The 1A-64 System Architecture:
Tutorial For Hardware, OS, &
Application Developers

February 15, 2000

Jerry Huck Rumi Zahir
Manager of Processor Architecture Itanium™ Processor System Architecture

Computer Products Group Microprocessor Products Group
Hewlett Packard Company Intel Corporation

(D]

invent

What's In This Session?

e |A-64 memory models, system software,
other architecture features relevant to
hardware, OS, and application
developers

e |A-64 concepts & features for developers
to take advantage and build robust &
scalable software and hardware
components

JA-64 System Architecture Agenda

e System Architecture Highlights

e Virtual Memory Model

e Interruption Model

e System Software Stack

e Reliability, Availability, Serviceability
e Parallelism & Scalability

e Compatibility

e Summary

JA-64 System Architecture Goals

e Flexible Architecture

—*address space per process” model
—Windows NT, Unix, Mach, etc.

—“Global Address Space” model
— HP-UX plus future 64-bit OSes

e Performance focused Hardware

e Support shrink-wrap OS compatibility
e Scalable system performance

e |A-32 and PA-RISC Compatibility

(D] intel

JA-64 System Architecture Agenda

e System Architecture Highlights

e \Virtual Memory Model

e Interruption Model

e System Software Stack

e Reliability, Availability, Serviceability
e Parallelism & Scalability

e Compatibility

e Summary / Call To Action

JA-64 Virtual Memory Model

e Process Address Space
e System Address Space Management

e Virtual Address Translation
—TLB and Page table

e Flexible Object Sharing Model
—Aliasing and Global addressing

64-bit Address Space:
Large and Sparse

e Requires increased TLB capacities
— Mapped files, globally shared memory
— Allow for multiple large on/off-chip TLBs
— Provide wide range of page sizes
e Improve utilization and sharing of TLB and
page tables
—No TLB flush on context switch
— Promote TLB entry sharing

IA-64 Overcomes Challenges Of 64-bit
Address Space Efficiently

Process Address Space

64-bit Address

0

Flat
Virtual
Space.:

254 bytes

Process Address Space

64-bit Address

8 Regions/process

264

OS Kernel

DLLsS

Data/Heap
Code/Text

System Address Space

64-bit Address

JA-64 Region Registers

64-bit Address

63| 61 60

E Pages
I |
261 bytes
INn size

intel

Processes and Threads

Process 2

Process 1

1~ Regions Enable Efficient Management Of
[/”] Processes For Multi-tasking Environments

Virtual Address Translation: TLB
e Mapping to Physical Address

Physical

Virtual Addresses Addresses

T [

Process B I

*/Access Rights

TLB Organization

Instruction

e Separate instruction and
data TLBs

e Software Manages
—TR entries,
—Page-table updates

lardware Manages

—TC TLB refill
—Broadcast TLB Purge

ITC

Balance TLB For Efficient Memory
Management

Virtual Address Translation

Region Registers

64-bit Address
RRx Vi rtual Page # offset
M

L RID | 0

“deliver”

Physical Address

intel

Protection: Can | See 11?2 Can | Access It?

E—
—
E—
———— P
E—
—

Priv. Level

Access Type Protection Key
Registers

pkrO

Protection Keys Increase TLB
Utilization For Large Object Databases

\ariable Page Sizes

e Minimum on all implementations

—4K, 8K, 16K, 64K, 256K, 1M, 4M, 16M, 64M,
256M-bytes

o4 GB purge

—Simplify address space de-allocation

Variable Page Sizes Enable TLB Efficiency
For OS And Application Performance

Hardware Accessed Page Table

Processor

Region Registers

64-bit Address

Virtual Page #
63

61 60 0

Search

Memory

Flexible Hardware Mechanisms
Enable Parallel Execution

>

Memory Model: Example

Region 7 - One RID, no key
Kernel - protected by Priv. level

Region 2 - One RID, protection via multiple keys
Shared memory areas

Region 1 - Same RID if shared
P1,2,3,4 Single address space for code

Region O - Different RID in each process
Unique address spaces for data

| Flexible Virtual Memory Architecture Enables
Variety Of Efficient OS Implementations

JA-64 System Architecture Agenda

e System Architecture Highlights

e Virtual Memory Model

e Interruption Model

e System Software Stack

e Reliability, Availability, Serviceability
e Parallelism & Scalability

e Compatibility

e Summary / Call To Action

JA-64 Interruption Model

e Parallel instruction execution, . . .

— Exception delivery is sequential & precise

— All exceptions reported on the excepting instruction
(including numeric exceptions)

e “Interruption” iIs IA -64 term for...

Abort Fault Trap Interrupt

« Hardware reset | EXception taken Exception taken Asynchronous
external event:

. i before instruction [after instruction
Machine check | === B * device or platform

commit, _ commit, management interrupt
e.g. TLB miss e.g. FP trap * soft-reset

IA-64 Provides Precise Exception Model
To Match Today’s OS Designs

JA-64 Interruption Process

Application Code

Ml [D—y 0,000 NS A
0x1010 INSTB
0x1020 INST C

|VT Code

Current Processor State

[P 0x1000
PSR

(D]

invent

BANK1 REG
(app data)

| nterruption
Registers

1P

IPSR

e Instruction A executed

BANKO REG
(OS data)

|A-64 Interruption Process

e Instruction B executed

Application Code

0x1000 INST A

IP—p 0010 |NST &
0x1020 INSTC

BANK1 REG

d
IVT Code S BANKO REG

(OS data)

| nterruption
Current Processor State Registers

[P 0x1010 e
PSR IPSKH

(D]

invent

|A-64 Interruption Process

Processor switches

Application Code to Bank O registers
preparing to run IVT code

0x1000 INST A

[P—» OLO1L0 INSIF &
0x1020 -

INTERRUPTION
BANKO REG BANK1 REG

(OS data) SWITCHING (app data)

| nterruption
Current Processor State :
RengterS Processor saves

[P 0x1010 — 1Pl 0x1010 current state to

saves state | - before interrupt handling

a

invent

JA-64 Interruption Process

Application Code

0x1000
0x1010
0x1020

INST A
INST B
INST C

Interrupt Vector Table (1VT) Code

W O__y. (0x4000 INST X
0x4010 INSTY
0x4020 RFI

Current Processor State

[P 0x4000
PSR

R

invent

BANKO REG
(OS data)

e Instruction X executed

127 In interrupt vector table

| nterruption

Registers

P
IPSR

0x1010

|A-64 Interruption Process - instuction ¥ executed

in interrupt vector table

Application Code ’ 27

0x1000 INST A
0x1010 INSTB

¥
0x1020 INST C 32

BANKO REG
VT Code (OS data)

0x4000 INST X
|P—» 0x4010 INSTY
0x4020 RFI

| nterruption
Current Processor State Registers

[P 0x4010 /I[P 0x1010
PSR IPSR

OB

invent

JA-64 Interruption Process

0x4000
0x4010 IN
|P—> 0x4020 RFI

| 127

~
|32

A

BANK
SWITCHING

Current Processor State
[P 0x4020 4+

PSR Processor
restores
state

o

invent

| nterruption
Registers

[IP| 0x1010
IPSH

BANKO REG
(OSdata)

JA-64 Interruption Process

Application Code

0x1000 INST A

IP—p 0010 |NST &
0x1020 INSTC

VT Code

Current Processor State

[P 0x1010
PSR

(D]

invent

BANK1 REG

| nterruption
Registers

* Instruction B executed

BANKO REG
(OS Data)

1P

IPSR

Interruption Features

e Low Iinterruption latency
—Interruption delivery causes single pipeline break
— Key state captured in on-chip registers
e State-save controlled by system software
— Software makes performance/nesting trade-off
—Shared mechanism for |A-64/IA-32 interruptions
e Efficient handler execution

— Interruption vector table (IVT) contains code for
Interrupt service routine

Provides Fast And Flexible Interruptions
For Large I/O Intensive Applications

Parallelism Across System Calls

Application Code EPC Page (PL promote and execute only)

Application
Address

Spage /I make system calll W write: epc // privilege promote

br.call _write [/ without pipeline flush
w br os_write

\\ —<
- =

Operaling 0S_Wwrite:

System

Kernel /I perform system call
br.ret

(privileged code) /[demote PL and return
to user

Fast System Calls Improve Synergy
Between OS & Application

JA-64 External Interrupts

Processor Processor Processor |«— LINTO (intel 8259A
<€<— LINT1 compatible)

A\

: >
System Bus Interrupt
messages

/O Bus

A

\ 4 y

Device External Interrupt Device w/Interrupt
Controller Controller

Device

High Performance Message-Based Interrupts
Compatible With Today'’s Platforms

JA-64 System Architecture Agenda

e System Architecture Highlights

e Virtual Memory Model

e Interruption Model

e System Software Stack

e Reliability, Availability, Serviceability
e Parallelism & Scalability

e Compatibility

e Summary / Call To Action

JA-64 System Software Stack: OS Boot

OPEraUNGISYSLEMISOILVALE

OS boot -—--)T

System Abstraction Layer (SAL)

________ g

 |IA-32 BIOS

EF1

AcCCess to T
platform

resources

Processor Abstraction Layer (PAL)

Processor (hardware)

<€ - -- Reset, machine checks

Platform (hardware)

OS Running

OPEraUNGISYSLEMISOILVALE

EF1

Instructions

System Abstraction Layer (SAL) \, Interruptions

________ g

"1A-32 BIOS /

Processor Abstraction Layer (PAL)

Processor (hardware)
External Interrupts
(performance critical) =~ >

Platform (hardware)

OS Calls To Firmware Services

DPENAUNYISYSTEMISOIAVANE

Services
EFI

System Abstraction Layer (SAL)

________ g

 |1A-32 BIOS

Access to .
platform Processor Abstraction Layer (PAL)

resources

\) Processor (hardware)

Platform (hardware)

Machine Check Handling

DPENAUNYISYSTEMISOIAVANE

Machine Check
Services ‘=----- >

EFI

System Abstraction Layer (SAL)

________ g

 1A-32 BIOS

T

platform Processor Abstraction Layer (PAL)

resources

\) Processor (hardware)

Access to

<€ - -- Reset, machine checks

Platform (hardware)

Architected RAS Features

— Reliability
— 3 levels of error signaling:
— Continuable, local, and global

— Availability

— Fine grained error containment by cooperation
between hardware and firmware

— Serviceability
— Extensive error logs for error analysis

— Common error logs for firmware and OS

Advanced Machine Check Architecture
For High Levels of Reliability,
Availability, And Serviceability

JA-64 System Architecture Agenda

e System Architecture Highlights

e Virtual Memory Model

e Interruption Model

e System Software Stack

e Reliability, Availability, Serviceability
e Parallelism & Scalability

e Compatibility

e Summary / Call To Action

Parallelism and Scalability

e Excellent Multi-Processing Scalability
High performance relaxed ordering model
~lexible semaphore primitives

Hardware broadcast TLB purge

e OS Resource Scaling & Parallelism

—Flexible # of PKRs, TRs, key & RID widths

—Parallel update of control register writes
(explicitly serialized)

IA-64 Features For Scalable MP Systems

Compatibility.

e |A-64 supports PA-RISC & |A-32 Applications

e |A-64 supports I1A-32 OS

— Capable of running unmodified multi-processing IA-32 OS,
e.g. NT4.0, Linux

e |A-64 OS supports |IA-32 Platform peripherals

— |IA-64 support for legacy I/O port space

e Dependent upon OS & platform implementation

IA-64 Offers Full IA-32 Compatibility In
Hardware: Platforms, OS, Applications

JA-64 System Architecture Agenda

e System Architecture Highlights

e Virtual Memory Model

e Interruption Model

e System Software Stack

e Reliability, Availability, Serviceability
e Parallelism & Scalability

e Compatibility

e Summary / Call To Action

JA-64 System Architecture Summary.

Performance:

— Innovative architecture provides low overhead for major OS functions
Flexibility:

— Accommodates current OS & features for OS extensibility & evolution
Scalability:

— |A-64 platforms can run efficiently from UP to very large MP systems
Availablity:

— High levels of reliability & availability through enhanced RAS features

Interoperability:

— Well defined mechanisms & new firmware model ensures running of
shrink-wrapped OS on variety of platforms

Compatibility:
— Provides efficient and transparent IA-32 compatibility at system level

(D]

invent

Call to Action

e New detailed specifications available for download

— OSVs & IHVs accelerate development of I1A-64 system
applications (device drivers, system debug tools, etc...)

e OSVs, IHVs, & ISVs take advantage of broad |A-64
enabling efforts to accelerate your porting efforts

e Take advantage of open source of IA-64 tools and
Linux operating system

(D]

invent

New Public IA-64 Docs

e |A-64 Software Developer's Manual

— Info for system & application software, & development tools for
|A-64

— Software optimization technigues
— Performance monitoring info for optimization support

e More |A-64 Documentation:

— |A-64 Software Conventions and Runtime Architecture Guide
— Assembly Language Reference Guide
— |A-64 assembler & reference guide
— |A-64 Processor- speC|f|c Application Binany Interface
— System AbStraciienitayerSPECICALIo)
ziplel pplore

IA-64 Docs Avallable On Internet:

www.hp.com/go/ia-64/
developer.intel.com/design/ia-64/devinfo.htm jpyv_ |

s

000¢ buuds
LNJO4

19d0I9AD
__mE_ d

