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Abstract
New instruction-set architectures (ISAs) live or die
depending on how quickly they develop a large software
base.  This paper describes SoftSDV, a presilicon soft-
ware-development environment that has enabled at least
eight commercial operating systems and numerous large
applications to be ported and tuned to IA-64, well in
advance of Itanium™ processor’s first silicon. IA-64
versions of Microsoft Windows ∗ 2000 and Trillian Linux*
that were developed on SoftSDV booted within ten days
of the availability of the Itanium processor.

SoftSDV incorporates several simulation innovations,
including dynamic binary translation for fast IA-64 ISA
emulation, dynamic resource analysis for rapid software
performance tuning, and IO-device proxying to link a
simulation to actual hardware IO devices for operating
system (OS) and device-driver development.  We describe
how SoftSDV integrates these technologies into a
complete system that supports the diverse requirements of
software developers ranging from OS, firmware, and
application vendors to compiler writers.  We detail
SoftSDV’s methods and comment on its speed, accuracy,
and completeness.  We also describe aspects of the
SoftSDV design that enhance its flexibility and maintain-
ability as a large body of software.

                                                                
∗ Other brands and names are the property of their
respective owners.

INTRODUCTION
The traditional approach to fostering software develop-
ment for a new ISA such as IA-64 is to supply
programmers with a hardware platform that implements the
new ISA.  Such a platform is commonly known as a
software-development vehicle (SDV) and suffers from a
key dependency: it cannot be assembled until first silicon
of the processor has been manufactured.  This paper
describes how Intel eliminated this dependency for IA-64
by building an SDV entirely in software through the
simulation of all processor and IO-device resources
present in an actual hardware IA-64 SDV.  This simulation
environment, which we call SoftSDV, has enabled
substantial development of IA-64 software, well in
advance of an Itanium processor’s first silicon.

A principal design goal for SoftSDV is that it support
development all along the software stack, from firmware
and device drivers to operating systems and applications
(see Figure 1).  The performance of each of these layers of
software is dependent upon optimizing compilers, which
themselves must be carefully tuned to IA-64 [1, 2].  Each
of these types of software development has a different set
of requirements with respect to simulation speed, accu-
racy, and completeness.

Application developers, for example, are primarily
interested in simulation speed, whereas optimizing-
compiler writers value accuracy in processor-resource
modeling so that they can evaluate the effectiveness of
their code-generation algorithms.  OS, firmware, and
device-driver developers, on the other hand, require
completeness in the modeling of platform IO devices and
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system-level processor functions (e.g., virtual-memory
management, interrupt processing, etc.).

Not only do requirements vary based on the type of code,
but their relative importance shifts depending on the stage
of software development.  Early efforts to port and debug
code to IA-64 are best aided by very fast ISA emulation,
whereas successive tuning of code for performance
requires ever-increasing levels of simulation accuracy.
Similarly, in the early stages of porting an OS to IA-64, it is
sufficient to model a basic set of boot IO devices.
However, once that OS is up and running, the meaning of
simulation “completeness” expands to include arbitrary
new IO devices as OS developers seek to port as many
device drivers to IA-64 as possible.

Often overlooked, but equally important features of a
simulation infrastructure are its flexibility and maintain-
ability.  SoftSDV has been under development for nearly
as long as IA-64 and has had to track and rapidly adapt to
improvements in the ISA definition; flexibility and
maintainability of the simulation infrastructure were
absolutely essential.  But here too, the requirements
change over time.  Early in the development of a new ISA,
design changes are frequent, and a simulation environ-
ment must adapt quickly.  Later, as the hardware definition
becomes more concrete, flexibility gradually becomes less

important, and it can be traded for increased simulation
speed or accuracy.

These diverse and shifting requirements underscore a
fundamental truth of simulation: a single technique or tool
cannot meet the needs of all possible types of software
development at all times. SoftSDV acknowledges this fact
through an extensible design that accommodates the best
features of multiple innovative simulation technologies in
a single, common infrastructure.  The resulting system
enables IA-64 software developers to select the combina-
tion of simulation speed, accuracy, and completeness that
is most appropriate to their particular needs at a given
time, while at the same time preserving the flexibility and
maintainability of the overall simulation infrastructure.

In the next section, we review related work and then briefly
overview the hardware components typically found in an
IA-64 SDV.  We then present the software architecture of
SoftSDV and describe each of its component processor
modules and IO-device modules in detail.  We conclude
with a discussion of results and a summary of our
experiences and lessons learnt.

Figure 1: The SoftSDV software architecture
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RELATED WORK
A survey of recent simulation research reveals a continu-
ous tension between the conflicting goals of simulation
speed, accuracy, completeness, and flexibility.

A good example of a technique that achieves very high
simulation speeds at the expense of accuracy is dynamic
binary translation.  This method for fast ISA emulation
works by translating instructions from a target ISA into
equivalent sequences of host ISA instructions.  By
caching and reusing the translated code, an emulator can
dramatically reduce the fetch-and-decode overhead of
traditional instruction interpreters. Cmelik and Keppel
describe an early implementation of this method in their
Shade∗ simulator, and they provide an excellent survey of
several related techniques [3].  The Embra simulator has
shown that dynamic binary translation can be extended to
support the simulated execution of a full OS by emulating
privileged instructions, virtual-to-physical address
translation, and exception and interrupt processing [4].

Fast ISA emulators such as Shade and Embra are unable
to predict processor performance at a detailed clock-cycle
level.  When simulation accuracy and flexibility are of
primary importance, a better approach is often that of a
simulation tool set, such as SimpleScalar, which enables
rapid construction and detailed simulation of a range of
complex microarchitectures [5].  SimpleScalar has indeed
exhibited a high degree of flexibility as evidenced by its
extensive use in the research community for a variety of
microarchitecture studies.  But this flexibility and accuracy
comes at a cost: detailed SimpleScalar simulations can be
more than 1,000 times slower than native hardware,
whereas fast ISA emulators like Shade and Embra exhibit
slowdowns ranging from 10 to 40, depending on the type
of workload that they simulate.  These numbers illustrate
the compromises that simulators must make between
speed, accuracy and flexibility, with Shade and Embra
representing one end of the spectrum and SimpleScalar
situated near the other end.

Many other intermediate points along the speed-accuracy-
flexibility spectrum are possible.  FastCache, for example,
extends dynamic binary translation techniques to simulate
the performance of simple data-cache structures with
slowdowns in the range of 2-7, but it is limited with respect
to other forms of microarchitecture simulation [6].  At the
expense of some flexibility, FastSim uses memoization
(result caching) to model a full out-of-order processor
microarchitecture with slowdowns ranging from 190 to 360,
a speedup of roughly 8-15 relative to comparable SimpleS-
                                                                
∗ Other brands and names are the property of their
respective owners.

calar simulations [7].  Another way to trade speed for
accuracy is sampling: running only certain portions of a
target workload through a detailed performance simulator.
If the samples are chosen carefully and are of sufficient
length, they can predict the performance of the entire
workload with far less simulation time, but at the expense
of some increased error [8].

SimOS [9] and SimICS∗ [10] are both good examples of
simulation systems that have attained a high level of
completeness.  Both extend their simulations beyond the
processor to include IO-device models, and they are able
to support the simulated execution of complete operating
systems as a result.

SoftSDV uses many techniques similar to those described
above.  However, because of the unique capabilities of IA-
64 and the diversity of software development that
SoftSDV must support, we found we had to reexamine
many of the techniques in a new context.  To explain some
of the issues, we briefly overview the components in a
typical IA-64 SDV in the next section.

COMPONENTS OF AN IA-64 SDV
At the core of an actual hardware IA-64 SDV platform is
one or more Itanium processors that implement the IA-64
ISA.  For the purposes of this paper, the most relevant
aspects of IA-64 are the following:1

• Memory Management: An IA-64 processor translates
64-bit virtual memory accesses through split instruc-
tion and data TLBs, which are refilled by software
miss handlers with a hardware assist.  The TLB en-
forces page-level read, write, and execute permissions
for up to four privilege levels.

• Predication: Most IA-64 instructions can be executed
conditionally, depending on the value of an optional
predicate register associated with the instruction.

• Data Speculation: IA-64 supports an advanced-load
operation, which enables a compiler to move loads
ahead of other memory operations even when the
compiler is unable to disambiguate neighboring mem-
ory references.  The address from an advanced load is
inserted into an Advanced Load Address Table
(ALAT), which must be checked for data dependen-
cies on subsequent memory operations.  A load-
check operation examines the ALAT and invokes fix-
up code whenever necessary.

                                                                
1 More details regarding IA-64 are available from the Intel
Developer’s Web Site [2].
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• Control Speculation: An IA-64 compiler can move
loads before branches that guard their execution.  If a
speculative load causes an exception, the exception is
deferred, and a Not-a-Thing (NaT) bit associated with
the destination register is set instead.  NaT bits are
propagated as a side effect of any uses of the specu-
lative load value, and they are checked after the
controlling branch finally executes.

• Large Register Set: IA-64 includes 128 general
registers and 128 floating-point registers, along with
numerous other special-purpose registers. IA-64 reg-
isters assist loop-pipelining scheduling through their
support of rotating registers.

Predication, speculation, and abundant registers are all
part of a key principle behind the design of IA-64: to
enable a compiler to explicitly expose instruction-level
parallelism (ILP) to the hardware microarchitecture
[1, 2].  By helping to relieve the hardware of finding ILP,
IA-64 makes possible higher-frequency processor
implementations.  The compiler expresses instruction
parallelism to the hardware by collecting instructions into
instruction groups, which are independent instructions
that can be executed at the same time.  As we will see, the
above IA-64 features create new challenges and opportu-
nities for processor-simulation techniques.

In addition to an Itanium processor, an IA-64 SDV
typically contains a chipset (e.g., 460GX), with support for
PCI and USB IO-device busses, and a basic collection of
IO devices suitable for running an operating system.  This
includes an IO streamlined APIC interrupt controller and
an assortment of keyboard, mouse, storage, network, and
graphics devices.  Since a hardware SDV typically
contains a number of expansion PCI slots, and a USB host
controller, the range of devices it supports is limited only
by the availability of devices designed to these bus
standards.  Our goal with SoftSDV was to provide the
same level of IO-device support.

SOFTWARE ARCHITECTURE
The software architecture of SoftSDV is based on a
simulation kernel that is extended through the addition of
modules (see Figure 1 and Table 1).  A SoftSDV module
either models a hardware platform component (such as a
processor or IO device), or it implements a simulation
service (such as a trace-analysis tool).  We call these two
types of modules component modules and service
modules, respectively.

SoftSDV modules share data and communicate with one
another through a set of abstractions provided by the
kernel: spaces, events, data items and time.

• SoftSDV spaces are used to model how platform
components communicate through physical-address
space, IO-port space, PCI-configuration space, and
other linearly addressable entities such as disk images
and graphics framebuffers.  Modules can create
spaces and then register access-handler functions
with the kernel for a certain address region in a space.
When another module reads or writes an address in
that range, the SoftSDV kernel routes the access to
the registered handler.  SoftSDV spaces enable an IO-
device module, for example, to specify how its control
registers behave by mapping them to specific ad-
dresses in IO-port space.

• SoftSDV events enable a module to request notifica-
tion of some occurrence inside another module.
Events can be used to model IO-device interrupts, or
to collect event traces, such as a sequence of OS con-
text switches, which might be analyzed by a trace-
processing module.

• SoftSDV data items provide a mechanism for modules
to name and share their state with other modules.
Named data items enable a processor module, for ex-
ample, to make its simulated register values available
to a debugging tool.  Some data items are managed by
the SoftSDV kernel itself and they are sometimes used
to specify configuration data that modules can query

Module Characteristics Typical Usage

Fast ISA Emulator Highest speed, no cycle-accurate perf.
data

Rapid IA-64 app. and OS development

Resource Analyzer Medium speed/accuracy, limited flexibility Large application, OS and compiler tuning

Processor
Modules

Microarch Simulator Highest accuracy and flexibility Advanced compiler and microarch co-design

Basic  IO Devices Provide platform-modeling completeness Early OS porting with standard boot devicesIO-device
Modules

IO-Proxy Module Links to arbitrary PCI and USB devices Advanced device-driver development

Table 1: Standard SoftSDV component modules
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to determine how they should function during a
simulation.

• SoftSDV time  enables modules to synchronize their
interactions to a common clock and to schedule the
execution of future events.  A disk-controller model,
for example, can register a callback function with the
kernel to be called after some pre-computed delay that
represents the time for a simulated seek latency.

SoftSDV has a standard set of tracing and debugging
modules that are built upon the abstractions above.
SoftSDV events enable the construction of tracing
modules that specify, by event name, items to be traced.
Traceable events include instructions, addresses, IO-
device accesses, OS events, etc.  SoftSDV traces are
suitable for trace-driven cache and processor performance
simulators, and they can also provide input to the Vtune
performance analyzer [11].  The SoftSDV debugger uses
SoftSDV events and data items for setting instruction and
data breakpoints, reading memory values, examining
register values for a specific simulated processor, etc.

SoftSDV also includes a standard set of component
modules, including three IA-64 processor models, each
offering different levels of simulation speed, accuracy, and
flexibility.  For completeness in platform modeling,
SoftSDV also includes an assortment of IO-device models
and a special IO-proxying module that links the simulation
to actual PCI and USB devices installed in the simulation
host machine.  Table 1 summarizes these standard
component modules and serves as an outline for the
remainder of this paper, in which we detail the techniques
used by each of these modules.

FAST IA-64 EMULATION
SoftSDV’s fastest processor module is an emulator that
implements the full IA-64 instruction set, including all
privileged operations, address translation, and interrupt-
handling functions required to support operating systems.
The principal goal of the emulator is speed; it is unable to
report cycle-accurate performance figures.

SoftSDV’s emulator uses dynamic binary translation to
convert IA-64 instructions into sequences of host (IA-32)
instructions called capsules, which consist of a prolog
and a body (see Figure 2).  The capsule body emulates the
IA-64 instruction in terms of IA-32 instructions executed
on the host machine.  In the example shown in Figure 2, a
64-bit Add instruction is emulated by a sequence of IA-32
instructions that loads the required source registers from a
simulated IA-64 register file (held in host memory),
performs the simulated operation (a 64-bit Add using the
32-bit Add operations of IA-32), and then stores the result
back to the simulated register file.

The capsule prolog serves two purposes.  First, it
implements behavior that is common to all IA-64 instruc-
tions, such as predication and control speculation.  A
portion of the prolog code checks each instruction’s
qualifying predicate, and it jumps over the capsule to the
next instruction if the predicate is false.  Similarly, another
portion of the prolog examines the NaT bits of all source
operands, and it propagates any set values to destination
registers, or it generates a fault as dictated by the
semantics of the instruction.  A second use for the prolog
is to implement a variety of simulation services, such as
execution tracing, instruction counting, and execution
breakpoints, which we discuss later.

The emulator translates instructions only as needed in
units of basic blocks, which it caches in a translation
database.  Since capsules require on average 25 IA-32
instructions for each IA-64 instruction that they emulate, a
large simulated workload can quickly consume host
memory, causing the host OS to begin paging to disk.  The
emulator limits the maximum size of its translation cache to
prevent host-OS paging, choosing instead to retranslate
IA-64 instructions, a far faster operation.

SoftSDV capsules eliminate the need for a full fetch-
decode-execute loop. Instruction emulation begins with an
indirect branch that goes directly to a capsule corre-
sponding to the current simulated instruction pointer (IP).
Since capsules are linked directly from one to another,
execution proceeds from capsule to capsule until an
untranslated instruction is encountered, and control

Translation
Process

Original IA-64 Code

mov eax , r2.low   ; load r2
mov ebx , r2.high
mov ecx , r3.low   ; load r3
mov edx , r3.high
add ecx, eax       ; 64-bit add
adc edx, ebx
mov r1.low, ecx    ; store r1
mov r1.high, edx

Capsule Body (for Add)

if (!p6) jmp over capsule

if (ica==0) jmp to ica_event

decrement ica counter

r1.NaT = r2.NaT | r3.NaT

Capsule Prolog (generic)

.....

if (ica==0) jmp to ica_event

decrement ica counter

Capsule Prolog (generic)

(p6)  ADD r1 = r2, r3

         SUB r13 = r17, r6

        LD1 r2 = [r12] ;;

        BR LOOP

...

...

12
Timer

ICA Event-Delay List

7
Keyboard

Equivalent IA-32 Code

Sub Capsule Body

Load Capsule Body

Add Capsule Body

Branch Capsule Body

Capsule Prolog

Capsule Prolog

Capsule Prolog

Capsule Prolog

Figure 2: Binary translation
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transfers back to the translator.

SoftSDV executes nearly all IA-64 instructions as cap-
sules, but certain complex instructions are emulated with
calls to C* functions.  Throughout the development of
SoftSDV, we considered moving to capsule-based
implementations for various complex operations, but we
frequently found that the resultant reduction in flexibility
and maintainability of the emulator did not justify the
optimization.  We also considered more aggressive
intercapsule optimizations, such as those used by Shade∗
and Embra (e.g., avoiding loads/stores to the simulated
registers in host memory when neighboring instructions
use the same register).  Unfortunately, with the very large
IA-64 register set, and the limited number of IA-32 host
registers, we found such optimizations ineffective.
Intercapsule optimizations suffer the further side effect of
limiting the granularity at which debug breakpoints can
conveniently be set.

Address Translation
SoftSDV models simulated physical memory by allocating
pages of host virtual memory to hold the contents of
simulated data.  For any simulated memory reference, the
emulator must first translate a simulated virtual address to
a simulated physical address (V2P), and then further
translate this physical address to its allocated host
address (P2H).  The composition of these two translation

functions provides a full translation from virtual to host
memory (V2H = P2H(V2P(Virtual))).

The emulator uses a data structure called a V2H cache to
accelerate address translation (see Figure 3).  When an IA-
64 load/store operation or branch/call instruction refer-
ences a virtual address, the emulator first searches a V2H
cache using highly efficient assembly code called from the
capsule.  In the common case, the translation is found, and
the memory reference is quickly satisfied.  In the case of a
V2H miss, a full translation sequence (V2P and P2H) is
activated by simulating an access to the TLB and an OS-
managed page-table structure.  If the translation succeeds,
the V2H table is updated, and execution returns to the
capsule.  If the search fails to find a valid translation, then
a simulated page fault or protection violation has oc-
curred, and SoftSDV raises an exception for the simulated
OS to handle.

The emulator implements V2H tables as variable-sized
caches of valid address mappings.  This is in contrast to
Embra’s MMU relocation array, which is a fixed-size 4-
MB table that maps every possible page in a 32-bit virtual
address space [4].  While the Embra approach guarantees
a 100% hit rate for any valid mapping, we found this
approach unusable for modeling a 64-bit virtual address
space.  Since V2H refills are a principal source of slow-
downs, the emulator uses a number of optimization
techniques to accelerate refills, and it supports configur-
able V2H table sizes to tune hit rates to the requirements
of a given workload.

Page Protection
The emulator implements page protections by building a
V2H cache for each type of memory access: V2H-read,
V2H-write, and V2H-execute.  A read-only page, for
example, present in the V2H-read cache does not contain
an entry in the V2H-write cache.  By dividing the V2H
caches in this way, the emulator avoids performing
protection checks explicitly in each capsule; it merely
generates code to access the V2H cache appropriate to the
desired operation (e.g., load, store, branch), and a V2H
miss enforces the protection.  The emulator builds a set of
read-write-execute V2H caches for each privilege level (i.e.,
12 V2H caches in all) and simply switches between them
when privilege levels change.  The use of multiple V2H
caches is a memory-speed tradeoff.  At the expense of
extra memory devoted to the V2H caches, the emulator
simplifies the protection-checking code in each capsule,
thus accelerating overall instruction-emulation times.

Speculative Data Accesses
Data speculation with advanced loads requires special
treatment by the emulator.  The capsule for an advanced
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Figure 3: Emulating IA-64 address translation
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load includes code that inserts the load address into a
simulated ALAT.  The capsules for any subsequent store
instructions include highly optimized code (11 host
instructions) that searches the ALAT for an address
match.  Any entries with matching addresses are removed
from the ALAT so that a subsequent load-check operation
will invoke the appropriate fix-up code.

Instruction Fetching
Rather than point directly to translated code capsules,
V2H-execute entries reference a page of pointers to code
capsules.  This level of indirection solves two problems.
First, since the emulator lazily translates instructions a
basic block at a time, many portions of a code page may be
untranslated; these cases are handled by pointing to a do-
translate function, rather than a capsule entry point.
Second, since capsules are of varying size, their entry
points are not simple to calculate given only a virtual
address for an instruction; the pointers-to-capsules page
greatly simplifies simulation of branch instructions and
arbitrary jumps to code, such as from a debugger.

The emulator avoids V2H-execute lookups by directly
chaining a branch-instruction capsule to its target-
instruction capsule, provided they reside on the same
page.  For cross-page branches, the chain passes through
the V2H-execute cache to ensure that the code page is
accessible.

The emulator supports self-modifying code by preventing
a page from residing in both the V2H-write and V2H-
execute caches at the same time.  Any attempt to write to a
code page causes a V2H-write miss, which causes the
page to be removed from the V2H-execute cache.  Any
subsequent attempt to execute instructions from the page
causes a V2H-execute miss, which results in a lazy
retranslation of the modified code page.

Interrupt Processing
The emulator can potentially run for long periods of time
without ever leaving its capsules.  This presents a problem
because other SoftSDV modules (such as simulated IO
devices) might need to interrupt processor execution.  The
emulator provides a solution to this through a mechanism
called an instruction-count action (ICA).  ICA is based on
a sorted list of event-delay pairs that define a set of
callback functions to be executed after some number of
instructions have executed.  The delay of the event at the
head of the ICA list is decremented in the prolog of each
capsule (see Figure 2). When the delay reaches 0, the
event is triggered by calling its associated callback
function. After completion of the callback function, the
event-delay pair is deleted from the ICA list.

The ICA mechanism is integrated with the SoftSDV time
abstraction, providing a coarse-grained notion of time
based on number of instructions executed.  It is also ideal
for implementing certain IA-64 debugging facilities, such
as single-step instruction execution, which would
otherwise require retranslation of instruction capsules.

Multiprocessor Simulation
The emulator can simulate a platform with up to 32
processors in a symmetric shared-memory configuration.
Only one processor is simulated at a time, with switches
between simulated processors scheduled in a simple
round-robin order with a configurable time slice.  All
processors share memory, translations, and all simulated
platform devices. Capsules indirectly access simulated
processor state and processor-specific emulator state
(e.g., V2H caches, ICA lists, etc.) through a pointer, which
enables rapid switching between simulated processors via
a simple pointer change.

DYNAMIC RESOURCE ANALYSIS
The emulator described in the previous section is ideal for
rapid porting of operating systems and applications to IA-
64.  Once the porting is complete, a software developer
may be interested in tuning code for performance, which
requires trading some simulation speed for increased
accuracy.  SoftSDV’s second processor module offers just
this: it aims to achieve a level of performance-prediction
accuracy that is within 10% of a detailed Itanium microar-
chitecture simulator (which we describe in the next
section), while retaining the highest possible simulation
speed.

SoftSDV applies three principles to achieve this goal.
First, it tightly integrates performance analysis with its fast
IA-64 emulator, enabling it to overcome the bottlenecks of
traditional trace-driven performance simulation.  Second, it
assumes an in-order processor pipeline and selectively
models only those processor resources that have the
greatest effect on overall performance (e.g., first-level
caches, branch prediction, functional units, etc.).  Third, it
caches the results of its resource analysis to speed future
performance simulation.  We call this collection of
methods dynamic resource analysis, and we refer to this
SoftSDV module as the resource analyzer.

Processor and Memory Resources
Processor performance analysis ultimately boils down to
accounting for the resource requirements of executing
code.  Take, for example, the code shown in Figure 4,
which shows a subtract and a load in one instruction
group and an add and a branch in a second instruction



Intel Technology Journal Q4, 1999

SoftSDV: A Presilicon Software Development Environment for the IA-64 Architecture 8

group (the notation “;;” separates instruction groups).
The load operation:

LD1 r2 = [r12] ;;

requires the resources of a source-address register (r12), a
destination register (r2), and a data-cache line and read
port.  Similarly, the add instruction:

(p6) ADD r1 = r2, r3

requires the resources of an ALU functional unit, a
predicate register (p6), two source registers (r2 and r3),
and a destination register (r5).

A processor examines instruction groups to find collec-
tions of instructions (called an issue group) that can be
dispatched in parallel subject to the resource constraints
of its execution pipeline.  When all the required resources
of all instructions in an issue group are available, the
instructions can execute immediately; otherwise, they stall.
In the example in Figure 4, the load feeds the add through
register r2.  If the load stalls because of a data cache miss,
then the add will stall as well because it requires the r2
resource.  The resource analyzer identifies such resource
dependencies by dividing its operation between two
phases, each of which is tightly integrated with the IA-64
emulator. A static resource-analysis phase is invoked by
the emulator’s translator, and a dynamic-analysis phase is
invoked by translated code capsules.

Static Resource Analysis
Like the IA-64 emulator, the resource analyzer examines
code lazily, as it is first encountered.  Whenever the IA-64
emulator completes translation of a new basic block of
code, it calls the resource analyzer, which examines the
basic block to find issue groups and then statically
determines the microarchitectural resources required by
each issue group.  The analyzer caches this resource list
to avoid the cost of repeating the analysis each time the
issue group executes (see Figure 4).  The resource list
includes both sources, which are required for the issue
group to execute, and destinations, which are resources
that will be available after the issue group executes.

Dynamic Analysis Phase
The dynamic phase of the analyzer is invoked by emulator
capsules after execution of each basic block.  The analyzer
examines instruction resource requirements by modeling a
simplified Itanium microarchitecture consisting of a front
end, a back end, and caches.

The analyzer’s back end keeps track of the availability of
core pipeline resources (e.g., register files, functional
units, etc.) that could stall the execution of an issue group.
Each resource that is required for the execution of the
current issue group is checked for its availability in the
current cycle. If it is not available, then the issue group
stalls execution, and the cycle counter is advanced to the
time when all required resources will be available and the
issue group can enter the execution stage.  Next, the
resource state is updated to reflect the results of the
current issue group. For each destination of the instruc-
tions in the issue group (excluding loads), the clock cycle
in which these resources will be available for use by
subsequent instructions is calculated by adding each
instruction’s latency to the cycle in which the issue group
was dispatched.

The analyzer’s front end models branch prediction and
instruction-fetching mechanisms in accordance with the
Itanium microarchitecture.  Since all instructions traverse
the front end several cycles before they reach the back
end, the resource analyzer maintains two separate cycle
counts, one for the back-end execution (as described
previously) and one for the front end.  The two cycle
counters are synchronized through a model of a decou-
pling buffer, which specifies the cycle in which an issue
group can be dispatched. If the issue group is not ready,
the decoupling buffer stalls the back end.  Conversely, if
the decoupling buffer is full, it causes front-end stalls.

The analyzer models instruction and data caches to
account for performance lost due to cache misses.  These
cache models are referenced by both the front end (for
instruction fetches) and the back end (for data references).

    SUB                r17, r6, ALU                         r13
    LD1                 r12, Memory Unit                 r2

    ADD                p6, r2, r3, ALU                     r1
    BR                   Branch Unit                         IP

Translation
Process

Original IA-64 Code Equivalent IA-32 Code

Sub Capsule Body

Load Capsule Body

Add Capsule Body

Branch Capsule Body

Capsu le  Pro log

Capsu le  Pro log

Capsu le  Pro log

Capsu le  Pro log

Call Analyzer()

Static
Resource
Analysis

Resource List
Issue Groups Sources Destinations

#1
#2

Dynamic analyzer
called during code execution.

(p6)  ADD r1 = r2, r3

         SUB r13 = r17,  r6

        L D 1  r 2  =  [ r 1 2 ]  ; ;

        B R  L O O P

...

...

Figure 4: Resource analysis for two issue groups
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The IA-64 emulator maintains its own copy of the first-
level data cache and achieves speed through integration
with its V2H translation tables in an approach similar to
that of Lebeck’s FastCache [6].  This copy contains a
subset of the data-cache lines simulated by the resource
analyzer. When the emulator detects a hit, it continues
execution without calling the analyzer. In the rare case
when the emulator suspects a cache miss, it calls the
analyzer for verification. When a miss occurs in the
analyzer cache, the analyzer updates its own cache
contents and informs the emulator about the cache line it
replaced.

The end results of the analysis described above are a set
of performance metrics (e.g., branch-prediction accuracy,
cache misses, stall cycles, etc.), which are mapped onto
SoftSDV data items so that they can be read by a perform-
ance visualization tool, such as the Vtune performance
analyzer.

DETAILED PROCESSOR
MICROARCHITECTURE SIMULATION
The dynamic resource analyzer described previously is
ideal for rapid tuning of compilers, operating systems, and
large applications, where approximate performance of a
fixed microarchitecture is acceptable.  For other applica-
tions, such as compiler tuning for a new microarchitecture
under development, a further shift along the speed-
accuracy-flexibility spectrum is needed.  To deal with such
situations, SoftSDV works together with a simulation
toolset for exploration of IA-64 microarchitectural designs.
SoftSDV’s third processor module, a detailed model of the
Itanium microarchitecture, is written using this toolset, as
are other future IA-64 microarchitectures currently under
development by Intel.

IA-64 Microarchitecture Simulation Toolset
The toolset consists of two main components: an event-
driven simulation engine, and a set of facilities for
functional evaluation of IA-64 instruction semantics.

The event-driven simulation engine provides a flexible set
of primitives for modeling microarchitectural resources,
arbitration, and accounting of processor cycles. A
processor pipeline is modeled as a set of communicating
finite state machines through which tokens representing
instructions or data are evaluated on a cycle-by-cycle
basis. Whenever a token cannot acquire a certain resource
(e.g., a latch or port), a stall condition is encountered and
its cycle penalty is accounted for. The total execution time
of a workload is derived from the accumulation of cycles
spent by all tokens that traverse the pipeline.

The functional evaluation of IA-64 instruction semantics
is provided by a set of four interfaces called by different
stages of the event-driven microarchitecture model:

• Fetch  provides a decoded instruction, given an IP.

• Execute computes the results of an instruction in the
context of some microarchitectural state.

• Retire commits the microarchitectural state to the
permanent architectural state.

• Rewind rolls back the unretired microarchitectural
state to previously defined values.

By dividing the interfaces in this way, a processor model
is able to express complex microarchitectural interactions
involving speculative instruction execution.

Speed-Accuracy Modes and Sampling
Like the resource analyzer, the Itanium microarchitecture
model is tightly integrated with the IA-64 emulator
through an interface that enables the sharing of the
architectural state (memory and processor registers).  This
interface makes it possible to dynamically change
simulation speed and accuracy as a workload runs.  It is
possible, for example, to rapidly advance through the
simulated boot of an OS with the fast IA-64 emulator.
Then, prior to the execution of some workload of interest,
the state of the processor’s caches is initialized using
memory traces produced by the emulator.  When detailed
simulation is desired, the microarchitectural simulator
reads the current machine state from the emulator, and
begins its simulation.  After running in detailed mode for
some time, execution can return to the fast mode to
advance deeper into a workload’s execution.

SoftSDV supports both uniform sampling at some regular,
predefined period, and event-based sampling.  For event-
based sampling, special markers are compiled around
regions of interest in a workload.  SoftSDV dynamically
recognizes such markers as a workload executes, and
generates corresponding SoftSDV events, which are
monitored by the processor modules to determine when
they should switch between speed-accuracy modes.

IO-DEVICE MODULES
SoftSDV provides a standard collection of IO-device
models suitable for supporting the simulated execution of
a complete IA-64 operating system, including its basic
device drivers.  These include selected 460GX chipset and
boardset functions (such as interrupt controllers, periodic
timers, serial port, mouse, keyboard, etc.) as well as models
for assorted storage and graphics controllers (such as
IDE/ATA, ATAPI CD-ROM, VGA, etc.).
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A SoftSDV device model typically consists of two halves:
a front half that implements the device interface as
expected by a simulated device driver, and a back half that
simulates the device function.  The implementation of
many device models is a straightforward conversion
between device commands and host-OS services.  Models
for the keyboard and mouse, for example, field host-OS
window events (keypress up/down, pointer movement,
etc.) and convert them into equivalent device events (a
keyboard interrupt and scancode).  Similarly, the serial-
port model connects to the actual serial port of the host
machine through host-OS calls, and it ferries data back
and forth between the simulated and actual serial ports.

IO-Device Services
Since many devices offer a similar function (e.g., storage),
but with differing interfaces (e.g., IDE/ATA, ATAPI,
SCSI), we identified points in common among device
models and structured them as reusable IO-device
services, encapsulated in their own SoftSDV modules.  A
disk-image service, for example, provides functionality
useful for any storage model. It holds the contents of a
simulated disk in a file or a raw disk partition in the host
machine, and has the ability to log all changes to the
simulated disk’s contents.  An off-line utility can then
either commit or discard those changes at the end of a
simulation.  The disk-image service maps itself onto a
SoftSDV space, where its functionality can be accessed by
any disk-interface model.

Similarly, a display service maps a generic flat framebuffer
surface onto a SoftSDV space, and it reflects accesses to
this surface in a host-OS window, or directly to a second
dedicated display attached to the simulation host machine.
This structuring relieves graphics-adapter models from the
details of how a framebuffer is displayed so that they can
focus instead on simulated processing of graphics
commands.  It also enhances SoftSDV maintainability,
since it decouples graphics models from the host-OS
windowing system; when porting to a new host OS, only
the display service and not each graphics model must be
rewritten.

Pseudo Devices
Some SoftSDV modules model a fictitious device, or only
some aspect of an actual device.  We have, for example,
built a pseudo-device module that maps the resource
requirements of multiple devices into PCI configuration
space.  Although not backed by actual PCI-device models,
these headers present to a simulated OS the illusion of a
platform with multiple PCI devices, and thus enable rapid
testing of the OS’s device configuration and plug-and-
play algorithms.  Such a test environment is, in fact, far
more convenient than an actual hardware platform since

there is no need to physically populate actual PCI slots
with various devices to create different test cases.  We
have experimented with other types of pseudo devices,
such as an IO-monitoring service, which would enable the
replaying of keyboard and mouse input to a graphical
windowing system in a reproducible and OS-independent
manner.

IO-PROXY MODULE
Due to the broad diversity and sheer number of IO devices
in existence, we realized early in the development of
SoftSDV that it would be impossible to write software
models of all IO devices of interest.  Indeed, some IO
devices are so complex that modeling them in software
would be considerably more work than the ultimate goal of
porting their device drivers to IA-64.

An alternative solution is to link existing hardware devices
directly to SoftSDV so that they can be accessed and
programmed by simulated IA-64 device drivers under
development.  SoftSDV accomplishes this through a
combination of hardware and software components,
shown in Figure 5.  The hardware components consist of
an arbitrary target PCI device plugged into a custom-
designed riser board that performs memory and interrupt-
remapping functions.  The software components include a
SoftSDV module and a host OS device driver, which
function as proxies for interactions between the actual
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hardware PCI device and the simulated device driver. The
proxy components support three forms of interaction
between the target device and the simulated device driver
running on SoftSDV:

• commands issued from the driver to the device via IO-
port and memory-mapped IO accesses

• physical-memory accesses by the device

• interrupts from the device to the simulated driver

To support the largest possible set of devices, SoftSDV
enables each of these types of interactions without
requiring any specific knowledge of the target PCI device.
The following sections detail how each of the three forms
of interaction are supported.

Command Proxying
The key difficulty in proxying commands from the
simulated device driver is determining the location of the
control registers for arbitrary target devices.  Fortunately,
standard PCI configuration mechanisms provide a means
for accomplishing this.

All PCI devices support a configuration header visible to
software through well established locations in IO-port
space.  The PCI configuration header includes a set of
Base Address Registers (BARs), which the host proxy
device driver reads to determine the size and location of
the device’s control registers in IO-port space or physical-
address space.  The proxy driver passes this information
up to the proxy SoftSDV module, which registers access
handlers for those regions of address space with the
SoftSDV kernel.  The registered handler ensures that the
proxy module is called whenever the simulated device
driver sends commands to the device.  The proxy module
blindly passes such commands down to the proxy driver,
which in turn issues them to the actual hardware device.

The actual solution is somewhat more complex because by
the time the SoftSDV simulation starts running, the host
OS will have already configured the target device’s BARs
to avoid conflicts with other host IO devices.2  The
problem is that SoftSDV models an entirely different
(simulated) view of the platform, so the simulated OS may
attempt to configure the target device’s control registers
to a different set of locations that might conflict with other
host IO devices.  The proxy code solves this problem by
presenting a set of virtual BAR values to the simulated

                                                                
2 BAR registers are programmable to enable plug-and-play
software to assign conflict-free locations for device
control registers.

OS, and it remaps these values to the actual BAR values
used by the target device.

Remapping Physical Memory Accesses
After the simulated driver sends the device commands, the
target device will typically try to access physical memory
to retrieve or deposit data associated with the command.
This is a problem because the device is directed to perform
the operations in simulated physical memory, but the
device will operate on actual host memory belonging to
the host OS, causing it to crash.

The solution is to partition the host physical memory
between the host OS and the simulated OS.  During boot,
the host OS is configured not to use a certain amount of
host physical memory (in the example in Figure 5, the
reserved region is 64MB, starting at 192MB in host
memory).  The reserved region is then mapped to the
simulated memory in the SoftSDV user process.

This alone is not sufficient to solve the problem since the
device will still be programmed to use physical memory in
the range of 0-64MB when it should instead be accessing
memory in the range of 192-256MB.  The proxy code
could, in principle, interpret and modify the commands it
intercepts from the simulated driver and remap addresses
as appropriate before passing the commands to the actual
device.  Unfortunately, such a solution requires specific
knowledge of the device and its commands.  SoftSDV
instead  uses a small amount of hardware remapping logic
located on the riser board between the target device and
its host PCI slot.  The remapping logic relocates all
memory accesses made by the target device to the upper
partition of memory, based on flexible configuration
settings that specify the size of memory and the location
of the partition.

Interrupt Proxying
When the target device generates an interrupt, it is fielded
by the proxy code and sent to the simulated device driver.
Two problems make it difficult to perform these steps in a
device-independent manner. First, since interrupt lines are
commonly shared between PCI devices, the proxy code
must determine whether the interrupt is coming from the
target device or from some other host device.  Second, the
interrupt line must be temporarily deactivated; otherwise,
SoftSDV (which runs as an ordinary user-level process of
the host OS) will be continually interrupted, and the
simulated device driver will never have a chance to run.

Both of these operations are performed with the help of
some additional logic on the riser board that enables the
host proxy driver to sense and mask the interrupt from the
device, before it is driven onto the shared PCI interrupt
line.  When an interrupt occurs, the proxy driver uses this
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logic to determine if the interrupt is in fact originating from
the target device.  If so, it temporarily masks the interrupt
and passes control to the simulated device driver running
in SoftSDV.  The simulated driver, which understands the
specifics of the device, then properly dismisses the
interrupt at its source in the target device.

RESULTS AND EXPERIENCES
Table 2 summarizes the speed of SoftSDV’s three proces-
sor modules when running selected SPEC95 benchmarks
and when booting Microsoft 64-bit Windows∗ 2000.  It
also reports accuracy of the performance analyzer relative
to the microarchitecture simulator.3  All experiments were
performed on a 500-MHz Intel Pentium III processor-
based system with 512 MB of memory.

The emulator offers simulation speeds ranging from 10 to
25 million instructions per second (MIPS) for the SPEC
benchmarks, and about 3 MIPS for the simulated Win-
dows∗ boot.  The lower execution rate for the OS boot is
due to frequent address-space generation and process
switching, which increases V2H translation overheads.
Even so, at an average rate of 3 MIPS, SoftSDV is able to
perform a simulated Windows boot in less than seven
minutes, and is able to boot most other IA-64 operating
systems in under ten minutes.  The performance accuracy
of the emulator, however, is limited to reporting the total
number of instructions executed by a workload.

With error rates ranging from about 1% to 7% and
averaging 3%, the dynamic resource analyzer exceeded
our goal of predicting cycle-level processor performance
to within 10% of the detailed Itanium microarchitecture
simulator, and it does so at simulation rates ranging from
about 160 to 250 thousand instructions per second (KIPS).
These speeds are sufficient for tuning compilers and large
applications, which often require millions if not billions of
instructions to be executed.  These results suggest that by
explicitly exposing ILP, IA-64 compilers not only enable
simpler, higher-frequency processor implementations, but
they also make possible very fast processor performance
analysis.  The methods used by the analyzer do, however,
have their limitations.  The analyzer depends on the
existence of a reference microarchitectural simulator
against which it can be calibrated.  Also, its flexibility is
                                                                
∗ Other brands and names are the property of their
respective owners.
3 Table 2 does not report the accuracy of the other two
processor modules because the emulator does not provide
performance results and because we use the microarchi-
tecture simulator as the baseline for performance (i.e., for
the purposes of this paper, we consider its error to be 0%).

somewhat limited, since it assumes an in-order microarchi-
tecture and is unable to model hardware-controlled
speculative execution.

When flexibility and highest accuracy are required, there is
no substitute for detailed microarchitecture simulation.
The IA-64 microarchitecture toolset has proven itself
flexible enough to rapidly explore design options, both for
Itanium processors and for future IA-64 microarchitectures
currently under development at Intel.  The tradeoff for this
flexibility and accuracy is a much lower speed of simula-
tion, in the range of 1 to 2 KIPS.

We found building state-sharing mechanisms between the
three processor models to be a very powerful capability.
Had each processor simulator only been able to work
independently, methods such as sampling performance
over extended regions of large workloads would never
have been possible.  With sampling, we are able to freely
select the level of speed and accuracy required for a given
simulation.  For the SPEC benchmarks, our experience has
been that uniform sampling ratios of between 15:1 and 80:1
yield simulation results that are statistically very close to
full simulation.  Table 2 reports effective KIPS rates for
detailed microarchitecture simulation when a sampling
ratio of 40:1 is used.  The speedups relative to full
simulation are not a full factor of 40 because simulation
speeds are somewhat lower during the beginning of each
detailed sample, and because the simulation still includes
the overhead of running the emulator/analyzer during fast
mode.  Nevertheless, sampling effectively increases the
speed of simulation by more than an order of magnitude.

Our original plans were to develop software models for all
important IO devices, but we quickly realized that this
approach was intractable, which led us to develop the IO-
proxy module.  The IO-proxying approach became

AnalyzerWorkload Emulator
Speed
(MIPS) Speed

(KIPS)
Accu-
racy

(% error)

Microarch
Simulator
 Speed
(KIPS)

go 15.4 237 1.18% 15.0

m88ksim 14.8 252 1.04% 34.8

gcc 10.5 224 4.96% 17.2

compress 25.3 180 7.19% 18.4

li 13.5 227 4.06% 27.2

ijpeg 28.3 162 1.97% 27.8

perl 10.5 212 1.21% 18.6

vortex 11.8 158 2.79% 22.7

NT boot 3.00 211  
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particularly important for more complex device types, such
as SCSI controllers, ethernet interfaces, graphics adapters,
and USB host controllers, all of which successfully work
with the technique.  Not only did this approach save effort
in writing IO-device models in software, but it also better
supported a broad range of OS’s. Had we selected
particular SCSI or ethernet controllers to model, we would
be limited to supporting OS’s that had drivers for those
particular devices.  With the IO-proxy module, OS
developers can select virtually any PCI or USB device for
which their OS has a corresponding driver.

We achieved our goals of supporting IA-64 software
development all along the software stack.  SoftSDV
successfully runs:

• several commercial operating systems, including
Microsoft 64-bit Windows∗ 2000, Trillian Linux∗, IBM
Monterey-64∗, Sun Solaris ∗, Compaq Tru64∗, Novell
Modesto∗, and HP-UX∗.

• device drivers for at least a dozen complex PCI
devices ranging from graphics and ethernet adapters,
to SCSI and USB host controllers.

• numerous large applications

• three well-tuned IA-64 optimizing compilers

These layers of code were all working together, all
exercised before silicon, and all ready for bring-up.

The real test for SoftSDV came after the availability of
actual hardware SDVs. IA-64 versions of Windows 2000
and Trillian Linux* that were developed on SoftSDV
booted within ten days of the availability of Itanium
processor’s first silicon.  Drivers for complex devices,
such as SCSI disks, ethernet adapters, and graphics
controllers, quickly followed over the next week, and the
first MP operating systems were running a week after that.
Many of the problems encountered were due to setup and
configuration issues with the hardware SDV platform.
Once resolved, other operating systems have been
brought up even more quickly. IBM Monterey-64, for
example, was up and running in under three hours on a
qualified Itanium processor SDV.

For further discussion of the issues involved in porting
operating systems to IA-64, please see “Porting Operating
System Kernels to the IA-64 Architecture for Presilicon
Validation Purposes” [12], which appears in this same
issue of the Intel Technology Journal.

                                                                
∗ Other brands and names are the property of their
respective owners.

CONCLUSION
Central to the design of SoftSDV is extensibility.  By
building a core simulation kernel with a general set of
abstractions, we were able to unify several different
simulation technologies, each with their own unique
capabilities with respect to speed, accuracy, complete-
ness, and flexibility.

SoftSDV has proven that substantial amounts of complex
software can be developed, presilicon, even for an entirely
new ISA such as IA-64.  As a general, extensible simula-
tion infrastructure, SoftSDV is now being used in several
other efforts throughout the company, including IA-32
presilicon software development, performance simulation
of future IA-based microarchitectures, and processor
design validation.
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