
The Computation of Transcendental Functions on the IA-64 Architecture 1

The Computation of Transcendental Functions on the IA-64
Architecture

John Harrison, Microprocessor Software Labs, Intel Corporation
Ted Kubaska, Microprocessor Software Labs, Intel Corporation
Shane Story, Microprocessor Software Labs, Intel Corporation

Ping Tak Peter Tang, Microprocessor Software Labs, Intel Corporation

Index words: floating point, mathematical software, transcendental functions

ABSTRACT
The fast and accurate evaluation of transcendental
functions (e.g. exp, log, sin, and atan) is vitally important
in many fields of scientific computing. Intel provides a
software library of these functions that can be called from
both the C∗ and FORTRAN* programming languages. By
exploiting some of the key features of the IA-64 floating-
point architecture, we have been able to provide double-
precision transcendental functions that are highly accurate
yet can typically be evaluated in between 50 and 70 clock
cycles. In this paper, we discuss some of the design
principles and implementation details of these functions.

INTRODUCTION
Transcendental functions can be computed in software by
a variety of algorithms. The algorithms that are most
suitable for implementation on modern computer
architectures usually comprise three steps: reduction,
approximation, and reconstruction.

These steps are best illustrated by an example. Consider
the calculation of the exponential function exp(x). One
may first attempt an evaluation using the familiar
Maclaurin series expansion:

exp(x) = 1 + x + x2/2! + x3/3! + … + xk/k! + … .

When x is small, computing a few terms of this series
gives a reasonably good approximation to exp(x) up to,
for example, IEEE double precision (which is
approximately 17 significant decimal digits). However,
when x is large, many more terms of the series are needed
to satisfy the same accuracy requirement. Increasing the
number of terms not only lengthens the calculation, but it
also introduces more accumulated rounding errors that
may degrade the accuracy of the answer.

∗All other brands and names are the property of their
respective owners.

To solve this problem, we express x as

x = N ln(2) / 2K + r

for some integer K chosen beforehand (more about how to
choose later). If N ln(2)/2K is made as close to x as
possible, then |r| never exceeds ln(2)/2K+1. The
mathematical identity

exp(x) = exp(N ln(2) / 2K + r) = 2N/2K
exp(r)

shows that the problem is transformed to that of
calculating the exp function at an argument whose
magnitude is confined. The transformation to r from x is
called the reduction step; the calculation of exp(r), usually
performed by computing an approximating polynomial, is
called the approximation step; and the composition of the
final result based on exp(r) and the constant related to N
and K is called the reconstruction step.

In a more traditional approach [1], K is chosen to be 1 and
thus the approximation step requires a polynomial with
accuracy good to IEEE double precision for the range of
|r | ≤ ln(2)/2. This choice of K leads to reconstruction via
multiplication of exp(r) by 2N, which is easily
implementable, for example, by scaling the exponent field
of a floating-point number. One drawback of this
approach is that when |r | is near ln(2)/2, a large number of
terms of the Maclaurin series expansion is still needed.

More recently, a framework known as table-driven
algorithms [8] suggested the use of K > 1. When for
example K=5, the argument r after the reduction step
would satisfy |r| ≤ log(2)/64. As a result, a much shorter
polynomial can satisfy the same accuracy requirement.
The tradeoff is a more complex reconstruction step,
requiring the multiplication with a constant of the form

2N/32 = 2M 2d/32, d = 0, 1, …, 31,

Intel Technology Journal Q4, 1999

The Computation of Transcendental Functions on the IA-64 Architecture 2

where N = 32M + d . This constant can be obtained rather
easily, provided all the 32 possible values of the second
factor are computed beforehand and stored in a table
(hence the name table-driven). This framework works
well for modern machines not only because tables (even
large ones) can be accommodated, but also because
parallelism, such as the presence of pipelined arithmetic
units, allow most of the extra work in the reconstruction
step to be carried out while the approximating polynomial
is being evaluated. This extra work includes, for
example, the calculation of d, the indexing into and the
fetching from the table of constants, and the
multiplication to form 2N/32. Consequently, the
performance gain due to a shorter polynomial is fully
realized.

In practice, however, we do not use the Maclaurin series.
Rather, we use the lowest-degree polynomial p(r) whose
worst deviation |p(r) − exp(r)| within the reduced range in
question is minimized and stays below an acceptable
threshold. This polynomial is called the minimax
polynomial. Its coefficients can be determined
numerically, most commonly by the Remez algorithm [5].

Another fine point is that we may also want to retain some
convenient properties of the Maclaurin series, such as the
leading coefficient being exactly 1. It is possible to find
minimax polynomials even subject to such constraints;
some examples using the commercial computer algebra
system Maple are given in reference [3].

DESIGN PRINCIPLES ON THE IA-64
ARCHITECTURE
There are tradeoffs to designing an algorithm following
the table-driven approach:

• Different argument reduction methods lead to
tradeoffs between the complexity of the reduction
and the reconstruction computation.

• Different table sizes lead to tradeoffs between
memory requirements (size and latency
characteristics) and the complexity of polynomial
computation.

Several key architectural features of IA-64 have a bearing
on which choices are made:

• Short floating-point latency: On IA-64, the generic
floating-point operation is a “fused multiply add” that
calculates A×B + C per instruction. Not only is the
latency of this floating-point operation much shorter
than memory references, but this floating-point
operation consists of two basic arithmetic operations.

• Extended precision: Because our target is IEEE
double-precision with 53 significant bits, the native

64-bit precision on IA-64 delivers 11 extra bits of
accuracy on basic arithmetic operations.

• Parallelism: Each operation is fully pipelined, and
multiple floating-point units are present.

As stated, these architectural features affect our choices of
design tradeoffs. We enumerate several key points:

• Argument reduction usually involves a number of
serial computation steps that cannot take advantage
of parallelism. In contrast, the approximation and
reconstruction steps can naturally exploit parallelism.
Consequently, the reduction step is often a
bottleneck. We should, therefore, favor a simple
reduction method even at the price of a more
complex reconstruction step.

• Argument reduction usually requires the use of some
constants. The short floating-point latency can make
the memory latency incurred in loading such
constants a significant portion of the total latency.
Consequently, any novel reduction techniques that do
away with memory latency are welcome.

• Long memory latency has two implications for table
size. First, large tables that exceed even the lowest-
level cache size should be avoided. Second, even if a
table fits in cache, it still takes a number of repeated
calls to a transcendental function at different
arguments to bring the whole table into cache. Thus,
small tables are favored.

• Extended precision and parallelism together have an
important implication for the approximation step.
Traditionally, the polynomial terms used in core
approximations are evaluated in some well specified
order so as to minimize the undesirable effect of
rounding error accumulation. The availability of
extended precision implies that the order of
evaluation of a polynomial becomes unimportant.
When a polynomial can be evaluated in an arbitrary
order, parallelism can be fully utilized. The
consequence is that even long polynomials can be
evaluated in short latency.

Roughly speaking, latency grows logarithmically in the
degree of polynomials. The permissive environment that
allows for functions that return accurate 53-bit results
should be contrasted with that which is required for
functions that return accurate 64-bit results. Some
functions returning accurate 64-bit results are provided in
a special double-extended libm as well as in IA-32
compatibility operations [6]. In both, considerable effort
was taken to minimize rounding error. Often,
computations were carefully choreographed into a
dominant part that was calculated exactly and a smaller
part that was subject to rounding error. We frequently
stored precomputed values in two pieces to maintain

Intel Technology Journal Q4, 1999

The Computation of Transcendental Functions on the IA-64 Architecture 3

intermediate accuracy beyond the underlying precision of
64 bits. All these costly implementation techniques are
unnecessary in our present double-precision context.

We summarize the above as four simple principles:

1. Use a simple reduction scheme, even if such a
scheme only works for a subset of the argument
domain, provided this subset represents the most
common situations.

2. Consider novel reduction methods that avoid memory
latency.

3. Use tables of moderate size.

4. Do not fear long polynomials. Instead, work hard at
using parallelism to minimize latency.

In the next sections, we show these four principles in
action on Merced, the first implementation of the IA-64
architecture.

SIMPLE AND FAST RANGE REDUCTION
A common reduction step involves the calculation of the
form

r = x − N ρ.

This includes the forward trigonometric functions sin, cos,
tan, and the exponential function exp, where ρ is of the
form π/2K for the trigonometric functions and of the form
ln(2)/2K for the exponential function. We exploit the fact
that the overwhelming majority of arguments will be in a
limited range. For example, the evaluation of
trigonometric functions like sin for very large arguments
is known to be costly. This is because to perform a range
reduction accurately by subtracting a multiple of π/2K, we
need to implicitly have a huge number of bits of
π available. But for inputs of less than 210 in magnitude,
the reduction can be performed accurately and efficiently.
The overwhelming majority of cases will fall within this
limited range. Other more time-consuming procedures
are well known and are required when arguments exceed
210 in magnitude (see [3] and [6]).

The general difficulty of range reduction implementation
is that ρ is not a machine number. If we compute:

r = x − N P

where the machine number P approximates π/2K, then if x
is close to a root of the specific trigonometric function,
the small error, ε = |P – π/2K|, scaled up by N, constitutes
a large relative error in the final result. However, by
using number-theoretic arguments, one can see that when
reduction is really required for double-precision numbers
in the specified range, the result of any of the
trigonometric functions, sin, cos, and tan, cannot be
smaller in magnitude than about 2−60 (see [7]).

The worst relative error (which occurs when the result of
the trigonometric function is its smallest, 2-60, and N is
close to 210+K) is about 270+K ε. If we store P as two
double-extended precision numbers, P_1 + P_2, then we
can make ε < 2-130-K sufficient to make the relative error in
the final result negligible.

One technique to provide an accurate reduced argument
on IA-64 is to apply two successive fma operations

r0 = x − N P_1; r= r0 − N P_2.

The first operation introduces no rounding error because
of the well known phenomenon of cancellation.

For sin and cos, we pick K to be 4, so the reconstruction
has the form

sin(x)= sin(Nπ/16) cos(r) + cos(Nπ/16)sin(r)

and

cos(x)= cos(Nπ/16) cos(r) − sin(Nπ/16)sin(r).

Periodicity implies that we need only tabulate sin(Nπ/16)
and cos(Nπ/16) for N = 0, 1, …, 31.

The case for the exponential function is similar. Here
ln(2)/2K (K is chosen to be 7 in this case) is approximated
by two machine numbers P_1 + P_2, and the argument is
reduced in a similar fashion.

NOVEL REDUCTION
Some mathematical functions f have the property that

f(u v) = g(f(u),f(v))

where g is a simple function such as the sum or product
operator. For example, for the logarithm, we have (for
positive u and v)

ln(u v) = ln(u) + ln(v) (g is the sum operator)

while for the cube root, we have

 (u v)1/3 = u1/3 v1/3 (g is the product operator).

In such situations, we can perform an argument reduction
very quickly using IA-64's basic floating-point reciprocal
approximation (frcpa) instruction, which is primarily
intended to support floating-point division. According to
its definition, frcpa(a) is a floating-point with 11
significant bits that approximates 1/a using a lookup on
the top 8 bits of the (normalized) input number a. This
11-bit floating-point number approximates 1/a to about 8
significant bits of accuracy. The exact values returned are
specified in the IA-64 architecture definition. By
enumeration of the approximate reciprocal values, one
can show that for all input values a,

frcpa(a) = (1/a) (1 − β), |β| ≤ 2−8.86.

We can write f(x) as

Intel Technology Journal Q4, 1999

The Computation of Transcendental Functions on the IA-64 Architecture 4

f(x) = f(x frcpa (x) / frcpa (x))

 = g(f(x frcpa (x)), f(1/frcpa (x))).

The f(1/frcpa (x)) terms can be stored in precomputed
tables, and they can be obtained by an index based on the
top 8 bits of x (which uniquely identifies the
corresponding frcpa (x)).

Because the f’s we are considering here have a natural
expansion around 1,

 f(x frcpa (x))

is most naturally approximated by a polynomial evaluated
at the argument r = x frcpa(x) − 1. Hence, a single fma
constitutes our argument reduction computation, and the
value frcpa(x) is obtained without any memory latency.

We apply this strategy to f(x) = ln(x).

ln(x) = ln(1/frcpa (x)) + ln(frcpa (x) x)

= ln(1/frcpa (x)) + ln(1 + r)

The first value on the right-hand side is obtained from a
table, and the second value is computed by a minimax
polynomial approximating ln(1+r) on |r| ≤ 2-8.8. The
quantity 2−8.8 is characteristic of the accuracy of the IA-64
frcpa instruction.

The case for the cube root function cbrt is similar.

(x)1/3 = (1/frcpa (x))1/3 (frcpa (x) x)1/3

 = (1/frcpa (x))1/3 (1 + r)1/3.

The first value on the right-hand side is obtained from a
table, and the second value is computed by a minimax
polynomial approximating (1+r)1/3 on |r| ≤ 2-8.8.

MODERATE TABLE SIZES
We tabulate here the number of double-extended table
entries used in each function. The trigonometric functions
sin and cos share the same table, and the functions tan and
atan do not use a table at all.

Function Number of Double-Extended Entries

cbrt 256 (3072 bytes)

exp 24 (288 bytes)

Ln 256 (3072 bytes)

sin, cos 64 (768 bytes)

tan None

atan None

Table 1: Table sizes used in the algorithms

Table 1 does not include the number of constants for
argument reduction nor does it include the number of
coefficients needed for evaluating the polynomial.

OPTIMAL EVALUATION OF
POLYNOMIALS
The traditional Horner's rule of evaluation of a
polynomial is efficient on serial machines. Nevertheless,
a general degree-n polynomial requires a latency of n
fma’s. When more parallelism is available, it is possible
to be more efficient by splitting the polynomial into parts,
evaluating the parts in parallel, and then combining them.
We employ this technique to the polynomial
approximation steps for all the functions. The enhanced
performance is crucial to the cases of tan and atan where
the polynomials involved are of degrees 15 and 22. Even
for the other functions where the polynomials are varying
in degree from 4 to 8, our technique also contributes to a
noticeable gain over the straightforward Horner’s method.
We now describe this technique in more detail.

Merced has two floating-point execution units, so there is
certainly some parallelism to be exploited. Even more
important, both floating-point units are fully pipelined in
five stages. Thus, two new operations can be issued every
cycle, even though the results are then not available for a
further five cycles. This gives much of the same benefit
as more parallel execution units. Therefore, as noted by
the author in reference [3], one can use more sophisticated
techniques for polynomial evaluation intended for highly
parallel machines. For example, Estrin's method [2]
breaks the evaluation down into a balanced binary tree.

We can easily place a lower bound on the latency with
which a polynomial can be computed: if we start with x
and the coefficients ci, then by induction, in n serial fma
operations, we cannot create a polynomial that is a degree
higher than 2n, and we can only equal 2n if the term of the
highest degree is simply x2n

 with unity as its coefficient.
For example, in one operation we can reach c0 + c1 x or
x + x2 but not x + c0x2. Our goal is to find an actual
scheduling that comes as close as possible to this lower
bound.

Simple heuristics based on binary chopping normally give
a good evaluation strategy, but it is not always easy to
visualize all the possibilities. When the polynomial can
be split asymmetrically, or where certain coefficients are
special, such as 1 or 0, there are often ways of doing
slightly better than one might expect in overall latency or
at least in the number of instructions required to attain
that latency (and hence in throughput). Besides, doing the
scheduling by hand is tedious. We search automatically
for the best scheduling using a program that exhaustively
examines all essentially different scheduling. One simply

Intel Technology Journal Q4, 1999

The Computation of Transcendental Functions on the IA-64 Architecture 5

enters a polynomial, and the program returns the best
latency and throughput attainable, and it lists the main
ways of scheduling the operations to attain this.

Even with various intelligent pruning approaches and
heuristics, the search space is large. We restrict it
somewhat by considering only fma combinations of the
form p1(x) + xkp2(x). That is, we do not consider
multiplying two polynomials with nontrivial coefficients.
Effectively, we allow only solutions that work for
arbitrary coefficients, without considering special
factorization properties. However, for polynomials where
all the coefficients are 1, these results may not be optimal
because of the availability of nontrivial factorizations that
we have ruled out. For example, we can calculate:

1 + x + x2 + x3 + x4 + x5 + x6

as

1 + (1 + (x + x2)) (x + (x2) (x2))

which can be scheduled in 15 cycles. However, if the
restriction on fma operations is observed, then 16 cycles
is the best attainable.

The optimization program works in two stages. First, all
possible evaluation orders using these restricted fma
operations are computed. These evaluation orders ignore
scheduling, being just “abstract syntax” tree structures
indicating the dependencies of subexpressions, with
interior nodes representing fma operations of the form
p1(x) + xk p2(x):

 c 0 + c 1x + c 2x
2
 + c 3x

3

 c0 + c 1x x
2
 c 2 + c 3x

 c 0 x c1 0 x x c 2 x c 3

Figure 1: A dependency tree

However, because of the enormous explosion in
possibilities, we limit the search to the smallest possible
tree depth. This tree depth corresponds to the minimum
number of serial operations than can possibly be used to
evaluate the expression using the order denoted by that
particular tree. Consequently, if the tree depth is d then
we cannot possibly do better than 5d cycles for that
particular tree. Now, assuming that we can in fact do at
least as well as 5d + 4, we are justified in ignoring trees of
a depth greater than or equal to d + 1, which could not
possibly be scheduled in as few cycles. This turns out to
be the case for all our examples.

The next stage is to take each tree (in some of the
examples below there are as many as 10000 of them) and
calculate the optimal scheduling. The optimal scheduling
is computed backwards by a fairly naive greedy
algorithm, but with a few simple refinements based on
stratifying the nodes from the top as well as from the
bottom.

The following table gives the evaluation strategy found by
the program for the polynomial:

x + c2x2 + c3x3 + … + c9x9

Table 2 shows that it can be scheduled in 20 cycles, and
we have attained the lower bound. However, if the first
term were c1x we would need 21.

Cycle FMA Unit 1 FMA Unit 2

0 v1 = c2 + x c3 v2 = x x

3 v3 = c6 + x c7 v4 = c8 + x c9

4 v5 = c4 + x c5

5 v6 = x + v2 v1 v7 = v2 v2

9 v8 = v3 + v2 v4

10 v9 = v6 + v7 v5 v10 = v2 v7

15 v11 = v9 + v10 v8

Table 2: An optimal scheduling

OUTLINE OF ALGORITHMS
We outline each of the seven algorithms discussed here.
We concentrate only on the numeric cases and ignore
situations such as when the input is out of the range of the
functions’ domains or non-numeric (NaN for example).

Cbrt

1. Reduction: Given x, compute r = x frcpa(x) − 1.

2. Approximation: Compute a polynomial p(r) of the
form p(r)=p1r + p2r2 + … + p6r6 that approximates
(1+r)1/3−1.

3. Reconstruction: Compute the result T + Tp(r) where
the T is (1/frcpa(x))1/3. This value T is obtained via
a tabulation of (1/frcpa(y))1/3, where y=1+k/256, k
ranges from 0 to 255 and a tabulation of 2−j/3, and j
ranges from 0 to 2.

Exp

1. Reduction: Given x, compute N, the closest integer to
the value x (128/ ln(2)). Then compute r = (x−N
P1)−N P2. Here P1+P2 approximates ln(2)/128 (see
previous discussions).

Intel Technology Journal Q4, 1999

The Computation of Transcendental Functions on the IA-64 Architecture 6

2. Approximation: Compute a polynomial p(r) of the
form p(r) = r + p1 r

2 + … + p4 r5 that approximates
exp(r) − 1.

3. Reconstruction: Compute the result T + Tp(r) where
T is 2N/128 . This value T is obtained as follows. First,
N is expressed as N = 128 M + 16 K + J, where I1

ranges from 0 to 15, and I2 ranges from 0 to 7.
Clearly 2N/128 = 2M 2K/8 2J/128. The first of the three
factors can be obtained by scaling the exponent; the
remaining two factors are fetched from tables with 8
entries and 16 entries, respectively.

Ln

1. Reduction: Given x, compute r = x frcpa(x) − 1.

2. Approximation: Compute a polynomial p(r) of the
form p(r)= p1 r2 + … + p5 r6 that approximates
ln(1+r) − r.

3. Reconstruction: Compute the result T + r + p(r)
where the T is ln(1/frcpa(x)). This value T is
obtained via a tabulation of ln(1/frcpa(y)), where
y=1+k/256, k ranges from 0 to 255, and a calculation
of the form N ln(2).

Sin and Cos

We first consider the case of sin(x).

1. Reduction: Given x, compute N, the closest integer to
the value x (16/π). Then compute r = (x−N P1)−N P2.
Here P1+P2 approximates π/16 (see previous
discussions).

2. Approximation: Compute two polynomials: p(r) of
the form r + p1 r

3 + … + p4 r9 that approximates
sin(r) and q(r) of the form q1 r

2 + q2 r4 + … + q4 r8

that approximates cos(r) − 1.

3. Reconstruction: Return the result as Cp(r)+(S+Sq(r))
where C is cos(N π/16) and S is sin(N π/16) obtained
from a table.

The case of cos(x) is almost identical. Add 8 to N just
after it is first obtained. This works because of the
identity cos(x) = sin(x+π/2).

Tan

1. Reduction: Given x, compute N, the closest integer to
the value x (2/π). Then compute r = (x−N P1)−N P2.
Here P1+P2 approximates π/2 (see previous
discussions).

2. Approximation: When N is even, compute a
polynomial p(r) = r + r t (p0 + p1 t + … + p15 t

15) that
approximates tan(r). When N is odd, compute a
polynomial q(r) = (−r)-1+ r(q0 + q1 t + … + q10 t10)

that approximates −cot(r). The term t is r2. We
emphasize the fact that parallelism is fully utilized.

3. Reconstruction: If N is even, return p. If N is odd,
return q.

Atan

1. Reduction: No reduction is needed.

2. Approximation: If |x| is less than 1, compute a
polynomial p(x) = x + x3(p0 + p1 y + … + p22 y22) that
approximates atan(x), y is x2. I f |x| > 1, compute
several quantities, fully utilizing parallelism. First,
compute q(x) = q0 + q1 y + … + q22 y

22, y=x2, that
approximates x45 atan(1/x). Second, compute c45

where c = frcpa(x). Third, compute another
polynomial r(β) = 1+r1 β + … + r10 β10, where β is the
quantity x frcpa(x) − 1 and r(β) approximates the
value (1−β)−45.

3. Reconstruction: If |x | is less than 1, return p(x).
Otherwise, return sign(x)π/2 − c45r(β)q(x). This is
due to the identity atan(x) = sign(x)π/2 − atan(1/x).

SPEED AND ACCURACY
These new double-precision elementary functions are
designed to be both fast and accurate. We present the
speed of the functions in terms of latency for arguments
that fall through the implementation in a path that is
deemed most likely. As far as accuracy is concerned, we
report the largest observed error after extensive testing in
terms of units of last place (ulps). This error measure is
standard in this field. Let f be the mathematical function
to be implemented and F be the actual implementation in
double precision. When 2L < |f(x)| ≤ 2L+1, the error in ulps
is defined as |f(x) − F(x)| / (2L−52). Note that the smallest
worst-case error that one can possibly attain is 0.5 ulps.
Table 3 tabulates the latency and maximum error
observed.

Function Latency (cycles) Max. Error (ulps)

cbrt 60 0.51

exp 60 0.51

ln 52 0.53

sin 70 0.51

cos 70 0.51

tan 72 0.51

atan 66 0.51

Table 3: Speed and accuracy of functions

Intel Technology Journal Q4, 1999

The Computation of Transcendental Functions on the IA-64 Architecture 7

CONCLUSIONS
We have shown how certain key features of the IA-64
architecture can be exploited to design transcendental
functions featuring an excellent combination of speed and
accuracy. All of these functions performed over twice as
fast as the ones based on the simple conversion of a
library tailored for double-extended precision. In one
instance, the ln function described here contributed to a
two point increment of SpecFp benchmark run under
simulation.

The features of the IA-64 architecture that are exploited
include parallelism and the fused multiply add as well as less
obvious features such as the reciprocal approximation
instruction. When abundant resources for parallelism are
available, it is not always easy to visualize how to take
full advantage of them. We have searched for optimal
instruction schedules. Although our search method is
sufficient to handle the situations we have faced so far,
more sophisticated techniques are needed to handle more
complex situations. First, polynomials of a higher degree
may be needed in more advanced algorithms. Second,
more general expressions that can be considered as
multivariate polynomials are also anticipated. Finally, our
current method does not handle the full generality of
microarchitectural constraints, which also vary in future
implementations on the IA-64 roadmap. We believe this
optimal scheduling problem to be important not only
because it yields high-performance implementation, but
also because it may offer a quantitative analysis on the
balance of microarchitectural parameters. Currently we
are considering an integer programming framework to
tackle this problem. We welcome other suggestions as
well.

REFERENCES
 [1] Cody Jr., William J. and Waite, William, Software

Manual for the Elementary Functions, Prentice Hall,
1980.

[2] Knuth, D.E., The Art of Computer Programming vol.
2: Seminumerical Algorithms, Addison-Welsey, 1969.

[3] Muller, J. M., Elementary functions: algorithms and
implementation, Birkhaüser, 1997.

[4] Payne, M., “An Argument Reduction Scheme on the
DEC VAX,” Signum Newsletter, January 1983.

[5] Powell, M.J.D., Approximation Theory and Methods,
Cambridge University Press, 1981.

[6] Story, S. and Tang, P.T.P., “New algorithms for
improved transcendental functions on IA-64,” in
Proceedings of 14th IEEE symposium on computer
arithmetic, IEEE Computer Society Press, 1999.

[7] Smith, Roger A., “A Continued-Fraction Analysis of
Trigonometric Argument Reduction,” IEEE
Transactions on Computers, pp. 1348-1351, Vol. 44,
No. 11, November 1995.

[8] Tang, P.T.P., “Table-driven implementation of the
exponential function in IEEE floating-point
arithmetic,” ACM Transactions on Mathematical
Software, vol. 15, pp. 144-157, 1989.

AUTHORS’ BIOGRAPHIES
John Harrison has been with Intel for just over one year.
He obtained his Ph.D. degree from Cambridge University
in England and is a specialist in formal validation and
theorem proving. His e-mail is johnh@ichips.intel.com.

Ted Kubaska is a senior software engineer with Intel
Corporation in Hillsboro, Oregon. He has a M.S. degree
in physics from the University of Maine at Orono and a
M.S. degree in computer science from the Oregon
Graduate Institute. He works in the MSL Numerics
Group where he implements and tests floating-point
algorithms. His e-mail is
Theodore.E.Kubaska@intel.com.

Shane Story has worked on numerical and floating-point
related issues since he began working for Intel eight years
ago. His e-mail is Shane.Story@intel.com.

Ping Tak Peter Tang (his friends call him Peter) joined
Intel very recently as an applied mathematician working
in the Computational Software Lab of MSL. Peter
received his Ph.D. degree in mathematics from the
University of California at Berkeley. His interest is in
floating-point issues as well as fast and accurate
numerical computation methods. Peter has consulted for
Intel in the past on such issues as the design of the
transcendental algorithms on the Pentium, and he
contributed a software solution to the Pentium division
problem. His e-mail is Peter.Tang@intel.com.

