) is generated for data segments (CS, DS, ES, FS, GS) and an
1A-32_Exception (StackFault) for SS.

av 60 Ignored - For the CS, SS descriptors reads of this field return zeros. For the DS, ES, FS,
and GS descriptors reads of this field return the last value written by 1A-64 code. Reads of
this field return zero if written by 1A-32 descriptor loads.This field is ignored by the
processor during 1A-32 instruction set execution. Available for software use, there will be no
future use for this field.

ig 61 Ignored - For the CS, SS descriptors reads of this field return zeros. For the DS, ES, FS,
and GS descriptors reads of this field return the last value written by 1A-64 code. Reads of
this field return zero if written by 1A-32 descriptor loads.This field is ignored by the
processor during IA-32 instruction set execution. This field may have a future use and
should be set to zero by software.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s d/b-bit
also controls the default operand size for IA-32 instructions. If 1, the default operand size is
32-hits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | OxFFF for IA-32
instruction set memory references. This field is ignored for IA-64 instruction set memory
references.

6.2.3.1 Data and Code Segments

On thetransition into A-32 code, the | A-32 segment descriptor and selector registers (GDT, LDT,
DS, ES, CS, SS, FS and GS) must be initialized by 1A-64 code to the required values based on
IA-32 and | A-64 calling conventions and the segmentation model used.

| A-64 code may manually load a descriptor with an 8-byte fetch from the LDT/GDT, unscramble
the descriptor and write the segment base, limit and attribute. Alternately, | A-64 software can
switch to the 1A-32 instruction set and perform the required segment load with an 1A-32 Mov Sreg
instruction. If 1A-64 code explicitly loads the segment descriptors, it isresponsible for theintegrity
of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the descriptor
registers, nor does the processor set segment access bitsin the LDT/GDT if segment registers are
loaded by 1A-64 instructions.

6.2.3.2 Segment Descriptor and Environment Integrity

For 1A-32 instruction set execution, most segment protection checks are applied by the processor
when the segment descriptor isloaded by | A-32 instructions into a segment register. However,
segment descriptor loads from the | A-64 instruction set into the general purpose register file
perform no such protection checks, nor are segment Access-bits updated by the processor.

If 1A-64 software directly loads a descriptor it is responsible for the validity of the descriptor, and

ensuring integrity of the |A-32 Protected Mode, Real Mode or VM 86 environments. Table 6-3

defines software guidelines for establishing the initial 1A-32 environment. The processor checks
theintegrity of the | A-32 environment asdefined in Section 6.2.3.3, “IA-32 Environment Run-time
Integrity Checks” on page 6-18n the transitions between IA-64 and IA-32 code, the processor
does NOT alter the base, limit or attribute values of any segment descriptor, nor is there a change in
privilege level.
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Table 6-3. 1A-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86Mode
PSR cpl 0 privilege level 3
EFLAG vm 0 0 1
CRO pe 0 1 1
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl PSR.cpl (0) PSR.cpl® PSR.cpl (3)
d-bit 16-bit? 16/32-bit 16-bit
cs type data rd/wr, expand execute data rd/wr, expand
up up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)
d-bit 16-bit® 16/32-bit size 16-bit
ss type data rd/wr, expand data types data rd/wr, expand
up up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)
d-bit 16-bit® 16/32-bit 0
DS, ES, FS, GS type data rd/vl\:[), expand data types data rd/vl\J/:J, expand
s-bit 1 1 1
a-bit 1 1 1
p-bit 1 1/0f 1
g-bit/limit OXFFFF® limit OXFFFF
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Table 6-3. IA-32 Environment Initial Register State (Cont’d)

Register Field Real Mode Protected Mode VM86Mode
PSR cpl 0 privilege level 3
EFLAG vm 0 0 1
CRO pe 0 1 1
selector selector
base base
dpl dpl >= PSR.cpl
d-bit 0
LDT,GDT, type na Idt/gdt/tss types
TSS
s-bit 0
p-bit 1
a-bit 1
g-bit/limit limit

a. Selectors should be set to 16*base for normal RM 64KB operation.

b. Segment base should be set to selector/16 for normal RM 64KB operation.

c. Unless a conforming code segment is specified.

d. Segment size should be set to 16-bits for normal RM 64KB operation.

e. Segment limit should be set to OxFFFF for normal RM 64KB operation.

f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

6.2.3.2.1 Protected Mode

| A-64 software should follow these rules for setting up the segment descriptors for Protected Mode
environment before entering the | A-32 instruction set:
* |A-64 software should ensure the stack segment descriptor register's DPL==PSR.cpl.

* For DSD, ESD, FSD and GSD segment descriptor registers, |A-64 software should ensure
DPL>=PSR.cpl.

* For CSD segment descriptor register, |A-64 software should ensure DPL==PSR.cpl (except
for conforming code segments).

¢ Software should ensure that all code, stack and data segment descriptor registers do not
contain encodings for any system segments.

¢ Software should ensure the a-bit of all segment descriptor registers are set to 1.

¢ Software should ensure the p-bit is set to 1 for all valid data segments and to O for all NULL
data segments.

6.2.3.2.2 VM86

| A-64 software should follow these rules when setting up segment descriptors for the VM 86
environment before entering the | A-32 instruction set:
¢ PSR.cpl must be 3 (or IPSR.cpl must be 3forrfi).

* |A-64 software should ensure the stack segment descriptor register's DPL==PSR.cpl==3 and
set to 16-bit, data read/write, expand up.

* For CSD, DSD, ESD, FSD and GSD segment descriptor registers, |A-64 software should
ensure DPL==3, the segment is set to 16-bit, data read/write, expand up.

6-12 IA-64 Application Developer’s Architecture Guide, Rev. 1.0



¢ Software should ensure that all code, stack and data segment descriptor registers do not
contain encodings for any system segments.

¢ Software should ensure the P-bit and A-bit of all segment descriptor registersis one.

¢ Software should ensure that the relationship Base = Selector* 16, is maintained for all DSD,
CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise processor operation
is unpredictable.

¢ Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
register’s limit value is set to OXFFFF, otherwise spurious segment limit faults (GPFault or
Stack Faults) may be generated.

* |A-64 software should ensure all segment descriptor registers are dataread/write, including the
code segment. The processor will ignore execute permission faults.

6.2.3.2.3 Real Mode

| A-64 software should follow these rules when setting up segment descriptors for the Real Mode
environments before entering the 1 A-32 instruction set, otherwise software operation is
unpredictable.

* |A-64 software should ensure PSR.cpl is 0.
* |A-64 software should ensure the stack segment descriptor register’'s DPL is 0.

¢ Software should ensure that all code, stack and data segment descriptor registers do not
contain encodings for any system segments.

¢ Software should ensure the P-bit and A-bit of all segment descriptor registersis one.

* For normal real mode 64K operations, software should ensure that the relationship Base =
Selector* 16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
registers.

¢ For normal real mode 64K operations, software should ensure that the DSD, CSD, ESD, SSD,
FSD, and GSD segment descriptor register’s limit value is set to OXFFFF and the segment size
is set to 16-hit (64K).

* |A-64 software should ensure all segment descriptor registers indicate readable, writable,
including the code segment for normal Real M ode operation.

6.2.3.3 IA-32 Environment Run-time Integrity Checks

| A-64 processors perform additional run-time checksto verify the integrity of the 1A-32
environments. These checks are in addition to the run-time checks defined on 1A-32 processors and
are high-lighted in Table 6-4. Existing | A-32 run-time checks are listed but not highlighted.
Descriptor fields not listed in the table are not checked. As defined in the table, run-time checks are
performed either on 1A-32 instruction code fetches or on an |A-32 datamemory reference to one of
the specified segment registers. These run-time checks are not performed during 1A-64 to 1A-32
instruction set transitions.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 6-13



Table 6-4.

6-14

IA-32 Environment Run Time Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault
PSR.cpl isnot0 ignored isnot 3
Code Fetch
all code E(':::;LAS'V? EFLAG.vm is 1 and CFLG.pe is 0 Fault
fetches P (GPFault(0))
a
EFLAG.vif EFLAG.vip & EFLAG.vif & CFLG.pe & PSR.cpl==3 &
EFLAG.vip (CFLG.pvi | (EFLAG.vm & CFLG.vme))
dpl dplis not 3
ignored
d-bit is not 16-bit
all code fetches type ignored (can be exec or data) Code Fletch
Fault
Cs GPFault if data expand down (GPFault(0))
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl dpl!=PSR.cpl
d-bit ignored is not 16-bit
data memory type ignored data expand down
references to Stack Fault
sSS read and not readable, write and not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
data memory -
references to type ignored data expand down
DS ES. FS and GPFault(0)
s an read and not readable, write and not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
type ignored data expand down
data memory
references to rd/wr checks are rd and not rd/wr checks are GPFault(0)
CcS ignored readable, wr and ignored
not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
type ignored
memory - :
references to s-bit is not 0 GPFault
LDT,GDT, a d-bits ignored (Selector/0)°
TSS '
p-bit isnot 1
g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.
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6.2.4 IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags (CF, PF,
AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None
of the arithmetic or system flags affect 1A-64 instruction execution.

Figure 6-6. IA-32 EFLAG Register (AR24)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| reserved (set to 0) ||d|V|p|V|f|ac|vm|rf|Olntl iopl Iofldfl|f|tf|sf|zf|0|af|0|pf|1|cf‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
| reserved (set to 0) ‘

The arithmetic flags are used by the |A-32 instruction set to reflect the status of 1 A-32 operations,
control 1A-32 string operations, and control branch conditions for |A-32 instructions. These flags
areignored by IA-64 instructions. Flags ID, OF, DF, SF, ZF, AF, PF and CF are defined in the
Intel Architecture Software Developer’s Manual

Table 6-5. IA-32 EFLAGS Register Fields

EFLAG? Bits Description
cf 0 IA-32 Carry Flag. See the Intel Architecture Software Developer’s Manual for details.
1 Ignored - Writes are ignored, reads return one for I1A-32 and |A-64 instructions.
3,5, Ignored - Writes are ignored, reads return zero for IA-32 and IA-64 instructions. Software
15 should set these bits to zero.
pf 2 IA-32 Parity Flag. See the Intel Architecture Software Developer’s Manual for details.
af 4 IA-32 Aux Flag. See the Intel Architecture Software Developer’s Manual for details.
zf 6 IA-32 Zero Flag. See the Intel Architecture Software Developer’s Manual for details.
sf 7 IA-32 Sign Flag. See the Intel Architecture Software Developer’s Manual for details.
tf 8 IA-32 System EFLAG Register
if 9
df 10 IA-32 Direction Flag. See the Intel Architecture Software Developer’s Manual for details.
of 11 IA-32 Overflow Flag. See the Intel Architecture Software Developer’s Manual for details.
iopl 13:12
nt 14
i 16 1A-32 System EFLAG Register
vm 17
ac 18
vif 19
vip 20
id 21
63:22 | Reserved must be set to zero

a. On entry into the 1A-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the 1A-32 instruction
set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter the behavior of IA-64 instruction
set execution.
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IA-32 Floating-point Registers

| A-32 floating-point register stack, numeric controls and environment are mapped into the |A-64
floating-point registers FR8 - FR15 and the application register name space as shown in Table 6-6.

Table 6-6. IA-32 Floating-point Register Mappings

6.2.5.1

6.2.5.2

6-16

I1A-64 Reg I1A-32 Reg (?if?) Description
FR8 ST[(TOS + N)==0]
FR9 ST[(TOS + N)==1]
FR10 ST[(TOS + N)==2] 1A-32 numeric register stack
FR11 | ST[(TOS + N)==3] 80 IA-64 accesses to FRS - FR15 ignore the IA-32 TOS
FR12 ST[(TOS + N)==4] adjustment _
IA-32 accesses use the TOS adjustment for a given
FR13 ST[(TOS + N)==5] register N
FR14 ST[(TOS + N)==6]
FR15 ST[(TOS + N)==7]
FCR FCW, MXCSR 64 IA-32 numeric and Streaming SIMD Extension control
(AR21) register
FSR FSW,FTW, MXCSR 64 IA-32 numeric and Streaming SIMD Extension status and
(AR28) tag word
FIR (AR29) | FOP, FCS, FIP 64 1A-32 numeric instruction pointer
FDR FDS, FEA 48 1A-32 numeric data pointer
(AR30)

IA-32 Floating-point Stack

I A-32 floating-point registers are defined as follows:

* |A-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit IEEE
floating-point format.

* For IA-32 instruction set references, floating-point registers are logically mapped into FR8 -
FR15 based on the | A-32 top-of-stack (TOS) pointer held in FCR.top. FR8 represents a
physical register after the TOS adjustment and is not necessarily the top of the logical

floating-point register stack.

* For |A-64 instruction set references, the floating-point register numbers are physical and not a
function of the numeric TOS pointer, e.g. references to FR8 always return the value in physical
register FR8 regardless of the TOS value. | A-64 software cannot necessarily assume that FR8
contains the I1A-32 logical register ST(0). It is highly recommended that typically 1A-32
calling conventions be used which pass floating-point values through memory.

IA-32/IA-64 Special Cases

For 1A-32 floating-point instructions, loading a single or double denormal resultsin anormalized
double-extended value placed in the target floating-point register. For |A-64 instructions, loading a
single or double denormal results in an un-normalized denormal value placed in the target
floating-point register. There are two 1A-64 canonical exponent values which indicate single
precision and double precision denormals.
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When transferring floating-point values from 1A-64 to 1A-32 instructions, it is highly
recommended that typical |A-32 calling conventions be followed which pass floating-point values
through the memory stack. If software does pass floating-point values from |A-64 to |A-32 code
viathe floating-point registers, software must ensure the following:

* |A-64 single or double precision denormals must be converted into a normalized double
extended precision value expected by | A-32 instructions. Software can convert |1A-64
denormals by multiplying by 1.0 in double extended precision (f ma. sfx fr = fr, f1,f0).
If anillegal single or double precision denormal is encountered in |A-32 floating-point
operations, an |A-32 Exception (FPError Invalid Operand) fault is generated.

¢ Foating-point values must be within the range of the | A-32 80-bit (15-bit exponent) double
extended precision format. |A-64 allows 82-hit (17-bit widest range exponent) for
intermediate cal cul ations. Software must ensure all 1A-64 floating-point register values passed
to IA-32 instructions are representabl e in double extended precision 80-bit format, otherwise
processor operation is model specific and undefined. Undefined behavior can include but is
not limited to: the generation of an |A-32_Exception (FPError Invalid Operation) fault when
used by an 1A-32 floating-point instruction, rounding of out-of-range values to zero/denormal/
infinity and possible |A-32_Exception (FPError Overflow/Underflow) faults, or float-point
register(s) containing out of range values silently converted to QNAN or SNAN (conversion
could occur during entry to the |A-32 instruction set or on use by an | A-32 floating-point
instruction). Software can ensure all passed floating-point register values are within range by
multiplying by 1.0 in double extended precision format (with widest range exponent disabled)
byusingfma.sfx fr = fr,f1,f0.

* |A-64 floating-point NaTVal values must not be propagated into 1A-32 floating-point
instructions, otherwise processor operation is model specific and undefined. Processors may
silently convert floating-point register(s) containing NaT Val to a SNAN (during entry to the
I A-32 instruction set or on aconsuming |A-32 floating-point instruction). Dependent | A-32
floating-point instructions that directly or indirectly consume a propagated NaT Val register
will either propagate the NaTVal indication or generate an |A-32_Exception (FPError Invalid
Operand) fault. Whether a processor generates the fault or propagates the NaTVal is model
specific. In no case will the processor allow aNaTVal register to be used without either
propagating the NaTVal or generating an 1A-32_Exception (FPError Invalid Operand) fault.
Note: it isnot possiblefor |A-32 codeto read aNaTVal from amemory location with an 1A-32
floating-point load instruction, since a NatVal can not be expressed by a 80-bit double
extended precision number.

It is highly recommended that floating-point values be passed on the memory stack per typical
IA-32 calling conventions to avoid numeric problems with NatVal and 1A-64 denormals.

IA-32 Floating-point Control Registers

FPSR controls | A-64 floating-point instructions control and status bits. FPSR does not control

| A-32 floating-point instructions or reflect the status of | A-32 floating-point instructions. 1A-32
floating-point and Streaming SIMD Extension instructions have separate control and status
registers, namely FCR (floating-point control register) and FSR (floating-point status register).

FCR contains the |A-32 FCW bits and all Streaming SIMD Extension control bits as shown in
Figure 6-7.

FSR contains the 1A-32 floating-point status flags FSW, FTW, and Streaming SIMD Extension
status fields as shown in Figure 6-8. The Tag fields indicate whether the corresponding | A-32
logical floating-point register is empty. Tag encodings for zero and special conditions such as Nan,
Infinity or Denormal of each IA-32 logical floating-point register are not supported. However,
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IA-32 instruction set reads of FTW compute the additional special conditions of each |A-32
floating-point register. |A-64 code can issue a floating-point classify operation to determine the
disposition of each |A-32 floating-point register.

FCR and FSR collectively hold all 1A-32 floating-point control, status and tag information. |A-32
instructions that are updated and controlled by MXSCR, FCW, FSW and FTAG effectively update
FSR and are controlled by FSR. IA-32 reads/writes of MXCSR, FSW, FCW and FTW return the
sameinformation as | A-64 reads/writes of FSR and FCR.

Software must ensure that FCR and FSR are properly loaded for 1A-32 numeric execution before
entering the |A-32 instruction set.

Figure 6-7. IA-32 Floating-point Control Register (FCR)

| IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|

reserved (set to 0) ICl RC | PC |O|1 P|U|O|Z|D
MIM|M|M|M|M

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) F| RC |[P/UOCZMD|I |rv ignored
VA MMM M|M

1A-32 MXCSR (control)

Figure 6-8. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0} | IA-32 FSW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o/T/o|T|{o|T|O0|T|O|T|O|T|O|T|OTG B|C| TOP |C|C|C|E|S|P|U|O|Z|D|I
G G G G| G3 |G G 0 3 2|/1/0|S|F|E|E|E|E|E|E

7 6 5 4 2 1
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
reserved (set to 0) ignored rv| P UEOE Z DE| |
E E E
IA-32 MXCSR (status)
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Table 6-7. IA-32 Floating-point Control Register Mapping (FCR)

IA-64 Usage

1A-64 .

IA-32 State State Bits IA-32 Usage

FCW, MXCSR state in the FCR Register

FCW.im FCR.im 0 Invalid operation Mask

FCW.dm FCR.dm 1 Denormalized operand Mask

FCW.zm FCR.zm 2 Zero divide Mask

FCW.om FCR.om 3 Overflow Mask

FCW.um FCR.um 4 Underflow Mask

FCW.pm FCR.pm 5 Precision Mask

ignored 6 Ignored - Writes are ignored, reads return 1.

ignored 7,32:37 | Ignored - Writes are ignored, reads return 0

reserved 13:31,38 | Reserved

,48:63

FCW.pc FCR.pc 8:9 Precision Control (00- single, 10- double, 11-
extended)

FCW.rc FCR.rc 10:11 Rounding (00-even, 01-down, 10-up,
11-truncate)

FCW.ic FCR.ic 12 (Infinity Control) - Ignored by All 1A-64
processors, provided for compatibility with
IA-32 processors.

MXCSR.im | FCR.im 39 Streaming SIMD Extension Invalid operation
Mask

MXCSR.dm | FCR.dm 40 Streaming SIMD Extension Denormalize
operand Mask

MXCSR.zm | FCR.zm 41 Streaming SIMD Extension Zero divide Mask

MXCSR.om | FCR.om 42 Streaming SIMD Extension Overflow Mask

MXCSR.um | FCR.um 43 Streaming SIMD Extension Underflow Mask

MXCSR.pm | FCR.pm 44 Streaming SIMD Extension Precision Mask

MXCSR.rc | FCR.rc 45:46 Streaming SIMD Extension Rounding
(00-even,01-down, 10-up, 11-truncate)

MXCSR.fz FCR.fz 47 Streaming SIMD Extension Flush to Zero

None of these IA-32
numeric and
Streaming SIMD
Extension control bits
affect the execution of
1A-64 floating-point
instructions.

See Intel Architecture
Software Developer’s
Manual for details on

each field.
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Table 6-8. IA-32 Floating-point Status Register Mapping (FSR)

intel.

1A-64 .
IA-32 State State Bits IA-32 Usage IA-64 Usage
FSW, FTW, MXCSR state in the FSR Register
FSW.ie FSR.ie 0 Invalid operation Exception
FSW.de FSR.de 1 Denormalized operand Exception
FSW.ze FSR.ze 2 Zero divide Exception
FSW.oe FSR.oe 3 Overflow Exception
FSW.ue FSR.ue 4 Underflow Exception None of these bits
— - reflect the status of
FSW.pe FSR.pe 5 Precision Exception IA-64 floating-point
FSW.sf FSRsf |6 Stack Fault execution.
FSW.es FSR.es? 7 Error Summary )
See Intel Architecture
FSW.c3:0 FSR.c3:0 | 8:10,14 | Numeric Condition codes Software Developer’s
- - Manual for I1A-32
FSW.top FSR.top 11:13 Top of IA-32 numeric stack numeric flag details
FSW.b FSR.b 15 1A-32 FPU Busy always equals state of
FSW.ES
FTW FSR.tg 16,18,20 | Numeric Tags 0-NotEmpty, 1-Empty®
(7:0 ,22,24,2
’ 6,28,30
zeros 17,19,21 | Ignored - Writes are ignored, reads return zero
,23,25,2
7,29,31,
39:47
MXCSR.ie | FSR.ie 32 Streaming SIMD Extension Invalid operation
Exception
MXCSR.de | FSR.de 33 Streaming SIMD Extension Denormalized
operand Exception Does not reflect the
MXCSR.ze | FSR.ze 34 Streaming SIMD Extension Zero divide status of IA-64
Exception floatlng-pomt
execution.
MXCSR.oe | FSR.oe 35 Streaming SIMD Extension Overflow
Exception
See 1A-32 Intel
MXCSR.ue | FSR.ue 36 Streaming SIMD Extension Underflow Architecture Software
Exception Developer’s Manual
- - - for details.
MXCSR.pe | FSR.pe 37 Streaming SIMD Extension Precision
Exception
reserved 38, Reserved
48:63
ignored 39:47 Ignored - Writes are ignored, reads return zero

a. Exception Summary bit, see Section 6.2.5.4 for details.

b. Tag encodings indicate whether each 1A-32 numeric register contains an zero, NaN, Infinity or Denormal are not supported by
IA-64 reads of FSR. IA-32 instruction set reads of the FTW field do return zero, Nan, Infinity and Denormal classifications.

c. AllMMX™ technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology instruction EMMS sets all

Numeric Tags to 1 = Empty.
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6.2.5.4 IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain pending
information related to the numeric exception. FDR contains the operand’s effective address and
segment selector. FIR contains the numeric instruction’s effective address, code segment selector,
and opcode bits. FSR summaries the type of numeric exception in the IE, DE, ZE, OE, UE, PE, SF
and ES-bits. The ES-bit summarizes the IA-32 floating-point exception status as follows:

* When FSR.esisread by |A-64 code, the value returned is a summary of any unmasked
pending exceptions contained inthe FSR, |E, DE, ZE, OE, UE, PE, and SF bits. Note: reads of
the ES-hit do not necessarily return the last value written if the ES-bit isinconsistent with the
other pending exception bitsin FSR.

* When FSR.esisset to al by I1A-64 code, delayed |A-32 numeric exceptions are generated on
the next 1A-32 floating-point instruction, regardless of numeric exception information written
into FSR hits; |IE, DE, ZE, OE, UE, PE, and SF.

* When FSR.esiswritten with inconsistent state with respect to the FSR bits (IE, DE, ZE,
OE,PE and SF), subsequent numeric exceptions may report inconsistent floating-point status
bits.

FSR, FDR, and FIR must be preserved across a context switch to generate and accurately report
numeric exceptions.

Figure 6-9. Floating-point Data Register (FDR)
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ operand offset (fea) ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ reserved (set to 0) ’ operand selector (fds) ‘

Figure 6-10. Floating-point Instruction Register (FIR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ code offset (fip) ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ reserved ‘ opcode {10:0} (fop) ‘ code selector (fcs) ‘

6.2.6 IA-32 MMX™ Technology Registers

Theeight IA-32 MM X technology registers are mapped on the eight 1A-64 floating registers FR8 -
FR15. Where MMO is mapped to FR8 and MM 7 is mapped to FR15. The MM X technology
register mapping for the 1A-32 floating-point stack view is dependent on the floating-point 1A-32
Top-of-Stack value.

Figure 6-11. IA-32 MMX™ Technology Registers (MMO to MM7)

81 80 64 63 0
\ 1| ones MMO..MM7{31:0} FR8-15

* When avaueiswritten to an MM X technology register using an 1A-32 MM X technol ogy
instruction:

— The exponent field of the corresponding floating-point register (bits 80-64) and the sign
bit (bit 81) are set to all ones.

— The mantissa (bits 63-0) is set to the MMX technology data value.
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* When avalueisread fromaMMX technology register by an IA-32 MM X technology
instruction:

— The exponent field of the corresponding floating-point register (bits 80-64) and its sign bit
(bit 81) are ignored, including any NaTVal encodings.

As a result of this mapping, the mantissa of a floating-point value written by either IA-32 or 1A-64
floating-point instructions will also appear in an IA-32 MMX technology register. An IA-32 MMX
technology register will also appear in one of the eight mapped floating-point register’s mantissa
field.

To avoid performance degradation, software programmers are strongly recommended not to

intermix 1A-32 floating and 1A-32 MMX technology instructions. Seeltfitel Architecture
Software Developer’s Manufdr MM X technology coding guidelines for details.

6.2.7 IA-32 Streaming SIMD Extension Registers
The eight 128-bit |A-32 Streaming SIMD Extension registers (XMMO-7) are mapped on sixteen
physical |1A-64 floating register pairs FR16 - FR31. The low order 64-bits of XMMO are mapped to
FR16{ 63:0}, and the high order 64-bits of XMMO0 are mapped to FR17{63:0} .

Figure 6-12. Streaming SIMD Extension registers (XMMO-XMM?7)

81 80 64 63 0

\ 0| 0x1003E | XMMO-7{127:64} | FR17-31, odd
81 80 64 63 0
o] 0x1003E | XMMO-7{63:0} | FR16-30, even

* When avalueiswritten to an Streaming SIMD Extension register using |A-32 Streaming
SIMD Extension instructions:

— The exponent field of the corresponding 1A-64 floating-point register (bits 80-64) is set to
0x1003E and the sign bit (bit 81) is set to 0.

— The mantissa (bits 63-0) is set to the XMM data value bits{63:0} for even registers and
bits{127:64} for odd registers.

* When a Streaming SIMD Extension register isread using |A-32 Streaming SIMD Extension
instructions:

— The exponent field of the corresponding 1A-64 floating-point register (bits 80-64) and the
sign bit (bit 81) are ignored, including any NaTVal encodings.

6.3 Memory Model Overview

Virtual addresses within either the 1A-64 or 1A-32 instruction set are defined to address the same
physical memory location. I1A-64 instructions directly generate 64-bit virtual addresses. 1A-32
instructions generate 16 or 32-bit effective addresses that are then converted into 32-bit virtual
addresses by IA-32 segmentation. 32-bit virtual addresses are then converted into 64-bit virtual
addresses by zero extending to 64-bits. Zero extension places all IA-32 memory references in the
lower 4G-bytes of the 64-bit virtual address space. Virtual addresses generated by either instruction
set are then translated into physical addresses using IA-64 memory management mechanisms.
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Figure 6-13. Memory Addressing Model

6.3.1

6.3.2

16/32-bit 32-bit virtual 64-bit virtual
effective address address address
Base — 4
IA-32 tati Zero
Index Segmentation Extend |
Displacement—{
1A-64 Base |

Memory Endianess

Memory integer and floating-point (IEEE) datatypes are binary compatible between the |A-32 and
|A-64 instruction sets. |A-64 applications and operating systems that interact with |A-32 code
should use “little-endian” accesses to ensure that memory formats are the same. All 1A-32
instruction data and instruction memory references are forced to “little-endian”.

IA-32 Segmentation

Segmentation is not used for IA-64 instruction set memory references. Segmentation is performed
on IA-32 instruction set memory references based on the state of EFLAG.vm and CFLG.pe. Either
Real Mode, VM86, or Protected Mode segmentation rules are followed as definethielthe
Architecture Software Developer’s Manuspecifically:

¢ |A-32 Data 16/32-bit Effective Addresses: 16 or 32-bit effective addresses are generated,

based on CSD.d, SSD.b and prefix overrides, by the addition of a base register, scaled index
register and 16/32-bit displacement value. Starting effective addresses (first byte of multi-byte
operands) larger than 16 or 32 hits are truncated to 16 or 32-bits. Ending (last byte of
multi-byte operands) 16-bit effective addresses can extend above the 64K byte boundary,
however, ending 32-bit effective addresses are truncated to 32-bits and do not extend above
the 4G-byte effective address boundary. Refer to the Intel Architecture Software Developer’s
Manualfor complete details on wrap conditions.

| A-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is used asthe
effective address. Starting EIP values (first byte of multi-byte instruction) larger than 16 or 32
bits are truncated to 16 or 32-bits. Ending (last byte of multi-byte instruction) 16-bit effective
addresses can extend above the 64K byte boundary, however, ending 32-bit EIP values are
truncated to 32-bits and do not extend above the 4G-byte effective address boundary.

I A-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective addressis
mapped into the 32-hit virtual address space by the addition of a segment base. Full segment
protection and limit checks are verified as specified by the Intel Architecture Software
Developer’s Manuaénd additional checks as specified in this section. Starting 32-bit virtual
addresses are truncated to 32-bits after the addition of the segment base. Ending virtual
address (last byte of a multiple byte operand or instruction) is truncated (wrapped) at the
4G-byte virtual boundary

| A-32 64-bit Address Generation: The resultant 32-bit virtual addressis converted into a
64-hit virtual address by zero extending to 64-hits, this places all 1A-32 instruction set memory
references within the first 4G-bytes of the 64-bit virtual address space.
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If IA-32 code is utilizing aflat segmented model (segment bases are set to zero) then |A-32 and

I A-64 code can freely exchange pointers after a pointer has been zero extended to 64-bits. For
segmented | A-32 code, effective address pointers must be first transformed into avirtual address
before they are shared with |A-64 code.

Self Modifying Code

While operating in the | A-32 instruction set, self modifying code and instruction cache coherency
(coherency with respect to the local processor’s data cache) is supported for all IA-32 programs.
Self modifying code detection is directly supported at the same level of compatibility as the
Pentium processor. Software must insert an 1A-32 branch instruction between the store operation
and the instruction modified for the updated instruction bytes to be recognized.

When switching from the 1A-64 to the I1A-32 instruction set, and while executing I1A-64

instructions, self modifying code and instruction cache coherency are not directly supported by the
processor hardware. Specifically, if a modification is made to 1A-32 instructions by IA-64
instructions, IA-64 code must explicitly synchronize the instruction caches with the code sequence
defined inSection 4.4.6.2, “Memory Consistency” on page 4Qtherwise the modification may

or may not be observed by subsequent 1A-32 instructions.

When switching from the IA-32 to the 1A-64 instruction sets, modification of the local instruction
cache contents by 1A-32 instructions is detected by the processor hardware. The processor ensures
that the instruction cache is made coherent with respect to the modification and all subsequent
IA-64 instruction fetches see the modification.

IA-32 Usage of IA-64 Registers

This section lists software considerations for the 1A-64 general and floating-point registers, and the
ALAT when interacting with 1A-32 code.

IA-64 Register Stack Engine

Software must ensure that all dirty registers in the register stack have been flushed to the backing
store using &l ushrs instruction before starting 1A-32 execution either viatthei a or rfi .

Any dirty registers left in the current and prior register stack frames will be modified. For details on
register stack, refer t8ection 4.1, “Register Stack” on page 4-1

Once IA-32 instruction set execution is entered, the RSE is effectively disabled, regardless of any
RSE control register enabling conditions.

After exiting the 1A-32 instruction set due td @pe instruction or interruption, all stacked registers
are marked as invalid and the number of clean registers is set to zero.

IA-64 ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software cannot rely
on ALAT values being preserved across an instruction set transition. On entry to IA-32 code,
existing entries in the ALAT are ignored. For details on ALAT, ref&dotion 4.4.5.2, “Data
Speculation and Instructions” on page 4-17
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IA-64 NaT/NaTVal Response for 1A-32 Instructions

If 1A-64 code setsaNaT condition in the integer registers or aNaTVal condition in afloating-point
register, MM X technology register or Streaming SIMD Extension register before switching to the
IA-32 instruction set the following conditions can arise:

* |A-32 dependent instructions that directly or indirectly consume a propagated NaT register

will either propagate the NaT indication or generate a NaT Register Consumption abort.
Whether a processor generates a NaT Register Consumption abort or propagates the NaT is
model specific. NaT Register Consumption aborts encountered during 1A-32 execution may
terminate |A-32 instructions in the middle of execution with some architectural state already
modified. In no case will the processor allow a NaTed input register to be used without either
propagating the NaT or generating a NaT Register Consumption fault.

| A-64 floating-point NaTVal values must not be propagated into | A-32 floating-point
instructions, otherwise processor operation is model specific and undefined. Processors may
convert floating-point register(s) containing NaTVal to a SNAN (during entry to the IA-32
instruction set or on a consuming 1A-32 floating-point instruction). Dependent 1A-32
floating-point instructions that directly or indirectly consume a propagated NaT Val register
will either propagate the NaTVal indication or generate an | A-32_Exception (FPError Invalid
Operand) fault. Whether a processor generates the fault or propagates the NaT Val is model
specific. In no case will the processor allow aNaTVal register to be used without either
propagating the NaTVal or generating an 1A-32_Exception (FPError Invalid Operand) fault.
Note: it isnot possiblefor |A-32 codeto read aNaTVal from amemory location with an 1A-32
floating-point load instruction since a NatVal can not be expressed by a 80-bit double extended
precision number. It is highly recommended that floating-point values be passed on the
memory stack per typical 1A-32 calling conventions to avoid problems with NatVal and |A-64
denormals.

IA-32 Streaming SIMD Extension instructions that directly or indirectly consume a register

containing a NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s

mantissa field as a legal data value.

IA-32 MM X technology instructions that directly or indirectly consume aregister containing a

NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s mantissa field

as a legal data value.

Software should not rely on the behavior of NaT or NaTVal during IA-32 instruction execution, or
propagate NaT or NaTVal into IA-32 instructions.

JMPE—Jump to IA-64 Instruction Set

Opcode Instruction Description

OF 00 /6 JMPE r/m16 Jump to IA-64, indirect address specified by r/m16

OF 00 /6 JMPE r/m32 Jump to IA-64, indirect address specified by r/m32

OF B8 JMPE disp16 Jump to 1A-64, absolute address specified by addr16

OF B8 JMPE disp32 Jump to 1A-64, absolute address specified by addr32
Description

Thisinstruction is available only on 1A-64 processorsin the |A-64 System Environment.

JMPE switches the processor to the IA-64 instruction set and starts execution at the specified
target address There are two forms; an indirect form, r/mr16/32, and an unsigned absolute
form, disp16/32. Both 16 and 32-bit formats are supported.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 6-25




6-26

intel.

The absol ute form computes the 16-byte aligned 64-bit virtual target address in the |A-64
instruction set by adding the unsigned 16 or 32-bit displacement to the current CS base (IP{31:0} =
displ6/32 + CSD.base). Theindirect form specifiesthe virtual 1A-64 target address by the contents
of aregister or memory location (IP{31:0} = [r/m16/32] + CSD.base).

GR[1] isloaded with the next sequential instruction address following JMPE.

JMPE performs a FWAIT operation, any pending |A-32 unmasked floating-point exceptions are
reported as faults on the JMPE instruction.

JMPE does not perform amemory fence or serialization operation.
Successful execution of JMPE clears EFLAGf to zero.

If the |A-64 register stack engine is enabled for eager execution, the register stack engine may
immediately start loading registers when the processor enters the | A-64 instruction set.
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IA-64

Instruction Reference 4

7.1

Table 7-1.

Table 7-2.

This chapter describes the function of 1A-64 instructions. The pages of this chapter are sorted
alphabetically by assembly language mnemonic.

Instruction Page Conventions

The instruction pages are divided into multiple sections aslisted in Table 7-1. The first four sections are
present on al instruction pages. The last three sections are present only when necessary. Table 7-2 lists
the font conventions which are used by the instruction pages.

Instruction Page Description

Section Name Contents
Format Assembly language syntax, instruction type and encoding format
Description Instruction function in English
Operation Instruction function in C code
FP Exceptions IEEE floating-point traps

Instruction Page Font Conventions

Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic
italic (Format section) Assembly language field name that must be filled with one of a range
of legal values listed in the Description section
code (Operation section) C code specifying instruction behavior
code italic (Operation section) Assembly language field name corresponding to a italic field listed

in the Format section

In the Format section, register addresses are specified using the assembly mnemonic field names givenin
the third column of Table 7-3. For instructions that are predicated, the Description section assumes that
the qualifying predicate istrue (except for instructions that modify architectural state when their
qualifying predicate isfalse). The test of the qualifying predicate isincluded in the Operation section
(when applicable).

In the Operation section, registers are addressed using the notation r eg[ addr] . fi el d. Theregister file
being accessed is specified by r eg, and has a value chosen from the second column of Table 7-3. The
addr field specifies aregister address as an assembly language field name or a register mnemonic. For
the general, floating-point, and predicate register files which undergo register renaming, adar isthe
register address prior to renaming and the renaming is not shown. Thef i el d option specifies anamed bit
field within theregister. If f i el d is absent, then all fields of the register are accessed. The only exception
iswhen referencing the data field of the general registers (64-bits not including the NaT bit) where the
notation GR addr] is used. The syntactical differences between the code found in the Operation section
and standard Cislisted in Table 7-4.
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Register File C Notation Qiiﬁ%&lﬁé Z‘géreescst
Application registers AR ar
Branch registers BR b
CPU identification registers CPUID cpuid Y
Floating-point registers FR f
General registers GR r
Performance monitor data registers PMD pmd Y
Predicate registers PR p
Table 7-4. C Syntax Differences
Syntax Function

{msb:Isb}, {bit}

Bit field specifier. When appended to a variable, denotes a bit field extending from the most
significant bit specified by “msb” to the least significant bit specified by “Isb” including bits “msb”
and “Isb”. If “msb” and “Isb” are equal then a single bit is accessed. The second form denotes a

single bit.

u>, U>=, U<, u<=

Unsigned inequality relations. Variables on either side of the operator are treated as unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.
u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.
u*

Unsigned multiplication. Operands are treated as unsigned.

The remainder of this chapter provides a description of 1A-64 instruction.

Instruction Descriptions
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Format:

Description:

Operation:

(qp) add I’1= r2, I’3

(gp) add rq=rp,r3, 1
(gp) add rq=imm, r3
(gp) adds ry =immyy, r3
(gp) addl ry=immyy, rg

check_target_register(ry);

if (register_form

tnp_src = R rj;
else if (immd_form

tnp_src = sign_ext(inmmy, 14);
el se

tnp_src = sign_ext(immy, 22);

tmp_nat = (register_form? GRr,.nat :

if (plusl_form
GRrg] =tnp_src + GRrg] + 1
el se

&Rrg =tnmp_src + Grgl;
CRryj]l.nat = tnp_nat || GRrg.nat;

IA-64 Application Developer’s Architecture Guide, Rev. 1.0

0);

register_form

plusl form, register form
pseudo-op

imml14_form
imm22_form

The two source operands (and an optional constant 1) are added and the result placed in GR r;. In the
register form thefirst operand is GR ro; in theimm_14 form the first operand is taken from the sign
extended immy 4 encoding field; in the imm22_form the first operand is taken from the sign extended
immy, encoding field. In theimm22_form, GR r3 can specify only GRs 0, 1, 2 and 3.

The immediate-form pseudo-op chooses the imm14_form or imm22_form based upon the size of the
immediate operand and the valuein GRr.

if (PRgp]) {

Il register form
/1 14-bit imrediate form

[l 22-bit imrediate form

add

Al
Al

A4
A5

The plusl_form isavailable only in the register_form (although the equivalent effect in the immediate
forms can be achieved by adjusting the immediate).
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Add Pointer
Format: (gp) addp4 ry=ry, 13 register_form Al
(gp) addp4 rq=immyy, r3 imm14_form Ad

Description:  The two source operands are added. The upper 32 bits of the result are forced to zero, and then bits
{31:30} of GRr5 are copied to bits {62:61} of the result. Thisresult isplaced in GRr4. In the
register_form the first operand is GR r; in theimm14_form the first operand is taken from the sign
extended imm,, encoding field.

Figure 7-1. Add Pointer

32 0 32 30 0

GR r: 0 0
63 61 32 0

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? CRr,] : sign_ext(immy, 14));
tmp_nat = (register_form? GRr,].nat : 0);

tmp_res = tnp_src + GRr3;

tnp_res = zero_ext(tnp_res{31:0}, 32);

tmp_res{62: 61} = GR rz] {31: 30};
CGRrg;] =tnp_res;
GRrgjl.nat =tnp_nat || GRrg].nat;
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alloc

Allocate Stack Frame

Format:

Description:

dloc ry=arpfs i, l, o, r M34

A new stack frameis allocated on the general register stack, and the Previous Function State register
(PFS) is copied to GR r4. The change of frame sizeisimmediate. The write of GR r4 and subsequent
instructions in the same instruction group use the new frame. This instruction cannot be predicated.

The four parameters, i (size of inputs), | (size of locals), o (size of outputs), and r (size of rotating) specify
the sizes of the regions of the stack frame.

Figure 7-2. Stack Frame

Operation:

GR32
Local Output
<—>‘ sof -
sol

The size of the frame (sof) isdetermined by i + | + 0. Note that thisinstruction may grow or shrink the size
of the current register stack frame. The size of the local region (sol) isgiven by i + 1. Thereisno real
distinction between inputs and locals. They are given as separate operands in the instruction only as a hint
to the assembler about how the local registers are to be used.

The rotating registers must fit within the stack frame and be amultiple of 8 in number. If thisinstruction
attempts to change the size of CFM.sor, and the register rename base registers (CFM.rrb.gr, CFM.rrb.fr,
CFM.rrb.pr) are not all zero, then the instruction will cause a Reserved Register/Field fault.

Although the assembler does not alow illegal combinations of operandsfor alloc, illegal combinations
can be encoded in theinstruction. Attempting to allocate a stack frame larger than 96 registers, or with the
rotating region larger than the stack frame, or with the size of localslarger than the stack frame, will cause
an lllegal Operation fault. An al | oc instruction must be the first instruction in an instruction group.
Otherwise, the results are undefined.

If insufficient registers are available to allocate the desired frame al | oc will stall the processor until
enough dirty registers are written to the backing store. Such mandatory RSE stores may cause the data
related faults listed below.

tnp_sof =i + [ + o
tmp_sol =i + [;
tnp_sor =r u>> 3;

check_target_register_sof (rgz, tnp_sof);
if (tnmp_sof u> 96 || r u> tnp_sof || tnp_sol u> tnp_sof)
illegal operation fault();
if (tnp_sor != CFM sor &&
(CFMrrb.gr '=0 || CFMrrb.fr =0 || CFMrrb.pr = 0))
reserved_register field fault();

al at _frane_update(0, tnp_sof - CFMsof);
rse_new frame(CFM sof, tnp_sof);// Make roomfor new regi sters; Mandatory RSE
/1 stores can raise faults |isted bel ow

CFM sof = tnp_sof;
CFM sol = tnp_sol ;
CFM sor = tnp_sor;
&R r;] = AR PFS];
&R rq .nat = 0;
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Logical And
Format: (gp) and ry=ry, 15 register_form Al
(gp) and ry =immg, ry imm8_form A3

Description:  Thetwo source operands arelogically ANDed and the result placed in GR r. Inthe register_form the first
operand is GR r; in theimm8_form the first operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? CRr,] : sign_ext(img, 8));
t = (register_form? GR[r,.nat : 0);

GRrg =tnmp_src & GRrj;
GRrqjl.nat = tnp_nat || GRrg.nat;
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And Complement

Format: (gp) andem rq=r,, 13 register_form Al
(gp) andcm rq=immg, r3 imm8_form A3
Description:  The first source operand is logically ANDed with the 1’'s complement of the second source operand and
the result placed in GR. In the register_form the first operand is GRin the imm8_form the first
operand is taken from theimg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? GRr, : sign_ext(imy, 8));
t = (register_form? GR[r,.nat : 0);

Rrg =tnp_src & ~Rrg;
GRrgjl.nat = tnp_nat || GRrg.nat;
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Branch

Format:

Description:

(gp) br.btype.bwh.ph.dh target,s ip_relative form Bl

(gp) br.btype.bwh.ph.dh b, = target,s cal_form, ip_relative_form B3
br.btype.bwh.ph.dh targetog counted form, ip_relative form B2
br.ph.dh target,s pseudo-op

(gp) br.btype.bwh.ph.dh b, indirect form B4

(gp) br.btype.bwh.ph.dh b; =b, call_form, indirect_form B5
br.ph.dh b, pseudo-op

A branch calculation is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of abranch logically follows the execution of all previous
non-branch instructions in the same instruction group. On a taken branch, execution begins at slot 0.

Branches can be either IP-relative, or indirect. For | P-relative branches, the target,s operand, in assembly,
specifies alabel to branch to. Thisis encoded in the branch instruction as a signed immediate
displacement (imm,4) between the target bundle and the bundle containing thisinstruction (immy, =
targetos — IP >> 4). For indirect branches, the target address is taken frdmp. BR

Table 7-5. Branch Types

7-8

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-rel or Indirect
call Conditional procedure call Qualifying predicate IP-rel or Indirect
ret Conditional procedure return Qualifying predicate Indirect

ia Invoke 1A-32 instruction set Unconditional Indirect

cloop Counted loop branch Loop count IP-rel

ctop, cexit Mod-scheduled counted loop Loop count and epilog count IP-rel

wtop, wexit Mod-scheduled while loop Qualifying predicate and epilog count IP-rel

There are two pseudo-ops for unconditional branches. These are encoded like a conditionditigpanch (
= cond), with thegp field specifying PR 0, and with thmsvh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has other
effects (such as writing a link register). For the basic branch types, the branch condition is simply the
value of the specified predicate register. These basic branch types are:

¢ cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.
¢ call: If the qualifying predicateis 1, the branch is taken and several other actions occur:

— The current values of the Current Frame Marker (CFM), the EC application register and the
current privilege level are saved in the Previous Function State application register.

— The caller’s stack frame is effectively saved and the callee is provided with a frame containing
only the caller’s output region.

— The rotation rename base registers in the CFM are reset to 0.
— Arreturn link value is placed in BR.
¢ return: If the qualifying predicateis 1, the branch is taken and the following occurs:

— CFM, EC, and the current privilege level are restored from PFS. (The privilege level is restored
only if this does not increase privilege.)

— The caller’s stack frame is restored.
— If the return lowers the privilege, and PSR.Ip is 1, then a Lower-privilege Transfer trap is taken.
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¢ ja: Thebranch istaken unconditionaly, if it is not intercepted by the OS. The effect of the branch is
toinvokethe IA-32 instruction set (by setting PSR.isto 1) and begin processing | A-32 instructions at
the virtual linear target address contained in BR by{ 31:0} . If the qualifying predicateis not PR O, an
Illegal Operation fault israised.

The |A-32 target effective addressis calculated relative to the current code segment, i.e. EIP{31:0} =

BR bx{31:0} — CSD.base. The IA-32 instruction set can be entered at any privilege level, provided
instruction set transitions are not disabled. No register bank switch nor change in privilege level
occurs during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are loaded before issuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an IA-32_Exception(GPFault) is raised on the target IA-32 instruction. For entry into

16-bit IA-32 code, if BRo, is not within 64K-bytes of CSD.base a GPFault is raised on the target
instruction. EFLAG.rf is unmodified until the successful completion of the first IA-32 instruction.
EFLAG.if is not cleared until the target 1A-32 instruction successfully completes.

Software must issuerd instruction before the branch if memory ordering is required between |A-32
processor consistent and |1A-64 unordered memory references. The processor does not ensure
IA-64-instruction-set-generated writes into the instruction stream are seen by subsequent 1A-32
instruction fetchesr . i a does not perform an instruction serialization operafitve processor

does ensure that prior writes (even in the same instruction group) to GRs and FRs are observed by the
first IA-32 instruction. Writes to ARs within the same instruction groujr asa are not allowed,

sincebr . i a may implicitly reads all ARs. If an illegal RAW dependency is present between an AR
write andbr . i a, the first IA-32 instruction fetch and execution may or may not see the updated AR
value.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely on
ALAT values being preserved across an instruction set transition. On entry to IA-32 code, existing
entries in the ALAT are ignored. If the register stack contains any dirty registers, an lllegal Operation
fault is raised on ther . i a instruction. All registers left in the current register stack frame are left
undefined during 1A-32 instruction set execution. The current register stack frame is forced to zero.
To flush the register file of dirty registers, theushr s instruction must be issued in an instruction
group proceeding ther . i a i nstruction. To enhance the performance of the instruction set

transition, software can start the I1A-64 register stack flush in parallel with starting the 1A-32
instruction set by 1) ensuringushr s is exactly one instruction group before thei a, and 2)

br.iais in the first B-slotbr . i a should always be executed in the first B-slot with a hint of
“static-taken” (default), otherwise processor performance will be degraded.

Another branch typeis provided for simple counted loops. This branch type uses the Loop Count
application register (LC) to determine the branch condition, and does not use a qualifying predicate:

¢ cloop: If the LC register is not equal to zero, it is decremented and the branch is taken.

In addition to these simple branch types, there are four types which are used for accelerating

modul o-scheduled loops. Two of these are for counted loops (which use the L C register), and two for
while loops (which use the qualifying predicate). These loop types use register rotation to provide register
renaming, and they use predication to turn off instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some while loops, a
portion of the prolog stages. In the epilog phase, EC is decremented each time around and, for most loops,
when EC is one, the pipeline has been drained, and the loop is exited. For certain types of optimized,
unrolled software-pipelined loops, the target of abr. cexit or br. wexit isset to the next sequential
bundle. In this case, the pipeline may not be fully drained when EC is one, and continues to drain while
EC iszero.

For these modul o-scheduled |oop types, the cal culation of whether the branch is taken or not depends on

the kernel branch condition (L C for counted types, and the qualifying predicate for while types) and on the
epilog condition (whether EC is greater than one or not).
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These branch types are of two categories: top and exit. The top types (ctop and wtop) are used when the
loop decision islocated at the bottom of the loop body and therefore ataken branch will continue the loop
while afall through branch will exit the loop. The exit types (cexit and wexit) are used when the loop
decision is|located somewhere other than the bottom of the loop and therefore afall though branch will
continue the loop and a taken branch will exit the loop. The exit types are also used at intermediate points
in an unrolled pipelined loop.

The modulo-scheduled |oop types are:

¢ ctop and cexit: These branch types behave identically, except in the determination of whether to
branch or not. For br . ct op, the branch is taken if either LC is non-zero or EC is greater than one.
For br. cexi t , the oppositeistrue. It isnot taken if either LC isnon-zero or EC is greater than one
and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate initialization.
During the prolog and kernel phase, when LC is non-zero, LC counts down. When br . ct op or

br. cexit isexecuted with LC equal to zero, the epilog phase is entered, and EC counts down. When
br.ctoporbr. cexit isexecuted with LC equal to zero and EC equal to one, afinal decrement of
EC and afinal register rotation are done. If LC and EC are equal to zero, register rotation stops.
These other effects are the same for the two branch types, and are described in Figure 7-3.

Figure 7-3. Operation of br.ctop and br.cexit

ctop, cexit
== 0 (epilog) (special
unrolled
=0 >1 =0 IOOpS)
(prolog /
kernel)

Y

LC-- | .c=tc | | c=1c | [ Lc=Lc |

y L] L]
EC = EC | Ec- | | Ec- | [ EC=EC |

v L] L] v
PR[63] = 1 | PR63]=0 | | PR63]=0 | [ PR[63]=0 |
L] v v L]
RRB-- | RRB- | | RRB- | [RRB=RRB]
- | | ]
ctop: branch V‘ ctop: fall-thru
cexit: fall-thru cexit: branch

wtop and wexit: These branch types behave identically, except in the determination of whether to
branch or not. For br . wt op, the branch istaken if either the qualifying predicateisoneor ECis
greater than one. For br . wexi t , the oppositeistrue. It is not taken if either the qualifying predicate
isone or EC is greater than one, and is taken otherwise.

These branch types a so use the qualifying predicate and EC to control register rotation and predicate
initialization. During the prolog phase, the qualifying predicate is either zero or one, depending upon
the scheme used to program the loop. During the kernel phase, the qualifying predicate is one.
During the epilog phase, the qualifying predicate is zero, and EC counts down. When br . wt op or
br. wexi t isexecuted with the qualifying predicate equal to zero and EC equal to one, afinal
decrement of EC and afinal register rotation are done. If the qualifying predicate and EC are zero,
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register rotation stops. These other effects are the same for the two branch types, and are described in
Figure 7-4.

Figure 7-4. Operation of br.wtop and br.wexit

wtop, wexit

==0 (prolog / epilog) (special
unrolled
loops)

>1

(prolog/ | ==1
kernel) (prolog /
epilog)
\

(epilog)
i L
| Eec- | [ Ec- | | EC=EC |
v v v
| PR[B;%]:O | PR[B;%]:O | PR[B;%]:O |

RRB-- | RRB- | | RRB- | |RRB=RRB]
B | | ]
wtop: branch v wtop: fall-thru ‘
wexit: fall-thru wexit: branch

The loop-type branches (br . ¢l oop, br. ct op, br. cexi t, br.w op, and br . wexi t) areonly allowed in
instruction slot 2 within abundle. Executing such an instruction in either slot 0 or 1 will cause an Illegal
Operation fault, whether the branch would have been taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are slightly different for
branch instructions. Changes to BRs, PRs, and PFS by non-branch instructions are visible to a subsequent
branch instruction in the same instruction group (i.e., alimited RAW is allowed for these resources). This
allows for alow-latency compare-branch sequence, for example. The normal RAW requirements apply to
the LC and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the reading and writing
instructions are branches. For example, abr . wt op or br . wexi t may not use PR[63] asits qualifying
predicate and PR[63] cannot be the qualifying predicate for any branch preceding abr . wt op or

br . wexi t in the same instruction group.

For dependency purposes, the loop-type branches effectively always write their associated resources,
whether they are taken or not. The cloop type effectively alwayswritesLC. When LC is 0, acloop branch
leaves it unchanged, but hardware may implement this as are-write of L C with the same value. Similarly,
br.ctopandbr. cexit effectively awayswrite LC, EC, the RRBs, and PR[63]. br . wt op and br . wexi t
effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether Prediction Strategy
hints are shown in Table 7-6. Sequential Prefetch hints are shown in Table 7-7. Branch Cache
Deadllocation hints are shown in Table 7-8.

Table 7-6. Branch Whether Hint

bwh Completer Branch Whether Hint

spnt Static Not-Taken

sptk Static Taken
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Table 7-6. Branch Whether Hint

bwh Completer

Branch Whether Hint

dpnt

Dynamic Not-Taken

dptk

Dynamic Taken

Table 7-7. Sequential Prefetch Hint

ph Completer

Sequential Prefetch Hint

few or none

Few lines

many

Many lines

Table 7-8. Branch Cache Deallocation Hint

dh Completer

Branch Cache Deallocation Hint

none

Don’t deallocate

clr Deallocate branch information

Operation: if (ip_relative_form
tmp_IP = IP + sign_ext((immp; << 4),
else // indirect_form

tnp_IP = BRI b ;

if (btype!=tia)
tmp_IP =tmp_IP & ~Oxf;

lower_priv_transition = 0;

switch (bt ype) {
case ‘cond’:
tmp_taken = PR[
break;

qpl;

case ‘call:
tmp_taken =PR[  gp];
if (tmp_taken) {
BR[b;] = IP + 16;

AR[PFS].pfm = CFM;
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr=0;
CFM.rrb.pr =0;
}

break;

case ‘ret’:
tmp_taken = PR[
if (tmp_taken) {

qpl;

7-12

/1 determ ne branch target
25);

/l for IA-64 branches,

/I ignore bottom 4 bits of target

/I simple conditional branch

/I call saves a return link

/I ... and saves the stack frame

/I new frame size is size of outs

/I return restores stack frame
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// tnp_growth indicates the amount to nove |ogical TOP *up*:

/1 tnp_growth = sizeof (previous out) - sizeof(current frame)

// a negative anount indicates a shrinking stack

tnp_growth = (AR PFS].pfmsof - AR[PFS].pfmsol) - CFM sof;

al at _frane_updat e(- AR PFS] . pfmsol, 0);

rse_fatal = rse_restore_frane(AR PFS]. pfmsol, tnp_growh, CFM sof);
if (rse_fatal) {

CFM sof = 0;
CFM sol = 0;
CFM sor = O;
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb. pr = 0;

} else // nornal Branch return
CFM = AR] PFS] . pf m

rse_enabl e_current _frame_| oad();
AR EC] = AR PFS]. pec;
if (PSR cpl u< AR PFS].ppl) { /1 ... and restores privilege
PSR cpl = AR PFS]. ppl;
lower_priv_transition = 1;
}
}
br eak;

case ‘ia’: /I switch to IA mode
tmp_taken = 1;
if (gp = 0)
illegal_operation_fault();
if (AR[BSPSTORE] = AR[BSP])
illegal_operation_fault();
if (PSR.di)
disabled_instruction_set _transition_fault();
PSR.is=1; /I set IA-32 Instruction Set Mode
CFM.sof = 0; /[force current stack frame
CFM.sol = 0; [lto zero
CFM.sor =0;
CFM.rrb.gr =0;
CFM.rrb.fr = 0;
CFM.rrb.pr =0;
rse_invalidate_non_current_regs();

/I Note the register stack is disabled during 1A-32 instruction set execution
break;

case ‘cloop”: /I simple counted loop
if (slot 1= 2)
illegal_operation_fault();
tmp_taken = (AR[LC] != 0);
if (AR[LC] !=0)

AR[LC]--;
break;
case ‘ctop’:
case ‘cexit”: /I SW pipelined counted loop
if (slot 1= 2)

illegal_operation_fault();
if ( btype=="ctop’) tmp_taken = ((AR[LC]!=0) || (AR[EC] u> 1));
if (bt ype == ‘cexit')tmp_taken = ((AR[LC] != 0) || (AR[EC] u> 1));
if (AR[LC] '=0) {

AR[LC]-;

AR[EC] = AR[EC];
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PR 63] = 1;
rotate_regs();

} else if (AREQ !'=0) {

ARLG = ARL];
AR[EC] - -;
PR 63] = O;
rotate_regs();
} else {
AR[LC = ARLC;
ARLEC = AREC;
PR 63] = 0;
CFMrrb.gr = CFMrrb. gr;
CFMrrb.fr = CFMrrb.fr;
CFMrrb.pr = CFMrrb. pr;
}
br eak;
case ‘wtop’”:
case ‘wexit’:
if (slot I= 2)

illegal_operation_fault();
if ( btype=="'wtop’) tmp_taken = (PR][
if (bt ype =="wexit)tmp_taken = |(PR[
if (PR gp]) {

AR[EC] = AR[EC];

PR[63] = 0;

rotate_regs();
} else if (AR[EC] = 0) {

AR[EC]--;

PR[63] = 0;

rotate_regs();
}else {

AR[EC] = AR[EC];

PR[63] = 0;

CFM.rrb.gr = CFM.rrb.gr;

CFM.rrb.fr = CFM.rrb.fr;

CFM.rrb.pr = CFM.rrb.pr;
}

break;

}

if (tmp_taken) {
taken_branch =1,
IP =tmp_IP;

/I SW pipelined while loop

gp] || (AR[EC] u> 1));
ap] || (AR[EC] u> 1));

// set the new value for IP

if (PSR.it && unimplemented_virtual_address(tmp_IP))
[| (PSR.it && unimplemented_physical_address(tmp_IP)))
unimplemented_instruction_address_trap(lower_priv_transition,tmp_IP);

if (lower_priv_transition && PSR.Ip)
lower_privilege_transfer_trap();
if (PSR.tb)
taken_branch_trap();
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Break

Format:

Description:

Operation:

(gp) bresk immy, pseudo-op
(gp) break.i immy, i_unit_form
(gp) break.b immy, b_unit form
(gp) break.m immy m_unit_form
(gp) break.f immyy f_unit_form
(gp) break.x immg, X_unit_form

break

119
B9
M37
F15
X1

A Break Instruction fault istaken. For thei_unit_form, f_unit_form and m_unit_form, the value specified

by imm,, is zero-extended and placed in the Interruption Immediate control register (11M).

For the b_unit_form, imm,, isignored and the value zero is placed in the Interruption Immediate control

register (11M).

For the x_unit_form, the lower 21 bits of the value specified by immg, is zero-extended and placed in the

Interruption Immediate control register (1IM). The L dot of the bundle contains the upper 41 bits of

immgp.

Thisinstruction has five forms, each of which can be executed only on a particular execution unit type.

The pseudo-op can be used if the unit type to execute on is unimportant.

it (PRgp]) {
if (b_unit_form
i mredi ate = 0;
else if (x_unit_form
imedi ate = zero_ext (i mry, 21);
else // i_unit_form|| munit _form|| f_unit_form
i mredi ate = zero_ext (imm; 21);

break_instruction_faul t(i nmedi ate);
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Speculation Check

Format: (gp) chk.s r,, targetog pseudo-op
(gp) chk.si ro, target,s control_form, i_unit_form, gr_form 120
(gp) chk.sm r,, target,s control_form, m_unit_form, gr_form M20
(gp) chk.s f,, targetyg control_form, fr_form M21
(gp) chk.aaclr rq, targetys data form, gr_form M22
(gp) chk.a.aclr fq, target,s data form, fr_form M23

Description:  The result of acontrol- or data-speculative calculation is checked for success or failure. If the check fails,
abranch to target,s is taken.

In the control _form, success is determined by a NaT indication for the source register. If the NaT bit
corresponding to GRr, is 1 (inthe gr_form), or FR f, containsaNaTVal (in the fr_form), the check fails.

In the data_form, success is determined by the ALAT. The ALAT is queried using the general register
specifier rq (in the gr_form), or the floating-point register specifier f; (in the fr_form). If no ALAT entry
matches, the check fails. An implementation may optionally cause the check to fail independent of
whether an ALAT entry matches.

The target,5 operand, in assembly, specifies alabel to branch to. Thisis encoded in theinstruction as a
signed immediate displacement (immy;) between the target bundle and the bundle containing this
instruction (immy; = targetys — 1P >> 4).

The control_form of this instruction for checking general registers can be encoded on either an I-unit or an
M-unit. The pseudo-op can be used if the unit type to execute on is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally invalidated,
based on the value of tlaelr completer (Se&able 7-9.

Table 7-9. ALAT Clear Completer

aclr Completer Effect on ALAT
clr Invalidate matching ALAT entry
nc Don't invalidate

Note that if theclr value of theaclr completer is used and the check succeeds, the matching ALAT entry is
invalidated. However, if the check fails (which may happen even if there is a matching ALAT entry), any
matching ALAT entry may optionally be invalidated, but this is not required. Recovery code for data
speculation, therefore, cannot rely on the absence of a matching ALAT entry.
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Operation: if (PREgp]) {

if (control_forn ({

if (fr_form&& (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0)))
di sabled fp register_fault(tnp_isrcode, 0);

check_type = gr_form ? CHKS _GENERAL : CHKS_FLQAT;
fail = (gr_formé&x GRro].nat) || (fr_form&& FR f,] == NATVAL);

} else { // data_form
reg_type = gr_form? GENERAL : FLQAT;
alat_index = gr_form? r; : (data_form? f;: f));

check_type = gr_form? CHKA GENERAL : CHKA FLQAT;
fail = lalat_cnp(reg_type, alat_index);

}
if (fail) {
taken_branch = 1;
IP = 1P + sign_ext((inmmp; << 4), 25);
if ((PSRit && uninpl emented_virtual _address(IP))
|| (!'PSRit && uninplenmented_physical _address(I1P)))
uni npl enented_i nstructi on_address_trap(0, IP);
if (PSR th)
taken_branch_trap();

}
if (!fail & data_form && (aclr =="‘clr))
alat_inval_single_entry(reg_type, alat_index);
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Clear RRB

Format: clrrrb al form B8
clrrrb.pr pred_form B8

Description:  Intheall_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and CFM.rrb.pr) are cleared.
In the pred_form, the single register rename base register for the predicates (CFM.rrb.pr) is cleared.

Thisinstruction must be the last instruction in an instruction group, or an Illegal Operation fault is taken.

This instruction cannot be predicated.

Operation: if ('followed_by stop())
illegal operation fault();
if (all_form {
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb.pr = 0;
} else { // pred_form

CFMrrb.pr = 0
}
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Compare

Format:

Description:

cmp
(gp) cmp.crel.ctype py, P, =rp, I3 register_form A6
(gp) cmp.crel.ctype py, p, =immg, r3 imm8_form A8
(ap) cmp.crel.ctype pq, p, =10, 3 parallel_inequality form A7
(gp) cmp.crel.ctype pq, pp=r3, 10 pseudo-op
The two source operands are compared for one of ten relations specified by crel. This produces a boolean

result which is 1 if the comparison condition istrue, and O otherwise. This result is written to the two
predicate register destinations, p; and p,. The way the result iswritten to the destinations is determined by
the compare type specified by ctype.

The compare types describe how the predicate targets are updated based on the result of the comparison.
The normal type simply writes the compare result to one target, and the complement to the other. The
parallel types update the targets only for a particular comparison result. This allows multiple simultaneous
OR-type or multiple simultaneous AND-type compares to target the same predicate register.

The unc type is special in that it first initializes both predicate targets to 0, independent of the qualifying
predicate. It then operates the same as the normal type. The behavior of the compare typesis described in
Table 7-10. A blank entry indicates the predicate target is left unchanged.

Table 7-10. Comparison Types

PR[gp]==1
ctype Pseudo-op PRIqp]==0 result==0, result==1, One or More
of No Source NaTs No Source NaTs Source NaTs
PRIpj | PRIpz | PRIp4 PR[pZ] PR[p; | PR[pza | PRIpi | PRIpZ
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1 1
and 0 0 0 0
or.andcm 1 0
orcm or 1 1
andcm and 0 0 0 0
and.orcm | or.andcm 0 1

Intheregister_form the first operand is GR r,; in theimm8_form the first operand is taken from the sign
extended immg encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
parallel_inequality_form is only used when the compare typeis one of the parallel types, and the relation
isan inequality (>, >=, <, <=). See below.

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops. For
these, the assembler simply switches the source operand specifiers and/or switches the predicate target
specifiers and uses an implemented relation. For some of the pseudo-op comparesin theimm8_form, the
assembler subtracts 1 from the immediate value, making the allowed immediate range slightly different.
Of the six parallel compare types, three of the types are actually pseudo-ops. The assembler simply uses
the negative relation with an implemented type. The implemented relations and how the pseudo-ops map
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onto them are shown in Table 7-11 (for normal and unc type compares), and Table 7-12 (for parallel type
compares).

Table 7-11. 64-bit Comparison Relations for Normal and unc Compares

crel Compare Relation Register Form is a Immediate Form is a Immediate Range
(arel b) Pseudo-op of Pseudo-op of 9

eq a==b -128 .. 127

ne |al=b eq PL - P |eq Py~ Py |-128.. 127

It a<b signed -128 .. 127

le a<=b It aob Propy [t al -127 .. 128

gt a>b t aob It al pPg- Py |-127.128

ge a>=b It PPy |t P - P |-128..127

Itu a<b unsigned 0..127, 254128 .. 2641

leu |a<=b tu aob Ppops |Itu al 1..128, 2%4.127 . 254

gu |a>b tu aob Itu al Pgo Py |1.128, 254127 264

geu |a>=b Itu Pp - Py |ltu Py - Pp | 0. 127, 254128 . 2641

The parallel compare types can be used only with arestricted set of relations and operands. They can be
used with equal and not-equal comparisons between two registers or between aregister and an immediate,
or they can be used with inequality comparisons between aregister and GR 0. Unsigned relations are not
provided, since they are not of much use when one of the operandsis zero. For the parallel inequality
comparisons, hardware only directly implements the ones where the first operand (GR r,) isGR 0.
Comparisons where the second operand is GR 0 are pseudo-ops for which the assembler switches the
register specifiers and uses the opposite rel ation.

Table 7-12. 64-bit Comparison Relations for Parallel Compares

crel Compare Relation Register Form is a Immediate Range
(arel b) Pseudo-op of
eq a==b -128 .. 127
ne a=b -128 .. 127
It o<b signed no immediate forms
It a<o gt ao-b
le 0<=b
le a<=0 ge aob
gt o>b
gt a>o0 It ao-b
ge 0>=b
ge a>=0 le aob
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cmp
Operation: if (PRLgp]) {
it (p1 == p2)
illegal operation fault();
tmp_nat = (register_form? GRr ].nat R rg . nat;
if (register_forn
tnp_src = R rjl;
else if (im8_form
trmp_src = sign_ext(/immg, 8);
else // parallel _inequality form
tnp_src = 0;
if (crel =='eq’) tmp_rel =tmp_src == GR[ rsl;
else if ( crel =='ne’) tmp_rel =tmp_src = GR[ rsl;
else if ( crel =='It) tmp_rel =lesser_signed(tmp_src, GR[ r3);
else if ( crel =='le") tmp_rel = lesser_equal_signed(tmp_src, GR[ r3l);
else if ( crel =='gt') tmp_rel = greater_signed(tmp_src, GR[ r3l);
else if crel =='ge’) tmp_rel = greater_equal_signed(tmp_src, GR[ r3l);
else if ( crel =='ltu’) tmp_rel = lesser(tmp_src, GR[ r3l);
else if ( crel =='lew’) tmp_rel =lesser_equal(tmp_src, GR[ r3l);
else if ( crel =='gtu’) tmp_rel = greater(tmp_src, GR[ r3);
else tmp_rel = greater_equal(tmp_src, GR[ r3l); /Il 'geu’
switch ( ctype){
case ‘and’: /I and-type compare
if (tmp_nat || 'tmp_rel) {
PR[p4] =0;
PR[p2] = 0;
break;
case ‘or’: /I or-type compare
if ('tmp_nat && tmp_rel) {
PR[p;]=1;
PR[pz] = 1;
break;
case ‘or.andcm’: I/ or.andcm-type compare
if (tmp_nat && tmp_rel) {
PR[p;] =1,
) PR[p2] = 0;
break;
case ‘unc’ /I unc-type compare
default: /l normal compare
if (tmp_nat) {
PR[p;] = 0;
PR[p2] =0;
}else{
PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;
break;
}else {
if (  ctype==‘unc){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] =0;
}
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Compare Word

Format: (gp) cmpd.crel.ctype pq, po =15, I3 register_form A6
(gp) cmpd4.crel.ctype pq, po =immg, ra imm8_form A8
(gp) cmp4.crel.ctype pq, po =10, r3 paralel_inequality form A7
(gp) cmp4.crel.ctype pq, pp =r3, 10 pseudo-op

Description:  The least significant 32 bits from each of two source operands are compared for one of ten relations

specified by crel. This produces a boolean result which is 1 if the comparison condition istrue, and O
otherwise. Thisresult is written to the two predicate register destinations, p; and p,. The way the result is
written to the destinations is determined by the compare type specified by ctype. See the Compare
instruction and Table 7-10 on page 7-19.

In theregister_form the first operand is GR r,; in the imm8_form the first operand is taken from the sign
extended immg encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
paralel_inequality form isonly used when the compare type is one of the parallel types, and the relation
isan inequality (>, >=, <, <=). See the Compare instruction and Table 7-12 on page 7-20.

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.

Of the ten relations, not al are directly implemented in hardware. Some are actually pseudo-ops. See the
Compareinstruction and Table 7-11 and Table 7-12 on page 7-20. Therange for immediatesis given
below.

Table 7-13. Immediate Range for 32-bit Compares

Operation:

7-22

crel Com{zgrreele)lation Immediate Range

eq a==b -128 .. 127

ne a=b -128 .. 127

It a<b signed -128 .. 127

le a<=b -127 .. 128

gt a>b -127 .. 128

ge a>=b -128 .. 127

Itu a<b unsigned 0..127, 2%2.128 .. 2%21
leu a<=b 1..128, 2%2.127 .. 2%2
gtu a>b 1. 128, 282.127 .. 2%2
geu a>=b 0..127, 2%2.128 .. 2821

if (PRap]) {
if (p1 == p2)

illegal operation fault();
tmp_nat = (register_form? GRry.nat : 0) || GRrj].nat;

if (register_form
tnp_src = GRrjl;
else if (im8 form
tnp_src = sign_ext(imy, 8);
else // parallel_inequality_form
tnp_src = 0;
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if (crel =='eq) tmp_rel =tmp_src{31:0} == GR][
else if ( crel =='ne’) tmp_rel = tmp_src{31:0} I= GR[
else if crel =='It)

tmp_rel = lesser_signed(sign_ext(tmp_src, 32), sign_ext(GR][
else if ( crel =='le")

tmp_rel = lesser_equal_signed(sign_ext(tmp_src, 32),

else if ( crel ==gt)
tmp_rel = greater_signed(sign_ext(tmp_src, 32), sign_ext(GR[
else if ( crel =='ge’)
tmp_rel = greater_equal_signed(sign_ext(tmp_src,
else if ( crel =="ltv)
tmp_rel = lesser(zero_ext(tmp_src, 32), zero_ext(GR[
else if ( crel =='lew)

tmp_rel = lesser_equal(zero_ext(tmp_src, 32), zero_ext(GR[
else if ( crel =='gtu)

tmp_rel = greater(zero_ext(tmp_src, 32), zero_ext(GR[
else /I 'geu’

tmp_rel = greater_equal(zero_ext(tmp_src, 32), zero_ext(GR[

switch ( ctype) {
case ‘and”:
if (tmp_nat || 'tmp_rel) {
PR[p;] =0;
PR[p2] = 0;
break;
case ‘or’:
if ('tmp_nat && tmp_rel) {
PR[p;] = 1;
) PR[p2] = 1;
break;

case ‘or.andcm’:
if ('tmp_nat && tmp_rel) {

PR[ps]=1;
PR[p2] = 0;
break;
case ‘unc’:
default:
if (tmp_nat) {
PR[p;]=0;
PR[pz] = 0;
}else {

PR[p4] =tmp_rel;
PR[pJ] = tmp_rel;

}else {

break;
}
if (  ctype==‘unc’){
if( pl== p2
illegal_operation_fault();
PR[p;] = 0;
PR[pz] = 0;
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r 51{31:0};
r #{31:0};
r3l, 32));
sign_ext(GR[  r 3], 32));

r 3l 32));
32), sign_ext(GR[ r3], 32));
r3l, 32));
r3l, 32));
r 3, 32));
r3l, 32));

/I and-type compare

/I or-type compare

I/ or.andcm-type compare

/I unc-type compare
// normal compare
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Compare And Exchange
Format: (gp) cmpxchgsz.sem.dhint rq = [rg], r,, ar.ccv M16

Description: A value consisting of sz bytesisread from memory starting at the address specified by the valuein GR r3.
The valueis zero extended and compared with the contents of the cnpxchg Compare Value application
register (AR[CCV]). If the two are equal, then the least significant sz bytes of the valuein GR r, are
written to memory starting at the address specified by the value in GR r5. The zero-extended value read
from memory is placed in GR r; and the NaT bit corresponding to GR r4 is cleared.

The values of the szcompleter are givenin Table 7-14. The sem compl eter specifies the type of semaphore
operation. These operations are described in Table 7-15 "Compare and Exchange Semaphore Types'.

Table 7-14. Memory Compare and Exchange Size

sz Completer Bytes Accessed

1 1
2 2
4 4
8 8

Table 7-15. Compare and Exchange Semaphore Types

sem Ordering .
Completer Semantics Semaphore Operation
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory accesses.

If the address specified by the valuein GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault i s taken independent of the state of the User Mask
alignment checking hit, UM.ac (PSR.ac in the Processor Status Register).

The memory read and write are guaranteed to be atomic.

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the Idhint compl eter specifies the locality of the memory access. The values of the Idhint
completer are given in Table 7-28 on page 7-105. Locality hints do not affect program functionality and

may be ignored by the implementation. See “Memory Hierarchy Control and Consistency” on page 4-20
for details.
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Operation:

it (PR gp]) {

check_target_register(r;, SEMAPHORE);

if (Rrg.nat || GRrj.nat)

regi ster_nat _consunpti on_f aul t ( SEVAPHORE) ;

cmpxchg

paddr = tlb_translate(GRr3, sz, SEMAPHORE, PSR cpl, &mattr, & np_unused);

if (!ma_supports_senmaphores(mattr))

unsupported_data_reference_faul t (SEVAPHORE, GR r3]);

if (sem==‘acq){

val = mem_xchg_cond(AR[CCV], GR[ r 5], paddr,
| dhi nt);
Yelse {// ‘rel
val = mem_xchg_cond(AR[CCV], GR[ r 5], paddr,
| dhi nt);
val = zero_ext(val, sz *8);
if (AR[CCV] == val)
alat_inval_multiple_entries(paddr, 52);

GR([r 4] = val
GR[r 7].nat = 0;
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Compute Zero Index

Format:

Description:

(gp) czx1.l ry=r3
(gp) czx1l.r ry=rj
(ap) czx2l ry=r3
(gp) czx2.r ry=rs

GR r3 isscanned for a zero element. The element is either an 8-bit aligned byte (one_byte form) or a
16-bit aligned pair of bytes (two_byte form). The index of the first zero element isplaced in GRr. If
there are no zero elements in GR r3, adefault valueis placed in GR ;. "1° gives the possible resuit

one_byte form, left_form
one_byte form, right_form
two_byte form, left_form
two_byte form, right_form

129
129
129
129

values. Inthe left_form, the source is scanned from most significant element to least significant element,
and in theright_form it is scanned from least significant element to most significant element.

Table 7-16. Result Ranges for czx

Operation:

7-26

Size Element Width Range of Result if Zero Element Default Result if No Zero Element
Found Found
8 bit 0-7 8
16 bit 0-3 4
if (PR gp]) {

check_target _register(ry);

if (one_byte form {

if (left_form { /1 scan fromnost significant down
if ((GR r3] & Oxff00000000000000) == 0) GR(r ] = 0;
elseif ((GRrg & 0x00ff000000000000) == 0) GRr;] = 1;
else if ((GRrg & 0x0000ff0000000000) == 0) CRr;] = 2;
elseif ((GRrz & 0x000000ff00000000) == 0) GRr4] = 3;
elseif ((GRrg & 0x00000000ff000000) == 0) CRr; ] = 4;
elseif ((GRrz & 0x0000000000ff0000) == 0) G r4 = 5;
elseif ((GRrzg & 0x000000000000ff00) == 0) GRr;] = 6;
else if ((GRrg & 0x00000000000000ff) == 0) CGRrq =7,
else Rrq = 8;

} else { // right_form scan fromleast significant up
if ((GR r3] & 0x00000000000000ff) == 0) GRr ] = 0;
elseif ((GRrg & 0x000000000000ff00) == 0) CRry = 1;
else if ((GRrgz & 0x0000000000ff0000) == 0) CGRrq = 2;
elseif ((GRrgz & 0x00000000ff000000) == 0) GRr;] = 3;
elseif ((GRrg & 0x000000ff00000000) == 0) CRr; = 4;
elseif ((GRrz & 0x0000ff0O000000000) == 0) GRr4] = 5;
elseif ((GRrg & 0x00ff000000000000) == 0) CRr;] = 6;
else if ((GRrz & Oxff00000000000000) == 0) CGRr4] = 7;
else Rrq = 8;

}

} else { /] two_byte form

if (left_form ({ /1 scan fromnost significant down
if ((GR r3] & Oxffff000000000000) == 0) GR[r ] = 0;
else if ((GRrg & 0x0000ffff00000000) == 0) CRry = 1;
else if ((GRrg & 0x00000000ffff0000) == 0) CGRrq = 2;
elseif ((GRrgzg & 0x000000000000ffff) == 0) GRr; = 3;
else (Rrq = 4

} else { /] right_form scan fromleast significant up
if ((GR r3] & 0x000000000000ffff) == 0) GR{r;] = 0;
elseif ((GRrz & 0x00000000ffff0000) == 0) GRr4 = 1;
else if ((GRrg & 0x0000ffff00000000) == 0) GRr;] = 2;
else if ((GRrs & Oxffff000000000000) == 0) GRrq = 3;
else Rrq = 4

13R[rﬂ.nat = CRrg.nat;
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Deposit

Format:

Description:

dep
(ap) dep rq=ry, 13, posg, len, merge_form, register_form 115
(gp) dep rq =immy, r3, posg, leng merge_form, imm_form 114
(gp) dep.z ry =r,, posg, leng zero_form, register_form 112
(qp) dep.z ry =immg, poss, leng zero_form, imm_form 113

Inthe merge_form, aright justified bit field taken from the first source operand is deposited into the value
in GRr3 at an arbitrary bit position and the result is placed in GR ry. In the register_form the first source

operand iSGR r,; and in theimm_form it is the sign-extended value specified by imm; (either all ones or
all zeroes). The deposited bit field begins at the bit position specified by the posg immediate and extends

to the left (towards the most significant bit) a number of bits specified by thelen immediate. Note that len
hasarange of 1-16 intheregister_form and 1-64 in theimm_form. The posg immediate has arange of 0 to
63.

Inthezero_form, aright justified bit field taken from either the valuein GRr, (inthe register_form) or the
sign extended value in immg (in theimm_form) is deposited into GR r; and al other bitsin GR r4 are
cleared to zero. The deposited bit field begins at the bit position specified by the posg immediate and
extends to the left (towards the most significant bit) a number of bits specified by thelen immediate. The
len immediate has arange of 1-64 and the posg immediate has a range of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len + posg > 64, the most
significant len + posg — 64 bits of the deposited bit field are truncated. [Ehémmediate is encoded as
len minus 1 in the instruction.

The operation ofiep t = s, r, 36, 16 isillustrated inFigure 7-5

Figure 7-5. Deposit Example

52 36 0 16 0
GR: GR s:

v

52 36 0

GR t:
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Operation: if (PRgp]) {
check_target _register(ry);

if (immforn {

tmp_src = (merge_form? sign_ext(imm,1) : sign_ext(imy, 8));
tmp_nat = merge_form? GRlrs].nat : O;
tmp_len = leng ;
} else { Il register_form
tnp_src = R rj;
tmp_nat = (merge_form? GRr3.nat : 0) || GRrg.nat;
tmp_len = merge_form? len, : leng ;

}
if (posg + tnp_len u> 64)
tmp_len = 64 - posg;

if (merge_forn

Rrg = Rrgl;
else // zero form
X =0

R ril{(posg + tmp_len - 1): posgt = tnp_src{(tnp_len - 1):0};
CGRr ] .nat = tnp_nat;
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Extract

Format:

Description:

extr
(gp) extr rq =r3, posg, leng signed_form 111
(gp) extr.u rq =rg, posg, leng unsigned form 111

A field isextracted from GR r 3, either zero extended or sign extended, and placed right-justified in GR r.
Thefield begins at the bit position given by the second operand and extends leng bits to the |eft. The bit
position where the field begins is specified by the posg immediate. The extracted field is sign extended in
the signed_form or zero extended in the unsigned_form. The sign is taken from the most significant bit of
the extracted field. If the specified field extends beyond the most significant bit of GR r3, the signistaken
from the most significant bit of GR r3. The immediate value leng can be any number in the range 1 to 64,
and is encoded as leng-1 in the instruction. The immediate value posg can be any valuein the range O to
63.

The operationof extr t =r, 7, 50 isillustrated in Figure 7-6.

Figure 7-6. Extract Example

Operation:

63 56 7 0
GR:
GRt: sign
63 49 0
if (PREgp]) {

check_target_register(ry);
tmp_len = [eng

if (posg + tnp_len u> 64)
tmp_len = 64 - posg;

i f (unsigned_form

R rg] = zero_ext(shift_right_unsigned(GRr3], pos6), tnp_len);
else // signed_form

R rg] = sign_ext(shift_right_unsigned(GRr3], pos6), tnp_len);

CRrg].nat = GR[rg.nat;
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Floating-Point Absolute Value
Format: (gp) fabs f; =15 pseudo-op of: (gp) fmerge.s f; =10, f5
Description:  The absolute value of the valuein FR f5 is computed and placed in FR f;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 7-50
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Floating-Point Add

Format: (gp) fadd.pc.sf f; =13, fo pseudo-op of: (gp) fmapc.sf f; =1, 1,1,

Description:  FR f3 and FR f, are added (computed to infinite precision), rounded to the precision indicated by pc (and
possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR
f,. If either FRfz or FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodpeésare given infable 7-17 The mnemonic values faf are given

in Table 7-18 For the encodings and interpretation of the status fiptdare, andrc, refer toTable 5-5
andTable 5-6 on page 5:-7

Table 7-17. Specified pc Mnemonic Values

pc Mnemonic Precision Specifed
.S single
d double
none dynamic

(i.e., use pc value in status field)

Table 7-18. sf Mnemonic Values

sfMnemonic Status Field Accessed
.S0 or none sf0
sl sfl
2 sf2
.S3 sf3
Operation: See “Floating-Point Multiply Add” on page 7-48
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Floating-Point Absolute Maximum
Format: (gp) famax.sf f; =1y, f3 F8

Description:  The operand with the larger absolute value is placed in FR f;. If the magnitude of FR f, equals the
magnitude of FR f3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR fs.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

trmp_right = fp_reg_read(FR f;]);

tmp_left = fp_reg_read(FR f3]);

tnp_right.sign = FP_SI GN_PCsSI Tl VE;

trp_left.sign = FP_SI GN_POSI Tl VE;

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
FRIf;] = tnp_bool res ? FRIf, : FR f3];

fp_update fpsr(sf, tnp_fp_env);
}

fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Absolute Minimum
Format: (gp) famin.sf f; =15, f3 F8

Description:  The operand with the smaller absolute valueis placed in FR f;. If the magnitude of FR f, equals the
magnitude of FR f3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR fs.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_left = fp_reg_read(FR f,]);

tmp_right = fp_reg_read(FR f3]);

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

trp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
FRIf;] = tnp_bool res ? FRIf, : FR f3];

fp_update fpsr(sf, tnp_fp_env);
}

fp_update_psr(f,);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Logical And

Format:

Description:

Operation:

(ap) fand fy=f,, 3 Fo

The bit-wise logical AND of the significand fields of FR f, and FR f5 is computed. The resulting valueis
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
FR( f4].significand = FR{ f,].significand & FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

}
fp_update_psr(f,);

FP Exceptions: None
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Floating-Point And Complement
Format: (gp) fandcm fq =1, f3 Fo

Description: ~ The bit-wise logical AND of the significand field of FR f, with the bit-wise complemented significand
field of FR f3is computed. The resulting valueis stored in the significand field of FR f;. The exponent
field of FR f; is set to the biased exponent for 2.0%3 (Ox1003E) and the sign field of FR f; is set to positive

().
If either FR f, or FRf,isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
FRIf4].significand = FR{f,].significand & ~FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(fy);

FP Exceptions: None
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Flush Cache
Format: (gp) fc rj M28
Description:  The cache line associated with the address specified by the value of GRr3 isinvalidated from all levels of
the processor cache hierarchy. Theinvalidation is broadcast throughout the coherence domain. If, at any
level of the cache hierarchy, the line isinconsistent with memory it iswritten to memory before
invalidation.
Theline size affected is at |east 32-bytes (aligned on a 32-byte boundary). An implementation may flush a
larger region.
This instruction follows data dependency rules; it is ordered with respect to preceding and following
memory references to the sameline. f ¢ has data dependencies in the sense that any prior stores by this
processor will be included in the data written back to memory. f ¢ is an unordered operation, and is not
affected by a memory fence (nf ) instruction. It is ordered with respect to the sync. i instruction.
Operation: if (PRI gp]) {
i type = NON_ACCESS| FQ READ
if (&R rg.nat)
regi ster_nat _consunption_fault(itype);
trp_paddr = tlb_transl ate_nonaccess(GR[r3], itype);
mem f | ush(t np_paddr);
}
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Floating-Point Check Flags
Format: (gp) fchkf.sf target,s F14

Description:  The flagsin FPSR.<f.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags set in
FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in FPSR.sf.flags are not set
in FPSR.s0.flags, then a branch to target,s is taken.

The target,s operand, specifies alabel to branch to. Thisisencoded in the instruction as a signed
immediate displacement (immy4) between the target bundle and the bundle containing this instruction
(immy, = target,s — IP >> 4).

The mnemonic values faf are given infable 7-18 on page 7-31

Operation: if (PR gp]) {
switch (sf) {

case ‘sO"
tmp_flags = AR[FPSR].sf0.flags;
break;

case ‘sl"
tmp_flags = AR[FPSR].sf1.flags;
break;

case ‘s2"
tmp_flags = AR[FPSR].sf2.flags;
break;

case ‘s3"
tmp_flags = AR[FPSR].sf3.flags;
break;

}
if ((tmp_flags & ~AR[FPSR].traps) || (tmp_flags & ~AR[FPSR].sf0.flags)) {
if (check_branch_implemented(FCHKF)) {
taken_branch = 1;
IP = IP + sign_ext(( i mmpy << 4), 25);
if (PSR.it && unimplemented_virtual_address(IP))
|| ({PSR.it && unimplemented_physical_address(IP)))
unimplemented_instruction_address_trap(0, IP);
if (PSR.tb)
taken_branch_trap();
}else
speculation_fault(FCHKF, zero_ext( i mmpy, 21));

}

FP Exceptions: None
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Floating-Point Class

Format: (ap)

Description:

fclass.ferel.fetype py, py =1, felassg F5

The contents of FR f, are classified according to the fclassq completer as shown in Table 7-20. This

produces a boolean result based on whether the contents of FR f, agrees with the floating-point number
format specified by fclassg, as specified by the fcrel completer. This result iswritten to the two predicate
register destinations, p; and p,. The result written to the destinations is determined by the compare type
specified by fctype.

The allowed types are Normal (or none) and unc. See Table 7-21 on page 7-41. The assembly syntax
allows the specification of membership or non-membership and the assembler swaps the target predicates
to achieve the desired effect.

Table 7-19. Floating-point Class Relations

ferel Test Relation
m FR fz agrees with the pattern specified by fClaS'Sg (is a member)
nm FR f2 does not agree with the pattern specified by fClassg (is not a member)

A number agrees with the pattern specified by fclassg if:

the number is NaTVal and fclassq {8} is 1, or
the number isaquiet NaN and fclassq{ 7} is1, or
the number isasignaling NaN and fclassq { 6} is 1, or

the sign of the number agrees with the sign specified by one of the two low-order bits of fclassg, and
the type of the number (disregarding the sign) agrees with the number-type specified by the next 4
bits of fclassg, as shown in Table 7-20.

Note: An fclassg of Ox1FF is equivalent to testing for any supported operand.

The class names used in Table 7-20 are defined in Table 5-2 on page 5-3.

Table 7-20. Floating-point Classes

fclassg Class Mnemonic
Either these cases can be tested for
0x0100 NaTVal @nat
0x080 Quiet NaN @gnan
0x040 Signaling NaN @shan
or the OR of the following two cases
0x001 Positive @pos
0x002 Negative @neg
AND’ed with OR of the following 4 cases
0x004 Zero @zero
0x008 Unnormalized @unorm
0x010 Normalized @norm
0x020 Infinity @inf
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Operation:

fclass

if (PREap]) {
it (p1 == p2)
illegal operation fault();

if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

tmp_rel = ((fclassg{0} && 'FR{f;].sign || fclassg{1} && FR[fj] . sign)

&% ((fclassg{2} && fp_is_zero(FRfJ]))]||
(fclassg{3} && fp_is_unorm(FRf;])) ||
(fclassg{4} && fp_is_normal (FRIf;)) |
(fclassg5} && fp_is_inf(FRf,]))
)

)

fclassg{6} &% fp_is_snan(FR[f5]))

[ (
|| (fclass{7} && fp_is_qgnan(FR{f;]))
|| (fclassg{8} && fp_is_natval (FR[f]));

tmp_nat = fp_is_natval (FRIf,]) &% (!fclassy8});

if (tnp_nat) ({
PR ps] = 0;
PR ps = 0;
} else {
PRI p;] = tnp_rel;
PRIp = !tnp_rel;
} else {
if (fctype=="'unc’){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;

}

FP Exceptions: None

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-39



fclrf in‘l'e|®

Floating-Point Clear Flags
Format: (gp) fclrf.sf F13

Description:  The status field’s 6-bit flags field is reset to zero.
The mnemonic values faf are given inTable 7-18 on page 7-31

Operation: if (PR gp]) {
fp_set_sf_flags(sf, 0);
}

FP Exceptions: None
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femp

Floating-Point Compare

Format:

Description:

(gp) femp.frel.fctypest py, p, =15, f3 F4

The two source operands are compared for one of twelve relations specified by frel. This produces a
boolean result which is 1 if the comparison condition istrue, and O otherwise. Thisresult iswritten to the
two predicate register destinations, p; and p,. The way the result is written to the destinations is
determined by the compare type specified by fctype. The allowed types are Normal (or none) and unc.

Table 7-21. Floating-point Comparison Types

PR[gp]==1
fetype PRIgp]==0 result==0, result==1, One or More
No Source NaTVals No Source NaTVals Source NaTVals
PR[p4] PR[p PR[p] PR[pZ] PR[p4] PR[pZ] PR[p4] PR[p
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0

The mnemonic values for sf are given in Table 7-18 on page 7-31.

The relations are defined for each of the comparison typesin Table 7-22. Of the twelve relations, not all
are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate target specifiers and uses an
implemented relation.

Table 7-22. Floating-point Comparison Relations

f frel Completer . ) Quiet NaN
rel Unabbreviated Relation Pseudo-op of as Operand
Signals Invalid

eq equal fo==13 No

It less than fo<fs Yes

le less than or equal fo<="13 Yes

gt greater than fo> 13 It fr o f3 Yes

ge greater than or equal fy>=13 le fy  f3 Yes
unord | unordered fr 213 No

neq not equal I(fy ==1y) eq P1 - P2 No

nit not less than I(fy < fy) It P1 - P2 Yes

nle not less than or equal I(fy <=13) le P1 - P2 Yes

ngt not greater than i(fo > fg) It foefs pProps Yes
nge not greater than or equal I(fy >=1f3) le fobofs pPrepo Yes

ord ordered i(fy 2 f) unord P1 - P2 No
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Operation: if (PRLgp]) {
if (p1 == p2)
illegal operation fault();

if (tnp_isrcode = fp_reg_disabled(f, f3 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {

PR p;] = 0;
PRI ps = 0;
} else {

fcnp_exception_fault_check(f, f3 frel, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2 = fp_reg_read(FR f,]);

tmp_fr3 = fp_reg_read(FR f3]);

if (frel =='eq) tmp_rel= fp_equal (tnmp_fr2, tnmp fr3);

else if ( frel =="1It') tmp_rel =fp_less_than( tp_fr2, tnp_fr3);

else if ( frel =='le") tmp_rel =fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if ( frel =='gt) tmp_rel=fp_less_than( tmp_fr3, tnp_fr2);

else if ( frel =='ge’) tmp_rel =fp_lesser_or_equal( tmp_fr3, tnp_fr2);
else if ( frel ==‘unord)tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);

else if frel =='neq) tmp_rel =" fp_equal (tnp_fr2, tnp fr3);

else if ( frel =="nlt') tmp_rel =!fp_less_than( tp_fr2, tnp_fr3);

else if ( frel =='nle’) tmp_rel = !fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if frel =='ngt) tmp_rel =fp_less_than( tnp_fr3, tnp_fr2);

else if ( frel =='nge’) tmp_rel = !fp_lesser_or_equal( tmp_fr3, tnp_fr2);
else tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);//ord

PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;

fp_update _fpsr(sf, tnp_fp_env);

}else{
if ( fctype=="'unc’){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;
}
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Convert Floating-Point to Integer

Format: (gp) fevt.fx.sf f; =1, signed_form F10
(gp) fevt.fx.trunc.sf f; =1, signed_form, trunc_form F10
(gp) fevt.fxusf fi =", unsigned form F10
(gp) fevt.fxu.trunc.sf fy =", unsigned form, trunc_form F10

Description:  FRf, istreated as aregister format floating-point value and converted to asigned (signed_form) or
unsigned integer (unsigned_form) using either the rounding mode specified in the FPSR.sf.rc, or using
Round-to-Zero if the trunc_form of the instruction is used. The result is placed in the 64-bit significand
field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%2 (0x1003E) and the sign
field of FR f; is set to positive (0).

If FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.
The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR[ f;] = NATVAL;
fp_update_psr(fy);
} else {
trmp_defaul t _result = fcvt_exception_fault_check(f, sf,
signed_form trunc_form & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result)) {
FR f;].significand = | NTEGER | NDEFI NI TE;
FR[ f ;] . exponent = FP_| NTEGER_EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE
} else {
tnmp_res = fp_ieee_rnd_to_int(fp_reg_read(FR f;]), & np_fp_env);
if (tnp_res. exponent)
trp_res.significand = fp_UB4_rsh(
trp_res.significand, (FP_INTEGER EXP - tnp_res.exponent));
if (signed_form & tnp_res. sign)
trp_res.significand = (~tnp_res.significand) + 1,

FR{f4].significand = tnp_res.significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI G\ _PCSI Tl VE;

}

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Convert Signed Integer to Floating-point
Format: (gp) fevtxf =", F11

Description:  The 64-hit significand of FR f, is treated as a signed integer and its register file precision floating-point
representation is placed in FR f;.

If FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.
This operation is always exact and is unaffected by the rounding mode.

Operation: if (PRI gp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR[ f;] = NATVAL;
} else {
tmp_res = FR{f,];
if (tnp_res.significand{63}) {
tnp_res.significand = (~tnp_res.significand) + 1,
tnp_res.sign = 1;
} else
tnp_res.sign = 0;

tnp_res. exponent = FP_| NTEGER_EXP;
tmp_res = fp_normalize(tnp_res);

FRf;].significand = tnp_res. significand;
FR[ f ;] . exponent = tnp_res. exponent;
FR{f4].sign = tnp_res. sign;

}
fp_update_psr(fy);
}

FP Exceptions: None
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Convert Unsigned Integer to Floating-point
Format: (gp) fevt.xuf.pc.sf f; =13 (unsigned form) pseudo-op of: (qp) fmapc.sf f; = fs, f1, fO

Description:  FR fzis multiplied with FR 1, rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

Note:  Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an integer in the
floating-point register file producing a normal floating-point value.

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodgtsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'sre,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Add” on page 7-48
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Fetch And Add Immediate

Format:

Description:

(gp) fetchadd4.sem.dhint rq = [r3], inc3 four_byte form M17
(gp) fetchadd8.sem.Idhint rq = [r3], inc3 eight_byte form M17

A vaue consisting of four or eight bytesis read from memory starting at the address specified by the value
in GRr3. Thevalue is zero extended and added to the sign-extended immediate value specified by incs.
The values that may be specified by inc; are: -16, -8, -4, -1, 1, 4, 8, 16. Theleast significant four or eight
bytes of the sum are then written to memory starting at the address specified by the valuein GRr5. The
zero-extended value read from memory is placed in GR rq and the NaT bit corresponding to GRr 4 is
cleared.

The sem completer specifies the type of semaphore operation. These operations are described in
Table 7-23.

Table 7-23. Fetch and Add Semaphore Types

Operation:

7-46

sem Ordering .
Completer Semantics Semaphore Operation
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory
accesses.

The memory read and write are guaranteed to be atomic.

If the address specified by the value in GRr3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault i s taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the [dhint completer specifies the locality of the memory access. The values of theldhint
completer are given in Table 7-28 on page 7-105. Locality hints do not affect program functionality and
may beignored by the implementation.

if (PRLgpl) { _
check_target_register(r;, SEMAPHORE);

if (R rg.nat)
regi ster_nat _consunpti on_f aul t ( SEVAPHORE) ;

size = four_byte form? 4 : 8;
paddr = tlb_translate(GR r3, size, SEVMAPHORE, PSR cpl, &mattr, & np_unused);
if (!'ma_supports _fetchadd(nmattr))

unsupported_data_r ef erence_faul t (SEMAPHORE, CRrg]);

if (sem=='acq)

val = mem_xchg_add( i ncgs, paddr, size, UM.be, mattr, ACQUIRE, | dhi nt);
else // ‘rel
val = mem_xchg_add( 7 ncgz, paddr, size, UM.be, mattr, RELEASE, | dhi nt);

alat_inval_multiple_entries(paddr, size);

GR{r ;] = zero_ext(val, size * 8);
GR[r 4].nat = 0;
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Flush Register Stack
Format: flushrs M25

Description:  All stacked general registersin the dirty partition of the register stack are written to the backing store
before execution continues. The dirty partition contains registers from previous procedure frames that
have not yet been saved to the backing store.

After thisinstruction completes execution AR[BSPSTORE] is equal to AR[BSP].

Thisinstruction must be the first instruction in an instruction group. Otherwise, the results are undefined.
This instruction cannot be predicated.

Operation: whil e (AR[BSPSTORE] != AR[BSP]) {

rse_st or e( MVANDATCRY) ; /1 increments AR BSPSTORE]
del i ver _unmasked_pendi ng_external _interrupt();
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Floating-Point Multiply Add

Format:

Description:

Operation:

(gp) fmapc.sf f; =13, T4, o F1

The product of FR f3 and FR f4 is computed to infinite precision and then FR f, is added to this product,
again in infinite precision. The resulting value is then rounded to the precision indicated by pc (and
possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The rounded
result is placed in FR f;.

If any of FR f53, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

If f, isf0, an I[EEE multiply operation is performed instead of a multiply and add. See “Floating-Point
Multiply” on page 7-55

The mnemonic values for the opcodeacsare given iriTable 7-17 on page 7-3The mnemonic values for
sf are given inTable 7-18 on page 7-3For the encodings and interpretation of the status fiptgiare,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

it (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg)
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f,)) {
FR{ f;] = NATVAL;
fp_update_psr(f,);
} else {
trp_default _result = fma_exception_fault_check(f, fz fgu
pc, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {
FRf{ = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f,));
if (fo21=0)
tmp_res = fp_add(tnp_res, fp_reg_read(FR f,]), tnmp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);

fp_update_f psr(sf, tnp_fp_env);

fp_update_psr(f);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Overflow (O)
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Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)
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Floating-Point Maximum

Format:

Description:

Operation:

FP Exceptions:

(ap) fmax.sf fy =1y, 5 F8
The operand with the larger valueis placed in FR f;. If FR f, equals FR 3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR fs.

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

it (PRgp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

trp_bool _res = fp_less_than(fp_reg_read(FR f3]), fp_reg_read(FR7,]));
FRIf{ = (tnp_bool _res ? FRIf; : FR f3);

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(f,);
}

Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Merge

Format:

Description:

(gp) fmerge.ns fy =15, f5 neg_sign form Fo
(gp) fmergess f =1, f3 sign_form Fo
(gp) fmerge.se f; =f,, f3 sign_exp_form Fo

Sign, exponent and significand fields are extracted from FR f, and FR f, combined, and the result is
placed in FR f;.

For the neg_sign_form, the sign of FR f, is negated and concatenated with the exponent and the
significand of FR f5. This form can be used to negate a floating-point number by using the same register
for FRf, and FR f3.

For the sign_form, the sign of FR f, is concatenated with the exponent and the significand of FR f5.

For the sign_exp_form, the sign and exponent of FR f, is concatenated with the significand of FR fs.

For al forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-7. Floating-point Merge Negative Sign Operation

8180 6463 0 8180 64 63 0
FRf, FR f

negated 8180 64 63 e

signbit  FRf; ’

Figure 7-8. Floating-point Merge Sign Operation

8180 6463 0 8180 6463 0
FRf, FR f3

8180 6463 Ao/

FR T, ’

Figure 7-9. Floating-point Merge Sign and Exponent Operation
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8180 6463 0 8180 6463 0
FR 1, FR fy

180 6463 40/

FR f, |
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Operation:

}

fmerge

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR{ f;] = NATVAL;
} else {
FR{f4].significand = FR f3] . significand;
if (neg_sign_fornm {
FR f ;] . exponent = FR[ f 3] . exponent;
FRIf4.sign = IFR[fj] .sign;
} else if (sign_form {
FR f ;] . exponent = FR[ f 3] . exponent;
FRIf4].sign = FR f,]. sign;
} else {
FR f ;] . exponent = FR[ f,].exponent;
FRIf4].sign = FR f,]. sign;

/1 sign_exp_form

}
fp_update_psr(fy);

FP Exceptions: None
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Floating-Point Minimum
Format: (gp) fmin.sf f; =15, f3 F8
Description:  The operand with the smaller valueis placed in FR f. If FR f, equals FR f3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR f3.

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_bool _res = fp_less_than(fp_reg_read(FR f,]), fp_reg_read(FR f3));
FRfq = tnp_bool _res ? FRIf5 : FR f3;

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Mix

Format: (gp) fmix.I f; =15, f3 mix_|_form Fo
(gp) fmix.r f; =1, f3 mix_r_form Fo
(gp) fmix.Ir fy =15, f5 mix_Ir_form Fo

Description:  For the mix_I_form (mix_r_form), the left (right) single precision value in FR f, is concatenated with the

left (right) single precision value in FR fa. For the mix_Ir_form, the left single precision valuein FR f, is
concatenated with the right single precision valuein FR f5.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the sign
field of FR f; is set to positive (0).

For al forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-10. Floating-point Mix Left

Figure 7-11. Floating-point Mix Right

Figure 7-12. Floating-point Mix Left-Right
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;

} else {

if (mx__form {
tmp_res_hi = FR f,].significand{63:32};
tmp_res_lo = FR f3].significand{63:32};

} elseif (mx_r _fornm {
tmp_res_hi = FR f,]. significand{31:0};
tmp_res_lo = FR f3]. significand{31:0};

} else { Il mx_Ir_form
tmp_res_hi = FR f,].significand{63:32};
tmp_res_lo = FR f3]. significand{31:0};

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE

}

fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Multiply

Format: (gp) fmpy.pc.sf f; =13, fy pseudo-op of: (gp) fmapc.sf f; =1z, f, O

Description:  The product FR f3 and FR f, is computed to infinite precision. The resulting value is then rounded to the
precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified
by FPSR.sf.rc. The rounded result is placed in FR f;.
If either FR f3 or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodptsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptdare,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Add” on page 7-48
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Floating-Point Multiply Subtract

Format: (gp) fmspc.sf f; =13, Ty, o F1
Description:  The product of FR f3 and FR f4 is computed to infinite precision and then FR f, is subtracted from this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result is placed in FR f;.
If any of FR f3, FR f, or FRf, isaNaTVal, aNaTVa is placed in FR f; instead of the computed result.
If f, isf0, an IEEE multiply operation is performed instead of a multiply and subtract.
The mnemonic values for the opcodacsare given infable 7-17 on page 7-3The mnemonic values for
f are given inTable 7-18 on page 7-3For the encodings and interpretation of the status fiptgiare,
andrc, refer toTable 5-5andTable 5-6 on page 5-7
Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
if (fp_is_natval (FRIf]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f4)) {
FRf;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result = fns_fnma_exception_fault_check(f, f3 fyg
pc, sf, & np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));
if (fp_is_nan_or_inf(tnp_default result)) {
FRIf;] = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f4));
tmp_fr2 = fp_reg_read(FR f,]);
tnp_fr2.sign = !tnp_fr2. sign;
if (f,1=0)
tnp_res = fp_add(tnp_res, tnp_fr2, tnp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);
}
fp_update fpsr(sf, tnp_fp_env);
fp_update_psr(fy);
if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));
}
}
FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (1)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)
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Floating-Point Negate
Format: (gp) fneg f; =13 pseudo-op of: (qp) fmerge.ns f; =13, f3
Description:  Thevaluein FR f3 is negated and placed in FR f;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 7-50
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Floating-Point Negate Absolute Value
Format: (gp) fnegabs f; =f3 pseudo-op of: (gp) fmerge.ns f; =10, f5
Description:  The absolute value of the valuein FR f5 is computed, negated, and placed in FR f;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 7-50
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Floating-Point Negative Multiply Add
Format: (gp) fnmapc.sf f; =13, T4, T F1

Description:  The product of FR f3 and FR f4 is computed to infinite precision, negated, and then FR f, is added to this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result is placed in FR f;.

If any of FR f3, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.
If f, isf0, an IEEE multiply operation is performed, followed by negation of the product.

The mnemonic values for the opcodacsare given infable 7-17 on page 7-3The mnemonic values for
f are given inTable 7-18 on page 7-3For the encodings and interpretation of the status fiptgiare,
andrc, refer toTable 5-5andTable 5-6 on page 5-7

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(fy, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f4)) {
FRf;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result = fns_fnma_exception_fault_check(f, f3 fyg
pc, sf, & np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default result)) {
FRIf;] = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f4));
tnp_res.sign = ltnp_res. sign;
if (fo21=0)
tmp_res = fp_add(tnp_res, fp_reg_read(FR f;]), tnmp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);
}

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)
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Floating-Point Negative Multiply

Format: (gp) fnmpy.pc.sf f; =13, Ty pseudo-op of: (qp) fnmapc.sf f; = fs, f4,f0

Description:  The product FR f3 and FR f, is computed to infinite precision and then negated. The resulting valueisthen
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.
If either FR f3 or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodptsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'sre,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Negative Multiply Add” on page 7-59
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Floating-Point Normalize
Format: (gp) fnorm.pc.sf f; =f3 pseudo-op of: (qp) fmapc.sf f; =f3, f1, fO

Description:  FR fyisnormalized and rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR ;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodacsare given infable 7-17 on page 7-3The mnemonic values for
sf are given ifTable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'are,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Add” on page 7-48
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Floating-Point Logical Or

Format:

Description:

Operation:

(gp) for f; =15 f3 Fo

The bit-wise logical OR of the significand fields of FR f, and FR f5 is computed. The resulting valueis
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
FR(f4].significand = FR{f,].significand | FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Parallel Absolute Value

Format: (gp) fpabs f; =13 pseudo-op of: (qp) fpmerge:s f; =10, f5

Description:  The absolute values of the pair of single precision valuesin the significand field of FR f5 are computed
and stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 7-74
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Floating-Point Pack

Format:

Description:

(ap) fpack f; =", f3 pack_form F9

The register format numbersin FR f, and FR f5 are converted to single precision memory format. These
two single precision numbers are concatenated and stored in the significand field of FRf; . The exponent
field of FR f; is set to the biased exponent for 2.0%3 (Ox1003E) and the sign field of FR f; is set to positive
(0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-13. Floating-point Pack

Operation:

81 0 81 0
f2 82-bit FR to Single Mem Format Conversion fs
63 32 31 0
l ] |
f1
if (PREgp]) {

fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR ;] = NATVAL;

} else {
tmp_res_hi = fp_single(FR f,]);
tmp_res_lo = fp_single(FR f3]);

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Parallel Absolute Maximum
Format: (gp) fpamax.sf f; =15, f5 F8

Description:  The paired single precision values in the significands of FR f, and FR f3 are compared. The operands with
the larger absolute value are returned in the significand field of FR f;.

If the magnitude of high (low) FR f5 isless than the magnitude of high (low) FR f,, high (low) FR f; gets
high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR fyisaNaTVal, high (low) FR f;
gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
f pm nmax_excepti on_fault _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2
tp_fr3

tp_right = fp_reg_read_hi (f),);

trp_left = fp_reg_read_hi(f3);

trp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PCsl Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tmp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_l o(f));

tmp_fr3 = tnp_left = fp_reg_read_|l o(f3);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

trp_left.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR[f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|o);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;
fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Absolute Minimum
Format: (gp) fpamin.sf f; =1, f3 F8

Description:  The paired single precision values in the significands of FR f, or FR f3 are compared. The operands with
the smaller absolute value is returned in the significand of FR f.

If the magnitude of high (low) FR f, is less than the magnitude of high (low) FR f3, high (low) FR f; gets
high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR fyisaNaTVal, high (low) FR f;
gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
f pm nmax_excepti on_fault _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2
tmp_fr3

tp_left = fp_reg_read_hi(f));

trp_right = fp_reg_read_hi(f3);

trp_left.sign = FP_SI GN_PCSI Tl VE;

tnp_right.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_|l o(f));

tmp_fr3 = tnp_right = fp_reg_read_|l o(f3);

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

trp_right.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR[f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;
fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Compare
Format: (gp) fpcmp.frel.sf f1=1,, f5 F8

Description:  Thetwo pairsof single precision source operandsin the significand fields of FR f, and FR f3 are compared
for one of twelve relations specified by frel. This produces a boolean result which is a mask of 32 1’s if the
comparison condition is true, and a mask of 32 0’s otherwise. This result is written to a pair of 32-bit
integers in the significand field of FR The exponent field of FR is set to the biased exponent for®3.0
(0x1003E) and the sign field of ARRis set to positive (0).

Table 7-24. Floating-point Parallel Comparison Results

PR[gp]==1
PRIgp]==0 result==false, result==true, One or More
No Source NaTVals No Source NaTVals Source NaTVal's
unchanged 0...0 1.1 NaTVal

The mnemonic values faf are given inTable 7-18 on page 7-31

The relations are defined for each of the comparison typesbile 7-24 Of the twelve relations, not all

are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate type specifiers and uses an
implemented relation.

If either FRf, or FRf;is a NaTVal, FR is set to NaTVal instead of the computed result.

Table 7-25. Floating-point Parallel Comparison Relations

frel Completer . Quiet NaN
frel Unabbreviated Relation Pseudo-op of as Operanq
Signals Invalid

eq equal fo==1fs No
It less than fo<fy Yes
le less than or equal fr<=13 Yes
gt greater than fo> 1y It fy o f3 Yes
ge greater than or equal fo>=1s3 le fr o f3 Yes
unord unordered fo2f3 No
neq not equal i(fy ==fg) No
nit not less than i(fy < f3) Yes
nle not less than or equal I(fy <= 13) Yes
ngt not greater than I(fy > fa) nit fr o 13 Yes
nge not greater than or equal I(fy >=f3) nle fy o f3 Yes
ord ordered I(fy 7 f3) No
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Operation: if (PRLgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo fsz 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
f pcnp_exception_faul t_check(f, f3 frel, sf, &np_fp_env);

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = fp_reg_read_hi (f));

tmp_fr3 = fp_reg_read_hi(f3);

if (frel =='eq) tmp_rel= fp_equal (tnp_fr2, tnp_fr3);

else if ( frel =='It) tmp_rel =fp_less_than( tmp_fr2, tnp_fr3);

else if ( frel =='le") tmp_rel =fp_lesser_or_equal( tnp_fr2, tmp_fr3);

else if ( frel =='gt) tmp_rel =fp_less_than( tnp_fr3, tnp_fr2);

else if ( frel ==‘ge’) tmp_rel=fp_lesser_or_equal( tnp_fr3, tnmp_fr2);

else if ( frel ==‘unord)tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);

else if ( frel =='neq’) tmp_rel=! fp_equal (tnp_fr2, tnmp_fr3);

else if ( frel =='nlt) tmp_rel = !fp_less_than( tnp_fr2, tnp_fr3);

else if frel =='nle’) tmp_rel = !fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if ( frel =='ngt) tmp_rel = Ifp_less_than( tmp_fr3, tnp_fr2);

else if ( frel =='nge’) tmp_rel = fp_lesser_or_equal( tnp_fr3, tnp_fr2);
else tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);//ord

tmp_res_hi = (tmp_rel ? OXFFFFFFFF : 0x00000000);

tmp_fr2 = fp_reg_read_lo( f5);

tmp_fr3 =fp_reg_read_lo( f 3);

if ( frel =='eq) tmp_rel= fp_equal (tnp_fr2, tnp_fr3);

else if ( frel =='It) tmp_rel =fp_less_than( tmp_fr2, tnp_fr3);

else if ( frel =='le") tmp_rel =fp_lesser_or_equal( tnp_fr2, tmp_fr3);
else if ( frel =='gt) tmp_rel =fp_less_than( tnp_fr3, tnp_fr2);

else if ( frel ==‘ge’) tmp_rel=fp_lesser_or_equal( tnp_fr3, tnmp_fr2);
else if ( frel ==‘unord)tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);

else if ( frel =='neq’) tmp_rel=! fp_equal (tnp_fr2, tnp_fr3);

else if ( frel =='nlt) tmp_rel = !fp_less_than( tnp_fr2, tnp_fr3);

else if frel =='nle’) tmp_rel = !fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if ( frel =='ngt) tmp_rel = Ifp_less_than( tmp_fr3, tnp_fr2);

else if ( frel =='nge’) tmp_rel = fp_lesser_or_equal( tnp_fr3, tnp_fr2);
else tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);//ord

tmp_res_lo = (tmp_rel ? OXFFFFFFFF : 0x00000000);
FR[ f ;].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f ;].exponent = FP_INTEGER_EXP;
FR[ f ;].sign = FP_SIGN_POSITIVE;
fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);

FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Convert Parallel Floating-Point to Integer

Format: (gp) fpevt.fx.sf f; =1, signed_form F10
(gp) fpevt.fx.trunc.sf f; =1, signed_form, trunc_form F10
(gp) fpevt.fxu.sf f; =f, unsigned form F10
(gp) fpevt.fxu.trunc.sf fq =1, unsigned form, trunc_form F10

Description:  The pair of single precision valuesin the significand field of FR f, is converted to a pair of 32-bit signed
integers (signed_form) or unsigned integers (unsigned_form) using either the rounding mode specified in
the FPSR.sf.rc, or using Round-to-Zero if thetrunc_form of theinstructionisused. Theresult iswritten as
apair of 32-hit integers into the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0%3 (0x1003E) and the sign field of FR f, is set to positive (0). If the result of the
conversion doesn't fit in a 32-bit integer the 32-bit integer indefinite value 0x80000000 is used as the
result if the IEEE Invalid Operation Floating-Point Exception fault is disabled.

If FR f5 is a NaTVal, FR; is set to NatVal instead of the computed result.

The mnemonic values faf are given infable 7-18 on page 7-31
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR{ f;] = NATVAL;
fp_update_psr(f,);
} else {
trmp_defaul t _result_pair = fpcvt_exception_fault_check(f, sf,
signed_form trunc_form & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default _result _pair.hi)) {
trmp_res_hi = INTEGER | NDEFI NI TE_32_BIT;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f,), HGH &np_fp_env);
if (tnp_res. exponent)
trp_res.significand = fp_UB4_rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form && tnp_res. sign)
tnp_res.significand = (~tnp_res.significand) + 1,

tmp_res_hi = tnp_res.significand{31:0};
}

if (fp_is_nan(tnp_default _result_pair.lo)) {
tnp_res_l o = I NTEGER | NDEFI NI TE_32_BIT;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_lo(f,), LON & np_fp_env);
if (tnp_res.exponent)
tnp_res.significand = fp_U64 rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form & tnp_res. sign)
tmp_res.significand = (~tnp_res.significand) + 1;

tnp_res_lo = tnp_res. significand{31: 0};
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f;].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(fy);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault
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Floating-Point Parallel Multiply Add
Format: (gp) fpmasf f =13, fy, T F1

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision and then the pair of single precision valuesin the significand field of FRf,
is added to these products, again in infinite precision. The resulting values are then rounded to single
precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the
significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E)
and the sign field of FR f; is set to positive (0).

If any of FR f3, FR f4, or FRf, isaNaTVal, FR f, is set to NaTVal instead of the computed results.

Note:  If f, isf0 in the fpmainstruction, just the IEEE multiply operation is performed. (See
“Floating-Point Parallel Multiply” on page 7-78R f1, as an operand, is not a packed pair of
1.0 values, it is just the register file format’s 1.0 value.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fietdese given inTable 5-6 on page 5-7

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f,)) {
FR{ f;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpma_exception_faul t_check(f,,
fa fg sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default _result_pair.hi)) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg);
if (fo21=0)

tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);
tnp_res_hi = fp_ieee_round_sp(tnp_res, HGH &np_fp_env);
}

if (fp_is_nan_or_inf(tnp_default_result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
if (f,1=0)

tmp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnp_fp_env);
tnp_res lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR[f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));
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FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (1)

Software Assist (SWA) trap
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Floating-Point Parallel Maximum
Format: (gp) fpmax.sf f; =1, fa F8

Description:  The paired single precision values in the significands of FR f, or FR f3 are compared. The operands with
thelarger value is returned in the significand of FR f;.

If the value of high (low) FR f3isless than the value of high (low) FR f,, high (low) FR f; gets high (low)
FR f,. Otherwise high (low) FR f; gets high (low) FR fa.

If high (low) FR f, or high (low) FR fzisaNaN, high (low) FR f; gets high (low) FR fa.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {
FR{ ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = tnp_right = fp_reg_read_hi(fy);

tmp_fr3 = tnp_left = fp_reg_read_hi(f3);

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnmp fr2 : tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_l o(f));

tmp_fr3 = tnp_left = fp_reg_read_|l o(f3);

tnp_bool res = fp_less than(tnp_left, tnmp_right);
tmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE;

fp_update _fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Merge

Format:

Description:

(gp) fpmerge.ns fi =1, f3 neg_sign form Fo
(gp) fpmerge.s fy =15, 3 sign_form Fo
(gp) fpmerge.se fy =15, f3 sign_exp_form Fo

For the neg_sign_form, the signs of the pair of single precision valuesin the significand field of FR f, are
negated and concatenated with the exponents and the significands of the pair of single precision valuesin
the significand field of FR f3 and stored in the significand field of FRf;. Thisform can be used to negate a
pair of single precision floating-point numbers by using the same register for f, and f3.

For the sign_form, the signs of the pair of single precision valuesin the significand field of FR f, are
concatenated with the exponents and the significands of the pair of single precision valuesin the
significand field of FR f3 and stored in FR f;.

For the sign_exp_form, the signs and exponents of the pair of single precision valuesin the significand
field of FR f, are concatenated with the pair of single precision significands in the significand field of FR
f3 and stored in the significand field of FR f;.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVa, FR f; is set to NaTVal instead of the computed result.

Figure 7-14. Floating-point Merge Negative Sign Operation

13|1 |
62 3230 0
N [ |
e s o7
31 0
] |
f1
Figure 7-15. Floating-point Merge Sign Operation
I6|3 |3|1 |
o 62 3230 0
N [ |
){ / f3
sign bit 63 31 0
[ ] |
f1
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Figure 7-16. Floating-point Merge Sign and Exponent Operation

fomerge

63 5554 31 2322 0
I | | | |
f2 \63 55 54 32 2322
(N | |
sign and / f3
exponent W 63 55 54 31 2322 0
| | | | |
fy
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {

FR(f ;] = NATVAL;

} else {
if (neg_sign form {

}

tnp_res_hi =
I

tnp_res lo =

(!'FR 7] . significand{63} << 31)
(FR f3].significand{62:32});
(!'FR 5] . significand{31} << 31)
(FR f3].significand{30:0});

} elseif (sign_forn {

tnp_res_hi =
I
tnp_res_lo =
I

} else {
tnp_res_hi

(FR fo].significand{63} << 31)
(FR f3].significand{62:32});
(FRf,].significand{31} << 31)
(FR f3].significand{30:0});
/1 sign_exp_form
(FR{f,].significand{63: 55} << 23)
(FR{ f3].significand{54:32});
(FR{ 2] .significand{31: 23} << 23)
(FR f3].significand{22:0});

FR[f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f;].sign = FP_SI GN_PCSI Tl VE;

fp_update_psr(fy);

}

FP Exceptions: None
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Floating-Point Parallel Minimum
Format: (gp) fpmin.st f; =15, f5 F8

Description:  The paired single precision values in the significands of FR f, or FR f3 are compared. The operands with
the smaller valueisreturned in significand of FR f;.

If the value of high (low) FR f, isless than the value of high (low) FR f5, high (low) FR f; gets high (low)
FR f,. Otherwise high (low) FR f; gets high (low) FR fa.

If high (low) FR f, or high (low) FR fzisaNaN, high (low) FR f; gets high (low) FR fa.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {
FR{ ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = tnp_left = fp_reg_read_hi(f),);

tmp_fr3 = tnp_right = fp_reg_read_hi(f3);

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool res ? tnp fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_| o(f));

tmp_fr3 = tnp_right = fp_reg_read_lo(f3);

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
tmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE;

fp_update _fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Multiply
Format: (gp) fpmpy.sf f; =13, T4 pseudo-op of: (qp) fpmasf f; =13, fy, fO

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision. The resulting values are then rounded to single precision using the
rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand field of
FR f,. The exponent field of FR f; is set to the biased exponent for 2.06% (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR f3, or FRf,isaNaTVal, FR f; is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fiettése given inTable 5-6 on page 5-7

Operation: See “Floating-Point Parallel Multiply Add” on page 7-71
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Floating-Point Parallel Multiply Subtract

Format: (gp) fpms.sf f; =13, fy, o F1

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision and then the pair of single precision valuesin the significand field of FRf,
is subtracted from these products, again in infinite precision. The resulting values are then rounded to
single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are storedin
the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0 (Ox1003E)
and the sign field of FR f; is set to positive (0).

If any of FR f3, FR f4, or FRf, isaNaTVal, FR f, is set to NaTVal instead of the computed results.

Note: I f,isf0in the fpmsinstruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fietdese given inTable 5-6 on page 5-7

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3]) || fp_is_natval (FR[fg)) {
FR ;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpns_fpnma_exception_fault_check(f, f3 fyu
sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default _result_pair.hi)) {
tnp_res_hi = fp_single(tnp_default _result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fy);
if (fo!=0) {

trp_sub = fp_reg_read_hi (f));
tnp_sub. sign = 'tnp_sub. sign;
tnmp_res = fp_add(tnp_res, tnp_sub, tnp_fp_env);
}
tnmp_res_hi = fp_ieee_round_sp(tnp_res, HGH &np_fp_env);
}

if (fp_is_nan_or _inf(tnp_default _result_pair.lo)) {
tnp_res lo = fp_single(tnp_default _result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
if (fo1!=0) {

trp_sub = fp_reg_read_l o(f));
tnp_sub. sign = 'tnp_sub. sign;
tnp_res = fp_add(tnp_res, tnp_sub, tnp _fp_env);
}
tnmp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;
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fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (1)

Software Assist (SWA) trap
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Floating-Point Parallel Negate

Format: (gp) fpneg f; =13 pseudo-op of: (qp) fpmerge.ns f; =13, f3

Description:  The pair of single precision valuesin the significand field of FR f5 are negated and stored in the
significand field of FR . The exponent field of FR f; is set to the hiased exponent for 2.05% (0x1003E)
and the sign field of FR f; is set to positive (0).
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 7-74
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Floating-Point Parallel Negate Absolute Value

Format: (gp) fpnegabs f; =f3 pseudo-op of: (gp) fpmerge.ns f; =10, f5

Description:  The absolute values of the pair of single precision valuesin the significand field of FR f are computed,
negated and stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 7-74
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Floating-Point Parallel Negative Multiply Add

Format:

Description:

Operation:

(gp) fpnmasf fi =fa, f4, o

fpnma

F1

The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision, negated, and then the pair of single precision valuesin the significand field
of FR f, are added to these (negated) products, again in infinite precision. The resulting values are then
rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results
are stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If any of FR f3, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Note:

If f5 isf0 in the fpnmainstruction, just the IEEE multiply operation (with the product being

negated before rounding) is performed.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fietdsse given inTable 5-6 on page 5-7

it (PRgp]) { _
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))

di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3) || fp_is_natval (

FRf;] = NATVAL;
fp_update_psr(fy);

} else {

trp_defaul t _result_pair = fpns_fpnma_exception_faul t _check(f,,
sf,
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi)) {
tp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg);
tnp_res.sign = !tnp_res.sign;
if (fo21=0)

FREF4)) A

fa fgu
& mp_f p_env);

tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);

tnp_res_hi = fp_ieee_round_sp(tnp_res, HGH & np_fp_env);

if (fp_is_nan_or_inf(tnp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tnp_default_result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
tnp_res.sign = !tnp_res.sign;
if (fo21=0)

tnmp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnmp_fp_env);

tnp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR[f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|o);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);
fp_update_psr(f,);
if (fp_raise_traps(tnp_fp_env))
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fp_exception_trap(fp_decode trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap
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Floating-Point Parallel Negative Multiply

Format: (gp) fpnmpy.sf f; =13, f4 pseudo-op of: (gp) fpnmasf f; =f3, f4,f0

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision and then negated. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR ;. The exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the sign
field of FR f; is set to positive (0).
If either FR f3 or FRfyisaNaTVal, FR f; isset to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fiettése given inTable 5-6 on page 5-7

Operation: See “Floating-Point Parallel Negative Multiply Add” on page 7-83

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-85



forepa I ntQI ®

Floating-Point Parallel Reciprocal Approximation
Format: (gp) fprcpast fi,p, =15, f3 F6
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

e Each half of the significand of FR f; is either set to an approximation (with arelative error < 2888
of the reciprocal of the corresponding half of FR f5, or set to the IEEE-754 mandated response for the
quotient FR fo/FR f5 of the corresponding half — if that half of FfRor of FRf5 is in the set
{-Infinity, -0, +0, +Infinity, NaN}.

* |f either half of FR f, is set to the IEEE-754 mandated quotient, or is set to an approximation of the
reciprocal which may cause the Newton-Raphson iterations to fail to produce the correct | EEE-754
divide result, then PR p, is set to O, otherwise it is set to 1.

For correct | EEE divide results, when PR p, is cleared, user software is expected to compute the
quotient (FR f,/FR f3) for each half (using the non-parallel f r cpa instruction), and merge the results
into FR f;, keeping PR p, cleared.

* Theexponent field of FR f; is set to the biased exponent for 2.0%8 (Ox1003E) and the sign field of FR
f, isset to positive (0).

* |f either FRf, or FRfzisaNaTVal, FR f; isset to NaTVal instead of the computed result, and PR p,
iscleared.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
PR ps = O;
} else {
trmp_defaul t _result_pair = fprcpa_exception_fault_check(f, fg3 sf,
& np_fp_env, & imts_check);

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi) || limts_check.hi_fr3) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);
tnp_pred_hi = 0;
} else {
num = fp_normalize(fp_reg_read_hi(fy));
den = fp_nornalize(fp_reg_read_hi(f3));
if (fp_is_inf(num && fp_is_finite(den)) {
tmp_res = FP_INFINITY;
tnmp_res.sign = numsign " den.sign;
trp_pred_hi = 0;
i

} elseif (fp_is_finite(num && fp_is_inf(den)) {
tmp_res = FP_ZERQ
trp_res.sign = numsign " den.sign;
t mp_pr ed_hi

= 0;

} else if (fp_is_zero(num && fp_is_finite(den)) {
tmp_res = FP_ZERQ
tmp_res.sign = numsign " den.sign;
tnp_pred_hi = 0;

} else {
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tnp_res = fp_ieee_recip(den);
if (limts_check.hi_fr2_or_quot)
tnp_pred_hi = 0;
el se
trp_pred_hi = 1;
}
tmp_res_hi = fp_single(tnp_res);

if (fp_is_nan_or_inf(tnp_default_result_pair.lo) || limts_check.lo_fr3) {
tmp_res_lo = fp_single(tnp_default_result_pair.lo);
tnp_pred_lo = 0;
} else {
num = fp_normalize(fp_reg_read_lo(fy));
den = fp_nornalize(fp_reg_read_lo(f3));
if (fp_is_inf(nun) && fp_is finite(den)) {
tmp_res = FP_INFINITY;
tnp_res.sign = numsign " den.sign;

trmp_pred_lo = 0;

} else if (fp_is_finite(num && fp_is_inf(den)) {
tmp_res = FP_ZERQ
tmp_res.sign = numsign " den.sign;
tmp_pred_lo = 0;

} else if (fp_is_zero(num && fp_is_finite(den)) {
tnp_res = FP_ZERQ

tmp_res.sign = numsign " den.sign;
tnp_pred_lo = 0;
} else {
tnp_res = fp_ieee_reci p(den);
if (limts_check.lo_fr2_or_quot)
tnp_pred_lo = O;
el se
tnp_pred_lo = 1;
}
tnp_res_lo = fp_single(tnmp_res);
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;

FR{ f4].sign = FP_SI GN_POSI Tl VE

PRI pJ = tnp_pred_hi && tnp_pred_| o;

fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRI ps = 0;

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Reciprocal Square Root Approximation
Format: (gp) fprsortasf fq,po =f3
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

e Each half of the significand of FR f; is either set to an approximation (with arelative error < 28831
of the reciprocal square root of the corresponding half of FR f5, or set to the IEEE-754 compliant
response for the reciprocal square root of the corresponding half of FR f; — if that half of FRf5is in

the set {-Infinity, -Finite, -0, +0, +Infinity, NaN}.

* |f either half of FR f, is set to the IEEE-754 mandated reciprocal square root, or is set to an
approximation of the reciprocal square root which may cause the Newton-Raphson iterations to fail
to produce the correct | EEE-754 square root result, then PR p, is set to 0, otherwise it is set to 1.

For correct |EEE square root results, when PR p, is cleared, user software is expected to compute the
square root for each half (using the non-parallel f r sqr t a instruction), and merge the resultsin FR f4,

keeping PR p, cleared.

* Theexponent field of FR f; is set to the biased exponent for 2.0%8 (Ox1003E) and the sign field of FR

f, isset to positive (0).

e |f FRfzisaNaTVal, FRf; isset to NaTVal instead of the computed result, and PR p, is cleared.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fz 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf3])) {
FR[ f;] = NATVAL
PR p2]
} else {

0;

trmp_default _result_pair = fprsqrta_exception_fault_check(fs sf,
& nmp_fp_env,

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);
trp_pred_hi = 0;
} else {
tmp_fr3 = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_zero(tnmp_fr3)) {
tnp_res = FP_INFINTY;
tnp_res.sign = tnp_fr3.sign;
tnp_pred_hi = 0;
} else if (fp_is_pos_inf(tmp_fr3)) {
tnp_res = FP_ZERQ
t mp_pr ed_hi 0;
} else {
tnp_res = fp_ieee_recip_sqrt(tnp_fr3);
if (limts_check.hi)
tnp_pred_hi = 0;
el se
trp_pred_hi = 1;

}
tnp_res_hi = fp_single(tnmp_res);

&l imts_check);
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}

if (fp_is_nan(tnp_default _result _pair.lo)) {

tnp_res_lo = fp_single(tnp_default_result_pair.lo);

tmp_pred_lo = 0;
} else {

tmp_fr3 = fp_normalize(fp_reg_read_lo(fgz));

if (fp_is_zero(tnmp_fr3)) {
tnmp_res = FP_INFINITY;
tnp_res.sign = tnp_fr3.sign;
tnp_pred_lo = 0;

} elseif (fp_is
tnmp_res = FP
tnp_pred_lo = 0;

} else {
tnp_res = fp_ieee_recip_sqrt(tnp_fr3);
if (limts_check.l o)

tmp_pred_lo = 0;
el se
tnp_pred_lo = 1;
}
tnp_res_lo = fp_single(tnmp_res);
}

FR{f;].significand = fp_concatenate(tnp_res_hi,

FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE;
PRI pJ = tnp_pred_hi && tnp_pred_| o;

fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRI p2 = 0;

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Reciprocal Approximation
Format: (gp) frepasf f1, po =1y, fa F6
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

* FRf, iseither set to an approximation (with arelative error < 2'8'886) of the reciprocal of FR f3, or to
the |EEE-754 mandated quotient of FR fo/FR f3 — if either FRf, or FRf3 is in the set {-Infinity, -0,
Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

* |f FRf isset to the approximation of the reciprocal of FR f5, then PR p, isset to 1; otherwise, it is set
to 0.

* |If FRf, and FR f5 are such that the approximation of FR f3's reciprocal may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 result igffARf5, then a
Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 quotierfi$/fRf3), return the result in FR
f;, and set PR, to 0.

* |f either FRf, or FRfzisaNaTVal, FR f; isset to NaTVal instead of the computed result, and PR p,
iscleared.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {
FR{ f;] = NATVAL;
PRI ps] = 0;
} else {
trp_default _result = frcpa_exception_fault_check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {

FRIf;] = tnp_default_result;
PRI ps = 0;
} else {

num = fp_normalize(fp_reg_read(FRf;]));
den = fp_normalize(fp_reg_read(FR f3]));
if (fp_is_inf(nun) && fp_is finite(den)) {

FRIf{ = FP_INFINITY;
FR( f4].sign = numsign " den. sign;
PRI ps] = 0;
} elseif (fp_is_finite(num && fp_is_inf(den)) {
FR ;] = FP_ZE
FR{f4].sign = numsign " den.sign;
PRI p] = 0;
} else if (fp_is_zero(num && fp_is_finite(den)) {
FR ;] = FP_ZERQO
FR[f;].sign = numsign * den.sign;
PRI p2] = 0;
} else {
FR ;] = fp_i eee_recip(den);
PRIp = 1;
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}
fp_update_fpsr(sf, tnp_fp_env);

}

fp_update_psr(fy);
} else {

PRI pj = 0;

/1 fp_ieee_recip()

fp_i eee_reci p(den)
{
const EMuint_t REC P_TABLE[256] = {
0x3fc, 0Ox3f4, O0x3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
Ox3be, 0x3b7, Ox3af, 0x3a8, 0x3al, 0x399, 0x392, 0x38b,
0x384, 0x37d, 0x376, 0x36f, 0x368, 0x361, 0x35b, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, Ox2fa, 0x2f4, Ox2ee,
0x2e8, 0x2e2, 0x2dc, 0x2d7, 0x2dl1l, O0x2ch, 0x2c5, O0x2bf,
Ox2ba, 0x2b4, Ox2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27e, 0x279, 0x273, 0x26e, 0x269,
0x264, 0x25f, O0x25a, 0x255, 0x250, 0x24b, 0x246, 0x241
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21b
0x216, 0x211, 0x20d, 0x208, 0x204, Ox1ff, Oxifb, Ox1f6,
0Ox1f 2, Oxled, 0Ox1le9, Oxleb5, 0x1leO, Oxldc, 0x1d8, 0x1d4,
Ox1cf, Oxlcb, Ox1c7, Ox1c3, Ox1bf, Oxlbb, O0x1b6, 0x1b2
Oxlae, Oxlaa, Oxla6, Oxla2, Ox19e, O0x19a, 0x197, 0x193,
0x18f, 0x18b, 0x187, 0x183, 0x17f, Ox17c, 0x178, 0x174,
O0x171, Ox16d, 0x169, 0x166, 0x162, 0Ox1l5e, 0x15b, 0x157,
0x154, 0x150, 0x14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, Ox12e, 0x12a, 0x127, 0x124, 0x120,
Ox11d, Ox1la, O0x117, 0x113, 0x110, 0x10d, Ox10a, 0x107,
0x103, 0x100, O0xOfd, OxOfa, OxOf7, OxOf4, OxO0f1, OxOee,
0x0eb, 0x0e8, 0x0e5, 0x0e2, 0x0df, 0xOdc, 0x0d9, 0x0d6
0x0d3, 0x0dO0, 0xOcd, OxOca, 0x0c8, 0x0c5, 0x0c2, OxO0bf,
0x0bc, 0x0b9, 0x0b7, O0x0b4, 0x0Obl, Ox0Oae, Ox0Oac, 0x0a9,
0x0a6, O0x0a4, Ox0al, 0x09e, 0x09c, 0x099, 0x096, 0x094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, 0x07f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 0x06b,
0x069, 0x066, 0x064, 0x061, 0xO05f, 0x05d, 0x05a, 0x058,
0x056, 0x053, 0x051, 0x04f, 0Ox04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0x036, 0x033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0x022
0x020, Ox0le, 0x01c, Ox0la, 0x018, 0x015, 0x013, 0x011
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001

}s

tnp_i ndex = den. si gni fi cand{62: 55};

tnp_res.significand = (1 << 63) | (RECI P_TABLE tnp_i ndex] << 53);
tnp_res. exponent = FP_REG EXP_QONES - 2 - den. exponent;
tnp_res.sign = den.sign

return (tnp_res);

}

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Reciprocal Square Root Approximation
Format: (gp) frsgrtasf fq, p, =13 F7
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

* FRf, iseither set to an approximation (with arelative error < 2883%) of the reciprocal square root of
FR f3, or set to the |IEEE-754 mandated squareroot of FR f; — if FR f5 is in the set {-Infinity, -Finite,
-0, Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

* |f FRf; isset to an approximation of the reciprocal square root of FR f3, then PR p, isset to 1;
otherwise, itisset to 0.

* |f FRf3issuch the approximation of its reciprocal square root may cause the Newton-Raphson
iterations to fail to produce the correct |EEE-754 square root result, then a Floating-point Exception
fault for Software Assist occurs.

System software is expected to compute the IEEE-754 square root, return the result in FR f;, and set
PRp,t00.

* If FRfzisaNaTVa, FRf; isset to NaTVal instead of the computed result, and PR p, is cleared.
The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f3 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf3)) {
FR[ f;] = NATVAL;
PRI ps] = 0;
} else {
trp_defaul t _result = frsqrta_exception_fault_check(fs sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default _result)) {
FRIf;] = tnp_default_result;
PRI ps] = 0;
} else {
tmp_fr3 = fp_normalize(fp_reg_read(FR f3]));
if (fp_is_zero(tnmp_fr3)) {
FRIf; = tnp_fr3;

PRI ps = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
FRIf4 = tnp_fr3;
PRI ps = 0;

} else {
FRIf;] = fp_ieee_recip_sqrt(tnmp_fr3);
PRIps = 1;

}
}
fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(f,);

} else {
PRI ps = 0;
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/1 fp_ieee recip_sqrt()

fp_ieee_recip_sqrt(root)
{
const EM uint_t RECH P_SQRT_TABLE[ 256] = {
Oxlab, Ox1a0, 0x19a, 0x195, 0x18f, 0x18a, 0x185, 0x180,
Ox17a, 0x175, 0x170, Ox16b, 0x166, 0x161, 0x15d, 0x158,
0x153, Ox14e, Oxl1l4a, 0x145, 0x140, O0x13c, 0x138, 0x133,
0Ox12f, 0x12a, 0x126, 0x122, Oxl1lle, Oxlla, 0x115, O0x111,
0x10d, 0x109, 0x105, 0x101, Ox0fd, OxOfa, Ox0f6, O0xOf2,
Ox0ee, Ox0Oea, 0x0e7, 0x0e3, 0x0df, O0x0dc, 0x0d8, 0x0d5
0x0d1l, 0xOce, 0OxOca, 0xOc7, 0x0c3, 0x0cO, 0xO0bd, 0x0b9
0x0b6, 0x0b3, 0x0b0O, Ox0ad, 0x0a9, 0x0a6, 0x0a3, 0x0a0,
0x09d, 0x09a, 0x097, 0x094, 0x091, 0x08e, 0x08b, 0x088,
0x085, 0x082, O0x07f, 0x07d, Ox07a, 0x077, 0x074, 0x071,
0x06f, 0x06c, 0x069, 0x067, 0x064, 0x061, 0x05f, 0x05c,
0x05a, 0x057, 0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x045, 0x043, 0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035,
0x033, 0x030, 0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0x020, OxOle, Ox0lc, Ox0Ola, 0x018, 0x016, 0x014, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001
0x3fc, Ox3f4, 0x3ec, 0x3e5, 0x3dd, 0x3d5, Ox3ce, 0x3c7,
Ox3bf, 0x3b8, 0x3bl, Ox3aa, 0x3a3, 0x39c, 0x395, 0x38e,
0x388, 0x381, 0x37a, 0x374, 0x36d, 0x367, 0x361, 0x35a,
0x354, 0x34e, 0x348, 0x342, 0x33c, 0x336, 0x330, 0x32b,
0x325, 0x31f, 0Ox3la, 0x314, 0x30f, 0x309, 0x304, Ox2fe,
0x2f 9, Ox2f4, Ox2ee, 0x2e9, 0x2e4, 0x2df, O0x2da, 0x2d5,
0x2d0, Ox2ch, 0x2c6, 0x2cl, 0x2bd, 0x2b8, 0x2b3, O0x2ae,
Ox2aa, 0x2ab5, 0Ox2al, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x286, 0x282, 0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x264, 0x260, 0x25c, 0x258, 0x254, 0x250, 0x24c, 0x249
0x245, 0x241, 0x23d, 0x239, 0x235, 0x232, 0x22e, 0x22a,
0x227, 0x223, 0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x20a, 0x207, 0x204, 0x200, Oxifd, Ox1f9, O0xif6, Ox1f3,
Ox1f 0, Oxlec, 0Ox1le9, Oxle6, 0xle3, Ox1ldf, Oxldc, 0x1d9
0x1d6, 0x1d3, 0x1dO, Oxlcd, Oxlca, Oxlc7, Oxl1lc4, Oxlcl
Oxlbe, Ox1bb, 0x1b8, 0x1b5, 0x1b2, Oxlaf, Oxlac, Oxlaa,

}s

tp_i ndex = (root.exponent{0} << 7) | root.significand{62:56};
tnp_res.significand = (1 << 63) | (RECI P_SQRT_TABLE[tnp_i ndex] << 53)
tnp_res. exponent = FP_REG EXP_HALF - ((root.exponent - FP_REG BIAS) >> 1)
tnp_res.sign = FP_SI GN_PCsSI Tl VE;

return (tnp_res);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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intel.

Floating-Point Select

Format:

Description:

Operation:

(qp) fselect fl = f3, f4, f2 F3

The significand field of FR f5islogically AND-ed with the significand field of FR f, and the significand
field of FR f, is logically AND-ed with the one’s complement of the significand field of f=Rhe two
results are logically OR-ed together. The result is placed in the significand fieldfof FR

The exponent field of FR is set to the biased exponent for%8 (x1003E). The sign bit field of FRis
set to positive (0).

If any of FRf3, FRf,, or FRf, is a NaTVal, FR; is set to NaTVal instead of the computed result.

it (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f,)) {
FR{ f;] = NATVAL;
} else {
FRIf;].significand = (FRfg.significand & FR[f/].significand)
| (FRIf,.significand & ~FR f;]. significand);
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

}
fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Set Controls
Format: (gp) fsetc.sf amask?, omask? F12

Description:  The status field’s control bits are initialized to the value obtained by logically AND-ing the sf0.controls
andamask7 immediate field and logically OR-ing tlwenask7 immediate field.

The mnemonic values faf are given infable 7-18 on page 7-31

Operation: if (PR gp]) {
tmp_controls = (AR FPSR] . sf0.control s & anask?7) | onask?7,
if (is_reserved_fiel d(FSETC, sf, tnp_controls))
reserved_register field fault();
fp_set_sf _control s(sf, tnp_controls);

}

FP Exceptions: None
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Floating-Point Subtract

Format: (gp) fsub.pc.sf f; =13, 1, pseudo-op of: (gp) fms.pc.sf f; =13, f1, f,

Description:  FR f, is subtracted from FR f5 (computed to infinite precision), rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed
in FRf;.
If either FR f3 or FR f,isaNaTVal, FR f; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodptsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'sre,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Subtract” on page 7-56
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Floating-Point Swap

Format: (gp) fswap fi =1, f3 swap_form Fo
(gp) fswap.nl f; =1y, f3 swap_nl_form Fo
(ap) fswap.nr f; =1y, f3 swap_nr_form F9

Description:  For the swap_form, the |eft single precision value in FR f, is concatenated with the right single precision
value in FR f3. The concatenated pair is then swapped.

For the swap_nl_form, theleft single precision value in FR f, is concatenated with the right single
precision value in FR f5. The concatenated pair is then swapped, and the |eft single precision valueis
negated.

For the swap_nr_form, the left single precision value in FR f, is concatenated with the right single
precision value in FR f5. The concatenated pair is then swapped, and the right single precision valueis
negated.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the sign
field of FR fy is set to positive (0).

For al forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-17. Floating-point Swap

63 32 31 0

63 ¢ 3231 0
1

Figure 7-18. Floating-point Swap Negate Left or Right

63 62 32 3130 0

negate left
negate right 9 f3

63 62 f 323130 0
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
if (swap_form {
tmp_res_hi = FR f3].significand{31:0};
tmp_res_lo = FR f,]. significand{63:32};
} else if (swap_nl _forn {
tnp_res_hi = (!FR f3].significand{31} << 31)
| (FRfg].significand{30:0});
tmp_res_lo = FR f,]. significand{63:32};
} else { // swap_nr_form
tmp_res_hi = FR{ f3]. significand{31:0};
tnp_res_lo = (!FR f,].significand{63} << 31)
| (FRf].significand{62:32});
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE

}

fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Sign Extend

Format: (gp) fsxt.l fq =15, f3 sxt_|_form Fo
(gp) fsxtr fy =1, f3 sxt_r_form Fo

Description:  For the sxt_|_form (sxt_r_form), the sign of the left (right) single precision valuein FR f, is extended to

32-bits and is concatenated with the left (right) single precision valuein FR f5.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-19. Floating-point Sign Extend Left

Figure 7-20. Floating-point Sign Extend Right

Operation:

63 32 63 32

f f3
63 3231 0

31 0 31 0
f f3
63 3231 0
if (PRgp]) {

fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;

} else {
if (sxt_| _form {
tmp_res_hi = (FR{f/].significand{63} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FR f3].significand{63: 32};

} else { /1 sxt_r _form
tmp_res_hi (FR(f ] .significand{31} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FR f3]. significand{31: 0};

}

FRIf;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR[ f 1] . exponent = FP_| NTEGER _EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE

}

fp_update_psr(f,);

FP Exceptions: None
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intel.

Floating-Point Exclusive Or

Format:

Description:

Operation:

(ap) fxor f;=f,, fg F9

The bit-wise logical exclusive-OR of the significand fields of FR f, and FR f5 is computed. The resulting
vaueis stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent
for 2.0%% (0x1003E) and the sign field of FR f; is set to positive (0).

If either of FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
FR{ f4].significand = FR{ f,].significand » FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

fp_update_psr(f,);

FP Exceptions: None
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Get Floating-Point Value or Exponent or Significand

Format: (ap) getf.s ry=f, single form
(ap) getf.d ry=1 double_form
(ap) getf.exp ry=f, exponent_form
(ap) getf.sig ry="f, significand_form

getf

M19
M19
M19
M19

Description:  In the single and double forms, the value in FR f, is converted into a single precision (single_form) or
double precision (double_form) memory representation and placed in GR r4. In the single_form, the

most-significant 32 bitsof GR r4 are set to O.

In the exponent_form, the exponent field of FR f, is copied to bits 16:0 of GR r, and the sign hit of the

valuein FR f, is copied to bit 17 of GR r4. The most-significant 46-bits of GR r, are set to zero.

Figure 7-21. Function of getf.exp

FRf, |s| exponent significand
I
63 18yi6 §y O
GRr; 0
46 1 17

In the significand_form, the significand field of the valuein FR f, is copied to GR ry

Figure 7-22. Function of getf.sig

FR f, |s|exponent significand
63 ; 0

64

Ger

For al forms, if FR f, contains aNaT Val, then the NaT bit corresponding to GRr4 isset to 1.
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Operation:

7-102

if (PRIgp]) {
check_target_register(ry);
if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (single_fornm {
R r {31:0} = fp_fr_to nmemformat(FR f;], 4, 0);
CGRrq{63:32} = 0;
} else if (double_fornm {
GRrg =fp_fr_to_memformat(FR f,], 8, 0);
} else if (exponent_form {
R r {63:18} = 0;
R r {16:0} = FR f,].exponent;
R r]{17) = FR7;] sign;
} else /] significand form
R r;] = FR f,].significand,
if (fp_is_natval (FRf;]))

R rq.nat = 1,
el se
R r ] .nat = 0;
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Invalidate ALAT

Format:

Description:

Operation:

invala
(gp) invaa complete form M24
(gp) invalae ry gr_form, entry_form M26
(gp) invalae f; fr_form, entry_form mM27

The selected entry or entriesin the ALAT are invalidated.

In the complete form, all ALAT entries are invalidated. In the entry_form, the ALAT is queried using the
general register specifier rq (gr_form), or the floating-point register specifier f; (fr_form), and if any
ALAT entry matches, it isinvalidated.

if (PR gp]) {
if (conplete_form
al at _inval ();
else { // entry_form
if (gr_form
al at _inval _si ngl e_entry( GENERAL, r);
else // fr_form
al at _i nval _si ngl e_entry(FLQOAT, f;);
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Load

Format: (gp) Idsz.ldtypeldhint rq =[rg] no_base update form M1
(gp) Idszldtype.ldhint rq =[r3], o reg_base update form M2
(gp) Idsz.ldtype.ldhint rq =[r3], immg imm_base _update form M3
(gp) Id8.fill.Idhint rq =[r4] fill_form, no_base update form M1
(gp) Id8.fill.ldhint rq =[r3], ro fill_form, reg_base update form M2
(gp) Id8.fill.ldnhint rq = [r3], immg fill_form, imm_base update form M3

Description: A value consisting of sz bytesis read from memory starting at the address specified by the valuein GRr5.
The value is then zero extended and placed in GR r4. The values of the sz completer are givenin
Table 7-26. The NaT bit corresponding to GR r is cleared, except as described below for speculative
loads. The Idtype completer specifies specia |oad operations, which are described in Table 7-27.

For the fill_form, an 8-byte value isloaded, and a bit in the UNAT application register is copied into the
target register NaT hit. Thisinstruction is used for reloading a spilled register/NaT pair. See “Control
Speculation” on page 4-1f8r details.

In the base update forms, the value in1G# added to either a signed immediate vaioeng) or a value
from GRr5, and the result is placed back in GRThis base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit correspondingiso GR
set, then the NaT bit corresponding to GRS set and no fault is raised.

Table 7-26. sz Completers

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

Table 7-27. Load Types

Idtype

Completer Interpretation Special Load Operation

none Normal load

S Speculative load | Certain exceptions may be deferred rather than generating a fault. Deferral
causes the target register’s NaT bit to be set. The NaT bit is later used to
detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative attribute,
the target register and NaT bit is cleared, and the processor ensures that no
ALAT entry exists for the target register. The absence of an ALAT entry is later
used to detect deferral or collision.

sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes the target register’s NaT bit to be set, and the processor
ensures that no ALAT entry exists for the target register. The absence of an
ALAT entry is later used to detect deferral or collision.

c.nc Check load The ALAT is searched for a matching entry. If found, no load is done and the
- no clear target register is unchanged. Regardless of ALAT hit or miss, base register
updates are performed, if specified. An implementation may optionally cause
the ALAT lookup to fail independent of whether an ALAT entry matches. If not
found, a load is performed, and an entry is added to the ALAT (unless the
referenced data page has a non-speculative attribute, in which case no ALAT
entry is allocated).
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Table 7-27. Load Types (Cont'd)

Idtype . . )
Completer Interpretation Special Load Operation
c.clr Check load The ALAT is searched for a matching entry. If found, the entry is removed, no
- clear load is done and the target register is unchanged. Regardless of ALAT hit or
miss, base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an ALAT
entry matches. If not found, a clear check load behaves like a normal load.
c.clr.acq Ordered check This type behaves the same as the unordered clear form, except that the ALAT
load — clear lookup (and resulting load, if no ALAT entry is found) is performed with acquire
semantics.
acq Ordered load An ordered load is performed with acquire semantics.
bias Biased load A hint is provided to the implementation to acquire exclusive ownership of the
accessed cache line.

For more details on ordered, biased, speculative, advanced and check loads see “Control Speculation” on
page 4-13and“Data Speculation” on page 4-16or more details on ordered loads ‘§demory Access
Ordering” on page 4-235ee&‘Memory Hierarchy Control and Consistency” on page 4&tQetails on
biased loads.

For the non-speculative load types, if NaT bit associated with;GR1, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated withi&SR the NaT bit associated
with GRr3is set to 1 and no fault is raised.

The value of thédhint completer specifies the locality of the memory access. The valuesldhithte
completer are given iable 7-28 A prefetch hint is implied in the base update forms. The address
specified by the value in GR after the base update acts as a hint to prefetch the indicated cache line. This
prefetch uses the locality hints specifieddlyint. Prefetch and locality hints do not affect program
functionality and may be ignored by the implementation.“Stamory Hierarchy Control and

Consistency” on page 4-20r details.

Table 7-28. Load Hints

Idhint Completer Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nta No temporal locality, all levels

In the no_base_update form, the value intgi® not modified and no prefetch hint is implied.

For the base update forms, specifying the same register addreasdhn; will cause an Illegal Operation
fault.
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Operation: if (PREgp]) {
size = fill _form? 8 : sz
specul ative = (/dtype=="s"| | dt ype == 'sa’);
advanced=( [/dtype=="a|| | dt ype =='sa’);
check_clear = ( | dt ype=="c.clr || | dt ype == ‘c.clr.acq);
check _no_clear = ( | dt ype ==‘c.nc’);
check = check_clear || check_no_clear;
acquire = ( I dt ype =="acq’ || | dt ype =="‘c.clr.acq’);

bias=( [/ dtype=="bias’) ? BIAS:0;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced)itype |= ADVANCE ;

if ((reg_base_update_form || imm_base_update_form) && ( r{== rjz))
illegal_operation_fault();

check_target_register( r 1, itype);

if (reg_base_update_form || imm_base_update_form)
check_target_register( r3);

if (reg_base_update_form) {
tmp_r2=GR[ r];
tmp_r2nat=GR[ r.nat;
}

if ('speculative && GR[ r g].nat) // fault on NaT address
register_nat_consumption_fault(itype);
defer = speculative && (GR[ r gl.nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(GENERAL, r o /I no load on Id.c & ALAT hit
if (check_clear) /I remove entry on Id.c.clr or Id.c.clr.acq
alat_inval_single_entry(GENERAL, ro);
}else{
if (Idefer) {
paddr = tlb_translate(GR[ r 3], size, itype, PSR.cpl, &maittr,
&defer);
if (Idefer) {
otype = acquire ? ACQUIRE : UNORDERED;
val = mem_read(paddr, size, UM.be, mattr, otype, bias | | dhi nt);

}

if (check_clear || advanced) /I remove any old ALAT entry
alat_inval_single_entry(GENERAL, ro);
if (defer) {
if (speculative) {
GR{r 4] = natd_gr_read(paddr, size, UM.be, mattr, otype,
bias | I dhi nt);
GR[r j].nat=1;

}else {
GR[r4=0; //'ld.a to sequential memory
GR[r 4].nat = 0;

}else{ /I execute load normally

if (fill_form) { /I fill NaT on ld8.fill
bit_pos=GR[ r3|{8:3};
GR([r 4] = val
GR(r ;].nat = AR[UNAT]{bit_pos},

}else { /I clear NaT on other types

GR(r 4] = zero_ext(val, size * 8);
GR[r 4].nat = 0;
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if ((check_no_clear || advanced) && ma_is_specul ative(nattr))
/1l add entry to ALAT
al at _write(GENERAL, r; paddr, size);

}

if (immbase update form { /1 update base register
Rrg = GRrg + sign_ext(imm, 9);
GRrg.nat = GRrg.nat;
} else if (reg_base update form {
CRrg = Crg +tnp_rz;
GRrgl.nat = GR[rg.nat || tnp_r2nat;
}

if ((reg_base update_form || inmbase update_forn) &% !GRr3].nat)
mem.inplicit_prefetch(GRrz, bias | /dhint);
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Floating-Point Load

Format:

Description:

(gp) Idffsz.fldtype.ldhint f; =[rg] no_base update form M6
(gp) Idffsz.fldtype.ldhint f; =[r3], o reg_base update form M7
(gp) Idffszfldtypeldhint f; =[rs], immg imm_base _update form M8
(gp) Idf8.fldtype.ldhint f; =[r3] integer_form, no_base update form M6
(gp) Idf8.fldtype.ldhint f; =[r3], ro integer_form, reg_base update form M7
(gp) Idf8.fldtype.ldhint f; = [r3], immg integer_form, imm_base update form M8
(gp) Idf fill.ldhint f; =[r3] fill_form, no_base update form M6
(gp) Idf fill.ldhint f; =[rg], ry fill_form, reg_base update form M7
(gp) Idf.fill.ldhint f; =[r3], immg fill_form, imm_base update form M8

A value consisting of fsz bytesisread from memory starting at the address specified by thevaluein GRr5.
The value is then converted into the floating-point register format and placed in FR f;. See “Data Types
and Formats” on page 5far details on conversion to floating-point register format. The values édzthe
completer are given ifable 7-29 Thefldtype completer specifies special load operations, which are
described ifrable 7-30

For the integer_form, an 8-byte value is loaded and placed in the significand field;oivfRout
conversion. The exponent field of FRis set to the biased exponent for%.(Mx1003E) and the sign
field of FRf, is set to positive (0).

For the fill_form, a 16-byte value is loaded, and the appropriate fields are placed,iwirut
conversion. This instruction is used for reloading a spilled registefCae¢rol Speculation” on
page 4-13For details.

In the base update forms, the value in1GR added to either a signed immediate valoeng) or a value
from GRr,, and the result is placed back in &RThis base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit correspondingiso GR
set, then the NaT bit corresponding to GRS set and no fault is raised.

Table 7-29. fsz Completers

fsz Completer Bytes Accessed Memory Format
S 4 bytes Single precision
d 8 bytes Double precision
e 10 bytes Extended precision

Table 7-30. FP Load Types

7-108

fldtype . . .
Completer Interpretation Special Load Operation
none Normal load
s Speculative load | Certain exceptions may be deferred rather than generating a fault. Deferral
causes NaTVal to be placed in the target register. The NaTVal value is later
used to detect deferral.
a Advanced load An entry is added to the ALAT. This allows later instructions to check for

colliding stores. If the referenced data page has a non-speculative attribute,
no ALAT entry is added to the ALAT and the target register is set as follows:
for the integer_form, the exponent is set to 0x1003E and the sign and
significand are set to zero; for all other forms, the sign, exponent and
significand are set to zero. The absence of an ALAT entry is later used to
detect deferral or collision.
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Table 7-30. FP Load Types (Cont'd)

fldtype

Completer Interpretation Special Load Operation

sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes NaTVal to be placed in the target register, and the processor
ensures that no ALAT entry exists for the target register. The absence of an
ALAT entry is later used to detect deferral or collision.

c.nc Check load - The ALAT is searched for a matching entry. If found, no load is done and the
no clear target register is unchanged. Regardless of ALAT hit or miss, base register
updates are performed, if specified. An implementation may optionally cause
the ALAT lookup to fail independent of whether an ALAT entry matches. If not
found, a load is performed, and an entry is added to the ALAT (unless the
referenced data page has a non-speculative attribute, in which case no ALAT
entry is allocated).

c.clr Check load — clear | The ALAT is searched for a matching entry. If found, the entry is removed, no
load is done and the target register is unchanged. Regardless of ALAT hit or
miss, base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an ALAT
entry matches. If not found, a clear check load behaves like a normal load.

For more details on speculative, advanced and check loads see “Control Speculation” on page 4-¥&d
“Data Speculation” on page 4-16

For the non-speculative load types, if NaT bit associated withy@&RL, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated withi&R the NaT bit associated
with GRr3is set to 1 and no fault is raised.

The value of thédhint modifier specifies the locality of the memory access. The mnemonic values of
Idhint are given irfable 7-28 on page 7-108 prefetch hint is implied in the base update forms. The
address specified by the value in GRafter the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specifieddynt. Prefetch and locality hints do not affect
program functionality and may be ignored by the implementation:Nsemory Hierarchy Control and
Consistency” on page 4-Z0r details.

In the no_base_update form, the value intgRR not modified and no prefetch hint is implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification fagf FR
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Operation:

7-110

if (PRgp]) {
size = (fill_form? 16 : (integer_form? 8 : fsz2));
specul ative = (fldtype=="5|| fldtype =="'sa);
advanced = ( f/ dt ype=="a’|| fl dt ype =="'sa’);
check_clear = ( fldtype=="cclr');
check_no_clear = ( fl dt ype ==‘c.nc’);

check = check_clear || check_no_clear;
itype = READ;

if (speculative) itype |= SPEC ;

if (advanced) itype |= ADVANCE ;

if (reg_base_update_form || imm_base_update_form)

check_target_register( r3);
fp_check_target_register( f o)
if (tmp_isrcode = fp_reg_disabled( f1,0,0,0))
disabled_fp_register_fault(tmp_isrcode, itype);
if ('speculative && GR[ r 3].nat) // fault on NaT address
register_nat_consumption_fault(itype);
defer = speculative && (GR[ r gl.nat || PSR.ed);// defer exception if spec
if (check && alat_cmp(FLOAT, f){ // o load on Idf.c & ALAT hit
if (check_clear) I/l remove entry on Idf.c.clr
alat_inval_single_entry(FLOAT, f o)
}else{
if ('defer) {
paddr = tlb_translate(GR[ r 3], size, itype, PSR.cpl, &maittr,
&defer);
if (\defer)
val = mem_read(paddr, size, UM.be, mattr, UNORDERED, | dhi nt);
if (check_clear || advanced) /I remove any old ALAT entry
alat_inval_single_entry(FLOAT, f o)
if (speculative && defer) {

FR[f ;] = NATVAL;

} else if (advanced && !speculative && defer) {
FR[f 4] = (integer_form ? FP_INT_ZERO : FP_ZERO);

}else{ /I execute load normally
FR[f ;] = fp_mem_to_fr_format(val, size, integer_form);

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
/I add entry to ALAT
alat_write(FLOAT, f 1, paddr, size);

}

if imm_base_update_form) { /I update base register
GR[r g =GR[ r 3]+ sign_ext( i mmy, 9);
GR[rgl.nat=GR[ rgl.nat;
} else if (reg_base_update_form) {
GR[rg =GR[ ra+GR[ rj;
GR[rgl.nat=GR[ rgl.nat|| GR[ r 5].nat;

if ((reg_base_update_form || imm_base_update_form) && !GR[ r z].nat)
mem_implicit_prefetch(GR[ ral, Idhint);

fp_update_psr(  f );
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Floating-Point Load Pair

Format:

Description:

Operation:

Idfp
(gp) Idfps.fidtype.ldhint fq, f, =[r3] single_form, no_base _update_form M11
(gp) Idfps.fldtype.ldhint f;, f, =[r3], 8 single_form, base_update form M12
(gp) Idfpd.fldtype.ldhint fq, f, =[r4] double form, no_base update form M11
(gp) Idfpd.fldtype.ldhint fq, f, =[r4], 16 double form, base update form M12
(gp) Idfp8.fldtype.ldhint fq, f; = [r4] integer_form, no_base update form M11
(gp) Idfp8.fldtype.ldhint fq, f, =[r3], 16 integer_form, base_update_form M12

Eight (single form) or sixteen (double form/integer form) bytes are read from memory starting at the
address specified by the valuein GR r. The value read istreated as a contiguous pair of floating-point
numbers for the single_form/double_form and as integer/Parallel FP data for theinteger_form. Each
number is converted into the floating-point register format. The value at the lowest addressis placed in FR
f1, and the value at the highest addressis placed in FR f,. See “Data Types and Formats” on page %ot
details on conversion to floating-point register format. fitlgpe completer specifies special load
operations, which are describedTable 7-30 on page 7-108

For more details on speculative, advanced and check loatiS@aeol Speculation” on page 4-Ehd
“Data Speculation” on page 4-16

For the non-speculative load types, if NaT bit associated withy@&RL, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred.

In the base_update_form, the value in GG added to an implied immediate value (equal to double the
data size) and the result is placed back inrgRhis base register update is done after the load, and does
not affect the load address.

The value of thédhint modifier specifies the locality of the memory access. The mnemonic values of
Idhint are given irTable 7-28 on page 7-108 prefetch hint is implied in the base update form. The
address specified by the value in Gfafter the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specifieddynt. Prefetch and locality hints do not affect
program functionality and may be ignored by the implementation:Ndemory Hierarchy Control and
Consistency” on page 4-20r details.

In the no_base_update form, the value intgi® not modified and no prefetch hint is implied.
The PSR.mfl and PSR.mfh bits are updated to reflect the modification fpfeffid FRf,.

There is a restriction on the choice of target registers. Register spdgifiadf, must specify one
odd-numbered physical FR and one even-numbered physical FR. Specifying two odd or two even
registers will cause an lllegal Operation fault to be raised. The restriction is on physical register numbers
after register rotation. This means thd indf, both specify static registers or both specify rotating
registers, thefy andf, must be odd/even or even/oddf,lindf, specify one static and one rotating

register, the restriction depends on CFM.rrb.fr. If CEM.rrb.fr is even, the restriction is thef samdf;

must be odd/even or even/odd. If CFM.rrb.fr is odd, theandf, must be even/even or odd/odd.

Specifying one static and one rotating register should only be done when CFM.rrb.fr will have a
predictable value (such as 0).

it (PRgp]) {
size = single form? 8 : 16;

specul ative = (fldtype=="5'|| fldtype =="'sa’);
advanced=( fldtype=="a|| fl dt ype =="'sa’);
check_clear = ( f1dtype=="c.clr),

check_no_clear = ( fl dt ype =="‘c.nc’);

check = check_clear || check_no_clear;
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itype = READ,
if (speculative) itype |= SPEC
i f (advanced) itype | = ADVANCE;

if (fp_reg_bank conflict(f1l, f2))
illegal _operation_fault();

if (base_update form
check_target_register(ry);

fp_check_target_register(f;);
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))

di sabl ed_fp_register_fault(tnp_isrcode, itype);

if (!speculative & CGR{r3].nat) /1 fault on NaT address
regi ster_nat _consunption_faul t(itype);
defer = speculative & (GRrgl.nat || PSR ed);// defer exception if spec
if (check & al at_cnp(FLOAT, f;)) { /1 no load on Idfp.c & ALAT hit
if (check_clear) // renove entry on Idfp.c.clr
al at _i nval _si ngl e_entry(FLQAT, f,);
} else {
if (!defer) {
paddr = tlb_translate(GRr3, size, itype, PSRcpl, &mttr,
&defer);
if (!defer)

val = nemread(paddr, size, UMbe, mattr, UNORDERED, /dhint);

if (check_clear || advanced) /1 renmove any ol d ALAT entry
al at _i nval _si ngl e_entry(FLQOAT, f,);
if (speculative & defer) {
FR ;] = NATVAL;
FRIf, = NATVAL;
} else if (advanced &% !specul ative &% defer) {
= (integer _form? FP_INT_ZERO : FP_ZERO;
FRIf,] = (integer_form? FP_INT_ZERO : FP_ZERO);
} else { I/ execute load normally

fp_memto fr_format(val u>> (sizel/2*8), sizel?2,
integer _form;
fp_memto fr_format(val, size/2, integer_form;

T T m
Lol I
~__~h
IS ST
I In =1

fp_memto fr_format(val, size/2, integer_form;
fp_memto fr_format(val u>> (sizel/2*8), sizel?2,
i nteger_forn);

if ((check_no_clear || advanced) && ma_is_specul ative(mattr))
// add entry to ALAT
al at _wite(FLQAT, f;, paddr, size);

}

if (base_update form { /'l update base register
CRrg = GRrg + size;
GRrz.nat = GR[rg.nat;
if (TCRrg.nat)
meminplicit_prefetch(GRrg], [dhint);
}

fp_update_psr(f,);
fp_update_psr(f,);
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Line Prefetch

Format:

Description:

Ifetch
(gp) Ifetch.iftype.lfhint [rs] no_base_update form M13
(gp) Ifetch.iftypelfhint [rg], ro reg_base update form M14
(gp) Ifetch.Iftypelfhint [rs], immg imm_base_update form M15
(gp) Ifetch.Iftype.excl.Ifhint [rs] no_base update form, exclusive form M13
(gp) Ifetch.Iftype.excl.Ifhint [rg], ro reg_base update form, exclusive form M14
(gp) Ifetch.Iftype.excl.Ifhint [r3], immg imm_base_update form, exclusive_form M15

The line containing the address specified by the value in GR r5 is moved to the highest level of the data
memory hierarchy. The value of the Ifhint modifier specifies the locality of the memory access. The
mnemonic values of Ifhint are givenin Table 7-32.

The behavior of the memory read is also determined by the memory attribute associated with the accessed
page. Line size isimplementation dependent but must be a power of two greater than or equal to 32 bytes.
In the exclusive form, the cache lineis allowed to be marked in an exclusive state. This qualifier is used
when the program expects soon to modify alocation in that line. If the memory attribute for the page
containing the line is not cacheabl e, then no reference is made.

The completer, Iftype, specifies whether or not the instruction rai ses faults normally associated with a
regular load. Table 7-31 defines these two options.

Table 7-31. Iftype Mnemonic Values

Iftype Mnemonic Interpretation
none Ignore faults
fault Raise faults

In the base update forms, after being used to address memory, the value in GR rz isincremented by either
the sign extended value in immg (in theimm_base_update_form) or the valuein GR r5 (in the

reg_base update form). Inthereg_base update form, if the NaT bit corresponding to GR r, is set, then
the NaT bit corresponding to GR r3 is set — no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit correspondimg ito GR
clear, then the address specified by the value im{Gfer the post-increment acts as a hint to implicitly
prefetch the indicated cache line. This implicit prefetch uses the locality hints speciffaohtyhe

implicit prefetch does not affect program functionality, does not raise any faults, and may be ignored by
the implementation.

In the no_base_update_form, the value intgR® not modified and no implicit prefetch hint is implied.
If the NaT bit corresponding to GR is set then the state of memory is not affected. In the

reg_base_update_form and imm_base_update_form, the post increment;aé@Rformed and
prefetch is hinted as described above.

Table 7-32. Ifhint Mnemonic Values

Ifhint Mnemonic Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nt2 No temporal locality, level 2
nta No temporal locality, all levels
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Operation:

7-114

if (PREgp]) {

itype = READ| NON_ACCESS;
itype | = (/ftype=="fault) ? LFETCH_FAULT : LFETCH;

if (reg_base_update_form || imm_base_update_form)

check_target_register( ra);
if (I ftype=="Fault’){ I/ faulting form
if (GR[ rg].nat && 'PSR.ed) // fault on NaT address

register_nat_consumption_fault(itype);

}

if (exclusive_form)

excl_hint = EXCLUSIVE;
else

excl_hint =0;

if IGR[  rzl.nat && !PSR.ed) {// faulting form already faulted if r zis nated
paddr = tlb_translate(GR[ r 3, 1, itype, PSR.cpl, &mattr, &defer);
if (Idefer)
mem_promote(paddr, mattr, I fhi nt | excl_hint);

}

if imm_base_update_form) {
GR[r 3l =GR[ r 3]+ sign_ext( iy, 9);
GR[rgl.nat=GR[ rgl.nat;

} else if (reg_base_update_form) {
GR[rg =GR[ rg+GR[ rj];
GR[rgl.nat=GR[ rj.nat|| GR[ I gl.nat;

if ((reg_base_update_form || imm_base_update_form) && !GR][ I g].nat)
mem_implicit_prefetch(GR[ ral, [ fhint |excl hint);
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Memory Fence

Format: (gp) mf ordering_form M24
(gp) mf.a acceptance_form M24

Description:  Thisinstruction forces ordering between prior and subsegquent memory accesses. The ordering_form
ensures all prior data memory accesses are made visible prior to any subsequent data memory accesses
being made visible. It does not ensure prior data memory references have been accepted by the external
platform, nor that prior data memory references are visible.

The acceptance_form prevents any subsequent data memory accesses by the processor from initiating
transactions to the external platform until:

* all prior loads have returned data, and
* all prior stores have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance_form is typically used to ensure the
processor has “waited” until a memory-mapped IO transaction has been “accepted”, before initiating
additional external transactions. The acceptance_form does not ensure ordering.

Operation: if (PR gp]){
if (acceptance_forn
accept ance_fence();
el se
ordering_fence();
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Mix

Format:

Description:

7-116

(gp) mixLl ry=ry 13
(gp) mix2.l ry=ryr3
(ap) mix4l ry=rp 3
(gp) MixLr ry=rop,rs
(gp) MiX2.r ry=ro,rs
(gp) mix4.r ry=ry,rs

intel.

one_byte form, left_form 12
two_byte form, left_form 12
four_byte form, left_form 12
one_byte form, right_form 12
two_byte form, right_form 12
four_byte form, right_form 12

The dataelements of GR r, and r are mixed as shown in Figure 7-23, and the result placed in GRr4. The
data elements in the source registers are grouped in pairs, and one element from each pair is selected for
the result. Inthe left_form, the result is formed from the leftmost elements from each of the pairs. In the
right_form, the result is formed from the rightmost elements. Elements are selected alternately from the

two source registers.
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Figure 7-23. Mix Example

mix

GR o

GR o

GRry:

GRry:

GR o

GR o

mix4.r
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Operation:

7-118

if (PREgp]) {

check_target_register(ry);

if (one_byte fornm {

x[ 0] 2{7:0}; yL O] {7:0};

=R = &Hrg
x[1] = GRIrp]{15:8}; y[1] = GRrj{15:8};
x[2] = GRry{23:16};  y[2] = GRrg3{23:16};
x[3] = GRIr {31:24};  y[3] = GRrg{31:24};
x[4] = &R r,){39:32}; y[4] = &R r3 {39: 32};
X[5] = GRIr ]{47:40};  y[5] = GRrg3{47:40};
x[6] = GRIr ]{55:48};  y[6] = GRrg3l{55:48};
x[7] = GRIr 1{63:56};  y[7] = GRr3{63:56};

if (left_form

GRr ;] = concatenate8(x[7], y[7], x[5], y[5],
| x[3], y[3], x[1], y[1]);
el se

GR r ;] = concatenate8(x[6], y[6], x[4], y[4],
x(2], y[2], x[0], y[OQ]);

} else if (two_byte fornm {

X[0] = GRr{15:0};  y[O] = GRrg {15 0};
X[1] = GRrj]{31:16}; y[1] = GRrgl{3L: 16};
x[2] = GRrj{47:32}; y[2] = GRr3l{47:32};
X[3] = GRr]{63:48};  y[3] = GRr3l{63: 48};

if (left_form

GR r ;] = concatenate4(x[3], y[3], x[1], y[1]);

el se

GR r ] = concatenate4(x[2], y[2], x[0], y[0]);

} else {
x[0] = GRr ] {31:0}; y[0] = GR{rg {31:0};
x[1] = GRr ] {63:32}; y[1] = GRr3{63:32};

if (left_form
@GR rj] = concatenate2(x[1], y[1]);
el se
GR[ r ] = concatenate2(x[0], y[0]);
}
Gq[rll_nat = GR[rz].nat || GR[r3].nat;

intel.

/1 one-byte el enents

/1 two-byte el enents

[/ four-byte el ements
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|nu o mov ar
Move Application Register
Format: (gp) mov rq=ars pseudo-op
(gp) mov arz=r, pseudo-op
(gp) mov arz =immg pseudo-op
(gp) mov.i rq=ars i_form, from_form 128
(gp) mov.i arz=r, i_form, register form, to_form 126
(gp) mov.i arz=immg i_form, immediate form, to_form 127
(gp) mov.m ry=ars m_form, from_form M31
(gp) mov.m arz=r, m_form, register_form, to_form M29
(gp) mov.m arz =immg m_form, immediate form, to_form M30
Description:  The source operand is copied to the destination register.

Inthefrom_form, the application register specified by ar; is copied into GR r; and the corresponding NaT
bit is cleared.

Intheto_form, thevaluein GRr, (in the register_form), or the sign extended value in immg (in the
immediate_form), isplaced in AR ars. Intheregister_form if the NaT bit corresponding to GRr, is set,
then a Register NaT Consumption fault is raised.

Only a subset of the application registers can be accessed by each execution unit (M or I). Table 3-3 on
page 3-6 indicates which application registers may be accessed from which execution unit type. An access
to an application register from the wrong unit type causes an Illegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need for specifying the
execution unit. Accesses of the ARs are dways implicitly serialized. While implicitly serialized,
read-after-write and write-after-write dependencies must be avoided (e.g., setting CCV, followed by
cnpxchg in the sameinstruction group, or simultaneous writesto the UNAT register by I d. fi | | and mov
to UNAT).

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-119



L]
mov ar I ntQI ®

Operation: if (PREgp]) {
tp_type = (i_form? ARI_TYPE : AR M TYPE);
if (is_reserved_reg(tnp_type, ary)
illegal operation fault();

if (fromform {
check_target_register(ry);
if (((arz == BSPSTORE) || (arz == RNAT)) && (AR[RSC].node != 0))
illegal operation fault();

if (arg==1TC & PSR si && PSR cpl != 0)
privileged register fault();

CRry;] = (is_ignored_reg(arg) ? 0 : AR arg;
&R rq.nat = 0;
} else {

/1 to_form
tmp_val = (register_form) ? GRr,] : sign_ext(immp, 8);

if (arz == BSP)
illegal _operation_fault();

if (((arz == BSPSTORE) || (arz == RNAT)) && (AR[RSC].node != 0))
illegal _operation_fault();

if (register_formé&& GRry].nat)
regi ster_nat _consunption_faul t (0);

if (is_reserved_fiel d(AR TYPE, arsz tnp_val))
reserved_register_field_fault();

if ((is_kernel _reg(ars) || arz==1TC && (PSR cpl != 0))
privileged_register_fault();

if (lis_ignored_reg(arz) {
trmp_val = ignored_field_mask(AR TYPE, ars tnp_val);
/1 check for illegal pronotion
if (arz == RSC && tnp_val {3:2} u< PSR cpl)
trmp_val {3:2} = PSR cpl;
ARl arz = tnp_val;

if (arz == BSPSTORE) {
AR[BSP] = rse_update_internal _stack_pointers(tnp_val);
AR[ RNAT] = undefined();
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Move Branch Register

Format: (gp) mov rq=b, from_form 122
(gp) movb; =r, to_form 121
(gp) mov.ret.b; =r, return_form, to_form 121

Description:  The source operand is copied to the destination register.

In the from_form, the branch register specified by b, is copied into GR r;. The NaT bit corresponding to
GR 4 iscleared.

Intheto_form, thevaluein GRr, iscopied into BR b,. If the NaT bit corresponding to GRr, is 1, then a
Register NaT Consumption fault is taken.

Operation: if (PR gp]) {

if (fromform {
check_target_register(ry);
R rg = BRb;
R rq .nat = 0;

} else { // to_form
if (R r,.nat)

regi ster_nat _consunption_faul t (0);

BRIbyl = Rrjl;
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Move Floating-Point Register
Format: (gp) mov f; =13 pseudo-op of: (gp) fmerges f; =13, f3
Description:  Thevalue of FR f;is copied to FR f;.

Operation: See “Floating-Point Merge” on page 7-50
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Move General Register
Format: (gp) mov ry=rj pseudo-op of: (gp) adds r; =0, r3
Description:  Thevalueof GRrsiscopiedto GR ;.

Operation: See “Add” on page 7-3

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-123



mov imm intel ®

Move Immediate
Format: (gp) mov rq =immy, pseudo-op of: (gp) addl rq =immyy, 10
Description:  Theimmediate value, immy,, is sign extended to 64 bits and placed in GR r.

Operation: See “Add” on page 7-3
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mov indirect

Move Indirect Register

Format:

Description:

(qp) mov ry =ireg[rg] from_form M43
The source operand is copied to the destination register.

For move from indirect register, GR r3 isread and the value used as an index into the register file specified
by ireg (see Table 7-33 below). The indexed register isread and its value is copied into GRr.

Table 7-33. Indirect Register File Mnemonics

Operation:

ireg Register File
cpuid Processor Identification Register
pmd Performance Monitor Data Register

Bits{7:0} of GRr5 are used as the index. The remainder of the bits are ignored.

Apart from the PMD register file, access of a non-existent register results in a Reserved Register/Field
fault. All accesses to the implementation-dependent portion of the PMD register fileresult in
implementation dependent behavior but do not fault.

if (PRqpl) {
tnp_index = GRr3 {7:0};

if (fromform {
check_target _register(ry);

if (R rg.nat)

regi ster_nat _consunption_faul t (0);

if (is_reserved reg(ireg, tnp_index))
reserved_register_field_fault();

if (ireg == PMD_TYPE) {
GR r ] = pnd_read(tnp_i ndex);
} else
switch (ireg) {
case CPUD TYPE GRrl1] = CPU D tnp_index]; break;

}
&R rq.nat = 0;
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Move Instruction Pointer
Format: (gp) mov ry=ip 125
Description:  The Instruction Pointer (1P) for the bundle containing thisinstruction is copied into GR r.

Operation: if (PRgp]) {
check_target _register(ry);

GQ[rI] = 1P
R r ] .nat = 0;
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Move Predicates

Format: (gqp) mov rq=pr
(gp) mov pr =r,, mask;
(gp) mov pr.rot = immy,

Description:  The source operand is copied to the destination register.

For moving the predicatesto a GR, PR i is copied to bit position i within GRr.

to_rotate form

mov pr

125
123
124

For moving to the predicates, the source can either be a general register, or an immediate value. In the
to_form, the source operand is GR r, and only those predicates specified by the immediate value mask,;
arewritten. The value mask,7 is encoded in theinstruction in an immyg field such that: immy g = mask,;; >>

1. Predicate register O is always one. The mask,7 value is sign extended. The most significant bit of

mask4-, therefore, is the mask bit for al of the rotating predicates. If there is a deferred exception for GR

ro (the NaT bit is 1), aRegister NaT Consumption fault is taken.

Intheto _rotate form, only the 48 rotating predicates can be written. The source operand is taken from the
imm,, operand (which is encoded in theinstruction in an immyg field, such that: i nmyg = i nmy, >> 16).
The low 16-hits correspond to the static predicates. The immediate is sign extended to set the top 21

predicates. Bit position i in the source operand is copied to PR i.

Thisinstruction operates as if the predicate rotation base in the Current Frame Marker (CFM.rrb.pr) were

Z€ero.

Operation: if (PRgp]) {
if (fromform {
check_target_register(ry);

Rirg = 1, 11 PRO]

for (i =1; i <= 63; i++) {
R rq{i} = PR pr_phys_to_virt(i)];

R r ] .nat = 0;
} elseif (to_form ({

if (R r,.nat)

regi ster_nat _consunption_faul t (0);
tnp_src = sign_ext(nmask;; 17);
for (i =1; i <=63; i++) {

if (tnp_src{i})

PROpr_phys_to_virt(i)] = GRrz{i};

} else { // to_rotate_form

tnp_src = sign_ext(inmyy 44);
for (i = 16; i <= 63; i++) {
PR pr_phys_to_virt(i)] = tnp_src{i};
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intel.

Move User Mask

Format:

Description:

Operation:

7-128

(gp) mov rq = psr.um from_form M36
(gp) mov psr.um=ry to_form M35

The source operand is copied to the destination register.

For move from user mask, PSR{ 5:0} is read, zero-extend, and copied into GR r.
For move to user mask, PSR{5:0} is written by bits{5:0} of GR .

it (PRgp]) {

if (fromform ({
check_target_register(ry);

GR[rj] = zero_ext(PSR{5:0}, 6);

R rq .nat = 0;
} else { [l to_form
if (R rj.nat)

regi ster_nat _consunption_faul t (0);

if (is_reserved_fiel d(PSR_TYPE, PSR UM GRrj]))
reserved_register field fault();

PSR{5:0} = GR{rz{5:0};

IA-64 Application Developer’s Architecture Guide, Rev. 1.0



inte| ® movl

Move Long Immediate
Format: (gp) movl rq =immg, X2
Description:  Theimmediate value immg, is copied to GR r4. The L slot of the bundle contains 41 bits of immg,.

Operation: if (PRgp]) {
check_target _register(ry);

R rg = imgy
R r ] .nat = 0;
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Mux

Format: (gp) muxl1 rq =r,, mbtype, one_byte form 13
(gp) mux2 rq =r,, mhtypeg two_byte form 14

Description: A permutation is performed on the packed elements in asingle source register, GR r,, and the result is

placed in GR r. For 8-bit elements, only some of all possible permutations can be specified. The five
possible permutations are given in Table 7-34 and shown in Figure 7-24.

Table 7-34. Mux Permutations for 8-bit Elements

mbtypey, Function
@rev Reverse the order of the bytes
@mix Perform a Mix operation on the two halves of GR I'p
@shuf Perform a Shuffle operation on the two halves of GR 'y
@alt Perform an Alternate operation on the two halves of GR I'p
@brest Perform a Broadcast operation on the least significand byte of GR I'p

Figure 7-24. Mux1 Operation (8-bit elements)

GRry: GRry:
»‘4
GRrq: GRrq: T
muxl1 rl =r2, @rev mux1 rl =r2, @mix
GR o GR o
GR r: GR r:
mux1 rl = r2, @shuf muxlrl =r2, @alt
GRry:
GRry:

mux1 rl =r2, @brcst
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For 16-bit elements, all possible permutations, with and without repetitions can be specified. They are
expressed with an 8-bit mhtypeg field, which encodes the indices of the four 16-bit data elements. The
indexed 16-bit elements of GR r, are copied to corresponding 16-bit positionsin the target register GRr.
The indices are encoded in little-endian order. (The 8 bits of mhtypeg[7:0] are grouped in pairs of bits and
named mhtypeg[ 3], mhtypeg[ 2], mhtypeg[1], mhtypeg[0] in the Operation section).

Figure 7-25. Mux2 Examples (16-bit elements)

GR o GR o
GRrq: GRrq:

mux2 r1 =r2, 0x8b (shuffle 10 00 11 01) mux2 rl1 =r2, 0x1b (reverse 00 01 10 11)

GRry: GRry:
GR r: GR r:

mux2 rl = r2, Oxe4 (alternate 11 01 10 00) mux2 rl = r2, Oxaa (broadcast 10 10 10 10)
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Operation: if (PRgp]) {
check_target _register(ry);

if (one_byte form {
x[ 0] fGR[rZ]{7:O};

x[1] = GRr,]{15:8};
x[2] = GRr ] {23: 16};
X[3] = GR{r]{31:24};
x[4] = GRry]{39: 32};
X[ 5] = GRr,]{47:40};
x[ 6] = GRr ] {55:48};

x[7] = GRr,]{63:56};

switch (nbtype) {
case ‘@rev'’:
GR{r 4] = concatenate8(x[0], x[1], x[2], X[3],
X[4], x[3], x[6]. X[7]);
break;

case ‘@mix’:
GR( r 4] = concatenate8(x[7], x[3], x[5], x[1],
x[6], x[2], x[4], X[0]);
break;

case ‘@shuf’
GR{r 4] = concatenate8(x[7], x[3], x[6], x[2],
X[5], X[1], x[4], X[0]);
break;

case ‘@alt”:
GR{r 4] = concatenate8(x[7], X[5], x[3], X[1],
X[6], x[4], x[2], X[0]);
break;

case ‘@brest’:
GR{r 4] = concatenate8(x[0], x[0], x[0], X[O],
x[0], x[0], x[0], X[0]);
break;
}
}else{ /I two_byte form
x[0]=GR[ r}{15:0}
X[1]=GR[ r}31:16};
X[2] = GR[ r {47:32};
X[38]=GR[ r,{63:48};

res[0] = x[mhtype8{1:0}];
res[1] = x[mhtype8{3:2}];
res[2] = x[mhtype8{5:4}];
res[3] = x[mhtype8{7:6}];
GR][r ;] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r lnat=GR[ rj.nat;
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No Operation

Format:

Description:

Operation:

(gp) nop immy; pseudo-op
(gp) nop.i immy, i_unit_form
(gp) nop.b immy b_unit form
(gp) nop.m immyq m_unit_form
(gp) nop.f immy, f_unit_form
(gp) nop.x immg, x_unit_form

No operation is done.

nop

119
B9
M37
F15

Theimmediate, immy, or immg,, can be used by software as amarker in program code. It is ignored by

hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of imm,.

Thisinstruction has five forms, each of which can be executed only on a particular execution unit type.

The pseudo-op can be used if the unit type to execute on is unimportant.

if (PREgp]) {

; /1 no operation
}
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Logical Or

Format: (gp) or ry=ry 3 register_form Al
(gp) or ry=immg, ry imm8_form A3

Description:  The two source operands are logically ORed and the result placed in GR r. In the register form the first
operand is GR r; in the immediate form the first operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? CRr,] : sign_ext(img, 8));
t = (register_form? GR[r,.nat : 0);

Rrg =tmp_src | GRrj;
GRrqjl.nat = tnp_nat || GRrg.nat;
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Format:

Description:

Table 7-35. Pack Saturation Limits

(gp) pack2.sss rq=r,, 13
(gp) pack2.uss rq=ry,r3
(ap) packd.sss ry=ry,r3

pack

two_byte form, signed_saturation _form 12
two_byte form, unsigned_saturation_form 12
four_byte form, signed_saturation_form 12

32-bit or 16-bit elements from GR r, and GR r3 are converted into 16-bit or 8-bit elements respectively,
and the results are placed GR r4. The source elements are treated as signed values. If a source element
cannot be represented in the result element, then saturation clipping is performed. The saturation can
either be signed or unsigned. If an element islarger than the upper limit value, the result is the upper limit
value. If it issmaller than thelower limit value, theresult isthe lower limit value. The saturation limits are

givenin Table 7-35.

Size Source Element Width Result Element Width Saturation Upper Limit Lower Limit
2 16 bit 8 bit signed ox7f 0x80
2 16 bit 8 bit unsigned Oxff 0x00
4 32 bit 16 bit signed Oox7fff 0x8000

Figure 7-26. Pack Operation

GRrj:

GRrj:

pack4

pack2
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// two_byte form

[/ signed_saturation_form

/1 four_byte_form

/1 signed_saturation_form

pack
Operation: if (PREgp]) {
check_target_register(ry);
if (two_byte fornm {
if (signed_saturation_forn {
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);
} else { /1 unsigned_saturation_form
max = Oxff;
mn = 0x00;
}
tenp[0] = sign_ext(GRro]{15:0}, 16);
tenp[1] = sign_ext (G r;]{31:16}, 16);
tenp[2] = sign_ext (G r;]{47:32}, 16);
tenp[3] = sign_ext (G r,]{63:48}, 16);
tenp[4] = sign_ext(GRr3{15:0}, 16);
tenp[5] = sign_ext (G r3{31:16}, 16);
tenp[6] = sign_ext (G r3]{47:32}, 16);
tenp[7] = sign_ext (G r3 {63:48}, 16);
for (i =0; i <8; i++) {
if (tenp[i] > nax)
tenp[i] = max;
if (temp[i] < mn)
temp[i] = nin;
GR[r ;] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],
tenp[3], tenp[2], tenp[1], tenp[O])
} else {
max = sign_ext(0x7fff, 16);
mn = sign_ext (0x8000, 16);
tenp[0] = sign_ext(GRr]{31:0}, 32);
tenp[1] = sign_ext (G r,]{63:32}, 32);
tenp[2] = sign_ext(GRr3{31:0}, 32);
tenp[3] = sign_ext (G r3{63:32}, 32);
for (i =0; i <4 i++) {
if (temp[i] > nmax)
temp[i] = nmax;
if (temp[i] < mn)
temp[i] = min;
GR[r ] = concatenate4(tenp[3], tenp[2], tenp[1], tenp[0]);
}
CRrgj]l.nat = GR[ry.nat || GRrg.nat;
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Parallel Add

Format:

Description:

(gp) paddl ry=rp,r3

(gp) paddl.sss ry=rp,r3
(gp) paddl.uus rq=ry,r3
(gp) paddl.uuu ry=ry,r3
(ap) padd2 ry=ry, 13

(ap) padd2.sss ry=rp,r3
(gp) padd2.uus rq=ry, 13
(gp) padd2.uuu rq=ry, 13

(gp) padd4 ry=rp, I3

padd

one_byte form, modulo_form A9
one_byte form, sss_saturation_form A9
one_byte form, uus_saturation form A9
one_byte form, uuu_saturation_form A9
two_byte form, modulo_form A9
two_byte form, sss_saturation_form A9
two_byte form, uus_saturation _form A9
two_byte form, uuu_saturation_form A9
four_byte form, modulo_form A9

The sets of elements from the two source operands are added, and the results placed in GR 1.

If asum of two elements cannot be represented in the result element and a saturation completer is
specified, then saturation clipping is performed. The saturation can either be signed or unsigned, as given
in Table 7-36. If the sum of two elementsislarger than the upper limit value, the result is the upper limit
value. If it issmaller than thelower limit value, the result isthe lower limit value. The saturation limits are

givenin Table 7-37.

Table 7-36. Parallel Add Saturation Completers

Completer Result r; Treated as Source r, Treated as Source rz Treated as
SSS signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned

Table 7-37. Parallel Add Saturation Limits

Result r; Signed Result r; Unsigned
Size Element Width
Upper Limit Lower Limit Upper Limit Lower Limit
1 8 bit ox7f 0x80 Oxff 0x00
2 16 bit ox7fff 0x8000 Oxffff 0x0000

Figure 7-27. Parallel Add Examples

GRrj:

GR o

GRrq:

LT

padd2
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/1 one-byte el enents

/'l sss_saturation_form

8);

/1 uus_saturation_form

8);

/1 uuu_saturation_form

/1 modul o_form

[/ 2-byte elenments

/'l sss_saturation_form

padd
Operation: if (PREgp]) {
check_target_register(ry);
if (one_byte fornm {
X[0] = GR{r,]{7:0}; y[0] = &Rrgl{7:0};
x[1] = GRr ] {15: 8}; y[1] = GRrg{15: 8};
x[2] = GRr;{23:16}; y[2] = GRr3{23:16};
x[3] = GRr ]{31:24};  y[3] = GRr3{31:24};
x[4] = &R r,){39:32}; y[4] = &R r3 {39: 32};
X[5] = GRro{47:40};  y[5] = GRr3{47:40};
x[6] = GRr,] {55: 48}; y[6] = GRr5] {55: 48};
x[7] = GRro{63:56}; y[7] = GRr3l{63:56};
if (sss_saturation_fornm {
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);
for (i =0; i <8; i++) {
tenp[i] = sign_ext(x[i], 8) + sign_ext(y[i],
} else if (uus_saturation_form {
max = Oxff;
mn = 0x00;
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) + sign_ext(y[i],
} else if (uuu_saturation_form {
max = Oxff;
mn = 0x00;
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) + zero_ext(y[i],
} else {
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) + zero_ext(y[i],
}
if (sss_saturation_form|| uus_saturation_form|| uuu_saturation_form {
for (i =0; i <8; i++) {
if (tenp[i] > nmax)
tenp[i] = nmax;
if (tenp[i] < min)
tenp[i] = mn;
GR[r ;] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],
tenp[ 3], tenp[2], tenp[1], tenp[O]);
} else if (two_byte fornm {
x[0] = GRrj]{15:0};  y[0] = GRrz{15:0};
x[1] = GRr;{31:16};  y[1] = GRr3{3L: 16};
x[2] = GRro{47:32};  y[2] = GRr3{47:32};
x[3] = GRr {63:48}; y[3] = GRr3{63:48};
if (sss_saturation_fornm {
max = sign_ext(0x7fff, 16);
mn = sign_ext (0x8000, 16);
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for (i =0; i <4 i++) {
tenp[i] = sign_ext(x[i], 16) + sign_ext(y[i], 16);

} else if (uus_saturation form { /1 uus_saturation_form
max = Oxffff;
mn = 0x0000;

for (i =0; i <4; i++) {
temp[i] = zero_ext(x[i], 16) + sign_ext(y[i], 16);

} else if (uuu_saturation_form ({ [/ uuu_saturation_form
max = Oxffff;
mn = 0x0000;

for (i =0; i <4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

} else { /1 rmodul o_form
for (i =0; i <4; i++) {
tenp[i] zero_ext (x[i], 16) + zero_ext(y[i], 16);

}
if (sss_saturation_form|| uus_saturation_form]|| uuu_saturation_form {
for (i =0; i <4; i++) {
if (temp[i] > max)
tenp[i] = max;

if (temp[i] < mn)

tenp[i] = mn;
}
GRr ] = concatenate4(tenp[3], tenp[2], tenp[1], tenp[O]);
} else { [/ four-byte el ements
x[0] = GRrj{31:0};  y[0] = GRrz{3L: 0};

X[1] = GRrJ{63:32}; y[1] = GRr{63:32};

for (i =0; i <2; i++) { /1 nodul o_form
tenp[i] = zero_ext(x[i], 32) + zero_ext(y[i], 32);

GRr ;] = concatenate2(tenp[1], tenp[O0]);

GRrgjl.nat = GRry.nat || GRrg.nat;
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Parallel Average

Format: (gp) pavgl ry=ry, 13
(gp) pavglraz rq=rp I3
(gp) pavg2 ry=rp, 3
(gp) pavg2.raz ry=rp I3

intel.

normal_form, one_byte form A9
raz_form, one_byte form A9
normal_form, two_byte form A9
raz_form, two_byte form A9

Description:  The unsigned data elements of GR r, are added to the unsigned data elements of GR r3. The results of the
add are then each independently shifted to the right by one bit position. The high-order bits of each
eement are filled with the carry bits of the sums. To prevent cumulative round-off errors, an averaging is
performed. The unsigned results are placed in GR 1.

The averaging operation works as follows. In the normal_form, the low-order bit of each resultisset to 1
if a least one of the two least significant bits of the corresponding sum is 1. In theraz_form, the average
rounds away from zero by adding 1 to each of the sums.

Figure 7-28. Parallel Average Example

16-bit sum

plus
carry I

Shift right
1 bit

GR r:

Shift right 1 bit
with average in
low-order bit
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Figure 7-29. Parallel Average with Round Away from Zero Example

GR r3:

GRry:

Shift right 1 bit
16-bit sum

plus
carry I

Shift right
1 bit

GRry:

pavg2.raz
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Operation: if (PRgp]) {
check_target _register(ry);

if (one_byte fornm { /1 one_byte form

x[0] = GRr ] {7:0}; y[0] = GRrgl{7:0};

x[1] = GRry{15:8};  y[1] = GRr3{15:8};
x[2] = GRr;{23:16}; y[2] = GRr3{23:16};
x[3] = GRr ]{31:24};  y[3] = GRr3{31:24};
x[4] = GRry{39:32}; y[4] = GRr3{39:32};
x[5] = GRIr;]{47:40};  y[5] = GR[r3]{47:40};
x[6] = GRIr;]{55:48};  y[6] = GRr3{55:48};
x[7] = GRro{63:56}; y[7] = GRr3l{63:56};

if (raz_form {
for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8) + 1;
res[i] = shift_right_unsigned(tenp[i], 1);

} else { /1 normal form
for (i =0; i <8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
res[i] = shift_right_unsigned(tenp[i], 1) | (tenp[i]{0});
}

GR r ;] = concatenate8(res[7], res[6], res[5], res[4],
res[(3], res[2], res[1], res[0]);

} else { /1 two_byte form
x[0] = CRr]{15:0}; y[0] = GR{rg {15:0};
x[1] = GRrj]{31:16}; y[1] = GRr3{31:16};
x[2] = GRr){47:32}; y[2] = GRrg {47: 32};
x[3] = GRr,]{63:48};  y[3] = GRrj]{63:48};

if (raz_fornm {
for (i =0; i <4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16) + 1;
res[i] = shift_right_unsigned(tenp[i], 1);
} else { /1 normal form
for (i =0; i <4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
res[i] = shift_right_unsigned(tenp[i], 1) | (tenp[i]{0});
}

GRr ;] = concatenate4(res[3], res[2], res[1], res[0]);

}
CGRrgj]l.nat = GR[ry.nat || GRrg.nat;
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Parallel Average Subtract
Format: (gp) pavgsubl rq=r,,r3 one_byte form A9
(gp) pavgsub2 rq=r,,r3 two_byte form A9

The unsigned data elements of GR r 3 are subtracted from the unsigned data elements of GR r,. The results
of the subtraction are then each independently shifted to the right by one bit position. The high-order bits
of each element are filled with the borrow bits of the subtraction (the complements of the ALU carries).

To prevent cumulative round-off errors, an averaging is performed. The low-order bit of each result is set
to 1if at least one of the two least significant bits of the corresponding differenceis 1. The signed results

areplaced in GR ry.

Description:

Figure 7-30. Parallel Average Subtract Example

Shift right 1 bit
with average in
low-order bit

16-bit
difference
plus
borrow

Shift right
1 bit

GR r:

pavgsub?2
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Operation: if (PRgp]) {
check_target _register(ry);

if (one_byte fornm { /1 one_byte form

x[0] = GRr ] {7:0}; y[0] = GRrgl{7:0};

x[1] = GRry{15:8};  y[1] = GRr3{15:8};
x[2] = GRr;{23:16}; y[2] = GRr3{23:16};
x[3] = GRr ]{31:24};  y[3] = GRr3{31:24};
x[4] = GRry{39:32}; y[4] = GRr3{39:32};
x[5] = GRIr;]{47:40};  y[5] = GR[r3]{47:40};
x[6] = GRIr;]{55:48};  y[6] = GRr3{55:48};
x[7] = GRro{63:56}; y[7] = GRr3l{63:56};

for (i =0; i <8; i++) {
tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
res[i] = (tenp[i]{8:0} u>>1) | (tenp[i]{0});

GR r;] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0]);

} else { /1 two_byte form
x[0] = GRrj{15:0};  y[0] = GRrz{15:0};
X[1] = GRr {31:16};  y[1] = GRr3{31:16};
X[2] = GRry{47:32};  y[2] = GRr3{47:32};
x[3] = GRr ]{63:48};  y[3] = Gr3{63:48};

for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
res[i] = (tenp[i]{16:0} u>> 1) | (tenp[i]{0});
GR r ;] = concatenate4(res[3], res[2], res[1], res[0]);

}
GRrqjl.nat = GRry.nat || GRrg.nat;
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Parallel Compare

Format: (gp) pcmpl.prel ry=ry 3
(gp) pcmp2.prel 1y =rp, 13
(ap) pempd.prel 1y =1y, 13

Description:  The two source operands are compared for one of the two relations shown in Table 7-38. If the
comparison condition istrue for corresponding data elements of GR r, and GR r 3, then the corresponding
dataelement in GRr4 is set to all ones. If the comparison condition is false, the corresponding data
element in GR r is set to all zeros. For the ‘>’ relation, both operands are interpreted as signed.

Table 7-38. Pcmp Relations

prel

Compare Relation (r, prel r3)

€q

fp==TIg3

gt

5 >3 (signed)

Figure 7-31. Parallel Compare Example

pemp

one_byte form
two_byte form
four_byte form

A9
A9
A9

GR r:

Oxffff | Ox0000| Oxffff

pcmp2.eq

GR ra3:

GRry:

GRrq: Oxffffffff 0x00000000
pcmp4.eq
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pcmp

Operation:

7-146

if (PRIgp]) { _
check_target_register(ry);
if (one_byte fornm { /'l one-byte
x[0] = GRr ] {7:0}; y[0] = GRIrg{7:0};
x[1] = GRrj]{15:8};  y[1] = GRrz{15:8};
x[2] = GRrj{23:16}; y[2] = GRr3{23:16};
x[3] = GRirj{31:24};  y[3] = GRr{31:24};
x[4] = GRrj]{39:32}; y[4] = GRr3{39:32};
X[5] = GRrj]{47:40};  y[5] = GRr3]{47:40};
X[6] = GRr;]{55:48}; y[6] = GRr3 {55 48};
x[7] = GRrj{63:56}; y[7] = GRr3{63:56};
for (i =0; i <8; i++) {
if (prel =='eq)
tmp_rel = x[i] == yfi];
else

tmp_rel = greater_signed(sign_ext(x[il, 8), sign_ext(y[il, 8));

if (tmp_rel)

res[i] = Oxff;
else

res[i] = 0x00;

GR(r 4] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);

} else if (two_byte form) { Il two-byte elements
x[0]=GR[ r}{15:0} y[0] = GR][ r 3{15:0}
X[1]=GR[ r}{31:16}; y[1] = GR][ r 3]{31:16};
X[2]=GR[ r|{47:32}; y[2] = GR[ r 3{47:32};
X[3]=GR[ r|{63:48}; y[3] = GR][ r 31{63:48};
for(i=0;i<4;i++){

if( prel =='eq)
tmp_rel = X[i] == yfi];
else
tmp_rel = greater_signed(sign_ext(x[i], 16), sign_ext(y[i], 16));

if (tmp_rel)

res[i] = Oxffff;
else

res[i] = 0x0000;

GR(r 4] = concatenate4(res[3], res[2], res[1], res[0]);

}else{ /I four-byte elements
x[0]=GR[ rz{{31:0;  y[0]=GR][ r 3{31:0};
X[1]=GR[ r{63:32}; y[1] = GR][ r 31{63:32};
for(i=0;i<2;i++){

if( prel =='eq)
tmp_rel = x[i] == y[i];
else
tmp_rel = greater_signed(sign_ext(x[i], 32), sign_ext(y[i], 32));

if (tmp_rel)
res[i] = OXxffffffff;
else
res[i] = 0x00000000;

GR(r 4] = concatenate2(res[1], res[0]);

}
GR[r lnat=GR[ rj.nat| GR[ I gl.nat;

intel.

el enents

IA-64 Application Developer’s Architecture Guide, Rev. 1.0



intel.

Parallel Maximum

Format:

Description:

pmax
(gp) pmaxl.u ry=ry 3 one_byte form 12
(gp) pmax2 rq=ry,r3 two_byte form 12

The maximum of the two source operandsis placed in the result register. In the one_byte form, each
unsigned 8-bit element of GRr,, is compared with the corresponding unsigned 8-bit element of GR r3 and
the greater of the two is placed in the corresponding 8-bit element of GR r4. Inthetwo_byte form, each
signed 16-bit element of GR r,, is compared with the corresponding signed 16-bit element of GR r5 and
the greater of the two is placed in the corresponding 16-bit element of GR r.

Figure 7-32. Parallel Maximum Example

Operation:

GRr3: GRr3:

GRry: GRry:

pmax1.u pmax2

it (PRgp]) { .

check_target_register(ry);

if (one_byte form { /] one-byte el ements
X[0] = GRr,]{7:0}; y[0] = GRr3{7:0};
X[1] = &r]{15:8}; y[1] = Rrj{15:8};
x[2] = GRrj{23:16};  y[2] = GRrj{23:16};
X[3] = GRr{31:24};  y[3] = Gz {31:24};
x[4] = QR ]{39:32};  y[4] = Gr3{39:32};
X[5] = GRrp]{47:40};  y[5] = GRr3]{47:40};
X[6] = GRr ]{55:48};  y[6] = GRrg3]{55:48};
x[ 7] = GR[rz]_{63:56}_; y[7] = GR{r3 {63: 56};
for (i =0; i <8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ ext(y[i],8)) ?2 y[i] : x[i];

GRr ;] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0]);
} else { /1 two-byte el enents

x[0] = GRrj{15:0};  y[0] = GRrz {15:0};

x[1] = GRr {31:16};  y[1] = GRr3{31:16};

x[2] = GRro{47:32};  y[2] = GRr3{47:32};

x[3] = GRr;]{63:48}; y[3] = GRr3{63:48};

for (i =0; i <4; i+ {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? y[i] : x[i];

GRr ;] = concatenate4(res[3], res[2], res[1], res[0]);

}
CGRrgjl.nat = GR[ry.nat || GRrg.nat;
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intel.

Parallel Minimum

Format:

Description:

one_byte form 12
two_byte form 12

(gp) pminl.u rq=ry,r3
(ap) pmin2 ry=rp 13

The minimum of the two source operands is placed in the result register. In the one_byte form, each
unsigned 8-bit element of GRr,, is compared with the corresponding unsigned 8-bit element of GR r3 and
the smaller of the two is placed in the corresponding 8-bit element of GR r;. In the two_byte form, each
signed 16-bit element of GR r,, is compared with the corresponding signed 16-bit element of GR r5 and
the smaller of the two is placed in the corresponding 16-bit element of GR r.

Figure 7-33. Parallel Minimum Example

Operation:

7-148

GRr3:

GR r3

GRry: GRry:

SRR,

pmin2

. GRry:

pminl.u

if (PRgp]) {

check_target_register(ry);

if (one_byte form { /] one-byte el ements

x[0] = GRr ] {7:0}; y[0] = GRIrg{7:0};
x[1] = GRro{15:8};  y[1] = GRr3{15:8};
x[2] = GRr;]{23:16}; y[2] = GRrj{23:16};
x[3] = GRry{31:24};  y[3] = GRr3{31:24};
x[4] = GRr;{39:32}; y[4] = GRr3{39:32};
x[5] = GRIr ]{47:40};  y[5] = GRr3{47:40};
x[6] = GRIr;]{55:48}; y[6] = GRr3{55:48};
x[ 7] = GR[rz]_{63:56}_; y[7] = GR{r3 {63: 56};
for (i =0; i <8; i++) {
res[i] = (zero_ext(x[i],8) < zero_ ext(y[i],8)) ? x[i] : y[il];
GR[r ;] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0]);

} else {
x[0] = CRr ] {15:0};
x[1] = &R r,){31:16};

/1 two-byte el enents
y[0] = GRr3]{15:0};
y[1] = GRr3]{31: 16};
x[2] = GRr {47:32}; y[2] = GRr3{47:32};
x[ 3] = G?[r21{63:48}; y[3] = GR[r3 {63:48};
for (i =0; i <4; i++) {
res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? x[i] : y[i];
GR[ r ] = concatenate4(res[3],

}
CGRrgjl.nat = GR[ry.nat || GRrg.nat;

res[2], res[1], res[0]);
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Parallel Multiply

Format: (gp) pmpy2.r ry=ryr3 right_form 12
(@p) pmpy2l ry=rp, 3 left_form 12

Description:  Two signed 16-bit data elements of GR r,, are multiplied by the corresponding two signed 16-bit data
elements of GR r3 as shown in Figure 7-34. The two 32-bit results are placed in GR r4.

Figure 7-34. Parallel Multiply Operation

GR ra: GR ra:
GR o GR o
GR ry GR r:
pmpy2.| pmpy2.r
Operation: if (PRgp]) {

check_target_register(r;);

if (right_form ({
R r 1{31:0} = sign_ext(Gry{15:0}, 16) * sign_ext(Gr3{15:0}, 16);
GRr 1{63:32} = sign_ext(CR r ]{47:32}, 16) * sign_ext(GRrz {47:32}, 16);
} else { /1 left_form
R r 1{31:0} = sign_ext(GRry{31:16}, 16) * sign_ext (G rz {31:16}, 16);
CRr 1{63:32} = sign_ext(CRr]{63:48}, 16) * sign_ext(GRrz {63:48}, 16);

CGRrgjl.nat = GR[ry.nat || GRrg.nat;
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Parallel Multiply and Shift Right

Format: (gp) pmpyshr2 rq =r5, rz, count, signed_form 11
(gp) pmpyshr2.u rq =r5, 3, county, unsigned_form 11

Description:  The four 16-bit data elements of GR r, are multiplied by the corresponding four 16-bit data elements of
GR r3 as shown in Figure 7-35. This multiplication can either be signed (pmpyshr2), or unsigned
(pmpyshr2.u). Each product isthen shifted to the right count, bits, and the least-significant 16-bits of each
shifted product form 4 16-bit results, which are placed in GR r4. A count; of O gives the 16 low bits of the
results, a count, of 16 gives the 16 high bits of the results. The allowed values for count, are givenin

Table 7-39.

Table 7-39. PMPYSHR Shift Options

count, Selected Bit Field from each 32-bit Product
0 15:0
7 22:7
15 30:15
16 31:16

Figure 7-35. Parallel Multiply and Shift Right Operation

GR r3:
16-bit
source
GRry: elements
32-bit
products
Shift right
count, bits 16-bit
-bi
GRrq: result
elements

pmpyshr2

7-150
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Operation:

pmpyshr
if (PREgp]) { _

check_target_register(ry);
x[0] = GRr ] {15:0}; y[0] = GR{rg]{15:0};
x[1] = GRr ] {31: 16}; y[1] = G r3 {31:16};
x[2] = CRr ) {47:32}; y[2] = GRrg {47:32};
x[3] = GRr ] {63:48}; y[3] = GRr3 {63:48};
for (i =0; i <4; i++) {

if (unsigned_forn /1 unsigned multiplication

tenp[i] = zero_ext(x[i], 16) * zero_ext(y[i], 16);
el se I/ signed nmultiplication

tenp[i] = sign_ext(x[i], 16) * sign_ext(y[i], 16);

res[i] = tenp[i]{(count, + 15): count 3};

GRr ;] = concatenate4(res[3], res[2], res[1], res[0]);

CRrgjl.nat = GR[ry.nat || GRrg.nat;
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Population Count

Format:
Description:

Operation:

7-152

(gp) popent rq=rg

The number of bitsin GR r3 having the value 1 is counted, and the resulting sum is placed in GR r.

if (PREgp]) {

check_target_register(ry);

res = 0;

/1 Count up all the one bits

for (i =0; i <64; i++) {
res += GRrg{i};

}

R rq = res;
CRry].nat = GR[rg.nat;
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Parallel Sum of Absolute Difference

Format: (gp) psadl rq=ry, 13

psad

Description:  The unsigned 8-hit elements of GR r, are subtracted from the unsigned 8-bit elements of GR r3. The

absolute value of each difference is accumulated across the elements and placed in GR r.

Figure 7-36. Parallel Sum of Absolute Difference Example

psadl
Operation: if (PRIgp]) {

check_target_register(ry);
X[0] = GRr,]{7:0}; y[0] = GRr3{7:0};
x[1] = G r]{15:8}; y[1] = R rg {15:8};
x[2] = GRr,){23:16}; y[2] = R r3{23:16};
x[3] = GRr ] {31: 24}, y[3] = GR{rg {31: 24};
x[4] = R r,){39:32}; y[4] = R r3 {39:32};
x[ 5] = GRr]{47:40}; y[5] = GR{r3 {47:40};
x[ 6] = GR{r] {55:48}; y[6] = GR[rg {55:48};
x[7] = R r,]{63:56}; y[7] = R r3]{63:56};
Rrg =0; _
for (i =0; i <8; i++) {

tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);

if (temp[i] < 0)

terrp[l] = -tenp[i];
GRirq += temp[i];

GRrgjl.nat = GR[ry.nat || GRrg.nat;
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Parallel Shift Left

Format: (gp) pshl2 ry=ry, 13 two_byte form, variable form 17
(gp) pshl2 rq =r,, counts two_byte form, fixed_form 18
(ap) pshl4 ry=ry, 13 four_byte form, variable form 17
(ap) pshl4 rq=ry,, counts four_byte form, fixed form 18

Description:  The dataelements of GR r,, are each independently shifted to the |eft by the scalar shift countin GRr3, or
in the immediate field counts. The low-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities)
yield al zero results. The results are placed in GRr.

Figure 7-37. Parallel Shift Left Example

GRry: GRry:

Shift left

GRry: a a a a GRry: a a

pshi2 pshl4

Operation: if (PRI gp]) {
check_target_register(ry);

shift_count = (variable_form? CRrg : counts);
tmp_nat = (variable_form? CGRrg.nat : 0);

if (two_byte_form { /1 two_byte form
if (shift_count u> 16)
shift_count = 16;

CRIr 1{15:0} = GRr{15:0} << shift_count;
GR r{{31:16} = GRr,{31:16} << shift_count;
CR r 1{47:32} = GRr]{47:32} << shift_count;
CRr ]{63:48} = GRr]{63:48} << shift_count;

} else { /1 four_byte_form
if (shift_count u> 32)

shift_count = 32;
GRIr ]{31:0} = GRry{31:0} << shift_count;
CRr 1{63:32} = GRr]{63:32} << shift_count;

GRrqjl.nat = GRry.nat || tnp_nat;
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Parallel Shift Left and Add

Format: (gp) pshladd2 rq =r,, county, r3

pshladd

A10

Description:  The four signed 16-bit data elements of GR r, are each independently shifted to the Ieft by count, bits
(shifting zeros into the low-order bits), and added to the four signed 16-bit data elements of GR r5. Both

the left shift and the add operations are saturating: if the result of either the shift or the add is not

representable as asigned 16-bit value, the final result is saturated. The four signed 16-bit results are placed

in GR ry. Thefirst operand can be shifted by 1, 2 or 3 bits.

Operation: if (PRgp]) {
check_target _register(ry);
x[0] = QR r;]{15: 0}; y[0] = GR{rg]{15:0};
x[1] = GRr ] {31: 16}; y[1] = &R r3 {31:16};
X[2] = GRr,]{47:32}; y[2] = GRr3l{47:32};

X[3] = GRr]{63:48};  y[3] = GRr3l{63: 48};

max = sign_ext(0Ox7fff, 16);
mn = sign_ext (0x8000, 16);

for (i =0; i <4; i++) {

tenp[i] = sign_ext(x[i], 16) << count,;

if (temp[i] > nmax)
res[i] = nax;

else if (temp[i] < min)
resfi] = mn;

el se {

res[i] = tenp[i] + sign_ext(y[i], 16);

if (res[i] > max)
res[i] = max;
if (res[i] < mn)
resfi] = mn;

}

GR r ;] = concatenate4(res[3], res[2], res[1],

GRrgjl.nat = GRry.nat || GRrg.nat;
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Parallel Shift Right
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Format: (gp) pshr2 ry=rz3, 1y signed_form, two_byte form, variable form 15
(gp) pshr2 rq =r3, counts signed form, two_byte form, fixed form 16
(gp) pshr2.u ry=rz,ro unsigned form, two_byte form, variable form I5
(gp) pshr2.u rq = rs, counts unsigned form, two_byte form, fixed form 16
(ap) pshrd rq=r3,ro signed form, four_byte form, variable form I5
(gp) pshr4 rq =r3, counts signed_form, four_byte form, fixed_form 16
(gp) pshrd.u ry=rz, o unsigned_form, four_byte form, variable form 15
(gp) pshrd.u rq =r3, counts unsigned_form, four_byte form, fixed form 16

Description:  The data elements of GR r5 are each independently shifted to the right by the scalar shift count in GR r,
or in theimmediate field counts. The high-order bits of each element arefilled with either the initial value
of the sign bits of the data elementsin GR r3 (arithmetic shift) or zeros (logical shift). The shift count is
interpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities)
yield al zero or al oneresults depending on theinitial values of the sign bits of the dataelementsin GR r3
and whether a signed or unsigned shift is done. The results are placed in GR r.

Operation: if (PR gp]) {

check_target_register(ry);
shift_count = (variable_form? GR rj] count ) ;
tmp_nat = (variable_form? CGRrj].nat : 0);
if (two_byte fornm { // two_byte form
if (shift_count u> 16)
shift_count = 16;
if (unsigned_form { /1 unsigned shift
GRr ]1{15:0} = shift_right_unsigned(zero_ext(GR rz{15:0}, 16),
shift_count);
GR r ]1{31: 16} = shift_right_unsigned(zero_ext(GR rg3 {31:16}, 16),
shift_count);
CR r 1{47:32} = shift_right_unsigned(zero_ext(GR r3 {47:32}, 16),
shift_count);
CR{r ]1{63:48} = shift_right_unsigned(zero_ext(GR rz {63:48}, 16),
shift_count);
} else { /1 signed shift
CRr 1{15:0} = shift_right_signed(sign_ext(CGr3{15:0}, 16),
shift_count);
GR r 1{31:16} = shift_right_signed(sign_ext(Gr3{31:16}, 16),
shift_count);
GR r 1{47:32} = shift_right_signed(sign_ext(GR r3]{47:32}, 16),
shift_count);
GR[r;]1{63:48} = shift_right_signed(sign_ext(CGR r3]{63:48}, 16),
shift_count);
} else { /1 four_byte_form
if (shift_count > 32)
shift_count = 32;
if (unsigned_form { /1 unsigned shift
R r 1{31:0} = shift_right_unsigned(zero_ext(GR r3{31:0}, 32),
shift_count);
CR{r 1{63:32} = shift_right_unsigned(zero_ext(GR rz{63:32}, 32),
shift_count);
} else { /1 signed shift
CGRr 1{31:0} = shift_right_signed(sign_ext(CGr3{31:0}, 32),
shift_count);
GR r 1{63:32} = shift_right_signed(sign_ext(GRr3]{63:32}, 32),
shift_count);
}
7-156 IA-64 Application Developer’s Architecture Guide, Rev. 1.0



i ntel ® pshr

GRrqj.nat = GR[rg.nat || tnp_nat;
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Parallel Shift Right and Add

intel.

Format: (gp) pshradd2 rq =r5, county, 3 A10
Description:  The four signed 16-bit data elements of GR r, are each independently shifted to the right by count, bits,
and added to the four signed 16-bit data elements of GR r3. The right shift operation fills the high-order
bits of each element with theinitial value of the sign bits of the data elementsin GR r,. The add operation
is performed with signed saturation. The four signed 16-bit results of the add are placed in GRr4. Thefirst
operand can be shifted by 1, 2 or 3 bits.
Operation: if (PR gp]) {
check_target_register(ry);
x[0] = GRrj]{15:0};  y[0] = GRrg{15:0};
x[1] = GRr ] {31:16}; y[1] = GRr3{31:16};
X[2] = GRrp{47:32}; y[2] = GRr3l{47:32};
X[3] = GRr ]{63:48};  y[3] = GRr3{63:48};
max = sign_ext(0Ox7fff, 16);
mn = sign_ext (0x8000, 16);
for (i =0; i <4; i++) {
tenp[i] = shift_right_signed(sign_ext(x[i], 16), count);
res[i] = tenp[i] + sign_ext(y[i], 16);
if (res[i] > max)
res[i] = nax;
if (res[i] < mn)
res[i] = mn;
GR[r ;] = concatenate4(res[3], res[2], res[1], res[0]);
GRrqjl.nat = GRry.nat || GRrgl.nat;
}
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Parallel Subtract

Format:

Description:

(gp) psubl ry=ryr3

(gp) psubl.sss rq=r,,r3
(gp) psubl.uus rqy=ry,r3
(gp) psubl.uuu rq=ry, 3
(ap) psub2 ry=ry 13

(gp) psub2.sss rq=r,, 13
(gp) psub2.uus rq=ry,,r3
(gp) psub2.uuu rq=ry,r3

(ap) psub4 ry=ry, 13

psub

one_byte form, modulo_form A9
one_byte form, sss_saturation_form A9
one_byte form, uus_saturation form A9
one_byte form, uuu_saturation_form A9
two_byte form, modulo_form A9
two_byte form, sss_saturation_form A9
two_byte form, uus_saturation _form A9
two_byte form, uuu_saturation_form A9
four_byte form, modulo_form A9

The sets of elements from the two source operands are subtracted, and the results placed in GR r;.

If the difference between two elements cannot be represented in the result element and a saturation
completer is specified, then saturation clipping is performed. The saturation can either be signed or
unsigned, as given in Table 7-40. If the difference of two elementsis larger than the upper limit value, the
result isthe upper limit value. If it is smaller than the lower limit value, the result is the lower limit value.
The saturation limits are given in Table 7-41.

Table 7-40. Parallel Subtract Saturation Completers

Completer Result r; Treated as Source r, Treated as Source r3 Treated as
SSS signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned

Table 7-41. Parallel Subtract Saturation Limits

Result r; Signed

Result r; Unsigned

Size Element Width
Upper Limit Lower Limit Upper Limit Lower Limit
1 8 bit ox7f 0x80 Oxff 0x00
2 16 bit ox7fff 0x8000 Oxffff 0x0000

Figure 7-38. Parallel Subtract Example

GRrj:

GR o

GRrq:

LT

psub2
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Operation: if (PRgp]) {
check_target _register(ry);

if (one_byte fornm { /1 one-byte el enents

x[0] = GRr ] {7:0}; y[0] = GRrgl{7:0};

x[1] = GRry{15:8};  y[1] = GRr3{15:8};
x[2] = GRr;{23:16}; y[2] = GRr3{23:16};
x[3] = GRr ]{31:24};  y[3] = GRr3{31:24};
x[4] = GRry{39:32}; y[4] = GRr3{39:32};
x[5] = GRIr;]{47:40};  y[5] = GR[r3]{47:40};
x[6] = GRIr;]{55:48};  y[6] = GRr3{55:48};
x[7] = GRro{63:56}; y[7] = GRr3l{63:56};

if (sss_saturation_form { /1l sss_saturation_form
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);
for (i =0; i <8; i++) {
temp[i] = sign_ext(x[i], 8)

sign_ext(y[i], 8);

} else if (uus_saturation_fornm { /1 uus_saturation_form
max = Oxff;
mn = 0x00;

for (i =0; i <8; i++) {
temp[i] = zero_ext(x[i], 8) - sign_ext(y[i], 8);

} else if (uuu_saturation_fornm { /1 uuu_saturation_form
max = Oxff;
mn = 0x00;

for (i =0; i <8; i++) {
tenp[i] zero_ext(x[i], 8) - zero_ext(y[i], 8);

} else { /1 nodul o_form
for (i = 0; < 8; i++) {
tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);

}

if (sss_saturation_form|| uus_saturation_form/|| uuu_saturation_form {
for (i =0; i <8; i++) {
if (tenp[i] > nmax)
tenp[i] = nmax;
if (temp[i] < min)
tenp[i] = mn;

}

GR[r ;] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],
tenp[ 3], tenp[2], tenp[1], tenp[O]);
} else if (two_byte forn { /1 two-byte el enents
x[0] = GRrj{15:0};  y[0] = GRrz{15:0};
x[1] = GRr {31:16};  y[1] = GRr3 {31 16};
x[2] = GRro{47:32}; y[2] = GRr3{47:32};
x[3] = GRr;{63:48};  y[3] = GRr3 {63:48};

if (sss_saturation_ form { /'l sss_saturation_form
max = sign_ext(0Ox7fff, 16);
mn = sign_ext (0x8000, 16);
for (i =0; i <4; i++) {
temp[i] = sign_ext(x[i], 16) - sign_ext(y[i], 16);

} else if (uus_saturation_form { /1l uus_saturation_form
max = Oxffff;
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m n = 0x0000;
for (i =0; i <4; i++) {
tenp[i] = zero_ext(x[i], 16) - sign_ext(y[i], 16);

}

} else if (uuu_saturation_fornm { /1 uuu_saturation_form
max = Oxffff;
m n = 0x0000;

for (i =0; i <4; i++) {
temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);

} else { /1 nodul o_form
for (i =0; i <4; i++) {
tenmp[i] zero_ext(x[i], 16) - zero_ext(y[i], 16);

}

if (sss_saturation_form|| uus_saturation_form]|| uuu_saturation_form {
for (i =0; i <4; i++) {
if (tenp[i] > nmax)
tenp[i] = max;
if (tenp[i] < min)

tenp[i] = mn;
}
GR[r ;] = concatenate4(tenp[3], tenp[2], tenp[l], tenp[O]);
} else { Il four-byte elenents
X[0] = GRrp]{31:0}; y[0] = GRrj{31:0};
x[1] = GRr {63:32}; y[1] = GRr3{63:32};
for (i =0; i <2; i++) { /1 nodul o _form

temp[i] = zero_ext(x[i], 32) - zero_ext(y[i], 32);

GRr ;] = concatenate2(tenp[1l], tenp[O0]);

CGRrgj]l.nat = GR[ry.nat || GRrg.nat;
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Reset User Mask
Format: (gp) rum immy, M44

Description:  The complement of the imm,, operand is ANDed with the user mask (PSR{5:0}) and the result is placed
in the user mask.

PSR.up is only cleared if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not
modified.

Operation: if (PR gp]) {
if (is_reserved_fiel d(PSR_TYPE, PSR UM | mmpy,))
reserved_register_field_fault();

if (i mm{1}) PSR{1} = O:

if (impd{2} && PSR sp == 0) /I non-secure perf nonitor
PSR{2} = O;

if (imp{3}) PSR{3} = O;

if (immpd4}) PSR{ 4} = 0;

if (imp{5}) PSR{5} = O;
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Set Floating-Point Value, Exponent, or Significand

Format: (gp) setf.s fi=r, single_form M18
(gp) setf.d fy =1, double form M18
(ap) setf.exp fi=r5 exponent_form M18
(gp) setf.sig fi=r, significand _form M18

Description:  In the single and double forms, GR r, is treated as a single precision (in the single_form) or double
precision (in the double_form) memory representation, converted into floating-point register format, and
placed in FR f;.

In the exponent_form, bits 16:0 of GR r, are copied to the exponent field of FR f; and bit 17 of GRr, is
copied to the sign bit of FR f;. The significand field of FR f; is set to one (0x800...000).

Figure 7-39. Function of setf.exp

63 1817 0
GRr;
FR f; |s| exponent| 1000 s 000

In the significand_form, the valuein GRr, is copied to the significand field of FR f;.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

Figure 7-40. Function of setf.sig

63 0

Ger

v

FR f; |0| 0x1003E significand

For all forms, if the NaT bit corresponding tor, isequal to 1, FR f; is set to NaTVal instead of the
computed result.
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; 0, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (1CRry.nat) {
if (single_form
FRIf;] = fp_memto_fr_format(CGRr,], 4, 0);
else if (double form
FRIf;] = fp_memto_fr_format(Gr,], 8, 0);
else if (significand_form {
FRIf4].significand = GRr,];
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f4].sign = 0;
} else {
FR[ f 1] . si gni fi cand = 0x8000000000000000;
FRIf1].exp = GRr2]{16:0};
FRf1].sign = GRr2]{17};

} else
FR ;] = NATVAL;

fp_update_psr(f,);

/1 exponent _form
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Shift Left

Format: (gp) shl ry=ry, 13 17
(gp) shl rq=r,, countg pseudo-op of: (qp) dep.z rq =r,, countg, 64-countg

Description:  The value in GR is shifted to the left, with the vacated bit positions filled with zeroes, and placed in GR
r,. The number of bit positions to shift is specified by the value im{GiR by an immediate valumuntg,
The shift count is interpreted as an unsigned number. If the value ig i§Breater than 63, then the
result is all zeroes.

For the immediate form, SéBeposit” on page 7-27

Operation: if (PRgp]) {
check_target_register(ry);

count = GRr3;
GRrq] = (count > 63) ? 0: CGRry << count;

CRrgjl.nat = GR[ry.nat || GRrg.nat;
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Shift Left and Add

Format: (gp) shladd rq =r,, county, r3 A2

Description:  Thefirst source operand is shifted to the left by count, bits and then added to the second source operand
and the result placed in GRr4. Thefirst operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PRgp]) {
check_target_register(ry);

CRrg = (Rry << county) + GRrg;
CGRrq.nat = GRry.nat || GRrg.nat;
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Shift Left and Add Pointer

Format: (gp) shladdp4 rq =r,, county, r3

Description:

A2

The first source operand is shifted to the left by count, bits and then is added to the second source
operand. The upper 32 bits of the result are forced to zero, and then bits { 31:30} of GR r3 are copied to

bits {62:61} of theresult. Thisresult is placed in GR ry. The first operand can be shifted by 1, 2, 3, or 4
bits.

Figure 7-41. Shift Left and Add Pointer

GR o

Operation: if (PRgp]) {
check_target_register(ry);

tmp_res = (R[r ] << county) + CRrg];
tnp_res = zero_ext(tnp_res{31:0}, 32);
tnp_res{62: 61} = GR r3 {31:30};

CGRrg] =tnp_res;

CGRrgjl.nat = GR[ry.nat || GRrg.nat;
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Shift Right

Format: (gp) shr ry=rg o signed_form 15
(gp) shru ry=rz,ro unsigned_form 15
(gp) shr rq =r3, countg pseudo-op of: (gp) extr rq = ra, countg, 64-€ountg
(gp) shr.urq =r3, countg pseudo-op of: dp) extr.u rq =rs, countg, 64-countg

Description:  The value in GR3 is shifted to the right and placed in &R In the signed_form the vacated bit positions
are filled with bit 63 of GR3; in the unsigned_form the vacated bit positions are filled with zeroes. The
number of bit positions to shift is specified by the value inr&& by an immediate valumuntg. The
shift count is interpreted as an unsigned number. If the value i, GRyreater than 63, then the result is
all zeroes (for the unsigned_form, or if bit 63 of GRvas 0) or all ones (for the signed_form if bit 63 of
GRrzwas 1).

If the .u completer is specified, the shift is unsigned (logical), otherwise it is signed (arithmetic).
For the immediate forms, S&extract” on page 7-29

Operation: if (PRgp]) {
check_target _register(ry);

if (signed_forn {

count = (GR[ry > 63) ? 63 : CRr,;

R rg] = shift_right_signed(GR rg, count);
} else {

count = GRr;
GRrg;] = (count > 63) ? 0 : shift_right_unsigned(GRrg], count);

GRrgjl.nat = GRry.nat || GRrg.nat;
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Shift Right Pair

Format: (gp) shrp rq =ry, r3, countg 110

The two source operands, GR r, and GR r3, are concatenated to form a 128-bit value and shifted to the
right countg bits. The least-significant 64 bits of the result are placed in GR .

Description:

The immediate value countg can be any number in the range O to 63.

Figure 7-42. Shift Right Pair

GRry:

GRrj:

GRry:

Operation: if (PRgp]) {
check_target_register(r;);

= shift_right_unsigned(GR r3], countg);
tenp2 = GRr, << (64 - countyg);

GRrgj] = zero_ext(tenpl, 64 - countg) | tenp2;
CGRrgjl.nat = GR[ry.nat || GRrg.nat;
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Serialize
Format: (ap) stlz.i M24

Description:  Instruction serialization (srl z. i ) ensures:

¢ prior modifications to processor register resources that affect fetching of subsequent instruction
groups are observed,

¢ prior modifications to processor register resources that affect subsequent execution or data memory
accesses are observed,

¢ prior memory synchronization (sync. i ) operations have taken effect on the local processor
instruction cache,

¢ subsequent instruction group fetches are re-initiated after srl1 z. i completes.
Thesrl z.i instruction must bein an instruction group after the instruction group containing the

operation that isto be serialized. Operations dependent on the serialization must bein an instruction group
after the instruction group containing thesrl z. i .

Operation: if (PRgp]) {
instruction_serialize();
}
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Store

Format: (gp) stsz.sttype.sthint [rg] =1, normal_form, no_base update form M4
(gp) stsz.sttype.sthint [ra] = r,, immg normal_form, imm_base_update_form M5
(gp) st8.spill.sthint [ra] =1, spill_form, no_base update form M4
(gp) st8.spill.sthint [rg] =r5, immg spill_form, imm_base update form M5

Description: A value consisting of the least significant sz bytes of the value in GR r,, is written to memory starting at
the address specified by the value in GR r3. The values of the sz completer are given in Table 7-26 on
page 7-104. The sttype completer specifies specia store operations, which are described in Table 7-42. If
the NaT bit corresponding to GR r5 is 1 (or in the normal_form, if the NaT bit corresponding to GR r5 is
1), aRegister NaT Consumption fault is taken.

Inthe spill_form, an 8-byte valueis stored, and the NaT bit corresponding to GR 1 is copied to abit in the
UNAT application register. Thisinstruction is used for spilling aregister/NaT pair. See “Control
Speculation” on page 4-1f8r details.

In the imm_base_update form, the value in1Gis added to a signed immediate valuangy) and the

result is placed back in GR. This base register update is done after the store, and does not affect the
store address, nor the value stored (for the case whanelr; specify the same register).

Table 7-42. Store Types

sttype . . .
Completer Interpretation Special Store Operation
none Normal store
rel Ordered store An ordered store is performed with release semantics.

For more details on ordered stores ‘8demory Access Ordering” on page 4-23

The ALAT is queried using the physical memory address and the access size, and all overlapping entries
are invalidated.

The value of thathint completer specifies the locality of the memory access. The valuesdifitite
completer are given ifiable 7-43 Se€'Memory Hierarchy Control and Consistency” on page 4-20

Table 7-43. Store Hints

sthint Completer Interpretation
none Temporal locality, level 1
nta Non-temporal locality, all levels
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Operation:

7-172

if (PREgp]) {

size = spill_form? 8 : sz
otype = (sttype=="‘rel) ? RELEASE : UNORDERED;

if (imm_base_update_form)
check_target_register( ra);

if (GR[ rg].nat|| (normal_form && GR[ r 5].nat))
register_nat_consumption_fault(WRITE);

paddr =tlb_translate(GR[ r 3], size, WRITE, PSR.cpl, &mattr,
&tmp_unused);
if (spill_form && GR[ I 5].nat)

natd_gr_write(GR][ r 7], paddr, size, UM.be, mattr, otype, st hi nt);

else
mem_write(GR[ r ], paddr, size, UM.be, mattr, otype, st hi nt);

if (spill_form) {
bit_ pos=GR[ r3|{8:3};
AR[UNAT]{bit_pos} = GR[ r gl.nat;

alat_inval_multiple_entries(paddr, size);
if imm_base_update_form) {

GR[r 3zl =GR[ r 3]+ sign_ext( iy, 9);
GR[r gl.nat = 0;
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Floating-Point Store

Format: (gp) stffsz.sthint [rg] =1, normal_form, no_base update form M9
(gp) stffsz.sthint [rg] =15, immyg normal_form, imm_base update form M10
(gp) stf8.sthint [ra] =1, integer_form, no_base update form M9
(gp) stf8.sthint [ra] = f,, immy integer_form, imm_base update form M10
(gp) stf.spill.sthint [rg] =f, spill_form, no_base update form M9
(gp) stf.spill.sthint [r3] = f5, immg spill_form, imm_base update form M10

Description: A value, consisting of fsz bytes, is generated from the value in FR f, and written to memory starting at the
address specified by the valuein GR r3. In the normal_form, the valuein FR f, is converted to the memory
format and then stored. In the integer_form, the significand of FR f, is stored. The values of the fsz
completer are given in Table 7-29 on page 7-108. In the normal_form or the integer_form, if the NaT bit
corresponding to GRrzis 1 or if FR f, contains NaT Val, a Register NaT Consumption fault is taken. See
“Data Types and Formats” on page %ot details on conversion from floating-point register format.

In the spill_form, a 16-byte value from FRis stored without conversion. This instruction is used for
spilling a register. Se&ontrol Speculation” on page 4-18r details.

In the imm_base_update form, the value in1Gi& added to a signed immediate valunangy) and the
result is placed back in GR. This base register update is done after the store, and does not affect the
store address.

The ALAT is queried using the physical memory address and the access size, and all overlapping entries
are invalidated.

The value of thethint completer specifies the locality of the memory access. The valuesdtifitite
completer are given iable 7-43 on page 7-17%ee&'Memory Hierarchy Control and Consistency” on
page 4-20

Operation: if (PRgp]) {
if (immbase_update form
check_target _register(ry);
if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabled fp register _fault(tnp_isrcode, WRITE);

if (Rrg.nat || (!spill_form&& (FR f5 == NATVAL)))
regi ster_nat _consunption_faul t (WRI TE) ;

size = spill _form? 16 : (integer_form? 8 : fsz);

paddr = tlb_translate(G rs], size, WRITE, PSR cpl, &mttr, & np_unused);
val = fp_fr_to_memformat (FR f,], size, integer_form;

memwite(val, paddr, size, UMbe, mattr, UNORDERED, sthint);

alat _inval _multiple_entries(paddr, size);

if (immbase_update form {

GRrg = GRrg + sign_ext(imm, 9);
GR(rg.nat = 0;
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Subtract

Format:

Description:

Operation:

7-174

intel.

(gp) sub ry=ryr3 register_form Al
(gp) sub ry=ry 13,1 minusl_form, register_form Al
(ap) sub ry =immg, r3 imm8_form A3

The second source operand (and an optional constant 1) are subtracted from the first operand and the
result placed in GR r. In the register form the first operand is GR r; in the immediate form the first
operand is taken from the sign extended immg encoding field.

Theminusl_formisavailable only in theregister_form (although the equivalent effect can be achieved by
adjusting the immediate).

if (PRgp]) {

check_target_register(ry);

tmp_src = (register_form? CRr,] : sign_ext(img, 8));
t = (register_form? GR[r,.nat : 0);

if (mnusl_form
GRrg] =tnp_src - Rrg - 1
el se

Rrg =tnmp_src - GRrg;

GRrgjl.nat = tnp_nat || GRrg.nat;
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Set User Mask

Format: (gp) sum immy, M44
Description:  Theimm,, operand is ORed with the user mask (PSR{5:0}) and the result is placed in the user mask.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not
modified.

Operation: if (PRgp]) {

if (is_reserved_field(PSR.TYPE, PSR UM | mmpy))
reserved_register_field_fault();

if (i mmd1}) PSR{1} = 1;

if (imp{2} & & PSR sp == 0) /I non-secure perf nonitor
PSR{2} = 1;

if (imp3}) PSR{3} = 1;

if (imp{4}) PSR{ 4} = 1;

if (imp{5}) PSR{5} = 1;
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Sign Extend

Format: (gp) sxtxsz ry=rsz
Description:

Table 7-44. xsz Mnemonic Values

Operation:

7-176

intel.

129

Thevaluein GR r3issign extended from the bit position specified by xsz and theresultisplaced in GR r.
The mnemonic values for xsz are given in Table 7-44.

XSz Mnemonic Bit Position
1 7
2 15
4 31
if (PREgp]) {

check_target_register(ry);

GRrq =sign_ext(Grg,xsz * 8);

CGRrgjl.nat = GR{rg.nat;
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Memory Synchronization

Format:

Description:

Operation:

(gp) sync.i M24

sync. i ensuresthat when previously initiated Flush Cache (f ¢) operations issued by the local processor
become visible to local data memory references, prior Flush Cache operations are also observed by the
local processor instruction fetch stream. sync. i aso ensures that at the time previously initiated Flush
Cache (f ¢) operations are observed on a remote processor by data memory references they are al'so
observed by instruction memory references on the remote processor. sync. i isordered with respect to all
cache flush operations as observed by another processor. A sync. i and apreviousf ¢ must be in separate
instruction groups. If semantically required, the programmer must explicitly insert ordered data references
(acquire, release or fence type) to appropriately constrain sync. i (and hencef ¢) visibility to the data
stream on other processors.

sync. i isused to maintain an ordering relationship between instruction and data caches on local and
remote processors. An instruction serialize operation be used to ensure synchronization initiated by
sync. i onthelocal processor has been observed by a given point in program execution.

An example of self-modifying code (local processor):

st [L1] = data //store into local instruction stream

fc L1 //flush stale datumfrominstruction/data cache
- //require instruction boundary between fc and sync.i
sync. i /lensure |l ocal and renote data/inst caches are synchronized
,syrl Z.i [/ ensure sync has been observed by the |ocal processor,
i /] ensure subsequent instructions observe nodified nenory
L1: target //instruction nodified
if (PRgp]) {

instructi on_synchroni ze();

}
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Test Bit

Format: (gp) thit.trel.ctype pq, po =3, POSg

intel.

116

Description:  The bit specified by the posg immediate is selected from GR r4. The selected bit forms a single bit result
either complemented or not depending on the trel completer. This result iswritten to the two predicate
register destinations p; and p,. The way the result is written to the destinations is determined by the
compare type specified by ctype. See the Compare instruction and Table 7-10 on page 7-19.

Thetrel completer values .nz and .z indicate non-zero and zero sense of thetest. For normal and unc types,
only the .z value is directly implemented in hardware; the .nz value is actually a pseudo-op. For it, the
assembler simply switches the predicate target specifiers and uses the implemented relation. For the
parallel types, both relations are implemented in hardware.

Table 7-45. Test Bit Relations for Normal and unc tbits

trel

Test Relation Pseudo-op of

nz

selected bit==1 z P~ P2

z

selected bit==0

Table 7-46. Test Bit Relations for Parallel tbits

trel

Test Relation

nz

selected bit==1

z

selected bit==0

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an lllegal Operation fault, if the qualifying predicate is set, or if the compare typeis

unc.
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Operation:

if (PREap]) {
it (p1 == p2)
illegal operation fault();

if (trel =='nz’)

tmp_rel=GR[ r3l{ posg}
else

tmp_rel = IGR[ r3l{ posg};

switch ( ctype){
case ‘and’:
if (GR[ rg].nat|| tmp_rel) {
PR[ps] =0;
PR[p2] =0;

break;
case ‘or’:
if \IGR[  rgl.nat && tmp_rel) {
PR[ps] = 1;
PR[p2] = 1;

break;
case ‘or.andcm’:
if \IGR[  rgl.nat && tmp_rel) {
PR[ps] = 1;
PR[p2] =0;

break;
case ‘unc’
default:
if (GR[ rg].nat) {
PR[ps] =0;
PR[p2] = 0;
}else{
PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;

break;
}
}else{
if (  ctype=='unc’){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;
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Test NaT

Format: (gp) tnat.trel.ctype pq, po=r3

intel.

117

Description:  The NaT bit from GR r5 forms asingle bit result, either complemented or not depending on the trel
completer. This result is written to the two predicate register destinations, p; and p,. The way theresult is
written to the destinations is determined by the compare type specified by ctype. See the Compare
instruction and Table 7-10 on page 7-19.

Thetrel completer values.nz and .z indicate non-zero and zero sense of thetest. For normal and unc types,
only the .z value is directly implemented in hardware; the .nz value is actually a pseudo-op. For it, the
assembler simply switches the predicate target specifiers and uses the implemented relation. For the
parallel types, both relations are implemented in hardware.

Table 7-47. Test NaT Relations for Normal and unc tnats

trel

Test Relation

Pseudo-op of

nz

selected bit == 1

z P11~ P2

z

selected bit ==

Table 7-48. Test NaT Relations for Parallel tnats

trel

Test Relation

nz

selected bit == 1

z

selected bit==0

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an lllegal Operation fault, if the qualifying predicate is set, or if the compare typeis

unc.

7-180
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Operation: if (PRLgp]) {
it (p1 == p2)
illegal operation fault();
if (trel =='nz’) /I'nz’ - test for 1
tmp_rel=GR[  r3].nat;
else Iz’ - test for 0

tmp_rel = IGR[ I gl.nat;

switch ( ctype){
case ‘and”: /I and-type compare
if ('tmp_rel) {
PR[ps] =0;
PR[p2] =0;

break;
case ‘or Il or-type compare
if (tmp_rel) {
PR[ps] =1,
PR[p2] = 1;

break;
case ‘or.andcm’: I or.andcm-type compare
if (tmp_rel) {
PR[ps] =1,
PR[p2] =0;

break;
case ‘unc’ I unc-type compare
default: /I normal compare
PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;

break;
}else {
if ( ctype==‘unc){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;
}
}

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-181



unpack

Unpack

Format:

Description:

7-182

(gp) unpackl.h ry=ryr3
(gp) unpack2.h ry=r,,r3
(gp) unpack4.h rqi=ry 3
(gp) unpackl.l rq=ro,r3
(gp) unpack2.l rq=ro,r3
(gp) unpack4.l rq=ry,r3

intel.

one_byte form, high _form 12
two_byte form, high form 12
four_byte form, high form 12
one_byte form, low_form 12
two_byte form, low_form 12
four_byte form, low_form 12

The data elements of GR r,, and r5 are unpacked, and the result placed in GR ry. In the high_form, the
most significant elements of each source register are selected, while in the low_form the least significant
elements of each source register are selected. Elements are selected alternately from the source registers.
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Figure 7-43. Unpack Operation

unpack

GR o

unpackl.h

GR o

unpackl.|

GRry:

unpack2.h

GRry:

unpack?2.|

GRry:

unpack4.h

GRry:

unpack4.|
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Operation: if (PRgp]) {
check_target _register(ry);

if (one_byte fornm { /1 one-byte el enents

x[0] = GRr ] {7:0}; y[0] = GRrgl{7:0};

x[1] = GRry{15:8};  y[1] = GRr3{15:8};
x[2] = GRr;{23:16}; y[2] = GRr3{23:16};
x[3] = GRr ]{31:24};  y[3] = GRr3{31:24};
x[4] = GRry{39:32}; y[4] = GRr3{39:32};
x[5] = GRIr;]{47:40};  y[5] = GR[r3]{47:40};
x[6] = GRIr;]{55:48};  y[6] = GRr3{55:48};
x[7] = GRro{63:56}; y[7] = GRr3l{63:56};

if (high_form

GRr ] = concatenate8( x[7], y[7], x[6], y[6],
| x[5], y[5]., x[4], y[4]);
el se

GR r ] = concatenate8( x[3], y[3], x[2], y[2],
x[1], y[1], x[0], y[0Q]);
} else if (two_byte fornm { /1 two-byte el enents
X[0] = GRr ] {15:0}; y[0] = GRrj{15:0};
x[1] = GRr;{31:16};  y[1] = GRr3{3L: 16};
x[2] = CRr]{47:32}; y[2] = GRrg {47:32};
x[3] = GRr {63:48}; y[3] = GRr3 {63:48};

if (high_form
GR[ r ] = concatenate4(x[3], y[3], x[2], y[2]);
el se
GR[ r ;] = concatenate4(x[1], y[1], x[0], y[0]);
} else { Il four-byte elenents

X[0] = GRrz{31:0};  y[0] = GRrg{3L:0};
x[1] = GRr;1{63:32}; y[1] = GRrj{63:32};
if (high_form

@GR r; = concatenate2(x[1], y[1]);

el se
@GR r;] = concatenate2(x[0], y[0]);

}
GRrqjl.nat = GRry.nat || GRrg.nat;
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Exchange

Format: (gp) xchgszldhint rq={r3],r, M16

Description: A value consisting of szbytesisread from memory starting at the address specified by the valuein GR r3.
The least significant sz bytes of the valuein GR r, are written to memory starting at the address specified
by the valuein GR r3. The value read from memory is then zero extended and placed in GR r; and the
NaT bit corresponding to GR r4 is cleared. The values of the sz completer are given in Table 7-49.
If the address specified by the value in GR r3is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault istaken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).
Both read and write access privileges for the referenced page are required.

Table 7-49. Memory Exchange Size

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

The exchange is performed with acquire semantics, i.e., the memory read/writeis made visible prior to all
subsequent data memory accesses.

The memory read and write are guaranteed to be atomic.

The value of the Idhint completer specifies the locality of the memory access. The values of the Idhint
completer are given in Table 7-28 on page 7-105. Locality hints do not affect program functionality and

may beignored by the implementation. See “Memory Hierarchy Control and Consistency” on page 4-20
for details.

Operation: if (PR gp]) {
check_target_register(r;, SEMAPHORE);

if (Rrg.nat || GRr,.nat)
regi ster_nat _consunpti on_f aul t ( SEVAPHORE) ;

paddr = tlb_translate(GRr3, sz, SEMAPHORE, PSR cpl, &mattr, & np_unused);

if (!ma_supports_semaphores(nattr))
unsupported_data_reference_faul t (SEVAPHORE, GR r3]);

val = memxchg(GR ro], paddr, sz, UMbe, mattr, ACQU RE, [dhint);
al at _inval _multiple_entries(paddr, sz);

R rgj] = zero_ext(val, sz * 8);
R r4 ] .nat = 0;
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Fixed-Point Multiply Add

Format:

Description:

Operation:

7-186

(gp) xmal f; =f3,f, fp low_form F2
(gp) xmalu f; =f3, f, f, pseudo-op of: (qp) xmal fy =13, 4, 5

(gp) xmah f; =fs,f, f, high_form F2
(gp) xmahu f; =13, 14 f, high_unsigned form F2

Two source operands (FR f3 and FR f,) are treated as either signed or unsigned integers and multiplied.
The third source operand (FR f,) is zero extended and added to the product. The upper or lower 64 bits of
the resultant sum are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR f5 and FR f, are treated as unsigned integers and
multiplied to produce a full 128-bit unsigned result. The significand field of FR f, is zero extended and
added to the product. The most significant 64-hits of the resultant sum are placed in the significand field
of FR fl'

In the high_form, the significand fields of FR f5 and FR f4 are treated as signed integers and multiplied to
produce a full 128-bit signed result. The significand field of FR f, is zero extended and added to the
product. The most significant 64-bits of the resultant sum are placed in the significand field of FRf;.

In the other forms, the significand fields of FR f3 and FR f, are treated as signed integers and multiplied to
produce a full 128-bit signed result. The significand field of FR f, is zero extended and added to the
product. The least significant 64-bits of the resultant sum are placed in the significand field of FRf;.

Inall forms, the exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the sign field
of FR f; is set to positive (0).

Note: fl as an operand is not an integer 1; it is just the register file format’s 1.0 value.

Indl forms, if any of FR f3, FR 4, or FRfy,isaNaTVal, FR f; is set to NaTVal instead of the computed
result.

it (PRIgp]) { ,
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg))
di sabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3) || fp_is_natval (FRfg)) {
FR{ f;] = NATVAL;
} else {
if (lowform]|| high_form
tnp_res_128 =
fp_164 x_164_to_ | 128(FR[ 3 .significand, FR f,].significand);
el se // high_unsigned form
tnp_res_128 =
fp_U64 x_U64_to UL28(FR[ f3 .significand, FR f,].significand);

tnp_res_128 =
fp_UL28_add(tnp_res_128, fp_UB4_to_UL28(FR f].significand));

if (high_form|| high_unsigned_form
FRIf;].significand = tnp_res_128. hi;
else // lowform
FRIf;].significand = tnp_res_128.1 o;

FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f;].sign = FP_SI GN_PCSI Tl VE;
}

fp_update_psr(f,);
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Fixed-Point Multiply

Format: (gp) xmpy.l f; =131, pseudo-op of: (gp) xmall f; =f5, T4, fO
(gp) xmpy.lu fy =13, 1,4 pseudo-op of: (gp) xmall f; =f5, T4, fO
(ap) xmpy.h f; =13, 14 pseudo-op of: (qp) xmah f; =f3, f, fO
(ap) xmpy.hu f; =fa, f4 pseudo-op of: (qp) xmahu fq =fz, f,, fO

Description:  Two source operands (FR f3 and FR f,) are treated as either signed or unsigned integers and multiplied.
The upper or lower 64 bits of the resultant product are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR f5 and FR f, are treated as unsigned integers and
multiplied to produce afull 128-bit unsigned result. The most significant 64-bits of the resultant product
are placed in the significand field of FR f;.

In the high_form, the significand fields of FR f5 and FR f4 are treated as signed integers and multiplied to
produce a full 128-bit signed result. The most significant 64-hits of the resultant product are placed in the
significand field of FR f;.

In the other forms, the significand fields of FR f3 and FR f, are treated as signed integers and multiplied to
produce afull 128-bit signed result. The least significant 64-bits of the resultant product are placed in the
significand field of FR f;.

In all forms, the exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field
of FR f; is set to positive (0).

Note: fl as an operand is not an integer 1; it is just the register file format’s 1.0 value.

Operation: See “Fixed-Point Multiply Add” on page 7-186
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Exclusive Or

Format: (gp) xor ry=ry, 13 register_form Al
(gp) xor rq=immg, r3 imm8_form A3

Description:  Thetwo source operands are logically XORed and the result placed in GR r4. In the register_form thefirst
operand isGR r; in theimm8_form the first operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? CRr,] : sign_ext(img, 8));
t = (register_form? GR[r,.nat : 0);

Rrg =tmp_src » GRrg;
GRrqjl.nat = tnp_nat || GRrg.nat;
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Zero Extend
Format: (gp) zxtxsz ry=r5 129

Description:  Thevaluein GR r3 is zero extended above the bit position specified by xsz and the result is placed in GR
r1. The mnemonic values for xsz are given in Table 7-44 on page 7-176.

Operation: if (PRgp]) {
check_target_register(ry);

CRrgj] = zero_ext(GRrg,xsz * 8);
R rq].nat = GRrg .nat;
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About the IA-64 Optimization Guide 8

8.1

Note:

The second portion of this document explainsin detail optimization techniques associated with the
|A-64 instruction set. It isintended for those interested in furthering their understanding of 1A-64
application architecture features and optimization techniques that benefit application performance.
Intel and the industry are developing compilers to take advantage of these techniques. Application
developers are not advised to use this as a guide to 1 A-64 assembly language programming.

To demonstratetechniques, this guide contains code examplesthat arenot targeted towardsa
specific | A-64 processor, but rather a hypothetical implementation. For these code examples,
ALU operations are assumed to take one cycle and loads take two cyclesto return from fir st
level cache and that there are two load/stor e execution unitsand four ALUs. Other latencies
and execution unit details are described as needed in thetext. Thisguide will refer to this
model as the “generic” implementation

Overview of the IA-64 Optimization Guide

Chapter 9, “Introduction to IA-64 ProgrammindProvides an overview of the |1A-64 application
programming environment.

Chapter 10, “Memory ReferenceDiscusses features and optimizations related to control and data
speculation.

Chapter 11, “Predication, Control Flow, and Instruction Stre@escribes optimization features
related to predication, control flow, and branch hints.

Chapter 12, “Software Pipelining and Loop SuppdPfovides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 13, “Floating-point ApplicationsDiscusses current performance limitations in floating-
point applications and 1A-64 features that address these limitations.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 8-1



IA-64 Application Developer’s Architecture Guide, Rev. 1.0



intel.

Introduction to IA-64 Programming 9

9.1

9.2

Overview

The IA-64 instruction set is designed to allow the compiler to communicate information to the
processor to manage resource characteristics such as instruction latency, issue width, and
functional unit assignment. Although such resources can be statically scheduled, 1A-64 does not
require that code be written for a specific microarchitecture implementation in order to be
functional.

I A-64 includes a complete instruction set with new features designed to:
* Increaseinstruction-level parallelism (ILP).
* Better manage memory latencies.
* Improve branch handling and management of branch resources.

* Reduce procedure call overhead.

| A-64 a so enables high floating-point performance and provides direct support for multimedia
applications.

Complete descriptions of the syntax and semantics of 1A-64 instructions can be found in Part | :

| A-64 Application Architecture Guide. Though this chapter provides a high level introduction to
application level |A-64 programming, it assumes prior experience with assembly language
programming as well as some familiarity with the | A-64 application architecture. Optimization is
explored in other chapters of this guide.

Registers

| A-64 architecture defines 128 general purpose registers, 128 floating-point registers, 64 predicate
registers, and up to 128 special purpose registers. The large number of architectural registersin

| A-64 enable multiple computations to be performed without having to frequently spill and fill
intermediate data to memory.

There are 128, 64-bit general purposeregisters(r 0- r 127) that are used to hold values for
integer and multimedia computations. Each of the 128 registers has one additional NaT (Not a
Thing) bit which is used to indicate whether the value stored in the register is valid. Execution of
IA-64 speculative instructions can result in a register’s NaT bit being set. Redlisteread-only
and contains a value of zero (0). Attempting to writeQawill cause a fault.

There are 128, 82-bitoating-point registers (f 0- f 127) that are used for floating-point
computations. The first two registef€) andf 1, are read-only and read as +0.0 and +1.0,
respectively. Instructions that write t@ or f 1 will fault.

There are 64, one-hitredicateregisters (p0- p63) that control conditional execution of
instructions and conditional branches. The first regiptrjs read-only and always reads true (1).
The results of instructions that writeg® are discarded.

There are 8, 64-bliranch registers (b0- b7) that are used to specify the target addresses of
indirect branches.
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9.3.1

9.3.2
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There is space for up to 128 application registers (ar 0- ar 127) that support various functions.
Many of these register slots are reserved for future use. Some application registers have assembler
aliases. For example, ar 66 isthe Epilogue Counter and iscaled ar . ec.

Theinstruction pointer isa64-bit register that points to the currently executing instruction
bundle.

Using IA-64 Instructions

| A-64 instructions are grouped into 128-bit bundles of three instructions. Each instruction occupies
the first, second, or third syllable of abundle. Instruction format, expression of parallelism, and
bundle specification are described below.

Format

A basic |A-64 instruction has the following syntax:
[gp] mnemonic[.comp] dest=srcs

where:

ap Specifies a qualifying predicate register. The value of the qualifying
predicate determineswhether theresults of theinstruction are committed
in hardware or discarded. When the value of the predicate register istrue
(2), the instruction executes, its results are committed, and any
exceptions that occur are handled as usual. When the valueisfalse (0),
the results are not committed and no exceptions are raised. Most |A-64
instructions can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an | A-64 instruction.

comp Specifies one or more instruction completers. Completersindicate
optional variations on a base instruction mnemonic. Completers follow
the mnemonic and are separated by periods.

dest Represents the destination operand(s), which is typically the result
value(s) produced by an instruction.

sres Represents the source operands. Most 1A-64 instructions have at least
two input source operands.

Expressing Parallelism

| A-64 requires the compiler or assembly writer to explicitly indicate groups of instructions, called
instruction groups, that have no register read after write (RAW) or write after write (WAW) register
dependences. Instruction groups are delimited by stops in the assembly source code. Since
instruction groups have no RAW or WAW register dependences, they can be issued without
hardware checks for register dependences between instructions. Both of the examples below show
two instruction groups separated by stops (indicated by double semicolons):

1d8 r1=[r5] ;; // First group
add r3=r1,r4 /1 Second group
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Note:

A more complex example with multiple register flow dependences is shown below:

1d8 rl=[r5] /'l First group
sub r6=r8,r9 ;;// First group
add r3=r1,r4 /1 Second group
st8 [r6]=r12 /1 Second group

All instructions in a single instruction group may not necessarily issue in paralléel because specific
| A-64 implementations may not have sufficient resources to issue all instructions in an instruction

group.

Bundles and Templates

In assembly code, each 128-bit bundleis enclosed in curly braces and contains a template
specification and three instructions. Thus, a stop may be specified at the end of any bundle or in the
middle of abundle by using one of two specia template types that implicitly include mid-bundle
stops.

Each instruction in abundle is 41-bits long. Five other bits are used by a template-type
specification. Bundle templates enable | A-64 processors to dispatch instructions with ssmple
instruction decoding, and stops enable explicit specification of parallelism.

There arefive |IA-64 syllable types (M, |, F, B, and L), six IA-64 ingtruction types (M, I, A, F, B,
L), and 12 basic template types (MII, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB,
MMB, MFB). Each basic template type has two versions. one with a stop after the third syllable
and one without. Instructions must be placed in syllables corresponding to their instruction types
based on the template specification, except for A-type instructions that can goin either | or M
syllables. For example, atemplate specification of . M | meansthat of the three instructionsin a
bundle, the first isa memory (M or A-typeinstruction, and the next two are ALU integer (I ) or
A-type instructions:

{ .mi
Id4 r28=[r8] // Load a 4-byte value
add r9=2,r1 /1l 2+r1 and put in r9
add r30=1,r1 // 1+4r1 and put in r30

}

For readability, most code examples in this book do not specify templates or braces.

Bundle boundaries have no direct correlation with instruction group boundaries as instruction
groups can extend over an arbitrary number of bundles. Instruction groups begin and end where
stops are set in assembly code, and dynamically whenever abranch istaken or astop is
encountered.

Memory Access and Speculation

| A-64 provides memory access only through register load and store instructions and special
semaphore instructions. 1A-64 also provides extensive support for hiding memory latency via
programmer-controlled speculation.
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Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in memory in little
endian byte order, in which the least significant byte appearsin the lowest addressed byte of a
memory location. For data, modes for both big and little endian byte order are supported and can be
controlled by abit in the User Mask Register.

Integer loads of one, two, and four bytes are zero-extended, since all 64-hits of each register are
always written. Integer stores write one, two, four, or eight bytes of registers to memory as
specified.

Speculation

Speculation allows a programmer to break data or control dependences that would normally limit
code motion. The two kinds of speculation are called control speculation and data speculation. This
section summarizes | A-64 speculation. See Chapter 10, “Memory Referencér more detailed
descriptions of speculative instruction behavior and application.

Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above branches.
Support for this is enabled by special NaT bits that are attached to integer registers and by special
NatVal values for floating-point registers. When a speculative load causes an exception, it is not
immediately raised. Instead, the NaT bit is set on the destination register (or NatVal is written into
the floating-point register). Subsequent speculative instructions that use a register with a set NaT
bit propagate the setting until a non-speculative instruction checks for or raises the deferred
exception.

For example, in the absence of other information, the compiler for a typical RISC architecture
cannot safely move the load above the branch in the sequence below:

(pl) br.cond.dptk L1 /Il Cycle O
1d8 r3=[r5] ;; /Il Cycle 1
shr r7=r3,r87 /Il Cycle 3

Supposing that the latency of a load is 2 cycles, the shift sgint)(instruction will stall for 1.
However, by using the speculative loads and checks provided in 1A-64, two cycles can be saved by
rewriting the above code as shown below:

1 d8.s r3=[rb5] Il Earlier cycle
// Other instructions

(pl) br.cond.dptk L1 ;; /Il Cycle O
chk.s r3,recovery /Il Cycle 1
shr r7=r3,r87 /Il Cycle 1

This code assumes is ready when accessed and that there are sufficient instructions to fill the
latency between tHed8. s and thechk. s.
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Note:

Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory references.
Advanced loads exclusively refer to data speculative loads. Review the order of loads and storesin
this 1A-64 assembly sequence:

st8 [r55]=r45 [/ Cycle O
1d8 r3=[r5] ;; // Cycle O
shr r7=r3,r87 [// Cycle 2

| A-64 allows the programmer to move the load above the store even if it is not known whether the
load and the store reference overl apping memory locations. Thisis accomplished using special
advanced |oad and check instructions:

Id8.a r3=[r5] // Advanced | oad
/1 Other instructions

st8 [r55]=r45 [/ Cycle O
1d8.c r3=[r5] [/ Cycle O - check
shr r7=r3,r87 // Cycle O

The shr instruction in this schedule could issue in cycle O if there were no conflicts between the
advanced load and intervening stores. If there were a conflict, the check load instruction (I d8. ¢)
would detect the conflict and reissue the load.

Predication

Predication is the conditional execution of an instruction based on a qualifying predicate. A
qualifying predicate is a predicate register whose value determines whether the processor commits
the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare (crp) and
test bit (t bi t ). When the value of a qualifying predicate associated with an instruction is true (1),
the processor executes the instruction, and instruction results are committed. When the valueis
false (0), the processor discards any results and raises no exceptions. Consider the following C
code;

if (a) {

b =c¢c + d;
}
if (e) {

h =i +j;
}

This code can be implemented in 1A-64 using qualifying predicates so that branches are removed.
The | A-64 pseudo-code shown below implements the C expressions without branches:

cnp.ne pl,p2=a,r0 /Il pl < al=0
cnmp.ne p3,pd4=e,r0;; // p3 <- e !l=0
(pl) add b=c, d /1 If a!=0 then add
(p3) sub h=i,j /1 1f e !=0 then sub
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See Chapter 11, “Predication, Control Flow, and Instruction Strefontletailed discussion of
predication. There are a few special cases where predicated instructions read or write architectural
resources regardless of their qualifying predicate.

|A-64 Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur significant
overhead during procedure calls and returns. To address this problem, a subset of the IA-64 general
registers are organized as a logically infinite set of stack frames that are allocated from a finite pool
of physical registers.

Stacked Registers

Registers 0 throughr 31 are called global or static registers and are not part of the stacked
registers. The stacked registers are numhed&dup to a user-configurable maximumrdf27:

ro Global
r3i Registers
r32
Stacked Procedure
Registers Frame
ri27

A called procedure specifies the size of its new stack frame usiiag ttee instruction. The

procedure can use this instruction to allocate up to 96 registers per frame shared amongst input,
output, and local values. When a call is made, the output registers of the calling procedure are
overlapped with the input registers of the called procedure, thus allowing parameters to be passed
with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always referenced in a
procedure starting at32.

Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the Register Stack
Engine (RSE). The RSE moves the contents of physical registers between the general register file
and memory without explicit program intervention. This provides a programming model that looks
like an unlimited physical register stack to compilers; however, saving and restoring of registers by
the RSE may be costly, so compilers should still attempt to minimize register usage.
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Branches and Hints

Since branches have a major impact on program performance, |A-64 includes features to improve
their performance by:

* Using predication to reduce the number of branches in the code. Thisimproves instruction
fetching because there are fewer control flow changes, decreases the number of branch
mispredicts since there are fewer branches, and it increases the branch prediction hit rates
since thereis less competition for prediction resources.

* Providing software hints for branches to improve hardware use of prediction and prefetching
resources.

* Supplying explicit support for software pipelining of loops and exit prediction of counted
loops.

Branch Instructions

Branching in |A-64 islargely expressed the same way as on other microprocessors. The major
difference isthat branch triggers are controlled by predicates rather than conditions encoded in
branch instructions. | A-64 also provides arich set of hintsto control branch prediction strategy,
prefetching, and specific branch types like loops, exits, and branches associated with software
pipelining. Targets for indirect branches are placed in branch registers prior to branch instructions.

Loops and Software Pipelining
Compilers sometimes try to improve the performance of loops by using unrolling. However,
unrolling is not effective on al loops for the following reasons:

* Unrolling may not fully exploit the parallelism available.

* Unrolling istailored for a statically defined number of loop iterations.

¢ Unrolling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, | A-64 provides
architectural support for software pipelining. Software pipelining enables the compiler to
interleave the execution of several loop iterations without having to unroll aloop. Software
pipelining in |A-64 is performed using:

* | oop-branchinstructions.

¢ LCand EC application registers.

¢ Rotating registers and loop stage predicates.

* Branch hints that can assign a special prediction mechanism to important branches.

In addition to software pipelined while and counted loops, | A-64 provides particular support for
simple counted loops using the br . ¢l oop instruction. The cl oop branch instruction uses the
64-bit Loop Count (LC) application register rather than a qualifying predicate to determine the
branch exit condition.

For a complete discussion of software pipelining support in 1A-64, see Chapter 12, “Software
Pipelining and Loop Suppott”
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Rotating Registers

Rotating registers enable succinct implementation of software pipelining with predication.
Rotating registers are rotated by one register position each time one of the special loop branchesis
executed. Thus, after one rotation, the content of register X will be found in register X+1 and the
value of the highest numbered rotating register will befound inr 32. The size of the rotating
region of general registers can be any multiple of 8 and is selected by afieldintheal | oc
instruction. The predicate and floating-point registers can also be rotated but the number of rotating
registersis not programmable: predicate registersp16 through p63 are rotated, and floating-point
registersf 32 throughf 127 arerotated.

Summary

| A-64 provides features that reduce the effects of traditional microarchitectural performance
barriers by enabling:

¢ Improved ILP with alarge number of registers and software scheduling of instruction groups
and bundles.

¢ Better branch handling through predication.

¢ Reduced overhead for procedure calls through the register stack mechanism.

¢ Streamlined loop handling through hardware support of software pipelined loops.
¢ Support for hiding memory latency using speculation.
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Memory Reference 10

10.1 Overview

Memory latency is amajor factor in determining the performance of integer applications. In order

to help reduce the effects of memory latency, 1A-64 explicitly supports software pipelining, large
register files, and compiler-controlled speculation. This chapter discusses features and

optimizations related to compiler-controlled speculation. See Chapter 12, “Software Pipelining and
Loop Support’for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in IA-64 and general
concepts and terminology related to data dependences. The concept of speculation is then
introduced, followed by discussions and examples of how speculation is used in IA-64. The
remainder of this chapter describes several important optimizations related to memory access and
instruction scheduling.

10.2 Non-Speculative Memory References

IA-64 supports non-speculative loads and stores, as well as explicit memory hint instructions.

10.2.1 Stores to Memory

Integer store instructions in I1A-64 can write either 1, 2, 4, or 8 bytes and 4, 8, or 10 bytes for
floating-point stores. For examplest4 instruction will write the first four bytes of a register to
memory.

Although IA-64 uses a little endian memory byte order by default, software can change the byte
order by setting the big endian (be) bit of the user mask (UM).

10.2.2 Loads from Memory

Integer load instructions in 1A-64 can read either 1, 2, 4, or 8 bytes from memory depending on the
type of load issued. Loads of 1, 2, or 4 bytes of data are zero-extended to 64-bits prior to being
written into their target registers.

Although loads are provided for various data types, the basic I1A-64 data type is the quadword
(8 bytes). Apart from a few exceptions, all integer operations are on quadword data. This can be
particularly important when dealing with signed integers and 32-bit addresses, or any addresses
that are shorter than 64 bits.

10.2.3 Data Prefetch Hint

Thel f et ch instruction requests that lines be moved between different levels of the memory
hierarchy. Like all hint instructions in I1A-64f et ch has no effect on program correctness, and
any microarchitecture implementation of IA-64 may choose to ignore it.
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Instruction Dependences

Data and control dependences are fundamental factors in optimization and instruction scheduling.
Such dependences can prevent acompiler from scheduling instructionsin an order that would yield
shorter critical paths and better resource usage since they restrict the placement of instructions
relative to other instructions on which they are dependent.

In general, memory references are the major source of control and data dependences that cannot be
broken due to getting awrong answer (if a data dependence is broken) or raising afault that should
not be raised (if a control dependence is broken). This section describes:

¢ Background material on memory reference dependences
¢ Descriptions of how dependences constrain code scheduling on traditional architectures

Section 10.4 describes | A-64 memory reference features that increase the number of dependences
that can be removed by a compiler.

Control Dependences

Aninstruction iscontrol dependent on abranch if the direction taken by the branch affects whether
the instruction is executed. In the code below, the load instruction is control dependent on the
branch:

(pl) br.cond sone_lI abel
| d8 r4=[r5]

The following sections provide overviews of control dependences and their effects on
optimization.

Instruction Scheduling and Control Dependencies
The code below contains a control dependence at the branch instruction:

add r7=r6,1 /1 Cycle O
add r13=r25,r27
cnp. eq pl, p2=r12,r23

(pl) br.cond sone_| abel

1d4 r2=[r3] ;; /Il Cycle 1
sub r4=r2,r11 Il Cycle 3

A compiler cannot safely move the load instruction before the branch unlessit can guarantee that
the moved load will not cause a fatal program fault or otherwise corrupt program state. Since the
load cannot be moved upward, the schedule cannot be improved using normal code motion.

Thus, the branch creates a barrier to instructions whose execution depends upon it. In the figure

below, the load in block B cannot be moved up because of a conditional branch at the end of block
A.
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block A

block B

Data Dependences

A data dependence exists between an instruction that accesses a register or memory location and
another instruction that alters the same register or location.

Basics of Data Dependence

The following basic terms describe data dependences between instructions:

Write-after-write (WAW) A dependence between two instructions that write to the same register or
memory |ocation.

Write-after-read (WAR) A dependence between two instructions in which an instruction reads a
register or memory location that a subsequent instruction writes.

Read-after-write (RAW) A dependence between two instructionsin which an instruction writesto
aregister or memory location that is read by a subsequent instruction.

Ambiguous memory dependences
Dependences between aload and a store, or between two stores where it
cannot be determined if the involved instructions access overlapping
memory locations. Ambiguous memory references include possible
WAW, WAR, or RAW dependences.

Independent memory references
References by two or more memory instructions that are known not to
have conflicting memory accesses.

Data Dependence in IA-64

The | A-64 architecture requires the programmer to insert stops between RAW and WAW register
dependences to ensure correct code results. For example, in the code below, the add instruction
computes avalueinr 4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1
sub r7=r4,r9 /1 Instruction group 2

The stop after the add instruction terminates one instruction group so that the sub instruction can
legally read r 4.
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On the other hand, 1A-64 implementations are architecturally required to observe memory-based
dependences within an instruction group. In asingle instruction group, a program can contain
memory-based data dependent instructions and hardware will produce the same results as if the
instructions were executed sequentially and in program order. The pseudo-code below
demonstrates a memory dependence that will be observed by hardware:

nov r16=1

mov rl7=2 ;;
st8 [r15]=r16
st8 [r14]=r17 ;;

If the addressinr 14 isequal to the addressinr 15, uni-processor hardware guarantees that the
memory location will contain thevalueinr 17 (2). Thefollowing RAW dependenceisalsolegal in
the same instruction group even if softwareis unable to determineif r 1 and r 2 overlap:

st8 [rl] =x
| d4 y=[r2]

Instruction Scheduling and Data Dependencies

The dependence rules are sufficient to generate correct code, but to generate efficient code, the
compiler must take into account the latencies of instructions. For example, the generic
implementation has a two cycle latency to the first level data cache. In the code below, the stop
maintains correct ordering, but a use of r 2 is scheduled only one cycle after its load:

add r7=r6, 1 /Il Cycle O
add r13=r25,r27
cnp. eq pl, p2=r12,r23 ;,;

add r11=r13,r29 /Il Cycle 1
I d4 r2=[r3]
sub r4=r2,r11 I/l Cycle 3

Since the latency of aload istwo cycles, the sub instruction will stall until cyclethree. To avoid a
stall, the compiler can move theload earlier in the schedule so that the machine can perform useful
work each cycle:

I d4 r2=[r3] /1 Cycle O
add r7=r6, 1

add r 13=r 25, r 27

cnp.eq pl, p2=r12,r23 ;,;

add r11=r13,r29 ;; Il Cycle 1
sub r4=r2,r11 Il Cycle 2

In this code, there are enough independent instructions to move the load earlier in the schedule to
make better use of the functional units and reduce execution time by one cycle.
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Now suppose that the original code sequence contained an ambiguous memory dependence
between a store instruction and the load instruction:

add r7=r6, 1 /Il Cycle O
add r 13=r 25, r27
cnmp. ne pl, p2=r12,r23 ;;

st4 [r29]=r13 /Il Cycle 1
1d4 r2=[r3] ;;
sub r4=r2,r11 I/l Cycle 3

In this case, the load cannot be moved past the store due to the memory dependence.  Stores will
cause data dependencesif they cannot be disambiguated from loads or other stores.

In the absence of other architectural support, stores can prevent moving loads and their dependent
instructions: The following C language statements could not be reordered unlesspt r 1 and pt r 2
were statically known to point to independent memory |ocations:

*ptrl = 6;
X = *ptr2;

Using IA-64 Speculation to Overcome Dependences

Both data and control dependences constrain optimization of program code. |1A-64 provides
support for two basic techniques used to overcome dependences:

Data speculation Allows aload and possibly its uses to be moved across ambiguous
memory writes.

Control speculation Allowsaload and possibly its usesto be moved across abranch on which
the load is control dependent.

These techniques are used to hide load latencies and reduce execution time.

|A-64 Speculation Model

The limitationsimposed by dependences on instruction scheduling can be solved by separating the
loading of data from the exception handling or the acknowledgment of data conflicts. 1A-64
supports special speculative versions of instructions to accomplish this;

* Control speculative load instructions defer exceptions
¢ Data speculative load instructions save address information
* Specia check instructions check for exceptions or data conflicts.

An 1A-64 speculative load can be moved above a dependence barrier (shown as a dashed line) as
shown in the figure below.

The check detects a deferred exception or a conflict with an intervening store and provides a
mechanism to recover from failed speculation. With this support, speculative loads and their uses
can be scheduled earlier than non-speculative instructions. As aresult, the memory latencies of
these loads can be hidden more easily than for non-speculative loads.
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Before Speculation After Speculation

speculative load

control or control or
data dependence data dependence

original load - check for exception or
memory conflict
uses of load uses of load

Using IA-64 Data Speculation

Data speculation in 1 A-64 uses a special load instruction (I d. a) called an advanced load
instruction and an associated check instruction (chk. a or | d. ¢) to validate data-specul ated
results.

Whenthel d. a instruction is executed, an entry is alocated in a hardware structure called the
Advanced Load Address Table (ALAT). The ALAT isindexed by physical register number and
records the load address, the type of the load, and the size of the load.

A check instruction must be executed before the result of an advanced load can be used by any
non-speculative instruction. The check instruction must specify the same register number as the
corresponding advanced load.

When a check instruction is executed, the ALAT is searched for an entry with the same target
physical register number and type. If an entry isfound, execution continues normally with the
next instruction.

If no matching entry is found, the speculative results need to be recomputed:

* Useachk. aif aload and some of its uses are speculated. Thechk. a jumpsto
compiler-generated recovery code to re-execute the load and dependent instructions.

* Useal d. c if nousesof theload are speculated. Thel d. c reissues the load.

Entries are removed from the ALAT dueto:
* Storesthat write to addresses overlapping with ALAT entries
¢ Other advanced loads that target the same physical registers as ALAT entries

* |Implementation-defined hardware or operating system conditions needed to maintain
correctness

¢ Limitations of the capacity, associativity, and matching algorithm used for agiven
implementation of the ALAT
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Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions. Inthe code below, aload
and store may access conflicting memory addresses:

st8 [r4] =r12 /1 Cycle 0: anbiguous store
1d8 r6=[r8] ;; /1 Cycle 0: load to advance
add r5=r6,r7 ;; Il Cycle 2
st8 [r18]=r5 /Il Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can be rewritten
using an advanced load and check:

| d8.a r6=[r8] /Il Cycle -2 or earlier

/1 OQther instructions

st8 [r4] =r12 /1 Cycle 0: anbiguous store
| d8.c r6=[r8] /1 Cycle 0: check | oad

add r5=r6,r7 ;; /Il Cycle O

st8 [r18]=r5 /Il Cycle 1

The original load has been turned into a check load, and an advanced load has been scheduled
above the ambiguous store. If the speculation succeeds, the execution time of the remaining
non-speculative codeis reduced because the latency of the advanced load is hidden.

Recovery Code Example

Consider again the non-speculative code from the last section:

st8 [r4]=ri2 /1 Cycle 0: anbi guous store
1d8 r6=[r8] ;; /1 Cycle 0: load to advance
add r5=r6,r7 ;; Il Cycle 2
st8 [r18]=r5 /1 Cycle 3

The compiler could move up not only the load, but also one or more of itsuses. This
transformation uses achk. a rather than al d. ¢ instruction to validate the advanced load. Using
the same example code sequence but now advancing the add aswell asthel d8 resultsin:

ld8.a r6=[r8] ;; // Cycle -3

/1 other instructions

add r5=r6,r7 /1 Cycle -1: add that uses r6
/1 Cther instructions

st8 [r4]=r12 /Il Cycle O

chk.a r6,recover // Cycle 0: check

back: // Return point fromjunp to recover
st8 [r18]=r5 /1 Cycle O
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Recovery code must also be generated:

recover:

| d8 ré6=[r8] ;; // Reload r6 from/[r8]
add r5=r6,r7 /'l Re-execute the add
br back /1 Junmp back to main code

If the speculation fails, the check instruction branches to the label r ecover where the speculated
code isre-executed. |If the speculation succeeds, execution time of the transformed code is three
cyclesless than the original code.

Terminology Review

Termsrelated to speculation, such as advanced loads and check | oads, have well-defined meanings
in 1A-64. Theterms below were introduced in the preceding sections:

Data speculative load A speculativeload that is statically scheduled prior to one or more stores
upon which it may be dependent. The data speculative load instruction

isld. a.

Advanced load A data speculative load.

Check load Aninstruction that checkswhether acorresponding advanced load needs
to be re-executed and does so if required. The check load instructionis
d.c.

Advanced load check An instruction that takes a register number and an offset to a set of
compiler-generated instructions to re-execute speculated instructions
when necessary. The advanced load check instruction ischk. a.

Recovery code Program codethat is branched to by a speculation check. Recovery code
repeats aload and chain of dependent instructions to recover from a
speculation failure.

Using Control Speculation in 1A-64

The check to determine if control speculation was successful is similar to that for data speculation.

The NAT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers. A register NaT bit
indicates whether the content of aregister isvalid. If the NaT bit is set to one, the register contains
a deferred exception token due to an earlier speculation fault. 1n afloating-point register, the
presence of a special value called the NaTVal signals a deferred exception.

During a control speculative load, the NaT bit on the destination register of the load may be set if
an exception occurs and it is deferred. The exact set of events and exceptions that cause an
exception to be deferred (thus causing the NaT bit to be set), dependsin part upon operating system
policy. When a speculative instruction reads a source register that has its NaT bit set, NaT bits of
the target registers of that instruction are also set. That is, NaT bits are propagated through
dependent computations.
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When a control speculative load is scheduled, the compiler must insert a specul ative check,

chk. s, along all paths on which results of the speculative load are consumed. If anon-speculative
instruction (other than achk. s) reads aregister with its NaT bit set, a NaT consumption fault
occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of |A-64 control specul ation:

(pl) br.cond sone_| abel // Cycle O
1d8 r1=[r5] ;; /1 Cycle 1
add r2=r1,r3 /1 Cycle 3

This code can be rewritten using a control speculative load and check. The check can be placed in
the same basic block as the original load:

1d8.s rl1=[r5] ;; Il Cycle -2
/1 OQther instructions

(pl) br.cond sone_| abel // Cycle O
chk.s ri1,recovery // Cycle O
add r2=r1,r3 /Il Cycle O

Until a speculation check is reached dynamically, the results of the control speculative chain of
instructions cannot be stored to memory or otherwise accessed non-speculatively without the
possibility of afault. If aspeculation check is executed and the NaT bit on the checked register is
set, the processor will branch to recovery code pointed to by the check instruction.

Itisalso possible to test for the presence of set NaT bits and NaTVals using thetest NaT (t nat )
and floating-point class (f cl ass) instructions.

Although every speculative computation needs to be checked, this does not mean that every
speculative load requiresits own chk. s. Speculative checks can be optimized by taking
advantage of the propagation of NaT bits through registers as described in Section 10.5.6.

10.4.3.3 Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bitsisenabled by st 8. spi | | and
I d8. fill instructionsand the User NaT Collection application register (UNAT).

The “spill general register and NaT” instructien,8. spi | | , saves eight bytes of a general

register to memory and writes its NaT bit into the UNAT. Bits 8:3 of the memory address of the
store determine which UNAT bit is written with the register NaT value. The “fill general register”
instruction| d8. fi I | , reads eight bytes from memory into a general register and sets the register
NaT bit according to the value in the UNAT. Software is responsible for saving and restoring the
UNAT contents to ensure correct spilling and filling of NaT bits.

The corresponding floating-point instructioss,f . spi [ | andl df . fil |, save and restore
floating-point registers in floating-point register format without surfacing exceptions due to
NaTVals.
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Terminology Review

The terms below are related to control speculation:

Control speculativeload A speculative load that is scheduled prior to an earlier controlling
branch. References to “speculative loads” without qualifiers generally
refer to control speculative loads and not data speculative loads. Loads
using thd d. s instruction are control speculative loads.

Speculation check An instruction that checks whether a speculative instruction has deferred
an exception. Speculation check instructions include labels that point to
compiler-generated recovery code. The speculation check instruction is
chk. s.

Recovery code Code executed to recover from a speculation failure. Control speculative
recovery code is analogous to data speculative recovery code.

Combining Data and Control Speculation

A load that is both data and control speculative is callgmaulative advanced load. Thel d. sa
instruction performs all the operations of both a speculative load and an advanced load. An ALAT
entry will not be allocated if this type of load generates a deferred exception token, so an advanced
load check instructiorchk. a) is sufficient to check for both interference from subsequent stores
and for deferred exceptions.

Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code motion than
can be performed on traditional architectures. Speculation can increase the application of
traditional loop optimizations such as invariant code motion and common subexpression
elimination. IA-64 also offers post-increment loads and stores that improve instruction throughput
without increasing code size.

Memory reference optimization should take several factors into account including:
¢ Difference between the execution costs of speculative and non-speculative code
* Codesize
* Interference probabilities and properties of the ALAT (for data speculation)

The remainder of this chapter discusses these factors and optimizations relating to memory
accesses.

Speculation Considerations

The use of data speculation reguires more attention than the use of control speculation. In part this
is due to the fact that one control speculative load cannot inadvertently cause another control
speculative load to fail. Such an effect is possible with data speculative |oads since the ALAT has
limited capacity and the replacement policy of ALAT entriesisimplementation dependent. For
example, if an advanced load isissued and there are no unused ALAT entries, the hardware may
choose to invalidate an existing entry to make room for a new one.
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Moreover, exceptions associated with control speculative cal culations are uncommon in correct
code since they are related to events such as page faults and TLB misses. However, excessive
control speculation can be expensive as associated instructions fill issue slots.

Although the static critical path of a program may be reduced by the use of data speculation, the
following factors contribute to the benefit/dynamic cost of data speculation:

* The probability that an intervening store will interfere with an advanced load
* The cost of recovering from afailed advanced load

* The specific microarchitectural implementation of the ALAT: its size, associativity, and
matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling can help to
predict how often ambiguous loads and stores will conflict.

When using advanced | oads, there should be case-by-case consideration as to whether advancing
only aload and using al d. ¢ might be preferable to advancing both aload and its uses, which
would require the use of the potentially more expensive chk. a.

Even when recovery code is not executed, its presence extends the lifetimes of registersused in
data and control speculation, thusincreasing register pressure and possibly the cost of register

movement by the Register Stack Engine (RSE). See Section 10.5.3 for information on
considerations for recovery code placement.

Data Interference
Data references with low interference probabilities and high path probabilities can make the best
use of data speculation. In the pseudo-code below, assume the probabilities that the storesto* p1
and * p2 conflict with var are independent.
*pl = /* Prob interference = 0.30 */
;*p-2 = /* Prob interference = 0.40 */
.: var [/* Load to be advanced */

If the compiler advances the load from var above the storesto pointerspl and p2, then:
Prob that stores to pl or p2 interfere with var

= 1.0 - (Prob p1 will not interfere with var *
Prob p2 will not interfere with var)

= 1.0 - (0.70 * 0.60)

= 0.58

Given the interference probabilities above, there is a’58% probability at least one of p1 and p2 will
interfere with aload fromvar if it isadvanced above both of them. A compiler can use traditional
heuristics concerning datainterference and interprocedural memory access information to estimate
these probabilities.

When advancing loads past function calls, the following should be considered:

* |If acalled function has many storesinit, itismorelikely that actual or aliased ALAT conflicts
will occur.

¢ |f other advanced loads are executed during the function call, it is possible that their physical
register numberswill either be identical or conflict with ALAT entries allocated from calsin
parent functions.
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* |f itisunknown whether alarge number of advanced loads will be executed by the called
routines, then the possibility that the capacity of that ALAT may be exceeded must be
considered.

Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible increasesin
code size. Such consideration is not particular to speculation, but to any transformations that
cause code to be duplicated, such asloop unrolling, procedure inlining, or tail duplication.
Techniques to minimize code growth are discussed later in this section.

In general, control speculation increases the dynamic code size of a program since some of the
speculated instructions are executed and their results are never used. Recovery code associated
with control speculation primarily contributes to the static size of the binary sinceit islikely to be
placed out-of-line and not brought into cache until a speculative computation fails (uncommon for
control speculation).

Data speculation has a similar effect on code size except that it isless likely to compute values that
are never used since most non-control speculative data speculative loads will have their results
checked. Also, since control speculative loads only fail in uncommon situations such as deferred
datarelated faults (depending on operating system configuration), while data speculative |oads can
fail dueto ALAT conflicts, actual memory conflicts, or aliasing in the ALAT, the decision asto
where to place recovery code for advanced loads is more difficult than for control speculation and
should be based on the expected conflict rate for each load.

Asageneral rule, efficient compilers will attempt to minimize code growth related to speculation.
As an example, moving aload above the join of two paths may require duplication of speculative
code on every path. The flow graph depicted below and the explanation shows how this could
arise.

block A
]

block B block C

If the compiler or programmer advanced the load up to block B from its original non-speculative
position, all speculative code would need to be duplicated in both blocks B and C. This duplicated
code might be able to occupy NOP slots that already exist. But if space for the code is not aready
available, it might be preferable to advance the load to block A since only one copy would be
required in this case.

Using Post-Increment Loads and Stores

Post-increment loads and stores can improve performance by combining two operationsin asingle
instruction. Although the text in this section mentions only post-increment loads, most of the
information appliesto stores aswell.
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Post-increment loads are issued on M-units and can increment their address register by either an
immediate value or by the contents of a general register. The following pseudo-code that performs
two loads:

1 d8 r2=[r1]
add r1=1,r1 ;
1 d8 r3=[r1]

can be rewritten using a post-increment load:

[ d8 r2=[r1],1 ;
1 d8 r3=[r1]

Post-increment |oads may not offer direct savingsin dependence path height, but they are
important when calculating addresses that feed subsequent |oads:

* A post-increment load avoids code size expansion by combining two instructions into one.

* Adds can beissued on either I-units or M-units. When a program combines an add with a
load, an I-unit or M-unit resource remains availabl e that otherwise would have been
consumed. Thus, throughput of dependent adds and loads can be doubled by using
post-increment |oads.

A disadvantage of post-increment loads isthat they create new dependences between
post-increment loads and the operations that use the post-increment values. In some cases, the
compiler may wish to separate post-increment loads into their component instructions to improve
the overall schedule. Alternatively, the compiler could wait until after instruction scheduling and
then opportunistically find places where post-increment loads could be substituted for separate
load and add instructions.

Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like invariant code
motion. Examine this pseudo-code:

while (cond) {
c =a+ b; // Probably l|oop invariant
*ptr++ = c;// May point to a or b

}

Thevariablesa and b are probably loop invariant; however, the compiler must assume the storesto
*pt r will overwrite the values of a and b unless analysis can guarantee that this can never
happen. The use of advanced loads and checks allows code that is likely to be invariant to be
removed from aloop, even when a pointer cannot be disambiguated:

ldd.a rl [ &a]
ldd.a r2 [ &b]
add r3 =rl1,r2// Mve conputation out of |oop
while (cond) {
chk.a.nc rl, recoverl
L1: chk.a.nc r2, recover?2
L2: *p++ =13
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At the end of the module:

recover1: /1 Recover fromfailed | oad of a
ldd.arl = [&a]
add r3 =r1, r2
br.sptk L1 // Unconditional branch

recover2: /1 Recover fromfailed |load of b
ld4.a r2 = [ &b]
add r3 =r1, r2
br.sptk L2 // Unconditional branch

Using speculation in thisloop hides the latency of the calculation of ¢ whenever the speculated
code is successful.

Since checks have both a clear (clr) and no clear (nc) form, the programmer must decide which to
use. This example shows that when checks are moved out of 1oops, the no clear version should be
used. Thisis because the clear (clr) version will cause the corresponding ALAT entry to be
removed (which would cause the next check to that register to fail).

10.5.6 Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size. The propagation of
NaT bits and NaT Vals via speculative instructions can permit a single check of a specul ative result
to replace multiple intermediate checks. The code below demonstrates this optimization potential :

ld4.s r1=[r10] // Speculatively load to rl
ld4.s r2=[r20] // Speculatively load to r2
add r3=rl1,r2;;// Add two specul ative val ues

/1 OQther instructions

chk.s r3,inmp; // Check for NaT bit in r3
st4 [r30]=r1 /1 Storerl
st4 [r40]=r2 /Il Store r2
st4 [r50]=r3 /Il Store r3

Only theresult register, r 3, needsto be checked before storesof any of r 1, r 2, or r 3. If aNaT bit
were set at the time of the control speculative loads of r 1 or r 2, the NaT bit would have been
propagatedtor 3 fromr 1 or r 2 viathe add instruction.

Another way to reduce the amount of check code isto use control flow analysisto avoid issuing
extral d. ¢ orl d. a instructions. For example, the compiler can schedule asingle check where it
isknown to be reached by all copies of the advanced load. The portion of aflow graph shownin the
figure below demonstrates where this technique might be applied.

A single check in the lowermost block shown for all of the advanced loadsis correct if both of
these conditions are met:

* Thelowermost block post-dominates all of the blocks with advanced loads from location
addr.

* Thelowermost block precedes any uses of the advanced loads from addr .
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| [d.a | | Id.a|
Advanced | oads from addr
to the sane register, R
| | | Id.a|
Stores | *pl =| [*p2 =] [*p3 =]
Si ngl e | oad check of
ld. c reg?qster R

10.6 Summary

The examples in this chapter show where |1A-64 can take advantage of existing techniques like
dynamic profiling and disambiguation. Specia |A-64 support alows implementation of
speculation in common scenarios in which it would normally not be allowed. Speculation, in turn,
increases | LP by making greater code motion possible, thus enhancing traditional optimizations
such as those involving loops.

Even though 1A-64’s speculation model can be applied in many different situations, careful cost
and benefit analysis is needed to insure best performance.
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intgl.
Predication, Control Flow, and
Instruction Stream 11

11.1 Overview

This chapter isdivided into three sections that describe optimizations related to predication, control
flow, and branch hints as follows:

* The predication section describes if-conversion, predicate usage, and code scheduling to
reduce the affects of branching.

* The control flow optimization section describes optimizations that collapse and converge
control flow by using parallel compares, multiway branches, and multiple register writers
under predicate.

¢ The branch and prefetch hints section describes how hints are used to improve branch and
prefetch performance.

11.2 Predication

Predication allows the compiler to convert control dependences into data dependences. This
section describes several sources of branch-related performance issues, followed by a summary of
IA-64's predication mechanism, followed by a series of descriptions of optimizations and
techniques based on predication.

11.2.1 Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for prediction at
execution time and by restricting instruction scheduling freedom during compilation.

11.2.1.1 Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and the logic
used to control these resources. The number of branches that can accurately be predicted is limited
by the size of the buffers on the processor, and such buffers tend to be small relative to the total
number of branches executed in a program.

This limitation means that branch intensive code may have a large portion of its execution time
spent due to contention for prediction resources. Furthermore, even though the size of the
predictors is a primary factor in determining branch prediction performance, some branches are
best predicted with different types of predictors. For example, some branches are best predicted
statically while others are more suitably predicted dynamically. Of those predicted dynamically,
some are of greater importance than others, such as loop branches.

Since the cost of a misprediction is generally proportional to pipeline length, good branch

prediction is essential for processors with long instruction pipelines. Thus, optimizing the use of
prediction resources can significantly improve the overall performance of an application.
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Suppose, for instance, that the conditional in the code below is mispredicted 30% of the time and
branch mispredictions incur aten cycle penalty. On average, the mispredicted branch will add
three cycles to each execution of the code sequence (30% * 10 cycles):

if (rl)

r2 =r3 + r4;
el se

ro. =r6 -r5

Equivalent | A-64 code that has not been optimized is shown below. |t requires five instructions
including two branches and executes in two cycles, not including potential misprediction or
taken-branch penalty cycles:

cnp. eq pl, p2=r1,r0 /1l Cycle O
(pl) br.cond el se_cl ause /Il Cycle O

add r2=r3,r4 /1 Cycle 1

br end_i f /Il Cycle 1
el se_cl ause:

sub r7=ré,r5 /1l Cycle 1
end_if:

Using the information above, this code will take five cycles to execute on average even thought the
critical pathis only two cycleslong (2 cycles + (30% * 10 cycles) = 5). If the branch
misprediction penalty could be eliminated (either by reducing contention for resources or by
removing the branch itself), performance of the code sequence would improve by a factor of two.

11.2.1.2 Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state or that can
raise exceptions, becauseinstructionsin aprogram are control dependent on all lexically enclosing
branches. In addition to the control dependences, compound conditional s can take several cyclesto
compute and may themselves require intermediate branches in languages like C that require
short-circuit evaluation.

Control speculation is the primary mechanism used to perform global code motion for |A-64
compilers. However, when an instruction does not have a speculative form or the instruction could
potentially corrupt memory state, control speculation may be insufficient to allow code motion.
Thus, techniques that allow greater freedom in code motion or eliminate branches can improve the
compiler’s ability to schedule instructions.

11.2.2 Predication in I1A-64

Now that the performance implications of branching have been described, this section overviews
predication — the primary 1A-64 mechanism used by optimizations described in this section.

Almost all IA-64 instructions can be tagged with a guarding predicate. If the value of the guarding
predicate is false at execution time, then the predicated instruction’s architectural updates are
suppressed, and the instruction behaves like a nop. If the predicate is true, then the instruction
behaves as if it were unpredicated. There are a small number of instructions such as unconditional
compares and floating-point square-root and reciprocal approximate instructions whose qualifying
predicate do not operate as described aboveRP&eé& 1A-64 Application Architecture Guide for
additional information.
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The following sequence shows a set of predicated instructions:

(pl) add ri=r2,r3
(p2) 1d8 r5=[r7]
(p3) chk.s r4,recovery

To set the value of a predict register, |A-64 provides compare and test instructions such as those as
shown below.

cnp.eq pl,p2=r5,r6
thit p3, p4=r6,5

Additionally, a predicate amost always requires a stop to separate its producing instruction and its
use:

cnp.eq pl,p2=rl,r2 ;;
(pl) add ri=r2,r3

The only exception to this rule involves an integer compare or test instruction that sets a predicate
that is used as the condition for a subsequent branch instruction:

cnp.eq pl,p2=rl,r2 /1 No stop required
(pl) br.cond sone_t arget

Optimizing Program Performance Using Predication

This section describes predication-related optimizations, their use, and basic performance analysis
techniques. Following are descriptions of optimizations including if-conversion, misprediction
elimination, off-path predication, upward code motion, and downward code mation.

Applying If-Conversion

One of the most important optimizations enabled by predication is the complete removal of
branches from some program sequences. Without predication, the pseudo-code below would
require a branch instruction to conditionally jump around the if-block code:

if (r4) {
add rl=r2,r3
| d8 r6=[rb5]

}

Using predication, the sequence can be written without a branch:;

cnp.ne pl,p0=r4,0 ;;// Set predicate reg
(pl) add ri=r2,r3
(pl)1d8 ré6=[r5]

The process of predicating instructions in conditional blocks and removing branchesis referred to
asif-conversion. Once if-conversion has been performed, instructions can be scheduled more
freely because there are fewer branches to limit code motion, and there are fewer branches
competing for issue slots.
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In addition to removing branches, this transformation will make dynamic instruction fetching more
efficient since there are fewer possibilities for control flow changes. Under more complex
circumstances, several branches can be removed. The following C code sequence:

if (rl)

r2 =r3 + r4;
el se

r7v =r6 - r5;

can be rewritten in 1A-64 assembler without branches as;

cnmp.nepl,p2 =r1,0 ;;
(pl) add r2 =r3,r4
(p2) sub r7 =r6,r5

Since instructions from opposite sides of the conditional are predicated with complementary
predicates they are guaranteed not to conflict, hence the compiler has more freedom when
scheduling to make the best use of hardware resources. The compiler could also try to schedule
these statements with earlier or later code since several branches and labels have been removed as
part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there will be no
pipeline bubbles due to taken branches. Such effects are significant in many large applications, and
these transformations can greatly reduce branch-induced stalls or flushes in the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above shows that:
¢ Non-predicated code consumes: 2 cycles+ (30% * 10 cycles) = 5 cycles
* Predicated code consumes: 2 cycles

In this case, predication saves an average of three cycles.

Off-Path Predication

If acompiler has dynamic profile information, it is possible to form an instruction schedul e based

on the control flow path that is most likely to execute — this path is called the main trace. In some
cases, execution paths not on the main trace are still executed frequently, and thus it may be
beneficial to use predication to minimize their critical paths as well.

The main trace of a flow graph is highlighted in the picture below. Although blocks A and B are
not on the main trace, suppose they are executed a significant number of times.

block B

block A

If some of the instructions in block A or block B can be included in the main trace without
increasing its critical path, then techniques of upward code motion can be applied to reduce the
critical path through blocks A and B when they are taken. An example of how to use predication to
implement upward code motion is given in the next section.
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Note:

11.2.3.4

Upward Code Motion

When traditional control speculation isinadequate, it may still be possible to predicate an
instruction and move it up or down in the schedul e to reduce dependence height. Thisis possible
because predicating an instruction replaces a control dependence with a data dependence. If the
data dependence is less constraining than the control dependence, such a transformation may
improve the instruction schedule.

Given the | A-64 assembly sequence bel ow, the store instruction cannot be moved above the
enclosing conditional instruction because it could cause an address fault or other exception,
depending upon the branch direction:

(pl) br.cond sone_| abel /1 Cycle O
st4 [r34] =r23 /Il Cycle 1
| d4 r5 = [r56] /Il Cycle 1
| d4 r6 = [r57] /I Cycle 2:no cycle 1 M’s

One reason why it might be desirable to move the store instruction up isto allow loads below it to
move up.

Ambiguous stores are barriers beyond which normal loads cannot move. In this case, moving the
store also frees up an M-unit slot. To rewrite the code so that the store comes before the branch, p2
has been assigned the complement of p1:

(p2)st4 [r34] =r23 /I Cycle O

(p2)ld4 r5 = [r56] /I Cycle O

(p1)br.cond some_label I/l Cycle O
ld4 r6 = [r57] /l Cycle 1

Sincethe storeis now predicated, no faults or exceptions are possible when the branch istaken, and
memory state is only updated if and when the original home block of the storeis entered. Once the
store ismoved, it is also possible to move the load instruction without having to use advanced or
speculative loads (aslong asr 5 is not live on the taken branch path).

Downward Code Motion

Aswith upward code motion, downward code motion is normally difficult in the presence of
stores. The next example shows how code can be moved downward past alabel, a transformation
that is often unsafe without predication:

Id8 r56 = [r45] ;; // Cycle O: load

st4 [r23] =156 ;; /I Cycle 2: store
label_A:

add ... /I Cycle 3

add ...

add ...

In the code above, suppose the latency between the load and the storeistwo clocks. Assuming the
load instruction cannot be moved upward due to other dependences, the only way to schedule the
instructions so that the load latency is covered is to move the store downward past the label.

The following code demonstrates the overall idea of using predicates to enable downward code
motion. In actual compiler-generated code, the predicates that are explicitly computed in this
example might already be available in predicate registers and not require extrainstructions.
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11.24.1

11-6

/1 Poi nt which “dominates” label_A
cmp.ne p1,p0 =r0,r0  // Initialize p1 to false

/I Other instructions

cmp.eq pl,p0 =r0,r0 // Initialize p1 to true
Id8 r56=[r45] ;; /I Cycle O
label_A:
add /I Cycle 1
add
add
add e
(p1)st4  [r23]=r56 I/l Cycle 2

Here, downward code motion saves one cycle. There are examples of more sophisticated situations
involving cyclic scheduling, other store-constrained code motion, or pulling code from outside
loops into them, but they are not described here.

Cache Pollution Reduction

L oads and stores with predicates that are false at runtime are generally likely not to cause any
cache linesto be removed, replaced, or brought in. Also, no extrainstructions or recovery code
are required as would be necessary for 1A-64 control or data speculation. Therefore, when the use
of predication yields the same critical path length as | A-64 data or control speculation, it isamost
always preferable to use predication.

Predication Considerations

Even though predication can have avariety of beneficial effects, there are several cases where the
use of predication should be carefully considered. Such cases are usually associated with
execution paths that have unbalanced total |atencies or over-usage of a particular resource such as
those associated with memory operations.

Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependence height. Suppose that
non-predicated assembly for this sequence takes two clocks for the if-block and approximately 18
clocksif weassumeaset f takes 8 clocks, aget f takes 2 clocks, and an x e takes 6 clocks:

if (r4) /I 2 clocks
r3=r2+rl,

else /1 18 clocks
r3=r2*rl,

f(r3); /I An integer use of r3

If-converted 1A-64 code is shown below. The cycle numbers shown depend upon the values of p1
and p2 and assume the latencies shown:

Il Issue cycle if p2 is:TrueFalse
cmp.ne pl,p2=r4,r0;; // 0O O

(pl)add r3=r2,rl 1 1
(p2)setf fl=r1 N1 1
(p2)setf f2=r2 ;; N1 1

(p2)xma.l f3=f1f2f0;; /I 9 2
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11.2.4.3

11.2.4.4

11.2.4.5

(p2) getf r3=f3 ;; /15 3
(p2)use of r3 /1 17 4

This code takes 18 cycles to completeif p2 istrue and five cyclesif p2 isfalse. When analyzing
such cases, consider execution weights, branch misprediction probabilities, and prediction costs
along each path.

In the three scenarios presented bel ow, assume a branch misprediction costs ten cycles. No
instruction cache or taken-branch penalties are considered.

Case l

Suppose the if-clause is executed 50% of the time and the branch is never mispredicted. The
average number of clocksfor:

* Unpredicated codeis: (2 cycles* 50%) + (18 cycles* 50%) = 10 clocks
* Predicated codeis: (5cycles* 50%) + (18 cycles* 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code.

Case 2
Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if the time with
mispredicts costing 10 clocks. The average number of clocks for:
* Unpredicated codeis:
(2 cycles* 70%) + (18 cycles* 30%) + (10 cycles* 10%) = 7.8 clocks
* Predicated codeis:
(5 cycles* 70%) + (18 cycles* 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.

Case 3
Suppose theif-clause is executed 30% of the time and the branch mispredicts 30% of thetime. The
average number of clocksfor:
¢ Unpredicated codeis:
(2 cycles* 30%) + (18 cycles* 70%) + (10 cycles* 30%) = 16.2 clocks
* Predicated codeis:
(5 cycles* 30%) + (18 cycles* 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks, on average.

Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution resources consumed
by predicated blocks in addition to considering flow-dependence height. The resource availability
height of aset of instructions is the minimum number of cycles taken considering only the
execution resources required to execute them.
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The code below is derived from an if-then-else statement. Given the generic machine model that
has only two load/store (M) units. If acompiler predicates and combines these two blocks, then the
resource availability height through the block will be four clocks since that is the minimum amount
of time necessary to issue eight memory operations:

t hen_cl ause:

Id ri=[r21] /1 Cycle O
Id r2=[r22] /1l Cycle O
st [r32]=r3 /Il Cycle 1
st [r33]=r4 ;;// Cycle 1
br end_if
el se_cl ause:

Id r3=[r23] /Il Cycle O
Id rd4=[r24] /Il Cycle O
st [r34]=r5 /Il Cycle 1
st [r35]=r6 ;;// Cycle 1

end_if:

Aswith the example in the previous section, assuming various misprediction rates and taken
branch penalties changes the decision as to when to predicate and when not to predicate. One case
isillustrated here:

Case 1l

Suppose the branch condition mispredicts 10% of the time and that the predicated code takes four
clocks to execute. The average number of clocksfor:

* Non-predicated codeis. (10 cycles* 10%) + 2 cycles = 3 cycles
* Predicated codeis: 4 cycles

Predicating this code would increase execution time even though the flow dependence heights of
the branch paths are equal.

Guidelines for Removing Branches

Thefollowing if-conversion guidelines apply to cases where only local behavior of the code and its
execution profile are known:

1. Theflow dependence and resource availability heights of both paths must be considered when
deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code sequence,
careful analysis using profile or misprediction datamust be performed to ensure that execution
time of the converted code is equivalent to or better than unpredicated code.

3. If if-conversion removes a branch that is mispredicted a significant percentage of the time, the
transformation frequently pays off even if the blocks are significantly unbalanced since
mispredictions are very expensive.

4. If the flow-dependence heights of the paths being if-converted are nearly equal and there are
sufficient resources to execute both streams simultaneously, if-conversion is often
advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of some
programsis limited by non-local effects such as overall branch behavior, sensitivity to code size,
percentage of time spent servicing branch mispredictions, etc. In these situations, the decision to
useif-convert or perform other specul ative transformation becomes more involved.
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Control Flow Optimizations

A common occurrence in programs is for several control flows to converge at one point or for
multiple control flows to start from one point. In the first case, multiple flows of control are often
computing the value of the same variable or register and the join point represents the point at which
the program needs to select the correct value before proceeding. In the second case, multiple flows
may begin at a point where several independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex compound
conditions normally requires a tree-like computation to reduce several conditionsinto one. 1A-64
provides special instructions that allow such conditions to be computed in fewer tree levels.

A third control-flow related optimization uses predication to improve instruction fetching by
if-conversion to generate straight-line sequences that can be efficiently fetched. The use and
optimization of these cases is described in the remainder of this section.

Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several instructions on
processors without special instructions:

if (rAl]] rB|] rC||] rD) {
/* If-block instructions */

}

/* after if-block */

The pseudo-code bel ow, shows one possible solution uses a sequence of branches:

cnp.ne pl,p0 =rAO0

cnp.ne p2,p0 =rB,0
(pl) br.cond if_bl ock
(p2) br.cond if_bl ock

cnp.ne p3,p0 =rCO

cnp.ne p4,p0 =rD 0
(p3) br.cond if_block
(p4) br.cond if_block

/1 after if-Dblock

On many 1A-64 implementations, this sequenceislikely to require at least two cycles to execute if
all the conditions are false, plus the possibility of more cycles due to one or more branch
mispredictions. Another possible sequence computes an or-tree reduction:

or rl =rArB

or r2 =rCrbD;;

or r3 =rl,r2;,

cnmp.ne pl,p2 =r3,0
(pl) br i f_bl ock

This solution requires three cycles to compute the branch condition which can then be used to
branch to the if-block.

It isalso possible to predicate the if-block using p1 to avoid branch mispredictions.
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To reduce the cost of compound conditionals, | A-64 has special parallel compareinstructionsto
optimize expressions that have and and or operations. These compare instructions are specia in
that multipleand/or compare instructions are allowed to target the same predicate within asingle
instruction group. Thisfeature allows the possibility that a compound conditional can be resolved
inasingle cycle.

For this usage model to work properly, 1A-64 requiresthat the programmer ensure that during any
given execution of the code, that all instructions that target a given predicate register must either:

¢ writethesamevalue (O or 1) or
¢ do not write the target register at all.

This usage model means that sometimes a parallel compare may not update the value of its target
registers and thus, unlike normal compares, the predicates used in parallel compares must be
initialized prior to the parallel compare. Please see Part I: |A-64 Application Architecture Guide
for full information on the operation of parallel compares.

Initialization code must be placed in an instruction group prior to the parallel compare. However,
since the initialization code has no dependences on prior values, it can generally be scheduled
without contributing to the critical path of the code.

The instructions below shows how to generate code for the example above using parallel
compares:

cnp. ne pl,p0O =r0,r0 ;; // initialize pl to O
cnmp.ne.or pl,p0 =rATr0
cnmp.ne.or pl,p0 =rB,r0
cnmp.ne.or pl,p0 =rCr0
cnp.ne.or pl,p0O =rDr0
(pl1) br.cond i f_bl ock

Itisalso possibleto usepl to predicate the if-block in-line to avoid a possible misprediction.
More complex conditional expressions can also be generated with parallel compares:

if ((rA<Q0) & (rB == -15) && (rC > 0))
/* 1f-block instructions */

The assembly pseudo-code bel ow shows a possible sequence for the C code above:

cnp. eq pl, pO=r0,r0;; // initialize pl to 1
cnp. ne.and pl, pO=rB, -15

cnp.ge.and pl,pO=rAr0

cmp.le.and pl,p0=rCr0

When used correctly, and and or compares write both target predicates with the same value or do
not write the target predicate at all. Another variation on parallel compare usage is where both the
if and else part of a complex conditional are needed:

if (rA==01]] rB==10)
rl =r2 +r3;

el se
ri =r5 - r¢;
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Parallel compares have an andcmvariant that computes both the predicate and its complement
simultaneously.

cnp. ne pl,p2 =r0,r0 ;; // initialize pl,p2
cnp. eqg.or.andcmpl,p2 = rAr0
cnp. eq. or. andcm pl,p2 = rB, 10 ;

(pl) add ri=r2,r3

(p2) sub ra=r5,r6

Clearly, these instructions can be used in other combinations to create more complex conditions.

Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and multiple
targets, 1A-64 has implicit support by allowing multiple consecutive B-syllables within an
instruction group.

An example uses a basic block with four possible successors. The following | A-64 multi-target
branch code uses a BBB bundle template and can branch to either block B, block C, block D, or fall
through to block A:

| abel _AA:

. I/ Instructions in block AA
{ .bbb
(pl) br.cond | abel _B
(p2)br.cond | abel _C
(p3) br.cond | abel _D
}

/1 Fall through to A

| abel _A:

./l Instructions in block A

The ordering of branchesisimportant for program correctness unless all branches are mutually
exclusive, in which case the compiler can choose any ordering desired.

Selecting Multiple Values for One Variable or Register with
Predication

A common occurrence in programsis for a set of paths that compute different values for the same
variable to join and then continue. A variant of this is when separate paths need to compute
separate results but could otherwise use the same registers since the paths are known to be
complementary. The use of predication can optimize these cases.

Selecting One of Several Values

When several control paths that each compute a different value of a single variable meet, a
sequence of conditionalsis usually required to select which value will be used to update the
variable. The use of predication can efficiently implement this code without branches:

switch (rw

case 1:
rA=rB + rC
br eak;
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case 2:
rA=rE + rF
br eak;

case 3:
rA=rH- rl;
br eak;

The entire switch-block above can be executed in asingle cycle using predication if all of the
predicates have been computed earlier. Assumethat if r Weguals 1, 2, or 3, then one of p1, p2, or
p3 istrue, respectively:

(pl)add rA=rB, rC
(p2)add rA=rE rF
(p3)sub rA=rH,rl

Without this predication capability, numerous branches or conditional move operations would be
needed to collapse these values.

|A-64 alows multiple instructions to target the same register in the same clock provided that only
one of theinstructions writing the target register is predicated truein that clock. Similar capabilities
exist for writing predicate registers, as discussed in Section 11.3.1.

Reducing Register Usage

In someinstancesit is possible to use the same register for two separate computations in the
presence of predication. This techniqueis similar to the technique for allowing multiple writersto
store a value into the same register, although it is aregister allocation optimization rather than a
critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be predicated with
complementary predicates. The contrived sequence bel ow showsinstructions predicated by p1 and
p2, which are known by the compiler to be complementary:

(pl)add rl=r2,r3
(p2)sub r5=r4,r56
(pl)1d8 r7=[r2]
(p2)1d8 r9=[r6]
(pl)a use of r1
(p2)a use of r5
(pl)a use of r7
(p2)a use of r9

Assuming registersr 1,r5,r 7, and r 9 are used for compiler temporaries, each of whichislive
only until its next use, the preceding code segment can be rewritten as:

(pl)add rl=r2,r3

(p2)sub rl=r4,r56 // Reuse rl
(pl)1d8 r7=[r2]

(p2)1d8 r7=[r6] ;;// Reuse r7
(pl)a use of r1

(p2)a use of r1l

(pl)a use of r7

(p2)a use of r7
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The new sequence uses two fewer registers. With the 128 registers that | A-64 provides this may not
seem essential, but reducing register use can still reduce program and register stack engine spills
and fills that can be common in codes with high instruction-level parallelism.

Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large blocks with
no taken branches. Whenever the instruction pointer needs to be changed, the hardware may have
to insert bubbles into the pipeline either while the target prediction is taking place or because the
target address is not computed until later in the pipeline.

By using predication to reduce the number of control flow changes, the fetching efficiency will
generaly improve. The only case where predication islikely to reduce instruction cache efficiency
iswhen there is alarge increase in the number of instructions fetched which are subsequently
predicated off. Such a situation uses instruction cache space for

instructions that compute no useful resullts.

Instruction Stream Alignment

For many processors, when a program branches to a new location, instruction fetching is
performed on instruction cache lines. If the target of the branch does not start on a cache line
boundary, then fetching from that target will likely not retrieve an entire cache line. This problem
can be avoided if a programmer aligns instruction groups that cross more than one bundle so that
the instruction groups do not span cache line boundaries. However, padding all labelswould cause
an unacceptable increase in code size. A more practical approach aligns only tops of loops and
commonly entered basic blocks when the first instruction group extends across more than one
bundle. That is, if both of the following conditions are true at some label L, then padding previous
instruction groups so that L is aligned on a cache line boundary is recommended:

* Thelabel is commonly branched to from out-of-line. Examples include tops of loops and
commonly executed el se clauses.

¢ Theinstruction group starting at label L extends across more than one bundle.
To illustrate, assume code at label L in the segment below is not cache-aligned and that a cache
boundary occurs between the two bundles. If a program were to branch to L, then execution may

split issue after the third add instruction even though there are no resource oversubscriptions or
stops:

L:

{ .mi
add ri=r2,r3
add rd=r5,r6
add r7=r8,r9

}

{ .nfb
| d8 rl4=[r56] ;;
nop. f
nop. b

}

On the other hand, if L were aligned on an even-numbered bundle, then all four instructions at L
could issuein one cycle.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 11-13



11.4

11.5

11-14

intel.

Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to allow the compiler or hand coder to
provide extrainformation to the hardware. Compared to hardware, the compiler has more time,
looks at awider instruction window (including the source), and performs more analysis. Transfer
of this knowledge to the processor can help to reduce penalties associated with icache accesses and
branch prediction.

Two types of branch-related hints are defined by the |A-64 architecture: branch prediction hints
and instruction prefetch hints. Branch prediction hintslet the compiler recommend the resources (if
any) that should be used to dynamically predict specific branches. With prefetch hints, the compiler
can indicate the areas of the code that should be prefetched to reduce demand | cache misses.

Hints can be specified as completers on branch (br ) and move to branch register (abbreviated
mov2br in thistext since the actual mnemonic isnov br =xx). The hints on branch instructions
are the easiest to use since the instruction already exists and the hint completer just has to be
specified. mov2br instructions are used for indirect branches. The exact interpretation of these
hints is implementation specific although the general behavior of hintsis expected to be similar
between processor generations.

It is aso possible to re-write the hint fields on branches later using a binary rewriting tools. This
can occur statically or at execution time based on profile data without changing the correctness of
the program. Thistechnique allows | A-64 static hints to be tailored for usage patterns that may not
be fully known at compilation time or when the binaries are first distributed.

Summary

This chapter has presented awide variety of topics related to optimizing control flow including
predication, branch architecture, multiway branches, parallel compares, instruction stream
alignment, and branch hints. Although such topics could have been presented in separate chapters,
the interplay between the featuresis best understood by their effects on each other.

Predication and itsinterplay on scheduling region formation is central to 1A-64 performance.

Unfortunately, discussion of compiler algorithms of this nature are far beyond the scope of this
document.
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Software Pipelining and Loop
Support 12

12.1

12.2

12.3

Overview

| A-64 provides extensive support for software-pipelined loops, including register rotation, special
loop branches, and application registers. When combined with predication and support for
speculation, these features help to reduce code expansion, path length, and branch mispredictions
for loops that can be software pipelined.

The beginning of this chapter reviews basic |oop terminology and instructions, and describes the
problems that arise when optimizing loops in the absence of architectural support. The |A-64
specific loop support features are then introduced. The remainder of this chapter describes the
programming and optimization of various type of loops using the |A-64 features.

Loop Terminology and Basic Loop Support

L oops can be categorized into two types. counted and while. In counted loops, the loop conditionis
based on the value of aloop counter and the trip count can be computed prior to starting the loop.
In while loops, the loop condition is a more general calculation (not asimple count) and the trip
count is unknown. Both types are directly supported in 1A-64.

I A-64 improves the performance of conventional counted loops by providing a special counted
loop branch (the br . ¢l oop instruction) and the Loop Count application register (LC). The

br . cl oop instruction does not have a branch predicate. Instead, the branching decision is based
on the value of the LC register. If the LCregister is greater than zero, it is decremented and the
br . cl oop branchistaken.

Optimization of Loops

In many loops, there are not enough independent instructions within asingle iteration to hide
execution latency and make full use of the functional units. For example, in the loop body below,
thereisvery little ILP:

L1: 1d4 r4 [r5],4 ;; /] Cycle O |oad postinc 4

add r7 =r4,r9;; [/ Cycle 2
st4 [r6] =r7,4 /1 Cycle 3 store postinc 4
br.cloop L1 ;; Il Cycle 3

In this code, al the instructions from iteration X are executed before iteration X+1 is started.
Assuming that the store from iteration X and the load from iteration X+1 are independent memory
references, utilization of the functional units could be improved by moving independent
instructions from iteration X+1 to iteration X, effectively overlapping iteration X with iteration
X+1.
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This section describes two general methods for overlapping loop iterations, both of which result in
code expansion on traditional architectures. The code expansion problem is addressed by |A-64
loop support features that are explored later in this chapter. The loop above will be used as a
running example in the next few sections.

Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level parallelism by
making and scheduling multiple copies of the loop body together. The registersin each copy of
the loop body are given different names to avoid unnecessary WAW and WAR data dependences.
The code below shows the loop from our example on page 12-1 after unrolling twice (total of two
copies of the original loop body) and instruction scheduling, assuming two memory portsand atwo
cycle latency for loads. For simplicity, assume that the loop trip count is aconstant N that isa
multiple of two, so that no exit branch is required after the first copy of the loop body:

L1: 1d4 r4a = [r5],4 ;; /1 Cycle O
| d4 ri4 = [r5],4 ;; Il Cycle 1
add r7 =r4,r9 ;,; Il Cycle 2
add ri7 =rl4,r9 /Il Cycle 3
st4 [r6] =r7,4 ;; /Il Cycle 3
st4 [r6] =r17,4 /Il Cycle 4
br.cloop L1 ;; /] Cycle 4

The above code does not expose as much ILP as possible. The two |oads are serialized because
they both use and updater 5. Similarly the two stores both use and updater 6. A variable whichis
incremented (or decremented) once each iteration by the same amount is called an induction
variable. The singleinduction variabler 5 (and similarly r 6) can be expanded into two registers as
shown in the code below:

add ri5 = 4,r5
add rié = 4,r6 ;;

L1: 1d4 r4a =[rb5],8 /Il Cycle O
| d4 ri4 = [r15],8 ;; Il Cycle O
add r7 =r4,r9 Il Cycle 2
add rl7 =r14,r9 ;; Il Cycle 2
st4 [r6] r7,8 /Il Cycle 3
st4 [ri6] = r17,8 /Il Cycle 3
br.cloop L1 ;; /Il Cycle 3

Compared to the original loop on page 12-1, twice as many functiona units are utilized and the
code sizeistwice as large. However, no instructions are issued in cycle 1 and the functional units
are still under utilized in the remaining cycles. The utilization can be increased by unrolling the
loop more times, but at the cost of further code expansion. The loop below is unrolled four times
(assuming the trip count is multiple of four):

add ri5 = 4,r5
add r25 = 8,r5
add r35 = 12, r5
add rlé = 4,r6
add r26 = 8,r6
add r36 = 12,r6 ;;

L1: 1d4 r4 = [rb5], 16 I/l Cycle O
| d4 ril4 = [r15],16 ;; // Cycle O
| d4 r24 = [r25], 16 /Il Cycle 1
| d4 r34 =[r35],16 ;; // Cycle 1
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add r7 =r4,r9 /Il Cycle 2
add rl7 =rl14,r9 ;; /Il Cycle 2
st4 [r6] =7r7,16 /1 Cycle 3
st4 [r16] = r17,16 Il Cycle 3
add r27 =r24,r9 /Il Cycle 3
add r37 =r34,r9 ;; /Il Cycle 3
st4 [r26] = r27,16 /Il Cycle 4
st4 [r36] =r37,16 /Il Cycle 4
br.cloop L1 ;; I/l Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are now
executed in five cycles verses the two iterations in four cycles for the previous version of the loop.

Software Pipelining

Software pipelining is atechnique that seeks to overlap loop iterationsin a manner that is
analogous to hardware pipelining of afunctional unit. Each iteration is partitioned into stages with
zero or more instructions in each stage. A conceptua view of a single pipelined iteration of the
loop from page 12-1 in which each stage is one cycle long is shown below:

stage 1:1d4 r4 = [r5],4
stage 2:---

stage 3:add r7 =r4,r9
stage 4:st4 [r6] =7r7,4

/'l enpty stage

Thefollowing is aconceptua view of five pipelined iterations:

add | d4 X+2
st4 add | d4 X+3
st4 add | d4 X+4
st4 add X+5

st4 add X+6

st4 X+7

The number of cycles between the start of successive iterationsis called the initiation interval (I1).
In the above example, the Il is one. Each stage of a pipelined iterationis |l cycleslong. Most of
the examplesin this chapter utilize modulo scheduling, which is a particular form of software
pipelining in which the Il is aconstant and every iteration of the loop has the same schedule. Itis
likely that software pipelining algorithms other than modulo scheduling could benefit from the

I A-64 loop support features. Therefore the examplesin this chapter are discussed in terms of
software pipelining rather than modul o scheduling.

Software pipelined loops have three phases: prolog, kernel, and epilog, as shown below:

1 2 3 4 5 Phase
| d4
| d4 Pr ol og
add | d4
st4 add | d4 Ker ne
st4 add | d4

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 12-3



st4 add
st4 add Epi | og
st4

During the prolog phase, a new loop iteration is started every 1l cycles (every cycle for the above
example) to fill the pipeline. During the first cycle of the prolog, stage 1 of the first iteration
executes. During the second cycle, stage 1 of the second iteration and stage 2 of the first iteration
execute, etc. By the start of the kernel phase, the pipelineisfull. Stage 1 of the fourth iteration,
stage 2 of the third iteration, stage 3 of the second iteration, and stage 4 of the first iteration
execute. During the kernel phase, a new loop iteration is started, and another is completed every 11
cycles. During the epilog phase, no new iterations are started, but the iterations already in progress
are completed, draining the pipeline. In the above example, iterations 3-5 are completed during the
epilog phase.

The software pipeline is coded as aloop that is very different from the origina source code loop.
To avoid confusion when discussing loops and loop iterations, we use the term source loop and
source iteration to refer back to the original source code loop, and the term kernel loop and kernel
iteration to refer to the loop that implements the software pipeline.

In the above example, the load from the second source iteration is issued before result of the first
load is consumed. Thus, in many cases, loads from successive iterations of the loop must target
different registers to avoid overwriting existing live values. In traditional architectures, this
requires unrolling of the kernel loop and software renaming of the registers, resulting in code
expansion. Furthermore, in traditional architectures, separate blocks of code are generated for the
prolog, kernel, and epilog phases, resulting in additional code expansion.

12.4 |IA-64 Loop Support Features

The code expansion that results from loop optimizations (such as software pipelining and loop
unrolling) on traditional architectures can increase the number of instruction cache misses, thus
reducing overall performance. The 1A-64 [oop support features allow some loops to be software
pipelined without code expansion. Register rotation provides a renaming mechanism that reduces
the need for loop unrolling and software renaming of registers. Special software pipelined loop
branches support register rotation and, combined with predication, reduce the need to generate
separate blocks of code for the prolog and epilog phases.

12.4.1 Register Rotation

Register rotation renames registers by adding the register number to the value of arotating register
base (rrb) register contained in the CFM. The rrb register is decremented when certain special
software pipelined loop branches are executed at the end of each kernel iteration. Decrementing the
rrb register makes the value in register X appear to move to register X+1. If X isthe highest
numbered rotating register, it's value wraps to the lowest numbered rotating register.

A fixed-sized area of the predicate and floating-point register file6-p63 andf 32-f 127), and

a programmable-sized area of the general register file are defined to rotate. The size of the rotating
area in the general register file is determined by an immediate &h thec instruction and must

be either zero or a multiple of 8, up to a maximum of 96 registers. The lowest numbered rotating
register in the general register fileri82. An rrb register is provided for each of the three rotating
register filesCFM r r b. gr for the general register€-M rr b. f r for the floating-point
registersCFM r r b. pr for the predicate registers. The software pipelined loop branches
decrement all the rrb registers simultaneously.
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Below is an example of register rotation. The swp_br anch pseudo-instruction represents a
software pipelined loop branch:

L1: 1d4 r35 = [r4],4 /'l post increnent by 4
st4 [r5] =1r37,4 /'l post increment by 4
swp_branch L1 ;;

The value that the load writesto r 35 isread by the store two kernel iterations (and two rotations)
later asr 37. Inthe meantime, two more instances of the load are executed. Because of register
rotation, those instances write their result to different registers and do not modify the value needed
by the store.

Therotation of predicate registers serves two purposes. Thefirst isto avoid overwriting a
predicate value that is still needed. The second purposeisto control the filling and draining of the
pipeline. To do this, a programmer assigns a predicate to each stage of the software pipeline to
control the execution of the instructions in that stage. This predicateis called thestage predicate.
For counted loops, p16 is architecturally defined to be the predicate for the first stage, p17 is
defined to be the predicate for the second stage, etc. A conceptual view of a pipelined source
iteration of the example counted loop on page 12-1 is shown below. Each stageis one cycle long
and the stage predicates are shown:;

stage 1:(pl6) I1d4r4 =[r5],4
stage 2:(pl7) --- /'l enpty stage
stage 3:(pl8) addr7 =r4,r9
stage 4:(pl9) st4([r6] =7r7,4

A register rotation takes place at the end of each stage (when the software-pipelined loop branch is
executed inthe kernel loop). Thusa 1 written to p16 enables the first stage and then is rotated to
pl7 at theend of the first stage to enable the second stage for the same source iteration. Each 1
written to p16 sequentially enables all the stages for a new source iteration. This behavior is used
to enable or disable the execution of the stages of the pipelined loop during the prolog, kernel, and
epilog phases as described in the next section.

Note on Initializing Rotating Predicates

In this chapter, theinstruction mov pr. rot = i nmed isused toinitialize rotating predicates.
Thisinstruction ignores the value of CFM.rrb.pr. Thus, the examplesin this chapter are written
assuming that CFM.rrb.pr is always zero prior to the initialization of predicate registers using nov
pr.rot = inmed.

Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very compact code for
software-pipelined loops by supporting register rotation and by controlling the filling and draining
of the software pipeline during the prolog and epilog phases. Generally speaking, each time a
software-pipelined loop branch is executed, the following actions take place:

1. A decision is made on whether or not to continue kernel loop execution.

2. p16 issettoavaueto control execution of the stages of the software pipeline (p63 iswritten
by the branch, and after rotation this value will bein p16).

3. Theregisters are rotated (rrb registers are decremented).

4. The Loop Count (LC) and/or the Epilog Count (EC) application registers are selectively
decremented.

There are two types of software-pipelined loop branches: counted and while.
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Counted Loop Branches

The figure below shows a flowchart for the counted loop type:

ctop, cexit

== 0 (epilog) (special
unrolled
=0 I OOpS)

>1

Y Y

LC-- | Lchc || Lchc | [ Lc=LC |
L] ]

EC=EC | EC- | | EC- | [ EC=EC |

] v v
PR[63] = 1 | PR[6$]:0 | PR[6’;%]:0 || PR[B;’,]:O |

RRB-- | RRB- | | RRB- | |RRB=RRB]|
- | | .
ctop: branch v ctop: fall-thru
cexit: fall-thru cexit: branch

During the prolog and kernel phase, a decision to continue kernel 1oop execution means that a new
source iteration is started. Register rotation must occur so that the new source iteration does not
overwriteregistersthat arein use by prior sourceiterationsthat are still in the pipeline. p16 isset
to 1 to enable the stages of the new source iteration. LCis decremented to update the count of
remaining source iterations. ECis not modified.

During the epilog phase, the decision to continue loop execution means that the software pipeline
has not yet been fully drained and execution of the source iterations in progress must continue.
Register rotation must continue because the remaining source iterations are still writing results and
the consumers of the results expect rotation to occur. p16 isnow set to 0 because there are no more
new source iterations and the instructions that correspond to non-existent source iterations must be
disabled. EC contains the count of the remaining execution stages for the last sourceiterationandis
decremented during the epilog. For most loops, when a software pipelined loop branch is executed
with EC equal to 1, it indicates that the pipeline has been drained and a decision is made to exit the
loop. The special case in which a software-pipelined loop branch is executed with EC equal to 0
can occur in unrolled software-pipelined loops if the target of thecexi t branch is set to the next
sequential bundle.

There are two types of software-pipelined loop branches for counted loops. br . ct op istaken
when a decision to continue kernel loop execution is made, and is not taken otherwise. It is used
when the loop execution decision is |ocated at the bottom of the loop. br . cexi t isnot taken
when a decision to continue kernel loop execution is made, and is taken otherwise. It is used when
the loop execution decision is |located somewhere other than the bottom of the loop.
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Counted Loop Example

A conceptual view of a pipelined iteration of the example counted loop on page 12-1 with |1 equal
to one is shown below:

st age
st age
st age
st age

1: (p16)
2: (p17)
3:(p18)
4: (pl19)

| d4

add r7 =
st4 [r6]

r4 =

[r5],4

rda,r9
=r7,4

Il

enpty stage

To generate an efficient pipeline, the compiler must take into account the latencies of instructions
and the available functional units. For this example, the load latency is two and the load and add
are scheduled two cycles apart. The pipeline below is coded assuming there are two memory ports
and the loop count is 200.

Note:

Rotating GRs have now been included in the code (the code directly preceding did not). Also,

induction variables that are post incremented must be all ocated to the static portion of the register

file:

nov lc =
nov ec = 4
nov pr.rot
L1:
(pl6)1d4 r32 =
(pl8)add r35 =
(pl9)st4 [r6] =

br.ctop L1 ;;

199

= 1<<16

[r5],4
r34,r9
r36,4

1

Il
Il
/1

/1
Il
Il
Il

LC =l oop count - 1
EC =epil og stages + 1
PR16 = 1, rest = 0

Cycle O
Cycle 0O
Cycle O
Cycle O

The memory ports are fully utilized. The table below shows a trace of the execution of thisloop:

Cycle Port/Instructions State before br.ctop

M | M B pl6 pl7 pl18 p19 LC EC
0| 1d4 br.ctop 1 0 0 0 199 4
1|1d4 br.ctop 1 1 0 0 198 4
2|1d4 add br.ctop 1 1 1 0 197 4
3| 1d4 add st4 br.ctop 1 1 1 1 196 4
100 | Id4 add st4 br.ctop 1 1 1 1 99 4
199 | Id4 add st4 br.ctop 1 1 1 1 0 4
200 add st4 br.ctop 0 1 1 1 0 3
201 add st4 br.ctop 0 0 1 1 0 2
202 st4 br.ctop 0 0 0 1 0 1
0 0 0 0 0 0
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In cycle 3, the kernel phase is entered and the fourth iteration of the kernel loop executesthe | d4,
add, and st 4 from the fourth, second, and first source iterations respectively. By cycle 200, all
200 loads have been executed, and the epilog phaseis entered. When the br . ¢t op isexecuted in
cycle 202, ECisequal to 1. ECisdecremented, the registers are rotated one | ast time, and execution
falls out of the kernel loop.

Note:  After thisfina rotation, EC and the stage predicates (p16 —p19) are 0.

It is desirable to allocate variables that are loop variant to the rotating portion of the register file
whenever possible to preserve space in the static portion for loop invariant variables.

Note: Induction variables that are post incremented must be allocated to the static portion of the register
file.

12.4.3.3  While Loop Branches

The figure below shows the flowchart for the while loop type branch:

wtop, wexit
==0 (prolog / epilog) (special
unrolled
(prolog / | == = .
kernel) (prolog /

epilog)
Y A
EC=EC | EC- | | EC- | | EC=EC |

] ] ]
PR[63]=0 | PR[6$]:0 | ] PR[6’;%]:0 | ] PR[G::]:O |

RRB-- | RRB- | | RRB- | |RRB=RRB]
- | | |
wtop: branch v wtop: fall-thru
wexit: fall-thru wexit: branch

There are a few differences in the operation of the while loop branch compared to the counted loop
branch. The while loop branch does not act€ss- a branch predicate determines the behavior of

this branch instead. During the kernel and epilog phases, the branch predicate is one and zero
respectively. During the prolog phase, the branch predicate may be either zero or one depending on
the scheme used to program the while loop. A4 is always set to zero after rotation. The
reasons for these differences are related to the nature of while loops and will be explained in more
depth with an example in a later section.
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Terminology Review

The terms below were introduced in the preceding sections;

Initiation Interval (I1) Thenumber of cyclesbetween the start of successive sourceiterationsin
a software pipelined loop. Each stage of the pipelineis|l cycleslong.

Prolog Thefirst phase of a software-pipelined loop, in which the pipelineis
filled.

Kernel The second phase of a software-pipelined loop, in which the pipelineis
full.

Epilog The third phase of a software-pipelined loop, in which the pipelineis
drained.

Source iteration An iteration of the original source code loop.

Kernel iteration An iteration of the loop that implements the software pipeline.

Register Rotation A form of register renaming that is visible to software. Registers are
renamed with respect to a rotating register base that is decremented.

Induction Variable Value that isincremented (or decremented) once per source iteration by
the same amount.

Optimization of Loops in |IA-64

Register rotation, predication, and the software pipelined loop branches allow the generation of
compact, yet highly parallel code. Speculation can further increase |oop performance by removing
dependence barriers that limit the throughput of software pipelined loops. Register rotation
removes the reguirement that kernel loops be unrolled to allow software renaming of the registers.
However in some cases performance can be increased by unrolling the source loop prior to
software pipelining, or by generating explicit prolog and/or epilog blocks. The remainder of this
chapter discusses |oop optimizations.

While Loops

The programming scheme for while loops depends upon the structure of the loop. This section
discusses do-while loops, in which the loop condition is computed at the bottom of the loop.
Optimizing compilers often transform while loops (where the condition is computed at the top of
the loop) into do-while loops by moving the condition computation to the bottom of the loop and
placing a copy of the condition computation prior to the loop to reduce the number of branchesin
the loop. The remainder of this section refers to such loops simply as while loops. Below isa
simple while loop:

L1: 1d4 ra =[rb5],4 ;; /1l Cycle O
st4 [r6] =r4,4 Il Cycle 2
cnmp.ne pl,p0 =r14,r0 Il Cycle 2

(pl) br L1 ;; Il Cycle 2

A conceptual view of apipelined iteration of thisloop with 11 equal to one is shown below:

stage 1: ld4 r4 =1[r5],4
stage 2: --
stage 3: st4 [r6]=r4,4
cnp.ne.unc pl,p0 =r4,r0
(pl) br L1

/'l enpty stage
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Thefollowing is a conceptual view of four overlapped source iterations assuming the load and
store are independent memory references.  The store, compare, and branch instructions in stage
two are represented by the pseudo-instruction scb:

sch X+5

Notice that the load for the second source iteration is executed before the compare and branch of
thefirst sourceiteration. That is, theload (and the update of r 5) is speculative. The loop condition
is not computed until cycle X+2, but in order to maximize the use of resources, it isdesirable to
start the second source iteration at cycle X+1. Without the support for control speculation in

| A-64, the second source iteration could not be started until cycle X+3.

The computation of the loop condition for while loopsis very different from that of counted loops.
In counted loops, it is possible to compute the loop condition in one cycle using a counted |oop
branch. Thisiswhat abr . ct op instruction doeswhen it setsp16. Inwhileloops, acompare must
compute the loop condition and set the stage predicates. The stages prior to the one containing the
compare are called the specul ative stages of the pipeline, becauseit is not possible for the compare
to completely control the execution of these stages. Therefore, the stage predicate set by the
compareis used (after rotation) to control the first non-speculative stage of the pipeline.

The pipelined version of the while loop on page 12-9 is shown below. A check for the speculative

load isincluded:
nov ec = 2
nmv pr.rot =1 << 16 ;; /1 PR16 = 1, rest =0
L1:
ld4.s r32 = [r5],4 /1 Cycle O
(p18) chk.s r34, recovery /Il Cycle O
(p18) cnp.ne pl7,p0 = r34,r0 /Il Cycle O
(p18) st4 [r6] =r34,4 /Il Cycle O
(pl7) br.wtop.sptk L1 ;; /1 Cycle O
L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine atrace of the
execution of the loop (assume there are 200 source iterations) shown in the table below.

There is no stage predicate assigned to the load because it is speculative. The compare setsp17.
Thisisthe branch predicate for the current iteration and, after rotation, the stage predicate for the
first non-specul ative stage (stage three) of the next source iteration. During the prolog, the compare
cannot produceits first valid result until cycle two. Theinitialization of the predicates provides a
pipelinethat disablesthe compare until the first source iteration reaches stagetwo in cycletwo. At
that point the compare starts generating stage predicates to control the non-specul ative stages of the
pipeline. Notice that the compare is conditional. If it were unconditional, it would always write a
zero to p17 and the pipeline would not get started correctly.
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Port/Instructions State before br.wtop
Cycle
M | | M B pl6 pl17 p18 EC

0|ld4.s br.wtop 1 0 0 2
1|ld4.s br.wtop 0 1 0 1

2 |ld4.s cmp chk st4 br.wtop 0 1 1 1

3 |ld4.s cmp chk st4 br.wtop 0 1 1 1
100 | Id4.s cmp chk st4 br.wtop 0 1 1 1
199 | Id4.s cmp chk st4 br.wtop 0 1 1 1
200 | Id4.s cmp chk st4 br.wtop 0 1 1 1
201 | ld4.s cmp chk st4 br.wtop 0 0 1 1
0 0 0 0

The executions of br . wt op in the first two cycles of the prolog do not correspond to any of the
sourceiterations. Their purposeis simply to continue the kernel loop until the first valid loop
condition can be produced. In cycle one, the branch predicate p17 is one. For this programming
scheme, the branch predicate of the br . wt op is always aone during the last speculative stage of
the first source iteration. During al the prior stages, the branch predicate is zero. If the branch
predicateis zero, the br . wt op continues the kernel loop only if ECis greater than one. It also
decrements EC. Thus EC must be initialized to (# epilog stages + # specul ative pipeline stages). In
the above example, thisis0+2=2.

In cycle 201, the compare for the 200" source iteration is executed. Since thisis the final source
iteration, the result of the compareisazero and p17 isunmodified. The zero that was rotated into
pl17 from p16 causesthe br . wt op to fall through to the loop exit. EC is decremented and the
registers are rotated one last time.

In the above example, there are no epilog stages. As soon as the branch predicate becomes zero, the
kernel loop is exited.

Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage predicates. They
continue to be controlled by compare instructions in the loop body. For example, the following
loop contains predicated instructions:

L1: Idfs f4a =1[rb5],4
| df s fo9 =1[r8],4 ;;
fcrp. ge.unc pl,p2 = f4,f9 ;;

(pl)stfs [r9] = f4, 4
(p2)stfs [r9] =f9, 4
br.cloop L1 ;;
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Below isapossible pipeline with an 11 of 2, assuming afloating-point load latency of 9 cycles:

stage 1:(pl6) |Idfs f4 [r5],4
(pl6) Idfs f9 =1[r8],4 ;;

Il empty cycle

stage 2-4: Il enpty stages

stage 5: Il enmpty cycle
(p20) fcnp.ge.unc pl,p2 = f4,f9 ;;

stage 6: /1 enpty cycle

(pl) stfs [r9] = f4, 4
(p2) stfs [r9] fo, 4

The following is the code to implement the pipeline:

nov lc = 199 /1 LC = loop count - 1
nov ec = 6 /1 EC = epilog stages + 1
nov pr.rot=1<<16;; /1 PR16 = 1, rest =0

L1:

(pl6) Idfs f32 = [r5],4

(pl6) | df s f38 =1[r8],4 ;;

(p32) stfs [r9] =37, 4

(p20) fcnp.ge.unc p31,p32 = {36,142
(p33) stfs [r9] = 43, 4
L2: br.ctop.sptk L1 ;;

Multiple-Exit Loops

All of the example loops discussed so far have a single exit at the bottom of the loop. The loop

below contains multiple exits — an exit at the bottom associated with the loop closing branch, and

an early exit in the middle:

L1: | d4 ra =[rb5],4 ;;
| d4 r9 = [r4]
cnp.eqg.unc pl,p0 =r9,r7
(pl) br.cond exit
add rg8 =-1,r8 ;;
cnp.ge.unc p3,p0 =r8,r0
(p3) br.cond L1 ;;

Il early exit

Loops with multiple exits require special care to ensure that the pipeline is correctly drained when
the early exit is taken.There are two ways to generate a pipelined version of the above loop: 1)

convert it to a single exit loop or 2) pipeline it with the multiple exits explicitly present.

Converting Multiple Exit Loops to Single Exit Loops

The first is to transform the multiple exit loop into a single exit loop. In the source loop, execution
of the add, the second compare and the second branch is guarded by the first branch. The loop can

be transformed into a single exit loop by using predicates to guard the execution of these
instructions and moving the early exit branch out of the loop as shown below:

L1: | d4 r4a = [r5],4 ;;
| d4 r9 = [r4]
cnp.eqg.unc pl,p2 =r9,r7
add rg8 =-1,r8 ;;
(p2) cnp. ge.unc p3,p0 =r8,r0
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(p3) br.cond L1 ;;

(pl) br.cond exit I/l early exit if plis 1

The computation of p3 determinesif either exit of the source loop would have been taken. If p3 is

zero, the loop is exited and p1 is used to determine which exit was actually taken. The add is

executed speculatively (it is not guarded by p2) to keep the dependence from the crp. eq to the

add from limiting the I1. It is assumed that either r 8 isnot live out at the early exit or that

compensation code is added at the target of the early exit. The pipeline for thisloop is shown below
with the stage predicate assignments but no other rotating register allocation. The compare and the
branch at the end of stage 4 are not assigned stage predicates because they already have qualifying

predicates in the source loop:

stage 1: ld4d.s rd4 = [r5],4 ;;
stage 2:

ldd.s r9 = [r4]
stage 3: --
stage 4:

(pl9) add r8 = -1,r8

/1

Il

/1

=2
enpty cycle
enpty cycle

enpty stage

(pl9) cnp.eqg.unc pl,p2 =r9,r7 ;;
(p2) cnmp. ge.unc p3,p0 =r8,r0

(p3) br.cond L1 ;;

The code to implement this pipeline is shown below complete with the chk instruction:

nov ec = 3

nov pr.rot =1 << 16 ;;
L1: ld4.s r32 =([r5],4
(pl9) chk.s r36, recovery
(p19) add rg =-1,r8

(p19) cnp. eq. unc p31,p32 =r36,r7 ;

ld4d.s r34 = [r33]
(p32) cnp.ge pl8,p0 =7r8,r0
L2:
(p18) br.wtop.sptk L1 ;;
(p32) br.cond exit

;11 Cycle

// PR16 = 1, rest =0

/Il Cycle
/Il Cycle

/Il Cycle

Il Cycle
Il Cycle

P O OOOo

/Il Cycle 1
/] early exit if p32is 1

Note: When theloop is exited, one final rotation occurs, rotating the valuein p31 to p32. Thus, p32 is
used as the branch predicate for the early exit branch.

12.5.3.2 Pipelining with Explicit Multiple Exits

The second approach isto combine the last three instructionsin the loop into abr . cl oop
instruction and then pipeline theloop. The pipeline using this approach is shown below:

stage 1:1d4.s r4 = [r5],4 ;;
stage 4:1d4.s r9 = [r4]
stage 6:cnp.eq.unc pl,p0 =r9,r7
(pl)br.cond exit
br.cloop L1 ;;
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There are five speculative stages in this pipeline because a non-speculative decision to initiate
another loop iteration cannot be made until thebr . cond and br . ¢l oop are executed in stage 6.
The code to implement this pipeline is shown below assuming atrip count of 200:

nov lc = 204
nov ec =1
nov pr.rot =1 << 16 ;; // PR16 = 1, rest =0
L1:
ld4.s r32 =([r5],4 /Il Cycle O
(p21) chk.s r38, recovery /1l Cycle O
(p21) cnp.eqg.unc pl,p0 =r38,r7 /1 Cycle O
ldd.s r36 = [r35] /Il Cycle O
(pl) br.cond exit /1 Cycle O
L2: br.ctop.sptk L1; /1l Cycle O

When the kernel loop is exited at either thebr . cond or thebr . ct op, thelast source iterationis
complete. Thus, ECisinitialized to 1 and there is no explicit epilog block generated for the early
exit. TheLCregister isinitialized to five more than 199 because there are five specul ative stages.
The purpose of thefirst five executionsof br . ct op issimply to keep the loop going until the first
valid branch predicate is generated for the br.cond. During each of these executions, LCis
decremented, so five must be added to the L C initialization amount to compensate.

A smaller Il is achieved with the second approach. This pipelined code will also work if LCis
initialized to 199 and ECisinitialized to 6. However, if the early exit istaken, LC will have been
decremented too many times and will need to be adjusted if it isused at the target of the early exit.
If there is any epilog when the early exit istaken, that epilog must be explicit.

Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline aloop. Software pipelining
increases the throughput of iterations, but may increase the time required to complete asingle
iteration. As aresult, loops with very small trip counts may experience decreased performance
when pipelined. For example, consider the following loop:

L1: 1d4 r4 =[rb5],4 /Il Cycle O
| d4 r7 =1_[r8],4 ;; /Il Cycle O
st4 [r6] =r4,4 /Il Cycle 2
st4 [r9] =r7,4 Il Cycle 2
br.cloop L1 ;; Il Cycle 2

Thefollowing is a possible pipeline with an |1 of 2:

stage 1:1d4 r4 = [r5],4 /1 Cycle O
ld4 r7 =1[r8],4 ;; Il Cycle O
/1l enmpty cycle
stage 2:--- Il enmpty cycle
st4[r6] =r4,4 /Il Cycle 3
st4[r9] =r7,4 ;; /Il Cycle 3

In the source loop, one iteration is completed every three cycles. In the software pipelined loop, it
takes four cycles to complete the first iteration. Thereafter, iterations are completed every two
cycles. If the trip count is two, the execution time of both versions of the loop is the same, six
cycles. If the average trip count of the loop is less than two, the software pipelined version of the
loop is slower than the source loop.
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12.5.5.2

In addition, it may not be desirable to pipeline a floating-point loop that contains a function call.
The number of floating-point registers used by the loop is not known until after the loop is
pipelined. After pipelining, it may be difficult to find empty slots for the instructions needed to
save and restore the caller-saved floating-point registers across the function call.

Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops, thus

reducing the resource requirements of the loop. Use of advanced loads also can reduce the critical

path through the iterations, allowing a smaller |1 to be achieved. See Chapter 10, “Memory
Reference’for more information on advanced loads. However, caution must be exercised when
using advanced loads with register rotation. For this discussion, we assume an ALAT with 32
entries.

Capacity Limitations

An advanced load with a destination that is a rotating register targets a different physical register
and allocates a new ALAT entry for each kernel iteration. For example, the simple loop below
replaces 32 ALAT entries in 32 iterations:

L1: (pl6) | d4.a r32 [r8]
(p47) ld4.c r63 [r8]
br.ctop L1 ;;

To avoid unnecessary ALAT misses, the check load or advanced load check must be executed
before a later advanced load causes a replacement of the entry being checked. In the simple loop
above, the unnecessary ALAT misses do not occur because the check load is done within 31
iterations of the advanced load. In the example below, an ALAT miss is encountered for every
check load because the advanced load replaces an entry just before the corresponding check load is
executed:

L1: (pl6) | d4.a r32 [r8]
(p48) |d4.c r64 [r8]
br.ctop L1 ;;

Conflicts in the ALAT

Using an advanced load to remove a likely invariant load from a loop while advancing another load
inside the loop results in poor performance if the latter load targets a rotating register. The
advanced load that targets the rotating register will eventually invalidate the ALAT entry for the
loop invariant load. Thereafter, every execution of the check load for the loop invariant load will
cause an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers must be
assigned and the register lifetimes controlled so that the check load for a particular advanced load
X is executed before any of the other advanced loads can invalidate the entry allocated by load X.
For example, the following loop successfully targets rotating registers with two advanced loads
without any ALAT misses because the two advanced load — check load pairs never create more
than 32 simultaneously live ALAT entries:

L1: (pl6) ld4.a r32 = [r8]
(p31) ldd.c r47 = [r8]
(pl6) ld4.a r48 = [r9]
(p31) ldd.c r63 = [r9]

br.ctop L1 ;;
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When the code cannot be arranged to avoid ALAT misses, it may be best to assign static registersto
the destinations of the advanced loads and unroll the loop to explicitly rename the destinations of
the advanced |oads where necessary. The following example shows how to unroll the loop to
avoid the use of rotating registers. Theloop hasan Il equal to 1 and the check load is executed one
cycle (and one rotation) after the advanced |oad:

L1: (pl6) | d4.a r33
(pl7) ld4.c r34
br.ctop L1 ;;

= [r8]
= [r8]

Static registers can be assigned to the destinations of the loads if the loop is unrolled twice:

L1: (pl6) ld4.a r3 [r8]
(pl7) ld4.c r4 [r8]
br.cexit L2 ;;
(pl6) ldd.ar4 = [r8]
(pl7) 1d4.c r3 =1[r8]
br.ctop L1 ;;
L2: 1

Rotating registers could still be used for the values that are not generated by advanced loads. The
effect of thisunrolling on instruction cache performance must be considered as part of the cost of
advancing aload.

Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to software
pipelining. Loops that are resource constrained can be improved by unrolling such that the limiting
resourceismorefully utilized. In the following example if we assume the target processor has only
two memory units, the loop performance is bound by the number of memory units:

L1: 1d4 r4 =[r5],4 Il Cycle O
ld4d r9 =1[r8],4 ;; /1 Cycle O
add r7 =r4,r9 ;; Il Cycle 2
st4 [r6] =717,4 /Il Cycle 3
br.cloop L1 ;; /Il Cycle 3

A pipelined version of this loop must have an | of at least two because there are three memory
instructions, but only two memory units. If the loop is unrolled twice prior to software pipelining
and assuming the store is independent of the loads, an |1 of 3 can be achieved for the new loop.
Thisisan effective I of 1.5 for the original source loop. Below is a possible pipeline for the
unrolled loop:

stage 1:(pl6) |d4 r4a =[rb5],8 /1 odd iteration
(p16) | d4 ro =[r8],8 ;; /1 odd iteration
stage 2:(pl6) |d4 ri4 = [r15],8 I/ even iteration
(pl6) | d4 ri9 =[r18],8 ;; /1 even iteration

I --- enpty cycle
stage 3:(p1l8) add r7 =r4,r9 // odd iteration
(pl17) add rl7 = r14,r19;; /'l even iteration

stage 4: /o--- enpty cycle
(pl9) st4 [r6] =7r7,8 // odd iteration
(p18) st4 [r16] =r17,8 ;; /1 even iteration
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The unrolled loop contains two copies of the source loop body, one that corresponds to the odd
source iterations and one that corresponds to the even source iterations.  The assignment of stage
predicates must take thisinto account. Recall that each 1 written to p16 sequentially enablesall the
stages for anew source iteration. During stage one of the above pipeline, the stage predicate for
theodd iterationisin pl6. The stage predicate for the even iteration does not exist yet. During
stage two of the above pipeline, the stage predicate for the odd iteration isin p17 and the new
stage predicate for the eveniterationisin p16. Thuswithin the same pipeline stage, if the stage
predicate for the odd iteration isin predicate register X, the stage predicate for the even iteration is
in predicate register X-1. The pseudo-code to implement this pipeline assuming an unknown trip
count is shown below:

add rl5 =r5,4
add rl8 =r8,4

nov lc =r2 /1l LC = loop count - 1
nov ec = 4 /Il EC = epilog stages + 1
nov pr.rot=1<<16;; /1l PR16 = 1, rest =0
L1:
(pl6) 1d4 r33 =[rb5],8 /1 Cycle O odd iteration
(p18) add r39 = r35,r38 /1 Cycle O odd iteration
(pl7) add r38 = r34,r37 /1l Cycle 0 even iteration
(p16) | d4 r36 =[r8],8 /1l Cycle 0 odd iteration
br.cexit.spnt L3 ;; /Il Cycle O
(pl6) 1d4 r33 = [ri15],8 /1 Cycle 1 even iteration
(pl6) | d4 r36 = [r18],8 ;; // Cycle 1 even iteration
(pl9) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] =r39,8 /Il Cycle 2 even iteration
L2: br.ctop.sptk L1 ;; /Il Cycle 2

L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and stages 2 and 4
aretwo cycles each. Also, the length of the epilog phase varieswith the trip count. If thetrip count
is odd, the number of epilog stagesis three, starting after the br.cexit and ending at the br . ct op.
If thetrip count is even, the number of epilog stagesistwo, starting after thebr . ct op and ending
at thebr . ct op. The EC must be set to account for the maximum number of epilog stages. Thus
for this example, ECisinitialized to four. When the trip count is even, one extra epilog stageis
executedand br . exit L3 istaken. All of the stage predicates used during the extra epilog
stages are equal to 0, so nothing is executed.

The extra epilog stage for even trip counts can be eliminated by setting the target of the
br. cexi t branch to the next sequential bundle and initializing EC to three as shown below:

add rl5 =r5,4
add rl8 =r8,4

nov lc =r2 /1l LC = loop count - 1
nov ec = 3 /1 EC = epilog stages + 1
nov pr.rot=1<<16;; /'l PR16 =1, rest =0
L1:
(pl6) 1d4 r33 =[rb5],8 /1 Cycle O odd iteration
(p18) add r39 = r35,r38 /1l Cycle O odd iteration
(pl7) add r38 = r34,r37 /1l Cycle 0 even iteration
(p16) | d4 r36 = [r8],8 /1l Cycle 0 odd iteration
br.cexit.spnt L4 ;; /Il Cycle O
L4:
(pl6) 1d4 r33 = [ri15],8 /1 Cycle 1 even iteration
(p16) | d4 r36 = [r18],8 ;; /Il Cycle 1 even iteration
(pl9) st4 [r6] = r40,8 /Il Cycle 2 odd iteration
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(p18) st4 [r16] =r39,8 /Il Cycle 2 even iteration
L2: br.ctop.sptk L1 ;; /Il Cycle 2
L3:

If theloop trip count is even, two epilog stages are executed and the kernel loop is exited at the
br . ct op. If thetrip count is odd, thefirst two epilog stages are executed and thenthebr . cexi t
branch is taken. Because the target of thebr . cexi t branchisthe next sequential bundle (L4), a
third epilog stage is executed before the kernel loop is exited at thebr . ct op. This optimization
saves one stage at the end of the loop when the trip count is even, and is beneficial for short trip
count loops.

Although unrolling can be beneficial, there are afew issues to consider before trying to unroll and
software pipeline. Unrolling reduces the trip count of the loop that is given to the pipeliner, and
thus may make pipelining of the loop undesirable since low trip count loops sometimes run faster
unpipelined. Unrolling also increases the code size, which may adversely affect instruction cache
performance. Unrolling is most beneficial for small 1oops because the potential performance
degradation due to under utilized resources is greater and the effect of unrolling on the instruction
cache performance is smaller compared to large loops.

Implementing Reductions

In the following example, a sum of productsis accumulated in register f7:

nmov f7 =0 ;; /] initialize sum
L1: Idfs fa =[r5],4

| df s fo9 =1[r8],4 ;;

fma f7 =14,f9,f7 ;; /'l accumnul ate

br.cloop L1 ;;

The performance is bound by the latency of the f nma instruction which we assume is 5 cycles for
these examples. A pipelined version of thisloop must have an Il of at least five because the f ma
latency isfive. By making use of register rotation, theloop can be transformed into the one bel ow.

The loop has not yet been pipelined. The register rotation and special loop branches are being used
to enable an optimization prior to software pipelining.

nov lc = 199 /1 LC = loop count - 1
nov ec =1 /1 Not pipelined, so no epilog
nov f33 =0 // initialize 5 suns
nov f34 =0
nov f35 =0
nov f36 =0
nov f37 =0 ;;
L1: ldfs fa =1[r5],4
| df s fo9 =1[r8],4 ;;
fma f32 = f4,f9,f37 ;; /] accunul ate
br.ctop L1 ;;
f add f10 = 33,34 /1 add sumns
fadd f11 = f35,f36 ;;

fadd f12 = f10,f11 ;;
fadd f7 = 112,137
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Thisloop maintains five independent sumsinregistersf 33-f 37. Thef ma instructionin iteration
X produces aresult that is used by the f ma instruction in iteration X+5. Iterations X through X+4
areindependent, allowing an |1 of oneto be achieved. The code for apipelined version of the loop
assuming two memory ports and a nine cycle latency for afloating-point load is shown below:

nov lc = 199 // LC = loop count - 1
nov ec = 10 I/l EC = epilog stages + 1
nov pr.rot=1<<16 /Il PR16 = 1, rest =0
nov f33 =0 /'l initialize sunms
nov f34 =0
nov f35 =0
nov f36 = 0
nov f37 =0

L1:

(pl6)ldfs f50 = [r5],4 /1l Cycle O

(pl6)ldfs f60 = [r8],4 /1l Cycle O

(p25)fm f41 = f59,f69,f46 // Cycle O
br.ctop.sptk L1 ;; I/l Cycle O
fadd f10 = f42,143 /1 add suns
f add f11 = f44,f45 ;;
f add fi12 = f10,f11 ;;
fadd f7 = 112,146

Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in cases where a
speculative instruction generates a value that is live across source iterations. Consider the
following loop:

| d4 r3 = [rb5]

L1: 1d4 ré =[r8],4 /1l Cycle O
| d4 r5 =1[r9,4 ;; /Il Cycle O
add r7=r3,r6 ;; /Il Cycle 2
| d4 r3 = [rb5] /1 Cycle 3
and rio = 3,r7;; I/l Cycle 3
cnp. ne pl, pO=r10,r11 I/l Cycle 4

(pl)br.cond L1 ;; /Il Cycle 4

Thefollowing is apossible pipeline for the loop:

stage 1: ldd.s r6 =1[r8],4 e =2
ld4d.s r5 =1[r9],4 ;;
/'l enpty cycle
stage 2: /'l enpty cycle
ldd.s r36 = [r5]
add r7 =r37,r6 ;;
stage 3:(pl8) and rio = 3,r7 ;;
(p18) cnp.ne pl,p0 =r10,r11
(pl1) br.wtop L1 ;;

In the code above, the | d4 and the add instructionsin stage 2 have been reordered. Register
rotation has been used to eliminate the WAR register dependence from the add to thel d4. The
first two stages are speculative. The code to implement the pipeline is shown below:
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| d4 r36 = [rb5]

nov ec = 2

nov pr.rot =1 << 16 ;;// PR16 =1, rest =0
L1: 1d4.s r32 =1[r8],4 /1 Cycle O

ldd.s r34 =1[r9],4 /1 Cycle O
(p18) and rao = 3,r39 ;; /Il Cycle O

ld4.s r36 = [r35] /Il Cycle 1

add r38 = r37,r33 /Il Cycle 1
(p18)chk.s r40, recovery Il Cycle 1
(pl8)cnp. ne pl7,p0 =r40,r11 // Cycle 1
(pl7)br.wtop L1 ;; /Il Cycle 1

The problem with this pipelined loop is that the value written tor 36 prior to theloop is

overwritten beforeit isused by theadd. Thevalueisoverwritten by theload intor 36 in the first
kernel iteration. Thisload isin the second stage of the pipeline, but cannot be controlled during the
first kernel iteration because it is specul ative and does not have a stage predicate. This problem can
be solved by peeling off one iteration of the kernel and excluding from that copy any instructions
that are not in the first stage of the pipeline as shown bel ow.

The destination register numbers for the instructions in the explicit prolog have been increased by
one. Thisisto account for the fact that thereis no rotation at the end of the peeled kernel iteration.

| d4 r37 = [r5]
nov ec =1
nov pr.rot = 1<<17 ;; // PR17 =1, rest = 0
| d4 r33 =[r8],4
| d4 r35 =[r9],4
L1: 1d4.s r32 =([r8],4 /Il Cycle O
ldd.s r34 =1[r9],4 /Il Cycle O
(p18) and r4a0 = 3,r39;; I/l Cycle O
ld4.s r36 = [r35] /Il Cycle 1
add r38 = r37,r33 /Il Cycle 1
(p18)chk.s r40, recovery /Il Cycle 1
(pl8)cnp. ne pl7,p0 =1r40,r11 // Cycle 1
(pl7)br.wtop L1 ;; Il Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of code for all or
part of the prolog and/or epilog phase. It isclear from the execution trace of the pipelined counted
loop from page 12-7 that the functional units are under-utilized during the prolog and epilog
phases. Part of the prolog and epilog could be peeled off and merged with the code preceding and
following theloop. Thefollowingis apipelined version of that counted loop with an explicit
prolog and epilog:

nov lc = 196
nmov ec =1
prol og:
| d4 r35 = [r5],4 ;; Il Cycle O
| d4 r34 =1[r5],4 ;; Il Cycle 1
| d4 r33 =[r5],4 /Il Cycle 2
add r36 =r35r9 ;; /Il Cycle 2
L1:
| d4 r32 = [r5],4
add r35 =r34,r9
st4 [r6] =r36,4

L2: br.ctop L1 ;;

epi | og:
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add r35 =r34,r9 /Il Cycle O
st4 [r6] =r36,4 ;; /1l Cycle O
add r34 =r33,r9 /1 Cycle 1
st4 [r6] =7r354 ;; Il Cycle 1
st4 [r6] =r34,4 Il Cycle 2

The entire prolog (first three iterations of the kernel loop) and epilog (last three iterations) have
been peeled off. No attempt has been made to reschedul e the peeled instructions. The stage
predicates have been removed from the instructions since they are not required for controlling the
prolog and epilog phases. Removing them from the prolog makes the prolog instructions
independent of the rotating predicates and eliminates the need for software-pipelined loop branches
between prolog stages. Thusthe entire prolog isindependent of theinitialization of LCand EC that
precede it. The register numbersin the prolog and epilog have been adjusted to account for the lack
of rotation between stages during those phases.

This code assumes that the trip count of the sourceloop is at least four. If the minimum trip count is
unknown at compile time, then a runtime check of the trip count must be added before the prolog.
If the trip count is less than four, then control branches to a copy of the original loop.

If this pipelined loop is nested inside an outer loop, there exists afurther optimization opportunity.
Theouter loop could be rotated such that the kernel loop is at the top followed by the epilog for the
current outer loop iteration and the prolog for the next outer loop iteration. A copy of the prolog
would also be added prior to the outer loop.

From the earlier trace of the counted loop execution, the functional unit usage of the prolog and
epilog are complimentary such that they could be very nicely overlapped.

The drawback of creating an explicit prolog or epilog is code expansion.

Redundant Load Elimination in Loops

Unroalling of aloop is sometimes necessary to remove copy operations created by loop
optimizations. The following is an example of redundant load elimination. In the code below, each
iteration loads two values, one of which has already been loaded by the previous source iteration:

add r8 =r54 ;;

L1: 1d4 r4a =[rb5],4 Il alil]
| d4 ro =1[r8],4 ;; /1 a[i+1]
add r7 =r4,r9 ;;
st4 [r6] =r7,4
br.cloop L1 ;;

The redundant load can be eliminated by adding a copy of thefirst load prior to the loop and
changing the load to a copy (nov):

add r8 =r5,4
| d4 ro =[rb5],4;; /1 ali]
L1: nov ra =r9 /1 a[i] = previous a[i+1]
| d4 ro =1[r8],4 ;; /1 ali+1]
add r7=r4,r9 ;;
st4 [r6] =r7,4
br.cloop L1 ;;
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In traditional architectures, the nov instruction can only be removed by unrolling the loop twice.
Oneinstruction is removed from the loop at the cost of two times code expansion. The |A-64
register rotation feature can be used to eliminate the nov instruction without unrolling the loop:

add r8 =r5,4

| d4 r33 = [r5],4;; /1 a[i]
L1: 1d4 r32 =[r8],4 ;; /1 a[i+1]
add r7 =r33,r32 ;;
st4 [r6] =r7,4
br.ctopLl ;;
Summary

The examplesin this chapter show how | A-64 features can be used to optimize loops without the
code expansion required with traditional architectures. Register rotation, predication, and the
software-pipelined loop branches all contribute to this capability. Control speculation increases
the overlap of the iterations of whileloops. Data speculation increases the overlap of iterations of
loops that have loads and stores that cannot be disambiguated.
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Floating-point Applications 13

13.1 Overview

The | A-64 floating-point architecture is fully ANSI/IEEE-754 standard compliant. | A-64 provides
performance enhancing features such as the fused multiply accumulate instruction, the large
floating-point register file (with static and rotating sections), the extended range register file data
representation, the multiple independent floating-point status fields, and the high bandwidth
memory access instructions that enable the creation of compact, high performance, floating-point
application code.

The beginning of this chapter reviews some specific performance limitations that are common in
floating-point intensive application codes. L ater, | A-64 features that address these limitations are
presented with illustrative code examples. The remainder of this chapter highlights the
optimization of some commonly used kernels using the | A-64 features.

13.2 FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops compute
complex calculations on regularly structured data, others ssmply copy data from one place to
another, while others perform gather/scatter-type operations that simultaneously compute and
rearrange data. The following sections describe code characteristics that limit performance and
how they affect these different kinds of loops.

13.2.1 Execution Latency

L oops often contain recurrence relationships. Consider the tri-diagonal elimination kernel from the
Livermore Fortran Kernel suite.

DO5i =2, N
5 Xl =2Z[i] * (Y[i] - X[i-1])

The dependence between X[ i ] and X[ i - 1] limitstheiteration time of the loop to be the sum of
thelatency of the subtract and the multiply. The available parallelism can beincreased by unrolling
the loop and can be exploited by replicating computation, however the fundamental limitation of
the data dependence remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration time of the
loop is limited by the execution latency of the hardware that executes the code. A simple vector
divide (shown below) is atypical example:

DO11 =1, N
1 Xl =Y[il / Z[i]

Since typical modern microprocessors contain a non-pipelined floating-point unit, the iteration
time of the loop is the latency of the divide which can be tens of clocks.
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Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the avail ability of
the execution resources — or the execution bandwidth of the machine. Consider the dense matrix
multiply kernel from the BLAS3 library.

DO1i =1, N
DO1j =1, P
DO1k =1 M
1 qi,j] =di,j] + Ali,k]*B[k,j]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be used to
increase the available ILP in the inner loop. When this is done, the inner loop contains an
abundance of independent floating-point computations with a relatively small number of memory
operations. The performance constraint is then largely the floating-point execution bandwidth of
the machine (assuming sufficient registers are available to hold the accumu@Gtorg} and

the intermediate computations).

Memory Latency

While cycle time disparity between the processor and memory creates a general memory latency
problem for most codes, there are a few special conditions in floating-point codes that exacerbate
its impact.

One such condition is the use of indirect addressing. Gather/scatter codes in general and sparse
matrix vector multiply code (below) in particular are good examples.

DO 1 ROVN= 1, N
RIROW = 0.0d0

DO 1 | = ROAEND(ROW 1) +1, ROAEND( ROW
1 RIROAN = RIRON + A[1] * X[ COL[I]]

The memory latency of the accessCaL[ | ] is exposed, since it is used to index into the vector
X. The access of the elementgfthe computation of the product, and the summation of the
product orR[ ROW are all dependent on the memory latency of the acce3@Ldfl | .

Another common condition in floating-point codes where memory latency impact is exacerbated is
the presence of ambiguous memory dependences. Consider the incomplete Cholesky conjugate
gradient excerpt kernel, again from the Livermore Fortran Kernel suite.

Il n

IPNTP =0
222 | PNT = | PNTP
IPNTP = IPNTP + I1
I =11/2
| = | PNTP + 1
cdir$ ivdep
DO 2 K = | PNT+2, | PNTP, 2
| = | +1
2 X[1]= XK - VK * X[K-1] - V[K-1] * X[ K+1]

IFE (Il .GT. 1) GO TO 222
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The DOloop involves an update of X at theindex | using X at theindicesK, K+1, K- 1. Sinceitis
difficult for the compiler to establish whether these indices overlap, theloads of X[ K] , X[ K+1] or
X[ K- 1] for the next iteration cannot be scheduled until the store of X[ | ] of the current iteration.
This exposes the memory latency of access of these operands.

Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the operands of
the computation. The DAXPY kernel from the BLASL library isatypica example:

DO11 =1, N
1 Y[I] = Y[I] + A* XI]

The computation requires loading two operands (X[ 1] and Y[ | ] ) and storing oneresult (Y[ 1] )
for each floating-point multiply and add operation. If the data arrays (X and Y) are not in cache,
then the performance of thisloop on most modern microprocessors would be limited by the
available memory bandwidth on the machine.

IA-64 Floating-point Features

This section highlights | A-64 features that reduce the impact of the performance limiters described
in Section 13.2 using illustrative examples.

Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units generally
increases. Aslatency increases, register pressure due to multiple operationsin-flight also increases.
Furthermore as multiple execution units are added, the register pressure increases similarly since
even more instructions can be in-flight at any one time.

| A-64 provides 128 directly addressable floating-point registers to enable data reuse and to reduce
the number of load/store operations required due to an insufficient number of registers. This
reduction in the number of loads and stores can increase performance by changing a computation
from being memory operation (MOP) limited to being floating-point operation (FLOP) limited.
Consider the dense matrix multiply code below:

DO1i =1, N
DO1j =1, P
DO1k =1 M
1 qi.jl =di.j] + Ali,k]*B[k,j]

In the inner loop (k), 2 loads are required for every multiply and add operation. The MOP:FLOP
ratio istherefore 1:1.

L1: I dfd f5 =1[r5], 8 /1 Load Ali,K]
| df d f6 =1[r6], 8 /1 Load B[k,]]
fma.d.s0 f7=f5, f6, f7 /] *, +to C[i,]j]
br.cloop L1
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Here, three registers are required to hold the operands (f 5, f 6) and the accumulator (f 7). By
recognizing thereuse of Al i , k] for different B[ k, j ] asj isvaried, and thereuse of B[ k, j ]
for different A i , k] asi isvaried, the computation can be restructured as:

DO1i =1, N
DO1j =1, P
DO1 k =1, M
ai .j 1 =di ,j ]
+ ALl K]*Blk, ] ]
qi+l,j 1 =di+l,j |
+ Ali +1,k]1*B[k,j ]
i ,j+1] =di ,j+1]
+ Ali ,k]1*B[k,j+1]
1 Ci+l,j+1] = Ci+1,j+1]
+ Ali +1, k] *B[ k, j +1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the MOP:FLOP
ratio to 1:2. However, 8 registers are now required: 4 for the accumulators and 4 for the operands.

add ré =r5, 8
add rg =r7, 8

L1: 1dfd f5 =[r5], 16 /1 Load Ali, k]
| df d f6 =[r6], 16 /1 Load Ali+1, k]
| df d f7 =[r7], 16 /1 Load B[k,j]
| df d f8 = [r8], 16 /1 Load B[k, j+1]
frma.d.sO f9 =5, f7, f9 /Il *,+on Ci,j]
fma.d.sO f10 = f5, f8, f10 Il *,+ on Ci,j+1]
fra.d.sO f11 f6, f7, f11 [l *,+ on C[i+1,j]
frma.d.sO f12 = f6, f7, f12 [l *,+ on Ci+1,j+1]
br.cloop L1

With 128 available registers, the outer loops of i andj could be unrolled by 8 each so that 64
multiplies and adds can be performed by loading just 16 operands.

The floating-point register fileis divided into two regions: a static region (f O-f 31) and arotating
region (f 32-f 127). The register rotation provides the automatic register renaming reguired to
create compact kernel-only software-pipelined code. Register rotation also enables scheduling
software pipelined code with an initiation interval that is |less than the longest latency operation.
For e.g., consider the simple vector add loop shown below:

DO1i =1, N
1 Ali] =8i] + di]

Thebasic inner loop is:

L1: |df f5 =1[r5], 8 /1 Load B[i]
| df f6 =1[r6], 8 /1 Load C[i]
fadd f7 =15, 6 /1 Add operands
stf [r7]=f7, 8 /Il Store Ali]
br.cloop L1
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If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory operations can
be issued per clock, the above loop has to be unrolled by at least six if there is no register rotation.

add r8 =7r7, 8

L1: (pl8) stf [r7] =f25 16 // Cycle 17,26 ...

(p18) stf [r8] = f26, 16 Il Cycle 17,26 ...
(pl7) fadd f25 = f5, f15 /1 Cycle 8,17,26 ...
(pl6) Idf f5 =[r5], 8 /l Cycle 0,9,18 ...
(pl6) Idf f15 = [r6], 8 /1 Cycle 0,9,18 ...
(pl7) fadd f26 =f6, f16 ;; [/ Cycle 9,18,27 ...
(pl6) Idf f6 =1[r5], 8 /1 Cycle 1,10,19 ...
(p1l6) Idf fi6 = [r6], 8 /l Cycle 1,10,19 ...
(p18) stf [r7] = f27, 16 /1 Cycle 20,29 ...
(p18) stf [r8] = f28, 16 /1l Cycle 20,29 ...
(pl7) fadd f27 = f7, f17 ;; /1 Cycle 11,20 ...
(pl6) Idf f7 =1[r5], 8 /1 Cycle 3,12,21 ...
(pl6) Idf f17 =1[r6], 8 Il Cycle 3,12,21 ...
(pl7) fadd f28 =18, f18 ;; [// Cycle 12,21 ...
(pl6) Idf f8 =1[rb5], 8 Il Cycle 4,13,22 ...
(pl6) Idf f18 =1[r6], 8 /1 Cycle 4,13,22 ...
(p18) stf [r7] = f29, 16 /Il Cycle 23,32 ...
(p18) stf [r8] = f30, 16 /1l Cycle 23,32 ...
(pl6) fadd f29 =1f9, f19 ;; [// Cycle 14,23 ...
(pl6) Idf f9 =[r5], 8 Il Cycle 6,15,24 ...
(pl6) Idf f19 =1[r6], 8 Il Cycle 6,15,24 ...
(pl6) fadd f30 = f10, f20 ;; // Cycle 15,24 ...
(pl6) Idf f10 = [r5], 8 /1 Cycle 7,16,25 ...
(pl6) Idf f20 =[r6], 8 /1 Cycle 7,16,25 ...
br.ctop L1 ;;

However, with register rotation, the same loop can be scheduled with an initiation interval of just 2
clocks without unrolling (and 1.5 clocksif unrolled by 2):

L1: (p24) stf [r7] =57, 8
(p21) fadd 57 = 37, f47

/1 Cycle 15,17 ...
/1 Cycle 9,11,13 ...

(pl6) |df f32 =1[r5], 8 I/l Cycle 0,2,4,6 ...
(pl6) Idf f42 =1[ré6], 8 Il Cycle 0,2,4,6 ...
br.ctop L1 ;;

It is thus often advantageous to modul o schedule and then unroll (if required). Please see
Chapter 12 on software pipelining for details on how to rewrite loops using this transformation.

Notes on FP Precision

The floating-point registers are 82 hits wide with 17 bits for exponent range, 64 bits for significand
precision and 1 sign bit. During computation, the result range and precision is determined by the
computational model chosen by the user. The computational model isindicated either statically in
the instruction encoding, or dynamically viathe precision control (PC) and widest-range-exponent
(WRE) bitsin the floating-point status register. Using an appropriate computational model, the user
can minimize the error accumulation in the computation. In the above matrix multiply example, if
the multiply and add computations are performed in full register file range and precision, the
results (in accumulators) can hold 64 bits of precision and up to 17 bits of range for inputs that
might be single precision numbers. With the rounding performed at the 64th precision bit (instead
of the 24th for single precision) asmaller error is accumulated with each multiply and add.
Furthermore, with 17 bits of range (instead of 8 bits for single precision) large positive and
negative products can be added to the accumulator without overflow or underflow. In addition to
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providing more accurate results the extra range and precision can often enhance the performance of
iterative computations that are required to be performed until convergence (asindicated by an error
bound) is reached.

13.3.2 Multiply-Add Instruction

| A-64 defines the fused multiply-add (f ma) as the basic floating-point computation, since it forms
the core of many computations (linear algebra, series expansion, etc.) and itslatency in hardwareis
typicaly less than the sum of the latencies of an individual multiply operation (with rounding)
implementation and an individual add operation (with rounding) implementation.

In computational loops that have aloop carried dependence and whose speed is often determined
by the latency of the floating-point computation rather than the peak computational rate, the
multiply-add operation can often be used advantageously. Consider the Livermore FORTRAN
Kernel 9 — General Linear Recurrence Equations:

DO 191 k= 1,n
B5(k+KB51 )= SA(k) + STB5 * SB(K)
STBS= B5(k+KB5!) - STBS
191 CONTI NUE

Since there is a true data dependence between the two statements onB&(iabkB51 ) ) and

a loop-carried dependence on varig®ld5, the loop number of clocks per iteration is entirely
determined by the latency of the floating-point operations. In the absencerdd &ype operation,

and assuming that the individual multiply and add latencies are 5 clocks each and the loads are 8
cycles, the loop would be:

L1: (p16) Idf f32 = [r5], 8 /1 Load SA(Kk)
(pl6) Idf f42 =1[r6], 8 /1 Load SB(k)
(p17) frmul f5 =f7, f43;; /Il tmp,dk 0,15 ...
(pl7) fadd f6 =133, f5;; /] B5 Ak 5,20 ...
(pl7) stf [r7] = f6, 8 /1l Store B5
(pl7) fsub f7 =16, f7 // STB5,d k 10,25 ..
br.ctop L1 ;;

With anf na, the overall latency of the chain of operations decreases and assuming af Sraycle
the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).

L1: (pl6) |df f32 =1[r5], 8 /1 Load SA(k)
(pl6) Idf f42 = [r6], 8 /1 Load SB(k)
(pl7) fnm f6 =f7, 43, f33;; // B5 dk 0,10 ...
(pl7) stf [r7] = f6, 8 /Il Store B5
(pl7) fsub f7 =1f6, f7 /1 STB5,Ck 5,15 ..

br.ctop L1 ;;

The fused multiply-add operation also offers the advantage of a single rounding error for the pair of
computations which is valuable when trying to compute small differences of large numbers.
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Software Divide/Square-root Sequence

To perform division or square root operations on | A-64, a software based sequence of operationsis
used. The sequence consists of obtaining aninitial guess (using f r cpal/f r sqr t a instruction) and
then refining the guess by performing Newton-Raphson iterations until the error is sufficiently
small so that it may not affect the rounding of the result. Examples of double precision divide and
square root sequences, optimized for latency and throughput, are provided below.

For reduced precision, square and divide sequences can be completed with even fewer instructions.

Double Precision — Divide

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

frcpa.sO f8,p6 = f6,f7 ;;

frcpa.sO f8,p6 = f6,f7 ;;

(p6) fnma.sl f9 = f7,f8,f1 ;; (p6) fma.s1 f9 = 16,18,f0
(p6) frma.sl1 f8 =19,f8,f8 (p6) fnma.sl f10 = f7,f8,f1 ;;
(p6) fma.s1 f9 = £9,f9,f0 ;; (p6) fma.s1l f9 = f10,19,f9
(p6) fma.s1 f8 =f9 ,f8,f8 (p6) fma.s1l f11 = f10,f10,f0
(p6) fma.sl f9 =1f9,f9,f0 ;; (p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fma.sl f8 =f9,f8,f8 ;; (p6) fma.sl f9 = f11,f9,f9
(p6) fma.d.s1 f9 = 6,f8,f0 ;; (p6) fma.sl f10 = f11,f11,f0
(p6) fnma.d.s1 f6 = f7,f9,f6 ;; (p6) fma.s1 f8 = f11,18,f8 ;;
(p6) fma.d.s0O f8 = f6,f8,f9 (p6) fma.d.s1 f9 = f10,19,f9
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fnma.d.s1 f6 =f7,f9,f6 ;;
(p6) frma.d.sO f8 = f6,1f8,f9
Double Precision — Square-root
Square-root (Max Throughput) Square-root (Min Latency)
(15 Instructions, 13 Groups) (17 Instructions, 12 Groups)
frsqrta.sO f8,p6 = f6 frsqrta.sO f8,p6 = f6
(p6) frma.sl1 f10 = f7,f6,f0 ;; (p6) fma.s1 f9 = 17,f6,f0 ;;
(p6) fma.sl f9 =18,f8,f0 ;; (p6) fma.sl1 f10 = £8,f8,f0 ;;
(p6) fnma.sl f9 = f9,f10,f7 ;; (p6) fnma.sl f10 = f10,f9,f7 ;;
(p6) fma.sl f8 =f9,f8,f8 ;; (p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) frma.s1 f9 = f8,f10,f0 ;; (p6) frma.s1 f10 = f8,f9,f0 ;;
(p6) fnma.sl f9 =9,f8,f7 ;; (p6) fnma.sl f10 = f10,f8,f7 ;;
(p6) frma.sl1 f8 = 19,f8,f8 ;; (p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fma.s1 f9 = £8,f10,f0 ;; (p6) fma.s1l f10 = f6,18,f0
(p6) fnma.sl f9 = £9,f8,f7 ;; (p6) fma.s1 f9 =18,f9,f0
(p6) fma.sl f8 =f9,f8,f8 ;; (p6) fma.sl1 f11 = f7,f8,f0 ;;
(p6) fma.d.s1 f9 = f6,f8,f0 (p6) fnma.sl f12 = f10,f10,f6
(p6) frma.sl1 f8 = f7,f8,f0 ;; (p6) fnma.sl f7 =f9,f8,f7 ;;
(p6) fnma.sl f6 =f9,f9,f6 ;; (p6) fma.s1 f8 = f12,f11,f10
(p6) fma.d.s0O f8 = f6,f8,f9 (p6) fma.s1l f7 = f7,f11,f11 ;;
(p6) fnma.sl f6 = £8,f8,f6 ;;

(p6)

fra.d.sO f8 = f6,f7,f8
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Thefirst instruction (f r cpa) provides an approximation (good to 8 bits) of the reciprocal of f 7
and sets the predicate (p6) to 1, if theratio f 6/f 7 can be obtained using the prescribed
Newton-Raphson iterations. If, however, theratio f 6/f 7 is specia (finite/0, finite/infinite, etc) the
final result of f 6/f 7 is provided in f 8 and the predicate (p6) is cleared. For certain boundary
conditions (when the operand values (f 6 and f 7) are well outside the single precision, double
precision and even double-extended precision ranges) frcpawill cause a software assist fault and
the software handler will produce theratio f 6/f 7 and returnitin f 8 and clear the predicate (p6).

The multiple status fields provided in the FPSR are used in these sequences. SO isthe main

(architectural) statusfield and it is written to by the first operation (f r cpa) to signal any faults (V,

Z, D), and by the last operation to signal any traps. The conditions of all intermediate operations

areignored by writing them to S1. Thus these sequences not only obtain the correct |EEE 754

specified result (in f 8) but the flags are also set (in SO) as per the standard’s requirements. If the
divide is part of a speculative chain of operations that is using S2 as its status field, then SO should
be replaced with S2 in these sequences. S1 can still be used by the intermediate operations of all the
divide sequences (i.e., those that target SO, S2, or S3) since those flags are all discarded.

When divides and square-root appear in vectorizable loops, it is often very advantageous to have
these operations be performed in software rather than hardware. In software, these operations can
be pipelined and the overall throughput be improved, whereas in hardware these operations are
typically not pipelineable.

Another significant advantage of the software based divide/square-root computations is that the
accuracy of the result can be controlled by the user and can be traded off for speed. This trade-off is
often used in graphics codes where the divide accuracy of about 14-bits suffices and the sequence
can be shorter than that used for single or double precision.

13.3.4 Computational Models

IA-64 offers complete user control of the computational model. The user can select the result’s
precision and range, the rounding mode, and the IEEE trap response. Appropriately selecting the
computational model can result in code that has greater accuracy, is higher performance, or both.

The register file format is uniform for the 3 memory data types — single, double and
double-extended. Since all the computations are performed on registers (regardless of the data type
of its content) operands of different types can be easily combined. Also since the conversion from
the memory type to the register file format is done on loads automatically no extra operations are
required to perform the format conversion.

The C syntax semantics are also easily emulated. Loads convert all input operands into the register
file format automatically. Data operands of different types, now residing in register file format can
be operated upon and all intermediate results coerced to double precision by statically indicating
the result precision in the instruction encoding. The computation leading to the final result can
specify the result precision and range. (statically in the instruction encoding for single and double
precision, and dynamically in the status field bits for double-extended precision). Compliance to
the IA32 FP computational style (range=extended, precision=single/double/extended) can also
achieved using the status field bits.
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13.3.5 Multiple Status Fields

The FPSR isdivided into 1 main (architectural) status field and 3 additional identical statusfields.
These additional status fields could be used to performance advantage.

First, divide and square-root sequences (described in Section 13.3.3) contain operations that might
cause intermediate results to overflow/underflow or be inexact even if the final result may not. In
order to maintain correct |EEE flag status the status flags of these computations need to be
discarded. One of these additional statusfields (typically statusfield 1) can be used to discard these

flags.

Second, speculating floating-point operations requires maintaining the status flags of the
speculated operations distinct from the architectural status flags until the speculated operations are
committed to architectural state (if they ever are). One of these additional statusfields (typically
status fields 2 and even 3) can be used for this purpose.

Consider the Livermore FORTRAN kernel 16 — Monte Carlo Search

DO 470 k= 1,n

k2= k2+1

j 4= ] 2+k+k

j 5= ZONE(j 4)

IF( j5-n ) 420, 475, 450
415 | F( j5-n+l1 ) 430, 425, 425

420 IF( j5-n+LB ) 435,415,415

425 | F( PLAN(j5)-R) 445, 480, 440

430 I F( PLAN(j5)-S) 445,480, 440

435 | F( PLAN(j5)-T) 445,480, 440

440 | F( ZONE(j4-1)) 455,485,470

445 | F( ZONE(j 4-1)) 470, 485, 455

450 k3= k3+1

I'F(C D(j5)-(D(j5-1)*(T-D(j5-2))**2
+(S-D(j5-3))**2

, +(R-D(j5-4))**2)) 445, 480, 440
455 e mel

IF( m ZONE(1) ) 465, 465, 460
460 e 1

465 I F( i1l-m 410,480,410
470  CONTI NUE
475  CONTI NUE
480  CONTI NUE
485  CONTI NUE

Profiling indicates that the conditional after statement 450 is most frequently executed. It is
therefore advantageous to speculatively execute the computation in the conditional while the
conditionals in 415...445 are being evaluated. In the event that any of the conditionals in 415...445
cause the control to be moved on beyond 450.

The availability of multiple additional status fields can allow a user to maintain multiple
computational environments and to dynamically select among them on an operation by operation
basis. A common use is in the implementation of interval arithmetic code where each primitive
operation is required to be computed in two different rounding modes to determine the interval of
the result.
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13.3.6 Other Features

| A-64 offers a number of other architectural constructs to enhance the performance of different
computational situations.

13.3.6.1 Operand Screening Support

Operand screening is often arequired or useful step prior to a computation. The operand may be

screened to ensurethat it isin avalid range (e.g. finite positive or zero input to square-root,

non-zero divisor) or it may be screened to take an early out — the result of the computation is
predetermined or could be computed more efficiently in another way.cllhes s instruction can

be used to classify the input operand to either be or not be a part of a set of classes. Consider the
following code used for screening invalid operands for square-root computation:

IF (A.LT. 0.0D0 .OR A .GI. MAXREAL) THEN
WRITE (*, “INVALID INPUT OPERAND?”)

ELSE
WRITE (*, “SQUARE-ROOT = *, SQRT(A))

ENDIF

The above conditional can be determined by a single fclass instruction as indicated below:

fclass [fill in the details here]

The resultant complimentary predicates can be used to control the THEN and EL SE statements
individually.

13.3.6.2 Min/Max/AMin/AMax

| A-64 provides direct instruction level support for the FORTRAN intrinsic M N( a, b) or the
equivalent Cidiom: a<b ? a : b andthe FORTRAN intrinsic MAX( a, b) or the equivalent
Cidiom:a<b ? b : a. Theseinstructions can enhance performance by avoiding the function
call overhead in FORTRAN, and by reducing the critical path in C. The instruction is designed not
to be commutative so that by appropriately selecting the input operand order, the user can either
ignore or catch NaNs.

Consider the problem of finding the minimum valuein an array (similar to the Livermore
FORTRAN kernel 24)

XMIN = X(1)
DO 24 k=2,
24 IF(X(K) .LT. XMIN) XMIN = X(k)

Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence if the
above code isimplemented as:

Idf f5 =15,8;;
L1: Idf f6 =15,8

fmin 5 =16,f5

br.cloop L1 ;;

If thevalueinthe array X (loaded in f 6) isaNaN, the new minimum value (in f 5) will remain
unchanged, since the NaN will fail the. LT. comparison and f i n will return the second
argument — in this case the old minimum valug5n
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13.3.6.3

13.3.6.4

13.3.7

However, if the code isimplemented as:

| df f5 =r5, 8 ;;
L1: |df f6 =r5 8

fmn f5 =15, 6

br.cloop L1 ;;

Now, if thevalueinthearray X (loadedinf 6) isaNaN, the new minimum value (inf 5) will be set
tothe NaN, sincethe NaN will fail the. LT. comparison and fmin will return the second argument
—in this case the NaN 6.

f am n/f amax perform the comparison on the absolute value of the input operands (i.e. they
ignore the sign bit) but otherwise operate in the same (non-commutative) way as tHenax
instructions.

Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point representations by
simply moving the integer to the significand field of the floating-point register using the setf.sig
instruction. The resulting floating-point value would be in its unnormal representation (unless the
unsigned integer was greater than 263).

Conversions from signed integers to floating-point and from floating-point to signed or unsigned
integers are accomplished bgvt xf andf cvt f x/f cvt f xu instructions respectively.

However, since signed integers are converted directly to their canonical floating-point
representations, they do not need to be normalized after conversion.

FP Subfield Handling

It is sometimes useful to assemble a floating-point value from its constituent fields. Multiplication
and division of floating-point values by powers of two, for example, can be easily accomplished by
appropriately adjusting the exponent. 1A-64 provides instructions that allow moving floating-point
fields between the integer and floating-point register files. Division of a floating-point number by
2.0 is accomplished as follows:

getf.exp r5 =1f5 /1 Move S+Exp to int
add r5 =r5, -1 /1 Sub 1 from Exp

setf.exp f6 =r5 /1 Move St+Exp to FP
fnerge.se f5 =16, f5 /'l Merge S+E w Mant

Floating-point values can also be constructed from fields from different floating-point registers.

Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs of high
bandwidth, IA-64 incorporates many architectural features to help manage the memory hierarchy
and increase performance. As describe8antion 13.2memory latency and bandwidth are
significant performance limiters in floating-point applications. 1A-64 offers features to address
both these limitations.

In order to enhance the core bandwidth to the floating-point register file, I1A-64 defines load-pair
instructions. In order to mitigate the memory latency, 1A-64 defines explicit and implicit data
prefetch instructions. In order to maximize the utilization of caches, 1A-64 defines locality
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attributes as part of memory access instructionsto help control the allocation (and de-all ocation) of
datain the caches. For instances where the instruction bandwidth may become a performance
limiter, |A-64 defines machine hints to trigger relevant instruction prefetches.

Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in memory to two
independent floating-point registers. The target registers are required to be odd and even physical
registers so that the machine can utilize just one access port to accomplish the register update.

The odd/even pair restriction is on physical register numbers, not logical register numbers. A
programming violation of thisrulewill cause an illegal operation fault).

For example, suppose a machine provides sufficient bandwidth from L1 to sustain 2 load-pairs
every cycle. Then loops that require up to 2 data elements (of 8 bytes each) per floating-point
instruction can run at peak speeds when the dataisresident in L1. A common example of such a
case is a simple double precision dot product — DDOT:

DO11 =1, N
1 cC=C+Al) * B(I)

The inner loop consists of two loads (foandB) and an (to accumulate the product on C). The
loop would run at the latency of the fma due to the recurrence on C. In order to break the
recurrence on C, the loop is typically unrolled and multiple partial accumulators are used.

DO11 =1, N, 8
Cl =2C1L+AI] * B[l]
C2 =C2 + AlI+1] * B[I+1]
C3 = C3 + All+2] * B[I+2]
C3 =C3 + A[I+3] * B[I+3]
C3 =C3 + A[l +4] * B[l +4]
C3 =C3 + A[I+5] * B[I+5]
C3 =C3 + A[I+6] * B[l +6]

1 C4 =C4 + AL +7] * B[I+7]

cC=Cl+C+C+C4

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and 8 fmas. If
we assume the machine has two memory ports, this loop would be limited by the availability of M
slots and run at a peak rate of 1 clock per iteration. However, if this loop is rewritten using 8
load-pairs (forA[ I ], A[ | +1] andB[ | ], B[ | +1] andA[ | +2] , Al | +3] andB[ | +2],

B[ | +3] and so on) and 8 fmas this loop could run at a peak rate of 2 iterations per clock (or just
0.5 clocks per iteration) with just two M-units.

Data Prefetch

| f et ch allows the advance prefetching of a line (defined as 32 bytes or more) of data into the
cache from memory. Allocation hints can be used to indicate the nature of the locality of the
subsequent accesses on that data and to indicate as to which level of cache that data needs to be
promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the load target is
never used) Ifetches can more effectively reduce the memory latency without using floating-point
registers as targets of the data being prefetched. Furtherfnete h allows prefetching the data

to different levels of caches.
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13.3.7.3 Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal, spatial/non-spatial),
| A-64 alows annotating the data accesses (loads/stores) to reflect these attributes. Based on these
annotations, the implementation can better manage the storage of the data in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the various cache
levels. (Only two cache levels are architecturally identified). The non temporal hint is best used for
data that typically has no reuse with respect to that level of cache. The temporal hint is used for all
other data (that has reuse).

13.4 Summary

This chapter describes the limiting factors for many scientific and floating-point applications:
memory latency and bandwidth, functional unit latency, and number of available functional units.

It also describes the important features of | A-64 floating-point support beyond the
software-pipelining support described in Chapter 12, “Software Pipelining and Loop Supptingit
help to overcome some of these performance limiters. Architectural support for speculation,
rounding, and precision control are also described.

Examples in the chapter include how to implement floating-point division and square root,

common scientific computations such as reductions, use of features suchras thstruction,
and various Livermore kernels.
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Instruction Sequencing
Considerations

Instruction execution consists of four phases:
1. Read theinstruction from memory (fetch).
2. Read architectural state, if necessary (read).
3. Perform the specified operation (execute).
4, Update architectural state, if necessary (update).

Aninstruction group is a sequence of instructions starting at a given bundle address and slot

number and including all instructions at sequentially increasing slot numbers and bundle addresses
up to thefirst stop or taken branch. For theinstructionsin an instruction group to have well-defined

behavior, they must meet the ordering and dependency requirements described below.

If the instructions in instruction groups meet the resource-dependency requirements, then the
behavior of aprogram will be as though each individual instruction is sequenced through these

phasesin the order listed above. The order of a phase of agiven instruction relative to any phase of

aprevious instruction is prescribed by the instruction sequencing rules below.

* Thereisno apriori relationship between the fetch of an instruction and the read, execute, or
update of any dynamically previousinstruction. Thesync. i andsrl z.i instructionscanbe

used to enforce a sequential relationship between the fetch of all succeeding instructions and
the update of all previousinstructions.

Between instruction groups, every instruction in a given instruction group will behave as
though its read occurred after the update of all the instructions from the previous instruction
group. All instructions are assumed to have unit latency. Instructions on opposing sides of a
stop are architecturally considered to be separated by at least one unit of latency.

Some system state updates require more stringent requirements than those described here.

Within an instruction group, every instruction will behave as though its read of the memory
and ALAT state occurred after the update of the memory and ALAT state of all prior
instructions in that instruction group.

Within an instruction group, every instruction will behave as though its read of the register
state occurred before the update of the register state by any instruction (prior or later) in that
instruction group, except as noted in the Register dependencies and Memory dependencies
described below.

The ordering rules above form the context for register dependency restrictions, memory

dependency restrictions and the order of exception reporting. These dependency restrictions apply

only between instructions whose resource reads and writes are not dynamically disabled by
predication.

* Register dependencies: Within an instruction group, read-after-write (RAW) and

write-after-write (WAW) register dependencies are not allowed (except as noted in “RAW

Ordering Exceptions” on page Aghd“WAW Ordering Exceptions” on page A3

Write-after-read (WAR) register dependencies are allowed (except as n8tédROrdering

Exceptions” on page A
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These dependency restrictions apply to both explicit register accesses (from the instruction’s
operands) and implicit register accesses (such as application and control registers implicitly
accessed by certain instructions). Predicate register PRO is excluded from these register
dependency restrictions, since writes to PRO are ignored and reads always return 1 (one).

* Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory
dependencies and ALAT dependencies are allowed. A load will observe the results of the most
recent store to the same memory address. In the event that multiple stores to the same address
are present in the same instruction group, memory will contain the result of the latest store
after execution of the instruction group. A store following aload to the same address will not
affect the dataloaded by the load. Advanced loads, check |oads, advanced load checks, stores,
and memory semaphore instructions implicitly access the ALAT. RAW, WAW, and WAR
ALAT dependencies are allowed within an instruction group and behave as described for
memory dependencies.

The net effect of the dependency restrictions stated above is that a processor may execute all (or
any subset) of the instructions within alegal instruction group concurrently or serially with the end
result being identical. If these dependency restrictions are not met, the behavior of the program is
undefined.

The instruction sequencing resulting from the rules stated above is termed sequentia execution.

The ordering rules and the dependency restrictions allow the processor to dynamically re-order
instructions, execute instructions with non-unit latency, or even concurrently execute instructions
on opposing sides of a stop or taken branch, provided that correct sequencing is enforced and the
appearance of sequential execution is presented to the programmer.

IPisaspecia resource in that reads and writes of 1P behave as though the instruction stream was
being executed serially, rather than in parallel. RAW dependencies on | P are allowed, and the
reader getsthe IP of the bundleinwhich it is contained. So, each bundle being executed in parallel
logically reads I P, increments it and writes it back. WAW is also allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW
dependencies to ignored ARs are not allowed.

RAW Ordering Exceptions

There are four exceptions to the rule prohibiting RAW register dependencies within an instruction
group. These exceptions are the al | oc instruction, check load instructions, instructions that affect
branching, andthel d8. fi || andst 8. spil | instructions.

* Theal | oc instruction implicitly writes the Current Frame Marker (CFM) which isimplicitly
read by all instructions accessing the stacked subset of the general register file. Instructions
that access the stacked subset of the general register file may appear in the same instruction
group as aloc and will see the stack frame specified by theal | oc.

Note:  Some instructions have RAW or WAW dependences on resources other than CFM affected by
al I oc and are thus not allowed in the sameinstruction group after anal | oc: f | ushr s, movefrom
AR[BSPSTORE], move from AR[RNAT], br. cexi t, br. ctop, br. wexit, br.w op, br.call,
br.ia,br.ret,clrrrb. Alsonotethat al | oc isrequired to be thefirst instruction in an
instruction group.

* A check load instruction may or may not perform aload since it is dependent upon its
corresponding advanced load. If the check load missesthe ALAT it will execute aload from
memory. A check load and a subseguent instruction that reads the target of the check load may
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exist in the same instruction group. The dependent instruction will get the new value loaded by
the check load.

¢ A branch may read branch registers and may implicitly read predicate registers, the LC, EC,
and PFS application registers, as well as CFM. Except for LC, EC and predicate registers,
writes to any of these registers by a non-branch instruction will be visible to a subsequent
branch in the same instruction group. Writes to predicate registers by any non-floating-point
instruction will be visible to a subsequent branch in the same instruction group. RAW register
dependencies within the same instruction group are not allowed for LC and EC. Dynamic
RAW dependencies where the predicate writer is afloating-point instruction and the reader isa
branch are also not allowed within the same instruction group. Branches br . cond, br . cal |,
br.ret andbr. i awork like other instructions for the purposes of register dependency; i.e., if
their qualifying predicate is 0, they are not considered readers or writers of other resources.
Branchesbr . cl oop, br. cexit, br. ctop, br.wexit,andbr. wt op are exceptiona in that
they are always readers or writers of their resources, regardless of the value of their qualifying
predicate.

e Theld8.fill andst8. spill instructionsimplicitly access the User NaT Collection
application register (UNAT). For these instructions the restriction on dynamic RAW register
dependencies with respect to UNAT applies at the bit level. These instructions may appear in
the same instruction group provided they do not access the same bit of UNAT. RAW UNAT
dependencies between | d8. fi | | or st 8. spi | | instructions and mov ar= or mov =ar
instructions accessing UNAT must not occur within the same instruction group.

For the purposes of resource dependencies, CFM istreated as a single resource.

A.2 WAW Ordering Exceptions

There are three exceptions to the rule prohibiting WAW register dependencies within aninstruction
group. The exceptions are compare-type instructions, floating-point instructions, and the
st 8. spi | | instruction.

* The set of compare-type instructionsincludes: cnp, cnp4, t bi t, tnat, fcnp, frsqrta,
frcpa, andf cl ass. Compare-type instructions in the same instruction group may target the
same predicate register provided:

— The compare-type instructions are either all AND-type compares or all OR-type compares
(AND-type compares correspond to “.and” and “.andcm” completers; OR-type compares
correspond to “.or” and “.orcm” completers), or

— The compare-type instructions all target PR 0. All WAW dependencies for PR 0 are
allowed; the compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including dynamic WAW
register dependencies with move to PR instructions that access the same predicate registers as
another writer.

Note: The move to PR instruction only writes those PRs indicated by its mask, but the move from PR
instruction always reads all the predicate registers.

* Foating-point instructions implicitly write the Floating-point Status Register (FPSR) and the
Processor Status Register (PSR). Multiple floating-point instructions may appear in the same
instruction group since the restriction on WAW register dependencies with respect to the FPSR
and PSR do not apply. The state of FPSR and PSR after executing the instruction group will be
thelogical OR of al writes.
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* Thest 8. spi |l | instruction implicitly writes the UNAT register. For thisinstruction the
restriction on WAW register dependencies with respect to UNAT applies at the bit level.
Multiplest 8. spi | | instructions may appear in the same instruction group provided they do
not write the same bit of UNAT. WAW register dependencies between st 8. spi | | instructions
and nov ar = instructions targeting UNAT must not occur within the same instruction group.

WAW dependenciesto ignored ARs are not allowed.

WAR Ordering Exceptions

WAR dependence between the reading of PR63 by a branch instruction and the subsequent writing
of PR63 by aloop closing branch (br . ct op, br. cexi t, br. wt op, or br. wexi t ) in the same
instruction group is not allowed. Otherwise, WAR dependencies are allowed.
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IA-64 Pseudo-Code Functions B

Table B-1 contains al pseudo-code functions used in Chapter 7, “IA-64 Instruction Reference”

Table B-1. Pseudo-Code Functions

Function Operation

xxx_fault(parameters ...) There are several fault functions. Each fault function accepts parameters
specific to the fault, e.g., exception code values, virtual addresses, etc. If
the fault is deferred for speculative load exceptions the fault function will
return with a deferral indication. Otherwise, fault routines do not return
and terminate the instruction sequence.

Xxx_trap(parameters ...) There are several trap functions. Each trap function accepts parameters
specific to the trap, e.g., trap code values, virtual addresses, etc. Trap
routines do not return.

acceptance_fence() Ensures prior data memory references to uncached ordered-sequential
memory pages are “accepted”, before subsequent data memory
references are performed by the processor.

alat_cmp(rtype, raddr) Returns a one if the implementation finds an ALAT entry which matches
the register type specified by r t ype and the register address specified
by r addr, else returns zero. This function is implementation specific.
Note that an implementation may optionally choose to return zero
(indicating no match) even if a matching entry exists in the ALAT. This
provides implementation flexibility in designing fast ALAT lookup circuits.

alat_frame_update( delta_bof, Notifies the ALAT of a change in the bottom of frame and/or size of
delta_sof) frame. This allows management of the ALAT'’s tag bits or other
management functions it might need.

alat_inval() Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, | The ALAT is queried using the physical memory address specified by
size) paddr and the access size specified by Si ze. All matching ALAT
entries are invalidated. No value is returned.

alat_inval_single_entry(rtype, The ALAT is queried using the register type specified by r t ype and the
rega) register address specified by r ega. At most one matching ALAT entry is
invalidated. No value is returned.

alat_write(rtype, raddr, paddr, size) | Allocates a new ALAT entry using the register type specified by r t ype,
the register address specified by r addr, the physical memory address
specified by paddr, and the access size specified by Si ze. No value is
returned. This function guarantees that only one ALAT entry exists for a
givenraddr.Ifal d.c.nc,|df.c.nc,orl df p.c. nc instruction’s
r addr matches an existing ALAT entry’s register tag, but the
instruction’s Si ze and/or paddr are different than that of the existing
entry’s; then this function may either preserve the existing entry, or
invalidate it and write a new entry with the instruction’s specified Si ze

and paddr.

check_target_register(rl) If rl targets an out-of-frame stacked register (as defined by CFM), an
illegal operation fault is delivered, and this function does not return.

check_target_register_sof(r1, If r1 targets an out-of-frame stacked register (as defined by the newsof

newsof) parameter), an illegal operation fault is delivered, and this function does
not return.

concatenate2(x1, x2) Concatenates the lower 32 bits of the 2 arguments, and returns the
64-bit result.

concatenate4(x1, x2, x3, x4) Concatenates the lower 16 bits of the 4 arguments, and returns the
64-bit result.
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Table B-1.

Pseudo-Code Functions (Cont'd)

Function

Operation

concatenate8(x1, x2, x3, x4, x5,
X6, X7, x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit
result.

fadd(fp_dp, fr2)

Adds a floating-point register value to the infinitely precise product and
return the infinitely precise sum, ready for rounding.

fcmp_exception_fault_check(fr2,
fr3, frel, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcmp instruction.

fevt_fx_exception_fault_check(fr2,
trunc, sf *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt.fx and
fevt.fx.trunc instructions. It propagates NaNs, and NaTVals.

fcvt_fxu_exception_fault_check(fr2
, trunc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt.fxu and
fevt.fxu.trunc instructions. It propagates NaNs, and NaTVals.

fma_exception_fault_check(fr2,
fr3, fr4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fma instruction. It
propagates NaNs, NaTVals, and special IEEE results.

fminmax_exception_fault_check(fr
2, fr3, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the f amax, f am n,
f max, and f m n instructions.

fms_fnma_exception_fault_check(f
r2, fr3, fr4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the f s and f nma
instructions. It propagates NaNs, NaTVals, and special IEEE results.

fmul(fr3, fr4)

Performs an infinitely precise multiply of two floating-point register
values.

followed_by_stop()

Returns TRUE if the current instruction is followed by a stop; otherwise,
returns FALSE.

fp_check_target_register(f1)

If the specified floating-point register identifier is 0 or 1, this function
causes an illegal operation fault.

fp_decode_fault(tmp_fp_env)

Returns floating-point exception fault code values for ISR.code.

fp_decode_traps(tmp_fp_env)

Returns floating-point trap code values for ISR.code.

fp_is_nan_or_inf(freg)

Returns true if the floating-point exception_fault_check functions
returned a IEEE fault disabled default result or a propagated NaN.

fp_equal(frl, fr2)

IEEE standard equality relationship test.

fp_ieee_recip(num, den)

Returns the true quotient for special sets of operands, or an
approximation to the reciprocal of the divisor to be used in the software
divide algorithm.

fp_ieee_recip_sqrt(root)

Returns the true square root result for special operands, or an
approximation to the reciprocal square root to be used in the software
square root algorithm.

fp_is_nan(freg)

Returns true when floating register contains a NaN.

fp_is_natval(freg)

Returns true when floating register contains a NaTVal

fp_is_normal(freg)

Returns true when floating register contains a normal number.

fp_is_pos_inf(freg)

Returns true when floating register contains a positive infinity.

fp_is_gnan(freg)

Returns true when floating register contains a quiet NaN.

fp_is_snan(freg)

Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg)

Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg)

Returns true when floating register contains an unsupported format.

fp_less_than(frl, fr2)

IEEE standard less-than relationship test.

fp_lesser_or_equal(frl, fr2)

IEEE standard less-than or equal-to relationship test

fp_normalize(frl)

Normalizes an unnormalized fp value. This function flushes to zero any
unnormal values which can not be represented in the register file
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Table B-1.

Pseudo-Code Functions (Cont'd)

Function

Operation

fp_raise_fault(tmp_fp_env)

Checks the local instruction state for any faulting conditions which
require an interruption to be raised.

fp_raise_traps(tmp_fp_env)

Checks the local instruction state for any trapping conditions which
require an interruption to be raised.

fp_reg_bank_conflict(f1, f2)

Returns true if the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, {3, f4)

Check for possible disabled floating-point register faults.

fp_reg_read(freg)

Reads the FR and gives canonical double-extended denormals (and
pseudo-denormals) their true mathematical exponent. Other classes of
operands are unaltered.

fp_unordered(frl, fr2)

IEEE standard unordered relationship

fp_fr_to_mem_format(freg, size)

Converts a floating-point value in register format to floating-point
memory format. It assumes that the floating-point value in the register
has been previously rounded to the correct precision which corresponds
with the Si ze parameter.

frcpa_exception_fault_check(fr2,
fr3, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the f r cpa instruction.
It propagates NaNs, NaTVals, and special IEEE results.

frsqrta_exception_fault_check(fr3,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the f r sqrt a
instruction. It propagates NaNs, NaTVals, and special IEEE results

ignored_field_mask(regclass, reg,
value)

Boolean function that returns value with bits cleared to 0 corresponding
to ignored bits for the specified register and register type.

instruction_serialize()

Ensures all prior register updates with side-effects are observed before

subsequent instruction and data memory references are performed. Also
ensures prior SYNC.i operations have been observed by the instruction
cache.

instruction_synchronize

Synchronizes the instruction and data stream for Flush Cache
operations. This function ensures that when prior FC operations are
observed by the local data cache they are observed by the local
instruction cache, and when prior FC operations are observed by
another processor’s data cache they are observed within the same
processor’s instruction cache.

is_finite(freg)

Returns true when floating register contains a finite number.

is_ignored_reg(regnum)

Boolean function that returns true if r egnumis an ignored application
register, otherwise false.

is_inf(freg)

Returns true when floating register contains an infinite number.

is_kernel_reg(ar_addr)

Returns a one if ar _addr is the address of a kernel register application
register

is_reserved_field(regclass, arg2,
arg3)

Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum)

Returns true if register r egnumis reserved in the r egcl ass register
file.

mem_flush(paddr)

The line addressed by the physical address paddr is invalidated in all
levels of the memory hierarchy above memory and written back to
memory if it is inconsistent with memory.

mem_implicit_prefetch(vaddr, hint)

Moves the line addressed by vaddr to the location of the memory
hierarchy specified by hi nt . This function is implementation dependent
and can be ignored.

mem_promote(paddr, mtype, hint)

Moves the line addressed by paddr to the highest level of the memory
hierarchy conditioned by the access hints specified by hi nt .
Implementation dependent and can be ignored.
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Table B-1.

Pseudo-Code Functions (Cont'd)

Function

Operation

mem_read(paddr, size, border,
mattr, otype, hint)

Returns the Si ze bytes starting at the physical memory location
specified by paddr with byte order specified by bor der, memory
attributes specified by mat t r, and access hint specified by hi nt .

ot ype specifies the memory ordering attribute of this access, and must
be UNORDERED or ACQUIRE.

fp_mem_to_fr_format(mem, size)

Converts a floating-point value in memory format to floating-point
register format.

mem_write(value, paddr, size,
border, mattr, otype, hint)

Writes the least significant Si ze bytes of val ue into memory starting at
the physical memory address specified by paddr with byte order
specified by bor der, memory attributes specified by mat t r, and
access hint specified by hi nt . ot ype specifies the memory ordering
attribute of this access, and must be UNORDERED or RELEASE. No
value is returned.

mem_xchg(data, paddr, size,
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address
specified by paddr. The read is conditioned by the locality hint
specified by hi nt . After the read, the least significant si ze
bytes of dataare written to si ze bytesin memory starting at the
physical address specified by paddr. The read and write are
performed atomically. Both the read and the write are
conditioned by the memory attribute specified by mat t r and the
byte ordering in memory is specified by byt e_or der. ot ype
specifies the memory ordering attribute of this access, and must
be ACQUIRE.

mem_xchg_add(add_val, paddr,
size, byte_order, mattr, otype, hint)

Returns si ze bytes from memory starting at the physical
address specified by paddr. Theread is conditioned by the
locality hint specified by hi nt . Theleast significant si ze bytes
of the sum of the value read from memory and add_val isthen
writtento si ze bytesin memory starting at the physical address
specified by paddr. The read and write are performed
atomically. Both the read and the write are conditioned by the
memory attribute specified by nat t r and the byte ordering in
memory is specified by byt e_or der. ot ype specifiesthe
memory ordering attribute of this access, and has the value
ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data,
paddr, size, byte_order, mattr,
otype, hint)

Returns si ze bytes from memory starting at the physical
address specified by paddr. Theread is conditioned by the
locality hint specified by hi nt . If the value read from memory
isequal tocnp_val , thentheleast significant si ze bytes of
data are writtento si ze byt es in memory starting at the
physical address specified by paddr . If the write is performed,
the read and write are performed atomically. Both the read and
the write are conditioned by the memory attribute specified by
mat t r and the byte ordering in memory is specified by

byt e_or der. ot ype specifies the memory ordering attribute of
this access, and has the value ACQUIRE or RELEASE.

ordering_fence()

Ensures prior data memory references are made visible before future
data memory references are made visible by the processor.

pr_phys_to_virt(phys_id)

Returns the virtual register id of the predicate from the physical register
id, phys_i d of the predicate.

rotate_regs()

Decrements the Register Rename Base registers, effectively rotating the
register files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

IA-64 Application Developer’s Architecture Guide,
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Table B-1. Pseudo-Code Functions (Cont’d)

Function

Operation

rse_enable_current_frame_load()

If the RSE load pointer (RSE.BSPLoad) is greater than AR[BSP], the
RSE. CFLE bit is set to indicate that mandatory RSE loads are allowed
to restore registers in the current frame (in no other case does the RSE
spill or fill registers in the current frame). This function does not perform
mandatory RSE loads. This procedure does not cause any interruptions.

rse_invalidate_non_current_regs()

All registers outside the current frame are invalidated.

rse_new_frame(current_frame_siz
e, new_frame_size)

A new frame is defined without changing any register renaming. The
new frame size is completely defined by the new_f r ame_si ze
parameter (successive calls are not cumulative). If new_f r ane_si ze
is larger than cur r ent _f r ame_si ze and the number of registers in
the invalid and clean partitions is less than the size of frame growth then
mandatory RSE stores are issued until enough registers are available.
The resulting sequence of RSE stores may be interrupted. Mandatory
RSE stores may cause interruptions; see rse_store for a list.

rse_preserve_frame(preserved_fra
me_size)

The number of registers specified by pr eserved_f rame_si ze are
marked to be preserved by the RSE. Register renaming causes the
preserved_frane_si ze registers after GR[ 32] to be renamed to
CGR[ 32] . AR BSP] is updated to contain the backing store address
where the new GR[ 32] will be stored.

rse_store(type)

Saves a register or NaT collection to the backing store (store_address =
AR[BSPSTORE]). If store_address{8:3} is equal to Ox3f then the NaT
collection AR[RNAT] is stored. If store_address{8:3} is not equal to Ox3f
then the register RSE.StoreReg is stored and the NaT bit from that
register is deposited in AR[RNAT]{store_address{8:3}}. If the store is
successful AR[BSPSTORE] is incremented by 8. If the store is
successful and a register was stored RSE.StoreReg is incremented by 1
(possibly wrapping in the stacked registers). This store moves a register
from the dirty partition to the clean partition. The privilege level of the
store is obtained from AR[RSC].pl. The byte order of the store is
obtained from AR[RSC].be. For mandatory RSE stores, type is
MANDATORY. RSE stores do not invalidate ALAT entries.

rse_update_internal_stack_pointer
s(new_store_pointer)

Given a new value for AR{ BSPSTORE] (new_st or e_poi nt er) this
function computes the new value for AR[ BSP] . This value is equal to
new_st or e_poi nt er plus the number of dirty registers plus the
number of intervening NaT collections. This means that the size of the
dirty partition is the same before and after a write to AR[ BSPSTORE] .
All clean registers are moved to the invalid partition.

sign_ext(value, pos)

Returns a 64 bit number with bits pos-1 through 0 taken from val ue
and bit pos-1 of val ue replicated in bit positions pos through 63. If
pos is greater than or equal to 64, val ue is returned.

tlb_translate(vaddr, size, type, cpl,
*attr, *defer)

Returns the translated data physical address for the specified virtual
memory address (vaddr ) when translation enabled; otherwise, returns
vaddr. si ze specifies the size of the access, t ype specifies the type
of access (e.g., read, write, advance, spec). cpl specifies the privilege
level for access checking purposes. *at t r returns the mapped physical
memory attribute. If any fault conditions are detected and deferred,
tlo_translate returns with * def er set. If a fault is generated but the fault
is not deferred, tlb_translate does not return.

tlb_translate_nonaccess(vaddr,
type)

Returns the translated data physical address for the specified virtual
memory address (vaddr). t ype specifies the type of access (e.g., FC).
If a fault is generated, tIb_translate_nonaccess does not return.

unimplemented_physical_address(
paddr)

Return TRUE if the presented physical address is unimplemented on this
processor model; FALSE otherwise. This function is model-specific.

impl_undefined_natd_gr_read(pad
dr, size, be, mattr, otype, Idhint)

defines register return data for a speculative load to a NaTed address.
This function may return data from another address space.

unimplemented_virtual_address(v
addr)

Return TRUE if the presented virtual address is unimplemented on this
processor model; FALSE otherwise. This function is model-specific.
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Table B-1. Pseudo-Code Functions (Cont'd)

Function

Operation

fp_update_fpsr(sf, tmp_fp_env)

Copies a floating-point instruction’s local state into the global FPSR.

zero_ext(value, pos)

Returns a 64 bit unsigned number with bits pos-1 through 0 taken from
val ue and zeroes in bit positions pos through 63. If pos is greater
than or equal to 64, val ue is returned.
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IA-64 Instruction Formats C

Each | A-64 instruction is categorized into one of six types; each instruction type may be executed on one or more
execution unit types. Table C-1 lists the instruction types and the execution unit type on which they are executed:

Table C-1. Relationship between Instruction Type and Execution Unit Type

InstTr;F;:éion Description Execution Unit Type
A Integer ALU l-unit or M-unit
| Non-ALU integer l-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended l-unit

Three instructions are grouped together into 128-bit sized and aligned containers called bundles. Each bundle contains
three 41-bit instruction slots and a 5-bit template field. The format of abundleis depicted in Figure C-1.

Figure C-1. Bundle Format
127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 ’template‘
41 41 41 5

The template field specifies two properties. stops within the current bundle, and the mapping of instruction slotsto
execution unit types. Not all combinations of these two properties are allowed - Table C-2 indicates the defined
combinations. The three rightmost columns correspond to the three instruction slotsin abundle; listed within each column

is the execution unit type controlled by that instruction slot for each encoding of the template field. A double lineto the
right of an instruction slot indicates that a stop occurs at that point within the current bundle. See “Instruction Encoding
Overview” on page 3-14or the definition of a stop. Within a bundle, execution order proceeds from slot O to slot 2.
Unused template values (appearing as empty rowahte C-3 are reserved and cause an lllegal Operation fault.

Extended instructions, used for long immediate integer instructions, occupy two instruction slots.

Table C-2. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2
00 M-unit l-unit l-unit
01 M-unit I-unit I-unit H
02 M-unit l-unit l-unit I
03 M-unit I-unit I-unit H
04 M-unit L-unit X-unit |
05 M-unit L-unit X-unit
06
07
08 M-unit M-unit l-unit
09 M-unit M-unit I-unit H
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Table C-2. Template Field Encoding and Instruction Slot Mapping (Cont'd)

Template Slot 0 Slot 1 Slot 2
0A M-unit M-unit l-unit
0B M-unit M-unit l-unit H
oc M-unit F-unit l-unit |
oD M-unit F-unit l-unit H
0E M-unit M-unit F-unit |
OF M-unit M-unit F-unit

10 M-unit l-unit
11 M-unit
12 M-unit
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

l-unit

M-unit

C.1l Format Summary

All instructions in the instruction set are 41 bitsin length. The leftmost 4 bits (40:37) of each instruction are the major

opcode. Table C-3 shows the major opcode assignments for each of the 5 instruction types — ALU (A), Integer (1),
Memory (M), Floating-point (F), and Branch (B). Bundle template bits are used to distinguish among the 4 columns, so
the same major op values can be reused in each column.

Unused major ops (appearing as blank entri@gaie C-3 behave in one of three ways:
* |Ignored major ops (white entries in Table C-3) execute as nop instructions.

* Reserved magjor ops (light gray in the gray scale version of Table C-3, brown in the color version) cause an Illegal
Operation fault.

* Reservedif PR[qp] is1 major ops (dark gray in the gray scale version of Table C-3, purplein the color version) cause
an lllegal Operation fault if the predicate register specified by the gp field of theinstruction (bits 5:0) is 1 and execute
asanop instruction if 0.

C-2 IA-64 Application Developer’s Architecture Guide, Rev. 1.0



Table C-3. Major Opcode Assignments

Major Instruction Type
Op
(bits
40:37) I/A M/A F B L+X

Mem Mgmt

Mem Mgmt

Deposit Int Ld +Reg/getf 4
Shift/Test Bit Int Ld/St +Imm >
‘ FP Ld/St +Reg/setf®

FP Ld/St +Imm ’

Table C-4 on page C-4 summarizes all the instruction formats. The instruction fields are color-coded for ease of
identification, as described in Table C-5 on page C-6.

Theinstruction field names, used throughout this chapter, are described in Table C-6 on page C-7. The set of special
notations (such as whether an instruction must be first in an instruction group) arelisted in Table C-7 on page C-7. These
notations appear in the “Instruction” column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one instruction field. For example, the 14-

bit immediate in the Add Imgy instruction (format A4) is formed from the imgrimmgg, and s fieldsTable C-65 on
page C-77%&hows how the immediates are formed from the instruction fields for each instruction which has an immediate.
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Table C-4. Instruction Format Summary
403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

ALU Al 8 Xoa Vel  Xg  |Xop rs r r
ShiftLand Add  A2| 8 Xoa Vel Xg |Clyg rs r r
ALU Immg A3 8 [S|XpaVe X4 |[Xop rs immyy, r
Add Immy, A4l B  [S|XoqNe immggy rs immyy,
Add Immy; A5/ 9 s immge | I3 immyy,
Compare A6 C-E tp| Xo rs ry c
Compareto Zero A7/ C-E [t Xo rs 0 c
Compare Immg ~ A8| C-E |s| X, rs immyp ©
MM ALU A9l 8 Z X, r3 o
MM Shiftand Add  A10[ 8 ZlXoalzd X4 |Clyg ra r
MM Multiply Shift 11~ 7 Zi %22 ZoVe Clod| X2b I3 T r
MM Mpy/Mix/Pack 12| 7 4 Xoa [ZpVe Xoc | Xop rs r r
MM Mux1 13) 7 [Z4 X9a ZpVe Xoc | Xob rs ry
MM Mux2 14 7 24 X9a ZpVe Xoc | Xop r
Shift R Variable 15 T Za X4 ZpVel Xoc | Xop ro
MM Shift R Fixed 16| 7 Z4 Xo, ZpVel Xoc | Xop countg,
Shift L variable 17| 7 Z,Xpq ZpVe Xoc | X2p r3
MM shift L Fixed 18] 7 [z Xpa ccounts,
Popcount 19 _7 ZQ X2a
Shift Right Pair 110 5 Xo
Extract 111 5 Xo
Dep.Z 112 5 Xo
Dep.Z Immg 113 5 S| Xo
Deposit Immq 114 5 S| Xo
Deposit 115 4 CPOSgq
Test Bit 116 5 tp| X2
Test NaT 117 5 tp| X2
Break/Nop 119 0 1| X3
Int Spec Check 120 0 S| X3
Move to BR 121 0 X3
Move from BR 122 0 X3
Move to Pred 123 0 S| X3
Move to Pred Immy, 124 0 S| X3
Move from Pred/IP 125 0 X3
Move to AR 126 0 X3
Move to AR Immg 127 0 S| X3
Move from AR 128 0 X3
Sxt/Zxt/Czx 129 0 X3

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
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Table C-4. Instruction Format Summary (Cont’d)

Int Load
Int Load +Reg
Int Load +Imm
Int Store
Int Store +Imm
FP Load
FP Load +Reg
FP Load +Imm
FP Store
FP Store +Imm
FP Load Pair
FP Load Pair +Imm
Line Prefetch
Line Prefetch +Reg
Line Prefetch +Imm
(Cmp &) Exchg
Fetch & Add
Set FR
Get FR
Int Spec Check
FP Spec Check
Int ALAT Check
FP ALAT Check
Sync/Srlz/ALAT
RSE Control
Int ALAT Inval
FP ALAT Inval
Flush Cache
Move to AR
Move to AR Immg
Move from AR
Alloc
Move to PSR
Move from PSR
Break/Nop
Mv from Ind
Set/Reset Mask

M1

M2

M3

M4

M5

M6

M7

M8

M9
M10
M11
M12
M13
M14
M15
M16
M17
M18
M19
M20
M21
M22
M23
M24
M25
M26
m27
M28
M29
M30
M31
M34
M35
M36
mM37
M43
M44

403938373635343332313029282726252423222120191817161514131211109 8 7 6 543 2 1 0

4 |m X
4 |m Xg
5 |s Xg i |
4 |m Xg
5 |s Xg i |
6 |m Xg
6 |m Xg
7 s Xg i |
6 |m Xg
7 s Xg i |
6 |m Xg
6 m Xg hint x|
6 |m X
6 |m Xg
7 s Xg hint i
4 |m X
4 m Xg hint x
6 |m Xg X
4 |m Xe X
1 S| X3

1 S| X3

0 |s| x3

0 |s| x3

0 X3 X2

0 X3 X2

0 X3 X2

0 X3 X2

1 X3 Xe

1 X3 X6

0 |Is| x3 | x|

1 X3 Xe

1 X3 |

1 X3 X6

1 X3 X6

0 1| X3 Xo |

1 X3 X6

0 1| X3 i2d |

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

IA-64 Application Developer’s Architecture Guide, Rev. 1.0

C-5



Table C-4. Instruction Format Summary (Cont’d)

IP-Relative Branch
Counted Branch
IP-Relative Call
Indirect Branch
Indirect Call
Misc
Break/Nop
FP Arithmetic
Fixed Multiply Add
FP Select
FP Compare
FP Class
FP Recip Approx
FP Recip Sqrt App
FP Min/Max/Pcmp
FP Merge/Logical
Convert FP to Fixed
Convert Fixed to FP
FP Set Controls
FP Clear Flags
FP Check Flags
Break/Nop
Break/Nop
Move Immg,

B1
B2

B4
B5
B8
B9
F1
F2
F3
F4
F5
F6
F7
F8
F9

F10

F11

F12

F13

F14

F15

X1
X2

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

immaop
immaop
immaop
X6 | b2
b,
X6
i X6 | imMaga
X f4 f3 f2
E X| Xo f4 f3 f2
E X f3 f2
4 Iy sf|ry f3 fp
5 fcp fclassye fy
0-1 |q| sf |x f3 fp
0-1 |q| sf |x f3
0-1 sf |x X6 f3 f2
0-1 X X6 f3 f2
0-1 | [sf]x Xg fy
0 X X6 f2
0 sf |x Xg omasky¢ amaskzy,
0 sf |x Xg
0 |[s| sf|x Xg iMMog,
0 i X Xg iMMog,
0 i X3 X6 immzoa
6 i immgg immse |icvg  immoy

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Table C-5. Instruction Field Color Key

intel.

Field & Color

ALU Instruction

Opcode Extension

Integer Instruction

Memory Instruction

Floating-point Instruction

Integer Source

Floating-point Source

Branch Source

Ignored Field/Instruction

Branch Destination

C-6
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Table C-6. Instruction Field Names

Field Name Description
arg application register source/target
by, by branch register source/target
btype branch type opcode extension
c complement compare relation opcode extension
ccounts, multimedia shift left complemented shift count immediate
countgy, countgy multimedia shift right/shift right pair shift count immediate
Cposy deposit complemented bit position immediate
Ctyg multimedia multiply shift/shift and add shift count immediate
d branch cache deallocation hint opcode extension
f floating-point register source/target
fc,, fclassye floating-point class immediate
hint memory reference hint opcode extension
i, igp, Ipg, IMMy immediate of length 1, 2, or x
lengy, lengg extract/deposit length immediate
m memory reference post-modify opcode extension
mask, predicate immediate mask
mbtye, mhtge multimedia mux1/mux2 immediate
p sequential prefetch hint opcode extension
p1, P2 predicate register target
posgy test bit/extract bit position immediate
q floating-point reciprocal/reciprocal square-root opcode extension
qp qualifying predicate register source
M general register source/target
S immediate sign bit
sf floating-point status field opcode extension
sof, sol, sor alloc size of frame, size of locals, size of rotating immediates
ta tp compare type opcode extension
Vy reserved opcode extension field
wh branch whether hint opcode extension
X, Xp opcode extension of length 1 or n
y extract/deposit/test bit/test NaT opcode extension
Za, Zpy multimedia operand size opcode extension
Table C-7. Special Instruction Notations
Notation Description
f instruction must be the first in an instruction group
| instruction must be the last in an instruction group
t instruction is only allowed in instruction slot 2

The remaining sections of this chapter present the detailed encodings of all instructions. The “A-Unit Instruction
encodings” are presented first, followed by thenit Instruction Encodings” on page C-18/4-Unit Instruction
Encodings” on page C-32B-Unit Instruction Encodings” on page C-5%-Unit Instruction Encodings” on page C-64
and“X-Unit Instruction Encodings” on page C-75
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Within each section, the instructions are grouped by function, and appear with their instruction format in the same order as

in Table C-4 “Instruction Format Summary” on page CFée opcode extension fields are briefly described and tables
present the opcode extension assignments. Unused instruction encodings (appearing as blank entries in the opcode
extensions tables) behave in one of three ways:

¢ |gnored instructions (white entries in the tables) execute as nop instructions.

* Reserved instructions (light gray in the gray scale version of the tables, brown in the color version) cause an Illegal
Operation fault.

* Reserved if PR[gp] is 1 instructions (dark gray in the gray scale version of the tables, purple in the color version)
cause an lllegal Operation fault if the predicate register specified by the gp field of the instruction (bits 5:0) is 1 and
execute asanop instruction if 0.

Constant O fields in instructions must be 0 or undefined operation results. The undefined operation may include checking
that the constant field is 0 and causing an Illegal Operation fault if it is not. If an instruction having a constant O field also
has a qualifying predicate (gp field), the fault or other undefined operation must not occur if PR[gp] is 0. For constant O
fieldsininstruction bits 5:0 (normally used for gp), the fault or other undefined operation may or may not depend on the
PR addressed by those bits.

Ignored (white space) fields in instructions should be coded as 0. Although ignored in thisrevision of the architecture,
future architecture revisions may define these fields as hint extensions. These hint extensions will be defined such that the
0 valuein each field corresponds to the default hint. It is expected that assemblers will automatically set these fieldsto
zero by default.

C.2 A-Unit Instruction Encodings

C21 Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode extension field in bits 35:34 (x,,)

and most have a second 2-bit opcode extension field in bits 28:27 (x5y,), a4-bit opcode extension field in bits 32:29 (x,),
and a 1-bit reserved opcode extension field in bit 33 (v,). Table C-8 shows the 2-bit x,, and 1-bit v, assignments,

Table C-9 showsthe integer ALU 4-bit+2-bit assignments, and Table C-12 on page C-15 shows the multimedia ALU 1-
bit+2-bit assignments (which also share major opcode 8).

Table C-8. Integer ALU 2-bit+1-bit Opcode Extensions

v
Opcode X2a L€
Bits Bits Bit 33
40:37 35:34 0 1

0 Integer ALU 4-bit+2-bit Ext (Table C-9)
1 Multimedia ALU 1-bit+2-bit Ext (Table C-12)
2 adds —immy, A4
3

addp4 —immq4 A4
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Table C-9. Integer ALU 4-bit+2-bit Opcode Extensions

Bits 28:27

X2b

Opcode | Xy, Ve X4
Bits Bits | Bit | Bits
40:37 | 35:34 | 33 | 32:29
0
1
2
3
4
5
6
7
8 0 0
8
9
A
B
C
D
E
F

C.2.1.1.

Integer ALU — Register-Register

40 373635343332 29282726 2019 1312 6
Al I3 ) 1
4 1 7 7 7
Extension
Instruction Operands Opcode
X2a Ve Xq X2b
ri="rofr 0
add 1723 0
=0y I3 1 1
ry="ror 1
sub 1723 1
rp=ry1r31 0
addp4 8 0 0 2 0
and 0
andcm r1=rorg3 1
3
or 2
xor 3
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C.2.1.2. Shift Left and Add

40 373635343332 29282726 2019 1312 6 5 0
A [ B oaVd X [eg 1 2 o [
4 1 2 1 4 2 7 7 7 6
Extension
Instruction Operands Opcode
X2a Ve X4
shladd i 4
rq =ro, Ccounty, r 8 0 0
shladdp4 1772 273 6

C.2.1.3. Integer ALU — Immediate g-Register

40 373635343332 29282726 2019 1312 6 5 0
w0 8 [shmavd e o | wmw | G
4 1 2 1 4 2 7 7 7 6
Extension
Instruction Operands Opcode
X2a Ve X4 X2b
sub 9 1
and 0
andcm r{=immg, ra 8 0 0 1
B
or 2
xor 3

C.2.1.4. Add Immediate 14

40 373635343332 2726 2019 1312 6 5 0
p [ b e | | mmn o G
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X2a Ve
adds . 2
1 =1MMYy, r 8 0
addp4 1 1473 3

C.2.15. Add Immediate 5,

40 373635 2726 22212019 1312 6 5 0
po [0 s wme e (v wmw | G
4 1 9 5 2 7 7 6
Instruction Operands Opcode
addl| I’l = immzz, I’3 9
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C.2.2 Integer Compare

The integer compare instructions are encoded within major opcodes C — E using a 2-bit opcode extensypimfieits (x
35:34 and three 1-bit opcode extension fields in bits 3336 (1), and 12 (c), as shown frable C-10 The integer
compare immediate instructions are encoded within major opcodes C — E using a 2-bit opcode extensigrirfiblts (x
35:34 and two 1-bit opcode extension fields in bits J3aftd 12 (c), as shown rable C-11

Table C-10. Integer Compare Opcode Extensions

X2 |t | ta | C B?t’s)cfoc:i;
Bits Bit | Bit | Bit
35:34 | 36 | 33 | 12 c D E
0
0
1
0
0
1
1
0
0
1
1
0
1
1

Table C-11. Integer Compare Immediate Opcode Extensions

M t c Opcode

2 a B .

Bits | Bit | Bit Bits 40:37

35:34 | 33 | 12 c D E
0

2

1
0
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C.2.2.1. Integer Compare — Register-Register

40 373635343332 2726 2019 131211 6 5 0

A [eEllel e ] n | e [ R
2 1 6 7 1

4 1 6 6

Extension

Instruction Operands Opcode
X2 tb ta C

cmp.lt

cmp.ltu

cmp.eq

cmp.lt.unc

cmp.ltu.unc

cmp.eg.unc

cmp.eg.and

cmp.eq.or

cmp.eg.or.andcm

cmp.ne.and

cmp.ne.or

cmp.ne.or.andcm

s =0y I
cmpA.It PrP2=T2 T3

cmp4.ltu

cmp4.eq

cmp4.lt.unc

cmp4.ltu.unc

cmp4.eqg.unc

cmp4.eq.and

cmp4.eq.or

cmp4.eg.or.andcm

cmp4.ne.and

cmp4.ne.or

m oo/ molomo|lo Moo M oOolo Moo M O|lOo|m OO

cmp4.ne.or.andcm
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C.2.2.2.

A7

Integer Compare to Zero — Register
40 373635343332

2726

2019

131211

6

5 0

P1

[C-E [ x [t
4 1 2 1

P2
6

[ =&
7

2
1

6

Instruction

Operands

Opcode

Extension

X2

ty

t c

cmp.gt.and

cmp.gt.or

cmp.gt.or.andcm

cmp.le.and

cmp.le.or

cmp.le.or.andcm

cmp.ge.and

cmp.ge.or

cmp.ge.or.andcm

cmp.lt.and

cmp.lt.or

cmp.lt.or.andcm

cmp4.gt.and

cmp4.gt.or

cmp4.gt.or.andcm

cmp4.le.and

cmp4.le.or

cmp4.le.or.andcm

cmp4.ge.and

cmp4.ge.or

cmp4.ge.or.andcm

cmp4.lt.and

cmp4.lt.or

cmp4.lt.or.andcm

P1. P2=10,T3

m oo/ molomo|lo M OO Moo M OoO|lOo M O|lO|m OO

IA-64 Application Developer’s Architecture Guide, Rev. 1.0

C-13



C.2.2.3. Integer Compare — Immediate-Register
40 373635343332 2726 2019 131211 6 5 0

A8 [C-Elspe TR ] | immoy  [of e RN
1 6 7

4 1 2 7 1 6 6

Extension

Instruction Operands Opcode
X2 ta C

cmp.lt

cmp.ltu

cmp.eq

cmp.lt.unc

cmp.ltu.unc

cmp.eg.unc

cmp.eg.and

cmp.eq.or

cmp.eg.or.andcm

cmp.ne.and

cmp.ne.or

cmp.ne.or.andcm

Py, P2=immg, 3
cmp4.lt

cmp4.ltu

cmp4.eq

cmp4.lt.unc

cmp4.ltu.unc

cmp4.eqg.unc

cmp4.eqg.and

cmp4.eq.or

cmp4.eg.or.andcm

cmp4.ne.and

cmp4.ne.or

molo/molo mMojlo Mmoo Moo mMo|lo m oo/ mfolo

cmp4.ne.or.andcm
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C.23 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit opcode extension fields in bits 36
(z5) and 33 (z,) and a 2-bit opcode extension field in bits 35:34 (x,,) as shown in Table C-12. The multimedia ALU
instructions also have a 4-bit opcode extension field in bits 32:29 (x,), and a 2-bit opcode extension field in bits 28:27
(X5p) as shown in Table C-13 on page C-15.

Table C-12. Multimedia ALU 2-bit+1-bit Opcode Extensions

Opcode X2a Z, Zy
Bits 40:37 Bits 35:34 Bit 36 Bit 33

0

0
1

8

0

1
1

Table C-13. Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

X2p
Opcode Xoa z, | zp X4 ) .
Bits Bits | Bit | Bit | Bits Bits 28:27
40:37 | 35:34 | 36 | 33 | 32:29 o 1 5 ;
8 1 0 0
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Table C-14. Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions

Opcode | Xpa Za | zp Xg -y
Bits Bits | Bit | Bit | Bits Bits 28:27
40:37 35:34 | 36 | 33 | 32:29 1 5 3
8 1 0 1

Table C-15. Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

C-16

X2p
o | 8 |6 |8k | s Bits 28:27
40:37 35:34 | 36 33 | 32:29 1 2 3
0
1
2
3
4
5
6
8 1 1 0 !
8
9
A
B
C
D
E
F
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C.23.1.

Multimedia ALU

40 373635343332 29282726 2019 1312 6 5
A9 [ 8 Faaz] X [n 1 2 o [
4 1 2 1 4 2 7 7 7
Extension
Instruction Operands Opcode
X2a Za Zp X4 X2b
paddl 0
0
padd2 1 0
padd4 1 0
paddl.sss 0
0 1
padd2.sss 1 0
paddl.uuu 0
0 2
padd2.uuu 1
paddl.uus 0
0 3
padd2.uus 1
psubl 0
0
psub2 1 0
psub4 1 0
psubl.sss 0
0 1
psub2.sss 1 1
psubl.uuu 0
rp=ror 8 1 0 2
psub2.uuu 177273 1
psubl.uus 0
0 3
psub2.uus 1
pavgl 0
0 2
pavg2 1
2
pavgl.raz 0
0 3
pavg2.raz 1
pavgsubl 0
0 3 2
pavgsub2 1
pcmpl.eq 0
0
pcmp2.eq 1 0
pcmp4.eq 1 0
9
pcmpl.gt 0 0
pcmp2.gt 1 1
pcmp4.gt 1 0
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C.2.3.2. Multimedia Shift and Add

40 373635343332 29282726 2019 1312 65 0
mo (T8 i) W o s : o
4 1 2 1 4 2 7 7 7 6
Extension
Instruction Operands Opcode
X2a Za Zp X4
pehladdz r I, count,, r 8 1 0 1 ¢
= s ] s
pshradd2 1772 273 6
C.3 [-Unit Instruction Encodings

C.3.1 Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift instructions are encoded within major
opcode 7 using two 1-bit opcode extension fields in bits 36 (z,) and 33 (z,) and a 1-bit reserved opcode extension in bit 32
(ve) asshownin Table C-16. They also have a 2-bit opcode extension field in bits 35:34 (x,,) and a 2-bit field in bits 29:28
(Xop) and most have a 2-bit field in bits 31:30 (x,.) as shown in Table C-17.

Table C-16. Multimedia and Variable Shift 1-bit Opcode Extensions

z z Ve
a b i
_Opcoc.ie Bit Bit Bit 32
Bits 40:37 36 33
0 1
0 Multimedia Size 1 (Table C-17)
0
1 Multimedia Size 2 (Table C-18)
7
0 Multimedia Size 4 (Table C-19)
1
1 Variable Shift (Table C-20)
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Table C-17. Multimedia Max/Min/Mix/Pack/Unpack Size 1 2-bit Opcode Extensions

- X2
Bits 31:30

Opcode | z5 | zp | Ve X2a X2p
Bits Bit | Bit | Bit | Bits Bits
40:37 36 | 33 | 32 | 35:34 | 29:28
0
1
7 0 0 0
2
3

1

stz | mdi |

Table C-18. Multimedia Multiply/Shift/Max/Min/Mix/Pack/Unpack Size 2 2-bit Opcode Extensions

X2¢
Toie | ok | Bk | 8h | 8% | s
40:37 36 | 33 | 32 | 35:34 | 29:28 0 1 3
0 pshr2.u —var 15 pshl2 —var 17
1 pmpyshr2.u 11
0 2 pshr2 —var 15
3 pmpyshr2 11
0
2
3 pshr2 — fixed 16
7 0 1 0 -
, [
2 pack2.sss 12 unpack2.| 12
3 pmin2 12 pmax2 12
0 |
. 3 | psniz—fnea o |
z
3
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Table C-19. Multimedia Shift/Mix/Pack/Unpack Size 4 2-bit Opcode Extensions

Opcode | z5 | zp | Ve X2a Xop _ Xoc
Bits Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 36 | 33 | 32 | 35:34 | 29:28 0 1 P 3

pshrd.u —var 15 pshl4 — var 17

0 I R S
pshr4 — var 15

1 pshrd.u — fixed 16

pshr4 — fixed 16
7 10| o0 - r |

2 |

pack4.sss 12 unpack4.| 12 mix4.1 12

I I R R
:

Table C-20. Variable Shift 2-bit Opcode Extensions

Opcode | z5 | zy | Ve | X2a Xap . Xac
Bits | Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 36 33 32 35:34 | 29:28 0 1 5 3
shr.u —var 15 shl —var |7
o |
1
7 1 1 0
2
3
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C.3.1.1. Multimedia Multiply and Shift

40 373635343332313029282726 2019 1312 5
L[ 7 Eeardedes| | m [ n [NEE
4 1 2 11 2 2 1 7 7 7
Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b
pmpyshr2 3
rq=ro, Iz, count, 7 0 1 0 0
pmpyshr2.u 1
C.3.1.2. Multimedia Multiply/Mix/Pack/Unpack
40 373635343332313029282726 2019 1312 5
2 [ 7 Eeaziddacles| | s [ n o [NEE
4 12 11 2 2 1 7 7 7
Extension
Instruction Operands Opcode
Za3 Zp Ve X2a X2n X2c
pmpy2.r 1
0 1 3
pmpy2.1 3
mix1.r 0 0
mix2.r 0 1 0
mix4.r 1 0
2
mix1.| 0 0
mix2. 0 1 2
mix4.| 1 0
pack2.uss 0 1 0
pack2.sss 0 1 ) 0
pack4.sss 1 0
rQ=ror 7 0 2
unpackl.h 177273 0 0
unpack2.h 0 1 0
unpack4.h 1 0
1
unpackl.| 0 0
unpack?2. 0 1 2
unpack4.| 1 0
pminl.u 0
0 0 1
pmaxl.u 1
pmin2 0
0 1 3
pmax2 1
psadl 0 0 3 2
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C.3.1.3. Multimedia Mux1
40 3736353433323130292827 2423 2019 1312 6 5 0
A e I L n [NEE
4 12 11 2 2 4 4 7 7 6
Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2¢
mux1 rq=r, mbtype, 7 0 0 0 3 2 2
C.3.1.4. Multimedia Mux2
40 3736353433323130292827 2019 1312 65 0
4T Zaeaivdec) | mhteg 2 A
4 12 11 2 2 8 7 7 6
Extension
Instruction Operands Opcode
Z3 Zp Ve X2a X2b X2¢
mux2 ry =rp, mhtypeg 7 0 1 0 3 2 2
C.3.15. Shift Right — Variable
40 373635343332313029282726 2019 1312 6 5 0
517 e o [NNGHEN A
4 12 11 2 21 7 7 7 6
Extension
Instruction Operands Opcode
Za3 Zp Ve X2a X2n X2c
pshr2 0 1
pshrd 1 0 2
shr 1 1
ri=rar 7 0 0 0
pshr2.u 177872 0 1
pshrd.u 1 0 0
shr.u 1 1
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C.3.1.6. Multimedia Shift Right — Fixed
40 373635343332313029282726 201918 141312 6 5
6T Zaeanidxec)or NG | counts; | | r [GRN
4 12 11 2 21 7 1 5 1 7
Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2¢
pshr2 0 1
3
pshr4 1 0
1 ="r3, count 7 0 1 0
pshr2.u 1773 s 0 1
1
pshrd.u 1 0
C.3.1.7. Shift Left — Variable
40 373635343332313029282726 2019 1312 6 5
R e e
4 12 11 2 21 7 7 7
Extension
Instruction Operands Opcode
Za Zp Ve X2a X2n X2¢
pshi2 0 1
pshl4 I’l = I’2, I’3 7 1 0 0 0 0 1
shl 1 1
C.3.1.8. Multimedia Shift Left — Fixed
40 3736353433323130292827 2524 2019 1312 5
87 ZgXoaZoVdXec| X | coountse [INTHIT o [aR
4 12 11 2 2 3 5 7 7
Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2¢
pshi2 0 1
I1="r5, counts 7 0 3 1 1
pshi4 1772 s 1 0
C.3.1.9. Population Count
40 373635343332313029282726 2019 1312 5
A A e 0 n o [NEE
4 1 2 11 1 7 7 7
Extension
Instruction Operands Opcode
Za3 Zp Ve X2a X2n X2c
popcnt rh=rs 7 0 1 0 1 1 2
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C.3.2 Integer Shifts

Theinteger shift, test bit, and test NaT instructions are encoded within major opcode 5 using a 2-bit opcode extension
field in bits 35:34 (x,) and a 1-bit opcode extension field in bit 33 (x). The extract and test bit instructions also have a 1-bit
opcode extension field in bit 13 (y). Table C-21 shows the test bit, extract, and shift right pair assignments.

Table C-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions

y
Opcode Xo X Bit 13
Bits 40:37 | Bits 35:34 | Bit 33

0 1

Test Bit (Table C-23) Test NaT (Table C-23)

extr.u 111 extr 111

0
1
5 0
2
3 shrp 110

Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y). Table C-22 shows these assignments.

Table C-22. Deposit Opcode Extensions

y
Opcode Xo X Bit 26
Bits 40:37 Bits 35:34 | Bit 33
0 1
0 Test Bit/Test NaT (Table C-23)
1 dep.z 112 dep.z —immg 113
5 1
2
3 dep —imm, 114
C.3.2.1. Shift Right Pair
40 373635343332 2726 2019 1312 6 5 0
0[5 | [ial oo
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X2 X
shrp r1="rp, I'3, countg 5 3 0
C.3.2.2. Extract
40 373635343332 2726 2019 141312 6 5 0
5 | el lenes  [ENNGENN pose [y o [NGRNN
4 1 2 1 6 7 6 1 7 6
Extension
Instruction Operands Opcode
X2 X y
extr.u 0
r="rs poss leng 5 1 0
extr 1
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C.3.2.3. Zero and Deposit

40 373635343332 272625 2019 1312 6 5
2[5 | x| ene v oo
4 1 2 1 6 1 6 7 7 6
Extension
Instruction Operands Opcode
Xo X y
dep.z ry="rp, Posg leng 5 1 1 0
C.3.24. Zero and Deposit Inmediateg
40 373635343332 272625 2019 1312 6 5
1[5 lslnp by @ | o | o KGEN
4 1 2 1 6 1 6 7 7 6
Extension
Instruction Operands Opcode
X5 X y
dep.z r1 = immg, posg, leng 5 1 1 1
C.3.2.5. Deposit Immediate;
40 373635343332 2726 2019 141312 6 5
14 |5 Jshofx] lengg o [emose | n [NGRN
1 2 1 6 7 6 1 7 6
Extension
Instruction Operands Opcode
Xo X
dep rq=immy, r3, posg, leng 5 3 1
C.3.2.6. Deposit
40 3736 3130 2726 2019 1312 6 5
15 [ 4 | oo | |
4 6 4 7 7 7 6
Instruction Operands Opcode
dep r{="ry '3, POSg, len, 4
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C.3.3 Test Bit

intel.

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode extension field in bits 35:34 (x,) plusfour
1-bit opcode extension fieldsin bits 33 (t,), 36 (1), 12 (c), and 19 (y). Table C-23 summarizes these assignments.

Table C-23. Test Bit Opcode Extensions

y
Opcode BXitzs ta ty, c Bit 13
Bits 40:37 . Bit 33 | Bit 36 | Bit 12
35:34
0 1
0 tbit.z 116 tnat.z 117
0
1 tbit.z.unc 116 tnat.z.unc 117
0
0 tbit.z.and 116 tnat.z.and 117
1
1 tbit.nz.and 116 tnat.nz.and 117
5 0
0 tbit.z.or 116 tnat.z.or 117
0
1 tbit.nz.or 116 tnat.nz.or 117
1
0 tbit.z.or.andcm 116 tnat.z.or.andcm 117
1
1 tbit.nz.or.andcm 116 tnat.nz.or.andcm 117
C.3.3.1. Test Bit
40 373635343332 2726 2019 14131211 6 5 0
16 [ 5 i/ %t P2 g Posss  vie| P [IaRI
1 2 1 6 7 6 11 6 6
Extension
Instruction Operands Opcode
Xo ta tp y c
thit.z 0
- 0
tbit.z.unc 1
0
tbit.z.and 0
1
tbit.nz.and 1
P1. P2 =3, PO 5 0 0
tbit.z.or AR % 0
0
tbit.nz.or 1
1
tbit.z.or.andcm 0
1
thit.nz.or.andcm 1
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C.3.3.2. Test NaT

40 373635343332 2726 2019 14131211 6 5 0
17 [ 5 Julxl s e[ e e
4 1 2 1 6 7 6 11 6 6
Extension
Instruction Operands Opcode
X2 ta ty y C
tnat.z 0
0
tnat.z.unc 1
0
tnat.z.and 0
1
tnat.nz.and 1
P1. po=r 5 0 1
tnat.z.or SRR 0
0
tnat.nz.or 1
1
tnat.z.or.andcm 0
1
tnat.nz.or.andcm 1
C.34 Miscellaneous I-Unit Instructions

The miscellaneous I-unit instructions are encoded in major opcode 0 using a 3-bit opcode extension field (x3) in bits
35:33. Some also have a 6-bit opcode extension field (xg) in bits 32:27. Table C-24 shows the 3-bit assignments and
Table C-25 summarizes the 6-bit assignments.

Table C-24. Misc I-Unit 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 6-bit Ext (Table C-25)
1 chk.s.i—int 120
2 mov to pr.rot — immy, 124
3 mov to pr 123
0 4

5
6
7 mov to b 122
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Table C-25. Misc I-Unit 6-bit Opcode Extensions

X6

Opcode X3 -
Bits Bits Bits 32:31

. . Bits
40:37 35:33 30:27

0 1 2 3

break.i 119 zxtl 129 mov from ip 125

nop.i 119 zxt2 129 mov from b 122

zxt4 129 mov.i from ar 128

mov from pr 125

sxtl 129
sxt2 129
sxt4 129

0
1
2
3
4
5
6
7
8 czx1.1129
9
A
B
c
D
E
F

czx2.1129
mov.i to ar —immg 127

czx1.r 129

czx2.r 129

C.3.4.1. Break/Nop (I-Unit)

40 373635 3332 272625
o | o |il x| x || iMMyoq
4 1 3 6 20
Extension
Instruction Operands Opcode
X3 X
break.i . o 0 00
m
nop.i 21 01
C.34.2. Integer Speculation Check (I-Unit)
40 373635 3332 2019 1312 6 5 0
0 [0 sl wme o | o |G
4 1 3 13 7 7 6
Extension
Instruction Operands Opcode
X3
chk.s.i o, target25 0 1
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C.3.5

GR/BR Moves

The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit Instructions” on page C-&¢

a summary of the opcode extensions. The mov to BR instruction uses a 1-bit opcode extension field (x) in bit 22 to

distinguish the return form from the normal form.

C.3.5.1.

C.3.5.2.

C.3.6

Move to BR
40 373635 3332 2322212019 1312 9 8 6 5
2 [0 [ X 1 = [ [o
4 1 3 10 1 2 7 4 3 6
Extension
Instruction Operands Opcode
X3 X
mov 0
bi=r1, 0 7
mov.ret 1
Move from BR
40 373635 3332 2726 1615 1312 6 5
22 [ o [ [xa] % 2.
4 1 3 6 11 3 7 6
Extension
Instruction Operands Opcode
X3 X6
mov ry=b, 0 0 31

GR/Predicate/IP Moves

The GR/Predicate/IP move instructions are encoded in major opcode‘®MiSeslaneous I-Unit Instructions” on
page C-27or a summary of the opcode extensions.

C.3.6.1.

Move to Predicates — Register

40 373635 333231 2423 2019 1312 65
4 1 3 1 8 4 7 7 6
Extension
Instruction Operands Opcode
X3
mov pr =I5, Masky7 0 3
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C.3.6.2. Move to Predicates — Immediate 44
40 373635 3332 6 5
124 ’ 0 ’s’ X3 ’ immy7, !
4 1 3 27 6
Extension
Instruction Operands Opcode
X3
mov pr.rot = iMmMy, 0 2
C.3.6.3. Move from Predicates/IP
40 373635 3332 2726 1312 65
25 o [ e % ] A
1 3 6 14 7 6
Extension
Instruction Operands Opcode
X3 X6
mov 0 0
rlzpr 33
C.3.7 GR/AR Moves (I-Unit)

The I-Unit GR/AR move instructions are encoded in major opcode 0. (Some ARS are accessed using memory

management instructions on the M-unit. See “GR/AR Moves (M-Unit)” on page C-53 Se€'Miscellaneous I-Unit
Instructions” on page C-2for a summary of the I-Unit GR/AR opcode extensions.

C.3.7.1. Move to AR — Register (I-Unit)
40 373635 3332 2726 2019 1312 65
26 o (e % | a | n e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X6
mov.i ar3= I’2 0 0 2A
C.3.7.2. Move to AR — Immediate g (I-Unit)
40 373635 3332 2726 2019 1312 6 5
R R e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X6
mov.i arz=immg 0 0 0A
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C.3.7.3. Move from AR (I-Unit)
40 373635 3332 2726 2019 1312 6 5
2 [0 | [ | e | e o

4 1 3 6 7 7 7 6
Extension

Instruction Operands Opcode
X3 X6
mov.i I’1=ar3 0 0 32

C.3.8 Sign/Zero Extend/Compute Zero Index

40 373635 3332 2726 2019 1312 6 5
20 [0 [l % | 5| oo e

4 1 3 6 7 7 7 6
Extension

Instruction Operands Opcode
X3 X6
zxtl 10
zxt2 11
zxt4 12
sxtl 14
sxt2 15

fa=r 0 0

sxt4 1='s 16
czx1.l 18
czx2.l 19
czxl.r 1C
czx2.r 1D
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C4 M-Unit Instruction Encodings

C4.1 Loads and Stores

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a 6-bit opcode extension field in bits
35:30 (xg). Instructions in major opcode 4 (integer load/store, semaphores, and get FR) use two 1-bit opcode extension
fieldsin bit 36 (m) and bit 27 (x) as shown in Table C-26. Instructionsin major opcode 6 (floating-point 1oad/store, load
pair, and set FR) use two 1-bit opcode extension fields in bit 36 (m) and bit 27 (x) as shown in Table C-27.

Table C-26. Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions

Opcode m X
Bits 40:37 Bit 36 Bit 27
0 0 Load/Store (Table C-28)
0 1 Semaphore/get FR (Table C-31)
N 1 0 Load +Reg (Table C-29)
T

Table C-27. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions

Opcode m X
Bits 40:37 Bit 36 Bit 27
0 0 FP Load/Store (Table C-32)
0 1 FP Load Pair/set FR (Table C-35)
® 1 0 FP Load +Reg (Table C-33)
1 1 FP Load Pair +Imm (Table C-36)

Theinteger load/store opcode extensions are summarized in Table C-28 on page C-33, Table C-29 on page C-33, and
Table C-30 on page C-34, and the semaphore and get FR opcode extensions in Table C-31 on page C-34. The floating-
point load/store opcode extensions are summarized in Table C-32 on page C-35, Table C-33 on page C-35, and

Table C-34 on page C-36, the floating-point load pair and set FR opcode extensions in Table C-35 on page C-36 and
Table C-36 on page C-37.
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Table C-28. Integer Load/Store Opcode Extensions

Xe
Opcode m X
Bits Bit | Bit Bits Bits 31:30
40:37 36 27 35:32
' 0 1 2 3
0 ld1 M1 1d2 M1 1d4 M1 1d8 M1
1 ldl.s M1 ld2.s M1 Id4.s M1 1d8.s M1
2 ldl.a M1 ld2.a M1 Id4.a M1 1d8.a M1
3 ld1l.sa M1 ld2.sa M1 Id4.sa M1 Id8.sa M1
4 Id1.bias M1 Id2.bias M1 ld4.bias M1 1d8.bias M1
5 ldl.acq M1 Id2.acq M1 Id4.acq M1 ld8.acq M1
6 1d8.fill M1
7
4 0 0
8 Id1.c.clr M1 ld2.c.clr M1 ld4.c.clr M1 1d8.c.clr M1
9 Id1.c.nc M1 Id2.c.nc M1 ld4.c.nc M1 1d8.c.nc M1
A ld1.c.clracqg M1 ld2.c.clr.acqg M1 Id4.c.clr.acqg M1 |d8.c.clr.acqg M1
o [ S N
C stl M4 st2 M4 st4 M4 st8 M4
D stl.rel M4 st2.rel M4 st4.rel M4 st8.rel M4
E st8.spill M4
F
Table C-29. Integer Load +Reg Opcode Extensions
Xe
Opcode m X
Bits Bit | Bit Bits Bits 31:30
40:37 36 27 35:32
) 0 1 2 3
0 Id1 M2 1d2 M2 1d4 M2 1d8 M2
1 ld1.s M2 1d2.s M2 Id4.s M2 1d8.s M2
2 ldl.a M2 Id2.a M2 Id4.a M2 1d8.a M2
3 Id1.sa M2 Id2.sa M2 Id4.sa M2 1d8.sa M2
4 Id1.bias M2 Id2.bias M2 ld4.bias M2 1d8.bias M2
5 Id1l.acq M2 Id2.acq M2 Id4.acq M2 ld8.acq M2
6 1d8.fill M2
7
4 1 0
Id1.c.clr M2 ld2.c.clr M2 ld4.c.clr M2 1d8.c.clr M2
Id1.c.nc M2 Id2.c.nc M2 ld4.c.nc M2 1d8.c.nc M2

M mO|lO|wW > oo

ld1.c.clr.acqg M2
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ld2.c.clr.acq M2

Id4.c.clr.acqg M2

|d8.c.clr.acqg M2
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Table C-30. Integer Load/Store +Imm Opcode Extensions

Xe
Bci)tgc4%c:i§7 Bits Bits 31:30
35:32 0 1 5 3

0 1d1 M3 1d2 M3 1d4 M3 1d8 M3
1 Id1.s M3 1d2.s M3 Id4.s M3 |d8.s M3
2 |d1.a M3 Id2.a M3 Id4.a M3 |d8.a M3
3 Id1l.sa M3 Id2.sa M3 |d4.sa M3 |d8.sa M3
4 Id1.bias M3 1d2.bias M3 |d4.bias M3 |d8.bias M3
5 Id1l.acq M3 Id2.acq M3 ld4.acq M3 Id8.acq M3
6 1d8.fill M3
7

> 8 ld1.c.clr M3 ld2.c.clr M3 ld4.c.clr M3 Id8.c.clr M3
9 Id1l.c.nc M3 Id2.c.nc M3 Id4.c.nc M3 1d8.c.nc M3
A Id1.c.clracqg M3 Id2.c.clr.acqg M3 Id4.c.clr.acq M3 1d8.c.clr.acqg M3

o I R R

C stl M5 st2 M5 st4 M5 st8 M5
D stl.rel M5 st2.rel M5 st4.rel M5 st8.rel M5
E

Table C-31. Semaphore/Get FR Opcode Extensions

C-34

st8.spill M5

g

X6
Opcode | m X
Bits Bit | Bit Bits Bits 31:30
40:37 36 | 27 35:32
0 1 2 3

0 cmpxchgl.acq M16 | cmpxchg2.acq M16 | cmpxchg4.acqg M16 | cmpxchg8.acq M16
1 cmpxchgl.rel M16 | cmpxchg2.rel M16 | cmpxchg4.rel M16 | cmpxchg8.rel M16
2 xchgl M16 xchg2 M16 xchg4 M16 xchg8 M16

3

4 fetchadd4.acq M17 | fetchadd8.acq M17
5 fetchadd4.rel M17 | fetchadd8.rel M17
6

8

9

A

B

C

D

E

F
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Table C-32. Floating-point Load/Store/Lfetch Opcode Extensions

Table C-33. Floating-point Load/Lfetch +Reg Opcode Extensions

Xe
Opcode m X
Bits Bit | Bit Bits Bits 31:30
40:37 36 27 35:32
: 0 1 2 3
0 Idfe M6 1df8 M6 Idfs M6 Idfd M6
1 Idfe.s M6 |df8.s M6 Idfs.s M6 Idfd.s M6
2 Idfe.a M6 |df8.a M6 Idfs.a M6 Idfd.a M6
3 Idfe.sa M6 1df8.sa M6 Idfs.sa M6 Idfd.sa M6
4
5
6
7
6 0 0
8 Idfe.c.clr M6 1df8.c.clr M6 Idfs.c.clr M6 Idfd.c.clr M6
9 Idfe.c.nc M6 1df8.c.nc M6 Idfs.c.nc M6 Idfd.c.nc M6
A
B Ifetch M13 Ifetch.excl M13 Ifetch.fault M13 Ifetch.fault.excl M13
C stfe M9 stf8 M9 stfs M9 stfd M9
0 |
E \ stf.spill M9
F
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X6
Opcode m X
Bits Bit | Bit Bits Bits 31:30
40:37 36 27 35:32
0 1 2 3
0 Idfe M7 1df8 M7 Idfs M7 Idfd M7
1 Idfe.s M7 1df8.s M7 ldfs.s M7 Idfd.s M7
2 Idfe.a M7 Idf8.a M7 Idfs.a M7 Idfd.a M7
3 Idfe.sa M7 1df8.sa M7 Idfs.sa M7 Idfd.sa M7
4
s IR
¢ I i
6 1 0 ! ‘ ‘
8 Idfe.c.clr M7 1df8.c.clr M7 Idfs.c.clr M7 Idfd.c.clr M7
9 Idfe.c.nc M7 1df8.c.nc M7 Idfs.c.nc M7 Idfd.c.nc M7
A
B
C
D
E
F
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Table C-34. Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Xe
Bci)tgcztooc:j% Bits Bits 31:30
35:32 0 1 5 3

0 |dfe M8 1dfg M8 Idfs M8 Idfd M8
1 Idfe.s M8 1df8.s M8 |dfs.s M8 Idfd.s M8
2 Idfe.a M8 1df8.a M8 |dfs.a M8 Idfd.a M8
3 Idfe.sa M8 1df8.sa M8 ldfs.sa M8 Idfd.sa M8
4
5
6
7

! 8 Idfe.c.clr M8 1df8.c.clr M8 Idfs.c.clr M8 Idfd.c.clr M8
9 Idfe.c.nc M8 1df8.c.nc M8 Idfs.c.nc M8 Idfd.c.nc M8
A
B Ifetch M15 Ifetch.excl M15 Ifetch.fault M15 Ifetch.fault.excl M15
C stfe M10 stf8 M10 stfs M10 stfd M10
2 |
; - stsivio
F ]

Table C-35. Floating-point Load Pair/Set FR Opcode Extensions

C-36

X6
Opcode m X
Bits Bit | Bit Bits Bits 31:30
40:37 36 27 | 3530
' 0 1 2 3
1dfp8 M11 ldfps M11 |dfpd M11
ldfp8.s M11 ldfps.s M11 ldfpd.s M11
ldfp8.a M11 ldfps.a M11 ldfpd.a M11
|dfp8.sa M11 ldfps.sa M11 Idfpd.sa M11
6 0 1 setf.exp M18 setf.s M18 setf.d M18

Idfp8.c.clr M11 ldfps.c.clr M11 Idfpd.c.clr M11
|dfp8.c.nc M11 ldfps.c.nc M11 |dfpd.c.nc M11

|
-
-
]
|
-
-
|
|
|
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Table C-36. Floating-point Load Pair +Imm Opcode Extensions

X6
Opcode m X
Bits Bit | Bit Bits Bits 31:30
40:37 36 27 | 3530
’ 0 1 2 3
|dfp8 M12 ldfps M12 Idfpd M12
|dfp8.s M12 ldfps.s M12 Idfpd.s M12
ldfp8.a M12 ldfps.a M12 ldfpd.a M12
|dfp8.sa M12 |dfps.sa M12 Idfpd.sa M12

Idfp8.c.clr M12
|dfp8.c.nc M12

Idfps.c.clr M12
Idfps.c.nc M12

Idfpd.c.clr M12
Idfpd.c.nc M12

The load and store instructions all have a 2-bit opcode extension field in bits 29:28 (hint) which encodes locality hint
information. Table C-37 and Table C-38 summarize these assignments.

Table C-37. Load Hint Completer

Hint
Bits 29:28

Idhint

Table C-38. Store Hint Completer

Hint

Bits 29:28 sthint

—
—
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C4.1.1.

C-38

M1

Integer Load

40 373635 3029282726 2019 1312 6 5
A % [ n [
4 1 6 2 1 7 7 6
Extension
Instruction Operands Opcode
X Xg Hint

Id1.1dhint 00
Id2.1dhint 01
Id4.1dhint 02
ldg.Idhint 03
ld1.s.1dhint 04
ld2.s.1dhint 05
Id4.s.Idhint 06
Id8.s.Idhint 07
Id1.a.ldhint 08
ld2.a.ldhint 09
Id4.a.ldhint 0A
ldg.a.ldhint 0B
Id1.sa.ldhint ocC
Id2.sa.ldhint oD
Id4.sa.ldhint OE
Id8.sa.ldhint OF
ld1.bias.ldhint 10
ld2.bias.ldhint 1
Id4.bias.Idhint ry=[rs] 4 0 12 T%ﬂgecéi?o”
Id8.bias.|dhint 13
Id1.acq.ldhint 14
Id2.acq.ldhint 15
Id4.acq.ldhint 16
Id8.acq.ldhint 17
ld8.fill. | dhint 1B
Id1.c.clr.Idhint 20
Id2.c.clr.Idhint 21
Id4.c.clr.ldhint 22
ld8.c.clr.Idhint 23
Id1.c.nc.ldhint 24
Id2.c.nc.ldhint 25
Id4.c.nc.ldhint 26
Id8.c.nc.Idhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.ldhint 29
Id4.c.clr.acq.ldhint 2A
Id8.c.clr.acq.ldhint 2B
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C.4.1.2.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0

M2

Integer Load — Increment by Register

40 373635 3029282726 2019 1312 6 5
A Mm% " n [
4 1 2 1 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint

Id1.1dhint 00
1d2.1dhint 01
Id4.1dhint 02
ldg.ldhint 03
ld1.s.Idhint 04
ld2.s.1dhint 05
Id4.s.Idhint 06
Id8.s.Idhint 07
Id1.a.ldhint 08
ld2.a.ldhint 09
Id4.a.ldhint 0A
ldg.a.ldhint 0B
Id1.sa.ldhint oC
Id2.sa.ldhint oD
Id4.sa.ldhint OE
Id8.sa.ldhint OF
Id1.bias.ldhint 10
ld2.bias.ldhint 1
Id4.bias.Idhint r1=[rg ry 4 1 o [ 12 Tﬁ:gﬁgf”
Id8.bias.|dhint 13
Id1.acq.ldhint 14
Id2.acq.ldhint 15
Id4.acq.ldhint 16
Id8.acq.ldhint 17
ld8.fill. | dhint 1B
Id1.c.clr.Idhint 20
Id2.c.clr.Idhint 21
Id4.c.clr.ldhint 22
Id8.c.clr.ldhint 23
Id1.c.nc.ldhint 24
Id2.c.nc.ldhint 25
Id4.c.nc.ldhint 26
Id8.c.nc.Idhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.ldhint 29
Id4.c.clr.acq.ldhint 2A
Id8.c.clr.acq.ldhint 2B
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C.4.138.

C-40

Integer Load — Increment by Immediate

40 373635 3029282726 2019 1312 6 5
s s LN
4 1 6 1 7 7 7 6
Extension
Instruction Operands Opcode

Xg Hint
Id1.1dhint 00
1d2.1dhint 01
Id4.1dhint 02
ldg.Idhint 03
Id1.s.1dhint 04
ld2.s.1dhint 05
Id4.s.Idhint 06
Id8.s.Idhint 07
Id1.a.ldhint 08
ld2.a.ldhint 09
Id4.a.ldhint 0A
ldg.a.ldhint 0B
Id1.sa.ldhint ocC
Id2.sa.ldhint oD
Id4.sa.ldhint OE
Id8.sa.ldhint OF
Id1.bias.ldhint 10
ld2.bias.ldhint 1
Id4.bias.Idhint r1=[rgl, immg 5 12 Ta:f;gfgé;’”
Id8.bias.|dhint 13
Id1.acq.ldhint 14
Id2.acq.ldhint 15
Id4.acq.ldhint 16
Id8.acq.ldhint 17
ld8.fill. | dhint 1B
Id1.c.clr.Idhint 20
Id2.c.clr.Idhint 21
Id4.c.clr.ldhint 22
ld8.c.clr.Idhint 23
Id1.c.nc.ldhint 24
Id2.c.nc.ldhint 25
Id4.c.nc.ldhint 26
Id8.c.nc.Idhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.ldhint 29
Id4.c.clr.acq.ldhint 2A
Id8.c.clr.acq.ldhint 2B
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C.4.1.4. Integer Store

40 373635 3029282726 2019 1312 65
we [ 4 mw . e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg Hint
st1.sthint 30
st2.sthint 31
st4.sthint 32
stg.sthint 33
: _ Table C-38 on
sti.rel.sthint [ral=ro 4 0 0 34 page C-37
st2.rel.sthint 35
st4.rel.sthint 36
stg.rel.sthint 37
st8.spill.sthint 3B
C.4.15. Integer Store — Increment by Immediate
40 373635 3029282726 2019 1312 6 5
v [ sl % o | o
6 7 7 6
Extension
Instruction Operands Opcode
X6 Hint
st1.sthint 30
st2.sthint 31
st4.sthint 32
stg.sthint 33
: _ ; Table C-38 on
stl.rel.sthint [r3]=ro immg 5 34 page C-37
st2.rel.sthint 35
st4.rel.sthint 36
stg.rel.sthint 37
st8.spill.sthint 3B
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C.4.1.6.

C-42

Floating-point Load

40 373635 3029282726 2019 1312 65
moox B A
1 6 2 1 7 7 6

Extension
Instruction Operands Opcode

X Xg Hint
dfs.Idhint 02
Idfd.Idhint 03
ldfg.Idhint 01
Idfe.ldhint 00
ldfs.s.Idhint 06
Idfd.s.|dhint 07
ldf8.s.Idhint 05
Idfe.s.|dhint 04
Idfs.a.ldhint 0A
dfd.a.ldhint 0B
df8.a.ldhint 09
Idfe.a.ldhint 08
\dfs.sa.ldhint fi=1rg 6 0 0E Tﬂgféé;’”
Idfd.sa.ldhint OF
df8.sa.ldhint 0D
ldfe.sa.ldhint e
df.fill.[dhint 1B
Idfs.c.clr.|dhint 22
ldfd.c.clr.|dhint 23
Idf8.c.clr.|dhint 21
Idfe.c.clr.ldhint 20
dfs.c.nc.Idhint 26
Idfd.c.nc.Idhint 27
Idf8.c.nc.|dhint 25
Idfe.c.nc.Idhint 24
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C.4.1.7. Floating-point Load — Increment by Register

40 373635 3029282726 2019 1312 6 5 0
M7 6 m X " o e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg Hint

Idfs.Idhint 02
Idfd.ldhint 03
Idf8.Idhint 01
Idfe.Idhint 00
ldfs.s.ldhint 06
dfd.s.Idhint 07
Idf8.s.1dhint 05
dfe.s.|dhint 04
Idfs.a.ldhint 0A
Idfd.a.ldhint 0B
Idf8.a.ldhint 09
ldfe.a.ldhint 08

\dfs.sa.Idhint fi=Ira rp 6 1 0 0E T"’;)be'lgec('%?o”
Idfd.sa.ldhint OF
Idf8.sa.ldhint oD
ldfe.sa.ldhint 0C
dffill.|dhint 1B
ldfs.c.clr.|dhint 22
ldfd.c.clr.ldhint 23
df8.c.clr.|dhint 21
Idfe.c.clr.ldhint 20
ldfs.c.nc.ldhint 26
Idfd.c.nc.|dhint 27
Idf8.c.nc.Idhint 25
Idfe.c.nc.|dhint 24
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C-44

Floating-point Load — Increment by Immediate

40 373635 3029282726 2019 1312 65
7 ’s’ Xg immoy, ’ f1 !
4 1 2 1 7 7 7 6
Extension
Instruction Operands Opcode
Xg Hint
dfs.|dhint 02
Idfd.Idhint 03
Idfg.Idhint 01
dfe.ldhint 00
ldfs.s.ldhint 06
dfd.s.Idhint 07
ldfg.s.|dhint 05
dfe.s.Idhint 04
Idfs.a.ldhint 0A
Idfd.a.ldhint 0B
ldf8.a.ldhint 09
dfe.a.ldhint 08
\dfs.sa.ldhint f, = [rg), immg 7 OE Tﬂgfc%g;”
dfd.sa.ldhint OF
Idf8.sa.ldhint oD
Idfe.sa.ldhint ocC
df.fill.[dhint 1B
ldfs.c.clr.Idhint 22
ldfd.c.clr.ldhint 23
df8.c.cir.Idhint 21
ldfe.c.clr.ldhint 20
ldfs.c.nc.ldhint 26
ldfd.c.nc.|dhint 27
df8.c.nc.ldhint 25
Idfe.c.nc.|dhint 24
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Cc.4.1.9. Floating-point Store

40 373635 3029282726 2019 1312 65
v [6 fnl % z e
1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg Hint
stfs.sthint 32
stfd.sthint 33
. _ Table C-38 on
stfg.sthint [ral="f, 6 0 0 31 page C-37
stfe.sthint 30
stf.spill.sthint 3B
C.4.1.10. Floating-point Store — Increment by Immediate
40 373635 3029282726 2019 1312 65
wo 7 Js] T AT
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
X6 Hint
stfs.sthint 32
stfd.sthint 33
: _f Table C-38 on
stfg.sthint [ral =y, immg 7 31 page C-37
stfe.sthint 30
stf.spill.sthint 3B
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C.4.1.11.

C-46

Floating-point

Load Pair

40 373635 3029282726 2019 1312 65
M [ 6 fm f o e
4 1 6 2 1 7 7 6
Extension
Instruction Operands Opcode
m X Xg Hint

Idfps.|dhint 02

Idfpd.Idhint 03

Idfp8.1dhint 01

Idfps.s.Idhint 06

Idfpd.s.ldhint 07

Idfp8.s.ldhint 05

Idfps.a.ldhint 0A

Idfpd.a.ldhint 0B

Idfp8.a.ldhint f ot . o L 09 Table C-37 on
\dfps.sa.dhint 172=M oE | PageC-37
Idfpd.sa.ldhint OF

Idfp8.sa.ldhint oD
Idfps.c.clr.|dhint 22
Idfpd.c.clr.ldhint 23
Idfp8.c.clr.ldhint 21
Idfps.c.nc.ldhint 26
Idfpd.c.nc.Idhint 27
Idfp8.c.nc.Idhint 25
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C.4.1.12. Floating-point Load Pair — Increment by Immediate
40 373635 3029282726 2019 1312 6 5 0
M2 L6 m % ool on e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg Hint

Idfps.ldhint fi.fo=1rg. 8 02

Idfpd.ldhint b oo 03

s dhint L 2=0rgh 16 01

Idfps.s.Idhint fi.fo=1rsl. 8 06

Idfpd.s.ldhint 07

ldfps.s.Idhint fuf2=1rg). 16 05

Idfps.a.ldhint f, fo=1ral, 8 0A

Idfpd.a.ldhint 0B

. f, fo=1ral, 16

Idfp8.a.ldhint . L ) 09 Table C-37 on
Idfps.sa.ldhint f1.fo=1rg, 8 OE page C-37
Idfpd.sa.ldhint . OF

Idfps.sa.ldhint v f2=1rgl 16 0D

Idfps.c.clr.ldhint f, fo=1ral, 8 22

Idfpd.c.clr.ldhint b oo 23

Idfp8.c.clr.ldhint v f2=1g 16 21

Idfps.c.nc.Idhint fi.fo=1rsl. 8 26

Idfpd.c.nc.Idhint £ oo 27

Idfp8.c.nc.Idhint v f2=1rgl 16 25

C.4.2 Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the floating-point load/store instructions.
See “Loads and Stores” on page C-82 a summary of the opcode extensions.

The line prefetch instructions all have a 2-bit opcode extension field in bits 29:28 (hint) which encodes locality hint
information as shown ifable C-39

Table C-39. Line Prefetch Hint Completer

Hint
Bits 29:28

Ifhint
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C.4.2.1. Line Prefetch
40 373635 3029282726 2019 6 5
M3 [ 6 m % o
4 1 6 2 1 7 14 6
Extension
Instruction Operands Opcode
m X Xg Hint
Ifetch.Ithint 2C
Ifetch.excl.Ifhint rd . o o 2D Table C-39 on
Ifetch.fault.Ifhint 2E page C-47
Ifetch.fault.excl.Ifhint 2F
C.4.2.2. Line Prefetch — Increment by Register
40 373635 3029282726 2019 1312 6 5
wis 6 : S e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg Hint
Ifetch.Ifhint 2C
Ifetch.excl.Ifhint 2D B
. [rgl. ry 6 1 0 Table Cc3i7on
Ifetch.fault.Ifhint 2E page -
Ifetch.fault.excl.Ifhint 2F
C.4.2.3. Line Prefetch — Increment by Immediate
40 373635 3029282726 2019 1312 6 5
wis [ 7 [s| T immzy e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
Xg Hint
Ifetch.Ifhint 2C
Ifetch.excl.Ifhint ) 2D :
. [r 4], immg 7 Table CC3E3170n
Ifetch.fault.I fhint 2E page L-
Ifetch.fault.excl.Ifhint 2F
C-48
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C4.3

Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer |oad/store instructions. See“Loads and

Stores” on page C-3r a summary of the opcode extensions.

C.43.1.

C.4.3.2.

Exchange/Compare and Exchange

40 373635 3029282726 2019 1312 6 5 0
Mie [ 4 m 2 no [
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m Xg Hint
cmpxchgl.acq.ldhint 00
cmpxchg2.acq.ldhint 01
cmpxchg4.acq.ldhint 02
cmpxchg8.acq.ldhint : 03
- rq=1[rgl, ro, ar.ccv
cmpxchgl.rel.ldhint R 04
cmpxchg2.rel.ldhint o 05 Table C-37
cmpxchg4.rel.ldhint 06 | onpage C-37
cmpxchg8.rel.ldhint 07
xchgl.ldhint 08
xchg2.ldhint 09
- rp=[ra,r
xchg4.ldhint 1=lrah 2 0A
xchgs.ldhint 0B
Fetch and Add — Immediate
40 373635 3029282726 2019 1615141312 65 0
M7 L4 m % sl n [GRE
4 1 6 2 1 7 4 1 2 7 6
Extension
Instruction Operands Opcode
m X Xg Hint
fetchadd4.acq.ldhint 12
fetchadd8.acq.ldhint . 13 B
: ry=Irgl, inc3 4 0 1 Table CC3:7370n
fetchadd4.rel.|dhint 16 page C-
fetchadds.rel.ldhint 17
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C44
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Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point |oad/store instructions. The get FR
instructions are encoded in major opcode 4 along with the integer load/store instructions. See “Loads and Stores” on
page C-3Zor a summary of the opcode extensions.

C.4.4.1.

C.4.4.2.

C.4.5

The speculation and advanced load check instructions are encoded in major opcodes 0 and 1 along with the memory

Set FR

40 373635 3029282726 2019 1312 6 5 0
ws 6 x| [ 2 no e

4 1 6 2 1 7 7 7 6

Extension
Instruction Operands Opcode

m X Xg

setf.sig 1C

setf.exp 1D

fi=ro 6 0 1
setf.s 1E
setf.d 1F
Get FR

40 373635 3029282726 2019 1312 65 0
o T4 m x| ] f A

4 1 6 2 1 7 7 7 6

Extension
Instruction Operands Opcode

m X Xg

getf.sig 1C

getf.exp 1D

ro=f 4 0 1
getf.s 1E
getf.d 1F

Speculation and Advanced Load Checks

management instructions. S&éemory Management” on page C-%& a summary of the opcode extensions.

C.4.5.1.

C-50

Integer Speculation Check (M-Unit)

40 373635 3332 2019 1312 65 0
wo 3 sl | wme | o G
4 1 3 13 7 7 6
Extension
Instruction Operands Opcode
X3
chk.s.m I’2, targetzs 1 1
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C.4.5.2.

C.4.5.3.

C.4.54.

Floating-point Speculation Check

40 373635 3332 1312 6 5
RS R o ., G
4 1 3 13 7 7
Extension
Instruction Operands Opcode
X3
chk.s f2, targe’(25 1 3
Integer Advanced Load Check
40 373635 3332 1312 6 5
vz [0 s o [
4 1 3 20 7
Extension
Instruction Operands Opcode
X3
chk.a.nc target 4
rq, tar 0
chk.a.clr ! 9%t 5
Floating-point Advanced Load Check
40 373635 3332 1312 6 5
vs [0 sl % o [
4 1 3 20 7
Extension
Instruction Operands Opcode
X3
chk.a.nc f taroet 6
,lar 0
chk.a.clr 1 9et2s 7
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C.4.6
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Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along with the memory management
instructions. See “Memory Management” on page C-5&r a summary of the opcode extensions.

C.4.6.1. Sync/Fence/Serialize/ALAT Control
40 373635 33323130 2726 6 5 0
M2 10 [ [ el x ] e
4 1 3 2 4 21 6
Extension
Instruction Opcode
X3 Xq X2
invala 0 1
mf 2
2
mf.a 0 0 3
srlz.i 1
3
sync.i 3
C.4.6.2. RSE Control
40 373635 33323130 2726 6 5 0
M2s [0 [ el x| o
4 1 3 2 4 21 6
Extension
Instruction Opcode
X3 Xg X2
flushrs f 0 0 C 0
C.4.6.3. Integer ALAT Entry Invalidate
40 373635 33323130 2726 1312 6 5 0
Mo |0 | [ o] x| no e
4 1 3 2 4 14 7 6
Extension
Instruction Operands Opcode
X3 X4 X2
invala.e ry 0 0 2 1
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C.4.6.4. Floating-point ALAT Entry Invalidate
40 373635 33323130 2726 1312 6 5 0
Mer [0 | [ e x| ho el
1 3 2 4 14 7 6
Extension
Instruction Operands Opcode
X3 X4 X2
invala.e f1 0 0 3 1
C.4.6.5. Flush Cache
40 373635 3332 2726 2019 65 0
wes (3] [ | % e
4 1 3 6 7 14 6
Extension
Instruction Operands Opcode
X3 X6
fc rs 1 0 30
c.47 GR/AR Moves (M-Unit)

The M-Unit GR/AR move instructions are encoded in major opcode 0 along with the memory management instructions.
(Some ARs are accessed using system control instructions on the I-unit. See “GR/AR Moves (I-Unit)” on page C-3)See
“Memory Management” on page C-%& a summary of the M-Unit GR/AR opcode extensions.

c.4.7.1. Move to AR — Register (M-Unit)
40 373635 3332 2726 2019 1312 6 5 0
Mo | 1 (e % ] s [ w e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X6
mov.m arg=ro 1 0 2A
C.4.7.2. Move to AR — Immediate g (M-Unit)
40 373635 33323130 2726 2019 1312 6 5 0
w0 [0 (sl w | Ke | wn | mm e
4 3 2 4 7 7 6
Extension
Instruction Operands Opcode
X3 X4 X2
mov.m arz=immg 0 0 8 2
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C.4.7.3. Move from AR (M-Unit)

40 373635 3332 2726 2019 1312 6 5 0
MLl L x| x| an n - [NeE

4 1 3 6 7 7 7 6

Extension

Instruction Operands Opcode
X3 X6
mov.m rp=arg 1 0 22
C.4.8 Miscellaneous M-Unit Instructions

The miscellaneous M-unit instructions are encoded in major opcode 0 along with the memory management instructions.
See “Memory Management” on page C-5& a summary of the opcode extensions.

C.4.8.1. Allocate Register Stack Frame

40 373635 33323130 2726 2019 1312 65 0
v 1 x| s s s | o G
4 1 3 2 4 7 7 7 6
Extension
Instruction Operands Opcode
X3
allocf ry=arpfs, i,l, 0,r 1 6

Note: The three immediates in the instruction encoding are formed from the operands as follows:

sof=i+l+o0
sol =i +1
sor=r >>3

C.4.8.2. Move to PSR

40 373635 3332 2726 2019 1312 6 5 0
wos [T [ | % : e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X6
mov psr.um =T, 1 0 29
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C.4.8.38.

C.4.8.4.

C4.9

Move from PSR

40 373635 3332 2726 1312 6 5 0
weo |30 [k | % o
4 1 6 14 7 6
Extension
Instruction Operands Opcode
X3 X6
mov 1 =psrum 1 0 21
Break/Nop (M-Unit)
40 373635 33323130 272625 6 5 0
M37 ‘ 0 M X3 ‘Xz‘ X4 H imMa0q -
4 1 3 2 4 1 20 6
Extension
Instruction Operands Opcode
X3 X4 X2
break.m . 0
immy, 0 0 0
nop.m

Memory Management

All memory management instructions are encoded within major opcodes 0 and 1 using a 3-bit opcode extension field (x3)
in bits 35:33. Some instructions also have a 4-bit opcode extension field (x,) in bits 30:27, or a 6-bit opcode extension
field (xg) in bits 32:27. Most of the instructions having a 4-bit opcode extension field also have a 2-bit extension field (x,)
in bits 32:31. Table C-40 shows the 3-hit assignments for opcode 0, Table C-41 summarizes the 4-bit+2-hit assignments
for opcode O, Table C-42 shows the 3-bit assignments for opcode 1, and Table C-43 summarizes the 6-bit assignments for

opcode 1.

Table C-40. Opcode 0 Memory Management 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 Memory Management 4-bit+2-bit Ext (Table C-41)
1
2
3
0

4 chk.a.nc — int M22
5 chk.a.clr — int M22
6 chk.a.nc — fp M23
7 chk.a.clr — fp M23
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Table C-41. Opcode 0 Memory Management 4-bit+2-bit Opcode Extensions

X2
Opcode X3 X4 ) '
Bits Bits Bits Bits 32:31
40:37 35:33 | 30:27
0 1
break.m M37 invala M24

srlz.i M24

nop.m M37

mf M24
mf.a M24

invala.e — int M26

sync.i M24

invala.e — fp M27

sum M44
rum M44

| |

0

1

2

3

4

5

6

7 I R
;
9

A

B

C

D

E

F

Table C-42. Opcode 1 Memory Management 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 Memory Management 6-bit Ext (Table C-43)
1 chk.s.m — int M20
2
e
! 4

5
7
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Table C-43. Opcode 1 Memory Management 6-bit Opcode Extensions

Xe
Opcode X3

Bits Bits . Bits 32:31

. . Bits

40:37 35:33

30:27
0 1 2 3

0
1
2
3
. |
5 mov from pmd M43
; | |
7 mov from cpuid M43

1 0
8 |
9 mov to psr.um M35
A ‘ mov.m to ar M29
B é
C
D
E
F

C.4.9.1. Move from Indirect Register

40 373635 3332 2726 1312
ws [30] [ | % .
4 1 3 6 7 7 7
Extension
Instruction Operands Opcode
X3 X6
r1=pmd[r 15
mov ! J 1 0
I'1 = cpuid[f3] 17
C.4.9.2. Set/Reset User Mask
40 373635 33323130 2726 65 0
was [0 [i x5 hal Ha | e
4 1 3 2 4 21 6
Extension
Instruction Operands Opcode
X3 Xq
sum . 4
1MMpy4 0 0
rum 5
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C.5 B-Unit Instruction Encodings

The branch-unit includes branch and miscellaneous instructions.

Ch.1 Branches

Opcode 0 is used for indirect branch, opcode 1 for indirect call, opcode 4 for IP-relative branch, and opcode 5 for 1P-
relative call.

The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode extension field in bits 8:6 (btype) to
distinguish the branch types as shown in Table C-44.

Table C-44. IP-Relative Branch Types

Opcode btype
Bits 40:37 Bits 8:6
0
1
2
3
4
4
5
6
7

C-58 IA-64 Application Developer’s Architecture Guide, Rev. 1.0



intel.

The indirect branch, indirect return, and miscellaneous branch-unit instructions are encoded within major opcode O using
a 6-bit opcode extension field in bits 32:27 (xg). Table C-45 summarizes these assignments.

Table C-45. Indirect/Miscellaneous Branch Opcode Extensions

X6
Bci)tgil%c:i; Bits Bits 32:31
30:27 0 ) 5
0
1
2
3
4
5
6
0 7
8
9
A
B
C
D
E
F

Theindirect branch instructions encoded within major opcodes 0 use a 3-bit opcode extension field in bits 8:6 (btype) to
distinguish the branch types as shown in Table C-46.

Table C-46. Indirect Branch Types

Opcode Xg btype
Bits 40:37 Bits 32:27 Bits 8:6
0
1
2
3
0 20
4
5
6
7
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Theindirect return branch instructions encoded within major opcodes 0 use a 3-bit opcode extension field in bits 8:6
(btype) to distinguish the branch types as shown in Table C-47.

Table C-47. Indirect Return Branch Types

Opcode Xg btype
Bits 40:37 Bits 32:27 Bits 8:6
0
1
2
3
0 21
4
5
6
7

All of the branch instructions have a 1-bit opcode extension field, p, in bit 12 which provides a sequentia prefetch hint.
Table C-48 summarizes these assignments.

Table C-48. Sequential Prefetch Hint Completer

p

Bit 12 ph
0
1

The IP-relative and indirect branch instructions all have a 2-bit opcode extension field in bits 34:33 (wh) which encodes
branch prediction “whether” hint information as showrTéble C-49 Indirect call instructions have a 3-bit opcode
extension field in bits 34:32 (wh) for “whether” hint information as showrainie C-50

Table C-49. Branch Whether Hint Completer

wh
Bits 34:33

bwh

Table C-50. Indirect Call Whether Hint Completer

wh

Bits 34:32 bwh

0

[ I~ VI I\
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Table C-50. Indirect Call Whether Hint Completer

wh
Bits 34:32

bwh

6

.

The branch instructions also have a 1-bit opcode extension field in bit 35 (d) which encodes a branch cache deallocation
hint as shown in Table C-51.

Table C-51. Branch Cache Deallocation Hint Completer

C.5.1.1.

B1

C.5.1.2.

B2

d
Bit 35

0
1

dh

IP-Relative Branch

40 373635343332 131211 98 65 0
S s B e LG
4 11 2 20 1 3 3 6
Extension
Instruction Operands | Opcode
btype p wh d
br.cond.bwh.ph.
dh 0
- Table C-48 | Table C-49 | Table C-51
t&rr._]V\tIEXIt.bWh.ph. target,g 4 2 on on on
page C-60 page C-60 page C-61
br.wtop.bwh.ph.
dht 3
IP-Relative Counted Branch
40 373635343332 131211 9 8 6 5 0
Ca s oupe O
4 11 2 20 1 3 3 6
Extension
Instruction Operands | Opcode
btype p wh d
br.cloop.bwh.ph.
dht 5
- Table C-48 | Table C-49 | Table C-51
térhctexn.bwh.ph. target,g 4 6 on on on
page C-60 page C-60 page C-61
lﬁr{ctop.bwh.ph.d -
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C.5.1.3. IP-Relative Call

40 373635343332 131211 98 65 0
5[50 s B[ o L
4 11 2 20 1 3 3 6
Extension
Instruction Operands Opcode
p wh d

Table C-48 on | Table C-49 on | Table C-51 on

br.call.bwh.ph.d | by = 5
h térge{25 page C-60 page C-60 page C-61

C5.14. Indirect Branch

40 373635343332 2726 1615 131211 9 8 6 5 0
sa [0 [N x| b Bl owee [T
4 11 2 6 11 3 1 3 3 6
Extension
Instruction Operands | Opcode
Xg | btype p wh d
br.cond.bwh.ph.
dh 0
20 Table C-48 | Table C-49 | Table C-51
bria.bwh.ph.dh | b, 0 1 on on on
page C-60 | page C-60 | page C-61
3rhret.bwh.ph. 21 4
C.5.15. Indirect Call
40 37363534 3231 1615 131211 9 8 6 5 0
B5 Y BNEY
4 11 3 16 3 1 3 3 6
Extension
Instruction Operands | Opcode
p wh d

_ Table C-48 on Table C-50 on Table C-51 on
br.call.bwh.ph.dh | by = b, 1 page C-60 page C.60 page C.61
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C.5.2 Nop

The nop instruction is encoded in major opcode 2. The nop instruction in major opcode 2 uses a 6-bit opcode extension
field in bits 32:27 (xg). Table C-52 summarizes these assignments.

Table C-52. Indirect Predict/Nop Opcode Extensions

X6
B(ijtgc4%c:j§7 Bits Bits 32:31
30:27 0 1 5 3

0 nop.b B9
1
2
3
4
5
6

5 7
8
9
A
B
C
D
E
F

C53 Miscellaneous B-Unit Instructions

The miscellaneous branch-unit instructions include a number of instructions encoded within major opcode O using a 6-bit
opcode extension field in bits 32:27 (Xg) as described in Table C-45 on page C-59.

C.5.3.1. Miscellaneous (B-Unit)

40 3736 3332 2726 6 5 0
s o] | % | o
4 4 6 21 6
Extension
Instruction Opcode
Xe
clrrrb! 04
| 0
clrrrb.pr 05
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C.5.3.2. Break/Nop (B-Unit)

40 373635 3332 272625 6 5 0
s (OB | % e
4 1 3 6 1 20 6
Extension
Instruction Operands Opcode
X6
break.b im 0 00
|
nop.b M1 2
C.6 F-Unit Instruction Encodings

The floating-point instructions are encoded in major opcodes 8 — E for floating-point and fixed-point arithmetic, opcode 4
for floating-point compare, opcode 5 for floating-point class, and opcodes 0 and 1 for miscellaneous floating-point

instructions.

The miscellaneous and reciprocal approximation floating-point instructions are encoded within major opcodes 0 and 1
using a 1-bit opcode extension field (x) in bit 33 and either a second 1-bit extension field in bit 36 (q) or a 6-bit opcode
extension field (¥) in bits 32:27 Table C-53shows the 1-bit x assignmentgble C-56shows the additional 1-bit g
assignments for the reciprocal approximation instructidable C-54andTable C-55summarize the 6-bitgx

assignments.

Table C-53. Miscellaneous Floating-point 1-bit Opcode Extensions

Opcode X
Bits 40:37 Bit 33
0 6-bit Ext (Table C-54)
0 1 Reciprocal Approximation (Table C-56)
0 6-bit Ext (Table C-55)
! 1 Reciprocal Approximation (Table C-56)

C-64
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Table C-54. Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

X6
Opcode X
4%i.t357 gg Bits Bits 32:31
' 30:27 5 3
0
1
2
3
4
5
6
7
0 0
8
9
A
B
c
D
E
F
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Table C-55. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions

X6
Opcode X
Bits Bit Bits Bits 32:31
40:37 | 33 ,
30:27 1 ) 3
0
1
2
3
4
5
6
7
1 0
8
9
A
B
c
D
E
F
Table C-56. Reciprocal Approximation 1-bit Opcode Extensions
Opcode X q
Bits 40:37 Bit 33 Bit 36
0
0
1
1
0
1
1

Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf) which encodes the FPSR status field
to be used. Table C-57 summarizes these assignments.

Table C-57. Floating-point Status Field Completer

sf
Bits 35:34

sf

C-66
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C6.1 Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 — D using a 1-bit opcode extension field (x)
in bit 36 and a 2-bit opcode extension field (sf) in bits 35:34. The opcode and x assignments are SablerCirb8

Table C-58. Floating-point Arithmetic 1-bit Opcode Extensions

Opcode
X Bits 40:37
Bit 36
8 9 A B C D
0 fma F1 fma.d F1 fms F1 fms.d F1 fnma F1 fnma.d F1
1 fma.s F1 fpma F1 fms.s F1 fpms F1 fnrma.s F1 fpnma F1

The fixed-point arithmetic and parallel floating-point select instructions are encoded within major opcode E using a 1-bit
opcode extension field (x) in bit 36. The fixed-point arithmetic instructions also have a 2-bit opcode extensiai iireld (x
bits 35:34. These assignments are showrahlile C-59

Table C-59. Fixed-point Multiply Add and Select Opcode Extensions

X2
Opcode X Bits 35:34
Bits 40:37 Bit 36
0 1 2 3
0 fselect F3
E
1 xma.l F2 g xma.hu F2 l xma.h F2

C.6.1.1. Floating-point Multiply Add

40 3736353433 2726 2019 1312 6 5 0
SR R R B e
4 1 2 7 7 7 7 6
Extension
Instruction Operands Opcode
X sf
fma.sf 0
8
fma.s.sf 1
fma.d.sf 0
9
fpma.sf 1
fms.sf 0
A
fms.s.Sf f _ f f f 1 Table C-57 on
1-1'3 1412
fms.d.sf 0 page C-66
B
fpms.sf 1
fnma.sf 0
C
fnma.s.sf 1
fnma.d.sf 0
D
fonma.sf 1
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C.6.1.2. Fixed-point Multiply Add
40 3736353433 2726 2019 1312 6 5 0
2 & el 6| & z A
4 1 2 7 7 7 7 6
Extension
Instruction Operands Opcode
X X2
xma.l 0
xma.h fl = f3, f4, f2 E 1 3
xma.hu 2
C.6.2 Parallel Floating-point Select
40 3736353433 2726 2019 1312 6 5 0
LEN | W | &8 [ f no e
4 1 2 7 7 7 7 6
Extension
Instruction Operands Opcode
X
fselect fl = f3, f4, fz E 0
C.6.3 Compare and Classify

The predicate setting floating-point compare instructions are encoded within major opcode 4 using three 1-bit opcode
extension fieldsin bits 33 (r), 36 (), and 12 (t,), and a 2-bit opcode extension field (sf) in bits 35:34. The opcode, r, 1y,
and t, assignments are shown in Table C-60. The sf assignments are shown in Table C-57 on page C-66.

The parallel floating-point compare instructions are described on page C-71.

Table C-60. Floating-point Compare Opcode Extensions

C-68

ta
Opcode a Iy Bit 12
Bits 40:37 Bit 33 Bit 36
0 1

0 fcmp.eq F4 fcmp.eg.unc F4
0

1 fcmp.It F4 fcmp.It.unc F4

4

0 fcmp.le F4 fcmp.le.unc F4
1

1 fcmp.unord F4 fcmp.unord.unc F4
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The floating-point classinstructions are encoded within major opcode 5 using a 1-bit opcode extension field in bit 12 (t,)

as shown in Table C-61.

Table C-61. Floating-point Class 1-bit Opcode Extensions

Opcode ta
Bits 40:37 Bit 12
5 0 fclass.m F5
1 fclass.m.unc F5

C.6.3.1. Floating-point Compare

40 373635343332 2726 2019 131211

6 5 0

a4 st e ]t b e R
4 1 2 1 6 7 7 1 6 6
Extension
Instruction Operands Opcode
la Iy ta sf
fcmp.eq.Sf 0
0
femp.It.Sf 1
0
fcmp.le.sf . 0 Table C-57
fcmp.unord.sf 1 “Floating-point
P1. P2 = f2, f3 4 Status Field
fcmp.eq.unc.Sf 0 0 Comp|eter" on
femp.lt.unc.sf 1 page C-66
1
femp.le.unc.sf 0
1
fcmp.unord.unc.sf 1
C.6.3.2. Floating-point Class
40 373635343332 2726 2019 131211 6 5 0
5[5 | e R s | b 0
2 2 6 7 7 1 6 6
Extension
Instruction Operands Opcode
ta
fclass.m 0
p1. po =Ty, flassy 5
fclass.m.unc 1
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C.64 Approximation

C.6.4.1. Floating-point Reciprocal Approximation

There are two Reciprocal Approximation instructions. The first, in major op 0, encodes the full register variant. The
second, in major op 1, encodes the parallel variant.

40 373635343332 2726 2019 1312 6 5 0
©o [o-1alsilx hal| z A
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X q sf
frepa.sf 0 Table C-57 on
f1, po=1y 13 1 0 page C-66
fprepa.Sf 1

C.6.4.2. Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op 0, encodes the full register
variant. The second, in major op 1, encodes the parallel variant.

40 373635343332 2726 2019 1312 6 5 0
f Lo-nlast il B AT
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X q sf
frsqrta.sf _ 0 Table C-57 on
fLpo=1f3 1 1 page C-66
fprsgrta.Sf 1
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C.6.5 Minimum/Maximum and Parallel Compare

There are two groups of Minimum/Maximum instructions. The first group, in major op 0, encodes the full register

variants. The second group, in major op 1, encodesthe parallel variants. The parallel compare instructions are al encoded

in major op 1.

40 373635343332 2726 2019 6 5
P8 [ 0-1 ] [sfx e
4 1 2 1 6
Extension
Instruction Operands Opcode
X6 sf
fmin.sf 14
fmax.sf 15
0
famin.sf 16
famax.Sf 17
fpmin.sf 14
fpmax.sf 15
fpamin.Sf 16
fpamax. sf _ 17 Table C-57 on
f1=fa 13 C-66
fpcmp.eq.sf 30 page -
fpcmp.It.sf 31
1
fpcmp.le.sf 32
fpcmp.unord.sf 33
fpcmp.neq.sf 34
fpcmp.nlt.sf 35
fpcmp.nle.sf 36
fpcmp.ord.sf 37
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C.6.6 Merge and Logical

40 3736 343332 2726 2019 1312 6 5 0
P (o5 | R : AT
4 3 1 6 7 7 7 6
Extension
Instruction Operands Opcode

X Xg
fmerge.s 10
fmerge.ns 11
fmerge.se 12
fmix.Ir 39
fmix.r 3A
fmix.| 3B
fsxt.r 3C
fsxt.I 3D

0

fpack 28
fswap fi=1o 13 0 34
fswap.nl 35
fswap.nr 36
fand 2C
fandem 2D
for 2E
fxor 2F
fpmerge.s 10
fpmerge.ns 1 11
fpmerge.se 12
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C.6.7 Conversion

C.6.7.1. Convert Floating-point to Fixed-point

40 373635343332 2726 2019 1312 65 0
o o Pl S T T
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X Xg sf

fovt.fx.Sf 18
fovt.fxu.Sf 19

0
fovt.fx.trunc.Sf 1A
fevt.fxu.trunc.Sf ¢ 0 1B Table C-57 on
fpevt.fx.sf 1772 18 page C-66
fpevt.fxu.sf 19

1
fpevt.fx.trunc.Sf 1A
fpevt.fxu.trunc.sf 1B

C.6.7.2. Convert Fixed-point to Floating-point

40 3736 343332 2726 2019 1312 6 5 0
o ) x| | o e
4 3 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X Xg
fovt.xf fi=1 0 0 1C

C.6.8 Status Field Manipulation

C.6.8.1. Floating-point Set Controls

40 373635343332 2726 2019 1312 6 5 0
F2 [0 | s e | omask, | amas e

4 1 2 1 6 7 7 7 6

Extension
Instruction Operands Opcode
X Xg sf
Table C-57 on
fsetc.sf amask,, omasky 0 0 04 page C.66
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C.6.8.2. Floating-point Clear Flags

40 373635343332 2726 6 5 0
s [0 [ [sf x| B
4 1 2 1 6 21 6
Extension
Instruction Opcode
X Xg sf
folrf.sf 0 0 05 Table C-57 on page C-66

C.6.8.3. Floating-point Check Flags

40 373635343332 272625 6 5 0
e [0 Jslsil e | | e

4 1 2 1 6 1 20 6

Extension
Instruction Operands Opcode
X Xg sf
Table C-57 on
fchkf.sf target,g 0 0 08 page C-66
C.6.9 Miscellaneous F-Unit Instructions

C.6.9.1. Break/Nop (F-Unit)

40 373635343332 272625 6 5 0
Fis o fif X% ] immao, o
4 1 2 1 6 1 20 6
Extension
Instruction Operands Opcode
X Xg
break.f . 00
mi 0 0
nop.f 21 01
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C.7 X-Unit Instruction Encodings

The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode extensions and hints, gp, and small
immediate fields occupy the X instruction slot. For movl, break.x, and nop.x, the immy;, field occupiesthe L instruction

dot.

C71 Miscellaneous X-Unit Instructions

The miscellaneous X-unit instructions are encoded in major opcode 0 using a 3-bit opcode extension field (X3) in bits
35:33 and a 6-bit opcode extension field (xg) in bits 32:27. Table C-62 shows the 3-bit assignments and Table C-63
summarizes the 6-bit assignments. These instructions are executed by an I-unit.

Table C-62. Misc X-Unit 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 6-bit Ext (Table C-63)
1
2
3
0

4
5
6
7

Table C-63. Misc X-Unit 6-bit Opcode Extensions
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Xe
Opcode X3
Bits Bits Bits Bits 32:31
40:37 35:33 30:27
' 0 1 2 3
break.x X1
nop.x X1
0 0
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040 0

imm41

41

C.7.1.1. Break/Nop (X-Unit)
40 373635 3332 272625 6 5
X1 ‘ 0 ‘l‘ X3 ‘ X6 ‘ ‘ immzoa
4 1 3 6 1 20 6
Extension
Instruction Operands Opcode
X3 Xg
break.x im 0 0 00
nop.x Me2 01
C.7.2 Move Long Immediateg,

The move long immediate instruction is encoded within major opcode 6 using a 1-bit reserved opcode extension in bit 20

(v¢) asshown in Table C-64. Thisinstruction is executed by an I-unit.

Table C-64. Move Long 1-bit Opcode Extensions

Opcode Ve
Bits 40:37 Bit 20
0 movl X2
6
1
40 373635 2726 22212019 1312 6 0140 0
e o [l mmg | mme v mmy |
4 1 9 5 11 7 7 41
Extension
Instruction Operands Opcode
Ve
movl ri=immegy 6 0
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C.8 Immediate Formation

Table C-65 shows, for each instruction format that has one or more immediates, how those immediates are formed. In
each equation, the symbol to the left of the equals is the assembly language name for the immediate. The symbolsto the
right are the field namesin the instruction encoding.

Table C-65. Immediate Formation

Inls:tc:runﬁgi)n Immediate Formation
A2 county = ctyg + 1
A3 A8 127 M30 immg = sign_ext(s << 7 | immyy, 8)
A4 immy4 = sign_ext(s << 13 | immgq << 7 | immy,, 14)
A5 immy, = sign_ext(s << 21 | immge << 16 | immgy << 7 | immyy, 22)
A10 count, = (Ctyg > 2) ? reservedQP? : ctyg + 1
11 county = (Ctopg ==0) 2 0: (Ctyg == 1) ? 7 : (Ctyg == 2) ? 15: 16
13 mbtype, = (mbty, == 0) ? @brcst : (mbtye == 8) ? @mix : (mbty == 9) ? @shuf : (mbty, ==
0xA) ? @alt : (mbt,, == 0xB) ? @rev : reservedQP?
14 mhtypeg = mhtg.
16 countg = countgy,
18 countg = 31 — ccountg,
110 countg = countgy
111 leng =lengg + 1
pOSg = POSgp
112 leng =lengq + 1
posg = 63 — CPOSg
113 leng =lengg + 1
posg = 63 — CpOSg
immg = sign_ext(s << 7 | immyy, 8)
114 leng =lengq + 1
posg = 63 — CpoSgy
immq = sign_ext(s, 1)
115 leng =lengg +1
posg = 63 — CpOSgq
116 posg = poSgp
119 M37 immyq =i << 20 | immygy
123 mask; 7 = sign_ext(s << 16 | maskg, << 8 | mask;, << 1, 17)
124 immy, = sign_ext(s << 43 | immy7, << 16, 44)
M3 M8 M15 immg = sign_ext(s << 8 | i << 7 | immyy, 9)
M5 M10 immg = sign_ext(s << 8 | i << 7 | immy,, 9)
M17 incg = sign_ext(((s) ?—1:1) * ((ipp == 3) ? 1 : 1 << (4 —ipp)), 6)
120 M20 M21 targetyg = IP + (sign_ext(s << 20 | immy3. << 7 | immy,, 21) << 4)
M22 M23 targetys = IP + (sign_ext(s << 20 | immyqy,, 21) << 4)
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Table C-65. Immediate Formation (Cont’d)

Instruction Immediate Formation
Format
M34 il = sol
o = sof — sol
r=sor<<3
M44 imm24 =i<<23 | i2d << 21 I imlea
B1 B2 B3 targetyg = IP + (sign_ext(s << 20 | immyqy, 21) << 4)
B9 imle =i<<20 | immzoa
F5 fclassg = fclassy, << 2 | fc,
F12 amask; = amasky
omask; = omasky¢
F14 targetyg = IP + (sign_ext(s << 20 | immyq,, 21) << 4)
F15 imle =i<<20 | immzoa
X1 immez = imm41 << 21 | i<<20 | immzoa
X2 iMMgg =1 << 63 | immy, << 22 | i << 21 | immsge << 16 | immgg << 7 | immyy,

a. This encoding causes an lllegal Operation fault if the value of the qualifying predicate is 1.
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