
IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 1

IA-64 Floating-Point Operations and the IEEE Standard for
Binary Floating-Point Arithmetic

Marius Cornea-Hasegan, Microprocessor Products Group, Intel Corporation
Bob Norin, Microprocessor Products Group, Intel Corporation

Index words: IA-64 architecture, floating-point, IEEE Standard 754-1985

ABSTRACT
This paper examines the implementation of floating-point
operations in the IA-64 architecture from the perspective
of the IEEE Standard for Binary Floating-Point Arithmetic
[1]. The floating-point data formats, operations, and
special values are compared with the mandatory or
recommended ones from the IEEE Standard, showing the
potential gains in performance that result from specific
choices.

Two subsections are dedicated to the floating-point
divide, remainder, and square root operations, which are
implemented in software. It is shown how IEEE
compliance was achieved using new IA-64 features such
as fused multiply-add operations, predication, and
multiple status fields for IEEE status flags. Derived
integer operations (the integer divide and remainder) are
also illustrated.

IA-64 floating-point exceptions and traps are described,
including the Software Assistance faults and traps that
can lead to further IEEE-defined exceptions. The
software extensions to the hardware needed to comply
with the IEEE Standard’s recommendations in handling
floating-point exceptions are specified. The special case
of the Single Instruction Multiple Data (SIMD)
instructions is described. Finally, a subsection is
dedicated to speculation, a new feature in IA processors.

INTRODUCTION
The IA-64 floating-point architecture was designed with
three objectives in mind. First, it was meant to allow
high-performance computations. This was achieved
through a number of architectural features. Pipelined
floating-point units allow several operations to take
place in parallel. Special instructions were added, such
as fused floating-point multiply-add, or SIMD
instructions, which allow the processing of two subsets

of floating-point operands in parallel. Predication allows
skipping operations without taking a branch.
Speculation allows speculative execution chains whose
results are committed only if needed. In addition, a large
floating-point register file (including a rotating subset)
reduces the number of save/restore operations involving
memory. The rotating subset of the floating-point
register file enables software pipelining of loops, leading
to significant gains in performance.

Second, the architecture aims to provide high floating-
point accuracy. For this, several floating-point data
types were provided, and instructions new to the Intel
architecture, such as the fused floating-point multiply-
add, were introduced.

Third, compliance with the IEEE Standard for Binary
Floating-Point Arithmetic was sought. The environment
that a numeric software programmer sees complies with
the IEEE Standard and most of its recommendations as a
combination of hardware and software, as explained
further in this paper.

Floating-Point Numbers
Floating-point numbers are represented as a
concatenation of a sign bit, an M-bit exponent field, and
an N-bit significand field. In some floating-point formats,
the most significant bit (integer bit) of the significand is
not represented. Its assumed value is 1, except for
denormal numbers, whose most significant bit of the
significand is 0. Mathematically

f = σ ⋅ s ⋅ 2e

where σ = ±1, s ∈ [1,2), s = 1 + k / 2N-1 , k ∈ {0, 1, 2,…, 2N-

1-1}, e ∈ [emin, emax] ∩ Z (Z is the set of integers), emin = -
2M-1 + 2, and emax = 2M-1 – 1.

The IA-64 architecture provides 128 82-bit floating-point
registers that can hold floating-point values in various
formats, and which can be addressed in any order.

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 2

Floating-point numbers can also be stored into or loaded
from memory.

IA-64 FORMATS, CONTROL, AND
STATUS

Formats
Three floating-point formats described in the IEEE
Standard are implemented as required: single precision
(M=8, N=24), double precision (M=11, N=53), and
double-extended precision (M=15, N=64). These are the
formats usually accessible to a high-level language
numeric programmer. The architecture provides for
several more formats, listed in Table 1, that can be used
by compilers or assembly code writers, some of which
employ the 17-bit exponent range and 64-bit significands
allowed by the floating-point register format.

Format Format
Parameters

Single precision M=8, N=24

Double precision M=11, N=53

Double-extended precision M=15, N=64

Pair of single precision floating-point
numbers

M=8, N=24

IA-32 register stack single precision M=15, N=24

IA-32 register stack double precision M=15, N=53

IA-32 double-extended precision M=15, N=64

Full register file single precision M=17, N=24

Full register file double precision M=17, N=53

Full register file double-extended
precision

M=17, N=64

Table 1: IA-64 floating-point formats

The floating-point format used in a given computation is
determined by the floating-point instruction (some
instructions have a precision control completer pc
specifying a static precision) or by the precision control
field (pc), and by the widest-range exponent (wre) bit in
the Floating-Point Status Register (FPSR). In memory,
floating-point numbers can only be stored in single
precision, double precision, double-extended precision,
and register file format (‘spilled’ as a 128-bit entity,
containing the value of the floating-point register in the
lower 82 bits).

Rounding
The four IEEE rounding modes are supported: rounding
to nearest, rounding to negative infinity, rounding to
positive infinity, and rounding to zero. Some
instructions have the option of using a static rounding
mode. For example, fcvt.fx.trunc performs conversion of
a floating-point number to integer using rounding to
zero.

Some of the basic operations specified by the IEEE
Standard (divide, remainder, and square root) as well as
other derived operations are implemented using
sequences of add, subtract, multiply, or fused multiply-
add and multiply-subtract operations.

In order to determine whether a given computation yields
the correctly rounded result in any rounding mode, as
specified by the standard, the error that occurs due to
rounding has to be evaluated. Two measures are
commonly used for this purpose. The first is the error of
an approximation with respect to the exact result,
expressed in fractions of an ulp, or unit in the last place.
Let FN be the set of floating-point numbers with N-bit
significands and unlimited exponent range. For the
floating-point number f = σ ⋅ s ⋅ 2e ∈ FN, one ulp has the
magnitude

1 ulp = 2e-N+1.

An alternative is to use the relative error. If the real
number x is approximated by the floating-point number a,
then the relative error ε is determined by

a = x ⋅ (1 + ε)

The Floating-Point Status Register
Several characteristics of the floating-point
computations are determined by the contents of the 64-
bit FPSR.

A set of six trap mask bits (bits 0 through 5) control
enabling or disabling the five IEEE traps (invalid
operation, divide-by-zero, overflow, underflow, and
inexact result) and the IA-defined denormal trap [2]. In
addition, four 13-bit subsets of control and status bits
are provided: status fields sf0, sf1, sf2, and sf3. Multiple
status fields allow different computations to be
performed simultaneously with different precisions
and/or rounding modes. Status field 0 is the user status
field, specifying rounding-to-nearest and 64-bit precision
by default. Status field 1 is reserved by software
conventions for special operations, such as divide and
square root. It uses rounding-to-nearest, the 64-bit
precision, and the widest-range exponent (17 bits).
Status fields 2 and 3 can be used in speculative

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 3

operations, or for implementing special numeric
algorithms, e.g., the transcendental functions.

Each status field contains a 2-bit rounding mode control
field (00 for rounding to nearest, 01 to negative infinity,
10 to positive infinity, and 11 toward zero), a 2-bit
precision control field (00 for 24 bits, 10 for 53 bits, and
11 for 64 bits), a widest-range exponent bit (use the 17-bit
exponent if wre = 1), a flush-to-zero bit (causes flushing
to zero of tiny results if ftz = 1), and a traps disabled bit
(overrides the individual trap masks and disables all
traps if td = 1, except for status field 0, where this bit is
reserved). Each status field also contains status flags for
the five IEEE exceptions and for the denormal exception.

The register file floating-point format uses a 17-bit
exponent range, which has two more bits than the
double-extended precision format, for at least three
reasons. The first is related to the implementation in
software of the divide and square root operations in the
IA-64 architecture. Short sequences of assembly
language instructions carry out these computations
iteratively. If the exponent range of the intermediate
computation steps is equal to that of the final result, then
some of the intermediate steps might overflow,
underflow, or lose precision, preventing the final result
from being IEEE correct. Software Assistance (SWA)
will be necessary in these cases to generate the correct
results, as explained in [4]. The two (or more) extra bits
in the exponent range (17 versus 15 or less) prevent the
SWA requests from occurring. The second reason for
having a 17-bit exponent range is that it allows the
common computation of x2 + y2 to be performed without
overflow or underflow, even for the largest or smallest
double-extended precision numbers. Third, the 17-bit
exponent range is necessary in order to be able to
represent the product of all double-extended denormal
numbers.

Special Values
The various floating-point formats support the IEEE
mandated representations for denormals, zero, infinities,
quiet NaNs (QNaNs), and signaling NaNs (SNaNs). In
addition, the formats that have an explicit integer bit in
the significand can also hold other types of values.
These formats are double-extended, with 15-bit
exponents biased by 16383 (0x3fff), and all the register
file formats, with 17-bit exponents biased by 65535
(0xffff). The exponents of these additional types of
values are specified below for the register file format:

unnormalized numbers: non-zero significand
beginning with 0 and exponent from 0 to 0x1fffe,
or pseudo-zeroes with a significand of 0, and
exponent from 0x1 to 0x1fffe

pseudo-NaNs: non-zero significand and
exponent of 0x1ffff (unsupported by the
architecture); the pseudo-QNaNs have the
second most significant bit of the significand
equal to 1; this bit is 0 for pseudo-SNaNs

pseudo-infinities: significand of zero and
exponent of 0x1ffff (unsupported by the
architecture)

Note that one of the pseudo-zero values, encoded on 82
bits as 0x1fffe0000000000000000, is denoted as NaTVal
(‘not a value’) and is generated by unsuccessful
speculative load from memory operations (e.g. a
speculative load, in the presence of a deferred floating-
point exception). It is then propagated through the
speculative chain to indicate in the end that no useful
result is available.

Two special categories that overload other floating-point
numbers in register file format are the SIMD floating-
point pairs, and the canonical non-zero integers. Both
have an exponent of 0x1003e (unbiased 63). The value of
the canonical non-zero integers is equal to that of the
unnormal or normal floating-point numbers that they
overlap with. The exponent of 63 moves the binary point
beyond the least significant bit, the resulting value being
the integer stored in the significand. The SIMD floating-
point numbers consist of two single-precision floating-
point values encoded in the two halves of the 64-bit
significand of a floating-point register, with the biased
exponent set to 0x1003e. For example, the 82-bit value of
0x1003e 3f800000 3f800000 represents the pair (+1.0,
+1.0). Note that all the arithmetic scalar floating-point
instructions have SIMD counterparts that operate on
two single-precision floating-point values in parallel.

IA-64 FLOATING-POINT OPERATIONS
All the floating-point operations mandated or
recommended by the IEEE Standard are or can be
implemented in IA-64 [2]. Note that most IA-64
instructions [2] are predicated by a 1-bit predicate (qp)
from the 64-bit predicate register (predicate p0 is fixed,
containing always the logical value 1). For example, the
fused multiply-add operation is

(qp) fma.pc.sf f1 = f3, f4, f2

The fma instruction is executed if qp = 1; otherwise, it is
skipped. Two instruction completers select the precision
control (pc) and the status field (sf) to be used. When
the qualifying predicate is not represented, it is either not
necessary, or it is assumed to be p0. When qp = 1, fma
calculates f3 ⋅ f4 + f2, where ‘pc’ can be ‘s’, ‘d’, or none.
If the instruction completer ‘pc’ is ‘s’, fma.s.sf generates
a result with a 24-bit significand. Similarly, fma.d.sf

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 4

generates a result with a 53-bit significand. The
exponent in the two cases is in the 8-bit or 11-bit range
respectively if sf.wre = 0, and in the 17-bit range if sf.wre
= 1. If ‘pc’ is none, the precision of the computation
fma.sf f1 = f3, f4, f2 is specified by the pc field of the
status field being used, sf.pc. The exponent size is 15
bits if sf.wre = 0, and 17 bits if sf.wre = 1.

Addition and multiplication are implemented as pseudo-
ops of the floating-point multiply-add operation. The
pseudo-op for addition is fadd.pc.sf f1 = f3, f2 obtained
by replacing f4 with register f1 that contains +1.0. The
pseudo-op for multiplication is fmpy.pc.sf f1 = f3, f4,
obtained by replacing f2 with f0 that contains +0.0.

The reason for having a fused multiply-add operation is
that it allows computation of a ⋅ b + c with only one
rounding error. Assuming rounding to nearest, fma
computes

(a ⋅ b + c) rn = (a ⋅ b + c) ⋅ (1 + ε)

where |ε| < 2-N, and N is the number of bits in the
significand. The relative error above (ε) is smaller in
general than that obtained with pure add and multiply
operations:

((a ⋅ b) rn + c) rn = (a ⋅ b (1 + ε1) + c) ⋅ (1 + ε2)

where |ε1| < 2–N and |ε2| < 2–N.

The benefit that arises from this property is that it
enables the implementation of a whole new category of
numerical algorithms, relying on the possibility of
performing this combined operation with only one
rounding error (see the subsections on divide and
square root below).

Subtraction (fsub.pc.sf f1 = f3, f2) is implemented as a
pseudo-op of the floating-point multiply-subtract,
fms.pc.sf f1 = f3, f4, f2 (which calculates f3 ⋅ f4 - f2) where
f4 is replaced by f1. In addition to fma and fms, a similar
operation is available for the floating-point negative
multiply-add operation, fnma.pc.sf f1 = f3, f4, f2, which
calculates -f3 ⋅ f4 + f2.

A deviation from one of the IEEE Standard’s
recommendations is to allow higher precision operands
to lead to lower precision results. However, this is a
useful feature when implementing the divide, remainder,
and square root operations in software.

For parallel computations, counterparts of fma, fms, and
fnma are provided. For example, fpma.pc.sf f1 = f3, f4, f2
calculates f3 ⋅ f4 + f2. A pair of ones (1.0, 1.0) has to be
loaded explicitly in a floating-point register to emulate
the SIMD floating-point add.

Divide, square root, and remainder operations are not
available directly in hardware. Instead, they have to be
implemented in software as sequences of instructions
corresponding to iterative algorithms (described below).

Rounding of a floating-point number to a 64-bit signed
integer in floating-point format is achieved by the
fcvt.fx.sf f1 = f2 instruction followed by fcvt.xf f2 = f1. For
64-bit unsigned integers, the similar instructions are
fcvt.fxu.sf f1 = f2 and fcvt.xuf.pc.sf f2 = f1. Two
variations of the instructions that convert floating-point
numbers to integer use the rounding-to-zero mode
regardless of the rounding control bits used in the FPSR
status field (fcvt.fx.trunc.sf f1 = f2 and fcvt.fxu.trunc.sf f1
= f2). They are useful in implementing integer divide and
remainder operations using floating-point instructions.
For example, the following instructions convert a single
precision floating-point number from memory (whose
address is in the general register r30) to a 64-bit signed
integer in r8:

 ldfs f6=[r30];; // load single precision fp number

 fcvt.fx.trunc.s0 f7=f6;; // convert to integer

 getf.sig r8=f7;;

(Note that stop bits (;;) delimit the instruction groups.)
The biased exponent of the value in f7 is set by
fcvt.fx.trunc.s0 to 0x1003e (unbiased 63) and the
significand to the signed integer that is the result of the
conversion. (If the conversion is invalid, the significand
is set to the value of Integer Indefinite, which is –263.)
Since rounding to zero is used by fcvt.fx.trunc,
specifying the status field only tells which status flags to
set if an invalid operation, denormal, or inexact result
exception occurs (Exceptions and Traps are covered later
in the paper.) For the conversion from a floating-point
number to a 64-bit unsigned integer, fcvt.fx.trunc above
has to be replaced by fcvt.fxu.trunc.

The opposite conversion, from a 64-bit signed integer in
r32 to a register-file format floating-point number in f7, is
performed by

 setf.sig f6 = r32;; //sign=0 exp=0x1003e signif.=r32

 fcvt.xf f7 = f6;; // sign=sign(r32); no fp exceptions

where the result is an integer-valued normal floating-
point number. To convert further, for example to a single
precision floating-point number, one more instruction is
needed

 fma.s.s0 f8=f7,f1,f0;;

where the single precision format is specified statically,
and status field s0 is assumed to have wre = 0.

For 64-bit unsigned integers, the similar conversion is

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 5

 setf.sig f6 = r32;; // sign=0 exp=0x1003e signif.=r32

 fcvt.xuf.s0 f7 = f6

where fcvt.xuf.pc.sf f7 = f6 is actually a pseudo-op for
fma.pc.sf f7 = f6, f1, f0, and a synonym of fnorm.pc.sf f7 =
f6 (it is assumed that status field s0 has pc = 0x3). The
result is thus a normalized integer-valued floating-point
number. This is important to know, since floating-point
operations on unnormalized numbers lead to Software
Assistance faults (as explained further in the paper),
thereby slowing down performance unnecessarily.

Conversions between the different floating-point formats
are achieved using floating-point load, store, or other
operations. For example, the following sequence
converts a single precision value from memory to double
precision format, also in memory (r29 contains the
address of the single precision source, and r30 that of
the double precision destination):

 ldfs f6 = [r29];;

 fma.d.s0 f7=f6,f1,f0;;

 stfd [r30] = f7

This conversion could trigger the invalid exception (for a
signaling NaN operand) or the denormal operand
exception. These can happen on the fma instruction, but
the conversion will be correct numerically even without
this instruction, as all the single precision values can be
represented in the double precision format.

The opposite conversion is shown below (it is assumed
that status field s0 has wre = 0):

 ldfd f6=[r29];;

 fma.s.s0 f7=f6,f1,f0;;

 stfs [r30]=f7;;

The role of the fma.s.s0 is to trigger possible invalid,
denormal, underflow, overflow, or inexact exceptions on
this conversion.

Other conversions between floating-point and integer
formats can be achieved with short sequences of
instructions. For example, the following sequence
converts a single precision floating-point value in
memory to a 32-bit signed integer (correct only if the
result fits on 32 bits):

 ldfs f6 = [r30];; // load f6 with fp value from memory

 fcvt.fx.trunc.s0 f7=f6;; // convert to signed integer

 getf.sig r29 = f7;; // move the 64-bit integer to r29

 st4 [r28] = r29;; // store as 32-bit integer in memory

The opposite conversion, from a 32-bit integer in memory
to a single precision floating-point number in memory, is
performed by

 ld4 r29 = [r30];; // load r29 with 32-bit int from mem

 sxt4 r28=r29;; // sign-extend

 setf.sig f6 = r28;; // 32-bit integer in f6; exp=0x1003e

 fcvt.xf f7=f6;; // convert to normal floating-point

 fma.s.s0 f8 = f7,f1,f0;; // trigger I exceptions if any

 stfs [r27] = f8;; // store single prec. value in memory.

Floating-point compare operations can be performed
directly between numbers in floating-point register file
format, using the fcmp instruction. For other memory
formats, a conversion to register format is required prior
to applying the floating-point compare instruction. From
the 26 functionally distinct relations specified by the
IEEE Standard, only the six mandatory ones are
implemented (four directly, and two as pseudo-ops):

fcmp.eq.sf p1, p2 = f2, f3 (test for ‘=’)

fcmp.lt.sf p1, p2 = f2, f3 (test for ‘<’)

fcmp.le.sf p1, p2 = f2, f3 (test for ‘<=’)

fcmp.gt.sf p1, p2 = f2, f3 (test for ‘>’)

fcmp.ge.sf p1, p2 = f2, f3 (test for ‘>=’)

fcmp.unord.sf p1, p2 = f2, f3 (test for ‘?’)

The result of a compare operation is written to two 1-bit
predicates in the 64-bit predicate register. Predicate p1
shows the result of the comparison, while p2 is its
opposite. An exception is the case when at least one
input value is NaTVal, when p1 = p2 = 0. A variant of
the fcmp instruction is called ‘unconditional’ (with
respect to the qualifying predicate). The difference is
that if qp = 0, the unconditional compare

(qp) fcmp.eq.unc.sf p1, p2 = f2, f3

clears both output predicates, while

(qp) fcmp.eq.sf p1, p2 = f2, f3

leaves them unchanged.

Six more compare relations are implemented, as pseudo-
ops of the above, to test for the opposite situations (neq,
nlt, nle, ngt, nge, and ord). The remaining 14 comparison
relations specified by the IEEE Standard can be
performed based on the above.

A special type of compare instruction is
fclass.fcrel.fctype p1,p2=f2,fclass9, that allows
classification of the contents of f2 according to the class
specifier fclass9 . The fcrel instruction completer can be

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 6

‘m’ (if f2 has to agree with the pattern specified by
fclass9), or ‘nm’ (f2 has to disagree). The fctype
completer can be none or ‘unc’ (as for fcmp). fclass9 can
specify one of {NaTVal, QNaN, SNaN} OR none, one or
both of {positive, negative} AND none, one or several
of {zero, unnormal, normal, infinity} (nine bits
correspond to the nine classes that can be selected, with
the restrictions specified on the possible combinations).

IA-64 FLOATING-POINT OPERATIONS
DEFERRED TO SOFTWARE
A number of floating-point operations defined by the
IEEE Standard are deferred to software by the IA-64
architecture in all its implementations:

• floating-point divide (integer divide, which is based
on the floating-point divide operation, is also
deferred to software)

• floating-point square root

• floating-point remainder (integer remainder, based
on the floating-point divide operation, is also
deferred to software)

• binary to decimal and decimal to binary conversions

• floating-point to integer-valued floating-point
conversion

• correct wrapping of the exponent for single, double,
and double-extended precision results of floating-
point operations that overflow or underflow, as
described by the IEEE Standard

In addition, the IA-64 architecture allows virtually any
floating-point operation to be deferred to software
through the mechanism of Software Assistance (SWA)
requests, which are treated as floating-point exceptions.
Software Assistance is discussed in detail in the
sections describing the divide operation, the square root
operation, and the exceptions and traps.

IA-64 FLOATING-POINT DIVIDE AND
REMAINDER
The floating-point divide algorithms for the IA-64
architecture are based on the Newton-Raphson iterative
method and on polynomial evaluation. If a/b needs to be
computed and the Newton-Raphson method is used, a
number of iterations first calculate an approximation of
1/b, using the function

f(y) = b – 1/y

The iteration step is

en = (1 - b ⋅ yn)rn ≈ 0

yn+1 = (yn + en ⋅ yn)rn ≈ 1/b

where the subscript rn denotes the IEEE rounding to the
nearest mode.

Once a sufficiently good approximation y of 1/b is
determined, q = a ⋅ y approximates a/b. In some cases,
this might need further refinement, which requires only a
few more computational steps.

In order to show that the final result generated by the
floating-point divide algorithm represents the correctly
rounded value of the infinitely precise result a/b in any
rounding mode, it was proved (by methods described in
[3] and [4]) that the exact value of a/b and the final result
q* of the algorithm before rounding belong to the same
interval of width 1/2 ulp, adjacent to a floating-point
number. Then

(a/b)rnd = (q*)rnd

where rnd is any IEEE rounding mode.

The algorithms proposed for floating-point divide (as
well as for square root) are designed, as seen from the
Newton-Raphson iteration step shown above, based on
the availability of the floating-point multiply-add
operation, fma, that performs both the multiply and add
operations with only one rounding error.

Two variants of floating-point divide algorithms are
provided for single precision, double precision, double-
extended and full register file format precision, and SIMD
single precision. One achieves minimum latency, and
one maximizes throughput.

The minimum latency variant minimizes the execution
time to complete one operation. The maximum
throughput variant performs the operation using a
minimum number of floating-point instructions. This
variant allows the best utilization of the parallel
resources of the IA-64, yielding the minimum time per
operation when performing the operation on multiple
sets of operands.

Double Precision Floating-Point Divide
Algorithm
The double precision floating-point divide algorithm that
minimizes latency was chosen to illustrate the
implementation of the mathematical algorithm in IA-64
assembly language. The input values are the double
precision operands a and b, and the output is a/b.

All the computational steps are performed in full register
file double-extended precision, except for steps (11) and
(12), which are performed in full register file double
precision, and step (13), performed in double-precision.

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 7

The approximate values are shown on the right-hand
side.

(1) y0 = 1/b ⋅ (1 + ε 0), |ε 0| ≤ 2 -m , m=8.886

(2) q0 = (a ⋅ y 0)rn = a/b ⋅ (1 + ε 0)

(3) e0 = (1 - b ⋅ y 0)rn ≈ - ε0

(4) y1 = (y0 + e0 ⋅ y 0)rn ≈ 1/b ⋅ (1 - ε0
2)

(5) q1 = (q0 + e0 ⋅ q0)rn ≈ a/b ⋅ (1 - ε0
2)

(6) e1 = (e0
2)rn ≈ ε0

2

(7) y2 = (y1 + e1 ⋅ y 1)rn ≈ 1/b ⋅ (1 - ε0
4)

(8) q2 = (q1 + e1 ⋅ q1)rn ≈ a/b ⋅ (1 - ε0
4)

(9) e2 = (e1
2)rn ≈ ε0

4

(10) y3 = (y2 + e2 ⋅ y 2)rn ≈ 1/b ⋅ (1 - ε0
8)

(11) q3 = (q2 + e2 ⋅ q2)rn ≈ a/b ⋅ (1 - ε0
8)

(12) r0 = (a - b ⋅ q 3)rn ≈ a ⋅ ε0
8

(13) q4 = (q3 + r0 ⋅ y3)rnd ≈ a/b ⋅ (1 - ε0
16)

The first step is a table lookup performed by frcpa, which
gives an initial approximation y0 of 1/b, with known
relative error determined by m = 8.886. Steps (3) and (4),
(6) and (7), and (9) and (10) represent three iterations that
generate increasingly better approximations of 1/b in y1 ,
y2 , and y3. Note that step (2) above is exact: y0 has 11
bits (read from a table), and a has 53 bits in the
significand, and thus the result of the multiplication has
at most 64 bits that fit in the significand. Steps (5), (8),
and (11) calculate three increasingly better
approximations q1, q2 and q3 of a/b. Evaluating their
relative errors and applying other theoretical properties
[4], it was shown that q4 = (a/b)rnd in any IEEE rounding
mode rnd, and that the status flag settings and exception
behavior are IEEE compliant. Assuming that the latency
of all floating-point operations is the same, the algorithm
takes seven fma latencies: steps (2) and (3) can be
executed in parallel, as can steps (4), (5), (6); then (7), (8),
(9) and also (10) and (11).

The implementation of this algorithm in assembly
language is shown next.

(1) frcpa.s0 f8,p6=f6,f7;; // y0=1/b in f8

(2) (p6) fma.s1 f9=f6,f8,f0 // q0=a*y0 in f9

(3) (p6) fnma.s1 f10=f7,f8,f1;; // e0=1-b*y0 in f10

(4) (p6) fma.s1 f8=f10,f8,f8 // y1=y0+e0*y0 in f8

(5) (p6) fma.s1 f9=f10,f9,f9 // q1=q0+e0*q0 in f9

(6) (p6) fma.s1 f11=f10,f10,f0;; // e1=e0*e0 in f11

(7) (p6) fma.s1 f8=f11,f8,f8 // y2=y1+e1*y1 in f8

(8) (p6) fma.s1 f9=f11,f9,f9 // q2=q1+e1*q1 in f9

(9) (p6) fma.s1 f10=f11,f11,f0;; // e2=e1*e1 in f10

(10) (p6) fma.s1 f8=f10,f8,f8 // y3=y2+e2*y2 in f8

(11) (p6) fma.d.s1 f9=f10,f9,f9;;//q3=q2+e2*q2in f9

(12) (p6) fnma.d.s1 f6=f7,f9,f6;; // r0=a-b*q3 in f6

(13) (p6) fma.d.s0 f8=f6,f8,f9;;// q4=q3+r0*y3 in f8

Note that the output predicate p6 of instruction (1)
(frcpa) predicates all the subsequent instructions. Also,
the output register of frcpa (f8) is the same as the output
register of the last operation (in step (13)). If the frcpa
instruction encounters an exceptional situation such as
unmasked division by 0, and an exception handler
provides the result of the divide, p6 is cleared and no
other instruction from the sequence is executed. The
result is still provided where it is expected. Another
observation is that the first and last instructions in the
sequence use the user status field (sf0), which will reflect
exceptions that might occur, while the intermediate
computations use status field 1 (sf1, with wre = 1). This
implementation behaves like an atomic double precision
divide, as prescribed by the IEEE Standard. It sets
correctly all the IEEE status flags (plus the denormal
status flag), and it signals correctly all the possible
floating-point exceptions if unmasked (invalid operation,
denormal operand, divide by zero, overflow, underflow,
or inexact result).

Floating-Point Remainder
The floating-point divide algorithms are the basis for the
implementation of floating-point remainder operations.
Their correctness is a direct consequence of the
correctness of the floating-point divide algorithms. The
remainder is calculated as r = a – n ⋅ b, where n is the
integer closest to the infinitely precise a/b. The problem
is that n might require more bits to represent than
available in the significand for the format of a and b. The
solution is to implement an iterative algorithm, as
explained in [5] for FPREM1 (all iterations but the last are
called ‘incomplete’). The implementation (not shown
here) is quite straightforward. The rounding to zero
mode for divide can be set in status field sf2 (otherwise
identical to the user status field sf0). Status field sf0 will
only be used by the first frcpa (which may signal the
invalid, divide by zero, or denormal exceptions) and by
the last fnma (computing the remainder). The last fnma
may also signal the underflow exception.

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 8

Software Assistance Conditions for Scalar
Floating-Point Divide
The main issue identified in the process of proving the
IEEE correctness of the divide algorithms [4] is that there
are cases of input operands for a/b that can cause
overflow, underflow, or loss of precision of an
intermediate result. Such operands might prevent the
sequence from generating correct results, and they
require alternate algorithms implemented in software in
order to avoid this. These special situations are
identified by the following conditions that define the
necessity for IA-64 Architecturally Mandated Software
Assistance for the scalar floating-point divide
operations:

 (a) e b ≤ e min – 2 (y i might become huge)

 (b) e b ≥ e max – 2 (y i might become tiny)

 (c) e a – e b ≥ e max (qi might become huge)

 (d) e a – e b ≤ e min + 1 (qi might become tiny)

 (e) e a ≤ e min + N – 1 (ri might lose precision)

where ea is the (unbiased) exponent of a; eb is the
exponent of b; emin is the minimum value of the exponent
in the given format; emax is its maximum possible value;
and N is the number of bits in the significand. When any
of these conditions is met, frcpa issues a Software
Assistance (SWA) request in the form of a floating-point
exception instead of providing a reciprocal approximation
for 1/b, and clears its output predicate. An SWA
handler provides the result of the floating-point divide,
and the rest of the iterative sequence for calculating a/b
is predicated off. The five conditions above can be
represented to show how the two-dimensional space
containing pairs (ea, eb) is partitioned into regions (Figure
4 of [4]). Alternate software algorithms had to be
devised to compute the IEEE correct quotients for pairs
of numbers whose exponents fall in regions satisfying
any of the five conditions above. Note though that due
to the extended internal exponent range (17 bits), the
single precision, double precision, and double-extended
precision calculations will never require architecturally
mandated software assistance. This type of software
assistance might be required only for floating-point
register file format computations with floating-point
numbers having 17-bit exponents.

When an architecturally mandated software assistance
request occurs for the divide operation, the result is
provided by the IA-64 Floating-Point Emulation Library,
which has the role of an SWA handler, as described
further.

The parallel reciprocal approximation instruction, fprcpa,
does not signal any SWA requests. When any of the
five conditions shown above is met, fprcpa merely clears
its output predicate, in which case the result of the
parallel divide operation has to be computed by alternate
algorithms (typically by unpacking the parallel operands,
performing two single precision divide operations, and
packing the results into a SIMD result).

IA-64 FLOATING-POINT SQUARE ROOT
The IA-64 floating-point square root algorithms are also
based on Newton-Raphson or similar iterative
computations. If √a needs to be computed and the
Newton-Raphson method is used, a number of Newton-
Raphson iterations first calculate an approximation of
1/√a, using the function

f(y) = 1/y2 - a

The general iteration step is

en = (1/2 – 1/2 ⋅ a ⋅ yn
2)rn

yn+1 = (yn + en ⋅ yn)rn

where the subscript rn denotes the IEEE rounding to the
nearest mode. The first computation above is rearranged
in the real algorithm in order to take advantage of the fma
instruction capability.

Once a sufficiently good approximation y of 1/√a is
determined, S = a ⋅ y approximates √a. In certain cases,
this too might need further refinement.

In order to show that the final result generated by a
floating-point square root algorithm represents the
correctly rounded value of the infinitely precise result √a
in any rounding mode, it was proved (by methods
described in [3] and [4]), that the exact value of √a and
the final result R* of the algorithm before rounding
belong to the same interval of width 1/2 ulp, adjacent to a
floating-point number. Then, just as for the divide
operation

(√a)rnd = (R*)rnd

where rnd is any IEEE rounding mode.

Floating-point square root algorithms are provided for
single precision, double precision, double-extended and
full register file format precision, and for SIMD single
precision, in two variants. One achieves minimum
latency, and one maximizes throughput.

SIMD Floating-Point Square Root Algorithm
We next present as an example the algorithm that allows
computing the SIMD single precision square root, and
which is optimized for throughput, having a minimum

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 9

number of floating-point instructions. The input
operand is a pair of single precision numbers (a1, a2). The
output is the pair (√a1, √a2). All the computational steps
are performed in single precision. The algorithm is
shown below as a scalar computation. The approximate
values shown on the right-hand side are computed
assuming no rounding errors occur, and they neglect
some high order terms that are very small.

(1) y0 = 1/√a ⋅ (1 + ε 0), |ε 0| ≤ 2 -m , m=8.831

(2) h = (1/2 ⋅ y0)rn ≈ (1 / (2⋅√a)) ⋅ (1 + ε 0)

(3) t1 = (a ⋅ y0)rn ≈ √a ⋅ (1 + ε 0)

(4) t2 = (1/2 - t1 ⋅ h)rn ≈ -ε 0 – 1/2 ⋅ ε 0
2

(5) y1 = (y0 + t2 ⋅ y0)rn ≈ 1/√a ⋅ (1 – 3/2⋅ε 0
2)

(6) S = (a ⋅ y1)rn ≈ √a ⋅ (1 – 3/2 ⋅ ε 0
2)

(7) H = (1/2 ⋅ y1)rn ≈ (1 / (2⋅√a)) ⋅ (1 – 3/2⋅ε 0
2)

(8) d = (a - S ⋅ S)rn ≈ a ⋅ (3⋅ε 0
2 – 9/4⋅ε 0

4)

(9) t4 = (1/2 - S ⋅ H)rn ≈ 3/2 ⋅ ε 0
2 – 9/8⋅ε 0

4

(10) S1 = (S + d ⋅ H)rn ≈ √a ⋅ (1 – 27/8⋅ε 0
4)

(11) H1 = (H + t4 ⋅ H)rn ≈ (1 / (2⋅√a))⋅(1 – 27/8⋅ε0
4)

(12) d1 = (a - S1 ⋅ S1)rn ≈ a ⋅ (27/4⋅ε 0
4 – 729/64⋅ε0

8)

(13) R = (S1 + d1 ⋅ H1)rnd ≈ √a ⋅ (1 – 2187/128⋅ε 0
8)

The first step is a table lookup performed by fprsqrta,
which gives an initial approximation of (1/√a1,1/√a2) with
known relative error determined by m = 8.831. The
following steps implement a Newton-Raphson iterative
algorithm. Specifically, step (5) improves on the
approximation of (1/√a1,1/√a2). Steps (3), (6), (10) and
(13) calculate increasingly better approximations of
(√a1,√a2). The algorithm was proved correct as outlined
in [3] and [4]. The final result (R1,R2) equals
((√a1)rnd,(√a2)rnd) for any IEEE rounding mode rnd, and the
status flag settings and exception behavior are IEEE
compliant.

The assembly language implementation is as follows
(only the floating-point operations are numbered):

 movl r3 = 0x3f0000003f000000;; // +1/2,+1/2

setf.sig f7=r3 // +1/2,+1/2 in f7

(1) fprsqrta.s0 f8,p6=f6;; // y0=1/sqrt(a) in f8

(2) (p6) fpma.s1 f9=f7,f8,f0 // h=1/2*y0 in f9

(3) (p6) fpma.s1 f10=f6,f8,f0;; // t1=a*y0 in f10

(4) (p6) fpnma.s1 f9=f10,f9,f7;;// t2=1/2-t1*h in f9

(5) (p6) fpma.s1 f8=f9,f8,f8;; // y1=y0+t2*y0 in f8

(6) (p6) fpma.s1 f9=f6,f8,f0 // S=a*y1 in f9

(7) (p6) fpma.s1 f8=f7,f8,f0;; // H =1/2*y1 in f8

(8) (p6) fpnma.s1 f10=f9,f9,f6 // d=a-S*S in f10

(9) (p6) fpnma.s1 f7=f9,f8,f7;; // t4=1/2-S*H in f7

(10) (p6) fpma.s1 f10=f10,f8,f9// S1=S+d*H in f10

(11) (p6) fpma.s1 f7=f7,f8,f8;; // H1=H+t4*H in f7

(12) (p6) fpnma.s1 f9=f10,f10,f6;;// d1=a-S1^2 in f9

(13) (p6) fpma.s0 f8=f9,f7,f10;;//R=S1+d1*H1 in f8

Software Assistance Conditions for Scalar
Floating-Point Square Root
Just as for divide, cases of special input operands were
identified in the process of proving the IEEE correctness
of the square root algorithms [4]. The difference with
respect to divide is that only loss of precision of an
intermediate result can occur in an iterative algorithm
calculating the floating-point square root. Such
operands might prevent the sequence from generating
correct results, and they require alternate algorithms
implemented in software in order to avoid this. These
special situations are identified by the following
condition that defines the necessity for IA-64
Architecturally Mandated Software Assistance for the
scalar floating-point square root operation:

 e a ≤ e min + N – 1 (d i might lose precision)

where ea is the (unbiased) exponent of a, emin is the
minimum value of the exponent in the given format, and
N is the number of bits in the significand. When this
condition is met, frsqrta issues a Software Assistance
request in the form of a floating-point exception, instead
of providing a reciprocal approximation for 1/√a, and it
clears its output predicate. The result of the floating-
point square root operation is provided by an SWA
handler, and the rest of the iterative sequence for
calculating √a is predicated off. Due to the extended
internal exponent range (17 bits), the single precision,
double precision, and double-extended precision
calculations will never require architecturally mandated
software assistance. This type of software assistance
might be required only for floating-point register file
format computations with floating-point numbers having
17-bit exponents.

When an architecturally mandated software assistance
request occurs for the square root operation, the result is
provided by the IA-64 Floating-Point Emulation Library.

Just as for the parallel divide, the parallel reciprocal
square root approximation instruction, fprsqrta, does not
signal any SWA requests. When the condition shown

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 10

above is met, fprsqrta merely clears its output predicate,
in which case the result of the parallel square root
operation has to be computed by alternate algorithms
(typically by unpacking the parallel operands, performing
two single precision square root operations, and packing
the results into a SIMD result).

DERIVED OPERATIONS: INTEGER
DIVIDE AND REMAINDER
The integer divide and remainder operations are based
on floating-point operations. They are not specified in
the IEEE Standard [1], but their implementation is so
close to that of the floating-point operations mandated
by the standard, that it is worthwhile mentioning them
here.

A 64-bit integer divide algorithm can be implemented
based on the double-extended precision floating-point
divide. A 32-bit integer divide algorithm can use the
double precision divide. The 16-bit and 8-bit integer
divide can use the single precision divide. But the
desired computation can be performed in each case by
shorter instruction sequences. For example, 24 bits of
precision are not needed to implement the 16-bit integer
divide.

As examples, the signed and then unsigned 16-bit
integer divide algorithms are presented. They are both
based on the same core (all four steps below are
performed in full register file double-extended precision):

(1) y0 = 1/b ⋅ (1 + ε 0), |ε 0| ≤ 2 -m , m=8.886

(2) q0 = (a ⋅ y 0)rn = a/b ⋅ (1 + ε 0)

(3) e0 = (1 + 2-17 - b ⋅ y0)rn ≈ - ε0 (adding 2-17

ensures correctness of the final result)

(4) q1 = (q0 + e0 ⋅ q 0)rn ≈ a/b ⋅ (1 - ε0
2)

The assembly language implementation of the 16-bit
signed integer divide algorithm follows. It is assumed
that the 16-bit operands are received in r32 and r33, and
the result is returned in r8.

sxt2 r2=r32 // sign-extend dividend

sxt2 r3=r33;; // sign-extend divisor

setf.sig f8=r2 // integer dividend in f8

setf.sig f9=r3 // integer divisor in f9

movl r9=0x8000400000000000;;// 1 + 2-17 in r9

setf.sig f10=r9 // (1 + 2-17) ⋅ 263 in f10

fcvt.xf f6=f8 // normal fp dividend in f6

fcvt.xf f7=f9;; // normal fp divisor in f7

fmerge.se f10=f1,f10 // 1 + 2-17 in f10

 (1) frcpa.s1 f8,p6=f6, f7;; // y0 in f8

 (2) (p6) fma.s1 f9=f6, f8, f0 // q0 = a * y0 in f9

 (3) (p6) fnma.s1 f10=f8,f7,f10;; //e0=(1+2-17)-b*y0

 (4) (p6) fma.s1 f8=f9,f10,f9;;// q1=q0+e0*q0 in f8

 fcvt.fx.trunc.s1 f8=f8;; // integer quotient in f8

 getf.sig r8=f8;; // integer quotient in r8

The 16-bit unsigned integer divide is similar, but uses the
zero-extend instead of the sign-extend instruction from 2
bytes to 8 bytes (zxt2 instead of sxt2), conversion from
unsigned integer to floating-point for the operands
(fcvt.xuf instead of fcvt.xf), and conversion from floating-
point to unsigned integer for the result (fcvt.fxu.trunc
instead of fcvt.fx.trunc).

The integer remainder algorithms are implemented as
extensions of the corresponding integer divide
algorithms. The 16-bit signed integer remainder
algorithm is almost identical to the 16-bit signed integer
divide, with the last instruction replaced by the following
sequence that is needed to calculate r = a - (a/b) ⋅ b:

 fcvt.xf f8=f8;; // convert to fp and normalize

 fnma.s1 f8=f8, f7, f6;; // r = a - (a/b) ⋅ b in f8

 fcvt.fx.trunc.s1 f8=f8;;// integer remainder in f8

 getf.sig r8=f8;; // integer remainder in r8

EXCEPTIONS AND TRAPS
IA-64 arithmetic floating-point instructions [2] may
signal all of the five IEEE-specified exceptions and also
the Intel Architecture defined exception for denormal
operands. Invalid operation, denormal operand, and
divide-by-zero are pre-computation exceptions (floating-
point faults). Overflow, underflow, and inexact result are
post-computation exceptions (floating-point traps).

In addition to these user visible exceptions, Software
Assistance (SWA) faults and traps can be signaled.
They do not surface to the user level, and cannot be
disabled (masked). The SWA requests are handled by a
system SWA handler, the IA-64 Floating-Point
Emulation Library.

The status flags in a given status field can be cleared
using the fclrf.sf instruction. Control bits may be set
using the fsetc.sf amask7, omask7 instruction, which
initializes the seven control bits of the specified status
field to the value obtained by logically AND-ing the
sf0.controls (seven bits) and amask7, and logically OR-
ing with omask7. Alternatively, a 64-bit unsigned

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 11

integer value can be moved to or from the FPSR
(application register 40): mov ar40 = r1, or
mov r1 = ar40.

Exception handlers can be registered, disabled, saved, or
restored with software support (from the operating
system and/or compiler) as specified by the IEEE
Standard.

IA-64 Software Assistance Faults and Traps
The IA-64 architecture allows virtually any floating-point
operation to be deferred to software through the
mechanism of Software Assistance requests, which are
treated as floating-point exceptions, always unmasked,
and resolved without reaching a user handler. On
Itanium™, the first implementation of the IA-64
architecture, SWA requests may be signaled in three
forms:

• IA-64 architecturally mandated SWA faults. These
occur for certain combinations of operands of the
floating-point divide and square root operations,
and only for frcpa and frsqrta (scalar reciprocal
approximation instructions).

• Itanium-specific SWA faults. They occur whenever
a floating-point instruction has a denormal input. All
the arithmetic floating-point instructions on Itanium
signal this exception, except for fma.pc.sf f1 = f2, f1,
f0 (fnorm.pc.sf f1=f2), fms.pc.sf f1 = f2, f1, f0, and
fnma.pc.sf f1 = f2, f1, f0. They signal Itanium-specific
SWA faults only when the input is a canonical
double-extended denormal value (i.e., when the
input has a biased exponent of 0x00000 and a most
significant bit of the non-zero significand equal to
0).

• Itanium-specific SWA traps. They occur whenever
a floating-point instruction has a tiny result (smaller
in magnitude than the smallest normal floating-point
number that can be represented in the destination
format). These exceptions only occur for fma, fms,
fnma, fpma, fpms, and fpnma.

The IA-64 Floating-Point Emulation Library
When an unmasked floating-point exception occurs, the
hardware causes a branch to the interruption vector

(Floating-Point Fault or Trap Vector) and then to a low-
level OS handler. From here, handling of the floating-
point exception is propagated higher in the operating
system, and an exception handler is invoked that decides
whether to provide a result for the excepting instruction
and allow execution of the application to continue.

SWA requests are treated like regular floating-point
exceptions, but they are always ‘unmasked’ and handled
by an SWA handler represented by the IA-64 Floating-
Point Emulation Library. The library is able to calculate
the result for any IA-64 arithmetic floating-point
instruction. When an SWA fault or trap occurs, it is
processed and the result is provided to the operating
system kernel. The execution continues in a transparent
manner for the user. In addition to satisfying the SWA
requests, the SWA handler filters all other unmasked
floating-point exceptions that occur, passing them to the
operating system kernel that will continue to search for
an appropriate user-provided exception handler.

Figure 1 depicts the control flow that occurs when an
application running on an IA-64 processor signals an
unmasked floating-point exception. The IA-64 Floating-
Point Emulation Library is shown as part of the operating
system kernel, but this is implementation dependent. If
an unmasked floating-point exception other than an
SWA fault or trap occurs, a user handler must have
already been registered in order to resolve it. The user
handler can be called directly by the operating system,
receiving ‘raw’ information about the exception, or
through an optional IEEE filter (as shown in Figure 1)
that processes the information about the exception,
thereby allowing a less complex handler to resolve the
situation.

An example of an SWA trap is illustrated in Figure 2. The
computation generates a result that is tiny and inexact
(sufficient to trigger an underflow or an inexact trap if
any was unmasked). As traps are masked, an Itanium™-
specific SWA trap occurs, propagated from the
application code to the floating-point emulation library
via the OS kernel trap handler in steps 1 and 2. The result
generated by the emulation library is then passed back in
steps 3 and 4.

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 12

Figure 1: Flow of control for IA-64 floating-point exceptions

Figure 2: Flow of control for handling an SWA trap
signaled by an IA-64 floating-point instruction

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 13

FLOATING-POINT EXCEPTION
HANDLING
The floating-point exception priority is documented in
[2], but for a given implementation of the architecture
(Itanium™ in this case), a distinction can be made
regarding the source of an exception. This can be
signaled by the hardware, or from software, by the IA-64
Floating-Point Emulation Library.

For example, on Itanium, denormal faults are signaled by
software (the IA-64 Floating-Point Emulation Library)
after they are reported initially by the hardware as
Itanium-specific SWA faults. SWA faults that are not
converted to denormal faults (because denormal faults
are masked) cause the result to be calculated by
software. Whether the result of a floating-point
instruction is calculated in hardware or in software, it can
further signal other floating-point exceptions (traps).

For example, architecturally mandated SWA faults might
lead to overflow, underflow, or inexact exceptions
signaled from the IA-64 Floating-Point Emulation Library.

Another example is that of the SWA traps, that are
always raised from hardware. They have to be resolved
in software, but this computation might further lead to
inexact exceptions signaled from the IA-64 Floating-Point
Emulation Library.

The information that is relevant to a floating-point user
exception handler is passed to it through a register file
save area, the excepting instruction pointer and opcode,
the Floating-Point Status Register, and a set of
specialized registers.

The IA-64 IEEE Floating-Point Filter
The floating-point exception handling mechanism of an
operating system raises portability issues, as exception
handling is almost always implemented using proprietary
data structures and procedures. A solution that can be
adopted is to implement an IEEE Floating-Point Filter that
preprocesses the exception information provided by the

operating system kernel before passing it on to the user
handler (see Figure 1). The filter, which can be viewed as
part of the user handler, helps in the processing of all the
IEEE floating-point exceptions (invalid operation, divide-
by-zero, overflow, underflow, and inexact result) and also
in the processing of the denormal exceptions that are IA
specific. The interface between the operating system
and the IEEE filter should be almost identical to that of
the IA-64 Floating-Point Emulation Library, as they both
process exception information. The IEEE filter also
accomplishes the correct wrapping of the exponents
when overflow or underflow traps are taken, as required
by the IEEE Standard [1] (operation deferred to software
by the IA-64 architecture).

An important advantage is that the IEEE Floating-Point
Filter simplifies greatly the task of the user handler. All
the complexities of reading operating system-specific
information, decoding operation codes, and reading and
writing floating-point or predicate registers are
abstracted away by the filter. Also, exceptions
generated by parallel (SIMD) instructions will appear to
the user handler as originating in scalar instructions. The
following two examples illustrate some of these benefits.

The example in Figure 3 illustrates the case of a scalar
divide operation that signals an SWA fault, and then an
underflow trap (underflow traps are assumed to be
unmasked). The SWA fault is signaled by an frcpa
instruction that jumpstarts the iterative computation
calculating the quotient. The sequence of steps
performed in handling the exception is numbered from 1
to 10 in the figure. As the result is provided by the user
exception handler for underflow exceptions, the output
predicate of frpca has to be clear when execution of the
application program containing it is resumed (clearing
the output predicate is the task of the user handler or of
the IEEE Floating-Point Exception Filter if present). The
clear output predicate disables the iterative computation
following frcpa, as the result is already in the correct
floating-point register (the iterative computation is
assumed to be automatically inlined by the compiler).

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 14

 Figure 3: Flow of control for handling an SWA fault
signaled by a divide operation, followed by an underflow
trap

The example in Figure 4 illustrates the case of a parallel
instruction that signals an invalid fault in the high half,
and an underflow trap in the low half, with no SWA
requests involved. Both invalid and underflow
exceptions are assumed to be unmasked (enabled). As
only the fault is detected first, the IEEE filter tries to re-
execute the low half of the instruction, generating a new
exception (underflow trap). The sequence of steps
executed while handling these exceptions is numbered
from 1 to 12 in the figure.

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 15

Figure 4: Flow of control for handling an invalid fault in
the high half (V high) and an underflow trap in the low

half (U low) of a parallel IA-64 instruction

SPECULATION FOR FLOATING-POINT
COMPUTATIONS
Control speculation refers to a performance optimization
technique where a sequence of instructions is executed
before it is known that the dynamic control flow of the
program will actually reach the point in the program
where the sequence of instructions is needed. Control
speculation in floating-point computations on IA-64
processors is possible, as loads to general or floating-
point registers have both non-speculative (e.g., ldf, ldfp),
and speculative (e.g., ldf.s, ldfp.s) variants. All
instructions that write their results to general or floating-
point registers are speculative.

A speculative floating-point computation uses status
fields sf2 or sf3. The computation is considered to have
failed if it signals a floating-point exception that is
unmasked in the user status field sf0, or if it sets a status
flag that is clear in sf0. This is checked for with the
floating-point check flags instruction, fchkf.sf target25:
the status flags in sf are compared with the status flags in
sf0. If any flags in sf are set and the corresponding traps
are enabled, or if any flags are set in sf that are not set in
sf0, then a branch is taken to target25, which should be
the address of the recovery code for the failed

speculative floating-point computation. The compliance
with the IEEE Standard is thus preserved even for
speculative chains of computation.

The following example shows original code without
control speculation. It is assumed that the contents of f9
are not used at the destination of the branch.

(p6) br.cond some_label ;;

fma.s0 f9=f8,f7,f6 // Do f9=f8*f7+f6

continue_label:

This code sequence can be rewritten using control
speculation with sf2 to move the fma ahead of the branch
as follows:

fma.s2 f9=f8,f7,f6 // Speculative f9=f8*f7+f6

// other instructions

(p6) br.cond some_label ;;

fchkf.s2 recovery_label // Check speculation

continue_label:

If sf0 and sf2 do not agree, then the recovery code must
be executed to cause the actual exception with sf0.

recovery_label:

fma.s0 f9=f8,f7,f6 // Do real f9=f8*f7+f6

br continue_label

Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 16

CONCLUSION
Compliance with the IEEE Standard for Binary Floating-
Point Arithmetic [1] is important for any modern
processor. In this paper, we have shown how various
facets of the standard are implemented or reflected in the
IA-64 architecture, which is fully compliant with the IEEE
Standard. In addition, we have highlighted features of
the floating-point architecture that allow high-accuracy
and high-performance computations, while abiding by
the IEEE Standard.

ACKNOWLEDGMENTS
The authors thank Roger Golliver, Gautam Doshi, John
Harrison, Shane Story, Ted Kubaska, and Cristina
Iordache from Intel Corporation, and Peter Markstein
from Hewlett-Packard* Company for their contributions,
support, ideas, and/or feedback regarding various parts
of this paper.

REFERENCES
[1] ANSI/IEEE Std 754-1985, IEEE Standard for Binary

Floating-Point Arithmetic, IEEE, New York, 1985.

[2] IA-64 Application Developer’s Architecture Guide,
Intel Corporation, 1999.

[3] Cornea-Hasegan, M., “Proving IEEE Correctness of
Iterative Floating-Point Square Root, Divide, and
Remainder Algorithms,” Intel Technology Journal,
Q2, 1998 at
http://developer.intel.com/technology/itj/q21998.htm

[4] Cornea-Hasegan, M. and Golliver, R., “Correctness
Proofs Outline for Newton-Raphson Based Floating-
Point Divide and Square Root Algorithms,”
Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, 1999, IEEE Computer Society,
Los Alamitos, CA, pp. 96-105.

[5] Intel Architecture Software Developer’s Manual,
Intel Corporation, 1997.

AUTHORS’ BIOGRAPHIES
Marius Cornea-Hasegan is a senior staff software
engineer with Intel Corporation in Hillsboro, Oregon. He
holds an M.Sc. degree in electrical engineering from the
Polytechnic Institute of Cluj, Romania, and a Ph.D.
degree in computer science from Purdue University, in
West Lafayette, IN. His interests include floating-point
architecture and algorithms as parts of a computing
system. His e-mail is marius.cornea@intel.com.

Bob Norin joined Intel in 1994. Currently he is manager
of the MSL Numerics Group in MPG. Bob received his

Ph.D. degree in electrical engineering from Cornell
University. He has over 25 years experience developing
software for high-performance computers. His technical
interests include optimizing the performance of floating-
point applications and developing mathematical library
software. His e-mail is bob.norin@intel.com.

