
Intel® IA-64 Architecture
Software Developer’s Manual
Volume 4: Itanium™ Processor Programmer’s Guide

Revision 1.1

July 2000

Document Number: 245320-002

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® IA-64 processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel’s website at http://developer.intel.com/design/litcentr.

Copyright © Intel Corporation, 2000

*Third-party brands and names are the property of their respective owners.

Contents
1 About this Manual 1-1

1.1 Overview of Volume 1: IA-64 Application Architecture ...1-1
1.1.1 Part 1: IA-64 Application Architecture Guide ..1-1
1.1.2 Part 2: IA-64 Optimization Guide..1-2

1.2 Overview of Volume 2: IA-64 System Architecture...1-2
1.2.1 Part 1: IA-64 System Architecture Guide..1-2
1.2.2 Part 2: IA-64 System Programmer’s Guide ..1-3
1.2.3 Appendices...1-4

1.3 Overview of Volume 3: Instruction Set Reference ..1-4
1.3.1 Part 1: IA-64 Instruction Set Descriptions...1-4
1.3.2 Part 2: IA-32 Instruction Set Descriptions...1-4

1.4 Overview of Volume 4: Itanium™ Processor Programmer’s Guide..............................1-5
1.5 Terminology ..1-5
1.6 Related Documents ..1-6
1.7 Revision History..1-6

2 Register Stack Engine Support 2-1
2.1 RSE Modes...2-1
2.2 RSE and Clean Register Stack Partitions...2-1

3 Virtual Memory Management Support 3-1
3.1 Page Size Supported..3-1
3.2 Physical and Virtual Addresses ..3-1
3.3 Region Register ID ...3-1
3.4 Protection Key Register ..3-1

4 Processor Specific Write Coalescing (WC) Behavior 4-1
4.1 Write Coalescing...4-1
4.2 WC Buffer Eviction Conditions..4-1
4.3 WC Buffer Flushing Behavior ...4-2

5 Model Specific Instruction Implementation 5-1
5.1 ld.bias ...5-1
5.2 lfetch Exclusive Hint..5-1
5.3 fwb ..5-1
5.4 thash ...5-2
5.5 ttag..5-2
5.6 ptc.e ..5-3
5.7 mf.a...5-3
5.8 Prefetch Behavior ...5-3
5.9 Temporal and Non-temporal Hints Support ..5-3

6 Processor Performance Monitoring 6-1
6.1 Performance Monitor Programming Models ...6-1

6.1.1 Workload Characterization ...6-2
6.1.2 Profiling...6-5
6.1.3 Event Qualification..6-8
Intel® IA-64 Architecture Software Developer’s Manual iii

6.2 Performance Monitor State...6-13
6.2.1 Performance Monitor Control and Accessibility..6-13
6.2.2 Performance Counter Registers ...6-16
6.2.3 Performance Monitor Overflow Status Registers (PMC[0,1,2,3])6-17
6.2.4 IA-64 Instruction Address Range Check Register (PMC[13]).....................6-18
6.2.5 IA-64 Opcode Match Registers (PMC[8,9]) ..6-20
6.2.6 IA-64 Data Address Range Check (PMC[11]) ..6-21
6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])...........................6-22
6.2.8 IA-64 Branch Trace Buffer..6-27
6.2.9 Processor Reset, PAL Calls, and Low Power State6-31
6.2.10 References ...6-32

7 Performance Monitor Events 7-1
7.1 Categorization of Events ..7-1
7.2 Basic Events...7-1
7.3 Instruction Execution ..7-2
7.4 Cycle Accounting Events ..7-4
7.5 Branch Events ..7-5
7.6 Memory Hierarchy ..7-6

7.6.1 L1 Instruction Cache and Prefetch ...7-7
7.6.2 L1 Data Cache ...7-8
7.6.3 L2 Unified Cache..7-9
7.6.4 L3 Unified Cache..7-10

7.7 System Events..7-10
7.8 Performance Monitor Event List ...7-12

8 Model Specific Behavior for IA-32 Instruction Execution 8-1
8.1 Processor Reset and Initialization ..8-1
8.2 New JMPE Instruction ..8-1
8.3 System Management Mode (SMM) ..8-1
8.4 Machine Check Abort (MCA)..8-2
8.5 Model Specific Registers ..8-2
8.6 Cache Modes ...8-2
8.7 10-byte Floating-point Operand Reads and Writes ..8-2
8.8 Floating-point Data Segment State ..8-3
8.9 Writes to Reserved Bits during FXSAVE..8-3
8.10 Setting the Access/Dirty (A/D) Bit on Accesses that Cross a Page Boundary8-3
8.11 Enhanced Floating-point Instruction Accuracy ...8-3
8.12 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction Differences8-4
8.13 Read/Write Access Ordering ..8-4
8.14 Multiple IOAPIC Redirection Table Entries...8-4
8.15 Self Modifying Code (SMC) ..8-4
8.16 Raising an Alignment Check (AC) Fault ...8-4
8.17 Maximum Number of IA-64 Processors Supported in MP System

Running Legacy IA-32 OS (IA-32 system environment)...8-5
iv Intel® IA-64 Architecture Software Developer’s Manual

Figures

6-1 Time-based Sampling..6-2
6-2 IA-64 Cycle Accounting ...6-4
6-3 Event Histogram by Program Counter...6-6
6-4 Itanium™ Processor Event Qualification ...6-9
6-5 Instruction Tagging Mechanism in the Itanium™ Processor ...6-10
6-6 Single Process Monitor..6-12
6-7 Multiple Process Monitor ...6-12
6-8 System Wide Monitor...6-12
6-9 Itanium™ Processor Performance Monitor Register Model ..6-14
6-10 Processor Status Register (PSR) Fields for Performance Monitoring6-15
6-11 Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7]) ...6-16
6-12 Itanium™ Processor Generic PMC Registers (PMC[4,5]) ...6-16
6-13 Itanium™ Processor Generic PMC Registers (PMC[6,7]) ...6-16
6-14 Itanium™ Processor Performance Monitor Overflow Status Registers (PMC[0,1,2,3])...........6-18
6-15 Itanium™ Processor Instruction Address Range Check Register (PMC[13])..........................6-18
6-16 Opcode Match Registers (PMC[8,9])...6-20
6-17 Instruction Event Address Configuration Register (PMC[10])..6-22
6-18 Instruction Event Address Register Format (PMD[0,1]..6-23
6-19 Data Event Address Configuration Register (PMC[11])...6-25
6-20 Data Event Address Register Format (PMD[2,3,17])...6-25
6-21 IA-64 Branch Trace Buffer Configuration Register (PMC[12])...6-28
6-22 Branch Trace Buffer Register Format (PMD[8-15]) ...6-30
6-23 IA-64 Branch Trace Buffer Index Register Format (PMD[16]) ...6-31
7-1 Event Monitors in the Itanium™ Processor Memory Hierarchy ...7-7
7-2 L1 Instruction Cache and Prefetch Monitors..7-8
7-3 L1 Data Cache Monitors ..7-9
7-4 Itanium™ Processor Instruction and Data TLB Monitors...7-12

Tables

4-1 Itanium™ Processor WCB Eviction Conditions ...4-1
6-1 Average Latency per Request and Requests per Cycle Calculation Example6-4
6-2 Itanium™ Processor EARs and Branch Trace Buffer..6-7
6-3 Itanium™ Processor Event Qualification Modes ...6-10
6-4 Itanium™ Processor Performance Monitor Register Set...6-15
6-5 Performance Monitor PMC Register Control Fields (PMC[4,5,6,7,10,11,12])6-15
6-6 Itanium™ Processor Generic PMD Register Fields...6-16
6-7 Itanium™ Processor Generic PMC Register Fields (PMC[4,5,6,7]) ..6-17
6-8 Itanium™ Processor Performance Monitor Overflow Register Fields (PMC[0,1,2,3])6-18
6-9 Itanium™ Processor Instruction Address Range Check Register Fields (PMC[13])6-19
6-10 Itanium™ Processor Instruction Address Range Check by Instruction Set.............................6-19
6-11 Opcode Match Register Fields (PMC[8,9]) ..6-20
6-12 Instruction Event Address Configuration Register Fields (PMC[10])6-23
6-13 Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tlb=0)...............................6-23
6-14 Instruction EAR (PMD[0,1]) in Cache Mode (PMC[10].tlb=0)..6-24
6-15 Instruction EAR (PMC[10]) umask Field in TLB Mode (PMC[10].tlb=1)6-24
6-16 Instruction EAR (PMD[0,1]) in TLB Mode (PMC[10].tlb=1)..6-24
6-17 Data Event Address Configuration Register Fields (PMC[11]) ..6-25
6-18 PMC[11] Mask Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)6-26
Intel® IA-64 Architecture Software Developer’s Manual v

6-19 PMD[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tlb=0).....................................6-26
6-20 PMC[11] Unmask Field in TLB Miss Mode (PMC[11].tlb=1)..6-27
6-21 PMD[2,3,17] Fields in TLB Miss Mode (PMC[11].tlb=1) ..6-27
6-22 IA-64 Branch Trace Buffer Configuration Register Fields (PMC[12])6-28
6-23 IA-64 Branch Trace Buffer Register Fields (PMD[8-15]) ...6-30
6-24 IA-64 Branch Trace Buffer Index Register Fields (PMD[16])...6-31
6-25 Information Returned by PAL_PERF_MON_INFO for the Itanium™ Processor6-32
7-1 IA-64 and IA-32 Instruction Set Execution and Retirement Monitors ..7-2
7-2 IA-64 and IA-32 Instruction Set Execution and Retirement Performance Metrics.....................7-2
7-3 Instruction Issue and Retirement Events...7-2
7-4 Instruction Issue and Retirement Events (Derived) ...7-2
7-5 Floating-Point Execution Monitors...7-3
7-6 Floating-Point Execution Monitors (Derived) ...7-3
7-7 Control and Data Speculation Monitors...7-3
7-8 Itanium™ Processor Control/Data Speculation Performance Metrics7-4
7-9 Itanium™ Processor Memory Events ..7-4
7-10 Itanium™ Processor Stall Cycle Monitors ...7-4
7-11 Itanium™ Processor Stall Cycle Monitors (Derived) ...7-4
7-12 Itanium™ Processor Branch Monitors...7-5
7-13 Derived Memory Hierarchy Monitors ...7-6
7-14 Itanium™ Processor Cache Performance Ratios..7-6
7-15 L1 Instruction Cache and Instruction Prefetch Monitors..7-8
7-16 L1 Data Cache Monitors..7-9
7-17 L2 Cache Monitors ..7-9
7-18 L3 Cache Monitors ..7-10
7-19 Itanium™ Processor System and TLB Monitors..7-11
7-20 Itanium™ Processor System and TLB Monitors (Derived) ..7-11
7-21 Itanium™ Processor TLB Performance Metrics ..7-11
7-22 Slot Unit Mask for BRANCH_TAKEN_SLOT...7-28
7-23 Retired Event Selection by Opcode Match...7-32
7-24 Unit Mask Bits {19:16} for L2_FLUSH_DETAILS Event ..7-38
7-25 Unit Mask Bits {19:18} for PIPELINE_FLUSH Event ...7-46
vi Intel® IA-64 Architecture Software Developer’s Manual

About this Manual 1

The IA-64 architecture is a unique combination of innovative features such as explicit parallelism,
predication, speculation and more. The architecture is designed to be highly scalable to fill the ever
increasing performance requirements of various server and workstation market segments. The
IA-64 architecture features a revolutionary 64-bit instruction set architecture (ISA) which applies a
new processor architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A
key feature of the IA-64 architecture is IA-32 instruction set compatibility.

The Intel® IA-64 Architecture Software Developer’s Manual provides a comprehensive description
of the programming environment, resources, and instruction set visible to both the application and
system programmer. In addition, it also describes how programmers can take advantage of IA-64
features to help them optimize code. This manual replaces the IA-64 Application Developer’s
Architecture Guide (Document Number 245188) which contains a subset of the information
presented in this four-volume set.

1.1 Overview of Volume 1: IA-64 Application
Architecture

This volume defines the IA-64 application architecture, including application level resources,
programming environment, and the IA-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

1.1.1 Part 1: IA-64 Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® IA-64
Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the IA-64 Processor Architecture” provides an overview of the IA-64
architecture system environments.

Chapter 3, “IA-64 Execution Environment” describes the IA-64 register set used by applications
and the memory organization models.

Chapter 4, “IA-64 Application Programming Model” gives an overview of the behavior of IA-64
application instructions (grouped into related functions).

Chapter 5, “IA-64 Floating-point Programming Model” describes the IA-64 floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an IA-64 System Environment” describes the
operation of IA-32 instructions within the IA-64 System Environment from the perspective of an
application programmer.
About this Manual 1-1

1.1.2 Part 2: IA-64 Optimization Guide

Chapter 7, “About the IA-64 Optimization Guide” gives an overview of the IA-64 optimization
guide.

Chapter 8, “Introduction to IA-64 Programming” provides an overview of the IA-64 application
programming environment.

Chapter 9, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 10, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 11, “Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 12, “Floating-point Applications” discusses current performance limitations in
floating-point applications and IA-64 features that address these limitations.

1.2 Overview of Volume 2: IA-64 System Architecture

This volume defines the IA-64 system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. This volume also provides a
useful system programmer's guide for writing high performance system software.

1.2.1 Part 1: IA-64 System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® IA-64
Architecture Software Developer’s Manual.

Chapter 2, “IA-64 System Environment” introduces the environment designed to support execution
of IA-64 operating systems running IA-32 or IA-64 applications.

Chapter 3, “IA-64 System State and Programming Model” describes the IA-64 architectural state
which is visible only to an operating system.

Chapter 4, “IA-64 Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing, and memory
ordering.

Chapter 5, “IA-64 Interruptions” describes all interruptions that can be generated by an IA-64
processor.

Chapter 6, “IA-64 Register Stack Engine” describes the IA-64 architectural mechanism which
automatically saves and restores the stacked subset (GR32 – GR 127) of the general register file.

Chapter 7, “IA-64 Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the IA-64 architecture.

Chapter 8, “IA-64 Interruption Vector Descriptions” lists all IA-64 interruption vectors.
1-2 About this Manual

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts and
intercepts that can occur during IA-32 instruction set execution in the IA-64 System Environment.

Chapter 10, “IA-64 Operating System Interaction Model with IA-32 Applications” defines the
operation of IA-32 instructions within the IA-64 System Environment from the perspective of an
IA-64 operating system.

Chapter 11, “IA-64 Processor Abstraction Layer” describes the firmware layer which abstracts
IA-64 processor implementation-dependent features.

1.2.2 Part 2: IA-64 System Programmer’s Guide

Chapter 12, “About the IA-64 System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 13, “MP Coherence and Synchronization” describes IA-64 multi-processing
synchronization primitives and the IA-64 memory ordering model.

Chapter 14, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what state is preserved and made available to low-level system code when
interruptions are taken.

Chapter 15, “Context Management” describes how operating systems need to preserve IA-64
register contents and state. This chapter also describes IA-64 system architecture mechanisms that
allow an operating system to reduce the number of registers that need to be spilled/filled on
interruptions, system calls, and context switches.

Chapter 16, “Memory Management” introduces various IA-64 memory management strategies.

Chapter 17, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 18, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction
emulation handlers that IA-64 operating system are expected to support.

Chapter 19, “Floating-point System Software” discusses how IA-64 processors handle
floating-point numeric exceptions and how the IA-64 software stack provides complete IEEE-754
compliance.

Chapter 20, “IA-32 Application Support” describes the support an IA-64 operating system needs to
provide to host IA-32 applications.

Chapter 21, “External Interrupt Architecture” describes the IA-64 external interrupt architecture
with a focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 22, “I/O Architecture” describes the IA-64 I/O architecture with a focus on platform issues
and support for the existing IA-32 I/O port space platform infrastructure.

Chapter 23, “Performance Monitoring Support” describes the IA-64 performance monitor
architecture with a focus on what kind of operating system support is needed from IA-64 operating
systems.
About this Manual 1-3

Chapter 24, “Firmware Overview” introduces the IA-64 firmware model, and how various
firmware layers (PAL, SAL, EFI) work together to enable processor and system initialization, and
operating system boot.

1.2.3 Appendices

Appendix A, “IA-64 Resource and Dependency Semantics” summarizes the dependency rules that
are applicable when generating code for IA-64 processors.

Appendix B, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the IA-64 and IA-32 instruction sets, including
instruction format/encoding.

1.3.1 Part 1: IA-64 Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® IA-64
Architecture Software Developer’s Manual.

Chapter 2, “IA-64 Instruction Reference” provides a detailed description of all IA-64 instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “IA-64 Pseudo-Code Functions” provides a table of pseudo-code functions which are
used to define the behavior of the IA-64 instructions.

Chapter 4, “IA-64 Instruction Formats” describes the encoding and instruction format instructions.

1.3.2 Part 2: IA-32 Instruction Set Descriptions

Chapter 5, “Base IA-32 Instruction Reference” provides a detailed description of all base IA-32
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 6, “IA-32 MMX™ Technology Instruction Reference” provides a detailed description of
all IA-32 MMX™ technology instructions designed to increase performance of multimedia
intensive applications. Organized in alphabetical order by assembly language mnemonic.

Chapter 7, “IA-32 Streaming SIMD Extension Instruction Reference” provides a detailed
description of all IA-32 Streaming SIMD Extension instructions designed to increase performance
of multimedia intensive applications, and is organized in alphabetical order by assembly language
mnemonic.
1-4 About this Manual

1.4 Overview of Volume 4: Itanium™ Processor
Programmer’s Guide

This volume describes model-specific architectural features incorporated into the Intel® Itanium™
processor, the first IA-64 processor.

Chapter 1, “About this Manual” provides an overview of four volumes in the Intel® IA-64
Architecture Software Developer’s Manual.

Chapter 2, “Register Stack Engine Support” summarizes Register Stack Engine (RSE) support
provided by the Itanium processor.

Chapter 3, “Virtual Memory Management Support” details size of physical and virtual address,
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behavior” describes the behavior of write
coalesce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementation” describes model specific behavior of
IA-64 instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoring” defines the performance monitoring features
which are specific to the Itanium processor. This chapter outlines the targeted performance monitor
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Events” summarizes the Itanium processor events and describes
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for IA-32 Instruction Execution” describes some of the key
differences between an Itanium processor executing IA-32 instructions and the Pentium® III
processor.

1.5 Terminology

The following definitions are for terms related to the IA-64 architecture and will be used
throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level resources. These
resources include instructions and registers.

IA-64 Architecture – The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture
Software Developer’s Manual.

IA-64 Processor – An Intel 64-bit processor that implements both the IA-64 and the IA-32
instruction sets.

IA-64 System Environment – The IA-64 operating system privileged environment that supports
the execution of both IA-64 and IA-32 code.
About this Manual 1-5

IA-32 System Environment – The operating system privileged environment and resources as
defined by the Intel Architecture Software Developer’s Manual. Resources include virtual paging,
control registers, debugging, performance monitoring, machine checks, and the set of privileged
instructions.

IA-64 Firmware – The Processor Abstraction Layer (PAL) and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The IA-64 firmware layer which abstracts IA-64 processor
features that are implementation dependent.

System Abstraction Layer (SAL) – The IA-64 firmware layer which abstracts IA-64 system
features that are implementation dependent.

1.6 Related Documents

The following documents contain additional material related to the Intel® IA-64 Architecture
Software Developer’s Manual:

• Intel Architecture Software Developer’s Manual – This set of manuals describes the Intel
32-bit architecture. They are readily available from the Intel Literature Department by calling
1-800-548-4725 and requesting Document Numbers 243190, 243191and 243192, or can be
downloaded at http://developer.intel.com/design/litcentr.

• IA-64 Software Conventions and Runtime Architecture Guide – This document (Document
Number 245358) defines general information necessary to compile, link, and execute a
program on an IA-64 operating system. It can be downloaded at
http://developer.intel.com/design/ia64.

• IA-64 System Abstraction Layer Specification – This document (Document Number 245359)
specifies requirements to develop platform firmware for IA-64 processor systems.

• Extensible Firmware Interface Specification – This document defines a new model for the
interface between operating systems and platform firmware. It can be downloaded at
http://developer.intel.com/technology/efi.

1.7 Revision History

Date of
Revision

Revision
Number Description

July 2000 1.1 Volume 1:

Processor Serial Number feature removed (Chapter 3)

Clarification on exceptions to instruction dependency (Section 3.4.3)
1-6 About this Manual

Volume 2:

Clarifications regarding “reserved” fields in ITIR (Chapter 3)

Instruction and Data translation must be enabled for executing IA-32 instructions
(Chapters 3,4 and 10)

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4)

Clarification regarding ordering data dependency

Out-of-order IPI delivery is now allowed (Chapters 4 and 5)

Content of EFLAG field changed in IIM (p. 9-24)

PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11)

PAL_CHECK processor state parameter changes (Chapter 11)

PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11)

PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the call
to provide more information regarding machine check (Chapter 11)

PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making this
call (Chapter 11)

PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11)

PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11)

Clarified memory ordering changes (Chapter 13)

Clarification in dependence violation table (Appendix A)

Volume 3:

fmix instruction page figures corrected (Chapter 2)

Clarification of “reserved” fields in ITIR (Chapters 2 and 3)

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4)

IA-32 JMPE instruction page typo fix (p. 5-238)

Processor Serial Number feature removed (Chapter 5)

Volume 4:

Reformatted the Performance Monitor Events chapter for readability and ease of
use (no changes to any of the events except for renaming of some); events are
listed in alphabetical order (Chapter 7)

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description
About this Manual 1-7

1-8 About this Manual

Register Stack Engine Support 2

2.1 RSE Modes

The Itanium processor implements the enforced lazy RSE mode. Refer to Chapter 6, “IA-64
Register Stack Engine” in Volume 2 for a description of the RSE modes.

2.2 RSE and Clean Register Stack Partitions

On the Itanium processor, the internal RSE pointer RSE.BSPLoad is always equal to AR.BSPStore,
meaning that the size of the clean register stack partition is always zero. This implies that, on the
Itanium processor, a flushrs instruction will create a dirty region of size zero and an invalid
region of size equal to 96 - CFM.sof. On other implementations that maintain a clean partition,
flushrs behavior may differ by creating a clean register stack partition in addition to an invalid
partition and a zero-sized dirty partition. As a result, the Itanium processor’s RSE may perform
more mandatory fills upon a branch-return (br.ret) or rfi following a flushrs instruction than
an implementation that maintains a clean partition.
Register Stack Engine Support 2-1

2-2 Register Stack Engine Support

Virtual Memory Management Support 3

3.1 Page Size Supported

The following page sizes are supported on the Itanium processor: 4K, 8K, 16K, 64K, 256K, 1M,
4M, 16M and 256M bytes.

3.2 Physical and Virtual Addresses

The IA-64 architecture requires that a processor implement at least 54 virtual address bits and
32 physical address bits. The Itanium processor implements 54 virtual address bits (51 address bits
plus 3 region index bits) and 44 physical address bits.

3.3 Region Register ID

The Itanium processor implements the minimum region register IDs allowed by the IA-64
architecture. The region register ID contains 18 bits.

3.4 Protection Key Register

The IA-64 architecture requires a minimum of 16 protection key registers, each at least as wide as
the region register IDs. The Itanium processor implements 16 protection key registers, each 21 bits
wide.
Virtual Memory Management Support 3-1

Virtual Memory Management Support 3-2

Processor Specific Write Coalescing
(WC) Behavior 4

4.1 Write Coalescing

For increased performance of uncacheable references to frame buffers, previous Intel IA-32
processors defined the Write Coalescing (WC) memory type. WC coalesces streams of data writes
into a single larger bus write transaction. Refer to the Intel Architecture Software Developer’s
Manual for additional information.

On the Itanium processor, WC loads are performed directly from memory and not from coalescing
buffers. It has a separate 2-entry, 64-byte Write Coalesce Buffer (WCB) which is used exclusively
for WC accesses. Each byte in the line has a valid bit. If all the valid bits are true, then the line is
full and will be evicted (or flushed) by the processor.

Note: WC behavior of the Itanium processor in the IA-32 System Environment is similar to the
Pentium III processor. Refer to the Intel Architecture Software Developer’s Manual for
more information.

4.2 WC Buffer Eviction Conditions

To ensure consistency with memory, the WCB is flushed on the following conditions (both entries
are flushed). These conditions are followed when the processor is operating in the IA-64 System
Environment:

Table 4-1. Itanium™ Processor WCB Eviction Conditions

Eviction Condition IA-64 Instructions

Memory Fence (mf) mf

Architectural Conditions for WCB Flush

Memory Release ordering (op.rel) st.rel, cmpxchg.rel, fetchadd.rel, ptc.g

Flush Cache (fc) hit on WCB yes

Flush Write Buffers (fwb) yes

Any UC load no a

a. IA-64 architecture doesn’t require the WC buffers to be coherent w.r.t to UC load/store operations.

Any UC store no a

UC load or ifetch hits WCB no a

UC store hits WCB no a

WC load/ifetch hits WCB

WC store hits WCB
Processor Specific Write Coalescing (WC) Behavior 4-1

4.3 WC Buffer Flushing Behavior

As mentioned previously, the Itanium processor WCB contains two entries. The WC entries are
flushed in the same order as they are allocated. That is, the entries are flushed in written order. This
flushing order applies only to a “well-behaved” stream. A “well-behaved” stream writes one WC
entry at a time and does not write the second WC entry until the first one is full.

In the absence of platform retry or deferral, the flushing rule implies that the WCB entries are
always flushed in a program written order for a “well-behaved” stream, even in the presence of
interrupts. For example, consider the following scenario: if software issues a “well-behaved”
stream, but is interrupted in the middle; one of the WC entries could be partially filled. The WCB
(including the partially filled entry) could be flushed by the OS kernel code or by other processes.
When the interrupted context resumes, it sends out the remaining line and then moves on to fill the
other entry. Note that the resumed context could be interrupted again in the middle of filling up the
other entry, causing both entries to be partially filled when the interrupt occurs.

For streams that do not conform to the above “well-behaved” rule, the order in which the WC
buffer is flushed is random.

WCB eviction is performed for full lines by a single 64-byte bus transaction in a stream of 8-byte
packages. For partially full lines, the WCB is evicted using up to eight 8-byte transactions with the
proper byte enables. When flushing, WC transactions are given the highest priority of all external
bus operations.
4-2 Processor Specific Write Coalescing (WC) Behavior

Model Specific Instruction
Implementation 5

This section describes how IA-64 instructions with processor implementation-specific features,
behave on the Intel Itanium processor.

5.1 ld.bias

If the instruction hits L1D1 or L2 cache and the state of the line is exclusive (E) or modified (M),
the line is returned and remains in cache; no external bus traffic is generated. If the line is shared
(S) or invalid (I) or the instruction misses the L2, it is treated as a store miss by the L3/bus. The line
is returned and stored in E state by the processor in the L2 and L3 cache.

Please refer to page 2-124 in Volume 3 for a detailed description of the ld instruction.

5.2 lfetch Exclusive Hint

The exclusive hint in the lfetch instruction allows the cache line to be fetched in an exclusive (E)
state. On the Itanium processor, an lfetch transaction that has a snoop hit will be cached in an
shared (S) state; otherwise, it is cached in an exclusive state.

Please refer to page 2-135 in Volume 3 for a detailed description of the lfetch instruction.

5.3 fwb

The Itanium processor implements the flush write-back buffer (fwb) instruction. This instruction
carries a weak memory attribute and causes the coalescing buffer to be flushed. The L1D and L2
store buffers are not flushed.

Please refer to page 2-115 in Volume 3 for a detailed description of the fwb instruction.

1. The Intel® Itanium™ processor cache hierarchy consists of the following levels: on-chip L1I, L1D, L2 caches, and
off-chip L3 cache.
Model Specific Instruction Implementation 5-1

5.4 thash

The IA-64 architecture defines a thash instruction for generating the hash address for long format
VHPT. thash is implementation specific. On the Itanium processor, since the hashing function is
performed in the HPW, the HPW will generate the VHPT Entry which corresponds to the virtual
address supplied. The hashing function is given in the following pseudo-code:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ; // treated as a speculative access.

GR[r1].nat = ’1;

}

else {

Mask = (2^PTA.size) - 1;

HPN = VA{50:0} >> RR[VA{63:61}].ps; // Hash Page Number unsigned right shift.

 // mov 2 RR checks for supported ps

if (PTA.vf=32) { // 32B PTE (Long format)

Hash_Index = HPN ^ (zero{63:18} || rid{17:0})

VHPT_Offset = Hash_Index << 5 ;

}

if (PTA.vf=8) { // 8B PTE

Hash_Index = HPN ;

VHPT_Offset = Hash_Index << 3;

}

GR[r1] = (PTA.base{63:61} << 61)

 || ([(PTA.base{60:15} & ~Mask{60:15}) ||

 (VHPT_Offset{60:15} & Mask{60:15})] << 15)

|| VHPT_Offset{14:0} ;

}

}

Please refer to page 2-223 in Volume 3 for a detailed description of the thash instruction.

5.5 ttag

The IA-64 architecture defines the ttag instruction for generating the tag for a long format VHPT
entry. ttag is implementation specific. The HPW will generate the tag for the long format VHPT
entry which corresponds to the virtual address supplied. The function is:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ;

GR[r1].nat = ’1;

}

else {

GR[r1] =(VA{50:0}>> RR[VA{63:61}].PS) ^

((zero{5:0} || RR[VA{63:61}].RID{17:0}) << 39);

}

}

Please refer to page 2-227 in Volume 3 for a detailed description of the ttag instruction.
5-2 Model Specific Instruction Implementation

5.6 ptc.e

On the Itanium processor, a single ptc.e purges all translation cache (TC) entries in both the
instruction and data TLBs. The caches are not flushed.

Please refer to page 2-191 in Volume 3 for a detailed description of the ptc instruction.

5.7 mf.a

In the IA-64 architecture, the mf.a instruction is a memory acceptance fence for UC transactions
only. On the Itanium processor, mf.a is implemented as an acceptance fence for both cacheable
and UC data transactions (but not I fetches). The processor stalls until all data buffers in the L2 and
bus are empty. This does not include buffers for instruction and L3 WB buffer in the bus request
queue.

Please refer to page 2-138 in Volume 3 for a detailed description of the mf instruction.

5.8 Prefetch Behavior

The Itanium processor does not initiate prefetches with post-increment loads.

5.9 Temporal and Non-temporal Hints Support

 IA-64 architecture provides memory locality hints for data accesses that can be used for allocation
control in the processor cache hierarchy. For more details on this topic, please refer to Volume 1,
Section 4.4.6. Implementation of locality hints is left as an implementation-specific feature on
IA-64 processors.

On the Itanium processor, four types of memory locality hints are implemented: t1, nt1, nt2 and nta.
The Itanium processor does not support a non-temporal buffer; instead, non-temporal accesses are
allocated in L2 cache with biased replacement.
Model Specific Instruction Implementation 5-3

5-4 Model Specific Instruction Implementation

Processor Performance Monitoring 6

This chapter defines the performance monitoring features on the Itanium processor. The Itanium
processor provides four 32-bit performance counters, more than 50 monitorable events, and several
advanced monitoring capabilities. This chapter outlines the targeted performance monitor usage
models, defines the software interface and programming model, and lists the set of monitored
events.

IA-64 architecture incorporates architected mechanisms that allow software to actively and directly
manage performance critical processor resources such as branch prediction structures, processor
data and instruction caches, virtual memory translation structures, and more. To achieve the highest
performance levels, dynamic processor behavior can be monitored and fed back into the code
generation process to improve observed run-time behavior or to expose higher levels of instruction
level parallelism. One can quantify and measure behavior of real-world IA-64 applications, tools
and operating systems. These measurements will be critical for compiler optimizations and the
efficient use of several architectural features such as speculation, predication, and more.

The remainder of this chapter is split into the following two subsections:

• Section 6.1, "Performance Monitor Programming Models" discusses how performance
monitors are used and presents various Itanium processor performance monitoring
programming models.

• Section 6.2, "Performance Monitor State" defines the Itanium processor specific PMC/PMD
performance monitoring registers.

6.1 Performance Monitor Programming Models

This section introduces the Itanium processor performance monitoring features from a
programming model point-of-view and describes how the different event monitoring mechanisms
can be used effectively. The Itanium processor performance monitor architecture focuses on the
following two usage models:

• Workload Characterization: the first step in any performance analysis is to understand the
performance characteristics of the workload under study. Section 6.1.1, "Workload
Characterization" discusses the Itanium processor support for workload characterization.

• Profiling: profiling is used by application developers and profile-guided compilers.
Application developers are interested in identifying performance bottlenecks and relating them
back to their code. Their primary objective is to understand which program location caused
performance degradation at the module, function, and basic block level. For optimization of
data placement and the analysis of critical loops, instruction level granularity is desirable.
Profile-guided compilers that use advanced IA-64 architectural features such as predication
and speculation benefit from run-time profile information to optimize instruction schedules.
The Itanium processor supports instruction granular statistical profiling of branch mispredicts
and cache misses. Details of the Itanium processor’s profiling support are described in
Section 6.1.2, "Profiling".
Processor Performance Monitoring 6-1

Whenever monitoring overhead is irrelevant, but accuracy is the primary objective, system and
processor designers may resort to tracing processor activity at the system or the processor bus
interface. However, trace based performance analysis and hardware tracing of the Itanium
processor are beyond the scope of this documentation.

6.1.1 Workload Characterization

The first step in any performance analysis is to understand the performance characteristics of the
workload under study. There are two fundamental measures of interest: event rates and program
cycle break down.

• Event Rate Monitoring: Event rates of interest include average retired instructions-per-clock
(IPC), data and instruction cache miss rates, or branch mispredict rates measured across the
entire application. Characterization of operating systems or large commercial workloads (e.g.
OLTP analysis) requires a system-level view of performance relevant events such as TLB miss
rates, VHPT walks/second, interrupts/second or bus utilization rates. Section 6.1.1.1, "Event
Rate Monitoring" discusses event rate monitoring.

• Cycle Accounting: The cycle break-down of a workload attributes a reason to every cycle
spent by a program. Apart from a program’s inherent execution latency, extra cycles are
usually due to pipeline stalls and flushes. Section 6.1.1.4, "Cycle Accounting" discusses cycle
accounting.

6.1.1.1 Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counters
before and after the workload is run and then computing the desired rates. For instance, two basic
Itanium processor events that count the number of retired IA-64 instructions
(IA64_INST_RETIRED.u) and the number of elapsed clock cycles (CPU_CYCLES) allow a
workload’s instructions per cycle (IPC) to be computed as follows:

IPC = (IA64_INST_RETIRED.ut1 – IA64_INST_RETIRED.ut0) / (CPU_CYCLESt1 –
CPU_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools [VTune, gprof, Windows
NT*]. As shown in Figure 6-1, time-based sampling can be used to plot the event rates over time,
and can provide insights into the different phases the workload moves through.

Figure 6-1. Time-based Sampling

Time
Sample Interval

t1t0

E
ve

nt
 R

at
e

6-2 Processor Performance Monitoring

On the Itanium processor, many event types (e.g. TLB misses or branch mispredicts) are limited to
a rate of one per clock cycle. These are referred to as “single occurrence” events. However, in the
Itanium processor multiple events of the same type may occur in the same clock. We refer to such
events as “multi-occurrence” events. An example of a multi-occurrence events on the Itanium
processor is data cache misses (up to two per clock). Multi-occurrence events, such as the number
of entries in the memory request queue, can be used to the derive average number and average
latency of memory accesses. The next two sections describe the basic Itanium processor
mechanisms for monitoring single and multi-occurrence events.

6.1.1.2 Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Itanium processor performance counters.
For all single occurrence events a counter is incremented by up to one per clock cycle. Duration
counters that count the number of clock cycles during which a condition persists are considered
“single occurrence” events. Examples of single occurrence events on the Itanium processor are
TLB misses, branch mispredictions, or cycle-based metrics.

6.1.1.3 Multi-occurrence Events, Thresholding and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock cycle are
termed “multi-occurrence” events. Examples of such events on the Itanium processor are retired
instructions or the number of live entries in the memory request queue. The Itanium processor’s
four performance counters are asymmetrical. While all counters handle single-occurrence and
multi-occurrence events with event rates up to three per cycle, only two counters can handle
multi-occurrence events with event rates up to seven per cycle. For details, see Section 6.2.2,
"Performance Counter Registers".

Thresholding capabilities are available in the Itanium processor’s multi-occurrence counters and
can be used to plot an event distribution histogram. When a non-zero threshold is specified, the
monitor is incremented by one in every cycle in which the observed event count exceeds that
programmed threshold. This allows questions such as “for how many cycles did the memory
request queue contain more than two entries?” or “during how many cycles did the machine retire
more than three instructions?” to be answered. This capability allows micro-architectural buffer
sizing experiments to be supported by real measurements. By running a benchmark with different
threshold values, a histogram can be drawn up that may help to identify the performance “knee” at
a certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average number of
concurrently outstanding requests and the average number of cycles that requests were pending is
of interest. To calculate the average number or latency of multiple outstanding requests in the
memory queue, we need to know the total number of requests (ntotal) and, in each cycle, the number
of live requests per cycle (nlive/cycle). By summing up the live requests (nlive/cycle) using a
multi-occurrence counter Σnlive is directly measured by hardware. We can now calculate the
average number of requests and the average latency as follows:

• Average outstanding requests/cycle = Σnlive/ ∆t

• Average latency per request = Σnlive / ntotal

An example of this calculation is given in Table 6-1, in which the average outstanding
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.
Processor Performance Monitoring 6-3

The Itanium processor provides the following capabilities to support event rate monitoring:

• Clock cycle counter

• Retired instruction counter

• Event occurrence and duration counters

• Multi-occurrence counters with thresholding capability

6.1.1.4 Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the observed
events are contributing to a performance problem. A commonly used strategy is to plot multiple
event rates and correlate them with the measured instructions per cycle (IPC) rate. If a low IPC
occurs concurrently with a peak of cache miss activity, chances are that cache misses are causing a
performance problem. To eliminate such guess work, the Itanium processor provides a set of IA-64
cycle accounting monitors, that break-down the number of cycles that are lost due to various kinds
of micro-architectural events. As shown in Figure 6-2, this lets us account for every cycle spent by
a program and therefore provides insight into an application’s micro-architectural behavior. Note
that cycle accounting is different from simple stall or flush duration counting. Cycle accounting is
based on the machine’s actual stall and flush conditions and accounts for overlapped pipeline
delays, while simple stall or flush duration counters do not. Cycle accounting determines a
program’s cycle break-down by stall and flush reasons, while simple duration counters are useful in
determining cumulative stall or flush latencies.

Table 6-1. Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

Requests In 1 1 1 1 1 0 0 0

Requests Out 0 0 0 1 1 1 1 1

nlive 1 2 3 3 3 2 1 0

Σnlive 1 3 6 9 12 14 15 15

ntotal 1 2 3 4 5 5 5 5

Figure 6-2. IA-64 Cycle Accounting

Inherent Program Data Access
Cycles

Branch
Mispredicts

I Fetch
StallsExecution Latency

Other
Stalls

30% 20% 15% 10%10%

100% Execution Time
6-4 Processor Performance Monitoring

The Itanium processor cycle accounting monitors account for all major single and multi-cycle stall
and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline order
(i.e. delays that occur later in the pipe and that overlap with earlier stage delays are reported as
being caused later in the pipeline). The eight stall and flush reasons are prioritized in the following
order:

1. Branch Mispredict Cycle: branch mispredicts, pipeline flushes (includes interrupts and
exceptions)

2. Data Access Cycle: memory pipeline full, data TLB stalls, and load-use stalls

3. Execution Latency Cycle: scoreboard stalls and FPU stalls

4. RSE Active Cycle: RSE spill/fill stall

5. Issue Limit Cycle: instruction issue, stops, or resource oversubscription stalls

6. Instruction Access Cycle: instruction fetch stalls due to instruction cache or TLB misses

7. Taken Branch Cycle: instruction fetch branch bubbles

8. Fetch Window Cycle: partial instruction fetch stalls due to non instruction cache line aligned
branch targets

Four of the eight categories (1,2,3,6) are directly measurable as the Itanium processor events. The
other four categories (4,5,7,8) are not measured directly. Instead four combined categories are
available as the Itanium processor events: branch cycles (1+7), memory cycles (2+4), execution
cycles (3+5), and instruction fetch cycles (6+8) are directly measurable as a Itanium processor
event. For details refer to Section 7.4, “Cycle Accounting Events” on page 7-4.

6.1.2 Profiling

Profiling is used by application developers and profile-guided compilers, optimizing linkers and
run-time systems. Application developers are interested in identifying performance bottlenecks and
relating them back to their source code. Based on profile feedback developers can make changes to
the high-level algorithms and data structures of the program. Compilers can use profile feedback to
optimize instruction schedules by employing advanced IA-64 architectural features such as
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locations.
The following mechanisms are supported directly by the Itanium processor’s performance
monitors:

• Program Counter Sampling

• Miss Event Address Sampling: Itanium processor Event Address Registers (EARs) provide
sub-pipeline length event resolution for performance critical events (instruction and data
caches, branch mispredicts, instruction and data TLBs).

• Event Qualification: constrains event monitoring to a specific instruction address range, to
certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.
Processor Performance Monitoring 6-5

6.1.2.1 Program Counter Sampling

Application tuning tools like [VTune, gprof] use time-based or event-based sampling of the
program counter and other event counters to identify performance critical functions and basic
blocks. As shown in Figure 6-3, the sampled points can be histogrammed by instruction addresses.
For application tuning, statistical sampling techniques have been very successful, because the
programmer can rapidly identify code hot-spots in which the program spends a significant fraction
of its time or where certain event counts are high.

Program counter sampling points the performance analysts at code hot-spots, but does not indicate
what caused the performance problem. Inspection and manual analysis of the hot-spot region along
with a fair amount of guess work are required to identify the root cause of the performance
problem. On the Itanium processor, the cycle accounting mechanism (described in Section 6.1.1.4,
"Cycle Accounting") can be used to directly measure an application’s micro-architectural behavior.

The IA-64 architectural interval timer facilities (ITC and ITM registers) can be used for time-based
program counter sampling. Event-based program counter sampling is supported by a dedicated
performance monitor overflow interrupt mechanism described in detail in Volume 2, Section 7.2.2,
"Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])".

To support program counter sampling, the Itanium processor provides the following mechanisms:

• Timer interrupt for time-based program counter sampling.

• Event count overflow interrupt for event-based program counter sampling.

• Hardware supported cycle accounting.

6.1.2.2 Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative
micro-architectural behavior, but they do not provide the application developer with pointers to
specific program elements (code locations and data structures) that repeatedly cause
micro-architectural “miss events”. In a cache study of the SPEC92 benchmarks, [Lebeck] used
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on various
benchmarks by making simple changes to the source code. This type of analysis requires
identification of instruction and data addresses related to micro-architectural “miss events” such as
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotations
these addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to trace driven
simulation.

Figure 6-3. Event Histogram by Program Counter

Address Space

E
ve

nt
 F

re
qu

en
cy
6-6 Processor Performance Monitoring

Due to the super-scalar issue, deep pipelining, and out-of-order instruction completion of today’s
micro-architectures, the sampled program counter value may not be related to the instruction
address that caused a miss event. On a Pentium processor pipeline, the sampled program counter
may be off by 2 dynamic instructions from the instruction that caused the miss event. On a Pentium
Pro processor, this distance increases to approximately 32 dynamic instructions. On the Itanium
processor it is approximately 48 dynamic instructions. If program counter sampling is used for miss
event address identification on the Itanium processor, a miss event might be associated with an
instruction almost five dynamic basic blocks away from where it actually occurred (assuming that
10% of all instructions are branches). Therefore, it is essential for hardware to precisely identify an
event’s address.

The Itanium processor provides a set of event address registers (EARs) that record the instruction
and data addresses of data cache misses for loads, the instruction and data addresses of data TLB
misses, the instruction addresses of instruction TLB and cache misses. A four deep branch trace
buffer captures sequences of branch instructions. Table 6-2 summarizes the capabilities offered by
the EARs and branch trace buffer. Exposing miss event addresses to software allows them to be
monitored either by sampling or by code instrumentation. This eliminates the need for trace
generation to identify and solve performance problems and enables performance analysis by a
much larger audience on unmodified hardware.

The Itanium processor EARs enable statistical sampling by configuring a performance counter to
count, for instance, the number of data cache misses or retired instructions. The performance
counter value is set up to interrupt the processor after a pre-determined number of events have been
observed. The data cache event address register repeatedly captures the instruction and data
addresses of actual data cache load misses. Whenever the counter overflows, miss event address
collection is suspended until the event address register is read by software (this prevents software
from capturing a miss event that might be caused by the monitoring software itself). When the
counter overflows an interrupt is delivered to software, the observed event addresses are collected,
and a new observation interval can be setup by rewriting the performance counter register. For
time-based (rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can achieve arbitrary
event resolution by varying the number of events within an observation interval, and by increasing
the number of observation intervals.

Table 6-2. Itanium™ Processor EARs and Branch Trace Buffer

Event Address Register Triggers on What is Recorded

Instruction Cache Instruction fetches that miss
the L1 instruction cache
(demand fetches only)

Instruction Address
Number of cycles fetch was in flight

Instruction TLB (ITLB) Instruction fetch missed ITLB
(demand fetches only)

Instruction Address
Who serviced TLB miss: VHPT or software

Data Cache Load instructions that miss L1
data cache

Instruction Address
Data Address
Number of cycles load was in flight.

Data TLB

(DTLB)

Data references that miss
L1 DTLB

Instruction Address
Data Address
Who serviced TLB miss: L2 DTLB, VHPT or
software

Branch

Trace

Buffer

Branch Outcomes Branch Instruction Address

Branch Target Instruction Address

Mispredict status and reason
Processor Performance Monitoring 6-7

6.1.3 Event Qualification

On the Itanium processor, performance monitoring can be confined to a subset of all events. As
shown in Figure 6-4, events can be qualified for monitoring based on an instruction address range,
a particular instruction opcode, a data address range, an event specific “unit-mask”, the privilege
level and instruction set the event was caused by, and the status of the performance monitoring
freeze bit (PMC[0].fr).

• IA-64 Instruction Address Range Check: The Itanium processor allows event monitoring to be
constrained to a programmable instruction address range. This enables monitoring of
dynamically linked libraries (DLL), functions, or loops of interest in the context of a large
IA-64 application. The IA-64 instruction address range check is applied at the instruction fetch
stage of the pipeline and the resulting qualification is carried by the instruction throughout the
pipeline. This enables conditional event counting at a level of granularity smaller than dynamic
instruction length of the pipeline (approximately 48 instructions). The Itanium processor’s
instruction address range check operates only during IA-64 code execution (i.e. when PSR.is is
zero). For details, see Section 6.2.4, "IA-64 Instruction Address Range Check Register
(PMC[13])".

• IA-64 Instruction Opcode Match: The Itanium processor provides two independent IA-64
opcode match registers each of which match the currently issued instruction encodings with a
programmable opcode match and mask function. The resulting match events can be selected as
an event type for counting by the performance counters. This allows histogramming of
instruction types, usage of destination and predicate registers as well as basic block profiling
(through insertion of tagged nops). The opcode matcher operates only during IA-64 code
execution (i.e. when PSR.is is zero). Details are described in Section 6.2.5, "IA-64 Opcode
Match Registers (PMC[8,9])".

• IA-64 Data Address Range Check: The Itanium processor allows event collection for memory
operations to be constrained to a programmable data address range. This enables selective
monitoring of data cache miss behavior of specific data structures. For details, see
Section 6.2.6, "IA-64 Data Address Range Check (PMC[11])".

• Event Specific Unit Masks: Some events allow the specification of “unit masks” to filter out
interesting events directly at the monitored unit. For details, refer to the event pages in
Chapter 7, "Performance Monitor Events".

• Privilege Level: Two bits in the processor status register are provided to enable selective
process-based event monitoring. The Itanium processor supports conditional event counting
based on the current privilege level; this allows performance monitoring software to
break-down event counts into user and operating system contributions. For details on how to
constrain monitoring by privilege level refer to Section 6.2.1, "Performance Monitor Control
and Accessibility".

• Instruction Set: The Itanium processor supports conditional event counting based on the
currently executing instruction set (IA-64 or IA-32) by providing two instruction set mask bits
for each event monitor. This allows performance monitoring software to break-down event
counts into IA-64 and IA-32 contributions. For details, refer to Section 6.2.1, "Performance
Monitor Control and Accessibility".

• Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the monitoring
freeze bit (PMC[0].fr). This ensures that the performance monitoring routines themselves, e.g.
counter overflow interrupt handlers or performance monitoring context switch routines, do not
“pollute” the event counts of the system under observation.
6-8 Processor Performance Monitoring

6.1.3.1 Combining Opcode Matching, Instruction, and Data Address Range
Check

The Itanium processor allows various event qualification mechanisms to be combined by providing
the instruction tagging mechanism shown in Figure 6-5. Instruction address range check and
opcode matching are available only for IA-64 code; they are disabled when IA-32 code is
executing.

Figure 6-4. Itanium™ Processor Event Qualification

000987

IA-64 Instruction
Address Range Check

Instruction Address

IA-64 Instruction Opcode MatchInstruction Opcode

Is IA-64 instruction pointer
in IBR range?

Does IA-64 opcode match?

IA-64 Data Address Range Check
(Memory Operations Only)

Data Address
Is IA-64 data address
in DBR range?

Event Spefic "Unit Mask"Event Did event happen and qualify?

Privilege Level Check
Current Privilege

 Level
Executing at monitored
privilege level?

Instruction Set Check
Current Instruction

Set (IA-64 or IA-32)
Executing in monitored
instruction set?

Event Count Freeze
erformance Monitor

Freeze Bit (PMC0.fr)
Is event monitoring enabled?

YES, all of the above are true;
this event is qualified.
Processor Performance Monitoring 6-9

During IA-64 instruction execution (PSR.is is zero), the instruction address range check is applied
first. The resulting address range check tag (IBRRangeTag) is passed to two opcode matchers that
combine the instruction address range check with the opcode match. Each of the two combined tags
(Tag(PMC[8]) and Tag(PMC[9])) can be counted as a retired instruction count event (for details
refer to event description IA64_TAGGED_INSTRS_RETIRED in Table 7-3 “Instruction Issue and
Retirement Events” on page 7-2).

One of the combined IA-64 address range and opcode match tags, Tag(PMC[8]), qualifies all
down-stream pipeline events. Events in the memory hierarchy (L1 and L2 data cache and data TLB
events) can further be qualified using a data address DBRRangeTag).

As summarized in Table 6-3, data address range checking can be combined with opcode matching
and instruction range checking on the Itanium processor. Additional event qualifications based on
the current privilege level and the current instruction set can be applied to all events and are
discussed in Section 6.1.3.2, "Privilege Level Constraints" and Section 6.1.3.3, "Instruction Set
Constraints".

Figure 6-5. Instruction Tagging Mechanism in the Itanium™ Processor

000988

Table 6-3. Itanium™ Processor Event Qualification Modes

Event Qualification Modes
Instr. Address
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address
Range Check

PMC[11].pt

Unconstrained Monitoring (all events) 1 0xffff_ffff_ffff_ffff 1

Instruction Address Range Check only 0 0xffff_ffff_ffff_ffff 1

Opcode Matching only 1 Desired Opcodes 1

Data Address Range Check only 1 0xffff_ffff_ffff_ffff 0

Instruction Address Range Check and
Opcode Matching

0 Desired Opcodes 1

IA-64
Instruction
Address
Range
Check
(IBRs,

PMC[13])

IA-64 Opcode
Matcher
(PMC[8])

IA-64 Data
Address Range

Check
(DBRs, PMC[11])

Memory
Event i

Event j

Event k

Event l

IA-64 Opcode
Matcher
(PMC[9])

Tag(PMC[8])

IBRRange Tag

DBRRange Tag

Tag(PMC[9])

Event Select (PMC[i].es)

Privilege
Level &

Instruction Set
Check

Privilege Level Mask
Instruction Set Mask
(PMC[i].plm, PMC[i].ism)

Counter
(PMD[i])
6-10 Processor Performance Monitoring

6.1.3.2 Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the
operating system. In general, this has made performance analysis of a single process in a
multi-processing system or a multi-process workload very difficult. To provide hardware support
for this kind of analysis, IA-64 specifies three global bits (PSR.up, PSR.pp, DCR.pp) and a
per-monitor “privilege monitor” bit (PMC[i].pm). To break down the performance contributions of
operating system and user-level application components, each monitor specifies a 4-bit privilege
level mask (PMC[i].plm). The mask is compared to the current privilege level in the processor
status register (PSR.cpl), and event counting is enabled if PMC[i].plm[PSR.cpl] is one. The
Itanium processor performance monitors control is discussed in Section 6.2.1, "Performance
Monitor Control and Accessibility".

PMC registers can be configured as user-level monitors (PMC[i].pm is zero) or system-level
monitors (PMC[i].pm is one). A user-level monitor is enabled whenever PSR.up is one. PSR.up can
be controlled by an application using the sum/rum instructions. This allows applications to
enable/disable performance monitoring for specific code sections. A system-level monitor is
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which allows
monitor control without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows events
generated during interruptions to be broken down separately: if DCR.pp is zero, events during
interruptions are not counted, if DCR.pp is one, they are included in the kernel counts.

As shown in Figure 6-6, Figure 6-7 and Figure 6-8, single process, multi-process, and system level
performance monitoring are possible by specifying the appropriate combination of PSR and DCR
bits. These bits allow performance monitoring to be controlled entirely from a kernel level device
driver, without explicit operating system support. Once the desired monitoring configuration has
been setup in a process’ processor status register (PSR), “regular” unmodified operating context
switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process break-down of event counts can be
generated as outlined in Section 7.2, "Performance Monitoring" of Volume 2.

6.1.3.3 Instruction Set Constraints

On the Itanium processor, monitoring can additionally be constrained based on the currently
executing instruction set as defined by PSR.is. This capability is supported by the four generic
performance counters as well as the instruction and data event address registers. However, the
IA-64 instruction address range checking, IA-64 opcode matching and the IA-64 branch trace
buffer, only support IA-64 code execution. When these IA-64 only features are used, the
corresponding PMC register instruction set mask (PMC[i].ism) should be set to IA-64 only (01) to
ensure that events generated by IA-32 code do not corrupt the IA-64 event counts.

Instruction and Data Address Range Check 0 0xffff_ffff_ffff_ffff 0

Opcode Matching and Data Address
Range Check

1 Desired Opcodes 0

Table 6-3. Itanium™ Processor Event Qualification Modes (Continued)

Event Qualification Modes
Instr. Address
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address
Range Check

PMC[11].pt
Processor Performance Monitoring 6-11

Figure 6-6. Single Process Monitor

000989

Figure 6-7. Multiple Process Monitor

000990

Figure 6-8. System Wide Monitor

000991

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

PSR .up = 1, others 0A PSR .up = 1, others 0A PSR .pp = 1, others 0A

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

PSR .up = 1, others 0A/B PSR .pp = 1, others 0A/BPSR .up = 1, others 0A/B

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

All PSR.up = 1 All PSR.pp = 1All PSR.up = 1
6-12 Processor Performance Monitoring

6.2 Performance Monitor State

Two sets of performance monitor registers are defined. Performance Monitor Configuration (PMC)
registers are used to configure the monitors. Performance Monitor Data (PMD) registers provide
data values from the monitors. This section describes the Itanium processor performance
monitoring registers which expands on the IA-64 architectural definition. As shown in Figure 6-9,
the Itanium processor provides four 32-bit performance counters (PMC/PMD[4,5,6,7] pairs), and
the following model-specific monitoring registers: instruction and data event address registers
(EARs) for monitoring cache and TLB misses, a branch trace buffer, two opcode match registers
and an instruction address range check register.

Table 6-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt
status registers are mapped to PMC[0,1,2,3]. The four generic performance counter pairs are
assigned to PMC/PMD[4,5,6,7]. The event address registers and the branch trace buffer are
controlled by three configuration registers (PMC[10,11,12]). Captured event addresses and cache
miss latencies are accessible to software through five event address data registers
(PMD[0,1,2,3,17]) and a branch trace buffer (PMD[8-16]). On the Itanium processor, monitoring
of some events can additionally be constrained to a programmable instruction address range by
appropriate setting of the instruction breakpoint registers (IBR) and the instruction address range
check register (PMC[13]). Two opcode match registers (PMC[8,9]) allow monitoring of some
events to be qualified with a programmable opcode. For memory operations, events can be
qualified by a programmable data address range by appropriate setting of the data breakpoint
registers (DBR) and the data address range check bits in PMC[11].

6.2.1 Performance Monitor Control and Accessibility

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the
performance monitor freeze bit (PMC[0].fr) affect the behavior of all performance monitor
registers.

Finer, per monitor, control is provided by three PMC register fields (PMC[i].plm, PMC[i].ism, and
PMC[i].pm). Instruction set masking based on PMC[i].ism is an Itanium processor model-specific
feature. Event collection for a monitor is enabled under the following constraints on the Itanium
processor:
Monitor Enablei =(not PMC[0].fr) and PMC[i].plm[PSR.cpl] and ((not
PMC[i].ism[PSR.is]) or (PMC[i]=12)) and (not (PMC[i].pm) and PSR.up) or (PMC[i].pm
and PSR.pp))

Figure 3-2, “Processor Status Register (PSR)” on page 3-6 in Volume 2 defines the PSR control
fields that affect performance monitoring. For a detailed definition of how the PSR bits affect event
monitoring and control accessibility of PMD registers, please refer to Section 3.3.2, "Processor
Status Register (PSR)" and Section 7.2.1, "Generic Performance Counter Registers" in Volume 2.
Processor Performance Monitoring 6-13

Figure 6-9. Itanium™ Processor Performance Monitor Register Model

000992

pmc0

pmc1

pmc2

pmc3

Performance Counter
Overflow Status Registers

63 0

pmc4

pmc5

pmc6

pmc7

Performance Counter
Configuration Registers

63 0
pmc4

pmc5

pmc6

pmc7

Performance Counter
Data Registers

63 0

pmc8

pmc9

IA-64 Opcode Match
Registers

63 0

pmc10

pmc11

63 0

pmc12

Branch Trace Buffer
Configuration Register

63 0

pmc13

IA-64 Instruction Address
Range Check Register

63 0

instr.
data

pmc0

pmc1

pmc2

pmc3

Instruction/Data Event
Address Data Registers

63 0

pmc17

instr.

data

pmc8

pmc9

Branch Trace
Buffer Registers

63 0

pmc15

pmc16

cr73

Performance Monitor
Vector Register

63 0

cr0

Default Control Register

63 0
DCR

PMV

Instruction/Data Event Address
Configuration Registers

Processor Status Register
63 0

PSR

Performance Monitoring Register Set

IA-64 Generic
Register Set

Itanium™ Processor
Implementation-
Specific Register Set
6-14 Processor Performance Monitoring

As defined in Table 6-4, each of these PMC registers controls the behavior of its associated
performance monitor data registers (PMD). Table 6-5 defines per monitor controls that apply to
PMC[4,5,6,7,10,11,12]. The Itanium processor model-specific PMD registers associated with
instruction/data EARs and the branch trace buffer (PMD[0,1,2,3,8-17]) can be read reliably only
when event monitoring is frozen (PMC[0].fr is one).

Table 6-4. Itanium™ Processor Performance Monitor Register Set

Monitoring
Feature

Configu-
ration

Registers
(PMC)

Data
Registers

(PMD)
Description

Interrupt Status PMC[0,1,2,3] none See Section 6.2.3, "Performance Monitor Overflow Status
Registers (PMC[0,1,2,3])"

Event Counters PMC[4,5,6,7] PMD[4,5,6,7] See Section 6.2.2, "Performance Counter Registers"

Opcode
Matching

PMC[8,9] none See Section 6.2.5, "IA-64 Opcode Match Registers
(PMC[8,9])"

Instruction EAR PMC[10] PMD[0,1] See Section 6.2.7.1, "Instruction EAR (PMC[10],
PMD[0,1])"

Data EAR PMC[11] PMD[2,3,17] See Section 6.2.7.4, "Data EAR (PMC[11], PMD[2,3,17])"

Instruction
Address Range
Check

PMC[13] none See Section 6.2.4, "IA-64 Instruction Address Range
Check Register (PMC[13])"

Data Address
Range Check

PMC[11] none See Section 6.2.6, "IA-64 Data Address Range Check
(PMC[11])"

Figure 6-10. Processor Status Register (PSR) Fields for Performance Monitoring
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved other pp sp other reserved other up oth rv
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved other is cpl

Table 6-5. Performance Monitor PMC Register Control Fields (PMC[4,5,6,7,10,11,12])

Field Bits Description

plm 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state,
the Itanium™ processor will not preserve the value of the corresponding PMD register(s).

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor, and
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.

ism 25:24 Instruction Set Mask - controls performance monitor operation based on the current
instruction set.

The instruction set mask applies to PMC[4,5,6,7,10,11] but not to PMC[12].

00: monitoring enabled during IA-64 and IA-32 instruction execution (regardless of PSR.is)
10: bit 24 low enables monitoring during IA-64 instruction execution (when PSR.is is zero)
01: bit 25 low enables monitoring during IA-32 instruction execution (when PSR.is is one)
11: disables monitoring
Processor Performance Monitoring 6-15

6.2.2 Performance Counter Registers

The Itanium processor provides four generic performance counters (PMC/PMD[4,5,6,7] pairs).
The implemented counter width on the Itanium processor is 32 bits. The Itanium processor counters
are not symmetrical (i.e. not all event types can be monitored by all counters). Counters
PMC/PMD[4,5] can track events whose maximum per-cycle event increment is 7. Counters
PMC/PMD[6,7] can track events whose maximum per-cycle event increment is 3.

The Itanium processor extends the generic IA-64 counter configuration register (PMC) layout by
adding two fields for specifying a unit mask (umask) and a threshold field. These model-specific
fields are described in Table 6-6. A counter overflow occurs when the counter wraps (i.e. a carry
out from bit 31 is detected). Software can force an external interruption or external notification
after N events, by preloading the monitor with a count value of 232 - N. When accessible, software
can continuously read the performance counter registers PMD[4,5,6,7] without disabling event
collection. The processor guarantees that software will see monotonically increasing counter
values.

Figure 6-11 and Table 6-6 define the layout of the Itanium processor Performance Counter Data
Registers (PMD[4,5,6,7]). Figure 6-12, Figure 6-13 and Table 6-6 define the layout of the Itanium
processor Performance Counter Configuration Registers (PMC[4,5,6,7]).

Figure 6-11. Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7])
63 32 31 0

PMD[4,5,6,7] sxt32 count
32 32

Table 6-6. Itanium™ Processor Generic PMD Register Fields

Field Bits Description

sxt32 63:32 Writes are ignored, Reads return the value of bit 31, so count values appear as sign
extended.

count 31:0 Event Count. The counter is defined to overflow when the count field wraps (carry out from
bit 31).

Figure 6-12. Itanium™ Processor Generic PMC Registers (PMC[4,5])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[4,5] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 3 4 1 7 1 1 1 1 4

Figure 6-13. Itanium™ Processor Generic PMC Registers (PMC[6,7])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[6,7] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 2 4 1 7 1 1 1 1 4
6-16 Processor Performance Monitoring

6.2.3 Performance Monitor Overflow Status Registers
(PMC[0,1,2,3])

The Itanium processor supports four counters. As shown in Figure 6-14 and Table 6-8 only
PMC[0]{7:4} bits are populated. All other overflow bits are ignored, i.e. they read as zero and
ignore writes.

Table 6-7. Itanium™ Processor Generic PMC Register Fields (PMC[4,5,6,7])

Field Bits Description

plm 3:0 Privilege Level Mask. See Table 6-5, “Performance Monitor PMC Register Control Fields
(PMC[4,5,6,7,10,11,12])”.

ev 4 External visibility - When 1, an external notification (BPM pin strobe) is provided
whenever the counter wraps, i.e a carry out from bit 31 is detected. External notification
occurs regardless of the setting of the oi bit. On the Itanium™ processor, PMC[4] external
notification strobes the BPM0 pin, PMC[5] external notification strobes the BPM1 pin,
PMC[6] external notification strobes the BPM2 pin, and PMC[7] external notification
strobes the BPM3 pin.

oi 5 Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the
performance monitor freeze bit (PMC[0].fr) is set when the monitor overflows. When 0, no
interrupt is raised and the performance monitor freeze bit (PMC[0].fr) remains
unchanged. Overflow occurs when the counter wraps, i.e. a carry out from bit 31 is
detected. Counter overflows generate only one interrupt.

pm 6 Privilege Monitor. See Table 6-5, “Performance Monitor PMC Register Control Fields
(PMC[4,5,6,7,10,11,12])”.

ig 7 ignored

es 14:8 Event select - selects the performance event to be monitored.
Itanium processor event encodings are defined in Chapter 7, "Performance Monitor
Events".

ig 15 ignored

umask 19:16 Unit Mask - event specific mask bits (see event definition for details)

threshold 22:20
21:20

Threshold -enables thresholding for “multi-occurrence” events.

PMC[4,5] define 3 threshold bits 22:20, while PMC[6,7] define 2 threshold bits 21:20.

When threshold is zero, the counter sums up all observed event values. When the
threshold is non-zero, the counter increments by one in every cycle in which the
observed event value exceeds the threshold.

ism 25:24 Instruction Set Mask. See Table 6-5, “Performance Monitor PMC Register Control Fields
(PMC[4,5,6,7,10,11,12])”.

ignored 63:24 Read zero, Writes ignored.
Processor Performance Monitoring 6-17

6.2.4 IA-64 Instruction Address Range Check Register (PMC[13])

The Itanium processor allows event monitoring to be constrained to a range of instruction
addresses. All four architectural breakpoint registers (IBRs) are used to specify the desired address
range. The Itanium processor instruction address range check register PMC[13] specifies how the
resulting address match is applied to the performance monitors.

Figure 6-14. Itanium™ Processor Performance Monitor Overflow Status Registers
(PMC[0,1,2,3])
63 8 7 6 5 4 3 2 1 0

ignored (PMC[0]) overflow ignored fr
4 3 1

ignored (PMC[1])

ignored (PMC[2])

ignored (PMC[3])

Table 6-8. Itanium™ Processor Performance Monitor Overflow Register
Fields (PMC[0,1,2,3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit - when 1, event monitoring is disabled.
When 0, event monitoring is enabled. This bit is set by hardware whenever a
performance monitor overflow occurs and its corresponding overflow
interrupt bit (PMC.oi) is set to one. SW is responsible for clearing it. When
the PMC.oi bit is not set, then counter overflows do not set this bit.

PMC[0] ignored 3:1 Read zero, Writes ignored.

PMC[0] overflow 7:4 Event Counter Overflow - When bit n is one, indicate that the PMDn
overflowed. This is a

bit vector indicating which performance monitor overflowed. These overflow
bits are set on their corresponding counters overflow regardless of the state
of the PMC.oi bit. These bits are sticky and multiple bits may be set.

PMC[0] ignored 63:8 Read zero, Writes ignored.

PMC
[1,2,3]

ignored 63:0 Read zero, Writes ignored.

Figure 6-15. Itanium™ Processor Instruction Address Range Check Register (PMC[13])
63 1 0

ignored (PMC[13]) ta
61 1
6-18 Processor Performance Monitoring

Instruction address range checking is controlled by the “tag all” bit (PMC[13].ta). When
PMC[13].ta is one, all instructions are tagged regardless of IBR settings. In this mode, events from
both IA-32 and IA-64 code execution contribute to the event count. When PMC[13].ta is zero, the
instruction address range check based on the IBR settings is applied to all IA-64 code fetches. In
this mode, IA-32 instructions are never tagged, and, as a result, events generated by IA-32 code
execution are ignored. Table 6-10 defines the behavior of the instruction address range checker for
different combinations of PSR.is and PMC[13].ta.

The processor compares every IA-64 instruction fetch address IP{63:0} with each of the four
architectural instruction breakpoint registers. Regardless of the value of the instruction break-point
fault enable (IBR x-bit), the following expression is evaluated for each of the Itanium processor’s
four IBRs:

IBRmatchi = match(IP,IBRi.addr, IBR(2*i)+1.mask, IBR(2*i)+1.plm)

On the Itanium processor, in which only 54 virtual and 44 physical address bits are implemented,
this IBR match is defined as follows:

IBRmatchi = (IBR[2*i]+1.plm[PSR.cpl])
and (ANDb=50..0 ((IBRi.addr{b} and IBR[2*i]+1.mask{b}) = (IP{b} and IBR[2*i]+1.mask{b})))
and (ANDb=55..51 ((IBRi.addr{b} and IBR[2*i]+1.mask{b}) = (IP{50} and IBR[2*i]+1.mask{b})))
and (ANDb=60..56 (IBRi.addr{b}=IP{50}))
and (ANDb=63:61 (IBRi.addr{b}=IP{b}))

The resulting four matches are combined with the PSR.is bit, two instruction address range check
register bits, the IBR x-bits, and PSR.db:

IBRRangeTag = (PMC[13].ta)
or ((not PSR.is)
and ((IBRmatch0 or IBRmatch1 or IBRmatch2 or IBRmatch3)
and (not (PSR.db or IBR1.x or IBR3.x or IBR5.x or IBR7.x))))

The instruction range check tag (IBRRangeTag) considers the IBR address ranges only if
PMC[13].ta is zero, PSR.is is zero, and if none of the IBR x-bits or PSR.db are set. Since the
architectural break-point registers (IBRs) are used to specify the desired performance monitor
address range, it is not possible to constrain monitoring when the IBRs are used in their

Table 6-9. Itanium™ Processor Instruction Address Range Check Register Fields (PMC[13])

Field Bits Description

ta 0 Tag All - when 1, all events are counted independent of instruction address and
instruction set. The default value of this PMC[13].ta should be set to one upon
reset.

Table 6-10. Itanium™ Processor Instruction Address Range Check by Instruction Set

PSR.is

PMC13.ta 0 (IA-64) 1 (IA-32)

0 Tag only IA-64 instructions if they match
IBR range

DO NOT tag any IA-32 operations.

1 Tag all IA-64 and IA-32 instructions.Ignore IBR range.
Processor Performance Monitoring 6-19

architectural break-point capacity, i.e. when PSR.db or an IBR x-bit is set. In other words, it is not
possible to use performance monitor address range checking when a debugger is running, unless
the debugger and the performance monitor software carefully synchronize their use of the IBRs.

The instruction range check tag is computed early in the processor pipeline and therefore includes
speculative, wrong-path as well as predicated off instructions. Furthermore, range check tags are
not accurate in the instruction fetch and out-of-order parts of the pipeline (cache and bus units).
Therefore, software must accept a level of range check inaccuracy for events generated by these
units, especially for non-looping code sequences that are shorter than the Itanium processor
pipeline. As described in Section 6.1.3.1, "Combining Opcode Matching, Instruction, and Data
Address Range Check", the instruction range check result may be combined with the results of the
IA-64 opcode match registers described in the next section.

6.2.5 IA-64 Opcode Match Registers (PMC[8,9])

The Itanium processor allows event monitoring to be constrained based on the IA-64 encoding
(opcode) of an instruction. Registers PMC[8,9] allow two independent opcodes matches to be
specified. The IA-64 opcode matcher operates only during IA-64 code execution (i.e. when PSR.is
is zero).

For opcode matching purposes, an IA-64 instruction is defined by two items: the instruction type
“itype” (one of M, I, F or B) and the 40-bit encoding “enco{40:0}” defined in Volume 3. Each
instruction is evaluated against each opcode match register (PMC[8,9]) as follows:

Match(PMC[i]) = (imatch (itype,PMC[i].mifb) and
ematch(enco,PMC[i].match,PMC[i]PMC[i].mask))

Where:

imatch(itype,PMC[i].mifb) = itype=M and PMC[i].m) or (itype=I and PMC[i].i) or (itype=F and
PMC[i].f) or (itype=B and PMC[i].b)

ematch(enco,match,mask) = AND b=40..27 ((enco{b}=match{b-14}) or mask{b-14}) and AND

b=12..0 ((enco{b}=match{b}) or mask{b})

Figure 6-16. Opcode Match Registers (PMC[8,9])
63 62 61 60 59 33 32 31 30 29 3 2 1 0

m i f b match ignored mask ignored
1 1 1 1 27 3 27 3

Table 6-11. Opcode Match Register Fields (PMC[8,9])

Field Bits Width Description

mask 29:3 27 Bits that mask IA-64 instruction encoding bits {40:27} and {12:0}

match 59:33 27 Opcode bits to match IA-64 instruction encoding bits {40:27} and {12:0}

b 60 1 If 1: match if opcode is an B-syllable

f 61 1 If 1: match if opcode is an F-syllable

i 62 1 If 1: match if opcode is an I-syllable

m 63 1 If 1: match if opcode is an M-syllable
6-20 Processor Performance Monitoring

This function matches encoding bits{40:27} (major opcode) and encoding bits{12:0} (destination
and qualifying predicate) only. Bits{26:13} of the instruction encoding are ignored by the opcode
matcher.

This produces two opcode match events that are combined with the PSR.is bit, and the instruction
range check tag (IBRRangeTag, see Section 6.2.4, "IA-64 Instruction Address Range Check
Register (PMC[13])") as follows:

Tag(PMC[8]) = Match(PMC[8]) and IBRRangeTag and (not PSR.is)

Tag(PMC[9]) = Match(PMC[9]) and IBRRangeTag and (not PSR.is)

As shown in Figure 6-5, the two tags, Tag(PMC[8]) and Tag(PMC[9]), are staged down the
processor pipeline until instruction retirement, and can be selected as a retired instruction count
event. In this way, a performance counters (PMC/PMD[4,5,6,7]) can be used to count the number
of retired instructions within the programmed range that match the specified opcodes. All
combinations of the mifb bits are supported. To match A-syllable instructions both m and i bits
should be set to one. To match all instruction types, all mifb and all mask bits should be set to one.
This will count the number of retired instructions within the programmed address range. One of the
combined IA-64 address range and opcode match tags, Tag(PMC[8]), qualifies most down-stream
pipeline events. To ensure that all events are counted independent of the IA-64 opcode matcher, all
mifb and all mask bits of PMC[8] should be set to one (all opcodes match). Tag(PMC[9]) is not
used to qualify downstream events.

6.2.6 IA-64 Data Address Range Check (PMC[11])

For instructions that reference memory, the Itanium processor allows event counting to be
constrained by data address ranges using the architectural data breakpoint registers (DBRs). Data
address range checking capability is controlled enabled by the “pass tags” bit in the Data Event
Address Register (PMC[11].pt). For details on PMC[11], refer to Section 6.2.7.4, "Data EAR
(PMC[11], PMD[2,3,17])".

When enabled (PMC[11].pt is zero), data address range checking is applied to loads (all types),
stores, semaphore operations, and the lfetch instruction whose upstream opcode match
Tag(PMC[8]) was set. When PMC[11].pt is one, RSE operations and VHPT walks are tagged only
if the opcode match Tag(PMC[8]) was set for the operation that caused the RSE or VHPT activity.
When PMC[11].pt is zero, all RSE operations and VHPT walks that hit the programmed data
address range are tagged (regardless of the opcode match Tag(PMC[8])). To capture all VHPT
walks when PMC[11].pt is zero, the minimum DBR mask granularity must be set to the size of a
single VHPT entry.

On the Itanium processor, in which only 54 virtual address bits are implemented, the performance
monitoring DBR match function is defined as follows:

DBRRangeMatchi =
(AND b=50..0 ((DBRi.addr{b} and DBR[2*i]+1.mask{b}) = (addr{b} and DBR[2*i]+1.mask{b})))
and(AND b=55..51 ((DBRi.addr{b} and DBR[2*i]+1.mask{b}) = (addr{50} and
DBR[2*i]+1.mask{b})))
and(AND b=60..56 (DBRi.addr{b}=addr{50}))
and(AND b=63:61 (DBRi.addr{b}=addr{b}))
Processor Performance Monitoring 6-21

The resulting four matches are combined with PSR.db to form a single DBR match:

DBRRangeMatch = ((DBRRangeMatch0 or DBRRangeMatch1 or DBRRangeMatch2 or
DBRRangeMatch3)
and (not PSR.db))

Note: DBR matching for performance monitoring ignores the setting of the DBR r, w and plm
fields. Finally, the DBRRangeMatch is combined with PMC[11].pt and the upstream
opcode match tag Tag(PMC[8]) as follows:

DBRRangeTag = Tag(PMC[8]) and ((PMC[11].pt) or DBRRangeMatch)

DBR based data address range checking combined with opcode matching and instruction range
checking allows the following combinations of event monitoring on the Itanium processor.

6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])

This section defines the register layout for the Itanium processor instruction and data event address
registers (EARs). Sampling of four events is supported on the Itanium processor: instruction cache
and instruction TLB misses, data cache load misses, and data TLB misses. The EARs are
configured through two PMC registers (PMC[10,11]). EAR specific unit masks allow software to
specify event collection parameters to hardware. Instruction and data addresses, operation latencies
and other captured event parameters are provided in five PMD registers (PMD[0,1,2,3,17]). The
instruction and data cache EARs report the latency of captured cache events and allow latency
thresholding to qualify event capture. Event address data registers (PMD[0,1,2,3,17]) contain valid
data only when event collection is frozen (PMC[0].fr is one). Reads of PMD[0,1,2,3,17] while
event collection is enabled return undefined values.

6.2.7.1 Instruction EAR (PMC[10], PMD[0,1])

The instruction event address configuration register (PMC[10]) can be programmed to monitor
either L1 instruction cache or instruction TLB miss events. Figure 6-17 and Table 6-12 detail the
register layout of PMC[10]. Figure 6-18 describes the associated event address data registers
PMD[0,1].

When the tlb-bit (PMC[10].tlb) is set to zero instruction cache misses are monitored, when it is set
to one instruction TLB misses are monitored. The interpretation of the umask field and
performance monitor data registers PMD[0,1] depend on the setting of the tlb bit, and are described
in Section 6.2.7.2, "Instruction EAR Cache Mode (PMC[10].tlb=0)" for instruction cache
monitoring and in Section 6.2.7.3, "Instruction EAR TLB Mode (PMC[10].tlb=1)" for instruction
TLB monitoring.

Figure 6-17. Instruction Event Address Configuration Register (PMC[10])
63 26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored ism ignored umask ignored tlb pm ign. plm
38 2 4 4 7 1 1 2 4
6-22 Processor Performance Monitoring

6.2.7.2 Instruction EAR Cache Mode (PMC[10].tlb=0)

When PMC[10].tlb is zero, the instruction event address register captures instruction addresses and
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a
programmable threshold are captured. The threshold is specified as a four bit umask field in the
configuration register PMC[10]. Possible threshold values are defined in Table 6-13.

As defined in Table 6-14, the address of the instruction cache line missed the L1 instruction cache
is provided in PMD[0]. If no qualified event was captured, the valid bit in PMD[0] is zero. The
latency of the captured instruction cache miss in processor clock cycles is provided in the latency
field of PMD[1]. In cache mode, the TLB miss bit of PMD[0] is undefined.

Table 6-12. Instruction Event Address Configuration Register Fields (PMC[10])

Field Bits Description

plm 3:0 See Table 6-5.

pm 6 See Table 6-5.

tlb 7 Instruction EAR selector: instruction cache/TLB

if tlb=0: monitor L1 instruction cache misses
PMD[0,1] register interpretation see Table 6-14.

if tlb=1: monitor instruction TLB misses

PMD[0,1] register interpretation see Table 6-16.

umask 19:16 Instruction EAR unit mask

if tlb=0: instruction cache unit mask (definition see Table 6-13)

if tlb=1: instruction TLB unit mask (definition see Table 6-15)

ism 25:24 See Table 6-5.

Figure 6-18. Instruction Event Address Register Format (PMD[0,1]
63 5 4 3 2 1 0

Instruction Cache Line Address (PMD[0]) ignored tlb v
59 3 1 1

63 12 11 0

ignored (PMD[1]) latency
52 12

Table 6-13. Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.
Processor Performance Monitoring 6-23

6.2.7.3 Instruction EAR TLB Mode (PMC[10].tlb=1)

When PMC[10].tlb is one, the instruction event address register captures addresses of instruction
TLB misses. The unit mask allows event address collection to capture specific subsets of
instruction TLB misses. Table 6-15 summarizes the instruction TLB umask settings. All
combinations of the mask bits are supported.

As defined in Table 6-16, the address of the instruction cache line fetch that missed the L1 TLB is
provided in PMD[0]. The tlb bit indicates whether the captured TLB miss hit in the VHPT or
required servicing by software. If no qualified event was captured, the valid bit in PMD[0] reads
zero. In TLB mode, the latency field of PMD[1] is undefined.

Table 6-14. Instruction EAR (PMD[0,1]) in Cache Mode (PMC[10].tlb=0)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

tlb 1 TLB Miss Bit (undefined in cache mode)

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused cache missa

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. The instruction and data address bits {60:51} of PMD[0] read as a sign-extension of bit {50}. Writes
to bits {60:51} of PMD[0] are ignored by the processor.

PMD[1] latency 11:0 Latency in processor clocks

Table 6-15. Instruction EAR (PMC[10]) umask Field in TLB Mode (PMC[10].tlb=1)

umask Bit Instruction TLB EAR Unit Mask (Instruction TLB misses)

0

1

2

3

ignored

ignored

if one, capture Instruction TLB misses that hit VHPT

if one, capture Instruction TLB misses handled by software

Table 6-16. Instruction EAR (PMD[0,1]) in TLB Mode (PMC[10].tlb=1)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event
1: EAR contains valid event data

tlb 1 TLB Miss Bit:

0: VHPT Hit
1: Instruction TLB Miss handled by software

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused TLB missa

a. The Itanium™ processor does not implement virtual address bits va{60:51}. The instruction address bits
{60:51} of PMD[0] read as a sign-extension of bit {50}. Writes to bits {60:51} of PMD[0] are ignored by the
processor.

PMD[1] latency 11:2 undefined in TLB mode
6-24 Processor Performance Monitoring

6.2.7.4 Data EAR (PMC[11], PMD[2,3,17])

The data event address configuration register (PMC[11]) can be programmed to monitor either L1
data cache load misses or L1 data TLB misses. Figure 6-19 and Table 6-17 detail the register layout
of PMC[11]. Figure 6-20 describes the associated event address data registers PMD[2,3,17]. The
tlb bit in configuration register PMC[11] selects data cache or data TLB monitoring. The
interpretation of the umask field and registers PMD[2,3,17] depends on the setting of the tlb bit,
and is described in Section 6.2.7.5, "Data Cache Load Miss Monitoring (PMC[11].tlb=0)" for data
cache load miss monitoring and in Section 6.2.7.6, "Data TLB Miss Monitoring (PMC[11].tlb=1)"
for data TLB monitoring. The PMC[11].pt bit controls data address range checking which is
described in Section 6.2.6, "IA-64 Data Address Range Check (PMC[11])".

Figure 6-19. Data Event Address Configuration Register (PMC[11])
63 28 27 26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored pt ign. ism ignored umask ignored tlb pm ign. plm
35 1 2 2 4 4 7 1 1 2 4

Table 6-17. Data Event Address Configuration Register Fields (PMC[11])

Field Bits Description

plm 3:0 See Table 6-5.

pm 6 See Table 6-5.

tlb 7 Data EAR selector: data cache/TLB

if tlb=0:monitor L1 data cache load misses
PMD[2,3,17] register interpretation see Table 6-19.

if tlb=1: monitor L1 data TLB misses
PMD[2,3,17] register interpretation see Table 6-21.

umask 19:16 Data EAR unit mask

if tlb=0: data cache unit mask (definition see Table 6-18)

if tlb=1: data TLB unit mask (definition see Table 6-20)

ism 25:24 See Table 6-5.

pt 28 Pass Tags. This bit enables/disables data address range checking. See Section 6.2.6,
"IA-64 Data Address Range Check (PMC[11])" for details.

if pt=1: then the Tag(PMC[8]) is passed down the pipeline unmodified.

if pt=0: data address range checking is enabled for memory operations.

Figure 6-20. Data Event Address Register Format (PMD[2,3,17])
63 4 3 2 1 0

Instruction Address (PMD[17]) slot ig v
60 2 1 1

63 62 61 12 11 0

level ignored (PMD[3]) latency
2 50 12

63 0

Data Address (PMD[2])

64
Processor Performance Monitoring 6-25

6.2.7.5 Data Cache Load Miss Monitoring (PMC[11].tlb=0)

If the Data EAR is configured to monitor data cache load misses (PMC[11].tlb=0), the umask is
used as a load latency threshold defined by Table 6-18.

As defined in Table 6-19, the instruction and data addresses as well as the load latency of a
captured data cache load miss is presented to software in three registers PMD[2,3,17]. If no
qualified event was captured, the valid bit in PMD[3] is zero. In data cache load miss mode, the
level field of PMD[3] is undefined.

The detection of data cache load misses requires a load instruction to be tracked during multiple
clock cycles from instruction issue to cache miss occurrence. Since multiple loads may be
outstanding at any point in time and the Itanium processor data cache miss event address register can
only track a single load at a time, not all data cache load misses may be captured. When the
processor hardware captures the address of a load (called the monitored load), it ignores all other
overlapped concurrent loads until it is determined whether the monitored load turns out to be an L1
data cache miss or not. If the monitored load turns out to be a cache miss, its parameters are latched
into PMD[2,3,17]. The processor randomizes the choice of which load instructions are tracked to
prevent the same data cache load miss from always being captured (in a regular sequence of
overlapped data cache load misses). While this mechanism will not always capture all data cache
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by
statistical sampling or code instrumentation.

Table 6-18. PMC[11] Mask Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.

Table 6-19. PMD[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

Register Fields Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Latency in CPU clocks

level 63:62 Undefined in data cache load miss mode

PMD[17] valid 0 Valid bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction bundle slot of memory instruction. For IA-32 ISA
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instruction.a

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes
to bits {60:51} of PMD[2,17] are ignored by the processor.
6-26 Processor Performance Monitoring

6.2.7.6 Data TLB Miss Monitoring (PMC[11].tlb=1)

If the Data EAR is configured to monitor data TLB misses (PMC[11].tlb=1), the umask defined by
Table 6-20 determine which data TLB misses are captured by the Data EAR. For TLB monitoring,
all combinations of the mask bits are supported.

As defined in Table 6-21, the instruction and data addresses of captured data TLB misses are
presented to software in PMD[2,17]. The level of the TLB hierarchy from which the L1 data TLB
miss was satisfied is recorded in the level field of PMD[3]. If no qualified event was captured, the
valid bit in PMD[17] and the level field in PMD[3] read zero. When programmed for data TLB
monitoring, the contents of the latency field of PMD[3] are undefined.

6.2.8 IA-64 Branch Trace Buffer

The branch trace buffer provides information about the outcome of the most recent IA-64 branch
instructions and their predictions and outcomes. The IA-64 branch trace buffer configuration
register (PMC[12]) defines the conditions under which branch instructions are captured and allows
the trace buffer to capture specific subsets of branch events. The IA-64 branch trace buffer operates
only during IA-64 code execution (i.e. when PSR.is is zero).

In every cycle in which a qualified IA-64 branch retires, its source bundle address and slot number
are written to the branch trace buffer. The branches’ target address is written to the next buffer
location. If the target instruction bundle itself contains a qualified IA-64 branch, the branch trace
buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer entries:

Table 6-20. PMC[11] Unmask Field in TLB Miss Mode (PMC[11].tlb=1)

umask Bit Data EAR Unit Mask (L1 data TLB misses)

0

1

2

3

reserved

if one, capture L1 TLB misses that hit L2 Data TLB

if one, capture L1 TLB misses that hit VHPT

if one, capture L1 TLB misses that was handled by software

Table 6-21. PMD[2,3,17] Fields in TLB Miss Mode (PMC[11].tlb=1)

Register Field Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Undefined in TLB Miss mode

level 63:62 Data TLB Miss Level

0: invalid address (EAR did not capture qualified event)

1: L2 Data TLB hit
2: VHPT hit
3: Data TLB miss handled by software

PMD[17] valid 0 Valid Bit:
0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction Bundle Slot of memory instruction. In IA-32 ISA
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instructiona

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes
to bits {60:51} of PMD[2,17] are ignored by the processor.
Processor Performance Monitoring 6-27

one that records the target instruction as a branch target (b-bit cleared), and another that records the
target instruction as a branch source (b-bit set). As a result, the branch trace buffer may contain a
mixed sequence of the branches and targets.

6.2.8.1 IA-64 Trace Buffer Collection Constraining

The IA-64 branch trace buffer configuration register (PMC[12]) defines the conditions under which
branch instructions are captured. These conditions are given in Figure 6-21 and Table 6-22, and
refer to conditions associated with the branch prediction and resolution hardware. These conditions
are:

• Which branch prediction hardware structure made the prediction,

• The path of the branch (not taken/taken),

• Whether or not the branch path was mispredicted, and

• Whether or not the target of the branch was mispredicted.

Figure 6-21. IA-64 Branch Trace Buffer Configuration Register (PMC[12])
63 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ignored bac bpt ppm ptm tm tar pm ign. plm
48 1 1 2 2 2 1 1 2 4

Table 6-22. IA-64 Branch Trace Buffer Configuration Register Fields (PMC[12])

Field Bits Description

plm 3:0 See Table 6-5.

pm 6 See Table 6-5.

tar 7 Target Address Register:

1: capture TAR predictions
0: No TAR predictions are captured

tm 9:8 Taken Mask:

11: all IA-64 branches
10: Taken IA-64 branches only
01: Not Taken IA-64 branches only
00: No branch is captured

ptm 11:10 Predicted Target Address Mask:

11: capture branch regardless of target prediction outcome
10: branch predicted target address correctly
01: branch mispredicted target address
00: No branch is captured

ppm 13:12 Predicted Predicate Mask:

11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)
00: No branch is captured

bpt 14 Branch Prediction Table:

10: No TAC predictions are captured

bac 15 Branch Address Calculator:

1: capture BAC predictions
0: No BAC predictions are captured
6-28 Processor Performance Monitoring

The Itanium processor uses the following micro-architectural structures for branch prediction: the
Target Address Registers (TAR), and Target Address Cache (TAC). Using the tar and bac fields of
the branch trace buffer configuration register (PMC[12]), collection in the branch trace buffer can
be restricted to only branches predicted by a subset of these prediction structures.

The Target Address Registers (TAR) are a small and fast fully associative buffer that is exclusively
written to by branch predict instructions with the ‘.imp’ extension. A hit in the TAR will cause a
taken prediction and yield the target address of the branch. If the tar field in the branch trace buffer
configuration register (PMC[12]) is set to one, branches predicted by TAR will be included in the
trace buffer.

The Target Address Cache (TAC) is a larger structure that is also written to by branch predict
instructions, or the prediction hardware. The primary function of the TAC is to provide the target
address of a branch.

 If the bpt field in the branch trace buffer configuration register (PMC[12]) is set to one, branches
predicted by the TAC will be included in the trace buffer.

If neither the TAR nor TAC generated a hit, the branch has to be predicted using the static hints
encoded in the branches and the target address has to be calculated. This is done by the branch
address corrector (BAC). If the bac field in the branch trace buffer configuration register
(PMC[12]) is set to one, branches predicted by the branch address corrector will be included in the
trace buffer.

Furthermore, using the ptm, ppm and tm fields in the branch trace buffer configuration register
(PMC[12]) collection in the branch trace buffer can be restricted based on the correctness of target
and predicate prediction in addition to whether the branch was actually taken or not.

To summarize, an IA-64 branch and its target are captured by the trace buffer if the following
equation is true:

(not PSR.is)
and ((tm[1] and branch taken)

or (tm[0] and branch not taken)
)

and ((ptm[1] and hardware predicted target address correctly
 and hardware predicted the branch path correctly
 and branch is taken)

or (ptm[0] and hardware mispredicted target address
 and hardware predicted the branch path correctly
 and branch is taken)

or (ptm[0] and ptm[1])
)

and ((ppm[1] and hardware predicted the branch path correctly)
or (ppm[0] and hardware mispredicted the branch path)

)
and ((bpt and branch was predicted by TAC)

or (bac and branch was predicted by BAC)
or (tar and branch was predicted by TAR)

)

To capture all mispredicted IA-64 branches, the branch trace buffer configuration settings in
PMC[12] should be: Tm=11, ptm=01, ppm=01, bpt=1, bac=1, and tar=1.
Processor Performance Monitoring 6-29

6.2.8.2 IA-64 Branch Trace Buffer Reading

The eight branch trace buffer registers PMD[8-15] provide information about the outcome of a
captured branch sequence. The branch trace buffer registers (PMD[8-15]) contain valid data only
when event collection is frozen (PMC[0].fr is one). While event collection is enabled, reads of
PMD[8-15] return undefined values. The registers follow the layout defined in Figure 6-22, and
contain the address of either a captured branch instruction (b-bit=1) or branch target (b-bit=0). For
branch instructions, the mp-bit indicates a branch misprediction. A branch trace register with a zero
b-bit and a zero mp-bit indicates an invalid branch trace buffer entry. The slot field captures the slot
number of the first taken IA-64 branch instruction in the captured instruction bundle. A slot number
of 3 indicates a not-taken branch. The target address bundle of a branch to IA-32 (br.ia) is
recorded. An IA-32 JMPE branch instruction and its IA-64 target are not recorded.

In every cycle in which a qualified IA-64 branch retires1, its source bundle address and slot number
are written to the branch trace buffer. The branches’ target address is written to the next buffer
location. If the target instruction bundle itself contains a qualified IA-64 branch, the branch trace
buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer entries:

Figure 6-22. Branch Trace Buffer Register Format (PMD[8-15])
63 4 3 2 1 0

Address slot mp b

60 2 1 1

Table 6-23. IA-64 Branch Trace Buffer Register Fields (PMD[8-15])

Field Bit Range Description

b 0 Branch Bit
1: contents of register is a branch instruction

0: contents of register is a branch target

mp 1 Mispredict Bit
if b=1 and mp=1: mispredicted branch (due to target or predicate misprediction)

if b=1 and mp=0: correctly predicted branch

if b=0 and mp=0: invalid branch trace buffer register

if b=0 and mp=1: valid target address

slot 3:2 if b=0: 00

if b=1: Slot index of first taken branch instruction in bundle

00: IA-64 Slot 0 branch/target

01: IA-64 Slot 1 branch/target

10: IA-64 Slot 2 branch/target

11: this was a not taken branch

Address 63:4 if b=1: 60-bit bundle address of IA-64 branch instructiona

if b=0: 60-bit target bundle address of IA-64 branch instructiona

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. When the processor captures an instruction address, bits {60:51} of PMD[8-15] are written by the
processor with a sign-extension of bit {50} of the captured address. When PMD[8-15] are written by software
bits {60:51} of PMD[8-15] can be written with any value (not necessarily a sign-extension of bit {50}).

1. In some cases, the Itanium™ processor branch trace buffer will capture the source (but not the target) address of an
excepting branch instruction. This occurs on trapping branch instructions as well as faulting br.ia, break.b and
multiway branches.
6-30 Processor Performance Monitoring

one that records the target instruction as a branch target (b-bit cleared), and another that records the
target instruction as a branch source (b-bit set). As a result, the branch trace buffer may contain a
mixed sequence of the branches and targets.

The IA-64 branch trace buffer is a circular buffer containing the last four to eight qualified IA-64
branches. The Branch Trace Buffer Index Register (PMD[16]) defined in Figure 6-23 identifies the
most recently recorded branch or target. In every cycle in which a qualified branch (branch or
target) is recorded, the branch buffer index (bbi) is post-incremented. After 8 entries have been
recorded, the branch index wraps around, and the next qualified branch will overwrite the first trace
buffer entry. The wrap condition itself is recorded in the full bit of PMD[16]. The bbi field of
PMD[16] defines the next branch buffer index that is about to be written.The following formula
computes the last written branch trace buffer PMD index from the contents of PMD[16]:

last-written-PMD-index = 8+ ([(8*PMD[16].full) + (PMC[16].bbi - 1)] % 8)

If both the full bit and the bbi field of PMD[16] are zero, no qualified branch has been captured by
the branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from
PMD[15] to PMD[8]. Once set, the full bit remains set until explicitly cleared by software, i.e. it is
a sticky bit. Software can reset the bbi index and the full bit by writing to PMD[16].

6.2.9 Processor Reset, PAL Calls, and Low Power State

Processor Reset: On processor hardware reset bits oi, ev of all PMC registers are zero, and PMV.m
is set to one. This ensures that no interrupts are generated, and events are not externally visible. On
reset, PAL firmware ensures that the instruction address range check, the opcode matcher and the
data address range check are initialized as follows:

• PMC[13].ta=1,

• PMC[8,9].mifb=1111, PMC[8,9].mask{29:3}= “all 1s”, PMC[8,9].match{59:33}= “all 0s”,
and

• PMC[11].pt is 1.

All other performance monitoring related state is undefined.

Figure 6-23. IA-64 Branch Trace Buffer Index Register Format (PMD[16])
63 4 3 2 1 0

ignored full bbi

60 1 3

Table 6-24. IA-64 Branch Trace Buffer Index Register Fields (PMD[16])

Field Bit Range Description

bbi 2:0 Branch Buffer Index [Range 0..7 - Index 0 indicates PMD[8]]
Pointer to the next branch trace buffer entry to be written.
if full=1: points to the oldest recorded branch/target

if full=0: points to the next location to be written

full 3 Full Bit (sticky)
if full=1: branch trace buffer has wrapped

if full=0: branch trace buffer has not wrapped
Processor Performance Monitoring 6-31

PAL Call: As defined in Chapter 11, “IA-64 Processor Abstraction Layer”in Volume 2, the PAL
call PAL_PERF_MON_INFO provides software with information about the implemented
performance monitors. The Itanium processor specific values are summarized in Table 6-25.

Low Power State: To ensure that monitor counts are preserved when the processor enters low
power state, PAL_LIGHT_HALT freezes event monitoring prior to powering down the processor.
PAL_LIGHT_HALT preserves the original value of the PMC[0] register.

6.2.10 References

• [gprof] S.L. Graham S.L., P.B. Kessler and M.K. McKusick, “gprof: A Call Graph Execution
Profiler”, Proceedings SIGPLAN’82 Symposium on Compiler Construction; SIGPLAN
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

• [Lebeck] Alvin R. Lebeck and David A. Wood, “Cache Profiling and the SPEC benchmarks: A
Case Study”, Tech Report 1164, Computer Science Dept., University of Wisconsin - Madison,
July 1993.

• [VTune] Mark Atkins and Ramesh Subramaniam, “PC Software Performance Tuning”, IEEE
Computer, Vol. 29, No. 8, pp. 47-54, August 1996.

• [WinNT] Russ Blake, “Optimizing Windows NT™”, Volume 4 of the Microsoft “Windows
NT Resource Kit for Windows NT Version 3.51”, Microsoft Press, 1995.

Table 6-25. Information Returned by PAL_PERF_MON_INFO for the Itanium™ Processor

PAL_PERF_MON_INFO
Return Value Description

Itanium™
Processor-

specific
Value

PAL_RETIRED 8-bit unsigned event type for counting the number of
untagged retired IA-64 instructions.

0x08

PAL_CYCLES 8-bit unsigned event type for counting the number of
running CPU cycles.

0x12

PAL_WIDTH 8-bit unsigned number of implemented counter bits. 32

PAL_GENERIC_PM_PAIRS 8-bit unsigned number of generic PMC/PMD pairs. 4

PAL_PMCmask 256-bit mask defining which PMC registers are populated. 0x3FFF

PAL_PMDmask 256-bit mask defining which PMD registers are populated. 0x3FFFF

PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can count
running CPU cycles (event defined by PAL_CYCLES)

0xF0

PAL_RETIRED_MASK 256-bit mask defining which PMC/PMD counters can count
untagged retired IA-64 instructions (event defined by
PAL_RETIRED)

0x10
6-32 Processor Performance Monitoring

Performance Monitor Events 7

This chapter describes the architectural and microarchitectural events on the Itanium processor
whose occurrences are countable through the performance monitoring mechanisms described
earlier in Chapter 6. The earlier sections of this chapter aim to provide a high-level view of the
event list, grouping logically related events together. Computation (either directly by a counter in
hardware, or indirectly as a “derived” event) of common performance metrics is also discussed.
Each directly measurable event is then described in greater detail in the alphabetized list of all
processor events in Section 7.8, “Performance Monitor Event List”.

7.1 Categorization of Events

Performance related events are grouped into the following categories:

• Basic Events: clock cycles, retired instructions (Section 7.2)

• Instruction Execution: instruction decode, issue and execution, data and control speculation,
and memory operations (Section 7.3)

• Cycle Accounting Events: stall and execution cycle breakdowns (Section 7.4)

• Branch Events: branch prediction (Section 7.5)

• Memory Hierarchy: instruction and data caches (Section 7.6)

• System Events: operating system monitors, instruction and data TLBs (Section 7.7)

Each section listed above includes a table of all events (both directly measured and derived) in that
category. Directly measurable events often use the PMC.umask field (See Table 6-7 in Chapter 6)
to measure a certain variant of the event in question. Symbolic event names for such events (e.g.
ALAT_REPLACEMENT.ALL) include a period to indicate use of the umask, specified by 4 bits in
the detailed event description (x’s are for dont-cares). Derived events are computable from directly
measured events and include a “.d” suffix in their symbolic event names. Formulas to compute
relevant derived events also appear in each section. Derived events are not, however, discussed in
the systematic event listing in Section 7.8.

The tables in the subsequent sections define events by specifying three attributes: symbolic event
name, a brief event title and a reference to the detailed event description page. Derived events are
not listed in the detailed event description pages and hence lack the appropriate reference.

7.2 Basic Events

Table 7-1 summarizes four basic execution monitors. The CPU_CYCLES event can be used to
break out separate or combined IA-64 or IA-32 cycle counts (by constraining the PMC/PMD based
on the currently executing instruction set). The IA-64 retired instruction count
(IA64_INST_RETIRED) includes predicated true and false instructions, and nops, but excludes
RSE operations.
Performance Monitor Events 7-1

Table 7-2 defines IPC and average instructions/cycles per ISA transition metrics.

7.3 Instruction Execution

This section describes events related to instruction issue and retirement (Table 7-3, Table 7-4)
multi-media and FP (Table 7-5), data and control speculation (Table 7-7), as well as memory
monitors (Table 7-9).

Instruction cache lines are delivered to the execution core and are dispersed to the Itanium
processor functional units. The number of dispersed instructions (INST_DISPERSED) on every
cycle depends on the stops in the instruction stream (EXPL_STOPS_DISPERSED) as well as
functional unit availability. Resource limitations and branch bundles (regardless of prediction)
force a break in the instruction dispersal. Therefore, they are known as implicit stops, and can be
computed as ALL_STOPS_DISPERSED - EXPL_STOPS_DISPERSED.

Table 7-1. IA-64 and IA-32 Instruction Set Execution and Retirement Monitors

Execution Monitors Title Page

CPU_CYCLES CPU Cycles 7-29

IA64_INST_RETIRED Retired IA-64 Instructions 7-32

IA32_INST_RETIRED Retired IA-32 Instructions 7-32

ISA_TRANSITIONS IA-64 to IA-32 ISA Transitions 7-34

Table 7-2. IA-64 and IA-32 Instruction Set Execution and Retirement Performance Metrics

Performance Metric Performance Monitor Equation

IA-64 Instruction per Cycle IA64_INST_RETIRED / CPU_CYCLES[IA-64 only]

IA-32 Instruction per Cycle IA32_INST_RETIRED / CPU_CYCLES[IA-32 only]

Average IA-64 Instructions/Transition IA64_INST_RETIRED/ (ISA_TRANSITIONS*2)

Average IA-32 Instructions/Transition IA32_INST_RETIRED/ (ISA_TRANSITIONS*2)

Average IA-64 Cycles/Transition CPU_CYCLES[IA64]/ (ISA_TRANSITIONS*2)

Average IA-32 Cycles/Transition CPU_CYCLES[IA32]/ (ISA_TRANSITIONS*2)

Table 7-3. Instruction Issue and Retirement Events

Decode, Issue, Retirement Monitors Description Page

INST_DISPERSED Instructions Dispersed 7-33

EXPL_STOPS_DISPERSED Explicit Stops Dispersed 7-30

ALL_STOPS_DISPERSED Implicit and Explicit Stops Dispersed 7-14

IA64_TAGGED_INST_RETIRED Retired Tagged IA-64 Instructions 7-32

NOPS_RETIRED Retired Nop Instructions 7-45

PREDICATE_SQUASHED_RETIRED Instructions Squashed Due to Predicate Off 7-46

RSE_REFERENCES_RETIRED RSE Accesses 7-47

RSE_LOADS_RETIRED RSE Load Accesses 7-46

Table 7-4. Instruction Issue and Retirement Events (Derived)

Decode, Issue, Retirement
Monitors

Description
Itanium™ Processor Performance

Monitor Equation

RSE_STORES_RETIRED.d RSE Store Accesses RSE_REFERENCES_RETIRED -
RSE_LOADS_RETIRED
7-2 Performance Monitor Events

Retired instruction counts (IA64_TAGGED_INST_RETIRED, NOPS_RETIRED) are based on
tag information specified by the address range check and opcode match facilities. The tagged
retired instruction counts include predicated off instructions but exclude RSE operations. A
separate event (PREDICATE_SQUASHED_RETIRED) is provided to count predicated off
instructions. RSE_REFERENCES_RETIRED counts the number of retired RSE operations.

There are two ways to count the total number of retired IA-64 instructions. Either the untagged
IA64_INST_RETIRED event can be used or the IA64_TAGGED_INST_RETIRED event can be
used by setting up the PMC8 opcode match register to its don’t care setting.

The FP monitors listed in Table 7-5 (FP_SIR_FLUSH, FP_FLUSH_TO_ZERO) capture dynamic
information about pipeline flushes and flush-to-zero occurrences due to floating-point operations.
FP_OPS_RETIRED.d is a derived event that counts the number of retired FP operations.

As Table 7-7 describes, monitors for control and data speculation capture dynamic run-time
information: the number of failed chk.s instructions (INST_FAILED_CHKS_RETIRED.ALL), the
number of advanced load checks and check loads (ALAT_INST_CHKA_LDC.ALL) and failed
advanced load checks and check loads (ALAT_INST_FAILED_CHKA_LDC.ALL) as seen by the
ALAT. The number of retired chk.s instructions is monitored by the
IA64_TAGGED_INST_RETIRED event with the appropriate opcode mask. Since the Itanium
processor ALAT is updated by operations on mispredicted branch paths the number of advanced
load checks and check loads needs an explicit event (ALAT_INST_CHKA_LDC.ALL). Finally,
the ALAT_REPLACEMENT.ALL event can be used to monitor ALAT overflows.

Using an instruction type unit mask the four control and data speculation events can be constrained
to monitor integer, FP or all speculative instructions. With the Itanium processor speculation
monitors, the performance metrics described in Table 7-8 can be computed.

Table 7-5. Floating-Point Execution Monitors

Floating-Point Monitors Description Page

FP_FLUSH_TO_ZERO FP Result Flushed to Zero 7-31

FP_SIR_FLUSH FP SIR Flushes 7-31

Table 7-6. Floating-Point Execution Monitors (Derived)

Floating-Point Monitors Description
Itanium™ Processor Performance

Monitor Equation

FP_OPS_RETIRED.d FP Operations
Retired

(4 * FP_OPS_RETIRED_HI) +
FP_OPS_RETIRED_LO

Table 7-7. Control and Data Speculation Monitors

Control and Data Speculation
Monitors

Description Page

INST_FAILED_CHKS_RETIRED.ALL Failed Speculative Check Loads 7-33

ALAT_INST_CHKA_LDC.ALL Advanced Load Checks and Check Loads 7-13

ALAT_INST_FAILED_CHKA_LDC.ALL Failed Advanced Load Checks and Check Loads 7-14

ALAT_REPLACEMENT.ALL ALAT Entries Replaced by Any Instruction 7-12
Performance Monitor Events 7-3

Finally, Table 7-9 defines six memory instruction retirement events to count retired loads and
stores. These counts include RSE operations. The load counts include failed check load
instructions.

7.4 Cycle Accounting Events

As described in Section 6.1.1.4, “Cycle Accounting”, the Itanium processor provides eight directly
measured stall cycle monitors. Table 7-10 lists the cycle accounting events.

Table 7-11 defines derived stall cycle accounting monitors in terms of directly measured monitors.

Table 7-8. Itanium™ Processor Control/Data Speculation Performance Metrics

Performance Metric Performance Monitor Equation

Control Speculation Miss Ratio INST_FAILED_CHKS_RETIRED.ALL /
IA64_TAGGED_INST_RETIRED[chk.s only]

Data Speculation Miss Ratio ALAT_INST_FAILED_CHKA_LDC.ALL / ALAT_INST_CHKA_LDC.ALL

ALAT Capacity Miss Ratio ALAT_REPLACEMENT.ALL/
IA64_TAGGED_INST_RETIRED[ld.sa,ld.a,ldfp.a,ldfp.sa only]

Table 7-9. Itanium™ Processor Memory Events

Memory Monitors Description Page

LOADS_RETIRED Retired Loads 7-44

STORES_RETIRED Retired Stores 7-47

UC_LOADS_RETIRED Retired Uncacheable Loads 7-47

UC_STORES_RETIRED Retired Uncacheable Stores 7-47

MISALIGNED_LOADS_RETIRED Retired Misaligned Load Instructions 7-44

MISALIGNED_STORES_RETIRED Retired Misaligned Store Instructions 7-45

Table 7-10. Itanium™ Processor Stall Cycle Monitors

Stall Accounting
Monitors

Description Page

PIPELINE_BACKEND_FLUSH_CYCLE Pipeline Flush Cycles from Backend Sources 7-45

DATA_ACCESS_CYCLE Data Access Stall Cycles 7-29

EXECUTION_LATENCY_CYCLE Execution Latency Stall Cycles 7-30

INST_ACCESS_CYCLE Instruction Access Cycles 7-33

PIPELINE_ALL_FLUSH_CYCLE Combined Pipeline Flush Cycles from Frontend or Backend
Sources 7-45

MEMORY_CYCLE Combined Memory Stall Cycles 7-44

EXECUTION_CYCLE Combined Execution Stall Cycles 7-30

INST_FETCH_CYCLE Combined Instruction Fetch Stall Cycles 7-34

Table 7-11. Itanium™ Processor Stall Cycle Monitors (Derived)

Itanium™ Processor Stall Cycle
Monitors (Derived)

Description
Itanium™ Processor Performance

Monitor Equation

RSE_ACTIVE_CYCLE.d RSE Active Cycles MEMORY_CYCLE - DATA_ACCESS_CYCLE

ISSUE_LIMIT_CYCLE.d Issue Limit Cycles EXECUTION_CYCLE -
EXECUTION_LATENCY_CYCLE
7-4 Performance Monitor Events

7.5 Branch Events

The five measured Itanium processor branch events listed in Table 7-12 expand into over fifty
measurable branch metrics by using the unit masks described on the event pages. BRANCH_PATH
provides insight into the accuracy of taken/not-taken predicate predictions; unit masks allow
classification by prediction, outcome and predictor type. BRANCH_PREDICTOR classifies how
branches are predicted by different predictors as they move down the branch prediction pipeline;
unit masks provide finer resolution and break down events into correct predictions, incorrect
predicate predictions, and incorrect target predictions. BRANCH_MULTIWAY collects events
exclusively for predictions on multiway branch bundles, from which their single-way counterparts
can be derived. BRANCH_TAKEN_SLOT gives information regarding the position within a
bundle that actually-taken branches occupy. BRANCH_EVENT counts the number of events
captured in the branch trace buffer.

All branch events can be qualified by instruction address range and opcode matching as described
in Section 6.1.3, “Event Qualification”. Since the instruction address range check is bundle
granular, qualification of multiway branches by address range is straightforward. However, for
opcode matching purposes, multiway branches (MBB or BBB bundle templates) are qualified up to
and including the first taken branch as follows:

((address range and opcode match on instruction slot 0)
and (branch in slot 0 is taken))

or ((address range and opcode match on instruction slot 1)
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is taken))

or ((address range and opcode match on instruction slot 0 or 1 or 2)
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is NOT taken))

TAKEN_BRANCH_CYCLE.d Taken Branch
Cycles

PIPELINE_ALL_FLUSH_CYCLE -
PIPELINE_BACKEND_FLUSH_CYCLE

FETCH_WINDOW_CYCLE.d Fetch Window
Cycles

INST_FETCH_CYCLE - INST_ACCESS_CYCLE

Table 7-12. Itanium™ Processor Branch Monitors

Branch Events Description

BRANCH_PATH Accuracy of predicate (taken/not-taken) predictions

BRANCH_PREDICTOR Classification of how the branches are predicted in the pipeline

BRANCH_MULTIWAY Details on multiway branch bundle predictions (details on single-
way branch bundle predictions can be derived from this event)

BRANCH_TAKEN_SLOT Location of taken branches (if any) in a bundle

BRANCH_EVENT Branch Event Captured

Table 7-11. Itanium™ Processor Stall Cycle Monitors (Derived) (Continued)

Itanium™ Processor Stall Cycle
Monitors (Derived)

Description
Itanium™ Processor Performance

Monitor Equation
Performance Monitor Events 7-5

7.6 Memory Hierarchy

This section summarizes events related to the Itanium processor’s memory hierarchy. The memory
hierarchy events are grouped as follows:

• L1 Instruction Cache and Prefetch (Section 7.6.1)

• L1 Data Cache (Section 7.6.2)

• L2 Unified Cache (Section 7.6.3)

• L3 Unified Cache (Section 7.6.4)

An overview of the Itanium processor’s three-level memory hierarchy and its event monitors is
shown in Figure 7-1. The instruction and the data stream work through separate L1 caches. The L1
data cache is a write-through cache. A unified L2 cache serves both the L1 instruction and data
caches, and is backed by a large unified L3 cache. Events for individual levels of the cache
hierarchy are described in the following three sections. They can be used to compute the most
common cache performance ratios summarized in Table 7-14.

For common performance metrics not directly measured by hardware, the equations listed in
Table 7-13 can be used.

Table 7-13. Derived Memory Hierarchy Monitors

Memory hierarchy Monitors
(Derived)

Description
Itanium™ Processor Performance

Monitor Equation

L1I_REFERENCES.d L1 Instruction Cache
References

L1I_PREFETCH_READS +
L1I_DEMAND_READS

L2_INST_REFERENCES.d L2 Instruction
References

L2_INST_DEMAND_READS +
L2_INST_PREFETCH_READS

L3_DATA_REFERENCES.d L3 Data References L2_MISSES - L3_READS.INST_READS.ALL

Table 7-14. Itanium™ Processor Cache Performance Ratios

Performance Metric Itanium™ Processor Performance Monitor Equation

L1I Miss Ratio L2_INST_DEMAND_READS / L1I_REFERENCES.d

L1D Read Miss Ratio L1D_READ_MISSES_RETIRED / L1D_READS_RETIRED

L2 Miss Ratio L2_MISSES / L2_REFERENCES

L2 Data Miss Ratio L3_DATA_REFERENCES.d / L2_DATA_REFERENCES.ALL

L2 Instruction Miss Ratio
(includes prefetches)

L3_READS.INST_READS.ALL / L2_INST_REFERENCES.d

L2 Data Read Miss Ratio L3_READS.DATA_READS.ALL / L2_DATA_REFERENCES.READS

L2 Data Write Miss Ratio L3_WRITES.DATA_WRITES.ALL / L2_DATA_REFERENCES.WRITES

L2 Instruction Ratio (L2_INST_DEMAND_READS + L2_INST_PREFETCH_READS)/
L2_REFERENCES

L2 Data Ratio L2_DATA_REFERENCES.ALL / L2_REFERENCES

L3 Miss Ratio L3_MISSES / L2_MISSES

L3 Data Miss Ratio (L3_READS.DATA_READS.MISS + L3_WRITES.DATA_WRITES.MISS) /
L3_DATA_REFERENCES.d

L3 Instruction Miss Ratio L3_READS.INST_READS.MISS / L3_READS.INST_READS.ALL

L3 Data Read Ratio L3_READS.DATA_READS.ALL / L3_DATA_REFERENCES.d

L3 Data Ratio L3_DATA_REFERENCES.d / L3_REFERENCES

L3 Instruction Ratio L3_READS.INST_READS.ALL / L3_REFERENCES
7-6 Performance Monitor Events

7.6.1 L1 Instruction Cache and Prefetch

Table 7-15 summarizes the events that the Itanium processor provides to monitor the L1 instruction
cache demand fetch and prefetch activity. Table 7-13 lists pertinent derived events. The instruction
fetch monitors distinguish between demand fetch (L1I_DEMAND_READS,
L2_INST_DEMAND_READS) and prefetch activity (L1I_PREFETCH_READS,
L2_INST_PREFETCH_READS). The amount of data returned from the L2 into the L1 instruction
cache and the Instruction Streaming Buffer is monitored by two events (L1I_FILLS,
ISB_LINES_IN). The INSTRUCTION_EAR_EVENTS monitor (not shown in Figure 7-2) counts
how many instruction cache or ITLB misses are captured by the instruction event address register.

Figure 7-1. Event Monitors in the Itanium™ Processor Memory Hierarchy

L3_READS.DATA_READS.ALL

L3_WRITES.L2_WRITEBACK.ALL

L3_WRITES.ALL_WRITES.ALL

DATA_REFERENCES_RETIRE

L2_INST_PREFETCH_READ

L3_WRITES.DATA_WRITE

L3_READS.INST_READS.ALL

L3_READS.ALL_READS.ALL

(Write-Through)

L1D_READ_MISSES_RETIRE

L3_REFERENCES

L2_MISSES

L2_REFERENCES

L2_INST_REFERENCES.

L3_MISSES

L1D
L1I

L2

L3

BUS

L2_INST_DEMAND_READ

L1D_READS_RETIRE

L2_DATA_REFERENCES.ALL

L1I_DEMAND_READ L1I_PREFETCH_READS
Performance Monitor Events 7-7

The L1 instruction cache and prefetch events can be qualified by the instruction address range
check, but not by the opcode matcher. Since instruction cache and prefetch events occur early in the
processor pipeline, they include events caused by speculative, wrong-path as well as predicated off
instructions. Since the address range check is not based on actually retired, but speculative
instruction addresses, event counts may be inaccurate when the range checker is confined to
address ranges smaller than the length of the processor pipeline (see Section 6.2.4, “IA-64
Instruction Address Range Check Register (PMC[13])” for details).

7.6.2 L1 Data Cache

Table 7-16 lists the Itanium processor’s seven L1 data cache monitors. As shown in Figure 7-3, the
write-through L1 data cache services cacheable loads. Integer and RSE stores, FP memory
operations, VHPT references, semaphores, check loads and hinted L2 memory references are
serviced by the L2 cache. DATA_REFERENCES_RETIRED is the number of issued data memory
references. L1 data cache reads (L1D_READS_RETIRED) and L1 data cache misses
(L1D_READ_MISSES_RETIRED) monitor the read hit/miss rate for the L1 data cache. The
number of L2 data references (L2_DATA_REFERENCES.ALL) is the number of data requests
prior to cache line merging. Unit mask selections allow breaking down into reads and writes. The
DATA_EAR_EVENTS monitor (not shown in Figure 7-3) counts how many data cache or DTLB
misses are captured by the data event address register. RSE operations are included in all data cache
monitors, but are not broken down explicitly.

Figure 7-2. L1 Instruction Cache and Prefetch Monitors

Table 7-15. L1 Instruction Cache and Instruction Prefetch Monitors

L1I and I-Prefetch Monitors Description Page

L1I_DEMAND_READS L1I and ISB Instruction Demand Lookups 7-36

L1I_FILLS L1 Instruction Cache Fills 7-36

L2_INST_DEMAND_READS L2 Instruction Demand Fetch Requests 7-38

INSTRUCTION_EAR_EVENTS Instruction EAR Events 7-34

L1I_PREFETCH_READS L1I and ISB Instruction Prefetch Lookups 7-37

L2_INST_PREFETCH_READS L2 Instruction Prefetch Requests 7-39

ISB_LINES_IN Instruction Streaming Buffer Lines In 7-35

ISB_LINES_IN

L1I_FILLS

L2_INST_PREFETCH_READS

L1I_DEMAND_READS
L2_INST_DEMAND_READS

L1I

ISB L2

L1I_PREFETCH_READS
7-8 Performance Monitor Events

7.6.3 L2 Unified Cache

Table 7-17 summarizes the directly-measured events that monitor the Itanium processor L2 cache.
Table 7-13 lists pertinent derived events. Refer to Figure 7-1 for a graphical view of the L2 cache
monitors.

L2_REFERENCES, L2_INST_PREFETCH_READS and L2_DATA_REFERENCES.ALL are
counted in terms of number of requests seen by the L2. L2_MISSES are counted in terms of the
number of L2 cache line requests sent to the L3. L2_FLUSHES and L2_FLUSH_DETAILS count
and break-down the number of L2 flushes due to address conflicts, store buffer conflicts, bus
rejects, and other reasons. L1D_READ_FORCED_MISSES_RETIRED counts the number of
loads that were bypassed from an earlier store.

Table 7-16. L1 Data Cache Monitors

L1D Monitors Description Page

DATA_REFERENCES_RETIRED Retired Data Memory References 7-29

L1D_READS_RETIRED L1 Data Cache Reads 7-36

L1D_READ_MISSES_RETIRED L1 Data Cache Read Misses 7-36

PIPELINE_FLUSH.L1D_WAY_MISPREDICT Pipeline Flush 7-46

L1D_READ_FORCED_MISSES_RETIRED L1 Data Cache Forced Load Misses 7-35

L1I_PREFETCH_READS L2 Data Read and Write References 7-37

DATA_EAR_EVENTS L1 Data Cache EAR Events 7-29

Figure 7-3. L1 Data Cache Monitors

Table 7-17. L2 Cache Monitors

L1 Monitors Description Page

L2_REFERENCES L2 References 7-39

L2_INST_PREFETCH_READS L2 Instruction Prefetch Requests 7-39

L2_INST_DEMAND_READS L2 Instruction Demand Fetch Requests 7-38

L2_DATA_REFERENCES.ALL L2 Data Read and Write References 7-37

L2_DATA_REFERENCES.READS L2 Data Read References 7-37

L2_DATA_REFERENCES.WRITES L2 Data Write References 7-37

L1D_READ_MISSES_RETIRED

L1D_READ_FORCED_MISSES_RETIRED

L2_DATA_REFERENCES.ALL
[Reads/Writes]DATA_REFERENCES_RETIRED

L1D_READS_RETIRED

int/RSE st, FP ld/st, VHPT, semaphores, failed ld.c, hinted L1 op

L2 Cache

L1D Cache

(write-through)

L1D Store Buffer
Performance Monitor Events 7-9

7.6.4 L3 Unified Cache

Table 7-18 summarizes the directly-measured L3 cache events. Table 7-13 lists pertinent derived
events. Refer to Figure 7-1 for a graphical view of the L3 cache monitors.

7.7 System Events

Table 7-19 lists the directly measurable system and TLB events. Table 7-20 lists pertinent derived
events. The debug register match events count how often the address in any instruction or data
break-point register (IBR or DBR) matches the current retired instruction pointer
(CODE_DEBUG_REGISTER_MATCHES.d) or the current data memory address
(DATA_DEBUG_REGISTER_MATCHES.d). PIPELINE_FLUSH counts the number of times
the Itanium processor pipeline is flushed due to a data translation cache miss, L1 data cache way
mispredict, an exception flush or an instruction serialization event. CPU_CPL_CHANGES counts

L2_MISSES L2 Misses 7-39

L2_FLUSHES L2 Flushes 7-38

L2_FLUSH_DETAILS L2 Flush Details 7-38

Table 7-18. L3 Cache Monitors

L2 Monitors Description Page

L3_REFERENCES L3 References 7-42

L3_MISSES L3 Misses 7-40

L3_LINES_REPLACED L3 Cache Lines Replaced 7-39

L3_READS.ALL_READS.ALL Instruction and Data L3 Reads 7-40

L3_READS.ALL_READS.HIT Instruction and Data L3 Read Hits 7-40

L3_READS.ALL_READS.MISS Instruction and Data L3 Read Misses 7-40

L3_READS.DATA_READS.ALL Data L3 Reads 7-40

L3_READS.DATA_READS.HIT Data L3 Read Hits 7-41

L3_READS.DATA_READS.MISS Data L3 Read Misses 7-41

L3_READS.INST_READS.ALL Instruction L3 Reads 7-41

L3_READS.INST_READS.HIT Instruction L3 Read Hits 7-41

L3_READS.INST_READS.MISS Instruction L3 Read Misses 7-41

L3_WRITES.ALL_WRITES.ALL L3 Writes 7-42

L3_WRITES.ALL_WRITES.HIT L3 Write Hits 7-42

L3_WRITES.ALL_WRITES.MISS L3 Write Misses 7-42

L3_WRITES.L2_WRITEBACK.ALL L3 Writebacks 7-43

L3_WRITES.L2_WRITEBACK.HIT L3 Writeback Hits 7-43

L3_WRITES.L2_WRITEBACK.MISS L3 Writeback Misses 7-43

L3_WRITES.DATA_WRITES.ALL L3 Data Writes 7-43

L3_WRITES.DATA_WRITES.HIT L3 Data Write Hits 7-43

L3_WRITES.DATA_WRITES.MISS L3 Data Write Misses 7-44

Table 7-17. L2 Cache Monitors (Continued)

L1 Monitors Description Page
7-10 Performance Monitor Events

the number of privilege level transitions due to interruptions, system calls (epc) and returns
(demoting branch), and rfi instructions. CPU_CYCLES counts the number of cycles the CPU is not
powered down or in light HALT state.

Table 7-20 defines derived system and TLB events that are computed from events directly
measured by hardware.

The Itanium processor instruction and data TLBs and the virtual hash page table walker are
monitored by the events described in Table 7-19 and Table 7-20. Figure 7-4 gives a graphical
summary. Table 7-21 lists the TLB performance metrics that can be computed using these events.

ITLB_REFERENCES.d and DTLB_REFERENCES.d are derived from the respective instruction/
data cache access events. Note that ITLB_REFERENCES.d does not include prefetch requests
made to the L1I cache (L1I_PREFETCH_READS). This is because prefetches are cancelled when
they miss in the ITLB and thus do not trigger VHPT walks or software TLB miss handling.
ITLB_MISSES_FETCH and DTLB_MISSES count TLB misses. ITLB_INSERTS_HPW and
DTLB_INSERTS_HPW count the number of instruction/data TLB inserts performed by the virtual
hash page table walker. The Itanium processor data TLB is a two level TLB; DTC_MISSES counts
the number of first level data TLB misses.

Table 7-19. Itanium™ Processor System and TLB Monitors

System and Processor TLB Monitors Description Page

PIPELINE_FLUSH Pipeline Flush 7-46

CPU_CPL_CHANGES Privilege level changes 7-28

CPU_CYCLES CPU Cycles 7-29

ITLB_MISSES_FETCH ITLB Demand Misses 7-35

ITLB_INSERTS_HPW Hardware Page Walker Inserts into the ITLB 7-35

DTC_MISSES DTC Misses 7-29

DTLB_MISSES DTLB Misses 7-30

DTLB_INSERTS_HPW Hardware Page Walker Inserts into the DTLB 7-30

Table 7-20. Itanium™ Processor System and TLB Monitors (Derived)

Derived Memory Hierarchy Monitors Description
Itanium™ Processor

Performance Monitor Equation

CODE_DEBUG_REGISTER_MATCHES.d Code Debug Register
Matches

IA64_TAGGED_INST_RETIRED

DATA_DEBUG_REGISTER_MATCHES.d Data Debug Register
Matches

LOADS_RETIRED +
STORES_RETIRED

ITLB_REFERENCES.d ITLB References L1I_DEMAND_READS

ITLB_EAR_EVENT.d ITLB EAR Event INSTRUCTION_EAR_EVENTS

DTLB_REFERENCES.d DTLB References DATA_REFERENCES_RETIRED

DTLB_EAR_EVENT.d DTLB EAR Event DATA_EAR_EVENTS

Table 7-21. Itanium™ Processor TLB Performance Metrics

Performance Metric Performance Monitor Equation

ITLB Miss Ratio ITLB_MISSES_FETCH / ITLB_REFERENCES.d

DTLB Miss Ratio DTLB_MISSES / DTLB_REFERENCES.d

DTC Miss Ratio DTC_MISSES / DTLB_REFERENCES.d
Performance Monitor Events 7-11

7.8 Performance Monitor Event List

This section enumerates Itanium processor performance monitoring events.

ALAT_REPLACEMENT.ALL

• Title: ALAT Entries Replaced by Any Instruction, Category: Execution

• Definition: ALAT_REPLACEMENT.ALL counts the number of times an advanced load
(ld.a or ld.as or ldfp.a or ldfp.as) or a no-clear check load (ld.c.nc and
variants of ldf.c.nc) displaced a valid entry in the ALAT

• Event Code: 0x38, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

ALAT_REPLACEMENT.FP

• Title: ALAT Entries Replaced by FP Instructions, Category: Execution

• Definition: ALAT_REPLACEMENT.FP counts the number of times a FP advanced load
(ldfp.a or ldfp.as) or a no-clear FP check load (variants of ldf.c.nc) dis-
placed a valid entry in the ALAT

• Event Code: 0x38, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

Figure 7-4. Itanium™ Processor Instruction and Data TLB Monitors

ITLB_MISSES_FETCITLB_REFERENCE

ITLB_INSERTS_HP

ITLB

DTLB_MISSE

DTLB_INSERTS_HP

DTC_MISSE

DATA_REFERENCES_RETI

VHPT Walker

DTLBDTC
7-12 Performance Monitor Events

ALAT_REPLACEMENT.INTEGER

• Title: ALAT Entries Replaced by Integer Instructions, Category: Execution

• Definition: ALAT_REPLACEMENT.INTEGER counts the number of times an integer
advanced load (ld.a or ld.as) or a no-clear integer check load (ld.c.nc) displaced
a valid entry in the ALAT

• Event Code: 0x38, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

ALAT_INST_CHKA_LDC.ALL

• Title: Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.ALL counts the number of all advanced load
checks (chk.a) and check loads in both clear and no-clear forms (ld.c.clr or
ld.c.nc, including FP variants) as seen by the ALAT

• Event Code: 0x36, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_CHKA_LDC.FP

• Title: FP Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.FP counts all FP advanced load checks
(chk.a) and all FP check loads in both clear and no-clear forms (ld.c.clr or
ld.c.nc, FP variants only) as seen by the ALAT

• Event Code: 0x36, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_CHKA_LDC.INTEGER

• Title: Integer Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.INTEGER counts all integer advanced load
checks (chk.a) and all integer check loads in both clear and no-clear forms
(ld.c.clr or ld.c.nc, excluding FP variants) as seen by the ALAT

• Event Code: 0x36, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c
Performance Monitor Events 7-13

ALAT_INST_FAILED_CHKA_LDC.ALL

• Title: Failed Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.ALL counts failed advanced load
checks (chk.a) and failed check loads in both clear and no-clear forms (ld.c.clr or
ld.c.nc, including FP variants) as seen by the ALAT

• Event Code: 0x37, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.FP

• Title: Failed FP Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.FP counts failed FP advanced load
checks (chk.a) and failed FP check loads in both clear and no-clear forms
(ld.c.clr or ld.c.nc, FP variants only) as seen by the ALAT

• Event Code: 0x37, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.INTEGER

• Title: Failed Integer Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.INTEGER counts the number of
failed integer advanced load checks (chk.a) and failed integer check loads in both
clear and no-clear forms (ld.c.clr or ld.c.nc, excluding FP variants) as seen by
the ALAT

• Event Code: 0x37, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALL_STOPS_DISPERSED

• Title: Implicit and Explicit Stops Dispersed, Category: Instruction Issue

• Definition: ALL_STOPS_DISPERSED counts the sum of explicit programmer-speci-
fied stops (EXPL_STOPS_DISPERSED) and dispersal breaks due to resource limita-
tions and branch instructions (independent of their predicate prediction).The sum
includes stops encountered during hardware speculative wrong-path execution (i.e., in
the shadow of a flush)

• Event Code: 0x2F, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no
7-14 Performance Monitor Events

BRANCH_EVENT

• Title: Branch Event Captured, Category: Branch

• Definition: BRANCH_EVENT counts the number of branch events, including multiway
branches

• Event Code: 0x11, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS

• Title: All Branch Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS counts all
branch predictions made on multiway branch bundles

• Event Code: 0x0E, Umask: 0000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS counts
all branch predictions on multiway branch bundles that do not necessitate a backend
branch misprediction flush

• Event Code: 0x0E, Umask: 0001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH

• Title: Incorrect Predicate Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH counts the number
of multiway branch bundles whose combined predicate is incorrectly predicted. This
includes bundles where all branch instructions are predicted not-taken and any one
instruction is actually taken, and those bundles where a branch instruction was predicted
taken and either a prior branch instruction in the bundle was actually taken or the pre-
dicted instruction was not taken. In any event, the processor resteers the frontend to the
correct target, i.e., a given multiway bundle can only be mispredicted once

• Event Code: 0x0E, Umask: 0010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 7-15

BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET

• Title: Incorrect Target Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET counts the num-
ber of multiway branch bundles where a branch instruction is correctly predicted taken,
but its target is incorrect

• Event Code: 0x0E, Umask: 0011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.ALL_PREDICTIONS

• Title: All Branch Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.ALL_PREDICTIONS is analogous
to BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS, except it applies only
to multiway branch bundles where all branch instructions are actually not taken

• Event Code: 0x0E, Umask: 1000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.CORRECT_PREDICTIONS is
analogous to BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS,
except it applies only to multiway branch bundles where all branch instructions are actu-
ally not taken

• Event Code: 0x0E, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.WRONG_PATH

• Title: Incorrect Predicate Predictions on Not-Taken Multiway Bundles, C a te g o r y :

Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_PATH is analogous to
BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH, except it applies only to multi-
way branch bundles where all branch instructions are actually not taken

• Event Code: 0x0E, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
7-16 Performance Monitor Events

BRANCH_MULTIWAY.NOT_TAKEN.WRONG_TARGET

• Title: Incorrect Target Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_TARGET should always
count zero, as not-taken branches do not specify a branch target

• Event Code: 0x0E, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.TAKEN.ALL_PREDICTIONS

• Title: All Branch Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.ALL_PREDICTIONS is analogous to
BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS, except it applies only to
multiway branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.TAKEN.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.CORRECT_PREDICTIONS is analogous
to BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS, except it
applies only to multiway branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.TAKEN.WRONG_PATH

• Title: Incorrect Predicate Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_PATH is analogous to
BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH, except it applies only to multi-
way branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 7-17

BRANCH_MULTIWAY.TAKEN.WRONG_TARGET

• Title: Incorrect Target Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_TARGET should equal
BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET, since only multiway
branch bundles where at least one branch instruction is taken actually specify a target

• Event Code: 0x0E, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.ALL.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_CORRECTLY_PREDICTED
counts the number of correct not-taken predicate predictions on not-taken branches,
independent of predictor

• Event Code: 0x0F, Umask: 0010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.ALL.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_CORRECTLY_PREDICTED
counts the number of correct taken predicate predictions on taken branches, independent
of predictor. Only the predicate must be correct; resteers to incorrect targets are also
counted by this monitor as long as the branch is actually taken

• Event Code: 0x0F, Umask: 0011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.ALL.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_INCORRECTLY_PREDICTED
counts the number of incorrect taken predicate predictions on not-taken branches, inde-
pendent of predictor

• Event Code: 0x0F, Umask: 0000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
7-18 Performance Monitor Events

BRANCH_PATH.ALL.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_INCORRECTLY_PREDICTED
counts the number of incorrect not-taken predicate predictions on taken branches, inde-
pendent of predictor

• Event Code: 0x0F, Umask: 0001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions made in the first pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_CORRECTLY_PREDI
CTED should always count zero, as the TAR is the only predictor in the first stage of the
core pipeline and it only makes taken predictions

• Event Code: 0x0F, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the first pipeline stage, C a t e g o r y :

Branch

• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct taken predicate predictions on taken branches made
by the TAR in the first stage of the core pipeline. Only the predicate must be correct;
resteers to incorrect targets are also counted by this monitor as long as the branch is
actually taken. There are 0 bubbles between the branch and its predicted target

• Event Code: 0x0F, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the first pipeline stage, Category:

Branch

• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect taken predicate predictions on not-taken
branches, made by the TAR in the first stage of the core pipeline

• Event Code: 0x0F, Umask: 0100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 7-19

BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the first pipeline stage, Category:

Branch

• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_INCORRECTLY_PRE
DICTED should always count zero, as the TAR is the only predictor in the first stage of
the core pipeline and it only makes taken predictions

• Event Code: 0x0F, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the second pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct not-taken predicate predictions on not-taken
branches made by the BPT/MBPT in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the second pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct taken predicate predictions on taken branches by
the BPT/MBPT or the TAC in the second stage of the core pipeline. Only the predicate
must be correct; resteers to incorrect targets are also counted by this monitor as long as
the branch is actually taken. There is 1 bubble between the branch and its predicted tar-
get

• Event Code: 0x0F, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
7-20 Performance Monitor Events

BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the second pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect taken predicate predictions on not-taken
branches made by the BPT/MBPT or the TAC in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions made in the second pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect not-taken predicate predictions on taken
branches made by the BPT/MBPT in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions made in the third pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct not-taken predicate predictions on not-taken
branches made by the BAC in the third stage of the core pipeline, including overrides of
TAR taken predictions (made in the first stage) on the last instances of loop-closing
branches

• Event Code: 0x0F, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 7-21

BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the third pipeline stage, Category:

Branch

• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct taken predicate predictions on taken branches made
by the BAC in the third stage of the core pipeline. Only the predicate must be correct;
resteers to incorrect targets are also counted by this monitor as long as the branch is
actually taken. There are 2 bubbles between the branch and its predicted target (or 3, if
the target must be computed for a branch syllable in slot 0 or 1)

• Event Code: 0x0F, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the third pipeline stage, Category:

Branch

• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect taken predicate predictions on not-taken
branches made by the BAC in the third stage of the core pipeline

• Event Code: 0x0F, Umask: 1100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions made in the third pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect not-taken predicate predictions on taken
branches made by the BAC in the third stage of the core pipeline, including overrides of
TAR taken predictions (made in the first stage) on the last instances of loop-closing
branches

• Event Code: 0x0F, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
7-22 Performance Monitor Events

BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS

• Title: All Branch Predictions, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS counts all branch pre-
dictions, which take place in the frontend of the processor. Note that this number does
not necessarily equal the total number of branch instructions in the code, as branch pre-
dictions are made on a bundle basis (i.e., there is only one prediction per multiway
branch bundle)

• Event Code: 0x10, Umask: 0000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS counts all
branch predictions that do not necessitate a backend branch misprediction flush, inde-
pendent of predictor. A mismatch between the predicted and actual values of the branch
predicate or target results in a branch misprediction. Return branches must additionally
predict privilege level and previous function state

• Event Code: 0x10, Umask: 0001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.ALL.WRONG_PATH

• Title: Incorrect Predicate Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.WRONG_PATH counts branch mispredic-
tions that result from a mismatch of the predicted and actual values of the branch predi-
cate, independent of predictor

• Event Code: 0x10, Umask: 0010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.ALL.WRONG_TARGET

• Title: Incorrect Target Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.WRONG_TARGET counts branch mispre-
dictions that result from a mismatch of the predicted and actual values of the branch tar-
get, independent of predictor

• Event Code: 0x10, Umask: 0011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 7-23

BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS counts the
number of branch predictions made in the first stage of the core pipeline by the TAR.
The TAR is the only predictor operating in that stage of the pipeline and it only makes
taken predictions. The PLP in the third stage may override a TAR predicate prediction
on a loop-closing branch. The prediction flow is as follows:

if (TAR Hit)
monitor++
Read Target from TAR

• Event Code: 0x10, Umask: 0100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.1ST_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.CORRECT_PREDICTIONS counts
the number of branches correctly predicted taken by the TAR, both in predicate and tar-
get

• Event Code: 0x10, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH counts the number
of actually not-taken branches predicted by the TAR (excluding overrides by the PLP)

• Event Code: 0x10, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET counts the
number of taken branches that were resteered to an incorrect target by the TAR

• Event Code: 0x10, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
7-24 Performance Monitor Events

BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS counts the
number of branch predictions made in the second stage of the core pipeline. The follow-
ing structures operate in that stage: BPT and MBPT (for predicates), TAC and RSB (for
targets). Predictions are made in the second stage only if no predictions were made dur-
ing the first stage. Any prediction made in this stage will be counted, except when a
taken predicate prediction is made by the BPT/MBPT on a non-return branch and no tar-
get is available from the TAC. The branch prediction structures interact in the following
manner:

if ((BPT Hit) or (MBPT Hit))
if (Predicted Taken)

if (Predicted Return Branch)
monitor++
Read Target from RSB

else
if (TAC Hit)

monitor++
Read Target from TAC

else
Get Target from BAC in the 3rd Stage

else
monitor++
Follow Sequential Path

else
monitor++
if (TAC Hit)

Read Target from TAC
else

Follow Sequential Path

• Event Code: 0x10, Umask: 1000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.2ND_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.CORRECT_PREDICTIONS
counts the number of correct predicate predictions made by the BPT/MBPT or the TAC
in the second stage of the core pipeline. If the predicate prediction is taken, the correct
target must be provided during that stage by the RSB or the TAC. Correct taken predi-
cate predictions made by the BPT/MBPT on non-return branches that miss the TAC
require the BAC to provide a target in the third stage and are not counted by this monitor

• Event Code: 0x10, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 7-25

BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the second pipeline stage, C a t e g o r y :

Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH counts the number
of incorrect not-taken predicate predictions made in the second stage of the core pipe-
line, and the number of incorrect taken predicate predictions made in that stage if a tar-
get was also provided

• Event Code: 0x10, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET counts the
number of branches that were correctly predicted taken by the BPT/MBPT or TAC, but
were resteered to an incorrect target by the RSB or the TAC

• Event Code: 0x10, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS counts the
number of branch predictions made in the third stage of the core pipeline by the BAC.
The BAC can make both predicate predictions (based on the whether hint field of the
branch) and target predictions, in the following manner:

if (TAR Hit)
if (Predicted Last Instance of Loop-Closing Branch)

monitor++
PLP Override of TAR Taken Prediction
Resteer Frontend to Sequential Address

else
if ((BPT Hit) or (MBPT Hit))

if (Predicted Taken)
if (not (TAC Hit))

if (not (Predicted Return Branch))
monitor++
Compute Target

else
if (not (TAC Hit))

monitor++
Read Whether Hint Field for Predicate Prediction
if (Predicted Taken)

Read BType Field for Type Information
if (Indirect Branch)

Read Target from RSB
else

Compute Target
7-26 Performance Monitor Events

else
Follow Sequential Path

• Event Code: 0x10, Umask: 1100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.CORRECT_PREDICTIONS
counts the number of correct branch predictions made by the BAC, including target pre-
dictions of branches whose predicate was supplied by a different predictor. For pre-
dicted-taken branches, both predicate and target must be correct

• Event Code: 0x10, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the third pipeline stage, C a t e g o r y :

Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH counts branches
whose predicate was incorrectly predicted by the BAC (based on the whether hint field
of the branch), and not-taken branches whose taken predicate prediction by another pre-
dictor caused the BAC to supply a target

• Event Code: 0x10, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET counts taken
branches that were correctly predicted taken by any predictor, but whose target was
incorrectly supplied by the BAC

• Event Code: 0x10, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 7-27

BRANCH_TAKEN_SLOT

• Title: Taken Branch Detail, Category: Branch

• Definition: BRANCH_TAKEN_SLOT monitors which slot number in a branch bundle
(single-way or multiway) a taken branch occupies, or records that there were no taken
branches in the given branch bundle

• Event Code: 0x0D, Umask: See below, PMC/PMD: 4,5,6,7 Max. Increment/Cycle:

1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

The SLOT_MASK unit mask defined by Table 7-22 allows profiling of taken branches
based on their instruction slot number. If multiple bits are set in the SLOT_MASK, all
the set cases are included in the event count. The processor uses the following equation
to determine the event outcome in each cycle:

(PMC.umask{16}
and (branch in slot 0 is taken))

or (PMC.umask{17}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is taken))

or (PMC.umask{18}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is NOT taken)
and (branch in slot 2 is taken))

or (PMC.umask{19}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is NOT taken)
and (branch in slot 2 is NOT taken))

CPU_CPL_CHANGES

• Title: Privilege level changes, Category: System

• Definition: CPU_CPL_CHANGES counts the number of privilege level changes

• Event Code: 0x34, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

Table 7-22. Slot unit mask for BRANCH_TAKEN_SLOT monitors which slot number in a
branch bundle (single-way or multiway) a taken branch occupies, or records that
there were no taken branches in the given branch bundle

SLOT_MASK
PMC.umask

{19:16}
Description

Instruction Slot 0 xxx1 Count if branch in slot 0 is first taken branch

Instruction Slot 1 xx1x Count if branch in slot 1 is first taken branch

Instruction Slot 2 x1xx Count if branch in slot 2 is first taken branch

No taken branch 1xxx Count if NO branch was taken
7-28 Performance Monitor Events

CPU_CYCLES

• Title: CPU Cycles, Category: System

• Definition: CPU_CYCLES counts elapsed processor cycles

• Event Code: 0x12, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

DATA_ACCESS_CYCLE

• Title: Data Access Stall Cycles, Category: Stall

• Definition: DATA_ACCESS_CYCLE counts the number of cycles due to a stalled data
cache pipeline, L1D way misprediction flushes, ordering constraints or memory to inte-
ger or FP scoreboard dependences

• Event Code: 0x03, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

DATA_EAR_EVENTS

• Title: L1 Data Cache EAR Events, Category: L1 Data Cache

• Definition: DATA_EAR_EVENTS counts the number of data cache or DTLB events
captured by the Data Cache Unit Event Address Register

• Event Code: 0x67, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

DATA_REFERENCES_RETIRED

• Title: Retired Data Memory References, Category: L1 Data Cache

• Definition: DATA_REFERENCES_RETIRED counts the number of data memory refer-
ences retired by the processor memory pipeline. The count includes check loads,
uncacheable accesses, RSE operations, VHPT memory references, semaphores, and FP
memory references. Predicated off operations are excluded

• Event Code: 0x63, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

DTC_MISSES

• Title: DTC Misses, Category: System

• Definition: DTC_MISSES counts the number of DTC misses for data requests

• Event Code: 0x60, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes
Performance Monitor Events 7-29

DTLB_INSERTS_HPW

• Title: Hardware Page Walker Inserts into the DTLB, Category: System

• Definition: DTLB_INSERTS_HPW counts the number of DTLB inserts completed by
the hardware page table walker

• Event Code: 0x62, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

DTLB_MISSES

• Title: DTLB Misses, Category: System

• Definition: DTLB_MISSES counts the number of DTLB misses for demand requests

• Event Code: 0x61, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

EXECUTION_CYCLE

• Title: Combined Execution Stall Cycles, Category: Stall

• Definition: EXECUTION_CYCLE counts the number of cycles lost due to execution
latency, data dependency, or issue limit stalls (issue window limit, explicit stop, or
resource limit stalls)

• Event Code: 0x06, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

EXECUTION_LATENCY_CYCLE

• Title: Execution Latency Stall Cycles, Category: Stall

• Definition: EXECUTION_LATENCY_CYCLE counts the number of cycles due to
dependencies on integer or FP operations (excluding loads). Delays due to control and
application register reads and writes are factored in as well

• Event Code: 0x02, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

EXPL_STOPS_DISPERSED

• Title: Explicit Stops Dispersed, Category: Instruction Issue

• Definition: EXPL_STOPS_DISPERSED counts the number of explicit programmer-
specified stops, including those encountered during hardware speculative wrong-path
execution

• Event Code: 0x2E, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no
7-30 Performance Monitor Events

FP_OPS_RETIRED_HI

• Title: FP Operations Retired (High), Category: Execution

• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the
derived event FP_OPS_RETIRED.d which is the weighted sum of retired FP operations

• Event Code: 0x0A, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

FP_OPS_RETIRED.d, a derived value, is computed as FP_OPS_RETIRED_HI * 4 +
FP_OPS_RETIRED_LO. Weights for individual FP ops: fnorm=1, fadd=1,
fmpy=1, fma=2, fms=2, fsub=1, fpma=4, fpmpy=4, fpms=4,
fnma=2, frcpa=1, frsqrta=1, fpnma=4, fprcpa=2, fprsqrta=2

FP_OPS_RETIRED_LO

• Title: FP Operations Retired (Low), Category: Execution

• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the
derived event FP_OPS_RETIRED.d which is the weighted sum of retired FP operations

• Event Code: 0x09, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 3

• Qualification: See FP_OPS_RETIRED_HI on page 7-31

FP_FLUSH_TO_ZERO

• Title: FP Result Flushed to Zero, Category: Execution

• Definition: FP_FLUSH_TO_ZERO counts the number of times a near zero result is
flushed to zero in FTZ mode. Parallel FP operations which cause one or both results to
flush to zero will increment the event count only by one (i.e. even if both results are
flushed to zero)

• Event Code: 0x0B, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

FP_SIR_FLUSH

• Title: FP SIR Flushes, Category: Execution

• Definition: FP_SIR_FLUSH counts the number of times a Safe Instruction Recognition
(SIR) flush occurs

• Event Code: 0x0C, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no
Performance Monitor Events 7-31

IA32_INST_RETIRED

• Title: Retired IA-32 Instructions, Category: System

• Definition: IA32_INST_RETIRED counts the number of IA-32 instructions retired

• Event Code: 0x15, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

IA64_INST_RETIRED

• Title: Retired IA-64 Instructions, Category: Execution

• Definition: IA64_INST_RETIRED counts all retired IA-64 instructions. The count
includes predicated on and off instructions, NOPs, but excludes hardware-inserted RSE
operations. This event is equal to IA64_TAGGED_INST_RETIRED with a zero unit
mask

• Event Code: 0x08, Umask: 0000, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

IA64_TAGGED_INST_RETIRED

• Title: Retired Tagged IA-64 Instructions, Category: Execution

• Definition: IA64_TAGGED_INST_RETIRED is analogous to IA64_INST_RETIRED,
except that it further qualifies event selection with the instruction address range and
opcode match settings in the IBR and PMC registers

• Event Code: 0x08, Umask: See below, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

The TAG_SELECT unit mask defined in Table 7-23 always qualifies the event count of
IA64_TAGGED_INST_RETIRED with either the opcode match register PMC8 or
PMC9. Note that the setting of PMC8 qualifies all down-stream event monitors. To
ensure that other monitored events are counted independent of the opcode matcher, all
mifb and all mask bits of PMC8 should be set to one (all opcodes match). The settings of
PMC9 do not affect other event monitors

Table 7-23. Retired Event Selection by Opcode Match

TAG_SELECT PMC.umask {19:16} Description

PMC8 tag 0011 Instruction tagged by Opcode matcher PMC8

PMC9 tag 0010 Instruction tagged by Opcode matcher PMC9

All 0000 All retired instructions (regardless of whether they were
tagged or not)

Undefined All other umask settings Undefined event count.
7-32 Performance Monitor Events

INST_ACCESS_CYCLE

• Title: Instruction Access Cycles, Category: Stall

• Definition: INST_ACCESS_CYCLE counts the number of cycles due to demand
instruction cache and ITLB misses on the correct execution path; i.e., it does not include
cycles due to instruction access in the shadow of branch prediction flushes, branch
misprediction flushes and other backend flushes

• Event Code: 0x01, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

INST_DISPERSED

• Title: Instructions Dispersed, Category: Instruction Issue

• Definition: INST_DISPERSED counts the number of instructions dispersed (including
nops) from the frontend to the backend of the machine. The count includes instruction
dispersal on the wrong execution path; i.e., in the shadow of a branch misprediction
flush or other backend flush

• Event Code: 0x2D, Umask: None, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

INST_FAILED_CHKS_RETIRED.ALL

• Title: Failed Speculative Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.ALL counts the number of failed specu-
lative check load instructions (chk.s). The count excludes predicated off chk.s
instructions and includes both integer and FP variants

• Event Code: 0x35, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

INST_FAILED_CHKS_RETIRED.FP

• Title: Failed Speculative FP Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.FP counts the number of failed specula-
tive check load instructions (chk.s). The count excludes predicated off chk.s
instructions and includes only FP variants

• Event Code: 0x35, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no
Performance Monitor Events 7-33

INST_FAILED_CHKS_RETIRED.INTEGER

• Title: Failed Speculative Integer Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.INTEGER counts the number of failed
speculative check load instructions (chk.s). The count excludes predicated off chk.s
instructions and includes only integer variants

• Event Code: 0x35, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

INST_FETCH_CYCLE

• Title: Combined Instruction Fetch Stall Cycles, Category: Stall

• Definition: INST_FETCH_CYCLE is the sum of INST_ACCESS_CYCLE and the
number of fetch window stalls

• Event Code: 0x05, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

INSTRUCTION_EAR_EVENTS

• Title: Instruction EAR Events, Category: Instruction Cache

• Definition: INSTRUCTION_EAR_EVENTS counts the number of EAR captures for
L1I and ITLB events

• Event Code: 0x23, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

ISA_TRANSITIONS

• Title: IA-64 to IA-32 ISA Transitions, Category: System

• Definition: ISA_TRANSITIONS counts the number of instruction set transitions from
IA-64 to IA-32. This is the number of times the PSR.is bit toggles from 0 to 1 due to
br.ia or rfi to IA-32 code

• Event Code: 0x14, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
7-34 Performance Monitor Events

ISB_LINES_IN

• Title: Instruction Streaming Buffer Lines In, Category: Instruction Cache

• Definition: ISB_LINES_IN counts the number of 32-byte L1I cache lines written from
L2 (and beyond) into the Instruction Streaming Buffer as a consequence of instruction
demand miss and instruction prefetch requests

• Event Code: 0x26, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

ITLB_INSERTS_HPW

• Title: Hardware Page Walker Inserts into the ITLB, Category: System

• Definition: ITLB_INSERTS_HPW counts the number of ITLB inserts done by the hard-
ware page table walker

• Event Code: 0x28, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

ITLB_MISSES_FETCH

• Title: ITLB Demand Misses, Category: System

• Definition: ITLB_MISSES_FETCH counts the number of demand ITLB misses

• Event Code: 0x27, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L1D_READ_FORCED_MISSES_RETIRED

• Title: L1 Data Cache Forced Load Misses, Category: L1 Data Cache

• Definition: L1D_READ_FORCED_MISSES_RETIRED counts the number of loads
that were forced to miss the L1 data cache due to memory ordering constraints, pre-
dicted L1 data cache misses, Store Buffer hits, or simultaneous L2 data returns to the
register file

• Event Code: 0x6B, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes
Performance Monitor Events 7-35

L1D_READ_MISSES_RETIRED

• Title: L1 Data Cache Read Misses, Category: L1 Data Cache

• Definition: L1D_READ_MISSES_RETIRED counts the number of committed L1 data
cache read misses. The count includes any read reference that could have been serviced
by the L1 data cache (see L1D_READS_RETIRED event for a detailed list) but missed
the cache. False misses are included in the event count. Since the L1 data cache is write-
through, write misses are NOT counted

• Event Code: 0x66, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L1D_READS_RETIRED

• Title: L1 Data Cache Reads, Category: L1 Data Cache

• Definition: L1D_READS_RETIRED counts the number of committed L1 data cache
reads (integer and RSE references). Excluded from the count are VHPT loads, check
loads, L1 hinted loads, semaphores, uncacheable and FP loads. Predicated-off loads are
also excluded, but wrong-path operations are included in the count

• Event Code: 0x64, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

L1I_DEMAND_READS

• Title: L1I and ISB Instruction Demand Lookups, Category: Instruction Cache

• Definition: L1I_DEMAND_READS counts the number of 32-byte instruction demand
L1I/ISB lookups, independent of the hit/miss outcome

• Event Code: 0x20, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

Qualifications based on instruction address range may be inaccurate

L1I_FILLS

• Title: L1 Instruction Cache Fills, Category: Instruction Cache

• Definition: L1I_FILLS counts the number of 32-byte lines moved from the Instruction
Streaming Buffer into the L1 instruction cache

• Event Code: 0x21, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
7-36 Performance Monitor Events

L1I_PREFETCH_READS

• Title: L1I and ISB Instruction Prefetch Lookups, Category: Instruction Cache

• Definition: L1I_PREFETCH_READS counts the number of 32-byte instruction prefetch
L1I/ISB lookups, independent of the hit/miss outcome. It includes hardware as well as
software initiated prefetch

• Event Code: 0x24, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L2_DATA_REFERENCES.ALL

• Title: L2 Data Read and Write References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.ALL counts all L2 data read and write
accesses.The reported count is the number of requests prior to cache line merging.
Semaphore operations are counted as one read and one write

• Event Code: 0x69, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L2_DATA_REFERENCES.READS

• Title: L2 Data Read References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.READS counts all L2 data read accesses. The
reported count is the number of requests prior to cache line merging. Semaphore opera-
tions are counted as one read

• Event Code: 0x69, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L2_DATA_REFERENCES.WRITES

• Title: L2 Data Write References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.WRITES counts all L2 data write accesses. The
reported count is the number of requests prior to cache line merging. Semaphore opera-
tions are counted as one write

• Event Code: 0x69, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes
Performance Monitor Events 7-37

L2_FLUSH_DETAILS

• Title: L2 Flush Details, Category: L2 Cache

• Definition: L2_FLUSH_DETAILS allows a detailed breakdown of L2 pipeline flushes
by cause. This event counts the number of L2 pipeline flushes constrained by the condi-
tions specified in the 4-bit unit mask defined by Table 7-24 on page 7-38. All combina-
tions of the four unit mask bits are supported

• Event Code: 0x77, Umask: See below. PMC/PMD: 4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L2_FLUSHES

• Title: L2 Flushes, Category: L2 Cache

• Definition: L2_FLUSHES counts the number of L2 pipeline flushes due to Store Buffer
conflicts, address conflicts, full L3 and bus queues, and other such reasons

• Event Code: 0x76, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L2_INST_DEMAND_READS

• Title: L2 Instruction Demand Fetch Requests, Category: Instruction Cache

• Definition: L2_INST_DEMAND_READS counts the number of L2 instruction requests
due to L1I demand fetch misses. The monitor counts the number of demand fetch look-
ups that miss in both the L1I and the ISB, regardless of whether they hit or miss in the
Request Address Buffer (RAB); i.e., the count includes misses to a line that has already
been requested (secondary misses)

• Event Code: 0x22, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

Table 7-24. Unit Mask Bits {19:16} for L2_FLUSH_DETAILS Event

L2 Flush Reason
PMC.umask

{19:16}
Description

L2_ST_BUFFER_FLUSH xxx1 L2 store to store conflict due to

(a) Same store buffer entry

(b) Back to back stores

L2_ADDR_CONFLICT xx1x L2 flushed due to MESI update on load follows store

L2_BUS_REJECT x1xx L2 flushed due to bus constraints

L2_FULL_FLUSH 1xxx L2 flushed due to one of:
(a) Store buffer full

(b) Load miss buffer full
7-38 Performance Monitor Events

L2_INST_PREFETCH_READS

• Title: L2 Instruction Prefetch Requests, Category: Instruction Cache

• Definition: L2_INST_PREFETCH_READS counts all instruction prefetch requests
issued to the unified L2 cache

• Event Code: 0x25, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L2_MISSES

• Title: L2 Misses, Category: L2 Cache

• Definition: L2_MISSES counts the number of L2 cache misses (requests to uncacheable
pages are excluded). The count includes misses caused by instruction fetch and prefetch,
and data read and write operations. Secondary misses to the same L2 cache line will be
counted as individual misses

• Event Code: 0x6A, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L2_REFERENCES

• Title: L2 References, Category: L2 Cache

• Definition: L2_REFERENCES counts the number of L2 cache references (requests to
uncacheable pages are excluded). The count includes references by instruction fetch and
prefetch, and data reads and writes. The maximum per-cycle increment is three: one
instruction fetch and two data references

• Event Code: 0x68, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L3_LINES_REPLACED

• Title: L3 Cache Lines Replaced, Category: L3 Cache

• Definition: L3_LINES_REPLACED counts the number of valid L3 lines that have been
victimized

• Event Code: 0x7F, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
Performance Monitor Events 7-39

L3_MISSES

• Title: L3 Misses, Category: L3 Cache

• Definition: L3_MISSES counts the number of L3 misses. The number includes misses
caused by both instruction and data requests and L2 line writebacks

• Event Code: 0x7C, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.ALL_READS.ALL

• Title: Instruction and Data L3 Reads, Category: L3 Cache

• Definition: L3_READS.ALL_READS.ALL counts the number of all L3 read accesses,
independent of the stream source (instruction or data) and the hit/miss outcome

• Event Code: 0x7D, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.ALL_READS.HIT

• Title: Instruction and Data L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.ALL_READS.HIT counts the number of all L3 read hits, inde-
pendent of the stream source (instruction or data)

• Event Code: 0x7D, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.ALL_READS.MISS

• Title: Instruction and Data L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.ALL_READS.MISS counts the number of all L3 read misses,
independent of the stream source (instruction or data)

• Event Code: 0x7D, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.DATA_READS.ALL

• Title: Data L3 Reads, Category: L3 Cache

• Definition: L3_READS.DATA_READS.ALL counts the number of data L3 read
accesses, independent of the hit/miss outcome

• Event Code: 0x7D, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
7-40 Performance Monitor Events

L3_READS.DATA_READS.HIT

• Title: Data L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.DATA_READS.HIT counts the number of data L3 read hits

• Event Code: 0x7D, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.DATA_READS.MISS

• Title: Data L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.DATA_READS.MISS counts the number of data L3 read
misses

• Event Code: 0x7D, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.INST_READS.ALL

• Title: Instruction L3 Reads, Category: L3 Cache

• Definition: L3_READS.INST_READS.ALL counts the number of instruction L3 read
accesses, independent of the hit/miss outcome

• Event Code: 0x7D, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.INST_READS.HIT

• Title: Instruction L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.INST_READS.HIT counts the number of instruction L3 read
hits

• Event Code: 0x7D, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.INST_READS.MISS

• Title: Instruction L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.INST_READS.MISS counts the number of instruction L3 read
misses

• Event Code: 0x7D, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
Performance Monitor Events 7-41

L3_REFERENCES

• Title: L3 References, Category: L3 Cache

• Definition: L3_REFERENCES counts the number of L3 cache references (requests to
uncacheable pages are excluded). The count includes references by instruction fetch and
prefetch, data reads and writes, and L2 cache-line writebacks

• Event Code: 0x7B, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L3_WRITES.ALL_WRITES.ALL

• Title: L3 Writes, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.ALL counts the number of L3 write accesses
independent of the hit/miss outcome. The count includes both data writes and L2 write-
back accesses (including L3 Read-for-Ownership requests that satisfy stores)

• Event Code: 0x7E, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.ALL_WRITES.HIT

• Title: L3 Write Hits, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.HIT counts the number of L3 write hits. The
count includes both data writes and L2 writeback accesses (including L3 Read-for-Own-
ership requests that satisfy stores)

• Event Code: 0x7E, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.ALL_WRITES.MISS

• Title: L3 Write Misses, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.MISS counts the number of L3 write misses.
The count includes both data writes and L2 writeback accesses (including L3 Read-for-
Ownership requests that satisfy stores)

• Event Code: 0x7E, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
7-42 Performance Monitor Events

L3_WRITES.L2_WRITEBACK.ALL

• Title: L3 Writebacks, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.ALL counts the number of L3 write
accesses that result from L2 writebacks, independent of hit/miss outcome

• Event Code: 0x7E, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.L2_WRITEBACK.HIT

• Title: L3 Writeback Hits, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.HIT counts the number of L3 write hits
that result from L2 writebacks

• Event Code: 0x7E, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.L2_WRITEBACK.MISS

• Title: L3 Writeback Misses, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.MISS counts the number of L3 write
misses that result from L2 writebacks

• Event Code: 0x7E, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.DATA_WRITES.ALL

• Title: L3 Data Writes, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.ALL counts the number of L3 data write
accesses independent of the hit/miss outcome

• Event Code: 0x7E, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.DATA_WRITES.HIT

• Title: L3 Data Write Hits, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.HIT counts the number of L3 data write hits

• Event Code: 0x7E, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
Performance Monitor Events 7-43

L3_WRITES.DATA_WRITES.MISS

• Title: L3 Data Write Misses, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.MISS counts the number of L3 data write
misses

• Event Code: 0x7E, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

LOADS_RETIRED

• Title: Retired Loads, Category: Memory

• Definition: LOADS_RETIRED counts the number of retired loads. The count includes
integer, FP, RSE, VHPT, uncacheable loads and failed check loads (ld.c). Check loads
that hit in the ALAT are not counted. Predicated-off operations are not counted

• Event Code: 0x6C, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

MEMORY_CYCLE

• Title: Combined Memory Stall Cycles, Category: Stall

• Definition: MEMORY_CYCLE counts the number of cycles lost due to data cache pipe-
line full stalls or stalls due to RSE operations

• Event Code: 0x07, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

MISALIGNED_LOADS_RETIRED

• Title: Retired Misaligned Load Instructions, Category: Memory

• Definition: MISALIGNED_LOADS_RETIRED counts the number of retired mis-
aligned loads that the hardware handled. The count includes integer, FP, and failed
check loads (ld.c). Check loads that hit in the ALAT are not counted. Predicated-off
operations are not counted

• Event Code: 0x70, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes
7-44 Performance Monitor Events

MISALIGNED_STORES_RETIRED

• Title: Retired Misaligned Store Instructions, Category: Memory

• Definition: MISALIGNED_STORES_RETIRED counts the number of retired mis-
aligned store instructions that the hardware handled. The count includes integer, FP, and
uncacheable stores. Predicated-off operations are not counted

• Event Code: 0x71, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

NOPS_RETIRED

• Title: Retired Nop Instructions, Category: Execution

• Definition: NOPS_RETIRED counts the number of retired nop.i, nop.m or nop.b
instructions. The count excludes predicated off nop instructions

• Event Code: 0x30, Umask: None, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

PIPELINE_ALL_FLUSH_CYCLE

• Title: Combined Pipeline Flush Cycles from Frontend or Backend Sources, Category:

Stall

• Definition: PIPELINE_ALL_FLUSH_CYCLE counts the number of cycles spent due to
any resteer of the pipeline. Possible resteer sources include: taken branch predictions,
branch mispredictions, exception flushes, DTC flushes, and other such events. This
event counts the same events as PIPELINE_BACKEND_FLUSH_CYCLE but also
includes cycles due to taken branch resteers

• Event Code: 0x04, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

PIPELINE_BACKEND_FLUSH_CYCLE

• Title: Pipeline Flush Cycles from Backend Sources, Category: Stall

• Definition: PIPELINE_BACKEND_FLUSH_CYCLE counts the number of cycles due
to pipeline resteers from backend sources. It counts the same cycles as
PIPELINE_ALL_FLUSH_CYCLE with the exception of branch prediction resteers

• Event Code: 0x00, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no
Performance Monitor Events 7-45

PIPELINE_FLUSH

• Title: Pipeline Flush, Category: System

• Definition: PIPELINE_FLUSH counts how often the Itanium processor pipeline is
flushed due to IEU bypass conflict (caused by non-unit latency MMX operations such as
variable shifts), data translation cache miss, L1 data cache way mispredict or other rea-
sons such as an exception flush or an instruction serialization. Combinations of different
flush reasons may be chosen by appropriately setting the umask. The monitor does not
include branch misprediction flushes

• Event Code: 0x33, Umask: See below, PMC/PMD: 4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

PREDICATE_SQUASHED_RETIRED

• Title: Instructions Squashed Due to Predicate Off, Category: Execution

• Definition: PREDICATE_SQUASHED_RETIRED counts the number of instructions
squashed due to a false qualifying predicate. The count includes predicated off nop
instructions. Predicated off branches are not counted

• Event Code: 0x31, Umask: None, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

RSE_LOADS_RETIRED

• Title: RSE Load Accesses, Category: Execution

• Definition: RSE_LOADS_RETIRED counts the number of retired RSE loads

• Event Code: 0x72, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Refer to RSE_REFERENCES_RETIRED on page 7-47

Table 7-25. Unit Mask Bits {19:18} for PIPELINE_FLUSH Event

FLUSH_TYPE
PMC.umask

{19:16}
Description

IEU_FLUSH 1xxx IEU bypass flush

DTC_FLUSH x1xx Data Translation Cache Miss flush

L1D_WAYMP_FLUSH xx1x L1 Way Misprediction flush

OTHER_FLUSH xxx1 Other flush reason: exception flush or an instruction
serialization.
7-46 Performance Monitor Events

RSE_REFERENCES_RETIRED

• Title: RSE Accesses, Category: Execution

• Definition: RSE_REFERENCES_RETIRED counts the number of retired RSE loads
and stores

• Event Code: 0x65, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

RSE loads and stores are considered tagged if the alloc, loadrs, flushrs or
branch return or rfi that caused the RSE references was tagged by the instruction
address range or the opcode matcher. For data address range checking, the RSE refer-
ence is tagged only if its hits the programmed DBR range

STORES_RETIRED

• Title: Retired Stores, Category: Memory

• Definition: STORES_RETIRED counts the number of retired stores. The count includes
integer, FP, RSE, and uncacheable stores. Predicated-off operations are not counted

• Event Code: 0x6D, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

UC_LOADS_RETIRED

• Title: Retired Uncacheable Loads, Category: Memory

• Definition: UC_LOADS_RETIRED counts the number of retired uncacheable loads.
The count includes integer, FP, RSE, and VHPT loads and failed check loads (ld.c).
Check loads that hit in the ALAT are NOT counted. Predicated-off operations are not
counted

• Event Code: 0x6E, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

UC_STORES_RETIRED

• Title: Retired Uncacheable Stores, Category: Memory

• Definition: UC_STORES_RETIRED counts the number of retired uncacheable
stores.The count includes integer, FP, RSE, and uncacheable stores. Predicated-off oper-
ations are not counted

• Event Code: 0x6F, Umask: None, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes
Performance Monitor Events 7-47

7-48 Performance Monitor Events

Model Specific Behavior for IA-32
Instruction Execution 8

The Itanium processor is capable of executing IA-32 instructions in the IA-32 system environment
(legacy lA-32 operating systems) provided the required platform and firmware support exists in the
system. The Itanium processor is also capable of executing IA-32 instructions in the IA-64 system
environment (IA-64 operating system). IA-64 operating system support for the capability of
running IA-32 applications is defined by the respective operating system vendor. For more details
on IA-32 instruction execution on IA-64 OS, please refer to Volume 1, Chapter 6 and Volume 2,
Chapter 10.

Note that while Itanium processor supports execution of IA-32 applications, best performance and
capabilities will be realized by using 64-bit optimized OSes and applications

In general, the behavior of IA-32 instructions on the Itanium processor is similar to that of the
Pentium III processor except where noted. The following sections describe some of the key
differences in behavior between IA-32 instruction execution on an Itanium processor and on the
Pentium III processor. These differences do not prevent IA-32 legacy operating systems or IA-32
applications from operating correctly.

8.1 Processor Reset and Initialization

When RESET# is asserted, all IA-64 processors boot at a different reset location than IA-32
processors and start executing IA-64 64-bit code instead of IA-32 16-bit Real Mode code. Unlike
IA-32 processors, IA-64 processors execute PAL firmware to test and initialize the processor and
then continue execution in the IA-64 instruction set to boot the system. SAL firmware code can
switch to the IA-32 instruction set as needed to execute IA-32 BIOS code. For more details on
IA-64 processor reset, please refer to Chapter 11 and Chapter 24 of Volume 2.

8.2 New JMPE Instruction

A new IA-32 instruction JMPE has been defined for IA-64 processors. This instruction comes in
two forms with an opcode for each. These opcodes will cause an Invalid Opcode fault on all IA-32
processors. For more details, refer to Chapter 5 of Volume 3.

8.3 System Management Mode (SMM)

SMM is superseded by the IA-64 Platform Management definition. This mechanism is designed to
provide platform level interrupt support for both IA-32 and IA-64 operating systems. Please refer to
Chapter 11 of Volume 2 for more details on PMI.
Model Specific Behavior for IA-32 Instruction Execution 8-1

The IA-32 SMM and I/O Port Restart feature is not supported on the Itanium processor.
Dynamically, powering off/on I/O devices on an I/O Port reference via system logic is not possible
for IA-32 Operating Systems or IA-64 Operating Systems using the IA-32 SMM I/O Restart
mechanism. I/O Restart has not been extended on IA-64 processors to intercept I/O Port references
from the IA-64 instruction set via normal loads and stores on IA-64 processors.

Execution of the IA-32 RSM (Resume from SMM) instruction results an Invalid Opcode fault on
all IA-64 processors.

8.4 Machine Check Abort (MCA)

The Itanium processor supports Pentium processor level machine checks in the IA-32 System
Environment.

8.5 Model Specific Registers

The complete set of Model Specific Registers (MSRs) found on the Pentium III processor is not
supported on the Itanium processor. For example, Model Specific Debug registers, Model Specific
Test registers, Machine Check registers, and Model Specific Configuration registers are not
supported.

Model Specific registers that are common to the Itanium processor and Pentium III processor use
the Pentium III processor’s bit definition and register assignment. The ITC, APIC_Base, MTRR
and MAP registers are supported on the Itanium processor.

8.6 Cache Modes

Pentium processor and Pentium III processor SRAM Cache Mode is not supported on the Itanium
processor.

SRAM is typically used on IA-32 processors to provide scratch RAM areas while running IA-32
boot and machine check code before memory is available. Both of these functions are now
provided by IA-64 firmware while running IA-32 and IA-64 operating systems.

8.7 10-byte Floating-point Operand Reads and Writes

Many IA-32 FP instructions read and write 10 bytes to memory. Consider the case of 16-bit
segment, where the read or write starts at offset 0xFFF8. Pentium III processor reads or writes
8 bytes then re-evaluates the linear address before reading or writing the final 2 bytes. Eight bytes
are accessed at 0xfff8, and 2 bytes are accessed at 0x0000.

The Itanium processor evaluates the address once, then accesses all 10 bytes. Therefore, bytes
0xfff8 to 0x10001 will be accessed.

On a 10-byte operand read or write access, potential page faults and GP faults will return slightly
different faulting addresses (linear addresses may wrap differently).
8-2 Model Specific Behavior for IA-32 Instruction Execution

8.8 Floating-point Data Segment State

The Itanium processor reports a different value of the floating-point data segment state (FDS) after
the execution of “FNOP” instruction (or any FP instruction that does not perform a memory
reference). The contents of the data register are undefined if the prior non-control instruction did
not have a memory operand. The Pentium III processor behaves as follows:

1. A FP non-transparent instruction which references memory will put the selector of the data
segment used in the memory reference into FDS.

2. A FP non-transparent instruction which doesn’t reference memory will put the selector of SS
into FDS and 0 into FEA.

If a segment override prefix is present on an instruction of the type specified in case 2, the
overriding segment selector will be put into FDS instead of the selector of SS.

The Itanium processor behavior covers only case #1 described above. Note that this difference does
not affect the running of IA-32 applications.

8.9 Writes to Reserved Bits during FXSAVE

During FXSAVE, the Itanium processor does not write any reserved bits, while the Pentium III
processor may write reserved bits. The Itanium processor does one 10 byte access to save each FP
register, whereas the Pentium III processor will do two 8 byte accesses causing writes to upper
reserved bits.

8.10 Setting the Access/Dirty (A/D) Bit on Accesses that
Cross a Page Boundary

In the IA-32 system environment, the Itanium processor sets a page's A/D bit even if a memory
reference crosses a page boundary and the other page has a fault. This behavior is different from
Pentium III processors which do not modify the A/D bit under the above conditions.

The above difference does not come into play in the IA-64 system environment.

8.11 Enhanced Floating-point Instruction Accuracy

On the Itanium processor, FP transcendental instructions will return more accurate (hence slightly
different) answers than Pentium III processor. This behavior falls into 3 categories:

• F2XM1, FYL2X, FYL2XP1, FPATAN Instructions
More accurate algorithms will result in answers which may differ from Pentium III processor
by 1 unit in the last place (ulp). Also, for FYL2X and FYL2XP1, when x or x+1 respectively is
a power of two, the Precision exception is not signaled (since log(2^k) where, k is integral, is
exact).
Model Specific Behavior for IA-32 Instruction Execution 8-3

• FPTAN, FSIN, FCOS, FSINCOS Instructions
New algorithms on Itanium processor include a more accurate argument reduction scheme.
Although more accurate, the algorithms implemented on Itanium processor can produce
answers which are different from those returned on Pentium III processor.

• FPREM, FPREM1 Instructions
No change.

8.12 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction
Differences

These four instructions are single and parallel approximations of divide and square root operations.
The Itanium processor will calculate these functions to a higher accuracy than previous
implementations. resulting in different answers. The Pentium III processor implementation of one
of these functions can have a maximum error of 1.5*10-12. The Itanium processor, however, will
calculate these functions to a maximum error of 1.5*10-16.

8.13 Read/Write Access Ordering

In general, the order of reads/writes within any complex IA-32 instruction is model specific even
among IA-32 processors. Different Intel processors have different access ordering behavior; for
example, internal operation ordering varies between the 80486, Pentium, Pentium III and Itanium
processors.

8.14 Multiple IOAPIC Redirection Table Entries

If multiple IOAPIC Redirection Table Entries (RTE) share the same vector, and at least one RTE is
programmed as logical delivery mode in which the selected local APIC destinations overlap with
the other RTEs with the same vector, some of the selected local APICs might not receive the
interrupt when the pins that correspond to these RTEs are asserted.

8.15 Self Modifying Code (SMC)

The Itanium processor provides the same SMC support as the Pentium processor. Also, a branch
instruction is required between the store that modifies instruction(s) and the modified code.

8.16 Raising an Alignment Check (AC) Fault

The Pentium III processor checks and raises AC fault before a page fault. The Itanium processor
checks and raise a page fault before an AC fault.
8-4 Model Specific Behavior for IA-32 Instruction Execution

8.17 Maximum Number of IA-64 Processors Supported in
MP System Running Legacy IA-32 OS (IA-32 system
environment)

Similar to the case of IA-32 processors in an MP system, the maximum number of IA-64
processors supported in a MP system running legacy IA-32 OS (IA-32 system environment) is 16.
However, in MP systems with IA-32 processors, the number of IA-32 processors can be extended
beyond 16 with additional platform enhancements while the limit for the number of IA-64
processors running IA-32 OS in a MP system is limited to 16.
Model Specific Behavior for IA-32 Instruction Execution 8-5

8-6 Model Specific Behavior for IA-32 Instruction Execution

	1 About this Manual
	1.1 Overview of Volume 1: IA-64 Application Architecture
	1.1.1 Part 1: IA-64 Application Architecture Guide
	1.1.2 Part 2: IA-64 Optimization Guide

	1.2 Overview of Volume 2: IA-64 System Architecture
	1.2.1 Part 1: IA-64 System Architecture Guide
	1.2.2 Part 2: IA-64 System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Instruction Set Reference
	1.3.1 Part 1: IA-64 Instruction Set Descriptions
	1.3.2 Part 2: IA-32 Instruction Set Descriptions

	1.4 Overview of Volume 4: Itanium™ Processor Programmer’s Guide
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	2 Register Stack Engine Support
	2.1 RSE Modes
	2.2 RSE and Clean Register Stack Partitions

	3 Virtual Memory Management Support
	3.1 Page Size Supported
	3.2 Physical and Virtual Addresses
	3.3 Region Register ID
	3.4 Protection Key Register

	4 Processor Specific Write Coalescing (WC) Behavior
	4.1 Write Coalescing
	4.2 WC Buffer Eviction Conditions
	4.3 WC Buffer Flushing Behavior

	5 Model Specific Instruction Implementation
	5.1 ld.bias
	5.2 lfetch Exclusive Hint
	5.3 fwb
	5.4 thash
	5.5 ttag
	5.6 ptc.e
	5.7 mf.a
	5.8 Prefetch Behavior
	5.9 Temporal and Non-temporal Hints Support

	6 Processor Performance Monitoring
	6.1 Performance Monitor Programming Models
	6.1.1 Workload Characterization
	6.1.2 Profiling
	6.1.3 Event Qualification

	6.2 Performance Monitor State
	6.2.1 Performance Monitor Control and Accessibility
	6.2.2 Performance Counter Registers
	6.2.3 Performance Monitor Overflow Status Registers (PMC[0,1,2,3])
	6.2.4 IA-64 Instruction Address Range Check Register (PMC[13])
	6.2.5 IA-64 Opcode Match Registers (PMC[8,9])
	6.2.6 IA-64 Data Address Range Check (PMC[11])
	6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])
	6.2.8 IA-64 Branch Trace Buffer
	6.2.9 Processor Reset, PAL Calls, and Low Power State
	6.2.10 References

	7 Performance Monitor Events
	7.1 Categorization of Events
	7.2 Basic Events
	7.3 Instruction Execution
	7.4 Cycle Accounting Events
	7.5 Branch Events
	7.6 Memory Hierarchy
	7.6.1 L1 Instruction Cache and Prefetch
	7.6.2 L1 Data Cache
	7.6.3 L2 Unified Cache
	7.6.4 L3 Unified Cache

	7.7 System Events
	7.8 Performance Monitor Event List
	• Title:
	ALAT Entries Replaced by Any Instruction

	Execution
	• Definition: ALAT_REPLACEMENT.ALL counts the number of times an advanced load (ld.a or ld.as or ...
	• Event Code:
	0x38
	Umask:

	xx11
	Max. Increment/Cycle:
	2
	• Title:
	ALAT Entries Replaced by FP Instructions

	Execution
	• Definition: ALAT_REPLACEMENT.FP counts the number of times a FP advanced load (ldfp.a or ldfp.a...
	• Event Code:
	0x38
	Umask:

	xx10
	Max. Increment/Cycle:
	2
	• Title:
	ALAT Entries Replaced by Integer Instructions

	Execution
	• Definition: ALAT_REPLACEMENT.INTEGER counts the number of times an integer advanced load (ld.a ...
	• Event Code:
	0x38
	Umask:

	xx01
	Max. Increment/Cycle:
	2
	• Title:
	Advanced Load Checks and Check Loads

	Execution
	• Definition: ALAT_INST_CHKA_LDC.ALL counts the number of all advanced load checks (chk.a) and ch...
	• Event Code:
	0x36
	Umask:

	xx11
	Max. Increment/Cycle:
	2
	• Title:
	FP Advanced Load Checks and Check Loads

	Execution
	• Definition: ALAT_INST_CHKA_LDC.FP counts all FP advanced load checks (chk.a) and all FP check l...
	• Event Code:
	0x36
	Umask:

	xx10
	Max. Increment/Cycle:
	2
	• Title:
	Integer Advanced Load Checks and Check Loads

	Execution
	• Definition: ALAT_INST_CHKA_LDC.INTEGER counts all integer advanced load checks (chk.a) and all ...
	• Event Code:
	0x36
	Umask:

	xx01
	Max. Increment/Cycle:
	2
	• Title:
	Failed Advanced Load Checks and Check Loads

	Execution
	• Definition: ALAT_INST_FAILED_CHKA_LDC.ALL counts failed advanced load checks (chk.a) and failed...
	• Event Code:
	0x37
	Umask:

	xx11
	Max. Increment/Cycle:
	2
	• Title:
	Failed FP Advanced Load Checks and Check Loads

	Execution
	• Definition: ALAT_INST_FAILED_CHKA_LDC.FP counts failed FP advanced load checks (chk.a) and fail...
	• Event Code:
	0x37
	Umask:

	xx10
	Max. Increment/Cycle:
	2
	• Title:
	Failed Integer Advanced Load Checks and Check Loads

	Execution
	• Definition: ALAT_INST_FAILED_CHKA_LDC.INTEGER counts the number of failed integer advanced load...
	• Event Code:
	0x37
	Umask:

	xx01
	Max. Increment/Cycle:
	2
	• Title:
	Implicit and Explicit Stops Dispersed

	Instruction Issue
	• Definition: ALL_STOPS_DISPERSED counts the sum of explicit programmer-specified stops (EXPL_STO...
	• Event Code:
	0x2F
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Branch Event Captured

	Branch
	• Definition: BRANCH_EVENT counts the number of branch events, including multiway branches
	• Event Code:
	0x11
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	All Branch Predictions on Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS counts all branch predictions made on mul...
	• Event Code:
	0x0E
	Umask:

	0000
	Max. Increment/Cycle:
	1
	• Title:
	Correct Branch Predictions on Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS counts all branch predictions on mult...
	• Event Code:
	0x0E
	Umask:

	0001
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Predicate Predictions on Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH counts the number of multiway branch bundles w...
	• Event Code:
	0x0E
	Umask:

	0010
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Target Predictions on Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET counts the number of multiway branch bundles...
	• Event Code:
	0x0E
	Umask:

	0011
	Max. Increment/Cycle:
	1
	• Title:
	All Branch Predictions on Not-Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.NOT_TAKEN.ALL_PREDICTIONS is analogous to BRANCH_MULTIWAY.ALL_PATHS...
	• Event Code:
	0x0E
	Umask:

	1000
	Max. Increment/Cycle:
	1
	• Title:
	Correct Branch Predictions on Not-Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.NOT_TAKEN.CORRECT_PREDICTIONS is analogous to BRANCH_MULTIWAY.ALL_P...
	• Event Code:
	0x0E
	Umask:

	1001
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Predicate Predictions on Not-Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_PATH is analogous to BRANCH_MULTIWAY.ALL_PATHS.WRON...
	• Event Code:
	0x0E
	Umask:

	1010
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Target Predictions on Not-Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_TARGET should always count zero, as not-taken branc...
	• Event Code:
	0x0E
	Umask:

	1011
	Max. Increment/Cycle:
	1
	• Title:
	All Branch Predictions on Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.TAKEN.ALL_PREDICTIONS is analogous to BRANCH_MULTIWAY.ALL_PATHS.ALL...
	• Event Code:
	0x0E
	Umask:

	1100
	Max. Increment/Cycle:
	1
	• Title:
	Correct Branch Predictions on Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.TAKEN.CORRECT_PREDICTIONS is analogous to BRANCH_MULTIWAY.ALL_PATHS...
	• Event Code:
	0x0E
	Umask:

	1101
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Predicate Predictions on Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_PATH is analogous to BRANCH_MULTIWAY.ALL_PATHS.WRONG_PA...
	• Event Code:
	0x0E
	Umask:

	1110
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Target Predictions on Taken Multiway Bundles

	Branch
	• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_TARGET should equal BRANCH_MULTIWAY.ALL_PATHS.WRONG_TAR...
	• Event Code:
	0x0E
	Umask:

	1111
	Max. Increment/Cycle:
	1
	• Title:
	Correct Not-Taken Predicate Predictions

	Branch
	• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_CORRECTLY_PREDICTED counts the number of correct not-ta...
	• Event Code:
	0x0F
	Umask:

	0010
	Max. Increment/Cycle:
	1
	• Title:
	Correct Taken Predicate Predictions

	Branch
	• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_CORRECTLY_PREDICTED counts the number of correct taken ...
	• Event Code:
	0x0F
	Umask:

	0011
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Taken Predicate Predictions

	Branch
	• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_INCORRECTLY_PREDICTED counts the number of incorrect ta...
	• Event Code:
	0x0F
	Umask:

	0000
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Not-Taken Predicate Predictions

	Branch
	• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_INCORRECTLY_PREDICTED counts the number of incorrect no...
	• Event Code:
	0x0F
	Umask:

	0001
	Max. Increment/Cycle:
	1
	• Title:
	Correct Not-Taken Predicate Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_CORRECTLY_PREDI CTED should always count zero, as...
	• Event Code:
	0x0F
	Umask:

	0110
	Max. Increment/Cycle:
	1
	• Title:
	Correct Taken Predicate Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_CORRECTLY_PREDI CTED counts the number of correct...
	• Event Code:
	0x0F
	Umask:

	0111
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Taken Predicate Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_INCORRECTLY_PRE DICTED counts the number of incor...
	• Event Code:
	0x0F
	Umask:

	0100
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Taken Predicate Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_INCORRECTLY_PRE DICTED should always count zero, ...
	• Event Code:
	0x0F
	Umask:

	0101
	Max. Increment/Cycle:
	1
	• Title:
	Correct Taken Predicate Predictions made in the second pipeline stage

	Branch
	• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_CORRECTLY_PREDI CTED counts the number of correct...
	• Event Code:
	0x0F
	Umask:

	1010
	Max. Increment/Cycle:
	1
	• Title:
	Correct Taken Predicate Predictions made in the second pipeline stage

	Branch
	• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_CORRECTLY_PREDI CTED counts the number of correct...
	• Event Code:
	0x0F
	Umask:

	1011
	Max. Increment/Cycle:
	1
	• Title: Incorrect Taken Predicate Predictions made in the second pipeline stage

	Branch
	• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_INCORRECTLY_PRE DICTED counts the number of incor...
	• Event Code:
	0x0F
	Umask:

	1000
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Not-Taken Predicate Predictions made in the second pipeline stage

	Branch
	• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_INCORRECTLY_PRE DICTED counts the number of incor...
	• Event Code:
	0x0F
	Umask:

	1001
	Max. Increment/Cycle:
	1
	• Title:
	Correct Not-Taken Predicate Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_CORRECTLY_PREDI CTED counts the number of correct...
	• Event Code:
	0x0F
	Umask:

	1110
	Max. Increment/Cycle:
	1
	• Title:
	Correct Taken Predicate Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_CORRECTLY_PREDI CTED counts the number of correct...
	• Event Code:
	0x0F
	Umask:

	1111
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Taken Predicate Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_INCORRECTLY_PRE DICTED counts the number of incor...
	• Event Code:
	0x0F
	Umask:

	1100
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Not-Taken Predicate Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_INCORRECTLY_PRE DICTED counts the number of incor...
	• Event Code:
	0x0F
	Umask:

	1101
	Max. Increment/Cycle:
	1
	• Title:
	All Branch Predictions

	Branch
	• Definition: BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS counts all branch predictions, which take plac...
	• Event Code:
	0x10
	Umask:

	0000
	Max. Increment/Cycle:
	1
	• Title:
	Correct Branch Predictions by All Predictors

	Branch
	• Definition: BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS counts all branch predictions that do not ...
	• Event Code:
	0x10
	Umask:

	0001
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Predicate Predictions by All Predictors

	Branch
	• Definition: BRANCH_PREDICTOR.ALL.WRONG_PATH counts branch mispredictions that result from a mis...
	• Event Code:
	0x10
	Umask:

	0010
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Target Predictions by All Predictors

	Branch
	• Definition: BRANCH_PREDICTOR.ALL.WRONG_TARGET counts branch mispredictions that result from a m...
	• Event Code:
	0x10
	Umask:

	0011
	Max. Increment/Cycle:
	1
	• Title:
	All Branch Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS counts the number of branch predictions ...
	• Event Code:
	0x10
	Umask:

	0100
	Max. Increment/Cycle:
	1
	• Title:
	Correct Branch Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.1ST_STAGE.CORRECT_PREDICTIONS counts the number of branches correc...
	• Event Code:
	0x10
	Umask:

	0101
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Predicate Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH counts the number of actually not-taken branc...
	• Event Code:
	0x10
	Umask:

	0110
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Target Predictions made in the first pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET counts the number of taken branches that we...
	• Event Code:
	0x10
	Umask:

	0111
	Max. Increment/Cycle:
	1
	• Title:
	All Branch Predictions in the second pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS counts the number of branch predictions ...
	• Event Code:
	0x10
	Umask:

	1000
	Max. Increment/Cycle:
	1
	• Title:
	Correct Branch Predictions made in the second pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.2ND_STAGE.CORRECT_PREDICTIONS counts the number of correct predica...
	• Event Code:
	0x10
	Umask:

	1001
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Predicate Predictions made in the second pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH counts the number of incorrect not-taken pred...
	• Event Code:
	0x10
	Umask:

	1010
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Target Predictions made in the second pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET counts the number of branches that were cor...
	• Event Code:
	0x10
	Umask:

	1011
	Max. Increment/Cycle:
	1
	• Title:
	All Branch Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS counts the number of branch predictions ...
	• Event Code:
	0x10
	Umask:

	1100
	Max. Increment/Cycle:
	1
	• Title:
	Correct Branch Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.3RD_STAGE.CORRECT_PREDICTIONS counts the number of correct branch ...
	• Event Code:
	0x10
	Umask:

	1101
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Predicate Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH counts branches whose predicate was incorrect...
	• Event Code:
	0x10
	Umask:

	1110
	Max. Increment/Cycle:
	1
	• Title:
	Incorrect Target Predictions made in the third pipeline stage

	Branch
	• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET counts taken branches that were correctly p...
	• Event Code:
	0x10
	Umask:

	1111
	Max. Increment/Cycle:
	1
	• Title:
	Taken Branch Detail

	Branch
	• Definition: BRANCH_TAKEN_SLOT monitors which slot number in a branch bundle (single-way or mult...
	• Event Code:
	0x0D
	Umask:

	See below
	Max. Increment/Cycle:
	1
	• Title:
	Privilege level changes

	System
	• Definition: CPU_CPL_CHANGES counts the number of privilege level changes
	• Event Code:
	0x34
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	CPU Cycles

	System
	• Definition: CPU_CYCLES counts elapsed processor cycles
	• Event Code:
	0x12
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Data Access Stall Cycles

	Stall
	• Definition: DATA_ACCESS_CYCLE counts the number of cycles due to a stalled data cache pipeline,...
	• Event Code:
	0x03
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L1 Data Cache EAR Events

	L1 Data Cache
	• Definition: DATA_EAR_EVENTS counts the number of data cache or DTLB events captured by the Data...
	• Event Code:
	0x67
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Retired Data Memory References

	L1 Data Cache
	• Definition: DATA_REFERENCES_RETIRED counts the number of data memory references retired by the ...
	• Event Code:
	0x63
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	DTC Misses

	System
	• Definition: DTC_MISSES counts the number of DTC misses for data requests
	• Event Code:
	0x60
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Hardware Page Walker Inserts into the DTLB

	System
	• Definition: DTLB_INSERTS_HPW counts the number of DTLB inserts completed by the hardware page t...
	• Event Code:
	0x62
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	DTLB Misses

	System
	• Definition: DTLB_MISSES counts the number of DTLB misses for demand requests
	• Event Code:
	0x61
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Combined Execution Stall Cycles

	Stall
	• Definition: EXECUTION_CYCLE counts the number of cycles lost due to execution latency, data dep...
	• Event Code:
	0x06
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Execution Latency Stall Cycles

	Stall
	• Definition: EXECUTION_LATENCY_CYCLE counts the number of cycles due to dependencies on integer ...
	• Event Code:
	0x02
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Explicit Stops Dispersed

	Instruction Issue
	• Definition: EXPL_STOPS_DISPERSED counts the number of explicit programmer- specified stops, inc...
	• Event Code:
	0x2E
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	FP Operations Retired (High)

	Execution
	• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the derived event FP_OPS_R...
	• Event Code:
	0x0A
	Umask:

	None
	Max. Increment/Cycle:
	3
	• Title:
	FP Operations Retired (Low)

	Execution
	• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the derived event FP_OPS_R...
	• Event Code:
	0x09
	Umask:

	None
	Max. Increment/Cycle:
	3
	• Title:
	FP Result Flushed to Zero

	Execution
	• Definition: FP_FLUSH_TO_ZERO counts the number of times a near zero result is flushed to zero i...
	• Event Code:
	0x0B
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	FP SIR Flushes

	Execution
	• Definition: FP_SIR_FLUSH counts the number of times a Safe Instruction Recognition (SIR) flush ...
	• Event Code:
	0x0C
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Retired IA-32 Instructions

	System
	• Definition: IA32_INST_RETIRED counts the number of IA-32 instructions retired
	• Event Code:
	0x15
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Retired IA-64 Instructions

	Execution
	• Definition: IA64_INST_RETIRED counts all retired IA-64 instructions. The count includes predica...
	• Event Code:
	0x08
	Umask:

	0000
	Max. Increment/Cycle:
	6
	• Title:
	Retired Tagged IA-64 Instructions

	Execution
	• Definition: IA64_TAGGED_INST_RETIRED is analogous to IA64_INST_RETIRED, except that it further ...
	• Event Code:
	0x08
	Umask:

	See below
	Max. Increment/Cycle:
	6
	• Title:
	Instruction Access Cycles

	Stall
	• Definition: INST_ACCESS_CYCLE counts the number of cycles due to demand instruction cache and I...
	• Event Code:
	0x01
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Instructions Dispersed

	Instruction Issue
	• Definition: INST_DISPERSED counts the number of instructions dispersed (including nops) from th...
	• Event Code:
	0x2D
	Umask:

	None
	Max. Increment/Cycle:
	6
	• Title:
	Failed Speculative Check Loads

	Execution
	• Definition: INST_FAILED_CHKS_RETIRED.ALL counts the number of failed speculative check load ins...
	• Event Code:
	0x35
	Umask:

	xx11
	Max. Increment/Cycle:
	1
	• Title:
	Failed Speculative FP Check Loads

	Execution
	• Definition: INST_FAILED_CHKS_RETIRED.FP counts the number of failed speculative check load inst...
	• Event Code:
	0x35
	Umask:

	xx10
	Max. Increment/Cycle:
	1
	• Title:
	Failed Speculative Integer Check Loads

	Execution
	• Definition: INST_FAILED_CHKS_RETIRED.INTEGER counts the number of failed speculative check load...
	• Event Code:
	0x35
	Umask:

	xx01
	Max. Increment/Cycle:
	1
	• Title:
	Combined Instruction Fetch Stall Cycles

	Stall
	• Definition: INST_FETCH_CYCLE is the sum of INST_ACCESS_CYCLE and the number of fetch window stalls
	• Event Code:
	0x05
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Instruction EAR Events

	Instruction Cache
	• Definition: INSTRUCTION_EAR_EVENTS counts the number of EAR captures for L1I and ITLB events
	• Event Code:
	0x23
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	IA-64 to IA-32 ISA Transitions

	System
	• Definition: ISA_TRANSITIONS counts the number of instruction set transitions from IA-64 to IA-3...
	• Event Code:
	0x14
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Instruction Streaming Buffer Lines In

	Instruction Cache
	• Definition: ISB_LINES_IN counts the number of 32-byte L1I cache lines written from L2 (and beyo...
	• Event Code:
	0x26
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Hardware Page Walker Inserts into the ITLB

	System
	• Definition: ITLB_INSERTS_HPW counts the number of ITLB inserts done by the hardware page table ...
	• Event Code:
	0x28
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	ITLB Demand Misses

	System
	• Definition: ITLB_MISSES_FETCH counts the number of demand ITLB misses
	• Event Code:
	0x27
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L1 Data Cache Forced Load Misses

	L1 Data Cache
	• Definition: L1D_READ_FORCED_MISSES_RETIRED counts the number of loads that were forced to miss ...
	• Event Code:
	0x6B
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	L1 Data Cache Read Misses

	L1 Data Cache
	• Definition: L1D_READ_MISSES_RETIRED counts the number of committed L1 data cache read misses. T...
	• Event Code:
	0x66
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	L1 Data Cache Reads

	L1 Data Cache
	• Definition: L1D_READS_RETIRED counts the number of committed L1 data cache reads (integer and R...
	• Event Code:
	0x64
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	L1I and ISB Instruction Demand Lookups

	Instruction Cache
	• Definition: L1I_DEMAND_READS counts the number of 32-byte instruction demand L1I/ISB lookups, i...
	• Event Code:
	0x20
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L1 Instruction Cache Fills

	Instruction Cache
	• Definition: L1I_FILLS counts the number of 32-byte lines moved from the Instruction Streaming B...
	• Event Code:
	0x21
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L1I and ISB Instruction Prefetch Lookups

	Instruction Cache
	• Definition: L1I_PREFETCH_READS counts the number of 32-byte instruction prefetch L1I/ISB lookup...
	• Event Code:
	0x24
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L2 Data Read and Write References

	L2 Cache
	• Definition: L2_DATA_REFERENCES.ALL counts all L2 data read and write accesses.The reported coun...
	• Event Code:
	0x69
	Umask:

	xx11
	Max. Increment/Cycle:
	2
	• Title:
	L2 Data Read References

	L2 Cache
	• Definition: L2_DATA_REFERENCES.READS counts all L2 data read accesses. The reported count is th...
	• Event Code:
	0x69
	Umask:

	xx01
	Max. Increment/Cycle:
	2
	• Title:
	L2 Data Write References

	L2 Cache
	• Definition: L2_DATA_REFERENCES.WRITES counts all L2 data write accesses. The reported count is ...
	• Event Code:
	0x69
	Umask:

	xx10
	Max. Increment/Cycle:
	2
	• Title:
	L2 Flush Details

	L2 Cache
	• Definition: L2_FLUSH_DETAILS allows a detailed breakdown of L2 pipeline flushes by cause. This ...
	• Event Code:
	0x77
	Umask: See below
	Max. Increment/Cycle:
	1
	• Title:
	L2 Flushes

	L2 Cache
	• Definition: L2_FLUSHES counts the number of L2 pipeline flushes due to Store Buffer conflicts, ...
	• Event Code:
	0x76
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L2 Instruction Demand Fetch Requests

	Instruction Cache
	• Definition: L2_INST_DEMAND_READS counts the number of L2 instruction requests due to L1I demand...
	• Event Code:
	0x22
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L2 Instruction Prefetch Requests

	Instruction Cache
	• Definition: L2_INST_PREFETCH_READS counts all instruction prefetch requests issued to the unifi...
	• Event Code:
	0x25
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L2 Misses

	L2 Cache
	• Definition: L2_MISSES counts the number of L2 cache misses (requests to uncacheable pages are e...
	• Event Code:
	0x6A
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	L2 References

	L2 Cache
	• Definition: L2_REFERENCES counts the number of L2 cache references (requests to uncacheable pag...
	• Event Code:
	0x68
	Umask:

	None
	Max. Increment/Cycle:
	3
	• Title:
	L3 Cache Lines Replaced

	L3 Cache
	• Definition: L3_LINES_REPLACED counts the number of valid L3 lines that have been victimized
	• Event Code:
	0x7F
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L3 Misses

	L3 Cache
	• Definition: L3_MISSES counts the number of L3 misses. The number includes misses caused by both...
	• Event Code:
	0x7C
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Instruction and Data L3 Reads

	L3 Cache
	• Definition: L3_READS.ALL_READS.ALL counts the number of all L3 read accesses, independent of th...
	• Event Code:
	0x7D
	Umask:

	1111
	Max. Increment/Cycle:
	1
	• Title:
	Instruction and Data L3 Read Hits

	L3 Cache
	• Definition: L3_READS.ALL_READS.HIT counts the number of all L3 read hits, independent of the st...
	• Event Code:
	0x7D
	Umask:

	1101
	Max. Increment/Cycle:
	1
	• Title:
	Instruction and Data L3 Read Misses

	L3 Cache
	• Definition: L3_READS.ALL_READS.MISS counts the number of all L3 read misses, independent of the...
	• Event Code:
	0x7D
	Umask:

	1110
	Max. Increment/Cycle:
	1
	• Title:
	Data L3 Reads

	L3 Cache
	• Definition: L3_READS.DATA_READS.ALL counts the number of data L3 read accesses, independent of ...
	• Event Code:
	0x7D
	Umask:

	1011
	Max. Increment/Cycle:
	1
	• Title:
	Data L3 Read Hits

	L3 Cache
	• Definition: L3_READS.DATA_READS.HIT counts the number of data L3 read hits
	• Event Code:
	0x7D
	Umask:

	1001
	Max. Increment/Cycle:
	1
	• Title:
	Data L3 Read Misses

	L3 Cache
	• Definition: L3_READS.DATA_READS.MISS counts the number of data L3 read misses
	• Event Code:
	0x7D
	Umask:

	1010
	Max. Increment/Cycle:
	1
	• Title:
	Instruction L3 Reads

	L3 Cache
	• Definition: L3_READS.INST_READS.ALL counts the number of instruction L3 read accesses, independ...
	• Event Code:
	0x7D
	Umask:

	0111
	Max. Increment/Cycle:
	1
	• Title:
	Instruction L3 Read Hits

	L3 Cache
	• Definition: L3_READS.INST_READS.HIT counts the number of instruction L3 read hits
	• Event Code:
	0x7D
	Umask:

	0101
	Max. Increment/Cycle:
	1
	• Title:
	Instruction L3 Read Misses

	L3 Cache
	• Definition: L3_READS.INST_READS.MISS counts the number of instruction L3 read misses
	• Event Code:
	0x7D
	Umask:

	0110
	Max. Increment/Cycle:
	1
	• Title:
	L3 References

	L3 Cache
	• Definition: L3_REFERENCES counts the number of L3 cache references (requests to uncacheable pag...
	• Event Code:
	0x7B
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	L3 Writes

	L3 Cache
	• Definition: L3_WRITES.ALL_WRITES.ALL counts the number of L3 write accesses independent of the ...
	• Event Code:
	0x7E
	Umask:

	1111
	Max. Increment/Cycle:
	1
	• Title:
	L3 Write Hits

	L3 Cache
	• Definition: L3_WRITES.ALL_WRITES.HIT counts the number of L3 write hits. The count includes bot...
	• Event Code:
	0x7E
	Umask:

	1101
	Max. Increment/Cycle:
	1
	• Title:
	L3 Write Misses

	L3 Cache
	• Definition: L3_WRITES.ALL_WRITES.MISS counts the number of L3 write misses. The count includes ...
	• Event Code:
	0x7E
	Umask:

	1110
	Max. Increment/Cycle:
	1
	• Title:
	L3 Writebacks

	L3 Cache
	• Definition: L3_WRITES.L2_WRITEBACK.ALL counts the number of L3 write accesses that result from ...
	• Event Code:
	0x7E
	Umask:

	1011
	Max. Increment/Cycle:
	1
	• Title:
	L3 Writeback Hits

	L3 Cache
	• Definition: L3_WRITES.L2_WRITEBACK.HIT counts the number of L3 write hits that result from L2 w...
	• Event Code:
	0x7E
	Umask:

	1001
	Max. Increment/Cycle:
	1
	• Title:
	L3 Writeback Misses

	L3 Cache
	• Definition: L3_WRITES.L2_WRITEBACK.MISS counts the number of L3 write misses that result from L...
	• Event Code:
	0x7E
	Umask:

	1010
	Max. Increment/Cycle:
	1
	• Title:
	L3 Data Writes

	L3 Cache
	• Definition: L3_WRITES.DATA_WRITES.ALL counts the number of L3 data write accesses independent o...
	• Event Code:
	0x7E
	Umask:

	0111
	Max. Increment/Cycle:
	1
	• Title:
	L3 Data Write Hits

	L3 Cache
	• Definition: L3_WRITES.DATA_WRITES.HIT counts the number of L3 data write hits
	• Event Code:
	0x7E
	Umask:

	0101
	Max. Increment/Cycle:
	1
	• Title:
	L3 Data Write Misses

	L3 Cache
	• Definition: L3_WRITES.DATA_WRITES.MISS counts the number of L3 data write misses
	• Event Code:
	0x7E
	Umask:

	0110
	Max. Increment/Cycle:
	1
	• Title:
	Retired Loads

	Memory
	• Definition: LOADS_RETIRED counts the number of retired loads. The count includes integer, FP, R...
	• Event Code:
	0x6C
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Combined Memory Stall Cycles

	Stall
	• Definition: MEMORY_CYCLE counts the number of cycles lost due to data cache pipeline full stall...
	• Event Code:
	0x07
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Retired Misaligned Load Instructions

	Memory
	• Definition: MISALIGNED_LOADS_RETIRED counts the number of retired misaligned loads that the har...
	• Event Code:
	0x70
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Retired Misaligned Store Instructions

	Memory
	• Definition: MISALIGNED_STORES_RETIRED counts the number of retired misaligned store instruction...
	• Event Code:
	0x71
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Retired Nop Instructions

	Execution
	• Definition: NOPS_RETIRED counts the number of retired nop.i, nop.m or nop.b instructions. The c...
	• Event Code:
	0x30
	Umask:

	None
	Max. Increment/Cycle:
	6
	• Title:
	Combined Pipeline Flush Cycles from Frontend or Backend Sources

	Stall
	• Definition: PIPELINE_ALL_FLUSH_CYCLE counts the number of cycles spent due to any resteer of th...
	• Event Code:
	0x04
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Pipeline Flush Cycles from Backend Sources

	Stall
	• Definition: PIPELINE_BACKEND_FLUSH_CYCLE counts the number of cycles due to pipeline resteers f...
	• Event Code:
	0x00
	Umask:

	None
	Max. Increment/Cycle:
	1
	• Title:
	Pipeline Flush

	System
	• Definition: PIPELINE_FLUSH counts how often the Itanium processor pipeline is flushed due to IE...
	• Event Code:
	0x33
	Umask:

	See below
	Max. Increment/Cycle:
	1
	• Title:
	Instructions Squashed Due to Predicate Off

	Execution
	• Definition: PREDICATE_SQUASHED_RETIRED counts the number of instructions squashed due to a fals...
	• Event Code:
	0x31
	Umask:

	None
	Max. Increment/Cycle:
	6
	• Title:
	RSE Load Accesses

	Execution
	• Definition: RSE_LOADS_RETIRED counts the number of retired RSE loads
	• Event Code:
	0x72
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	RSE Accesses

	Execution
	• Definition: RSE_REFERENCES_RETIRED counts the number of retired RSE loads and stores
	• Event Code:
	0x65
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Retired Stores

	Memory
	• Definition: STORES_RETIRED counts the number of retired stores. The count includes integer, FP,...
	• Event Code:
	0x6D
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Retired Uncacheable Loads

	Memory
	• Definition: UC_LOADS_RETIRED counts the number of retired uncacheable loads. The count includes...
	• Event Code:
	0x6E
	Umask:

	None
	Max. Increment/Cycle:
	2
	• Title:
	Retired Uncacheable Stores

	Memory
	• Definition: UC_STORES_RETIRED counts the number of retired uncacheable stores.The count include...
	• Event Code:
	0x6F
	Umask:

	None
	Max. Increment/Cycle:
	2

	8 Model Specific Behavior for IA-32 Instruction Execution
	8.1 Processor Reset and Initialization
	8.2 New JMPE Instruction
	8.3 System Management Mode (SMM)
	8.4 Machine Check Abort (MCA)
	8.5 Model Specific Registers
	8.6 Cache Modes
	8.7 10-byte Floating-point Operand Reads and Writes
	8.8 Floating-point Data Segment State
	8.9 Writes to Reserved Bits during FXSAVE
	8.10 Setting the Access/Dirty (A/D) Bit on Accesses that Cross a Page Boundary
	8.11 Enhanced Floating-point Instruction Accuracy
	8.12 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction Differences
	8.13 Read/Write Access Ordering
	8.14 Multiple IOAPIC Redirection Table Entries
	8.15 Self Modifying Code (SMC)
	8.16 Raising an Alignment Check (AC) Fault
	8.17 Maximum Number of IA-64 Processors Supported in MP System Running Legacy IA-32 OS (IA-32 sys...

