Intel® |A-64 Architecture
Software Developer’s Manual

Volume 2: IA-64 System Architecture

Revision 1.1

July 2000

Document Number: 245318-002

THIS DOCUMENT IS PROVIDED “AS 1S” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® 1A-64 processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Copyright © Intel Corporation, 2000
*Third-party brands and names are the property of their respective owners.

intel.

Contents

1 About this Manual 1-1
1.1 Overview of Volume 1: 1A-64 Application ArchiteCturecccccevvveeeeeeee e 1-1
1.1.1 Part 1: 1A-64 Application Architecture GUIdecccceeevviiiiciiiiieece e 1-1

1.1.2 Part 2: 1A-64 Optimization GUIAEccvivveeiiiiiiiiiieer e e e e e e 1-2

1.2 Overview of Volume 2: 1A-64 System ArchiteCture.........cccoeovvciiiiieiieee e 1-2
1.2.1 Part 1: 1A-64 System Architecture GUIde..........ccccvveeveeveeeeei i 1-2

1.2.2 Part 2: 1A-64 System Programmer’'s GUIAEc..eeeveeveeeeeiiiiciiiiiieeneeeeeeen 1-3

1.2.3 Y o] 0 1= o [T = SRR 1-4

1.3 Overview of Volume 3: Instruction Set Reference ... 1-4
1.3.1 Part 1: 1A-64 Instruction Set DeSCrPtioNS........cccvvviivieieee e 1-4

1.3.2 Part 2: I1A-32 Instruction Set DeSCrPtioNS........cccuvvveiieieeeee e 1-4

1.4 Overview of Volume 4: Itanium™ Processor Programmer’s Guide...............coccvvvvvenen. 1-4
15 JLIC=1 1201070] 0T)P 1-5
1.6 Related DOCUMENTSueiiiiiiiiiiie sttt sttt e st e e e e st e e e s bb e e e e e sbeeeeeennnes 1-6
1.7 AV To] o TN 115 (0] Y2 OSSPSR 1-6
2 IA-64 System Environment 2-1
21 [A-64 Processor BOOt SEQUENCEuii it s 2-1
2.2 [A-64 System ENVIrONMENt OVEIVIEWuuiiiiiiieaaiiaiiiieeiiiee e e e e e e sieebee e e eea e e e snenes 2-1
3 IA-64 System State and Programming Model 3-1
31 PrivIIEgE LEVEIS.......oiiiiie e s 3-1
3.2 SEANZALION ... e 3-1
3.21 INStruction SerialiZationcovviiiiiiriiiec e 3-2

3.2.2 Data SerialiZationcocvieiriieic e 3-2

3.23 Definition of IN-flight RESOUICES.........ccooiiiiiiiiie e 3-3

3.3 YA (=] 1] = OSSP 3-4
3.3.1 SYSLEM StALE OVEIVIEWvvviiiiieiieees e e eeectiee e e e e e e e s e s s s e e e e e e e e e s e snnreeeees 3-4

3.3.2 Processor Status Register (PSR)uuuviiieeiiiiiiiieie e e e 3-6

3.3.3 (070 a1 (o] Il T=To 1] (T ¢SSR 3-11

3.34 Global Control REQISIEISuviiiiiieee e e e 3-13

3.35 Interruption CoNntrol REQISIENS........uviiiiiiiiee e 3-16

3.3.6 External Interrupt Control REQISIEIScvvvveeeiiiiiiieeeeee e 3-21

3.3.7 Banked General REQISIEISccccuviiiiiiiiiie e 3-22

4 IA-64 Addressing and Protection 4-1
4.1 VAT (0 F= L 2N Lo (=13 T o SRS 4-1
41.1 Translation Lookaside BUffer (TLB)........c.coocciviriieiieee e ccieiiieeeeeee e e e 4-3

4.1.2 Region RegiIStErs (RR) ...cccceeiiiiiiiiiiiieie et e e e e e reen e e e e e e 4-11

4.1.3 [o) (= Tox 110 g TN) USRS 4-12

4.1.4 Translation INSFUCLIONSoovuiiiiiiiiiee e 4-13

4.1.5 Virtual Hash Page Table (VHPT).....oovoo oo 4-14

4.1.6 RV I o = 1= 11T SRR 4-17

4.1.7 VHPT ENVIFONMENT.....tiiiiiiiiiiieiee ittt ee et e e etee e et ee e sbeeeeeeanees 4-19

4.1.8 Translation Searching..........ccccvviiiiiiiiie e 4-20

419 32-bit Virtual AAdreSSINguuvveeiiiieee e e e s e e e e e e e s e e nenes 4-22

4.1.10 Virtual AlIRSING ...eeeeeeieeeseeiiiieie e e e s e e e s e s ssste e e e e e e e e e s s sssan e eeeeeeaeeeeeeaannnes 4-23

4.2 PhySical AQArESSINGccciiieieiiee e e e er e e e e e e s e s aereaeaaeanas 4-24
4.3 Unimplemented AdAreSS BISuuiiieeeiiiiiiieiiiieccee e ee e e e r e e e e e e 4-24

Intel® |A-64 Architecture Software Developer’s Manual iii

431 Unimplemented Physical Address BitS.............cccviiiiiiiiiiiiiieeeeeies 4-24
4.3.2 Unimplemented Virtual Address BitS.........ooccuuuviiiiiiiieiiiiiiieieee e 4-25
4.3.3 Instruction Behavior with Unimplemented Addressesccccceeeeieininnnns 4-25
4.4 MEMOIY ALLHDULES ...t e e e e e e e e e 4-26
441 Virtual Addressing Memory AttribULeS ... 4-26
4.4.2 Physical Addressing Memory Attributes.............eeeiiie 4-27
4.4.3 Cacheability and Coherency Attribute ... 4-28
44.4 Cache Write Policy AtrDULE...........eoiiii e 4-28
4.4.5 Coalescing AIDULEoeeiiiiiei e 4-29
4.4.6 Speculation AHHDULESoooiiiiie e 4-30
4.4.7 Sequentiality Attribute and Ordering ... 4-32
4.4.8 Not a Thing Attribute (NaTPAge)cceeiiiiiiiiiiiiiii e 4-36
4.4.9 Effects of Memory Attributes on Memory Reference Instructions 4-36
4410 Effects of Memory Attributes on Advanced/Check Loadscccceeeeeen. 4-37
4.5 Memory Datum Alignment and AtOMICILY........coouiiiiimiiiiieiiie e 4-38
IA-64 Interruptions 5-1
5.1 INterruption DEfINItIONS.....uueeeiiieie e e e e s 5-1
5.2 Interruption Programming MOE|uuuiiiiiiieiiiii e 5-3
5.3 Interruption Handling during INnStruction EXECULIONcevivvieeiiiiiiiiiiieeeeee e 5-4
5.4 PAL-based Interruption Handlinguuueiiiieeeriiiiiece e e e 5-6
55 IVA-based Interruption Handlingcc.cuvemiiiieeoii e 5-7
5.5.1 Efficient Interruption Handlingccooevioiiiiiiiieiiiee e 5-8
5.5.2 Non-access Instructions and INtErrUPtioNScevveeeeeriiiciiiieereeee e 5-9
5.5.3 S [o] (ST (=T o] o 1T SRR 5-9
5.5.4 Single Instruction Fault SUPPreSSIONcovv i 5-10
5.5.5 Deferral of IA-64 Speculative Load Faults...........cccccceeeeeviiiiciiiiiiiieeece e 5-10
5.6 Ta1E=T (0] 01T oI = o] [SRR 5-13
5.6.1 IA-32 Interruption Priorities and ClasSes........c.uvvveeeviiiiiiiiiieieeeee e 5-16
5.7 IVA-based INterruption VECIOISuuuiiiiiiieiiee e ceciie e e e e e e e e s e e e e e e e e s e e snnennes 5-17
5.8 L (ST 0 U] oS 5-19
5.8.1 Interrupt Vectors and PrioritiesS............oocvvvviiieiiiee e 5-21
5.8.2 Interrupt Enabling and Masking............ccccviviriiieeen e 5-23
5.8.3 External Interrupt Control REQISIEISccoovicviiiiiiiiieee e 5-25
5.8.4 Processor INterrupt BIOCKuuviiiiiiiie e 5-31
5.8.5 Edge and Level Sensitive INtErrUPtS.........coovcviviiieieiiee e ceesieeee e e 5-34
IA-64 Register Stack Engine 6-1
6.1 RSE and Backing StOre OVEIVIEWuuuiiiiiiieaiiaiiiiiieeieee e e e e e e seibeseeeeeaaae e e s e e annnnneees 6-1
6.2 RSE INtEINAl STALE ...ttt e e e e e e e e e e e e e ananeees 6-3
6.3 Register Stack PartitionNscooo i 6-4
6.4 RSE OPEIALION ...ttt e e e et e et e e e e e e e e s abbbebeeeeaaaaeeeseaannrenenees 6-5
6.5 ST =R Ofo1 11 (o | F TS E PP PP 6-6
6.5.1 Register Stack Configuration RegiStereeieiiieiiiiiiiiiiiieeeeee e 6-6
6.5.2 Register Stack NaT Collection ReQIStercciiiiieiiiiiiiiiiiiiiieeee e 6-8
6.5.3 Backing Store Pointer Application RegiSters.........ccccooviiiiiiiiiiiiiieeii e 6-8
6.5.4 RSE Control INSrUCHIONS ...t e e e 6-9
6.5.5 Bad PFS used by Branch RetUrn ..o 6-11
6.6 RSE INTEITUPLIONS ...ttt ettt e e e e e e e e s e b be b be e e e e e e e e e s e e annnnnes 6-11
6.7 RSE Behavior 0N INteITUPLIONSoooii ittt a e e e e 6-13
6.8 RSE Behavior with an Incomplete Register Frameccccccciiiiiiiiiiiiieene s 6-13
6.9 RSE and ALAT INEEFACLIONcciiiiiiiiiiiiiitiee ettt e e e e e e e e 6-14

Intel® 1A-64 Architecture Software Developer’'s Manual

10

6.10 Backing Store Coherence and Memory Ordering...........ceeeeieeaanaiiiiuinieiieeiaaaeaeeeeieenes 6-14
6.11 RSE Backing Store SWItCheS.ooiiiiiiiie e 6-15
6.11.1 Switch from Interrupted CONEXE.........eeeiiiiiiiiiiiiiiieiee e 6-15
6.11.2 Return to Interrupted CONEXLcieiiiieiiiiiiiiie it 6-15
6.11.3 Synchronous Backing Store SWItCh............cccoiiiiiiiiiiiiiiie e, 6-16
6.12 RSE INItANZATION. ...t e et e e e e e e e e e e e s aeees 6-16
IA-64 Debugging and Performance Monitoring 7-1
7.1 1= o 18 o o 1 o O EEPEER 7-1
7.1.1 Data and Instruction Breakpoint REgISters.........cccvvvveevieeeeiiiiivciiiiieeeeee e 7-2
7.1.2 Debug Address Breakpoint Match Conditions............cccceevevviciiiiieiiieee e 7-4
7.2 Performance MONITOMING ...oc.uuieiiiriiree e s e e e e e e e e e reereaeaeeeanean 7-5
7.2.1 Generic Performance Counter REJISLEISuvvvieeeiii i 7-6
7.2.2 Performance Monitor Overflow Status Registers (PMCJ[0]..PMC[3]) 7-9
7.2.3 Performance Monitor EVENESooiiiiiiiiiiiiie e 7-11
7.2.4 Implementation-independent Performance Monitor Code Sequences....... 7-11
IA-64 Interruption Vector Descriptions 8-1
8.1 Interruption Vector DESCHPLIONS ..ottt e e e e e e e eeaeeees 8-1
8.2 S Y= 1] 0o | TSP PPPRPPTTUTIN 8-1
8.3 [A-64 Interruption Vector Definition..............iiiiii e 8-2
IA-32 Interruption Vector Descriptions 9-1
9.1 T YA I 7= o J @0 To [TP PPPPPRRRN 9-1
9.2 [A-32 Interruption Vector DefiNitioNSciiiii e 9-1
IA-64 Operating System Interaction Model with 1A-32 Applications 10-1
10.1 INSLruCtion Set TraNSITIONS ...cceeiiviiiieeiiiiie ettt e e ebee s 10-1
10.2 System RegiSter MOEL.........cceiiiiieiieiec e 10-1
10.3 1A-32 System Segment REQISIEIS.uuuuiiiieieeii i e e e s e e e e e e e 10-3
10.3.1 1A-32 Current Privilege LEeVEL.........uuuuiiiiieeiiei it e e 10-4
10.3.2 1A-32 System EFLAG REQISTENuvuuiiieie ettt ee e 10-4
10.3.3 1A-32 System REQISIEISc.ci it e e 10-7
10.4 Register Context Switch Guidelines for IA-32 COdeccoevvveiviiiiiiiieee e 10-11
104.1 ENtering [A-32 PrOCESSES.....cccuveieeieeieeee et e e e e e e e e e 10-12
10.4.2 EXitiNG IA-32 PrOCESSES ...ceveeeiieiceiiiiiiieiieeeee e et s ssssiaaeeaneesaaae e e s s e annnenneeeeees 10-12
10.5 1A-32 Instruction Set Behavior SUMMAIY..........ccccvuiiiiiieieee e cicieeieee e e e e 10-13
10.6 System Memory MOEL..........oooueiiiiiiiiiie e 10-18
10.6.1 Virtual MemMOory REfEIENCESuuvviiiieieie e a e 10-19
10.6.2 1A-32 Virtual Memory ReferenCeSccvveeiiiiiiciiiiieeeee e 10-19
10.6.3 IA-32 TLB Forward Progress ReqUIremMentsccccccvveeeeevicunvvnnenneeeeeennn 10-20
10.6.4 Multiprocessor TLB CONEIENCYuueevieieeeieiiiiiiiieeiiee e e e s eeaieee e 10-20
10.6.5 1A-32 Physical Memory RefErenCescccccovvvccvvviiiiiiie e 10-21
10.6.6 SUPEIVISOI ACCESSES ..eiiiiieeeiiiiiitireiieeteeeeessssssstertererereeeaesssnssnrnnaereeeeaens 10-21
10.6.7 MemOry AIGNMENT.....uuiiiiiieiee i e e s s e e e e e e s e eeees 10-21
10.6.8 AtOMIC OPEIatiONSvvviieiieieeeiieeiiitie e e e e e e e e s sssr e e e e ae e e s e s snnaenreeereeees 10-22
10.6.9 Multiprocessor Instruction Cache Coherency.......cccccceeeeeeiiicciciieiieeeeeeenn, 10-23
10.6.10 1A-32 MeMOrY OFUEIING ..eeeeeeeiiitieeieee e e e e e e s e e r e e e e e e e e e s ereeeaeeas 10-23
10.7 /O POrt SPACE MOUEccceeiiiiiiiiee et e e e e e 10-25
10.7.1 Virtual I/O Port AdAreSSiNgcoccuvvvrieirieiee s e crceee e e e e e e e e s snenaeeeeeeee s 10-26
10.7.2 Physical I/O Port ADdreSSiNg......ccuuuueeeieeeeeiiiiiiiiiieereeee e e e s s snnnnieeeeeeeeeeees 10-28
10.7.3 1A-32 IN/OUT INSIIUCHIONSvvveiieeiiiiie ettt 10-29
10.7.4 /O Port Accesses by Loads and StOres..........cccccvveveeeeeeeesiiccivnniinneeeeen, 10-30

Intel® |A-64 Architecture Software Developer’'s Manual Y

11

12

13

Vi

10.8 DEDUG MOUEI ...ttt e e e e e e ae e e as 10-30
10.8.1 Data Breakpoint Register MatChing............occcuuiiiiiiiiiniiiieee e 10-31
10.8.2 Instruction Breakpoint Register Matching..........cccccceeeriiiiiiiiiiiieeeee e 10-32
10.9 INterruption MOEL........oooiiiiie e a e 10-32
10.9.1 INEEITUPLION SUMIMATY ...ttt e e 10-33
10.9.2 1A-32 Numeric Exception MOdel ..o 10-34
10.10 Processor Bus Considerations for IA-32 Application SUpportcccoeveiviieeeeennn. 10-35
10.10.1 1A-32 Compatible BUS TranSactioNS...........cccuuviiieeiiieaneeeiiiiieieeeee e 10-35
IA-64 Processor Abstraction Layer 11-1
11,1 Firmware MOGEI........ooiiiiiiie et eneeas 11-1
11.1.1 Processor Abstraction Layer (PAL) OVEIVIEWccceveviviniveeeeieeeeeesiiinnns 11-2
11.1.2 Firmware ENtryPointSccooiiiiiiiiiiiiecee et ee e e e e s e e s s en e e e e ee e e e e 11-4
11.1.3 PAL ENIYPOINES...euiiiiiie e it e e e s e e e e e e s s s s st er e e e e e e e e e annnnnns 114
0 0 R ¥ A I o1 Y/ 0T £ PSSR 11-5
11.1.5 OS ENUYPOINS ..tvtiiiiiiiie e e siiiiiee et e e e e e e s s s st e e e e e e e s e e snnnnnreaeeneaeeeeeaannanns 11-5
11.1.6 Firmware AddreSS SPACEuuuurieiieeeeeiiiiiiiiieieereeeeeeses s st reeeeeeeseeannnenes 11-5
11.2 PAL POWEE ON/RESEL ...ttt ettt et e e s e e st e e e e e e 11-8
11.2.1 PALE _RESET ..ttt e 11-8
11.2.2 PALE_RESET EXit State ...ccciiiiiiiiiiiiiiie ettt 11-9
11.3 MACKhINE ChECKSeiiiiiiiiiie e s enee e 11-12
11.3.1 PALE_CHECK ... ittt e 11-12
11.3.2 PALE_CHECK EXit STAtE ...cciivviiiiiiiiiiee s 11-14
11.3.3 Returning to the Interrupted ProCeSSccoovviiiivieiieeee e 11-20
11.4 PAL INItIAliZation EVENTScoiiiiiiie e 11-20
I R = B 1Y o PRSPPI 11-20
11.4.2 PALE_INIT EXIt StAteveveeiiiiiiiee ettt 11-21
11.5 Platform Management Interrupt (PMI)ccceeiiiiiiiieec e 11-22
1151 PMIOVEIVIEW ...ttt ettt ettt ettt e et e e e e snanneeeenans 11-22
11.5.2 PALE_PMI EXIt STAE ...veiiiiiiiiiiie ettt inaee e 11-23
11.5.3 Resume from the PMI Handler............cccooiviiiiiiiiiiii e 11-25
T =0 1= g Y oV =T = 0 0= o | 11-25
0 = A I €] 0177 1 Y2 11-27
11.8 PAL PrOCEUUIESoueiiiiiitieiie ettt a e st e e s e et e e e s e e e e e annbe e e e e enneee 11-28
11.8.1 PAL Procedure SUMMANYccuuuiiiiierieeeieeiiiinineeeeeeeee e e s snssnnsesneeeeseeeeenns 11-29
11.8.2 PAL Calling CoNVENTIONS........ccciiiiiiieieeeee e e s e sceinteeee e e e e e e e e e s snenrnaeeaeeeee s 11-32
11.8.3 PAL Procedure SpecifiCationsS.........ccceeeviiiiciiiiiiiiiie et ee e e e 11-38
About the IA-64 System Programmer’s Guide 12-1
12.1 Overview of the 1A-64 System Programmer’'s GUIde..........cccuvveereeieeeeeeiicesciinieeeeeeenn 12-1
12.2 Related DOCUMENLS ..ottt ettt e e e e e e e e e bbb e e e eeaaae e e s 12-3
MP Coherence and Synchronization 13-1
13.1 An Overview of IA-64 Memory AcCesS INSIIUCLIONS.........cccvvuiiiiiiiieeei e 13-1
13.1.1 Memory Ordering of Cacheable Memory References.........ccccccccveeviiincnnnns 13-1
13.1.2 LOAAS QNG SEOTES ..eeiieiiiiiiiie ettt ettt e e e nnb e e e 13-2
13.1.3 SEMAPRNOIES ...ttt e e e e s rr e e e e e e e nnnn 13-2
13.1.4 MEMOTY FENCES....coiiiiiiiitiititt e e e e e e e e e e e e e e e et e e et e e e eeeetebebeeb b abena s 13-4
13.2 1A-64 MEMOIY OFAEING .ottt e e et e e e e e e e s e e st bbbeeeaeaaaaeeeas 13-4
13.2.1 1A-64 Memory Ordering EXECULIONSoocuiiiiiiiiiiieae e 13-4
13.2.2 MEMOrY ALLHDULES ..oevveee e er e e e e e e s 13-16

Intel® 1A-64 Architecture Software Developer’'s Manual

14

15

16

13.2.3 Understanding Other Ordering Models: Sequential Consistency

AN TA-32 it 13-17

13.3 Where IA-64 Requires Explicit Synchronizationccccccoviiiiiiiiiiei e, 13-18
13.4 Synchronization Code EXAMPIES.......uuuiiieeieiiiiiiciiieiee e e e e e e e e e 13-19
R B R o 1 0TSSP 13-19

13.4.2 Simple Barrier Synchronizationeeveeeeeiiiiiiiieieieee e ceenineee e e 13-20

13.4.3 DeKKer's AlGOItNMcooiiiiiiiiieece e 13-21

13.4.4 Lamport’s AlQOMthMe.......coooi i 13-22

13.5 Updating CoOe IMAGEScceiiiiiiiiiiiiieete ettt e e e et ee e e e e e e e e e e nnbeebeees 13-24
13.5.1 Self-modifying COUEcovveeiiiiieee e 13-24

13.5.2 Cross-modifying COUEccoviiiriiiiiiiei e e e e e 13-25

13.5.3 Programmed /Ooo oo 13-26

L1354 DIMA ittt brrr e s nraaae s 13-28

13.6 REEIEINCES ...ttt e e e e e e e e e e e e e e e e nnaeeaee s 13-28
Interruptions and Serialization 14-1
2 O I~ ¢ 0 11 o] (o o O 14-1
14.2 Interruption VECtOr TabIEcoooieiiiiieeee e 14-2
14.3 INterruption HANAIEES ..ot e a e e eeeae e 14-3
1431 EXeCution ENVIFONMENT.......ooiiiiiiiiiie e a e e 14-3

14.3.2 Interruption REQISIEr State..........uuiiiiiiiiiiiiiiiieiee e 14-4

14.3.3 Resource Serialization of Interrupted State.........ccccccveeiiiviciiiiiieieeee s 14-5

14.3.4 Resource Serialization UPON Mi.........cuieeeiiiiiiiiiieiieice e e e 14-6

I R 1 01 (=Y ¢ (U o] £ o] T F= U To |1 o P 14-6
14.4.1 Lightweight INtErrUPLIONSceviiiiiiiiiie et e e e 14-6

14.4.2 Heavyweight INterruptionSuuiiiiiiiiiiee e 14-7

14.4.3 Nested INtEITUPLIONS ...ocoiiiiiiiiie ettt e e e e e e e e 14-9
Context Management 15-1
15.1 Preserving Register State across Procedure CallS...........coocvvvvieeiiieee i, 15-1
15.1.1 Preserving General REQISIEISuuuviiieieeiiiiiiieiieir e ee e ss s e e e e e e 15-2

15.1.2 Preserving Floating-point REQISLErScooii it 15-3

15.2 Preserving Register State iN the OS ... 15-3
15.2.1 Preservation of Stacked Registers inthe OSccccceiiiiiiiiiiiiiiienn, 154

15.2.2 Preservation of Floating-point State inthe OSccccccceeeiiiiiiiciiiiiiieee e, 15-5

15.3 Preserving ALAT CONEIENCYcccuuuiiiiiiiiii ettt e e e s s s en e e e e e e s e s reneeeees 15-6
T Y £ (=] 14 T - Y P 15-6
15.4.1 epc/Demoting Branch REUMNcoooiiiiiiiiiiiiie e 15-7

15.4.2 DrEAK/ i 15-7

15.4.3 NaT Checking for NaTs in System CallScccceeiiiiiiiiiiiiiiiiieeeeeee e 15-8

155 CONEXE SWILCNING ..tvttiiiiiiieeiis i e e e e e s e s e e e e e e e e e e s neennreeereeeeeas 15-8
15.5.1 User-level Context SWItChING.........ceuvvieeieriiiiiiieiieiee e 15-8

15.5.2 Context Switching in an Operating System Kernel...........ccccoevecvvvveenennenn, 15-10
Memory Management 16-1
16.1 1A-64 Address SPace MOUEIuueiiiiiiiiii e 16-1
16.1.1 REQIONS ..ttt ettt e e e e e e e e e bbb e e e e e e e e e e e e annees 16-1

16.1.2 ProteCtiON KEYS ..uuvuiiiiiiieeiisiiiiiiiiiee et e e e e s s e e e e e e e s s s nnnnaesaeeeeaaeeeanennnnes 16-3

16.2 Translation Lookaside BUffers (TLBS)ccovcuvviiiiiiieie e vinnnen e e e e 16-5

Intel® |A-64 Architecture Software Developer’'s Manual vii

17

18

19

20

viii

16.2.1 Translation REQISIErS (TRS)......uuutiiiiiiiiaaiiiiiiiiieie et a e 16-5
16.2.2 Translation Caches (TCS)....ccicuuuuriiiiieiie ettt e e e e e e 16-7
16.3 Virtual Hash Page Table.......cccuuiiiiiiiieie e e e 16-10
16.3.1 SHOIt FOIMAL ..o e e s 16-11
16.3.2 [0} g T o 0 = L 16-12
16.3.3 VHPT UPALESvvviiieiiiiiiie ittt ettt et e e snnae e s 16-12
16.4 TLB MiSS HANGIEIS ...t 16-12
16.4.1 Data/Instruction TLB MiSS VECIOIScooiiiiiiiiiiiiiiieee e 16-12
16.4.2 VHPT Translation VECIOI........ccuuviiiiiiiiiiee ittt 16-13
16.4.3 Alternate Data/Instruction TLB MiSS VECLOIS........cccevviiviiieiiiiieeeeiiiieeeenne 16-15
16.4.4 Data Nested TLB VECIOKcooiiiiiiiiiiiiiie e 16-15
16.4.5 DIrty Bit VECIOK ..eeeiiiiiiieii ettt e e 16-15
16.4.6 Data/Instruction AcCess Bit VECIONoooiiuiiiiiiiiiiieee e 16-16
16.4.7 Page NOt PresSent VECIOr........cooov i 16-16
16.4.8 Data/Instruction Access Rights VECIONcc.vvvieeiieeeeiiiiccieeeeeeee e 16-16
G TR ST ST W1 oo =V 1] o PSSO 16-16
Runtime Support for Control and Data Speculation 17-1
17.1 Exception Deferral of Control Speculative Loadsoooiuuiiiiiiiiiiiiiiiiiiiieeeeeeenn 17-1
17.1.1 Hardware-only Deferralo 17-2
17.1.2 Combined Hardware/Software Deferral............ccouveiiiiiieiiiiiiiie e 17-2
17.1.3 Software-only Deferral.........c..uuuiiiiiieii e 17-2
17.2 Speculation Recovery Code REQUIFEMENTS.........uvviiieeiiiiiiiiiiiieeeeeeees e e sereeveereereee e 17-2
17.3 Speculation Related Exception HANAIErScoiiiiiiiiiiiiiiieeeee e 17-3
17.3.1 1A-64 Unaligned HandIerooeiiiiiiiiiiiiiieee e 17-3
Instruction Emulation and Other Fault Handlers 18-1
18.1 Unaligned Reference HaNAIErcoveeieiiiiiiiiiiiieeee e 18-1
18.2 Unsupported Data Reference Handlercevvevviiieeiii e 18-2
18.3 lllegal Dependency Fault............uuiiiiiiie i 18-2
18.4 LONQG BIANCH ...t e e aaa e 18-3
Floating-point System Software 19-1
19.1 1A-64 Floating-point EXCEPIONS.....ccciiiii ittt e e e e e e e 19-1
19.1.1 The Software Assistance Exceptions (Faults and Traps).......cccccccevveeernnnns 19-1
19.1.2 The IEEE Floating-point Exception Filter.........cccccccveeiiiiiiiiiiiieee e 19-4
19.2 1A-32 Floating-point EXCEPLIONS.....ccciieeiiiiiciiiiie et e e e e e s ses s e e e e e e e s e e e snrenranereeeeee e e s 19-6
IA-32 Application Support 20-1
20.1 Transitioning between [A-64 and [A-32 ..o 20-1
20.1.1 IA-32 Code Execution ENVIFONMENLSuviiiiiiiiaaiiiiiiiieee e e 20-2
b0 O o g T- LR PPPPPPPRPTPRPR 20-2
20.1.3 IMPE ..o a e e e 20-3
20.1.4 Procedure Calls between IA-64 and [A-32 ..o 20-3
20.2 1A-32 Architecture HandIErSouuiiiiiiiiii e 20-4
20.3 Debugging IA-32 and IA-64 COAEcocoiiiiiiiiiiiiieiiiee e 20-6
20.3.1 InStruction BreakPOintSooiiiiiiiiiiieiae et e e 20-6
20.3.2 Data BreakpointS ... 20-6
P24 IR T B [0 To | [T (=T o T I =1 o SRR 20-6
20.3.4 TaKen BrancCh TraPSuucieiieeieeiiiiiieeieeeeeeeeesessstenieneeeeee e e s e e snnnnnnrnaneeeeeeeees 20-6

Intel® 1A-64 Architecture Software Developer’'s Manual

22

23

24

External Interrupt Architecture 21-1
21.1 External INterrupt BASICS.....ccoiiiiiiiiiiiiiiie ettt e e e e e 21-1
21.2 Configuration of External INnterrupt VECIOIS........cooiivcivviiiiieiee e e 21-1
21.3 External Interrupt MasKingocooiuiiiiiiieiee e e e e s rr e e e e e e e e s ennneneees 21-2
21311 P ORIttt 21-2
21.3.2 IVR Reads and EOI WHILES ...t 21-2
21.3.3 Task Priority Register (TPR)......coc i 21-3
21.3.4 External Task Priority Register (XTPR)cooiiiiiiiiiiiiieeee e 21-3
21.4 External INterrupt DEIIVEIYocoiii it e e er e e e e e e e s nnnenes 21-3
21.5 Interrupt Control Register Usage EXamplesccccouiriiiieeeeii i e 21-5
P22 18575 R T = (o] o OO PRPR 21-5
21.5.2 TPR and XPTR Usage EXample ... 21-5
21.5.3 EOIUSAQE EXAMPIEouiiiiiiiieiii e 21-6
2154 IRR USAQE EXAMPIE...ccuiiiiiiiii it 21-6
21.5.5 Interval Timer Usage EXamplecccoovveiiieiieiiin e 21-7
21.5.6 Local RedireCtion EXamPIE......ccccoiiiiiiiiiiiieieeee et e e 21-8
21.5.7 Inter-processor Interrupts Layout and Examplecccccoooiiiiiiiiiininnnnnnnn, 21-8
21.5.8 INTA EXAMPIE oottt e e e e e e 21-9
I/O Architecture 22-1
22.1 Memory Acceptance FENCE (MF.a).....uuuiiiiiireeiiieciee e 22-1
P A V(O B o ¢ G0 o - o] SRRSO 22-2
Performance Monitoring Support 23-1
23.1 Architected Performance Monitoring MechanisSmsccccccoiiiiiiiiiieieieee i, 23-1
23.2 Operating SYSIEM SUPPOIT ...ceieiiiiiit ettt e e e e e e r e eea e e e e e e annnnrenes 23-2
Firmware Overview 24-1
24.1 Processor BOOt FIOW OVEIVIEW.........ccoiiiiiiiiiiiiiiee ettt e e siiiee e sbaeee e e e 24-1
24.1.1 Firmware BOOt FIOW.......coouuiiiiiiiiiiiie e 24-1
24.1.2 Operating System BOOt STEPSccuuvriiriiiieeeeeeiii st e e e e e e sarnrerr e eee s 24-3
24.2 RUNEIME ProCedUre CallS........ouiiiiiiiiiiieeiiee ettt a e e e 24-6
24.2.1 PAL Procedure CallScooooiiiiiiiii i 24-6
24.2.2 SAL Procedure CallSccieiiiiiiiiiiiiiiieieee ettt 24-8
24.2.3 EFIProcedure CallScccuueeiiiiiiiiieiiiiiee ettt 24-8
24.2.4 Physical and Virtual Addressing Mode Considerations.............cccccvvvveennn.. 24-8
24.3 Event Handling in FIrMWare.........cccuuiiiiiiie e s e e e e e e e 24-9
24.3.1 Machine Check Abort (MCA) FIOWScooiiiiiiiiiiiiiiiieeeee e 24-9
24.3.2 INIT FIOWS oieeieiies ittt ettt e e e e e estbe e e e et be e e e e nnnes 24-12
24.3.3 PMIFIOWS....cciiiiie ettt ettt a e et e e e antae e e e et ae e e e e 24-12
IA-64 Resource and Dependency Semantics A-1
Al Reading and WtING RESOUICES.........coiiiiiiiiie ittt ettt e sibee e e e nireeee e A-1
A.2 Dependencies and SerialiZation............ccoeiieiiiiiieiire e A-1
A3 Resource and Dependency Table Format NOteScccevviiiiiiiiee e, A-2
A.3.1 Special Case INStruCtion RUIESccceveiiiiiiiiiiiiir e A-3
A.3.2 RAW Dependency TabIe ...t A-4
A.3.3 WAW Dependency Tablecccuvueiiieeiiiiiccee e A-11
A.3.4 WAR Dependency Table ... e A-15
A.3.5 Listing of Rules Referenced in Dependency Tables............cccocvveveeereeiiinnnns A-15

Intel® |A-64 Architecture Software Developer’'s Manual iX

A4 SUPPOIT TADIES ... e e e e e e e A-17
B Code Examples B-1
B.1 OS BOOt FIOW SAMPIE COUE ...ceeiiiiieeieiite ettt ettt e e e e e e e e e et e e e eaaaaaeas B-1
Figures
2-1 System EnNvironment BOOt FIOWcooiiiiiiiiiiii ittt a e 2-2
2-2 [IA-64 SYStEM ENVIFONIMENT ...ttt e e et e e e e e e e e e s babe e beeeaaaae e e s aanns 2-2
3-1 System RegiSter MOAEIo et e e eee s 3-5
3-2 Processor Status ReGISTEr (PSR)uuiiiiiiiiiaiiii ettt e e e e e e e e 3-6
3-3 Default Control Register (DCR — CRO)cooii ittt e e re e e e ae e e e 3-13
3-4 Interval Time Counter (ITC — ARZA) ..ottt e e e e e e e e e 3-14
3-5 Interval Timer Match Register (ITM — CRL)........uuiiiiiiiiiaeieee e 3-14
3-6 Interruption Vector Address (IVA — CR2) ...ttt a e 3-15
3-7 Page Table ADAress (PTA — CR8) ...ttt a e e e e 3-15
3-8 Interruption Status Register (ISR — CRL7) ..o 3-17
3-9 Interruption Instruction Bundle Pointer (IIP — CR19)ccoiiiiiiiiiiiiiiiiieeeeee e 3-18
3-10 Interruption Faulting ADdress (IFA — CR20)uuuiiiiiiiiaeaaiieiie e e e e e 3-19
3-11 Interruption TLB Insertion RegiSter (ITIR)uuiiiiiiiiiiiiii et 3-19
3-12 Interruption Instruction Previous Address (IIPA — CR22)eeiiiiiiiiiiiiiiieeeeee e 3-20
3-13 Interruption FUNCtion State (IFS — CR23)uuuiiiiiiiiieiaeiei et 3-21
3-14 Interruption Immediate (IIM — CR24) ...t e e 3-21
3-15 Interruption Hash ADdress (IHA — CR25) ...t 3-21
3-16 Banked General REGISIEIScooueiiiiiiiiiiie ettt ettt e e e e e e s e et bbb e e e eaaaeeeeaanannns 3-22
4-1 VirtUAl AQArESS SPACES ... ittt ettt e ettt e e e e e e e e e e bbbt bt e e e e e e e e e e s s nnnbeeeeeeas 4-2
4-2 Conceptual Virtual ADddress TranSIationcco i 4-3
4-3 TLB OFQANIZATION.ceiiiiee ittt ettt et e e e e e e e et bbbt et e e e e e e s s e e aabb bttt e eeaaaeaeeeannnnbeeeeeeas 4-3
4-4 Translation INSErtionN FOIMAL...........ooiiiiiiiii e 4-7
4-5 Translation Insertion FOrmat — NOt PreSENt.........c.uvviiiiiiiieiee et 4-9
4-6 RegioN REGISIEr FOIMIALcooiiiiii ettt e e e e e e e re e e e e e e e e e e s 4-11
4-7 Protection Key RegISer FOIMALuiiiiiiiiiiii et e e e e e e 4-12
4-8 Virtual Hash Page Table (VHPT) ...t e e e 4-14
4-9 VHPT SROMt FOIMMALeeeieiiiie ettt ettt e e e e sbre e e e e sbbreeeenaaes 4-15
4-10 VHPT NOt-present SNO FOMMALueiiiiiiiaiiiiiieie et e e e e e e e e e 4-16
4-11 VHPT LONG FOMMAL.ot e e e e e e e e e e e e e e e eeeeeeseeeeessbnbebnnnanneanas 4-16
4-12 VHPT NoOt-present LONg FOMMAL..........ooiiiiiiiiiiiiiiiiiiie s e e e e e e e e e e eeeeeeeeeeeeeeneaneeanas 4-17
4-13 Region-based VHPT Short-format IndeX FUNCHIONcooiiiiiiiiiiiiiiieiieeee e 4-18
4-14 VHPT Long-format Hash FUNCHONoiiiiiiiiiii ettt e e 4-18
4-15 TLB/VHPT SEAICH ...ttt et e e e e 4-21
4-16 32-bit Address Generation USING AddP4oooiiiiiiiiiiiee e e e e e e e e 4-23
4-17 Physical Address Bit FIEIAScooeieiiiiieie e 4-24
4-18 Virtual Address Bit FI ISoiii i 4-25
4-19 Physical AddreSSiNG MEIMOIYooiuiiiiiiiiieeie ettt e e e e e e e e e e e e e e e e e s s e e anbeabeeeaaaaaaaaaean 4-27
4-20 Addressing Memory AHDULES ... e eeeeaa e e as 4-28
5-1 INterruption ClIaSSIfICALIONcooi ittt e e e e e e e e e e e e e e annnes 5-3
5-2 INEEITUPLION PrOCESSING . .eetiiiiiiii ittt ettt et e e e e e e e e s e bbb b bbbt et e e e e e e s s e aansnbbbaeeaeaaaaaeseaannnnes 5-5
5-3 INterrupt ArChitECIUIE OVEIVIEWuuiiiiiiiiie ettt ettt e e e e e e e e s bbb ae e e e e e e e e e as 5-19
5-4 PAL-based INtErTUPL STAESooiieieiiie ettt e e e e e e e e s ae e e e e e e e e e e an 5-21
5-5 EXternal INTEITUPL SEALEScoii ittt e e e e e e e e s bbb reeeeaaaaeaeaean 5-22
X Intel® 1A-64 Architecture Software Developer’'s Manual

5-6
5-7

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17

10-1
10-2
10-3
10-4
10-5
10-6
111
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20

LOCAI ID (LID — CRBA) ..eeieiieeiee ettt ettt ettt s e e e e s e e e e e e e e e e 5-26
External Interrupt Vector Register (IVR — CRB5).........uuuiiiiiiiiiaiiiiiiieiieee e 5-27
Task Priority RegisSter (TPR — CRB6)........ccuuiiiiiiiiiiiiiae ettt e e e eeeeaaa e e e e 5-27
End of External Interrupt Register (EOI — CRB7)......ccuuuiiiiiiiiiae et 5-28
External Interrupt Request Register (IRR0-3 — CR68, 69, 70, 71) ...cccuvviieiiiiiaeieiiiiiiieieeeeenn 5-28
Interval Timer VECIOr (ITV — CRT72) ..ttt e e e e e e e 5-29
Performance Monitor Vector (PMV — CR73) ..ottt 5-29
Corrected Machine Check Vector (CMCV — CR74)......oi et 5-30
Local Redirection Register (LRR — CR80,81).......cciiiiiiiiiiiiiiieee ettt 5-30
Processor Interrupt BIock MemOory LaYOUL.coooiiiiiiiiiiiiiiie et 5-31
Address Format for Inter-processor INterrupt MESSAGESccevvviuiviiiiiiieiia et e e e 5-32
Data Format for Inter-processor INterrupt MESSAQES.uuueiriiieai et e e 5-32
Relationship between Physical Registers and Backing StOreooccociiiiiiiiiiiiniiiiiiieeeen, 6-2
Backing Store MemOry FOIMMAL.........coiiiuiuiiiiiiiiee ettt e e e e e e e e e s e e e e eaeeas 6-2
Four Partitions of the Register StacCKeeuiiiiiiiii e 6-5
Data Breakpoint REgIStErS (DBR)......ccooiiiiiiiiiieieie ettt e e e e e e enb e e 7-2
Instruction Breakpoint REQISIErS (IBR)ceiiiiiiiiiiiiiiiieeee e e e e e 7-2
Performance MoNitor REGISIEE SeTccuuiiiiiiiiiii e 7-7
Generic Performance Counter Data Registers (PMD[4]..PMD[P]).....cceeriirummmmmmieeiaaaeeeieivieee 7-7
Generic Performance Counter Configuration Register (PMC[4]..PMDIP]). ... vvveeeeeeeereriininiinnnn 7-7
Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])cuvvveremieieririiiiiiieeeeenn. 7-10
Performance Monitor Interrupt Service Routine (implementation independent)...................... 7-12
Performance Monitor Overflow Context Switch ROULINE............cocciviiiiiiiii e 7-13
1 Y I =T ol ©o Lo [PP TR 9-1
[A-32 INTEICEPT COUR.eeeieiieieie ettt et e e e e e e e e e bbbt e e et e e e e e e e e snabbbeaaeaaaaaaeeeas 9-22
IA-32 System Segment Register Descriptor Format (LDT, GDT, TSS).......cooiiciviiieieeieeeneennn. 10-3
[A-32 EFLAG REQISTEN ... ieieete ittt ettt ettt e st e e e e e e e b e e e e e nnee s 10-5
Control Flag Register (CFLG, AR27) ...ttt ettt e e eea e e e e e e s aennneees 10-8
[A-32 and 1A-64 Virtual Memory AdAreSSinNgcoccuveuieiiiiiieeiieiiie e 10-19
[/O POrt SPACE MOUEI ...ttt e e e e e e bareeaaae s 10-26
[/O POrt SPACE AQUArESSING ..coeiiiiiiiiiiiiitie ettt e ettt e e e e e e e st e e e e e e e e e e e e aaabbbeebeeeaaaaeaas 10-27
FIrMWAIE MOUEI ...ttt e st e e e e bbb e e anee s 11-2
Firmware Services MOUEIcoo i e 11-3
Firmware Entrypoints LOgIiCal MOGEL.............oiiiiiiiiiiii e 11-4
FIrMWAre AQAIESS SPACEeeeeiiiiiieiiii ittt e e e e e e e e bbbt b e et e eeaa e e e e s aaannbaseeeeeaaas 11-6
Firmware INterface Table.........oooiiiii e 11-7
Firmware Interface Table ENtry ... 11-8
SALE_ENTRY State ParamMeterciiiiiiiiiiie ettt s e e s e a e e e eanran e 11-10
Self-teSt State PArAMETENeeiiii ittt e st e e e srr e e e eaa 11-11
Processor Stat€ ParameLEroiiiiiiiiiiiiiiiiiiie e 11-15
Processor Min-state Save Area LAYOULcuiiii ittt eeee e 11-18
Processor State Saved in Min-State SAVEe ArCa.........c.euvveiiiiiieeiiiiiieeeee e 11-19
SALE_ENTRY State ParamMetercoiiiiiiiiiie ettt e e e s et e e e anran e 11-20
SALE_ENTRY State Parametercciiiiieiiiiii ettt e s e e e s e et eaeanran e 11-22
Y I = 0115/ o To] 1 | £ PP UPUR PP 11-23
POWET STALESeiiiiiiiiiiii e et e e e 11-26
operation Parameter LAYOULeiii ittt ettt e e e e e e e e bbb e e e e e e e e s e e s nnennees 11-43
config_INfO_1 RETUIN VAIUEuuiiiiiiieeie e e e 11-46
config_INfO_2 RETUIMN VAIUEueeiiiiiiii e e 11-47
config_INfO_1 RETUIN VAIUEuuiiiiiiiiieie e e e 11-50
config_INfO_2 RETUIN VAIUEueeiiiiiieeeie e 11-50

Intel® |A-64 Architecture Software Developer’'s Manual Xi

11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
16-1
16-2
19-1
24-1
24-2
24-3
24-4
24-5

Xii

config_INfO_3 RETUIN VAIUEcoooiiiiiiie e 11-50
Layout of line_id REtUIN VAIUE ...t a e 11-52
Layout of line_id REtUIN VAIUE ...t a e 11-55
Layout of platform_info INpUt Parameter ... 11-57
1/0O Size and Type INformation LAYOULooiiiiiiiiiiie et e e e e 11-70
Layout of power_buffer REtUIN ValUeoooiiiiiiii e 11-72
Pending RetUrn Parameter..... ..o ittt bbb e e e e e s 11-74
[EVEL_INAEX TAYOUL ...t e e e et e e e e e e e e e e e e b aebaeeeae s 11-78
CaChE_ChECK LAYOULeuiieiiiiiiieie ittt e e e e et e e e e e e e e e e e e ban e e reeea e s 11-81
TLB_ChECK LAYOULcceiiiii ittt e ettt et e e e e e e e st eaeaeeeaaeaeeaansnnneees 11-82
BUS CHECK LAYOUL ...ttt ettt e e e e e e e e e e st r b e eeaaaaaaaeas 11-83
Reg_File_ CheCK LAYOULcooiieee ettt e e e e e e e e s 11-84
UArCH_ChECK TAYOUL ...t e e et ae e e e as 11-85
Layout of attrib REtUIN ValUEueiiiiiiiie e 11-90
Layout of PM_INfO RETUIMN VAIUE.........eeiiiiiiiiei et 11-92
Layout of hints REtUIN ValUEouiiiiiiiiiii e e s 11-101
Layout of min_pal_ver and current_pal_ver Return Valuescccccceveeiiiiniiiiiiiiieeneenn, 11-104
Layout of tc_info REtUIN ValUEouiiiiiiiiiiaii e 11-105
Layout of vm_info_1 RELUIN VAIUEooiiiiiiiiiiieee et 11-107
Layout of vm_info_2 RELUIMN VAIUEooiiiiiiiiiiieie e 11-108
Layout of TR_valid RETUIN VAIUE..........eeiiiiiiiaiii e e 11-109
IA-64 Ordering SEMANTICSccoiiiiiitiiiie ettt e e e e e e e e bbb e et e e e e e e e s e aaaabbbebbeeeaaaaeaeaaean 13-6
Interaction of Ordering and Accesses to Sequential LOCatioNnseecveeieeiiiiiiiiiiiiieeeeneennnn. 13-17
Why an IA-64 Processor Requires a Fence during Context SWitchescccccceeiiinnnins 13-18
] o] I e o3 1 @0 To [= T PO TP TSRO 13-19
Sense-reversing Barrier Synchronization Code ..o 13-20
Dekker’s Algorithm in @ 2-Way SYSEEIM ...c.ooii ittt e e e e e e e 13-22
LampPort’'s AIGOFTNIM ... ittt e e e e e e e e s et b e e e e e e e e e e e e aannas 13-23
Updating a Code Image on the LOCal PrOCESSOruiiiiiiiiiiiiiiiiieieceee et 13-24
Supporting Cross-modifying Code without Explicit Serializationcccoceeeeiiiiiniiiine 13-25
Updating a Code Image on a REmMOte ProCESSOrcuiiiiiiiiiiiiiiiiiieee e 13-27
Self-mapped Page TabIeo e s 16-11
510 o] o=V |1 o [P PP TSP 16-16
IA-64 Floating-point Exception Handling OVEIVIEWccouiiiiiiiiiiiiieaee e 19-3
FIrMWAre MOGEI ... ettt e st e s s bbb e e s bbb e e s e annneeee s 24-2
Control Flow of Boot Process in a Multi-processor Configurationccccccooeeiiiiiiiieieennennenn. 24-4
Correctable Maching Check Code FIOWc..eiiiiiiiiiieiiiiiee et 24-10
Uncorrectable Machine Check Code FIOWcoiiiiiiiiiiiiieiiiee e 24-10
INTT FIOW .ttt e st e e et e e bt e e e ket e e ebb e e e ebbe e e smbeaeanbeasanbeeann 24-13

Intel® 1A-64 Architecture Software Developer’'s Manual

intel.

Tables

3-1 Processor Status Register INSIIUCLIONSeiiiiii i 3-6
3-2 Processor Status Register FIelUSo 3-7
3-3 (070 a1 o] I L= 0[] 1= £ SRS 3-11
3-4 Control REgIStEr INSIIUCTIONSuvuiiiieiiie e e s e e ce et e e e e e e s s s e e e e e e e e e s e e eaereeeeeeseanannnnes 3-12
3-5 Default Control RegIStEr FIElUSooi i e e eee e 3-13
3-6 Page Table AdAreSs FIEIUSoiiiii i r e e e s e e eeeee s 3-16
3-7 Interruption Status ReQIStEr FIEIASuvvviiiiii e 3-17
3-8 ITIR FHEIAS ..t e sttt e e st e e s e nb e e e e nbbae e e e nnbeeas 3-19
3-9 Interruption FUNCLION State FIEldScoiiii e 3-21
4-1 Purge Behavior Of TLB INSITUCLIONS..........uiiiiiiiiiiiee ettt 4-6
4-2 Translation INterface FIElUS i e e e e e e e e e eneenes 4-8
4-3 Page ACCESS RIGNLS ...t e e e e e e e e s ae e e 4-9
4-4 ArChiteCted PAge SIZEScoiiiiiiiiii et e e e e et e e e e e e e e e 4-10
4-5 ReQION REQISIEN FIEIAS ...t e e e e e eeeeeeeas 4-11
4-6 Protection ReQISIEr FIEIUScuiiiiiii et e e e aee e s 4-12
4-7 TransIation INSIIUCTIONScoiiiiiiiiie ittt e e s snb e e e s s snbeee e e s nnaneeeeaas 4-13
4-8 RV o I I o B 0] ' = L =Y o RS 4-16
4-9 TLB and VHPT S€aArch FAUILSccoiiiiiiiiiiiiiiiee ettt 4-22
4-10 Virtual Addressing Memory Attribute ENCOINGScccvuvviiiiiieiee e e e ee e 4-26
4-11 Physical Addressing Memory Attribute ENCOAINGSccccuviiiiiiiiee e 4-27
A Y g Y11= To IS o= Yo U] - 11 o] o SO 4-31
4-13 Register Return Values on Non-faulting Advanced/Speculative Loadsc.ccccooeiiiiienennen. 4-31
4-14 Ordering Semantics and INSIIUCLIONSuuiiiiiiiiiiiii i a e ee e 4-33
4-15 OFAErING SEMANTICS.uueuteieeiiieae e e ittt e e e e e e e e s e e aabb bt et e eeeaaaaaeaaaaaasabeebbeeeaaaaeaaasaanbanbeeeeeeeeans 4-34
4-16 ALAT Behavior on Non-faulting Advanced/Check LOads...........coooiiuiiiiiiiiiiiiiiiiiiieeeeeeeen 4-38
5-1 ISR Settings for NON-acCeSS INSLIUCTIONSociiiiiiieiiii e ee e e e e e 5-9
5-2 Programming MOUEISuuiiiiiiieeiee ittt e e e e e e ettt e e ee e e e e e e e e nnbbaaeeeeaeas 5-10
5-3 [CoT=T o 1[0 I @ T = 1] o= o o 5-11
5-4 Qualified EXCEPLioN DEFEITAL........uueiiiiiee i e e e e e e e e e e e nnennenees 5-12
5-5 T (=T 0] o [0 I = o] [EESEEE 5-14
5-6 Taie=Tagu] o[g MY A=Tox (o] gl Ir=1 o] (=T (AV 1) SR 5-18
5-7 Interrupt Priorities, Enabling and MasKiNg..........ccoiuiiiiiiiiiiieie s e e e e e e senvvrnee e e e ae e 5-23
5-8 External Interrupt Control REQISIEISuuuiiiiiiiiie e e e e e e e 5-25
5-9 (I Tor= | I 1B I 1= o SRR P RPN 5-26
5-10 Task Priority ReQISter FIEIASc..uuuiiiiiiiiiaei et a e e e 5-27
5-11 Interval Timer VECIOr FIEIASuuiiiiiiiiiaiiei ettt e e e e e 5-29
5-12 Performance Monitor VECLOr FIEIAScuiiiii it 5-29
5-13 Corrected Machine Check Vector Fields..........ccuuuiiiiiiiiiiiiieeeeee e 5-30
5-14 Local Redirection ReQIStEr FIelUS.cuiiiiiiiiiiiieee et 5-30
5-15 Address Fields for Inter-processor Interrupt MESSAQEScoovcuvvvieiiiiieeeeee e siirrierer e e e e e e e 5-32
5-16 Data Fields for Inter-processor INterrupt MESSAQEScccevevvvcuvrriiieiieee e e e e eeseeierre e e e e e e e e e anennnes 5-33
6-1 RSE INEIMNAL STALE.......eeiiie ittt e st e e e s e bt e e e s s beb e e e e e e nnbeeas 6-3
6-2 RSE Operation Instructions and State Modificationcccccvveeeii v 6-6
6-3 R ES] SlY o o L= TSR (R ST O 1 o o =) I 6-7
6-4 Backing Store Pointer Application REQISIEIS.......c..ciiiiiiiiieieeeec e 6-9
6-5 RSE CONIOl INSIIUCTIONS ...ttt ettt e e e e e e e st e e e e e e e e e e e e bbb aeeeeeeeas 6-10
6-6 RSE INtEIrrUPLION SUMIMAIY ...eeeiiiiiii ittt ettt e e e e e e e et e e e e ee e e e e e e e e annbreaeeeeeaas 6-12
7-1 Debug Breakpoint Register Fields (DBR/IBR)........ccoiiiiiiiiiiiii et 7-3
7-2 DEDUQG INSLIUCTIONS ...ttt e e e e ettt e e e e e e e e e e e s aanb bbbt e aeeeaaeaeeea s aanbaebeeeeaeas 7-3
7-3 Generic Performance Counter Data Register Fields...........ccuueeiiiiiiiiieee e 7-7
7-4 Generic Performance Counter Configuration Register Fields (PMC[4]..PMD[P])......cceeveuurrnenn 7-8

Intel® |A-64 Architecture Software Developer’'s Manual Xiii

7-5
7-6

8-1
8-2

8-4
9-1
9-2
9-3
9-4
9-5
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
111
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33

Xiv

Reading Performance Monitor Data REQISLErS.cuiiii it e e 7-8
Performance MONItOr INSTIUCTIONSceiiiiiiiiiiiit ettt e e e e e e e e e e 7-9
Performance Monitor Overflow Register Fields (PMC[0]..PMCJ[3]) ..eeeeeieeiiiiiiiiiiiiiiieieeeeeee 7-10
Writing of Interruption ReSOUrces DY VECION..........eiiiiiiiiiee e 8-2
ISR Values ON INEEITUPLION ..ieee ettt e e e e e e st e e e e e e e e e e s snabenaneeeeeeee e e eanns 8-3
ISR.COAE FIeldS ON IA-B4 TTAPS ...uvvvreeeiieeeeeiiiiitttieeireeeeeessasssssrersrrereeaeesssasassnnssaerereeeeeesssnnannes 8-5
Interruption Vectors Sorted AlphabetiCallyevvvviiiieieiii e 8-6
e 72 I - o o To [SRR 9-1
Intercept Code DefiNItiON..........coii i e e e e e e s e a e e e e 9-22
Segment Prefix Override ENCOINGSuuvvviiiiiiiee i e s st er e e e e e e s e s arneee e e e 9-22
Gate Intercept Trap Code Identifier..........c.uueieiiiiiii e 9-23
System Flag Intercept Instruction Trap Code Instruction Identifierccccccceiiiiiiiiiiiiennen. 9-24
IA-32 System RegiSter MaPPINGueeeeeeiiaiaaiai ittt e e e et e e e e e e e e s e s snbbebereeeeaaaaeeas 10-2
IA-32 System Segment Register Fields (LDT, GDT, TSS).....ccccuutiirieiiaaaneeiiiiiieeeee e 10-3
IA-32 EFLAG Field DEfiNItIONvviiiiiiiiiiie ettt et e st e e s sntnaee e s s nnnaeeae s 10-5
IA-32 Control Register Field Definitionooi it 10-8
[A-32 INSLIUCLION SUMIMAIY ...eiiiiiiiiiiiiiiie e e ettt e et e e e e e e e s bbeeeeeeeaaaaesassanbebbbaeeaeeaaaaans 10-13
Instruction Cache CONErenCY RUIES.......covii i i i e s 10-23
IA-32 Load/Store Sequentiality and OFderiNgcc.uevveiieeeeeiiiiiiiiiiee e e e e s s ssireerr e e e e e e e e 10-24
IA-32 INterruption VECIOr SUMIMAIYuuuiieiieeeieeiiieniieeeeeeeeeeessssntaaeeereaeeeesessnnrnnrneeeeeeeesans 10-33
IA-32 INtErTUPLION SUMMIATY ..o ee e e e e e se st e e e e e e e s e e st r e e e e e s e e sannntneeaeeeaeaeeeaanan 10-33
e I Y 157/ 11 11-8
fUNCLION FIEIA VAIUES ...ttt rbaeaeee s 11-10
STALUS FIEIA VAIUBS ...ttt et e e e e e e e e e s e e baeeeaeas 11-11
SEALE FIEIA VAIUEBS..... ettt e e e e e e e e e e a e beeeeaeas 11-11
Processor State Parameter FIEldS ...t 11-15
Software Recovery Bits in Processor State Parameter...........ccccccoviiiiiiiiiiiiieeee e 11-17
FUNCHON FIEIA VAIUBS ...ttt e e e e e e e e eneeees 11-20
FUNCHON FIEIA VAIUBS ...t e e e e e e e e e enaeees 11-22
PMI EVENES QN PrIOMTIES ...eeiiiiiiiiiiie ittt st e e s 11-23
PMI Message VECtor ASSIGNIMENTSuuuiiiiiieeeis i iiiierieeereeeeeseessssnaeeeereaeeeessssensnnrnnereereeeaes 11-24
PAL Procedure INdeX ASSIGNMENTuuuiiiieeeeeiisiiiieiieeeeeee e e s e e sssteaeeeeeeeeee s s s s snnrnnrnaeeeeeeesans 11-29
PAL Cache and Memory PrOCEAUIES........cciiii it eee e e e e e e e s s s e e e e e e e s s e ssrnreeeereaeeeeeeenns 11-29
PAL Processor Identification, Features, and Configuration Procedures...........ccccccceveeeennnne 11-30
PAL Machine Check Handling ProCedUresccuuuuiiiiieeeiiiiciiiiiieee e ee e e e e 11-31
PAL Power Information and Management Procedures...........cccuuuuiiiiiiiiaiiiiniiiiieeeeeee e 11-31
PAL Processor Self-teSt PrOCEAUIES......cciii ittt e e 11-31
PAL SUPPOIt PrOCEAUIESccoiiiiiiiiitiee ettt e e ettt e e e e e e e s e e s bbb e e aeeaaaaeeeaan s 11-31
DEfiNItioN OF TEIMIS ...ttt e e e e e e s et e e e e e e e e e e e as 11-32
State RequIremMents fOr PSR ...t 11-33
System Register CONVENTIONScooiiiiiiiiie ittt e e e e e e s eeeeaa e e e e e e aanreeeees 11-35
General Registers - Static Calling CoNVENTIONuviviiiiiiie e 11-36
General Registers - Stacked Calling ConNVENLiONSuuviiiirieeiiiiiiciieeee e 11-36
Application Register CONVENLIONScoiiiiiiiiiiiiiieeeeeesie st e e e s ae e e s s e st e e eeeae e e e e e annnnnneees 11-37
ProCeSSOr BUS FEALUIES......coiiiiiie ettt e e r e e e e e e s 11-39
(o= (ol =T 1Y/ o LN =1 oo Yo [T o O 11-42
Cache Line State When iNV = 0 ..ottt et 11-43
Cache Line State When iNV = 1 ...t e e e eeeeas 11-43
Cache MemOry AttHDULES......ooi it e e e aeeeeeeas 11-46
(0 Tod g LI S] (0] (= 1101 TP TU PR 11-47
(0= Tod gL o= To [o 11 1 €3 U TP TP PRRPRPP 11-47
PAL_CACHE_INIT level Argument ValUESuuuiiiiiiiiaiiiiiiiiiiieee et 11-48
PAL_CACHE_INIT restrict Argument ValUES..........ccueiiiiiiiiiiiiiiiiiiee e 11-48
IA-32 System Environment ENtry Parameters.cuuiieeeiiiiiiiiiiiiieee e s ssineeee e e ee e e e e 11-61

Intel® 1A-64 Architecture Software Developer’'s Manual

11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-1
14-1
15-1
15-2
16-1
17-1
20-1

A-2
A-3

A-5

MP INfOrmMation TabIEcooeiiiieeec e e e e e e e e e e aaees 11-62
SAL /O INtercept TaDIE e e 11-63
IA-32 Resources at IA-32 System Environment ENrY ... 11-64
Register Values at IA-32 System Environment TErminationoccouvieeiieieeeeeniicniieeien. 11-65
I/O Detail PoINter DESCIIPLION ...ttt e e e e e e e e s s e s r e e e e e e e s s e nreereeeeaes 11-70
Pending Return Parameter FIieldsccuuuiiiiiiiiie e rr e e 11-74
INFO_INAEX VAIUES.......cci it e e s e e e e e e e e s e e e st e e e eeeeeeeannannernnnnes 11-78
[eVEl_INAEX TIEIAS ...eee e e e e e e s e e e e e e e e 11-79
EIT_tYPE _INAEX VAIUES ...ttt e e e e e e e e e e s s st e e e e e e e e en e annnnennnes 11-79
error_info return format when info_index = 2 and err_type_indeX =0cccccceeeveeviiiivvnnnnnn. 11-80
(O Vo] o [T @ 1= o 1 =1 o PSR 11-81
I S O 1= Tod | = [£ 11-82
=TT RS O g 1= o S 1= o 11-83
ReQ_File_ChECK FIEIAS ... ettt e e e e e e e e 11-85
UE T ol o] 0 1= o G 1 =1 o LRSS 11-86
LY 01 {0 TN 11 o £ SPSRP 11-92
PM_BDUFFEE LAYOUL ...ttt e e e ettt e e e e e e e e e e s e e s e e eaaaaaas 11-92
PrOCESSOI FRAIUIESttt e e e e e e s e e r e et e e e e e e e e s snnrrnnnees 11-96
iINfO_request RETUIN VAIUE..........coii it e e e e e e e e e e e s e nnrenae s 11-100
] =l o T a1 E 3 [T o] L= 01T 1= P 11-101
The IA-64 Architecture Provides a Relaxed Ordering Model..........ccccvveeeeiiiiiiciiiiiineee s 13-6
Acquire and Release Semantics Order I1A-64 Memory Operations.........ccccceeevvvevcvvvvneeeeeeennnn. 13-6
Loads May Pass Stores to Different LOCatioNS..........ccccuvveiiiiiieeiii i ee e e e 13-7
Loads May Not Pass Stores in the Presence of a Memory Fenceccccccveeviivvciivneeneeeenn, 13-8
Dependencies Do Not Establish MP Ordering (1)cccvvvveeiiieeee i e e e 13-8
Memory Ordering and Data DEPENUENCE.........cveeiiiiiiiieieie e e e eee e 13-9
Memory Ordering and Data Dependence Through a Predicate Register.............cooccvvvvveneen. 13-10
Memory Ordering and Data and Control DependencCi€S..........cceeeveeieccivriiiieeiee e e 13-10
Memory Ordering and Control DEPENAENCE........cceeeiiiieiiiiiieiee e 13-10
Store Buffers May Satisfy Loads if the Stored Data is Not Yet Globally Visible..................... 13-11
Preventing Store Buffers from Satisfying Local Loadscccceevveeveeiiiiicciiiiiieee e 13-13
Bypassing to a SEMaphore OPEratiON............cuuveieeeeiiiiiiiiiiirer e e s e er e e e e e e e e ennaeeaeees 13-14
Bypassing from a Semaphore OPeration............ceeeeeeiiiiiciiiiiieieeee e er e e e e e e e snnaeeaeees 13-14
Enforcing the Same Visibility Order to All Observers in a Coherency Domain...................... 13-15
[A-64 ODEYS CAUSAIILYvvvveeiiereeeiis ittt et e e e e e e s sse st r e e e e e e s s s s st e eeraeeeeesannnrrnraneeeeaees 13-16
Potential Pipeline Behaviors of the Branch at x from Figure 13-9cccccoovvveveee i, 13-26
Interruption Handler Execution Environment (PSR and RSE.CFLE Settings)..........ccccccvveee.... 14-3
Preserving IA-64 General and Floating-point REQISLErSuvvvieeiiiiciiiviiiee e 15-1
Register State Preservation at Different Points inthe OSccccccoev v, 154
Comparison Of VHPT FOIMMALS.......cueiiiiiiiiiiiiiiie e e s r e e e e s e e ssnbaee e e e e e e e e s s snnaneaeees 16-11
Speculation Recovery Code REQUIFEMENTS........uuiiiiieiiiiiiiiiiieeieeee e e e e s sssseerer e e e e e e e e s nnneeneeees 17-3
IA-32 Vectors that Need 1A-64 OS SUPPOIT.......ccoiiicieiiieiieete e e e e sesierre e e e e e e e s e ssrernrerreeeaee e 20-5
Semantics of DEPENAENCY COUESccoviii it e e e s e e e e e e e s e e e e e e e e e s e e snnnraeeeees A-4
RAW Dependencies Organized by RESOUICEcccivuiiiiiiiie et e e e e s ee e A-5
WAW Dependencies Organized By RESOUICEuvviiiiiieeiiiiiiiiiiiiieeeie e ss s ssienieeeeaee e e e A-11
WAR Dependencies Organized by RESOUICEccuuuiiiiiiiiee et e e e e e s enenneeeeeeee s A-15
INSTIIUCTION ClIASSES .. .eiiiiieiiiiiie ettt ettt s e e e et e e s st b bt e e e e st e e e e e anbbe e e e e e nneeas A-17

Intel® |A-64 Architecture Software Developer’'s Manual XV

Xvi Intel® 1A-64 Architecture Software Developer’'s Manual

intgl.

Part I. 1A-64 System Architecture
Guide

intel.

About this Manual 1

The | A-64 architecture is a unique combination of innovative features such as explicit parallelism,
predication, speculation and more. The architecture is designed to be highly scalable to fill the ever
increasing performance requirements of various server and workstation market segments. The

| A-64 architecture features a revolutionary 64-bit instruction set architecture (ISA) which appliesa
new processor architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A
key feature of the |A-64 architecture is 1A-32 instruction set compatibility.

The Intel® 1A-64 Architecture Software Devel oper’s Manual provides a comprehensive description
of the programming environment, resources, and instruction set visible to both the application and
system programmer. In addition, it also describes how programmers can take advantage of |1A-64
featuresto help them optimize code. This manual replaces the |A-64 Application Developer’s
Architecture Guide (Document Number 245188) which contains a subset of the information
presented in this four-volume set.

1.1 Overview of Volume 1: I1A-64 Application
Architecture

This volume defines the | A-64 application architecture, including application level resources,
programming environment, and the 1A-32 application interface. This volume al so describes
optimization techniques used to generate high performance software.

1.1.1 Part 1: IA-64 Application Architecture Guide

Chapter 1, “About thisManua” provides an overview of al volumesin the Intel® 1A-64
Architecture Software Devel oper’s Manual.

Chapter 2, “Introduction to the | A-64 Processor Architecture” provides an overview of the |A-64
architecture system environments.

Chapter 3, “IA-64 Execution Environment” describes the |A-64 register set used by applications
and the memory organization models.

Chapter 4, “1A-64 Application Programming Model” gives an overview of the behavior of |A-64
application instructions (grouped into related functions).

Chapter 5, “I A-64 Floating-point Programming Model” describes the | A-64 floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an |A-64 System Environment” describes the
operation of A-32 instructions within the |A-64 System Environment from the perspective of an
application programmer.

About this Manual 1-1

1.1.2

1.2

1.2.1

1-2

intel.

Part 2: IA-64 Optimization Guide

Chapter 7, “About the | A-64 Optimization Guide’ gives an overview of the |A-64 optimization
guide.

Chapter 8, “Introduction to 1A-64 Programming” provides an overview of the IA-64 application
programming environment.

Chapter 9, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 10, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 11, “ Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 12, “Floating-point Applications’ discusses current performance limitationsin
floating-point applications and | A-64 features that address these limitations.

Overview of Volume 2: I1A-64 System Architecture

This volume defines the | A-64 system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. Thisvolume aso providesa
useful system programmer's guide for writing high performance system software.

Part 1: IA-64 System Architecture Guide

Chapter 1, “About thisManual” provides an overview of all volumesin the Intel® |1A-64
Architecture Software Developer’s Manual.

Chapter 2, “1A-64 System Environment” introduces the environment designed to support execution
of |A-64 operating systems running |A-32 or 1A-64 applications.

Chapter 3, “1A-64 System State and Programming Model” describes the | A-64 architectural state
which isvisible only to an operating system.

Chapter 4, “1A-64 Addressing and Protection” defines the resources available to the operating
system for virtual to physical addresstrandation, virtual aliasing, physical addressing, and memory
ordering.

Chapter 5, “1A-64 Interruptions” describes all interruptions that can be generated by an |A-64
processor.

Chapter 6, “1A-64 Register Stack Engine” describes the | A-64 architectural mechanism which
automatically saves and restores the stacked subset (GR32 — GR 127) of the general register file.

Chapter 7, “1A-64 Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the |1A-64 architecture.

About this Manual

1.2.2

Chapter 8, “1A-64 Interruption Vector Descriptions’ lists al 1A-64 interruption vectors.

Chapter 9, “1A-32 Interruption Vector Descriptions’ lists | A-32 exceptions, interrupts and
intercepts that can occur during 1A-32 instruction set execution in the 1A-64 System Environment.

Chapter 10, “1A-64 Operating System Interaction Model with 1A-32 Applications’ defines the
operation of |A-32 instructions within the |A-64 System Environment from the perspective of an
| A-64 operating system.

Chapter 11, “1A-64 Processor Abstraction Layer” describes the firmware layer which abstracts
| A-64 processor implementation-dependent features.

Part 2: IA-64 System Programmer’s Guide

Chapter 12, “About the |A-64 System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 13, “MP Coherence and Synchronization” describes | A-64 multi-processing
synchronization primitives and the | A-64 memory ordering model.

Chapter 14, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what stateis preserved and made available to low-level system code when
interruptions are taken.

Chapter 15, “ Context Management” describes how operating systems need to preserve |1A-64
register contents and state. This chapter also describes | A-64 system architecture mechanisms that
allow an operating system to reduce the number of registers that need to be spilled/filled on
interruptions, system calls, and context switches.

Chapter 16, “Memory Management” introduces various | A-64 memory management strategies.

Chapter 17, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 18, “Instruction Emulation and Other Fault Handlers’ describes a variety of instruction
emulation handlers that 1A-64 operating system are expected to support.

Chapter 19, “Floating-point System Software” discusses how | A-64 processors handle
floating-point numeric exceptions and how the 1A-64 software stack provides complete |IEEE-754
compliance.

Chapter 20, “1A-32 Application Support” describes the support an 1A-64 operating system needs to
provide to host 1A-32 applications.

Chapter 21, “External Interrupt Architecture” describes the IA-64 external interrupt architecture
with afocus on how external asynchronous interrupt handling can be controlled by software.

Chapter 22, “1/0 Architecture” describesthe |1A-64 1/0 architecture with afocus on platform issues
and support for the existing 1A-32 1/O port space.

Chapter 23, “Performance Monitoring Support” describes the 1A-64 performance monitor
architecture with afocus on what kind of support is needed from | A-64 operating systems.

About this Manual 1-3

1.2.3

1.3

1.3.1

1.3.2

1.4

1-4

intel.

Chapter 24, “Firmware Overview” introduces the 1A-64 firmware model, and how various
firmware layers (PAL, SAL, EFI) work together to enable processor and system initialization, and
operating system boot.

Appendices

Appendix A, “1A-64 Resource and Dependency Semantics’ summarizes the dependency rules that
are applicable when generating code for |1A-64 processors.

Appendix B, “Code Examples’ provides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the |A-64 and | A-32 instruction sets, including
instruction format/encoding.

Part 1: IA-64 Instruction Set Descriptions

Chapter 1, “About thisManual” provides an overview of all volumesin the Intel® 1A-64
Architecture Software Developer’s Manual.

Chapter 2, “1A-64 Instruction Reference” provides a detailed description of all 1A-64 instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “1A-64 Pseudo-Code Functions’ provides a table of pseudo-code functions which are
used to define the behavior of the |A-64 instructions.

Chapter 4, “1A-64 Instruction Formats” describes the encoding and instruction format instructions.

Part 2: IA-32 Instruction Set Descriptions

Chapter 5, “Base |A-32 Instruction Reference” provides a detailed description of all base |1A-32
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 6, “1A-32 MMX™ Technology Instruction Reference” provides a detailed description of
al 1A-32 MMX™ technology instructions designed to increase performance of multimedia
intensive applications. Organized in alphabetical order by assembly language mnemonic.

Chapter 7, “1A-32 Streaming SIMD Extension Instruction Reference” provides a detailed
description of all A-32 Streaming SIMD Extension instructions designed to increase performance
of multimediaintensive applications, and is organized in alphabetical order by assembly language
mnemonic.

Overview of Volume 4: Itanium™ Processor

About this Manual

1.5

Programmer’s Guide

This volume describes model-specific architectural features incorporated into the Intel® Itanium™
processor, the first 1A-64 processor.

Chapter 1, “About thisManual” provides an overview of four volumesin the Intel® |A-64
Architecture Software Developer’s Manual.

Chapter 2, “Register Stack Engine Support” summarizes Register Stack Engine (RSE) support
provided by the Itanium processor.

Chapter 3, “Virtual Memory Management Support” details size of physical and virtual address,
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behavior” describes the behavior of write
coal esce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementation” describes model specific behavior of
| A-64 instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoring” defines the performance monitoring features
which are specific to the Itanium processor. This chapter outlines the targeted performance monitor
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Events’ summarizes the Itanium processor events and describes
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for |A-32 Instruction Execution” describes some of the key
differences between an Itanium processor executing | A-32 instructions and the Pentium® 111
processor.

Terminology
The following definitions are for terms related to the 1A-64 architecture and will be used
throughout this document:

Instruction Set Architecture (I SA) — Defines application and system level resources. These
resources include instructions and registers.

| A-64 Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the 1A-32 instruction set.

1A-32 Architecture—The 32-bit and 16-bit Intel Architecture asdescribed in the Intel Architecture
Software Developer’s Manual.

| A-64 Processor —An Intel 64-bit processor that implements both the |A-64 and the 1A-32
instruction sets.

| A-64 System Environment — The | A-64 operating system privileged environment that supports
the execution of both 1A-64 and |A-32 code.

About this Manual 1-5

1.6

1.7

1-6

intel.

| A-32 System Environment — The operating system privileged environment and resources as
defined by the Intel Architecture Software Developer’s Manual. Resources include virtual paging,
control registers, debugging, performance monitoring, machine checks, and the set of privileged
instructions.

| A-64 Firmware — The Processor Abstraction Layer (PAL) and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) —The lA-64 firmware layer which abstracts | A-64 processor
features that are implementation dependent.

System Abstraction Layer (SAL) —The lA-64 firmware layer which abstracts |A-64 system
features that are implementation dependent.

Related Documents

The following documents contain additional material related to the Intel® |A-64 Architecture
Software Developer’s Manual:

* Intel Architecture Software Developer’s Manual — This set of manuals describes the Intel
32-bit architecture. They are readily available from the Intel Literature Department by calling
1-800-548-4725 and requesting Document Numbers 243190, 243191and 243192, or can be
downloaded at http://devel oper.intel.com/design/litcentr.

| A-64 Software Conventions and Runtime Architecture Guide — This document (Document
Number 245358) defines general information necessary to compile, link, and execute a
program on an | A-64 operating system. It can be downloaded at
http://devel oper.intel .com/design/iab4.

* 1A-64 System Abstraction Layer Specification — This document (Document Number 245350)
specifies requirements to devel op platform firmware for | A-64 processor systems.

» Extensible Firmware Interface Specification — This document defines a new model for the
interface between operating systems and platform firmware. It can be downloaded at
http://devel oper.intel .com/technol ogy/efi.

Revision History

Date of Revision

Revision Number Description

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3)
Clarification on exceptions to instruction dependency (Section 3.4.3)

About this Manual

Date of
Revision

Revision
Number

Description

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3)

Instruction and Data translation must be enabled for executing 1A-32 instructions
(Chapters 3,4 and 10)

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4)

Clarification regarding ordering data dependency

Qut-of-order IPI delivery is now allowed (Chapters 4 and 5)

Content of EFLAG field changed in IIM (p. 9-24)

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11)
PAL_CHECK processor state parameter changes (Chapter 11)
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11)

PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the call
to provide more information regarding machine check (Chapter 11)

PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making this
call (Chapter 11)

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11)
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11)
Clarified memory ordering changes (Chapter 13)

Clarification in dependence violation table (Appendix A)

Volume 3:
fmix instruction page figures corrected (Chapter 2)
Clarification of “reserved” fields in ITIR (Chapters 2 and 3)

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4)

IA-32 JMPE instruction page typo fix (p. 5-238)
Processor Serial Number feature removed (Chapter 5)

Volume 4:

Reformatted the Performance Monitor Events chapter for readability and ease of
use (no changes to any of the events except for renaming of some); events are
listed in alphabetical order (Chapter 7)

January 2000

1.0

Initial release of document.

About this Manual

1-7

About this Manual

intel.

|A-64

System Environment 2

2.1

2.2

Asdescribed in Section 2.1, “1A-64 Operating Environments” in Volume 1, the |A-64 architecture
features two full operating system environments: the | A-32 System Environment supports 1A-32
operating systems, and the | A-64 System Environment supports |A-64 operating systems. The
architectural model also supports a mixture of 1A-32 and | A-64 application code within an 1A-64
operating system.

The system environment determines the set of processor system resources seen by the operating
system. These resources include: virtual memory management, physical memory attributes,
external interrupt mechanisms, exception and interrupt delivery, machine check architectures,
debug, performance monitoring, control registers, and the set of privileged instructions.

The choice of system environment is made when an 1A-64 processor boots, and is described in
Section 2.1, “1A-64 Processor Boot Sequence”. Section 2.2 in this chapter definesthe |A-64
System Environment.

IA-64 Processor Boot Sequence

Figure 2-1 shows the defined boot sequence for |A-64 processors. Unlike 1A-32 processors, which
power up in 32-bit Real Mode, 1A-64 processors power up in the |A-64 System Environment
running | A-64 code. Processor initialization, testing, memory, and platform initialization/testing
are performed by 1A-64 processor firmware. Mechanisms are provided to execute Real Mode

I A-32 boot BIOSs and device drivers during the boot sequence. After the boot sequence, a
determination is made by boot software to continue executing in | A-64 System Environment (for
example to boot an 1A-64 operating systems) or to enter the 1A-32 operating system environment
through the PAL_ENTER_IA_32 ENV firmware call. Refer to Chapter 11, “1A-64 Processor
Abstraction Layer” for details.

|A-64 System Environment Overview

The | A-64 system environment is designed to support execution of 1A-64 operating systems
running 1A-32 or |A-64 applications. | A-32 applications can interact with | A-64 operating systems,
applications and libraries within this environment. Both 1A-32 application level code and 1A-64
instructions can be executed by the operating system and user level software. The entire machine
state, including all 1A-64 resources, |1A-32 general registers and floating-point registers, segment
selectors and descriptorsis accessible to 1A-64 code. As shown in Figure 2-2, all major 1A-32
operating modes are fully supported.

I1A-64 System Environment 2-1

Figure 2-1.

System Environment Boot Flow

IA-64 System Environment

Reset ——»

Processor
Test & Initialization
(IA-64 instructions)

A

Platform
Test & Initialization
(IA-64 or 1A-32 insts)

Yes

1A-32_boot ?

IA-32 System Environment

Firmware Call to
PAL_ENTER_IA_32_ENV

No

IA-64 OS Boot
(IA-64 instructions
& |A-32 instructions)

A

only)

IA-32 OS Boot
(IA-32 instructions

000917,

Figure 2-2. IA-64 System Environment

Real Mode VM86 Protected Mode IA-64
IA-32 real mode 1A-32 VM86 1A-32 PM IA-64
instructions .and instructions gnd instructions f':\nd - instructions

segmentation segmentation segmentation

Interruption &
Intercepts

N

IA-64 Paging &
Interruption Handling

In the |A-64 system environment, 1A-64 defined operating system resources supersede all 1A-32
system resources. Specifically, the |A-32 defined set of contral, test, debug, machine check
registers, privilege instructions, and virtual paging algorithms are replaced by the 1A-64 system
resources. When |A-32 code is running on an | A-64 operating system, the processor directly
executes all performance critical but non-sensitive | A-32 application level instructions. Accessesto
sensitive system resources (interrupt flags, control registers, TLBs, etc.) are intercepted into the

| A-64 operating system. Using this set of intervention hooks, an 1A-64 operating system can

emulate or virtualize an | A-32 system resource for an 1A-32 application, OS, or device driver.

The | A-64 system architecture features are presented in the following chapters:

 Chapter 3 describes |A-64 system resources.
 Chapter 4 describes the 1A-64 virtual memory architecture.
 Chapter 5 defines | A-64 interrupt and exception architecture.

IA-64 System Environment

» Chapter 6 describes the | A-64 register stack engine.
 Chapter 7 describes debug and performance monitoring hooks.
» Chapter 8 describes |A-64 interruption handler entry points.

Additional support for IA-32 applications in the |A-64 system environment is defined by chapters:
 Chapter 9 describes |A-32 interruption handler entry paints.
 Chapter 10 describes how 1A-32 applications interact with | A-64 operating systems.

I1A-64 System Environment 2-3

IA-64 System Environment

intel.

|A-64

System State and Programming

Model 3

3.1

3.2

This chapter describes the architectural state visible only to an operating system and defines system
state programming models. It covers the functional descriptions of all the system state registers,
descriptions of individual fields in each register, and their serialization requirements. The virtual
and physical memory management details are described in Chapter 4, “|A-64 Addressing and
Protection”. Interruptions are described in Chapter 5, “I A-64 Interruptions’.

Note: Unless otherwise noted, referencesto “interruption” in this chapter refer to I\VA-based
interruptions. See “Interruption Definitions” on page 5-1.

Privilege Levels

Four privilege levels, numbered from O to 3, are provided to control access to system instructions,
system registers and system memory areas. Level 0 isthe most privileged and level 3 the least
privileged. |A-32 and | A-64 application instructions and registers can be accessed at any privilege
level. System instructions and registers defined in this chapter can only be accessed at privilege
level O; otherwise, a Privilege Operation fault is raised. The processor maintains a Current Privilege
Level (CPL) inthe cpl field of the Processor Status Register (PSR). CPL can only be modified by
controlled entry and exit points managed by the operating system. Virtual memory protection
mechanisms control memory accesses based on the Privilege Level (PL) of the virtual page and the
CPL.

Serialization

For all application and system level resources, apart from the control register file, the processor
ensures values written to aregister are observed by instructions in subsequent instruction groups.
Thisistermed data dependency. For example, writes to general registers, floating-point and
application registers are observed by subsequent reads of the same register. (See “ Control
Registers’ on page 3-11 for control register serialization requirements.) For modifications of
application level resources with side effects, the side effects are ensured by the processor to be
observed by subsequent instruction groups. Thisistermed implicit serialization. Application
registers (ARs), with the exception of the Interval Time Counter, the User Mask, when modified by
sum r um and mov to psr.um, and the Current Frame Marker (CFM), areimplicitly serialized. PMD
registers have special serialization requirements as described in “ Generic Performance Counter
Registers’ on page 7-6. All other application-level resources (GRs, FRs, PRs, BRs, |P, CPUID)
have no side effects and so need not be serialized.

To avoid serialization overhead in privileged operating system code, system register resources are
not implicitly serialized. The processor does not ensure modification of registers with side effects
are observed by subsequent instruction groups. For system register resources other than control
registers, the processor ensures data dependencies are honored (reads see the results of prior writes

IA-64 System State and Programming Model 3-1

3.2.1

3.2.2

3-2

intel.

to the same register). See Section 3.3.3 and Table 3-3 on page 3-11 for control register serialization
requirements. This approach simplifies hardware and allowsfor more efficient software operations.
For example, during alow level context switch where there is no immediate use of loaded system
registers, these registers can be loaded without any serialization overhead. To ensure side effects
are observed before a dependent instruction is fetched or executed, two serialization operations are
provided: instruction serialization and data serialization.

Instruction Serialization

Instruction serialization ensures that modifications to processor resources are observed before
subsequent instruction group fetches are re-initiated. Software must use an instruction serialization
operation before any instruction group that is dependent upon the modified system resource.
Resource side effects may be observed at any point before the explicit serialization operation.

Modification of the following system resources (if the modification affects instruction fetching)
requireinstruction serialization: RR, PKR, ITR, ITC, IBR, PMC, PMD, PSR bits asdefined in
Section 3.3.2, “Processor Status Register (PSR)” and Control Registers as defined in Section 3.3.3,
“Control Registers’.

The instructions Return from Interruption (r f i) and Instruction Serialize (srl z. i) perform
explicit instruction serialization.

An interruption performs an implicit instruction serialization operation, so the first instruction
group in the interruption handler will observe the serialized state.

Instruction Serialization Exanpl e:

mov ibr[reg]=reg //nove to instruction debug register
s //end of instruction group
srlz.i // ensure subsequent instruction fetches observe

nmodi fi cation
Vs /lend of instruction group
i nst / / dependent instruction

Note: The serializing instruction, the instruction to be serialized, and any operations dependent
on the serialization must be in three separate instruction groups.

Data Serialization

Data serialization ensures that modifications to processor resources affecting both execution and
data memory accesses are observed. Software must issue a data serialize operation prior to the
instruction dependent upon the modified resource. Data serialization can be issued within the same
instruction group as the dependent instruction. Resource side effects may be observed at any point
before the explicit serialization operation.

Moadification of the following system resources require data seriaization: RR, PKR, DTR, DTC,
DBR, PMC, PMD, PSR hits as defined in Section 3.3.2, “ Processor Status Register (PSR)” and
Control Registers as defined in Section 3.3.3, “ Control Registers”.

IA-64 System State and Programming Model

3.2.3

The control registers are different from the general registers and other registers. Most control
registers require an explicit data seriaization between the writing of a control register and the
reading of that same control register. (See Table 3-3 on page 3-11 for serialization requirementsfor
specific control registers.)

The Data Serialize (sr| z. d) instruction performs explicit data serialization. Instruction
serialization operations (rfi, srl z. i, and interruptions) also perform a data serialization
operation.

Data Serialization Exanpl e:

mov rrreg] = reg //nmove into region register
i //end of instruction group
srlz.d //serialize region register nodification
Id [/ perform a dependent | oad

The serializing instruction and theinstruction to be serialized (the one writing the resource) must be
in two different instruction groups. Operations dependent on the serialization and the seriaization
can be in the same instruction group, but the sr | z instruction must be before the dependent
instruction slot.

Definition of In-flight Resources

When the value of aresource that requires an explicit instruction or data serialization is changed by
one or more writers, that resource is said to bein-flight until the required serialization is
performed. There can be multiple in-flight valuesif multiple writers have occurred since the last
serialization.

Aninstruction that reads an in-flight resource will see one of the in-flight values or the state prior to
any of the unserialized writers. However, whether such areader sees the original or one of the
in-flight valuesis not predictable.

For areader of an in-flight resource, this definition includes (but is not limited to) the following
possible outcomes:

¢ Thereader of an in-flight resource may see the most-recently-serialized value or any of the
in-flight values each time it is executed - seeing the value from a particular writer onetime
does not guarantee that the same writer’s value will be seen by that reader the next time.

» Multiple readers of an in-flight resource may see different values - each may see the
most-recently-serialized value or any of thein-flight values, independent of what other readers
may see.

« If asingle execution of an instruction reads an in-flight resource more than once during its
execution, each read may see a different value.

Thus, the only way to guarantee that the latest value is seen by a reader isto perform the required
serialization.

IA-64 System State and Programming Model 3-3

3.3

3.3.1

3-4

System State

The | A-64 architecture provides arich set of system register resources for process control,
interruptions handling, protection, debugging, and performance monitoring. This section gives an
overview of these resources.

System State Overview

Figure 3-1 shows the set of all defined privileged system register resources. Application state as
defined in “ Application Register State” on page 3-1 of Volume 1 is also accessible.

Processor Status Register (PSR) — 64-bit register that maintains control information for the
currently running 1A-64 or 1A-32 process. See Section 3.3.2, “Processor Status Register
(PSR)” for complete details.

Control Registers (CR) — This register name space contains several 64-bit registers that
capture the state of the processor on an interruption, enable system-wide 1A-64 or |A-32
features, and specify global processor parameters for interruptions and memory management.
See Section 3.3.3, “Control Registers’ for complete information.

Interrupt Registers— These registers provide the capability of masking external interrupts,
reading external interrupt vector numbers, programming vector numbers for internal processor
asynchronous events and external interrupt sources. For complete information, see Section 5.8,
“Interrupts’.

Interval Timer Facilities— A 64-bit interval timer is provided for privileged and
non-privileged use and as atime base for performance measurements. Timing facilities are
defined in detail in Section 3.3.4.2, “Interval Time Counter and Match Register (ITC — AR44
and ITM —CR1)".

Debug Breakpoint Registers (DBR/IBR) — 64-bit Data and 64-bit I nstruction Breakpoint
Register pairs (DBR, IBR) can be programmed to fault on reference to arange of virtual and
physical addresses generated by either |A-64 or 1A-32 instructions. See Section 7.1,
“Debugging” for details. The minimum number of DBR register pairs and IBR register pairsis
4 in any implementation. On some implementations, a hardware debugger may use two or
more of these register pairsfor itsown use; see Section 7.1.1, “ Dataand I nstruction Breakpoint
Registers’ for details.

Performance M onitor Configuration/Data Register s (PM C/PM D) —Multiple performance
monitors can be programmed to measure a wide range of user, operating system, or processor
performance values. Performance monitors can be programmed to measure performance
values from either the |A-32 or 1A-64 instruction set. Performance monitors are defined in
Section 7.2, “Performance Monitoring”. The minimum number of generic PMC/PMD register
pairsin any implementationis 4.

Banked General Registers— A set of 16 banked 64-bit general purpose registers, GR 16-
GR 31, are available as temporary storage and register context when operating in low level
interruption code. See Section 3.3.7, “Banked General Registers’ for complete details.
Region Registers (RR) — Eight 64-hit region registers specify the identifiers and preferred
page sizes for multiple virtual address spaces. Refer to Section 4.1.2, “Region Registers (RR)”
for complete information.

Protection Key Registers (PKR) — At least sixteen 64-bit protection key registers contain
protection keys and read, write, execute permissions for virtual memory protection domains.
Refer to Section 4.1.3, “Protection Keys’ on page 4-12 for details.

IA-64 System State and Programming Model

intel.

Figure 3-1. System Register Model
Application Register Set
General Registers Floating-point Registers Predicates Branch Registers Application Registers
63 0 NaT 81 0 63 0 0
ar, 0 E fr, +0.0 pr, br, ar, KRO
ar, || fry +1.0 pry br, ar, KR7
ng frZ prZ er |
——n | IR -
grie I I I ar BSP
anked 17
" — 0 | ! L pry b,] ar, | BSPSTORE
9ray CI Prig ary, RNAT
ars, fra,
[| o | | | Instruction Pointer ar FCR
: : o [[[63 0 ary, EFLAG
N S SR o -
! ! o | | | pre [T T Al SSD
| | o | ' ' Current Frame Marker ary CFLG
! ! 0o | l | 37 0 ary, FSR
: : 1N ' ! ' FT7CEM] arg, FIR
L= _
% I | B Y & FOR
User Mask '
5 0 ary, CcCcV
[] ar, [UNAT
ar FPSR
Advanced Load Process Identifiers Performance Monitor “© i
Address Table Data Registers aly ITC
63 0 63 I
cpuid, pmd, ary, ITC
cpuid md !
: puid, : pmd, | ar, PES
| | I I I I I I I args LC
— puid, [] ema [] aw [EC
T
System Register Set
Region Registers Translation Lookaside Buffer Process Status Register Control Registers
63 0 . 63 0 cr, DCR
: o ——
1 i . . cr IVA
I dtr, Debug Breakpoint Registers z
I I I | [E 63 0 Crg PTA
L R e P P
L ibr, dbr 17 ISR
Protection Key Registers ma | T | toocry IIP
63 0 e | T ldte o ! Clao oA
ok, | ibr, dbr Cry, ITIR
pkry "oery, IPA
T Performance Monitor Cly IFS
' ' ! Configuration Registers Cry M
ple, [63 0 Chs IHA
pmc, I |
mc !
pme, | Clea External
| | | Interrupt
) — S L L
0009323

e Translation Lookaside Buffer (TLB) —Holds recently used virtual to physical address
mappings. The TLB isdivided into Instruction (ITLB), Data (DTLB), Translation Registers
(TR) and Trandation Cache (TC) sections. See Section 4.1.1, “Trandation Lookaside Buffer

IA-64 System State and Programming Model

3-5

3.3.2

intel.

(TLB)” for complete details. Trand ation Registers are software managed portions of the TLB
and the Tranglation Cache section of the TLB is directly managed by the processor.

Processor Status Register (PSR)

The PSR maintains the current 1A-32 and 1A-64 execution environment. The PSR is divided into
four overlapping sections (See Figure 3-2): user mask hits (PSR{5:0}), system mask bits
(PSR{23:0}), the lower half (PSR{31:0}), and the entire PSR (PSR{ 63:0}). PSR fields are defined
in Table 3-2 along with serialization requirements for modification of each field and the state of the
field after an interruption.

Figure 3-2. Processor Status Register (PSR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

| -

system mask

rt \tb\lp \db\ si \ di \pp\sp\dfh\dﬂ\dt. pk\ i \ ic

user mask

3 210

5 4
minia upe

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ia‘bn‘ed‘ ri ‘ss‘dd‘da‘ id ‘ it ‘mc‘ is‘ cpl ‘

The PSR instructions and their serialization requirements are defined in Table 3-1. These
instructions explicitly read or write portions of the PSR. Other instructions also read and write
portions of the PSR as described in Table 3-2 and Table A-2.

Table 3-1. Processor Status Register Instructions

Mnemonic Description Operation ?ysgg Sgézl:fi?:ém

sum i mm Set user mask from | PSR{5:0} — PSR{5:0} | imm M implicit
immediate

rum i nmm Reset user mask PSR{5:0} —~ PSR{5:0} & ~imm M implicit
from immediate

nov psr.um = r, Move to user mask | PSR{5:0} — GR]r,] M implicit

nov r; = psr.um Move from user GR[r;] ~PSR{5:0} M none
mask

ssminmm Set system mask PSR{23:0} ~ PSR{23:0} | imm M data/inst®
from immediate

rsminmm Reset system mask | PSR{23:0} — PSR{23:0} &~imm M data/inst?
from immediate

mov psr.l =1, Move to lower PSR | PSR{31:0} — GR{r,] M data/inst?

nov ry = psr Move from PSR GRIr4] .-PSR{36:35,31:0}b M none

bsw. 0, bsw. 1 Bank switch PSR{44} - Oor 1 B implicit

rfi Return From PSR{63:0} —~ IPSR B implicit
Interruption

a. Based upon the resource being serialized, use data or instruction serialization.
b. All other bits of the PSR read as zero.

IA-64 System State and Programming Model

intel.

Table 3-2. Processor Status Register Fields

Field

Bit

Description

Interruption
State

Serialization
Required

be

User Mask = PSR{5:0}

Big-Endian — When 1, IA-64 data memory references are big-endian. When
0, I1A-64 data memory references are little endian. This bit is ignored for
IA-32 data references, which are always performed little-endian. I1A-32 and
IA-64 instruction fetches are always performed little endian.

DCR.be

data?®

up

User Performance monitor enable — When 1, performance monitors
configured as user monitors are enabled to count I1A-32 and |1A-64 events.
When 0, user configured monitors are disabled. See “Performance
Monitoring” on page 7-5 for details.

unchanged

data?®
inst?

ac

Alignment Check — When 1, all IA-64 unaligned data memory references
result in an Unaligned Data Reference fault. When 0, 1A-64 unaligned data
memory references may or may not result in a Unaligned Data Reference
fault. See “Memory Datum Alignment and Atomicity” on page 4-38 for details.
Unaligned 1A-64 semaphore references also result in a Unaligned Data
Reference fault, regardless of the state of PSR.ac. For IA-32 instructions, if
PSR.ac is 1 an unaligned IA-32 data memory reference raises an
I1A-32_Exception(AlignmentCheck) fault. When 0, additional 1A-32 control
bits as defined in Section 10.6.7 also generate alignment checks.

data?®

mfl

Lower (f2 .. 31) floating-point registers written — This bit is set to one when
an IA-64 instruction completes that uses register f2..f31 as a target register.
This bit is sticky and only cleared by an explicit write of the user mask. When
leaving the 1A-32 instruction set, PSR.mfl is set to 1 if PSR.dfl is 0, otherwise
PSR.mfl is unmodified.

unchanged

data®

mfh

Upper (f32 .. f127) floating-point registers written — This bit is set to one when
an IA-64 instruction completes that uses register f32..f127 as a target
register. This bit is sticky and only cleared by an explicit write of the user
mask. PSR.mfh is unmodified by 1A-32 instruction set execution.

unchanged

data?®

= PSR{23:0}

IC

System Mask

13

Interruption Collection — When 1 and an interruption occurs, the current state
of the processor is loaded in IIP, IPSR, 1IM and IFS; and additional registers
defined in “Interruption Vector Descriptions” on page 8-1. When 0, IIP, IPSR,
IIM and IFS are not modified on an interruption (see “Writing of Interruption
Resources by Vector” on page 8-2 for details). When 0, speculative load
exceptions result in deferred exception behavior, regardless of the state of
the DCR and ITLB deferral bits. Processor operation is undefined if PSR.ic is
0 and a transition is made to execute 1A-32 code.

inst/data®

14

Interrupt Bit — When 1 and executing 1A-64 instructions, unmasked pending
external interrupts will interrupt the processor by transferring control to the
external interrupt handler. When 0, pending external interrupts do not
interrupt the processor. The effect of clearing PSR.i via Reset System Mask
(rsm) instructions is observed by the next instruction. Toggling PSR.i from
one to zero via Move to PSR.I requires data serialization. When executing
IA-32 instructions, external interrupts are enabled if PSR.i and (CFLG.if is 0
or EFLAG.if is 1). NMI interrupts are enabled if PSR.i is 1 regardless of
EFLAG.if.

clear: implicit
serialization
set: datad

pk

15

Protection Key enable — When 1 and PSR.it is 1, IA-64 and IA-32 instruction
references check for valid protection keys. When 1 and PSR.dtis 1, IA-64
and |A-32 data references check for valid protection keys. When 1 and
PSR.rtis 1, protection key checks are enabled for 1A-64 register stack
references. When 0, neither instruction, data, nor register stack references
are checked for valid protection keys. When PSR.dt, PSR.rt or PSR.it are 0,
PSR.pk is ignored for the corresponding reference.

unchanged

inst/data®

IA-64 System State and Programming Model

3-7

Table 3-2. Processor Status Register Fields (Continued)

intel.

Field

Bit

Description

Interruption
State

Serialization
Required

dt

17

Data address Translation — When 1, |1A-64 virtual data addresses are
translated and access rights checked. When 0, data accesses use physical
addressing. PSR.dt must be 1 when entering IA-32 code, otherwise
processor operation is undefined.

unchanged/0)

data

dfl

18

Disabled Floating-point Low register set — When 1, an IA-64 read or write
access to f2 through f31 results in a Disabled Floating-point Register fault.
When 1, all 1A-32 FP, Streaming SIMD Extension and MMX™ instructions
raise a Disabled FP Register fault (regardless whether the instruction
actually references f2-31).

data

dfh

19

Disabled Floating-point High register set — When 1, an IA-64 read or write
access to f32 through 127 results in a Disabled Floating-point Register fault.
When 1, a Disabled FP Register fault is raised on the first IA-32 target
instruction following a br . i a or r f i , regardless whether 32-127 are
referenced.

data

sp

20

Secure Performance monitors — Controls the ability of non-privileged IA-64
or IA-32 code to read non-privileged performance monitors. See Table 7-5
on page 7-8 for values returned by 1A-64 PMD read instructions. Also, when
0, PSR.up can be modified by user mask instructions; otherwise, PSR.up is
unchanged by user mask instructions. When 1 or CFLG.pce is 0,
non-privileged 1A-32 performance monitor reads (via r dpnt) raise an
1A-32_Exception(GPFault).

data

pp

21

Privileged Performance monitor enable — When 1, monitors configured as
privileged monitors are enabled to count IA-32 or IA-64 events. When 0,
privileged monitors are disabled. See “Performance Monitoring” on page 7-5
for details.

DCR.pp

inst/data®

di

22

Disable Instruction set transition — When 1, attempts to switch instruction
sets via the 1A-32 j npe or IA-64 br . i a instructions results in a Disabled
Instruction Set Transition fault. This bit doesn’t restrict instruction set
transitions due to interruptions or r f i .

data

si

23

Secure Interval timer — When 1, the Interval Time Counter (ITC) register is
readable only by privileged code, non-privileged 1A-64 reads result in a
Privilege Operation fault. When 0, ITC is readable at any privilege level.
System software can secure the ITC from non-privileged 1A-32 access by
setting either PSR.si or CFLG.tsd to 1. When secured, an IA-32 rdtsc (read
time stamp counter) instruction at any privilege level other than the most
privileged raises an IA-32_Exception(GPfault)

data

PSR.I = PSR{31:0}

db

24

Debug Breakpoint fault — When 1, 1A-64 data and IA-64 instruction address
breakpoints are enabled and can cause an I1A-64 Debug fault. When 1, 1A-32
instruction address breakpoints are enabled and can cause an
1A-32_Exception(Debug) fault. When 1, I1A-32 data address breakpoints are
enabled and can cause an |A-32_Exception(Debug) Trap.When 0, address
breakpoint faults and traps are disabled.

inst/data®

25

Lower Privilege transfer trap — When 1, a Lower Privilege Transfer trap
occurs whenever a taken 1A-64 branch lowers the current privilege level
(numerically increases). This bit is ignored during IA-32 instruction set
execution.

data

tb

26

Taken Branch trap — When 1, the successful completion of a taken 1A-64
branch results in a Taken Branch trap. rfi and interruptions can not raise a
Taken Branch trap. When 1, successful completion of a taken IA-32 branch
results in an 1A-32_Exception(Debug) trap.

data

3-8

IA-64 System State and Programming Model

intel.

Table 3-2. Processor Status Register Fields (Continued)

Field | Bit

Description

Interruption
State

Serialization
Required

rt 27

PSR{63:0}

Register stack Translation — When 1, register stack accesses are translated
and access rights are checked. When 0, register stack accesses use
physical addressing. PSR.dt is ignored for register stack accesses. The
register stack engine must be in enforced lazy mode (RSC.mode = 00) when
modifying this bit; otherwise, processor behavior is undefined. During 1A-32
instruction execution this bit is ignored and the 1A-64 register stack is
disabled.

unchanged

data

cplf 33:3
2

Current Privilege Level —The current privilege level of the processor for I1A-32
or IA-64 instruction set execution. Controls accessibility to system registers,
instructions and virtual memory pages. A value of 0 is most privileged, a
value of 3 is least privileged. Written by the IA-64 rfi , epc,andbr.ret
instructions. PSR.cpl is unchanged by the j mpe and br . i a instructions.
PSR.cpl cannot be updated by any IA-32 instructions.

rfi9

Instruction Set — When 0, the 1A-64 instruction set is executing. When 1, the
IA-32 instruction set is executing. Written by the IA-64 rfi andbr.i a
instructions and the 1A-32 j pe instruction.

rfi9, br.ia"

mc 35

Machine Check abort mask — When 1, machine check aborts are masked.
When 0, machine check aborts can be delivered during IA-32 and 1A-64
instruction set execution. Processor operation is undefined if PSR.mc is 1
and a transition is made to execute IA-32 code.

unchanged/1'

rfi9

Instruction address Translation — When 1, |1A-64 virtual instruction addresses
are translated and access rights checked. When 0, instruction accesses use
physical addressing. PSR.it must be 1 when entering 1A-32 code, otherwise
processor operation is undefined.

unchanged/0/

rfi9

Instruction Debug fault disable — When 1, Instruction Debug faults are
disabled on the first restart IA-64 instruction in the current bundle.X When
PSR.id is 1 or EFLAG.rf is 1, IA-32 instruction debug faults are disabled for
one IA-32 instruction. PSR.id and EFLAG.rf are set to 0 after the successful
execution of each IA-32 instruction.

rfi9

da 38

Disable Data Access and Dirty-bit faults — When 1, Data Access and Dirty-Bit
faults are disabled on the first IA-64 restart instruction in the current bundle
or for the first mandatory RSE reference following the r f i Xia-32
Access/Dirty-bit faults are not affected by PSR.da.

rfi9

dd 39

Data Debug fault disable — When 1, Data Debug faults are disabled on the
first restart 1A-64 instruction in the current bundle or for the first mandatory
RSE reference.X IA-32 Data Debug traps are not affected by PSR.dd.

rfi9

Ss 40

Single Step enable — When 1, a Single Step trap occurs following the
successful execution of the first restart 1A-64 instruction in the current
bundle. IA-64 Instruction slots 0, 1, and 2 can be single stepped. When 1 or
EFLAG.tf is 1, an I1A-32_Exception(Debug) trap is taken after each I1A-32
instruction.

rfi9

IA-64 System State and Programming Model

3-9

Table 3-2. Processor Status Register Fields (Continued)

intel.

Field | Bit

Description

Interruption
State

Serialization
Required

ri 42:4

Restart Instruction — When restarting instructions with r f i , this field
specifies which instruction(s) in the bundle are restarted. The specified and
subsequent instructions are restarted, all instructions prior to the restart point
are ignored.

00 — restart execution at instruction slot 0

01 — restart execution at instruction slot 1

10 — restart execution at instruction slot 2

This field can be set in IPSR prior to r f i and is set in IPSR after an
interruption indicating the next instruction in the bundle to be executed. The
value 11 is reserved.

These bits are ignored when 1A-32 instructions are restarted, and their value
is undefined after an 1A-64 or 1A-32 instruction is restarted.

instruction
pointer

rfi9

ed 43

Exception Deferral — When 1, if the first IA-64 restart instruction in the current
bundle is a speculative load, the operation is forced to indicate a deferred
exception by setting the load target register to NaT or NaTVal. No memory
references are performed, however any address post increments are
performed. If the operation is a speculative advanced load, the ALAT entry
corresponding to the load address and target register is purged. If the
operation is an | f et ch instruction, memory promotion is not performed,
however any address post increments are performed. When 0, exception
deferral is not forced on restarted speculative loads. If the first restart IA-64
instruction is not a speculative load or | f et ch instruction, this bit is
ignored.kI

rfi9

bn 44

register Bank — When 1, registers GR16 to GR31 for bank 1 are accessible.
When 0, registers GR16 to GR31 for bank 0 are accessible. Written by r f i
and bswinstructions.

implicit™

Disable Instruction Access-bit faults — When 1, Instruction Access-Bit faults
are disabled on the first 1A-64 restart instruction in the current bundle X 1A-32
Access-bit faults are not affected by PSR.ia.!

rfi9

a. User mask bits are implicitly serialized if accessed via user mask instructions; sum r um and move to User Mask. If modified
with system mask instructions; r Sm SSmand move to PSR.I, software must explicitly serialize to ensure side effects are
observed before dependent instructions.

b. User mask modification serialization is implicit only for monitoring data execution events. Software should issue instruction
serialization operations before monitoring instruction events to achieve better accuracy.

c. Requires instruction serialization to guarantee that VHPT walks initiated on behalf of an instruction reference observe the new
value of this bit. Otherwise, data serialization is sufficient to guarantee that the new value is observed.

d. The effect of masking external interrupts with r Smis observed by the next instruction. However, the processor does not ensure
unmasking interruptions with ssm is immediately observed. Software can issue a data serialization operation to ensure the
effects of setting PSR.i are observed before a given point in program execution.

e. Requires instruction or data serialization, based on whether the dependent “use” is an instruction fetch access or data access.

f. CPL can be modified due to interruptions, Return From Interruption (r f i), Enter Privilege Code (epc), and Branch Return
(br . r et) instructions.

g. Can only be modified by the Return From Interruption (r f i) instruction. r f i performs an explicit instruction and data
serialization operation.

h. Modification of the PSR.is bit by a br . i a instruction set is implicitly instruction serialized.

i. PSR.mc is set to 1 after a machine check abort or INIT; otherwise, unmodified on interruptions.

j. After an interruption this bit is normally unchanged, however after a PAL-based interruption this bit is set to 0.

k. This bit is set to 0 after the successful execution of each 1A-64 instruction in a bundle except for r f i which may set it to 1.

I. This bit is ignored when restarting I1A-32 instructions and set to zero when br . i a or r fi successfully complete and before the
first IA-32 instruction starts execution.

m. After an interruption, r f i , or bsw the processor ensures register accesses are made to the new register bank. For
interruptions, r f i and bsw the processor ensures all register accesses and outstanding loads prior to the bank switch operate
on the prior register bank.

3-10

IA-64 System State and Programming Model

3.3.3

The user mask, PSR{5:0}, can be set and cleared by the Set User Mask (sunj, Reset User Mask
(rum) and Move to User Mask (nov psr. un¥) instructions at any privilege level. For user mask
modifications by sum rumand nov, the processor ensures all side effects are observed before
subsequent instruction groups.

The system mask, PSR{23:0}, can be set and cleared by the Set System Mask (ssm) and Reset
System Mask (rsm) instructions. Software must issue the appropriate serialization operation before
dependent instructions. The system mask instructions are privileged.

The lower half of the PSR, PSR{31:0}, can be written with the Move to Lower PSR (mov psr. | =)
instruction. Software must issue the appropriate serialization operation before dependent
instructions. The Move to Lower PSR instruction is privileged.

The PSR can be read with the Move from PSR (nov =psr) instruction. Only PSR{36:35} and
PSR{31:0} arewritten to the target register by Move from PSR. PSR{63:37} and PSR{34:32} can
only be read after an interruption by reading the statein IPSR. The entire PSR is updated from
IPSR by the Return from Interruption (r f i) instruction. Anr fi alsoimplicitly serializes the PSR.
Both Move from PSR and Return from Interruption are privileged.

Control Registers

Table 3-3 defines all registersin the control register name space along with serialization
reguirements to ensure side effects are observed by subsequent instructions. However, reads of a
control register must be data serialized with prior writes to the same register. The seriaization
required column only refers to the side effects of the data value.

Writesto read-only registers (IVR, IRRO-3) result in an I1legal Operation fault, accessesto reserved
registersresult in alllegal Operation fault. Accesses can only be performed by nov to/from
instructions defined in Table 3-4 at privilege level 0; otherwise, a Privileged Operation fault is
raised.

Table 3-3. Control Registers

. _— Serialization
Register Name Description Required
Global CRO DCR Default Control Register inst/data
Control CR1 IT™ Interval Timer Match register data?
Registers - i etd
CR2 IVA Interruption Vector Address inst

IA-64 System State and Programming Model 3-11

Table 3-3. Control Registers (Continued)

Register

Name

Description

Serialization

CR80

LRRO

Required

Interruption | CR16 IPSR Interruption Processor Status Register impliedd
Control CR17 ISR Interruption Status Register implied®
O oms | feseves

CR19 1] Interruption Instruction Pointer impliedd

CR20 IFA Interruption Faulting Address impliedd

CR21 ITIR Interruption TLB Insertion Register impliedd

CR22 IIPA Interruption Instruction Previous Address implied®

CR23 IFS Interruption Function State impliedd'e

CR24 IIM Interruption Immediate register implied®

CR25 IHA Interruption Hash Address implied®

[Foosves, JERERes] gesaed |

Interrupt CR64 LID Local Interrupt ID data?
Control CR65 IVR External Interrupt Vector Register (read only) data?®
Registers CR66 TPR Task Priority Register data®

CR67 EOQI End Of External Interrupt data?

CR68 IRRO External Interrupt Request Register 0 (read only) | data®

CR69 IRR1 External Interrupt Request Register 1 (read only) | data®

CR70 IRR2 External Interrupt Request Register 2 (read only) | data®

CR71 IRR3 External Interrupt Request Register 3 (read only) | data®

CR72 TV Interval Timer Vector data®

CR73 PMV Performance Monitoring Vector data?

CR74 CMCcV Corrected Machine Check Vector data?®

Local Redirection Register 0

data?

CR81

LRR1

Local Redirection Register 1

data®

a. Serialization is needed to ensure external interrupt masking, new interval timer match values or new
interruption table addresses are observed before a given point in program execution.
b. Serialization is needed to ensure new values in PTA are visible to the hardware Virtual Hash Page Table
(VHPT) walker before a dependent instruction fetch or data access.
c. These registers are modified by the processor on an interruption or by an explicit move to these registers.

There are no side effects when written.

d. These registers are implied operands to the rfi and/or TLB insert instructions. The processor ensures writes in
previous instruction groups are observed by rfi and/or TLB insert instructions in subsequent instruction
groups. These registers are also modified by the processor on an interruption, subsequent reads return the
results of the interruption. There are no other side effects.

e. IFS written by a cover instruction followed by a move-from IFS is implicitly serialized.

Table 3-4. Control Register Instructions

Mnemonic Description Operation Format
nmv Ccrz =r, Move to control register CR[r3] - GRIry] M
nmv rq = Crga Move from control register GR[rq] < CR[r3] M
srlz.i, rfi Serialize instruction references Ensure side effects are observed by the M

instruction fetch stream
srlz.d Serialize data references Ensure side effects are observed by the M
execute and data streams

3-12 IA-64 System State and Programming Model

3.34 Global Control Registers

3.34.1 Default Control Register (DCR — CRO)

The DCR specifies default parameters for PSR values on interruption, some additional global
controls, and whether speculative load faults can be deferred. Figure 3-3 and Table 3-5 define and
describe the DCR fields.

Figure 3-3. Default Control Register (DCR — CRO)

63 15 14 13 12 11 10 9 8 7 32 10
O < o o el
49 111 1 11 1 5 1 1 1
Table 3-5. Default Control Register Fields
. . S Serialization
Field Bit Description Required
pp 0 Privileged Performance monitor default — On interruption, DCR.pp is data
loaded into PSR.pp.
be 1 Big-Endian default — When 1, Virtual Hash Page Table (VHPT) walker inst

accesses are performed big-endian; otherwise, little-endian. On
interruption, DCR.be is loaded into PSR.be.

Ic 2 1A-32 Lock Check enable — When 1, and an 1A-32 atomic memory data
reference requires a read-modify-write operation external to the
processor under an external bus lock, an 1A-32_Intercept(Lock) is raised.
When 0, and an IA-32 atomic memory reference requires a
read-modify-write operation external to the processor under external bus
lock, the processor may either generate an 1A-32_Intercept(Lock) (if bus
locks are not supported by the processor), or perform the transaction
with an external bus lock. External bus locks are required for IA-32
atomic accesses that are made to non-write back memory or are
unaligned across an implementation specific non-supported alignment
boundary. I1A-64 semaphore accesses ignore this bit. All unaligned 1A-64
semaphore references generate an Unaligned Data Reference fault. All
IA-64 semaphore references made to memory that is neither write-back
cacheable nor a NaTPage result in an Unsupported Data Reference
fault.

dm 8 Defer TLB Miss faults only (VHPT data, Data TLB, and Alternate Data data
TLB faults) — When 1, and a TLB miss is deferred, lower priority Debug
faults may still be delivered. A TLB miss fault, deferred or not, precludes
concurrent Page not Present, Key Miss, Key Permission, Access Rights,
or Access Bit faults. This bit is ignored by 1A-32 instructions.

dp 9 Defer Page not Present faults only — When 1, and a Page not Present data
fault is deferred, lower priority Debug faults may still be delivered. A
Page not Present fault, deferred or not, precludes concurrent Key Miss,
Key Permission, Access Rights, or Access Bit faults. This bit is ignored
by 1A-32 instructions.

dk 10 Defer Key Miss faults only — When 1, and a Key Miss fault is deferred, data
lower priority Access Bit, Access Rights or Debug faults may still be
delivered. A Key Miss fault, deferred or not, precludes concurrent Key
Permission faults. This bit is ignored by IA-32 instructions.

dx 11 Defer Key Permission faults only — When 1, and a Key Permission fault | data
is deferred, lower priority Access Bit, Access Rights or Debug faults may
still be delivered. This bit is ignored by |A-32 instructions.

IA-64 System State and Programming Model 3-13

intel.

Table 3-5. Default Control Register Fields (Continued)

3.34.2

. . . Serialization
Field Bit Description Required
dr 12 Defer Access Rights faults only — When 1, and an Access Rights fault is | data
deferred, lower priority Access Bit or Debug faults may still be delivered.
This bit is ignored by IA-32 instructions.
da 13 Defer Access Bit faults only — When 1, and an Access Bit fault is data
deferred, lower priority Debug faults may still be delivered. This bit is
ignored by IA-32 instructions.
dd 14 Defer Debug faults — When 1, Data Debug faults on speculative loads data
are deferred. This bit is ignored by IA-32 instructions.

For the DCR exception deferral bits, when thebit is 1, and a speculative load resultsin the specified
fault condition, and the speculative load’s code page exception deferral bit (ITLB.ed) is 1, the
exception is deferred by setting the specul ative load target register to NaT or NaTVal. Otherwise,
the specified fault is taken on the specul ative load. For a description of faults on speculative loads
see Section 5.5.5, “Deferral of 1A-64 Speculative Load Faults’.

Since DCR.be also controls byte ordering of VHPT references that are the result of instruction
misses, DCR.be requiresinstruction serialization. Other DCR bits require data serialization only.

Interval Time Counter and Match Register (ITC —AR44 and ITM —CR1)

The Interval Time Counter (ITC) and Interval Timer Match (ITM) register support fine-grained
time stamps and elapsed time notification, see Figure 3-4 and Figure 3-5.

Figure 3-4. Interval Time Counter (ITC —AR44)

63 0
ITC
64

Figure 3-5. Interval Timer Match Register (ITM —CR1)

3-14

63 0
ITM
64

The ITC isafree-running 64-bit counter that counts up at a fixed relationship to the processor
clock; 64-bit overflow conditions occur without notification. The ITC counting rate is not affected
by power management mechanisms. The ITC can be read at any privilege level if PSR.g is zero.
The timer can be secured from non-privileged access by setting PSR.si to 1. When secured, aread
of the ITC by non-privileged | A-64 code resultsin a Privileged Register fault. Writesto the ITC
can only be performed at privilege level O; otherwise, a Privileged Register fault is raised.

The I|A-32 Time Stamp Counter (TSC) isequivaent to ITC. The ITC can beread by the |A-32
rdt sc (read time stamp counter) instruction. System software can secure the ITC from
non-privileged 1A-32 access by setting either PSR.si or CFLG.tsd to 1. When secured, an 1A-32
read of the ITC at any privilege level other than the most privileged raises an
|A-32_Exception(GPfault).

IA-64 System State and Programming Model

3.3.4.3

When the valuein the ITC isequa to thevauein the ITM an Interval Timer Interrupt is raised.
Once the interruption is taken by the processor and serviced by software, the ITC may not
necessarily be equal to the ITM. The ITM isaccessible only at privilege level O; otherwise, a
Privileged Operation fault is raised.

Theinterval counter can be written, for initialization purposes, by privileged code. The ITC is hot
architecturally guaranteed to be synchronized with any other processor’sinterval time counter in an
multi-processor system, nor isit synchronized with the wall clock. Software must calibrate interval
timer ticks to wall clock time and periodically adjust for drift.

Modification of the ITC or ITM is not necessarily serialized with respect to instruction execution.
Software can issue a data serialization operation to ensure the ITC or ITM updates and possible
side effects are observed by a given point in program execution. Software must accept alevel of
sampling error when reading the interval timer due to various machine stall conditions,
interruptions, bus contention effects, etc.

Interruption Vector Address (IVA —CR2)

The IVA specifiesthe location of the | A-64 interruption vector table in the virtual address space, or
the physical address space if PSR.it is 0, see Figure 3-6. The size of the vector table is 32K bytes
and is 32K byte aligned. The lower 15 bits of the IVA are ignored when written, reads return zeros.
All upper 49 address bits of VA must be implemented regardless of the size of the physical and
virtual address space. If an unimplemented virtual or physical address (see “ Unimplemented
Address Bits” on page 4-24) isloaded into I VA, and an interruption occurs, processor behavior is
unpredictable. See “1VVA-based Interruption Vectors’ on page 5-17 for a description of an
interruption table layout.

Figure 3-6. Interruption Vector Address (IVA —CR2)

3.34.4

63 15 14 0
| IVA ig
a9 15

Page Table Address (PTA — CR8)

The PTA anchorsthe Virtual Hash Page Table (VHPT) in the virtual address space. See Section
4.1.5, “Virtual Hash Page Table (VHPT)” for acomplete definition of the VHPT. Operating systems
must ensure that the table is aligned on a natural boundary; otherwise, processor operation is
undefined. See Figure 3-7 and Table 3-6 for the PTA field definitions.

Figure 3-7. Page Table Address (PTA —CR8)

63 15 14 9 8 7 2 10
base{63:15} rv ‘ vf ‘ size ‘N‘ve‘
49 1

[}

IA-64 System State and Programming Model 3-15

Table 3-6.

Page Table Address Fields
Field Bits Description
ve 0 VHPT Enable — When 1, the processor is enabled to walk the VHPT.
size 7:2 VHPT Size — VHPT table size in power of 2 increments, table size is 252€ pytes. Size

generates a mask that is logically AND’ed with the result of the VHPT hash function.
Minimum VHPT table size is 32K bytes; otherwise, a Reserved Register/Field fault is
raised (see “Virtual Hash Page Table (VHPT)” on page 4-14). The maximum size is 261
bytes for long format VHPTs, and 252 bytes for short format VHPTS.

vf 8 VHPT Format — When 0, 8-byte short format entries are used, when 1, 32-byte long
format entries are used.

base 63:15 VHPT Base virtual address — Defines the starting virtual address of the VHPT table. Base
is logically OR’ed with the hash index produced by the VHPT hash function when
referencing the VHPT. Base must be on 25'%¢ boundary otherwise processor operation is
undefined. All base address bits of PTA must be implemented regardless of the size of
the physical and virtual address space. If an unimplemented virtual address (see
“Unimplemented Address Bits” on page 4-24) is used by the processor as a page table
base, all VHPT walks generate an Instruction/Data TLB miss (see “Translation

3.3.5

3.35.1

3.35.2

3-16

Searching” on page 4-20).

Interruption Control Registers

Registers CR16 - CR25 record information at the time of an interruption from either the IA-32 or
| A-64 instruction set and are used by handlers to process the interruption.

The interruption control registers can only be read or written while PSR.ic is 0; otherwise, an
Illegal Operation fault israised. These registers are only guaranteed to retain their values when
PSR.icis0. When PSR.ic is 1, the processor does hot preserve their contents. |1PA has special
behavior in case of anrfi toafault. Refer to Section 3.3.5.6, “ Interruption Instruction Previous
Address (IIPA — CR22)” on page 3-19.

Interruption Processor Status Register (IPSR — CR16)

On aninterruption and if PSR.ic is 1, the PSR receives the value of the PSR. The IPSR, 1P and
IFS are used to restore processor state on a Return From Interruption (r fi). The IPSR hasthe same
format as PSR, see Section 3.3.2, “Processor Status Register (PSR)” for details. IPSR.ri is set to O,
after any interruption from the 1A-32 instruction set.

Interruption Status Register (ISR -CR17)

The ISR receives information related to the nature of the interruption, and is written by the
processor on al interruption events regardless of the state of PSR.ic, except for Data Nested TLB
faults. The ISR contains information about the excepting instruction and its properties such as
whether it was doing aread, write, execute, speculative, or non-access operation, see Figure 3-8
and Table 3-7. Multiple bits may be concurrently set in the | SR, for example, afaulting semaphore
operation will set both ISR.r and I SR.w, and faults on speculative loads will set ISR.sp and ISR.r.
Additional fault or trap specific information is available in 1SR.code and I SR.vector. Refer to
Section 8.2, “I1SR Settings’ for complete definition of the ISR field settings.

IA-64 System State and Programming Model

intel.

Figure 3-8. Interruption Status Register (ISR —CR17)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vector ‘ code ‘

8 8 16
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ed‘ ei ‘so‘ni‘ir‘rs‘sp‘na‘r‘w‘x‘
11 1 1 11 1 1

20

Table 3-7. Interruption Status Register Fields

Field Bits Description

code 15:0 Interruption Code — 16 bit code providing additional information specific to the current
interruption. For |1A-32 specific exceptions and software interrupts, contains the I1A-32
interruption error code or zero.

vector 23:16 1A-32 exception/interception vector number. For IA-32 exceptions and software
interrupts, contains the 1A-32 vector number (e.g. GPFault has a vector number of 13).
See Chapter 9, “IA-32 Interruption Vector Descriptions” for details.

X 32 Execute exception — Interruption is associated with an I1A-64 or IA-32 instruction fetch.

w 33 Write exception — Interruption is associated with a write operation. Both ISR.r and
ISR.w are set for 1A-32 read-modify-write instructions.

r 34 Read exception — Interruption is associated with a read operation. Both ISR.r and
ISR.w are set for 1A-32 read-modify-write instructions.

na 35 Non-access exception — See Section 5.5.2. This bit is always 0 for interruptions taken
in the 1A-32 instruction set.

sp 36 Speculative load exception — Interruption is associated with a I1A-64 speculative load
instruction. This bit is always 0 for interruptions taken in the 1A-32 instruction set.

rs 37 Register Stack — Interruption is associated with a mandatory 1A-64 RSE fill or spill.
This bit is always 0 for interruptions taken in the IA-32 instruction set.

ir 38 Incomplete Register frame — The current register frame is incomplete when the
interruption occurred. This bit is always 0 for interruptions taken in the 1A-32 instruction
set.

ni 39 Nested Interruption — Indicates that PSR.ic was 0 or in-flight when the interruption

occurred. This bit is always 0 for interruptions taken in the IA-32 instruction set.

so 40 IA-32 Supervisor Override — Indicates the fault occurred during an IA-32 instruction set
supervisor override condition (the processor was performing a data memory accesses
to the IDT, GDT, LDT or TSS segments) or an |A-32 data memory access at a privilege
level of zero. This bit is always 0 for interruptions taken in the I1A-64 instruction set.

ei 42:41 Excepting IA-64 Instruction —

00 — exception due to instruction in slot 0

01 — exception due to instruction in slot 1

10 — exception due to instruction in slot 2

For faults and external interrupts, ISR.ei is equal to IPSR.ri. For traps, ISR.ei defines
the slot of the excepting instruction. Traps on the L+X instruction of an MLX set ISR.ei
to 2. For interruptions taken out of the IA-32 instruction set, ISR.ei is always 0.

ed 43 Exception Deferral — this bit is set to the value of the TLB exception deferral bit
(TLB.ed) for the instruction page containing the faulting instruction. If a translation
does not exist or instruction translation is disabled, or if the interruption is caused by a
mandatory RSE spill or fill, ISR.ed is set to 0. This bit is always O for interruptions
taken in the 1A-32 instruction set.

IA-64 System State and Programming Model 3-17

3.35.3

Interruption Instruction Bundle Pointer (IIP —CR19)

On an interruption and if PSR.icis 1, the [P receives the value of IP. I P contains the virtual
address (or physical if instruction trandations are disabled) of the next 1A-64 instruction bundle or
the A-32 instruction to be executed upon return from the interruption. For |A-32 instruction
addresses, |IP is zero extended to 64-bits and specifies a byte granular address. For traps and
interruptions, |1P points to the next instruction to execute. For faults, |1P pointsto the faulting
instruction. As shown in Figure 3-9, all 64-bits of the |1P must be implemented regardless of the
size of the physical and virtual address space supported by the processor model (see
“Unimplemented Address Bits’ on page 4-24). 1P aso receives byte-aligned | A-32 instruction
pointers. The lIP, IPSR and IFS are used to restore processor state on a Return From Interruption
instruction (r fi). See Section 8.1, “Interruption Vector Descriptions” for usages of the |IP.

Anrfi tolA-64 code (IPSR.isis0) ignores|IP{3:0},anrfi tolA-32code (IPSR.isis 1) ignores
[1P{63:32}. Ignored hits are assumed to be zero.

Figure 3-9. Interruption Instruction Bundle Pointer (IIP — CR19)

3.354

3-18

63 0
\ 1P \
64

Control transfers to unimplemented addresses (see “ Unimplemented Address Bits” on page 4-24)
result in an Unimplemented Instruction Address trap. When thistrap is delivered, 1P iswritten as
follows:

« If thetrap istaken for an unimplemented virtual address, |1P iswritten with the implemented
virtual address bits IP{63:61} and IP{IMPL_VA_MSB:0} only. Bits
[IP{60:IMPL_VA_MSB+1} aresetto IP{IMPL_VA_MSB}, i.e. sign-extended.

« If thetrap istaken for an unimplemented physical address, 1P iswritten with the physical
addressing memory attribute bit |P{63} and the implemented physical address bits
IP{IMPL_PA_MSB:0} only. Bits[IP{62:IMPL_PA_MSB+1} areset to 0.

Whenanrfi isexecuted with an unimplemented addressin | 1P (an unimplemented virtual address
if IPSR.itis 1, or an unimplemented physical addressif IPSR.it is 0), and an Unimplemented
Instruction Address trap is taken, an implementation may optionally leave I1P unchanged
(preserving the unimplemented addressin |1P).

Note: Since IP{3:0} are aways 0 when executing |A-64 code, 11P{3:0} will always be 0 when
any interruption is taken from | A-64 code, with the exception of an Unimplemented
Instruction Addresstraponanr fi , where [IP may optionally be preserved as whatever
value it held before executing ther fi .

Interruption Faulting Address (IFA —CR20)

On an interruption and if PSR.icis 1, the IFA receives the virtual address (or physical address if
translations are disabled) that raised a fault. |FA reports the faulting address for both |A-64 or

| A-32 and both instruction and data memory accesses. For faulting 1A-32 or |A-64 data references,
IFA points to the first byte of the faulting data memory operand. IFA reports a byte granular
address. For faulting |A-32 or 1A-64 instruction references, |FA contains the 16-byte aligned
bundle address (IFA{ 3.0} are zero) of the faulting instruction. For faulting |A-32 instructions, |1P
points to the first byte of the |A-32 instruction, and is byte granular. In the event of an 1A-32
instruction spanning avirtual page boundary, |A-32 instruction fetch faults are reported as either

IA-64 System State and Programming Model

(2) for faults on the first page, and IFA is set to the bundle address (1FA{ 3:0} =0) of the faulting
instruction and 11 P points to the first byte of the faulting instruction, or (2) for faults on the second
page, IFA contains the bundle address of the second virtual page and 1P points to the first byte of
the faulting 1 A-32 instruction.

The IFA also specifies atrandation’s virtual address when atrandation entry isinserted into the
instruction or data TLB. See Section 8.1, “Interruption Vector Descriptions’ and Section 4.1.1.5,
“Translation Insertion Format” for usages of the IFA. As shown in Figure 3-10, all 64-bits of the
IFA must be implemented regardless of the size of the virtual and physical space supported by the
processor model (see “Unimplemented Address Bits” on page 4-24).

Figure 3-10. Interruption Faulting Address (IFA — CR20)

63 0
\ IFA
64

3.355 Interruption TLB Insertion Register (ITIR —CR21)

The ITIR receives default tranglation information from the referenced virtual region register on a
virtual address translation fault. See “ Interruption Vector Descriptions’ on page 8-1 for the fault
conditions that set the ITIR. The ITIR provides additional virtual address translation parameters on
an insertion into the instruction or data TLB. See “Trandation Instructions’ on page 4-13 for ITIR
usage information. Figure 3-11 and Table 3-8 define the ITIR fields.

Figure 3-11. Interruption TLB Insertion Register (ITIR)
63 32 31 8 7 2 10
cwil ‘ key ps ‘ cwi2 ‘
32 24 6 2

Table 3-8. ITIR Fields

Field Bits Description
cwil, cwi2 | 63:32, |On aread these fields may return zeros or the value last written to them. If a non-zero
1.0 value is written, a subsequent TLB insert will raise a Reserved Register Field fault
depending on other parameters to the insert. See “Translation Insertion Format” on
page 4-7.
ps 7:2 Page Size — On a TLB insert, specifies the size of the virtual to physical address

mapping. On an instruction or data translation fault, this field is set to the accessed
region’s page size (RR.ps).

key 31:8 protection Key — On a TLB insert specifies a protection key that uniquely tags
translations to a protection domain. On an instruction or data translation fault, Key is set
to the accessed Region Identifier (RR.rid).

3.3.5.6 Interruption Instruction Previous Address (IIPA — CR22)

For 1A-64 instructions, |1 PA records the last successfully executed | A-64 instruction bundle
address. For 1A-32 instructions, 11PA records the byte granular virtual instruction address zero
extended to 64-bits of the faulting or trapping 1A-32 instruction. In the case of afault, I1PA does not
report the address of the last successfully executed 1A-32 instruction, but rather the address of the
faulting 1A-32 instruction. 11 PA preserves bits 3:0 for byte aligned | A-32 instruction addresses.

IA-64 System State and Programming Model 3-19

intel.

ThellPA can be used by software to locate the address of the 1 A-64 or | A-32 instruction bundle that
raised atrap or the | A-64 instruction executed prior to afault or interruption. In the case of abranch
related trap, I1PA pointsto the instruction bundle which contained the branch instruction that raised
the trap, while 1P points to the target of the branch.

When an |A-64 instruction successfully executes without a fault, and the PSR.ic bit was 1 prior to
instruction execution, it becomes the “last successfully executed instruction”. On interruptions,
[1PA contains the address of the last successfully executed 1A-64 instruction, if PSR.ic was 1 prior
to the interruption. If no such instruction exists, e.q. incase of anr f i to afault, the contents of
[1PA remain unchanged.

When PSR.ic isone, accessesto |1PA cause an lllegal Operation fault. When PSR.iciszero, [IPA is
not updated by hardware and can be read and written by software. This permits low-level codeto
preserve [IPA across interruptions.

If the PSR.ic bit is explicitly cleared, e.g. by using r sm then the contents of |1PA are undefined.
Only when the PSR.ic bit is cleared by an interruption is the value of 11PA defined. It may point at
the instruction which caused atrap, or at the instruction just prior to afaulting instruction, at an
earlier instruction that became defined by some prior interruption, or by amoveto [1PA instruction
when PSR.ic was zero.

If the PSR.ic bit isexplicitly set, e.g. by using ssm then the contents of [1PA are undefined until the
PSR.ic bit has been serialized and an interruption occurs.

During instruction set transitions the following boundary cases exist:
» Onfaultstaken on thefirst IA-32 instruction after abr.iaorrfi, [IPA records the faulting
| A-32 instruction address.
e Onbr.iatraps, IIPA records the trapping 1A-64 instruction address.

» On faultstaken on the first IA-64 instruction after leaving the |A-32 instruction set, dueto a
j npe or interruption, I1PA contains the address of thej npe instruction or the interrupted 1A-32
instruction.

« Onj npe Data Debug, Single Step and Taken Branch traps, 11PA contains the address of the
j npe instruction.

Asshown in Figure 3-12, all 64-hits of the I1PA must be implemented regardless of the size of the
physical and virtual address space supported by the processor model (see“ Unimplemented Address
Bits” on page 4-24).

Figure 3-12. Interruption Instruction Previous Address (IIPA —CR22)

3.3.5.7

3-20

63 0
\ IIPA
64

Interruption Function State (IFS — CR23)

The IFS register is used to reload the current register stack frame (CFM) on a Return From
Interruption (r fi). If the IFSis accessed while PSR.icis 1, an Illegal Operation fault israised. The
IFS can only be accessed at privilege level 0; otherwise, a Privileged Operation fault israised. The
IFS.v bit is cleared on interruption if PSR.icis 1. All other fields are undefined after an
interruption. If PSR.icis0, the cover instruction copies CFM to IFS.ifm and sets IFS.v to 1. See
Figure 3-13 and Table 3-9 for the IFS field definitions.

IA-64 System State and Programming Model

intel.

Figure 3-13. Interruption Function State (IFS — CR23)

63 62 38 37 0
1 25 38

Table 3-9. Interruption Function State Fields

3.3.5.8

Field Bits Description

ifm 37:.0 Interruption Frame Marker
Y 63 Valid bit, cleared to 0 on interruption if PSR.ic is 1.

Interruption Immediate (IIM — CR24)

If PSR.icis 1, thellM (Figure 3-14) records the zero-extended immediate field encoded in chk. a,
chk. s, f chkf or break instruction faults. The br eak. b instruction always writes a zero value and
ignoresitsimmediate field. The IA-32_Intercept vector writes all 64-bits of 1M to indicate the
cause of theintercept. See Table 8-1 on page 8-2 for the value of 1IM in other situations. For the
purpose of resource dependency, IIM iswritten as aresult of the fault, not by the instruction itself.

Figure 3-14. Interruption Immediate (IIM — CR24)

3.3.5.9

63 0
‘ Interruption Immediate
64

Interruption Hash Address (IHA — CR25)

The IHA (Figure 3-15) isloaded with the address of the Virtual Hash Page Table (VHPT) entry the
processor referenced or would have referenced to resolve atranglation fault. The IHA iswritten on
interruptions by the processor when PSR.ic is 1. Refer to “VHPT Hashing” on page 4-17 for
complete details. See Table 8-1 on page 8-2 for the value of IHA in other situations. All upper 62
address bits of IHA must be implemented regardless of the size of the virtual address space
supported by the processor model (see “Unimplemented Address Bits’ on page 4-24). The virtual
address written to IHA by the processor is guaranteed to be an implemented virtual addresses on all
processor models; however, if the address referenced by the VHPT is an unimplemented virtual
address, the value of IHA is undefined.

Figure 3-15. Interruption Hash Address (IHA — CR25)

3.3.6

63 2 10
‘ Interruption Hash Address ‘ ig ‘
62 2

External Interrupt Control Registers

The external interrupt control registers (CR64-81) are defined in “External Interrupt Control
Registers’ on page 5-25. They are used to prioritize and deliver external interrupts, send
inter-processor interrupts to other processors and assign interrupt vectors for locally generated
processor interrupts.

IA-64 System State and Programming Model 3-21

3.3.7

Banked General Registers

Banked general registers (see Figure 3-16) provide immediate register context for low-level
interruption handlers (e.g. speculation and TLB miss handlers). Upon interruption, the processor
switches 16 general purpose registers (GR16 to GR31) to register bank 0, register bank 1 contents
are preserved.

When PSR.bnis 1, bank 1 for registers GR16 to GR3L1 is selected; when 0, bank O for registers
GR16 to GR31 is selected. Banks are switched in the following cases:

* Aninterruption selects bank O,
e rfi switchesto the bank specified by IPSR.bn, or
 bswswitches to the specified bank.

On an interruption or bank switch, the processor ensures all prior register accesses (reads and
writes) are performed to the prior register bank. Data values in banked registers are preserved
across bank switches and both banks maintain NaT values when loaded from general registers.
Registers from both banks cannot be addressed at the same time. However, non-banked general
registers (GRO-15, and GR32-127) are accessible regardless of the state of PSR.bn.

Figure 3-16. Banked General Registers

3-22

general registersnat
6; 00
gro 0 bapé(e_d %eneral
giSters pat
grl H 63 00
|96
e D H gras
> j] grog
grs H
ara2 1:1 gray
gri27] [[volatile registers

The ALAT register target tracking mechanism (see Section 4.4.5, “ Data Speculation” in Volume 1)
does not distinguish the two register banks; from the ALAT's perspective GR16 in bank 0 isthe
same register as GR16 in bank 1.

Operating systems should ensure that 1A-32 and 1A-64 application code is executed within register
bank 1. If IA-32 or 1A-64 application code executes out of register bank 0, the IA-32 or |A-64
application register state will belost on any interruption. During interruption processing the
operating system uses register bank 0 as the initial working register context.

Usage of these additional registersis determined by software conventions. However, registers
GR24 to GR31, of bank 0, are not preserved when PSR.ic is 1; operating system code can not rely
on register values being preserved unless PSR.ic is 0. While PSR.ic is 1, processor-specific
firmware may use these registers for machine check or firmware interruption handling at any point
regardless of the state of PSR.i. If PSR.icis 0, GR24 to GR31 can be used as scratch registers for
low-level interruption handlers. Registers GR16 to GR23 are always preserved; operating system
code can rely on the values being preserved.

IA-64 System State and Programming Model

tel.

|A-64 Addressing and Protection 4

4.1

This chapter defines operating system resources to translate 64-bit virtual addresses into physical
addresses, 32-hit virtual addressing, virtual aliasing, physical addressing, memory ordering and
properties of physical memory. Register state defined to support virtual memory management is
defined in Chapter 3, “IA-64 System State and Programming Model”, while Chapter 5, “1A-64
Interruptions’ provides complete information on virtual memory faults.

Note: Unless otherwise noted, referencesto “interruption” in this chapter refer to I\VA-based
interruptions. See “Interruption Definitions” on page 5-1.

The following key features are supported by the virtual memory model:

* Virtual Regions are defined to support contemporary operating system Multiple Address Space
(MAS) models of placing each process within a unique address space. Region identifiers
uniquely tag virtual address mappings to a given process.

 Protection Domain mechanisms support the Single Address Space (SAS) model, where
processes co-exist within the same virtual address space.

 Tranglation Lookaside Buffer (TLB) structures are defined to support high-performance paged
virtual memory systems. Software TLB fill and protection handlers are utilized to defer
translation policies and protection algorithms to the operating system.

¢ A Virtual Hash Page Table (VHPT) is designed to augment the performance of the TLB. The
VHPT isan extension of the processor’s TLB that resides in memory and can be automatically
searched by the processor. A particular operating system page table format is not dictated.
However, the VHPT is designed to mesh with two common translation structures: the virtual
linear page table and hashed page table. Enabling of the VHPT and the size of the VHPT are
completely under software control.

* Sparse 64-bit virtual addressing is supported by providing for large trandlation arrays
(including multiple levels of hierarchy similar to a cache hierarchy), efficient trand ation miss
handling support, multiple page sizes, pinned (locked) translations, and mechanisms to
promote sharing of TLB and page table resources.

Virtual Addressing

As seen by | A-64 application programs, the virtual addressing model is fundamentally a 64-bit flat
linear virtual address space. 64-hit general registers are used as pointersinto this address space.
IA-32 32-bit virtual linear addresses are zero extended into the 64-bit virtual address space.

Asshown in Figure 4-1, the 64-bit virtual address space is divided into eight 261 byte virtua
regions. The region is selected by the upper 3-bits of the virtual address. Associated with each
virtual region isaregion register that specifies a 24-bit region identifier (unique address space
number) for the region. Eight out of the possible 224 virtual address spaces are concurrently
accessible viathe 8 region registers. The region identifier can be considered the high order address
bits of alarge 85-bit global address space for a single address space model, or asa unique ID for a
multiple address space model.

IA-64 Addressing and Protection 4-1

4-2

Figure 4-1. Virtual Address Spaces

63 Virtual Address 0

8 Virtual d _| ________
Regions]|_
T T T TT T [
L_
[1 ! 1|
A o LT
— - 4| <
L — _{ |_
I I
T
61 [:_
2°! Bytes N [S
er Region 4K to 256M Pages Jl' :_
I

2% Virtual
Address Spaces

000918

By assigning sequential region identifiers, regions can be coal esced to produce larger 62-, 63- or
64-hit spaces. For example, an operating system could implement a 62-bit region for process
private data, 62-bit region for 1/0O, and a 63-hit region for globally shared data. Default page sizes
and translation policies can be assigned to each virtua region.

Figure 4-2 shows the process of mapping a virtual address into a physical address. Each virtual
addressis composed of three fields: the Virtual Region Number, the Virtual Page Number, and the
page offset. The upper 3-bits select the Virtual Region Number (VRN). The least-significant bits
form the page offset. The Virtual Page Number (VPN) consists of the remaining bits. The VRN bits
are not included in the VPN. The page offset bits are passed through the translation process
unmodified. Exact bit positions for the page offset and VPN bits vary depending on the page size
used in the virtual mapping.

On amemory reference, the VRN bits select a Region Identifier (RID) from 1 of the 8 region
registers, the TLB isthen searched for atranslation entry with amatching VPN and RID value. If a
matching translation entry is found, the entry’s physical page number (PPN) is concatenated with
the page offset bits to form the physical address. Matching trandations are qualified by page-
granular privilege level accessright checks and optional protection domain checks by verifying the
translation’s key is contained within a set of protection key registers and read, write, execute
permissions are granted.

If the required trandlation is not resident in the TL B, the processor may optionally search the VHPT
structure in memory for the required translation and install the entry into the TLB. If the required
entry cannot be found in the TLB and/or VHPT, the processor raisesa TLB Miss fault to request
that the operating system supply the translation. After the operating system installs the translation
inthe TLB and/or VHPT, the faulting instruction can be restarted and execution resumed.

Virtual addressing for instruction references are enabled when PSR.it is 1, data references when
PSR.dt is 1, and register stack accesses when PSR.rt is 1.

IA-64 Addressing and Protection

intel.

Figure 4-2. Conceptual Virtual Address Translation

41.1

Region Registers 6361 60 Virtual Address 0
Mo | |
rry 3
I, Region ID [« - -)
| | Virtual Region Number (VRN) Virtual Page Number (VPN) | Offset
I I
rr,
24
Hash [g
Search \ Search
Region ID Key Virtual Page Num (VPN) | Rights [Physical Page Num (PPN)

\/

Translation Lookaside Buffer (TLB)

24 Search
pkro Key Rights | Protection
pkry Key Registers
pkr,
| | 62 0

I I | Physical Page Number (PPN) | Offset |

l:l:l Physical Address

000919

Translation Lookaside Buffer (TLB)

The processor maintains two architectural TLBs as shown in Figure 4-3, the Instruction TLB
(ITLB) and Data TLB (DTLB). Each TLB services translation requests for IA-64 and 1A-32
instruction and data memory references, respectively. The Data TLB also services trandation
reguests for references by the RSE and the VHPT walker. The TLBs are further divided into two
sub-sections; Trandlation Registers (TR) and Tranglation Cache (TC).

Figure 4-3. TLB Organization

ITLB DTLB
ITr [|
It@ ITR gt@ ‘DTR
itry | dtry,
itc ITC dtc DTC

In the remainder of this document, the term TLB refers to the combined instruction, data,
translation register, and translation cache structures.

The TLB isalocal processor resource; installation of atrandation or local processor purges do not
affect other processor’s TLBs. Global TLB purges are provided to purge translations from all
processors within a TLB coherence domain in a multiprocessor system.

IA-64 Addressing and Protection 4-3

41.1.1

41.1.2

4-4

intel.

Translation Registers (TR)

The Translation Register (TR) section of the TLB is afully-associative array defined to hold
translations that software directly manages. Software can explicitly insert atranslation into a TR by
specifying aregister slot number. Translations are removed from the TRs by specifying avirtual
address, page size and aregion identifier. Trandation registers allow the operating system to “pin”
critical virtual memory translationsin the TLB. Examplesinclude I/O spaces, kernel memory areas,
frame buffers, page tables, sensitive interruption code, etc. Instruction fetches for |A-64
interruption handlers are performed using virtual addresses; therefore, virtual address ranges
containing software translation miss routines and critical interruption sequences should be pinned
or else additional TLB faults may occur. Other virtual mappings may be pinned for performance
reasons.

Entries are placed into a specific TR slot with the Insert Translation Register (i t r) instruction.
Once atrangdlation is inserted, the processor will not replace the trand ation to make room for other
translations. Local translations can only be removed by software issuing the Purge Translation
Register (pt r) instruction.

TR inserts and purges may cause other TR and/or TC entriesto be removed (refer to Section 4.1.1.4
for details). Prior to inserting a TR entry, software must ensure that no overlapping translation
existsin any TR (including the one being written); otherwise, a Machine Check abort may be
raised, or the processor may exhibit other undefined behavior. Translation register entries may be
removed by the processor due to hardware or software errors. In the presence of an error, the
processor can remove TR entries; notification is raised via a Machine Check abort.

There are at least 8 instruction and 8 data TR slots implemented on all processor models.
Translation registers support all implemented page sizes and must be implemented in asingle-level
fully-associative array. Any register slot can be used to specify any virtual address mapping.
Translation registers are not directly readable.

In some processor models, translation registers are physically implemented as a subsection of the
translation cache array. Valid TR slots are ignored for purposes of processor replacement on an
insertion into the TC. However, invalid TR slots (unused slots) may be used as TC entries by the
processor. Asaresult, software insertsinto previoudly invalid TR entriesmay invalidate aTC entry
inthat slot.

Implementations may also place a floating boundary between TR and TC entries within the same
structure where any entry above the boundary is considered a TC and any entry below the boundary
aTR. To maximize TC resources, software should all ocate contiguous transl ation registers starting
at dot 0 and continuing upwards.

Translation Cache (TC)

The Translation Cache (TC) is an implementati on-specific structure defined to hold the large
working set of dynamic trandations for |A-32 and | A-64 memory references. The processor
directly controls the replacement policy of all TC entries.

Entries are installed by software into the translation cache with the Insert Data Translation Cache
(i tc. d) and Insert Instruction Trandation Cache (i t c. i) instructions. The Purge Trandation
Cache Local (ptc. I') instruction purges all ITC/DTC entriesin the local processor that match the
specified virtual address range and region identifier. Purges of all ITC/DTC entries matching a

IA-64 Addressing and Protection

41.1.3

specified virtual address range and region identifier among all processorsin a TLB coherence
domain can be globally performed with the Purge Translation Cache Global (pt c. g, pt c. ga)
instruction. The TLB coherence domain covers at least the processors on the same loca bus on
which the purge was broadcast. Propagation between multiple TLB coherence domainsis platform
dependent. Software must handle the case where a purge does not propagate to al processorsin a
multiprocessor system. Tranglation cache purges do not invalidate TR entries.

All the entriesin alocal processor’s ITC and DTC can be purged of all entries with a sequence of
Purge Trandation Cache Entry (pt c. e) instructions. A pt c. e does not propagate to other
processors.

In all processor models, the translation cache has at least 1 instruction and 1 data entry in addition
to the specified 8 instruction and 8 datatrand ation registers. Implementations are free to implement
translation cache arrays of larger sizes. Implementations may also choose to implement additional
hierarchies for increased performance. At least one trandation cache level is required to support all
implemented page sizes. Additional hierarchy levels may or may not be performance optimized for
the preferred page size specified by the virtual region, may be set-associative or fully associative,
and may support alimited set of page sizes.

The tranglation cache is managed by both software and hardware. In general, software cannot
assume any entry installed will remain, nor assume the lifetime of any entry since replacement
algorithms are implementation specific. The processor may discard or replace atrandation at any
point in time for any reason (subject to the forward progress rules below). TC purges may remove
more entries than explicitly requested. In the presence of a processor hardware error, the processor
may remove TC entries and optionally raise a Corrected Machine Check Interrupt.

In order to ensure forward progress for | A-64 code, the following rules must be observed by the
processor and software:

« Software may insert multiple translation cache entries per TLB fault, provided that only the
last installed translation is required for forward progress.

» The processor may occasionally invalidate the last TC entry inserted. The processor must
guarantee visibility of the last inserted TC entry to al references while PSR.ic is zero, and to
the first instruction immediately followinganrfi that setsPSR.icto 1. If PSR.icissetto 1 by
instructions other thanr f i , the processor does not guarantee forward progress.

« Software must not defeat forward progress by consistently displacing arequired TC entry
through a global or local translation cache purge.

I A-32 code has more stringent forward progress rules that must be observed by the processor and
software. 1A-32 forward progress rules are defined in Section 10.6.3.

The translation cache can be used to cache TR entries if the TC maintains the instruction vs. data
digtinction that is required of the TRs. A data reference cannot be satisfied by a TC entry that isa
cache of aninstruction TR entry, nor can an instruction reference be satisfied by a TC entry thatisa
cache of adata TR entry. This approach can be useful in a multi-level TLB implementation.

Unified Translation Lookaside Buffers

Some processor models may merge the ITC and DTC into a unified translation cache. The
minimum number of unified entriesis 2 (1 for instruction, and 1 for data). Processors may service
instruction fetch memory references with TC entries originally installed into the DTC and service
data memory references with translations originally installed in the ITC. To ensure consistent

IA-64 Addressing and Protection 4-5

41.1.4

intel.

operation across processor implementations, software is recommended to not install different
tranglations into the ITC or DTC for the same virtual region and virtual address. ITC inserts may
remove DTC entries. DTC inserts may remove ITC entries. TC purgesremove ITC and DTC
entries.

Instruction and data trandlation registers cannot be unified. DTR entries cannot be used by
instruction references and I TR entries cannot be used by data references. I TR inserts and purges do
not remove DTR entries. DTR inserts and purges do not remove I TR entries.

Purge Behavior of TLB Inserts and Purges

In addition to using the region identifier (RR[VRN].rid) and the virtual page number (VPN) to find
matching translations, some processor models may also use virtual address bits{ 63:61} (VRN) as
part of the match. This binding of atranslation to the VRN implies that alookup of a given virtua
address (region identifier/VPN pair) in either the trand ation cache or trand ation registers may
resultina TLB missif amemory reference is made through a different VRN (even if the region
identifiersin the two region registers are identical). During translation cache purge and insert
operations, the processor is required to purge al possible translations matching the region identifier
and virtual address regardless of the specified region register number.

Translations contained in the trandation caches (TC) and trandlation registers (TR) are maintained
in a consistent state by ensuring that TL B insertions remove existing overlapping entries before
new TR or TC entries are installed. Similarly, TLB purges that partially or fully overlap with
existing translations may remove al overlapping entries. In this context, “overlap” refersto two
translations with the same region identifier (but not necessarily identical virtua region numbers),
and with partially or fully overlapping virtual address ranges (determined by the virtual address and
the page size). Examples are: two 4K-byte pages at the same virtual address, or an 8K-byte page at
virtual address 0x2000 and a 4K -byte page at 0x3000.

A processor may overpurge translation cache entries; i.e. it may purge alarger virtual address range
than required by the overlap. Since page sizes are powers of 2 in size and aligned on that same
power of 2 boundary, purged entries can either be a superset of, identical to, or a subset of the
specified purge range.

Table 4-1 defines the purge behavior of the different TLB insert and purge instructions.

Table 4-1. Purge Behavior of TLB Instructions

4-6

. Translation Cache Translation Registers
TLB Instructions

Instruction Data Instruction Data
itc.i Must purge? May purgeb Machine Check® Must not purged
itr.i Must purge May purge Machine Check Must not purge
itc.d May purge Must purge Must not purge Machine Check
itr.d May purge Must purge Must not purge Machine Check
ptc.| Must purge Must purge Machine Check Machine Check
ptc.g,ptc.ga Must purge Must purge Machine Check Machine Check
(local)®
ptc.g,ptc.ga Must purge Must purge Must not purge Must not purge
(remote)® Must not Machine Must not Machine

Checkf Check

ptc.e Must purge Must purge Must not purge Must not purge

IA-64 Addressing and Protection

intel.

Table 4-1. Purge Behavior of TLB Instructions (Continued)

) Translation Cache Translation Registers
TLB Instructions - -
Instruction Data Instruction Data
ptr.i Must purge May purge Must purge Must not purge
ptr.d May purge Must purge Must not purge Must purge

a. Must purge: requires that all partially or fully overlapped translations are removed prior to the insert or purge

operation.

b. May purge: indicates that a processor may remove partially or fully overlapped translations prior to the insert
or purge operation. However, software must not rely on the purge.

¢. Machine Check: indicates that a processor will cause a Machine Check abort if an attempt is made to insert or
purge a partially or fully overlapped translation. The machine check abort may not be delivered synchronously
with the TLB insert or purge operation itself, but is guaranteed to be delivered, at the latest, on a subsequent
instruction serialization operation.

d. Must not purge: the processor does not remove (or check for) partially or fully overlapped translations prior to
the insert or purge operation. Software can rely on this behavior.

e. pt c. g, pt c. ga: two forms of global TLB purges are distinguished: local and remote. The local form
indicates that the pt c. g or pt . ga was initiated on the local processor. The remote form indicates that this
is an incoming TLB shoot-down from a remote processor.

f. Must not Machine Check: Remote pt C. g or pt C. ga operations must not cause local translation registers to
be purged. Remote pt C. g or pt C. ga operations must not cause the local processor to machine check.

4115 Translation Insertion Format

Figure 4-4 shows the register interface to insert entries into the TLB. TLB insertions are performed
by issuing the Insert Translation Cache (i tc. d, i tc.i)and Insert Trandation Registers(itr. d,

i tr.i)instructions. The first 64-bit field containing the physical address, attributes and
permissionsis supplied by a general purpose register operand. Additional protection key and page
sizeinformation is supplied by the Interruption TLB Insertion Register (ITIR). The Interruption
Faulting Address register (IFA) specifies the virtual address for instruction and data TLB inserts.
ITIR and IFA are defined in “Control Registers’ on page 3-11. The upper 3 bits of IFA (VRN

bits{ 63:61}) select avirtual region register that suppliesthe RID field for the TLB entry. The RID
of the selected region istagged to the trandation asit isinserted into the TLB. If reserved fields or
reserved encodings are used, a Reserved Register Field fault israised on the insert instruction.

Software must issue an instruction serialization operation to ensure installsinto the ITLB are
observed by dependent instruction fetches and a data serialization operation to ensure installs into
the DTLB are observed by dependent memory data references.

Table 4-2 describes al the tranglation interface fields. The format in Figure 4-5 is defined for not-
present trandations (P-bit is zero).

Figure 4-4. Translation Insertion Format

63

53 52 51 50 49

32 31

12 11

9 8 7 6 5 4

210

GRIr] | ig

i

ppn

S T Jdle] ma Wp)

key

ps

IFA \

vpn

ig

et

IA-64 Addressing and Protection

rid

4-7

Table 4-2. Translation Interface Fields

TLB
Field

Source
Field

Description

GRIr {0}

Present bit — When 0, references using this translation cause an Instruction or
Data Page Not Present fault. Most other fields are ignored by the processor, see
Figure 4-5 for details. This bit is typically used to indicate that the mapped
physical page is not resident in physical memory. The present bit is not a
valid bit. For each TLB entry, the processor maintains an additional hidden
valid bit indicating if the entry is enabled for matching.

ma

GRIr J{4:2}

Memory Attribute — describes the cacheability, coherency, write-policy and
speculative attributes of the mapped physical page. See Section 4.4, “Memory
Attributes” for details.

GRIr {5}

Accessed Bit — When 0 and PSR.da is 0, IA-64 data references to the page
cause a Data Access Bit fault. When 0 and PSR.ia is 0, |IA-64 instruction
references to the page cause an Instruction Access Bit fault. When 0, 1A-32
references to the page cause an Instruction or Data Access Bit fault. This bit can
trigger a fault on reference for tracing or debugging purposes. The
processor does not update the Accessed bit on a reference.

GRIr {6}

Dirty Bit — When 0 and PSR.da is 0, IA-64 store or semaphore references to the
page cause a Data Dirty Bit fault. When 0, IA-32 store or semaphore references
to the page cause a Data Dirty Bit fault. The processor does not update the Dirty
bit on a write reference.

GRIr |{8:7}

Privilege Level — Specifies the privilege level or promotion level of the page. See
Section 4.1.1.6, “Page Access Rights” for complete details.

ar

GRIr J{11:9}

Access Rights — page granular read, write and execute permissions and
privilege controls. See Section 4.1.1.6, “Page Access Rights” for details.

ppn

GRIr]{49:12}

Physical Page Number — Most significant bits of the mapped physical address.
Depending on the page size used in the mapping, some of the least significant
PPN bits are ignored.

GR[r]{63:53}
IFA{11:0},
RR[vrn){0,7:2}

available — Software can use these fields for operating system defined
parameters. These bits are ignored when inserted into the TLB by the processor.

ed

GRIr 152}

Exception Deferral — For an |1A-64 speculative load that results in an exception,
the speculative load’s instruction page TLB.ed bit is one of the conditions which
determines whether the exception must be deferred. See “Deferral of IA-64
Speculative Load Faults” on page 5-10 for complete details. This bit is ignored in
the data TLB for data memory references and for IA-32 memory references.

ps

ITIR{7:2}

Page Size — Page size of the mapping. For page sizes larger than 4K bytes the
low-order bits of PPN and VPN are ignored. Page sizes are defined as 2P°
bytes. See Section 4.1.1.7, “Page Sizes” for a list of supported page sizes.

key

ITIR{31:8}

Protection Key — uniquely tags the translation to a protection domain. If a
translation’s Key is not found in the Protection Key Registers (PKRs), access is
denied and a Data or Instruction Key Miss fault is raised. See Section 4.1.3,
“Protection Keys” for complete details.

vpn

IFA{63:12}

Virtual Page Number — Depending on a translation’s page size, some of the
least-significant VPN bits specified are ignored in the translation process.
VPN{63:61} (VRN) selects the region register.

rid

RR[VRNL.rid

Virtual Region Identifier — On TLB inserts the Region Identifier selected by
VPN{63:61} (VRN) is used as additional match bits for subsequent accesses
and purges (much like vpn bits).

4-8

IA-64 Addressing and Protection

intel.

Figure 4-5. Translation Insertion Format —Not Present

63 32 31 12 11 8 7 210

GRIr] | ig o
ITIR | ig | ps 2
IFA ‘ vpn ‘ ig ‘

Renr] [=~ @ [0o

41.1.6 Page Access Rights

Page granular access controls use 4 levels of privilege. Privilege level O isthe most privileged and
has accessto all privileged instructions; privilege level 3isleast privileged. |A-32 or |1A-64 access
to apageis determined by the TLB.ar and TLB.pl fields, and by the privilege level of the access, as
defined in Table 4-3. RSE fills and spills obtain their privilege level from RSC.pl; all other IA-32
and | A-64 accesses obtain their privilege level from PSR.cpl. Within each cell, “—" means no
access, “R” means read access, “W" means write access, “X” means execute access, and “Pn”
means promote PSR.cpl to “n” when an Enter Privileged Code (epc) instruction is executed.

Table 4-3. Page Access Rights

Privilege Level? o
TLB.ar TLB.pl Description
3 2 1 0

0 read only

read, execute

2 read, write

3 read, write, execute

4 read only / read, write

5 read, execute / read, write, exec

IA-64 Addressing and Protection 4-9

Table 4-3. Page Access Rights (Continued)

41.1.7

Privilege Level®
TLB.ar TLB.pl Description
3 2 1 0
6 3 RWX RW RW RW read, write, execute / read, write
2 RWX |RW RW
1 RWX |RW
0 RW
7 3 X X X RX exec, promoteb / read, execute
2 XP2 X X RX
1 XP1 XP1 X RX
0 XPO XPO XPO RX

a. RSC.pl, for RSE fills and spills; PSR.cpl for all other accesses.
b. User execute only pages can be enforced by setting PL to 3.

Software can verify page level permissions by the pr obe instruction, which checks accessihility to
agiven virtual page by verifying privilege levels, page level read and write permission, and
protection key read and write permission.

Execute-only pages (TLB.ar 7) can be used to promote the privilege level on entry into the
operating system. User level code would typically branch into a promotion page (controlled by the
operating system) and execute the Enter Privileged Code (epc) instruction. When epc successfully
promotes, the next instruction group is executed at the target privilege level specified by the
promotion page. A procedure return branch type (br . r et) can demote the current privilege level.

Page Sizes

A range of page sizes are supported to assist software in mapping system resources and improve
TLB/VHPT utilization. Typically, operating systems will select asmall range of fixed page sizesto
implement virtual memory algorithms. Larger pages may be statically allocated. For example, large
areas of the virtual address space may be reserved for operating system kernels, frame buffers, or
memory-mapped 1/0 regions. Software may also elect to pin these trandlations, by placing themin
the trandation registers.

Table 4-4 lists insertable and purgeabl e page sizes that are supported by all processor models.
Insertable page sizes can be specified in the trand ation cache, the tranglation registers, the region
registers and the VHPT. Insertable page sizes can also be used as parametersto TLB purge
instructions (ptc. | , pt c. g, pt c. ga or pt r). Page sizes that are purgeable only may only be used
as parametersto TLB purge instructions.

Processors may also support additional insertable and purgeable page sizes.

Table 4-4. Architected Page Sizes

4-10

Page Sizes
4k 8k 16k 64k 256k 1M 4M 16M 64M | 256M 4G
Insertable yes yes yes yes yes yes yes yes yes yes
Purgeable yes yes yes yes yes yes yes yes yes yes yes

IA-64 Addressing and Protection

4.1.2

Page sizes are encoded in tranglation entries and region registers as a 6-bit encoded page size field.
Each field specifies amapping size of 2N bytes, thus a value of 12 represents a 4K -byte page. If
unimplemented page sizes are specifiedtoani tc,itr or nov to region register instruction, a
Reserved Register/Field fault is raised. If unimplemented page sizes are specified for a TLB purge
instruction an implementation may raise a Machine Check abort, may under-purge translations up
to ignoring the request, or may over-purge translations up to removal of all entries from the
translation cache. If unimplemented page sizes are specified by apt c. g or pt c. ga broadcast from
another processor, an implementation may under-purge trandlations up to ignoring the request, or
may over-purge tranglations up to removal of all entries from the trandation cache. However, it
must not raise a Machine Check abort.

Virtual and physical pages are aligned on the natural boundary of the page. For example, 4K-byte
pages are aligned on 4K-byte boundaries, and 4 M-byte pages on 4 M-byte boundaries.

Region Registers (RR)

Associated with each of the 8 virtual regionsis a privileged Region Register (RR). Each register
contains a Region Identifier (RID) along with severa other region attributes, see Figure 4-6. The
values placed in the region register by the operating system can be viewed as a collection of process
address space identifiers.

Figure 4-6. Region Register Format

63 32 31 8 7 2 1 0
32 24 6 1 1

Regions support multiple address space operating systems by avoiding the need to flush the TLB
on a context switch. Sharing between processesis promoted by mapping common global or shared
region identifiersinto the region register working set of multiple processes. All |A-32 memory
references are through region register O.

Table 4-5 describes the region register fields. Region Identifier (rid) bits 0 through 17 must be
implemented on all processor models. Some processor models may implement additional bits.
Additional implemented bits must be contiguous and start at bit 18. Unimplemented bits are
reserved.

Table 4-5. Region Register Fields

Field Bits Description
ve 0 VHPT Walker Enable — When 1, the VHPT walker is enabled for the region. When 0,
disabled.
ps 7:2 Preferred page Size — Selects the virtual address bits used in hash functions for set-

associative TLBs or the VHPT. Encoded as 2P® bytes. The processor may make
significant performance optimizations for the specified preferred page size for the
region.

rid 31:8 Region Identifier — During TLB inserts, the region identifier from the select region
register is used to tag translations to a specific address space. During TLB/VHPT
lookups, the region identifier is used to match translations and to distribute hash
indexes among VHPT and TLB sets.

IA-64 Addressing and Protection 4-11

4.1.3

intel.

Software must issue an instruction serialization operation to ensure writes into the region registers
are observed by dependent instruction fetches and i ssue a data serialization operation for dependent
memory data references.

Protection Keys

Protection Keys provide a method to restrict permission by tagging each virtual page with aunique
protection domain identifier. The Protection Key Registers (PKR) represent a register cache of all
protection keys required by a process. The operating system is responsible for management and
replacement polices of the protection key cache. Before an 1A-32 or | A-64 memory access is
permitted, the processor compares atranslation’s key value against al keys contained in the PKRs.
If amatching key is not found, the processor raises aKey Miss fault. If amatching Key isfound,
access to the page is qualified by additional read, write and execute protection checks specified by
the matching protection key register. If these checksfail, a Key Permission fault israised. Upon
receipt of aKey Miss or Key Permission fault, software can implement the desired security policy
for the protection domain. Figure 4-7 and Table 4-6 describe the protection key register format and
protection key register fields.

Figure 4-7. Protection Key Register Format

63 32 31 8 7 4 3 2 1 0
32 24 4 11 1 1

Table 4-6. Protection Register Fields

4-12

Field Bits Description

v 0 Valid — When 1, the Protection Register entry is valid and is checked by the
processor when performing protection checks. When 0, the entry is ignored.

wd 1 Write Disable — When 1, write permission is denied to translations in the protection
domain.

rd 2 Read Disable — When 1, read permission is denied to translations in the protection
domain.

xd 3 Execute Disable — When 1, execute permission is denied to translations in the

protection domain.

key 31:8 Protection Key — uniquely tags translation to a given protection domain.

Processor models have at least 16 protection key registers, and at least 18-bits of protection key.
Some processor models may implement additional protection key registers and protection key bits.
Unimplemented bits and registers are reserved. Key registers have at least as many implemented
key bits as region registers have rid bits. Additional implemented bits must be contiguous and start
at bit 18.

Software must issue an instruction serialization operation to ensure writes into the protection key
registers are observed by dependent instruction fetches and a data serialization operation for
dependent memory data references.

The processor ensures uniqueness of protection keys by checking new valid protection keys against
all protection key registers during the move to PKR instruction. If avalid matching key isfound in
any PKR register, the processor invalidates the matching PKR register by setting PKR.v to zero,
before performing the write of the new PKR register. The other fieldsin any matching PKR remain
unchanged when it isinvalidated.

IA-64 Addressing and Protection

4.1.4

Key Miss and Permission faults are only raised when memory translations are enabled (PSR.dt is 1
for datareferences, PSR.it is 1 for instruction references, PSR.rt is 1 for register stack references),
and protection key checking is enabled (PSR.pk is one).

Data TLB protection keys can be acquired with the Translation Access Key (t ak) instruction.
Instruction TLB key values are not directly readable. To acquire instruction key values software
should make provisionsto read memory structures.

Translation Instructions

Table 4-7 lists |A-64 trand ation instructions used to manage translations. Region registers,
protection key registers and the TLBs are accessed indirectly; the register number is determined by
the contents of a general register.

The processor does not ensure that modification of the tranglation resourcesis observed by
subsequent instruction fetches or data memory references. Software must issue an instruction
serialization operation before any dependent instruction fetch and a data serialization operation
before any dependent data memory reference.

Table 4-7. Translation Instructions

IA-64 Addressing and Protection

Mnemonic Description Operation Instr. Serlalllzatlon
Type | Requirement

mov rrrz] =r, Move to region RR[GR[r3]] = GR[r,] M | data/inst
register

nmov rq = rrrg] Move from region GR[r1] = RR[GR[r3]] M | none
register

mov pkrr3] =1, Move to protection PKR[GRI[r3]] = GRIr,] M | data/inst
key register

nmov ry = pkr[rs] Move from protection | GR[r;] = PKR[GR][r3]] M | none
key register

itc.i r3 Insert instruction ITC = GRIr 3], IFA, ITIR M |inst
translation cache

itc.d r3 Insert data translation | DTC = GR]r 3], IFA, ITIR M |data
cache

itr.oi itr[ro] =r3 Insert instruction ITR[GRIr 5]] = GR][r 3], IFA, ITIR| M |inst
translation register

itr.d dtrro] =r3 Insert data translation | DTR[GRIr ,]] = GR[r 3], IFA, M |data
register ITIR

probe rq{ =r3,) Probe data TLB for translation M | none

ptc.| rs, fro Purge a translation from local processor instruction and M data/inst
data translation cache

ptc.g r3, ro Globally purge a translation from multiple processor’s M data/inst
instruction and data translation caches

ptc.ga r3, ro Globally purge a translation from multiple processor’s M data/inst
instruction and data translation caches and remove
matching entries from multiple processor’'s ALATs

ptc.e rg Purge local instruction and data translation cache of all M | data/inst
entries

ptr.i rg, ro Purge instruction translation registers M inst

ptr.drg, ro Purge data translation registers M | data

tak rq = rg3 Obtain data TLB entry protection key M | none

4-13

intel.

Table 4-7. Translation Instructions (Continued)

4.1.5

. S . Instr. | Serialization
Mnemonic Description Operation .
Type | Requirement
thash rq = rj3 Generate translation’s VHPT hash address M | none
ttag rqy =rg Generate translation tag for VHPT M | none
tpary =rg3 Translate a virtual address to a physical address M none

Virtual Hash Page Table (VHPT)

The VHPT is an extension of the TLB hierarchy designed to enhance virtual address translation
performance. The processor’'s VHPT walker can optionally be configured to search the VHPT for a
translation after afailed instruction or data TLB search. The VHPT walker provides significant
performance enhancements by reducing the rate of flushing the processor’s pipelinesduetoa TLB
Miss fault, and by providing speculative translation fills concurrent to other processor operations.

The VHPT, residesin the virtual memory space and is configurable as either the primary page table
of the operating system or as a single large trandlation cache in memory (see Figure 4-8). Since the
VHPT residesin the virtual address space, an additional TLB miss can be raised when the VHPT is
referenced. This property allows the VHPT to also be used as alinear page table.

Figure 4-8. Virtual Hash Page Table (VHPT)

4.15.1

4-14

Virtual Address
2PTAfze VHPT

A
Region Optional Collision Search Chain
Registers > M
TLB [«
> TC
Install
rid

Optional Operating System Page Tables

Hashing \

Function

C |
a

<
3
=
\ 4

'
PTA.Base

PTA

000920

The processor does not manage the VHPT or perform any writesinto the table. Softwareis
responsible for insertion of entriesinto the VHPT (including replacement algorithms), dirty/access
bit updates, invalidation due to purges and coherency in a multi-processor system. The processor
does not ensure the TLBs are coherent with the VHPT memory image.

VHPT Configuration

The Page Table Address (PTA) register determines whether the processor is enabled to walk the
VHPT, anchors the VHPT in the virtual address space, and controls VHPT size and configuration
information. The VHPT can be configured as either a per-region virtual linear page table structure
(8-byte short format) or as asingle large hash page table (32-byte long format). No mixing of
formatsis allowed within the VHPT.

IA-64 Addressing and Protection

41.5.2

4153

To implement a per-region linear page table structure an operating system would typically map the
leaf page table nodes with small backing virtua transations. The size of the table is expanded to
include all possible virtual mappings, effectively creating alarge per-region flat page table within
the virtual address space.

To implement a single large hash page table, the entire VHPT is typically mapped with asingle
large pinned virtua trandation placed in the trandation registers and the size of the tableis reduced
such that only a subset of al virtual mappings can be resident within the table. Operating systems
can tune the size of the hash page table based on the size of physical memory and operating system
performance requirements.

VHPT Searching

When enabled, the processor’s VHPT walker searchesthe VHPT for atranslation after afailed
instruction or data TLB search. The VHPT walker checks only the specific VHPT entry addressed
by the short- or the long-format hash function, as selected by PTA.vf. If additional TLB misses are
encountered during the VHPT access, a VHPT Trandlation fault is raised. If the region-based short-
format VHPT entry contains no reserved bits or encodings, it isinstalled into the TLB, and the
processor again attempts to translate the failed instruction or data reference. If the long-format
VHPT entry’s tag specifies the correct region identifier and virtual address, and the entry contains
no reserved bits or encodings, it isinstalled into the TLB, and the processor again attemptsto
translate the failed instruction or data reference. Otherwise the processor raisesa TLB Miss fault.
Thetrandation isinstalled into the TLB even if its VHPT entry is marked as not present (p=0).
Software may optionally search additional VHPT collision chains (associativities) or search for
translations within the operating system'’s primary page tables. Performance is optimized by
placing frequently referenced translations within the VHPT structure directly searched by the
processor.

The VHPT walker is optional on a given processor model. Software can neither assume the
presence of a VHPT walker, nor that the VHPT walker will find atrandation in the VHPT. The
VHPT walker can abort a search at any time for implementation-specific reasons, even if the
required translation entry isin the VHPT. Operating systems must regard the VHPT walker strictly
as a performance optimization and must be prepared to handle TLB misses if the walker fails.

Region-based VHPT Short Format

The region-based VHPT short format shown in Figure 4-9 uses 8-byte VHPT entries to support a
per-region linear page table configuration. To use the short-format VHPT, PTA.vf must be set to 0.

Figure 4-9. VHPT Short Format

63 53 52 51 50 49 12 11 9 8 7 6 5 4 2 1.0
ig ‘ed‘ rv ‘ ppn ‘ ar ‘ pl ‘d‘a‘ ma ‘rv‘p‘
11 1 2 38 3 2 11 3 11

See “Translation Insertion Format” for a description of all fields. The VHPT walker provides the
following default values when entries are installed into the TLB:

 Virtual Page Number —implied by the position of the entry in the VHPT. The hashed
short-format entry is considered to be the matching translation.

IA-64 Addressing and Protection 4-15

intel.

* Region Identifiers are not specified in the short format. To ensure uniqueness, software
must provide unique VHPT mappings per region. Region identifiers obtained from the
referenced region register are tagged with the trandlation when inserted into the TLB.

* Page Size — specified by the accessed region’s preferred page size (RR[VA{63:61}].ps).

* Protection Key — specified by the accessed region identifier value (RR[VA{63:61}].rid).
Asaresult, all implementations must ensure that the number of implemented key bitsis
greater than or equal to the number of implemented region identifier bits.

If atranglation is marked as not present, ignored fields are usable by software as noted in

Figure 4-10.
Figure 4-10. VHPT Not-present Short Format
63 10
| 9 o]
64

4.1.54 VHPT Long Format

Thelong-format VHPT uses 32-byte VHPT entriesto support asingle large virtual hash pagetable.
To use the long-format VHPT, PTA.vf must be set to 1. The long format is a superset of the TLB
insertion format, as noted in Figure 4-11, and specifies full translation information (including
protection keys and page sizes). Additional fields are defined in Table 4-8. The long format is
typically used to build the hash page table configuration.

Figure 4-11. VHPT Long Format
offset 63 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

+0 ‘ ig ‘ed- ppn ‘ ar ‘ pl ‘d‘a‘ ma .E
< D e [e

+16 ‘ ti ‘ tag ‘
+24 ‘ ig \
64

Table 4-8. VHPT Long-format Fields

Field Offset Description

tag +16 Translation Tag — The tag, in conjunction with the VHPT hash index, is used to
uniquely identify the translation. Tags are computed by hashing the virtual page
number and the region identifier. See “VHPT Hashing” for details on tag and hash
index generation.

ti +16 Tag Invalid Bit — If one, this bit of the tag indicates an invalid tag. On all processor
implementations, the VHPT walker and the t t ag instruction generate tags with the ti
bit equal to 0. A VHPT entry with the ti bit equal to one will never be inserted into the
processor’s TLBs. Software can use the ti bit to invalidate long-format VHPT entries in
memory.

ig +24 available — field for software use, ignored by the processor. Operating systems may
store any value, such as a link address to extend collision chains on a hash collision.

If atranglation is marked as not present, ignored fields are usable by software as noted in
Figure 4-12.

4-16 IA-64 Addressing and Protection

intel.

Figure 4-12. VHPT Not-present Long Format

offset

+0
+8
+16

+24

4.1.6

41.6.1

63 8 7 2 1 0
| 9 o]

| 9 - 1

‘ ti ‘ tag ‘

| 9 |

Atomic updates of long-format VHPT entries may be ensured by software as follows:

» Before making multiple non-atomic updates to a VHPT entry in memory, software is required
to set itsti bit to one.

« After making multiple non-atomic updates to a VHPT entry in memory, software may clear its
ti bit to zero to re-enable tag matches.

VHPT Hashing

The processor provides two methods for software to determine a VHPT entry’s address: the
Translation Hash (t hash) instruction, and the Interruption Hash Address (IHA) register defined on
page 3-21. The virtual address of the VHPT entry is placed in the IHA register when a VHPT
Translation or TLB fault is delivered. In the long format, IHA can be used as a starting address to
scan additional collision chains (associativities) defined by the operating system or to perform a
search in software. Thet hash instruction is used to generate a VHPT entry’s address outside of
interruption handlers and provides the same hash function that is used to calculate IHA.

t hash producesaVHPT entry’s addressfor agiven virtual address and region identifier, depending
on the setting of the PTA.vf bit. When PTA.vf=0, t hash returns the region-based short-format
index asdefined in Section 4.1.6.1. When PTA.vf=1, t hash returnsthe long-format hash as defined
in Section 4.1.6.2. Thet t ag instruction is only useful for long-format hashing, and generates a
unique 64-bit ti/tag identifier that the processor’s VHPT walker will check when it looks up agiven
virtual address and region identifier. Software should usethet t ag instruction, and either thet hash
instruction or the IHA register when forming translation tags and hash addresses for the long-
format VHPT. These resources encapsul ate the implementati on-specific long-format hashing
functionality and improve performance.

Region-based VHPT Short-format Index

In the region-based short format, the linear page table for each region resides in the referenced
region itself. Asaresult, the short-format VHPT consists of separate per-region page tables, which
are anchored in each region by PTA .base{ 60:15} . For regions in which the VHPT is enabled, the
operating system is required to maintain a per-region linear page table. As defined in Figure 4-13,
the VHPT walker usesthe virtual address, theregion's preferred page size, and the PTA .sizefield to
compute a linear index into the short-format VHPT.

IA-64 Addressing and Protection 4-17

Figure 4-13. Region-based VHPT Short-format Index Function

4.1.6.2

Mask = 2PTA size - 1,
VHPT_Of fset = (VA{I MPL_VA_MSB: 0} u>> RR VA{63:61}].ps) << 3;
VHPT_Addr = (VA{63:61} << 61) |
(((PTA base{60: 15} & ~Mask{60:15}) | (VHPT_Of fset{60: 15} &
Mask{60: 15})) << 15) |
VHPT_O fset {14: 0} ;

The size of the short-format VHPT (PTA .size) defines the size of the mapped virtual address space.
The maximum architectural table size in the short format is 252 bytes per region. To map an entire
region (251 bytes) using 4K byte pages, 2(61-12) = 29 pnages must be mappable. A short-format
VHPT entry is 8 bytes = 23 byteslarge. Asaresult, the maximum table size is 2(61-12+3) = 252 pyteg
per region. If the short format is used to map an address space smaller than 251, a smaller short-
format table (PTA.size<52) can be used. Mapping of an address space of 2" with 4K Byte pages
requires a minimum PTA .size of (n-9).

In the short format, the t hash instruction returns the region-based short-format index defined in
Figure 4-13. Thet t ag instruction is not used with the short format. VHPT translation and TLB
miss faults write the IHA register with the region-based short-format index defined in Figure 4-13.

Long-Format VHPT Hash

Thelong-format VHPT is asingle large contiguous hash table that resides in the region defined by
PTA .base. As defined in Figure 4-14, the VHPT walker uses the virtual address, the region
identifier, the region’s preferred page size, and the PTA .size field to compute a hash index into the
long-format VHPT. PTA .base{ 63:15} defines the base address and the region of the long-format
VHPT. PTA size reflects the size of the hash table, and istypically set to a number significantly
smaller than 254 the exact number is based on operating system performance requirements.

Figure 4-14. VHPT Long-format Hash Function

4-18

Mask = 2PTA.size - 1;

HPN = VA{| MPL_VA NBB: 0} u>> RR[VA{63: 61}]. ps;

Hash_I ndex = tl b_vhpt _hash_| ong(HPN, RR[VA{ 63: 61}].ri d);

/1 nodel -specific hash function

VHPT O fset = Hash_Index << 5;

VHPT_Addr = (PTA. base{63: 61} << 61) |
(((PTA base{60: 15} & ~Mask{60:15}) | (VHPT_Offset{60: 15}
& Mask{60:15})) << 15) | VHPT_O fset{14:0};

The long-format hash function (t | b_vhpt _hash_| ong) and long-format tag generation function
are implementation specific. However, on all processor models the hash and tag functions must
exclude the virtual region number (virtual address bits VA{63:61}) from the hash and tag
computations. This ensures that a unique 85-bit global virtual address hashes to the same VHPT
hash address, regardless of which region the address is mapped to. All processor implementations
guarantee that the most significant bit of the tag (ti bit) is zero for al valid tags. The hash index and
tag together must uniquely identify atranslation. The processor must ensure that the indicesinto the
hashed table, the region’s preferred page size, and the tag specified in an indexed entry can be used
in areverse hash function to uniquely regenerate the region identifier and virtual address used to
generate the index and tag. This must be possible for all supported page sizes, implemented virtual
addresses and legal values of regionidentifiers. A hash function isreversibleif using the hash result

IA-64 Addressing and Protection

4.1.7

and all but one input produces the missing input as the result of the reverse hash function. The
easiest hash function and reverse hash function isa simple XOR of bits. To ensure uniqueness,
software must follow these rules:

1. Software must use only one preferred page size for each unique region identifier; otherwise,
processor operation is undefined.

2. All tagsfor trandations within a given region must be created with the preferred page size
assigned to the region; otherwise, processor operation is undefined.

3. Softwareis not allowed to have pagesin the VHPT that are smaller than the preferred page
size for the region; otherwise, processor operation is undefined. Software can specify a page
with apage size larger than the preferred page sizein the VHPT, but tag values for the entries
representing that page size must be generated using the preferred page size assigned to that
region.

VHPT Environment

The processor’s VHPT walker can optionally be configured to search the VHPT for atrandation
after afailed instruction or data TLB search. The VHPT walker is enabled for different types of
references under the following conditions:

* |A-32 and |A-64 Data and non-access references: PTA.ve=1, and RR[VA{63:61}].ve=1, and
PSR.dt=1.

* |A-32 and 1A-64 Instruction fetches: PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1, and
PSR.it=1, and PSR.ic=1.

* |A-64 RSE references. PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1, and PSR.rt=1.

If the walker is not enabled, and an attempt is made to reference the VHPT, an Alternate
Instruction/Data TLB Miss fault is raised. The remainder of this section assumes that the VHPT is
enabled.

Region registers must support all implemented page sizes so software can use IHA, t hash and

tt ag to manage the VHPT. t hash and t t ag are defined to operate on all page sizes supported by
the tranglation cache, regardless of the VHPT walker’s supported page sizes. The PTA register must
be implemented on processor models that do not implement aVVHPT walker. Software must ensure
PTA isinitialized and serialized beforeissuing t t ag, t hash, before enabling the VHPT walker or
issuing areference that may cause a VHPT walk. The minimum VHPT sizeis 32KBytes
(PTA.size=15), and operating systems must ensure that the VHPT is aligned on the natural
boundary of the structure; otherwise, processor operation is undefined. For example, a 64K-byte
table must be aligned on a 64K -byte boundary.

VHPT walker references to the VHPT are performed at privilege level O, regardless of the state of
PSR.cpl. VHPT byte ordering is determined by the state of DCR.be. When DCR.be=1, VHPT
walker references are performed using big-endian memory formats; otherwise, VHPT walker
references are little-endian. The VHPT walker references the VHPT entry as a sequence of at least
8-byte atomic accesses. A long-format VHPT reference is matched against the data break-point
registers as a 32-byte reference.

The VHPT is accessed by the processor only if the VHPT is virtually mapped into cacheable
memory areas. The walker may access the VHPT speculatively, i.e. references may be performed
that are not required by an in-order execution of the program. Any VHPT or TLB faults
encountered during a VHPT walker’s search are not reported until the faulting translation is

IA-64 Addressing and Protection 4-19

4.1.8

4-20

intel.

required by an in-order execution of the program. If the VHPT is mapped into non-cacheable
memory areas the VHPT is not referenced, and all TLB misses result in an Instruction/Data TLB
Miss fault.

The VHPT walker will abort the search and deliver an Instruction/Data TLB Miss fault if an
attempt is made to install trandlations that have reserved bits or encodings, or if the trandlation
mapping the VHPT would have taken one of the following faults: Data Page Not Present, DataNaT
Page Consumption, Data Key Miss, Data Key Permission, Data Access Bit, or Data Debug. The
VHPT walker may abort a search and deliver an Instruction/Data TLB Miss fault at any time for
impl ementati on-specific reasons.

The processor’s VHPT walker is required to read and insert VHPT entries from memory atomically
asfollows:

« If thewalker does not read an entry from memory atomically, and an update to part of the entry
that isbeing installed is detected, the walker must abort the insert and deliver an Instruction/
Data TLB Miss.

« If the walker reads an entry from memory atomically, and an update to part of the entry that is
being installed is detected, the walker must either abort the insert and deliver an Instruction/
Data TLB Miss, or ignore the update and install the complete old entry.

« If the purge address range of a TLB purge operation (pt c. | , pt c. e, local or remotept c. g or
ptc.ga,ptr.i,orptr.d)overlapsthe virtua addressthe walker is attempting to insert, then
the walker must either abort the insert and deliver an Instruction/Data TLB Miss, or delay the
purge operation until after the walker either completes the insertion or aborts the walk.

The RSE can only raise a VHPT fault on a mandatory RSE spill/fill operation as defined for
successful execution of anal | oc, | oadrs, fl ushrs, br.ret orrfi instruction. Eager RSE
operations may generate speculative VHPT walks provided encountered faults are not reported.

Data TLB Miss faults encountered during a VHPT walk are permitted and, when PSR.ic=1, are
converted into a VHPT Trandation fault as defined in the next section.

Translation Searching

The general sequence of searching the TLB and VHPT is shown in Figure 4-15. On afailed TLB
search, if the VHPT walker is disabled for the referenced region an Alternate Instruction/Data TLB
Missfault israised. If the VHPT walker is enabled for the referenced region, the VHPT is accessed
to locate the missing trandlation. See“VHPT Environment” on page 4-19. If additional TLB misses
are encountered during the VHPT walker’s references, a VHPT Trandlation fault is raised. If the
VHPT walker does not find the required trandlation in the VHPT or the search is aborted, an
Instruction/Data TLB Missfault israised. Otherwise the entry isloaded into the ITC or DTC.
Provided the above fault conditions are not detected, the processor may load the entry into the ITC
or DTC even if an in-order execution of the program did not require the trandlation.

The VHPT walker’s inserts into the TC follow the same purge-before-insert rules that software
inserts are subject to (see Table 4-1, “Purge Behavior of TLB Instructions’ on page 4-6). VHPT
walker inserts into the DTC behavelikei t c. d; VHPT walker insertsinto the ITC behave like
itc.i.lfaninstruction referenceresultsin a VHPT walk that missesin the data TLB, the DTC
insert for the trandation for the VHPT actslikeani t c. d. VHPT walker insertions of entries that
existin TRsare not allowed. Specificaly, the VHPT walker may search for any virtual address, but
if the addressis mapped by a TR, it must not be inserted into the TC. Software must not create

IA-64 Addressing and Protection

overlapping trandations in the VHPT that are larger than a currently existing TR trandation. A
VHPT walker insert may result in aMachine Check abort if an overlap exists between a TR and the

inserted VHPT entry.

After the translation entry isloaded, additional TLB faults are checked; these include in priority
order: Page Not Present, NaT page Consumption, Key Miss, Key Permission, Access Rights,
Access Bit, and Dirty Bit faults. Table 4-9 describesthe TLB and VHPT walker related faults.

On afailed TLB/VHPT search, the processor loads interruption registers and translation defaults as
defined in Section 8.1, “Interruption Vector Descriptions’ defining the parameters of the trandation
fault. Provided the operating system accepts the defaults provided, only the physical address
portion of a TLB entry need be provided on a TLB insert.

Figure 4-15. TLB/VHPT Search

Virtual Address

Search TLB Found

Not Found

Inst
VHPT Walker Enabled

Alternate Instruction
TLB Miss Fault

VHPT Instruction Fault

VHPT Walker

TLB Miss
Y

Search VHPT

Found
Failed Search:

Tag Mismatch or
Walker Abort

TC I‘nsert
y

Instruction TLB Miss Fault

-

A

Faults:

Page Not Present

NaT Page Consumption
Key Miss

Key Permission

Access Rights

Access Bit

Debug

Fault Checks

No Fault

Access Memory

Instruction TLB VHPT Search

Virtual Address

Unimplemented

5
Data Address Fault Implemented VA?

Found
Search TLB

Data Nested Not Found

TLB Fault

Data
VHPT Walker Enabled
Alternate Data

1/in-flight
TLB Miss Fault

Data Nested
TLB Fault

VHPT Walker

TLB Miss
Y
Search VHPT

Found

VHPT Data Fault

Data Nested
TLB Fault

Failed Search:
Tag Mismatch or
Walker Abort

Data TLB

1/in-flight
Miss Fault

sert

® | ¢
AU

Faults:

Page Not Present

NaT Page Consumption
Key Miss

Key Permission

Access Rights

Fault Checks

No Fault

Dirty Bit
Access Bit
Debug

Unaligned Data Reference
Unsupported Data Reference

Data TLB VHPT Search

000921

IA-64 Addressing and Protection

4-21

Table 4-9.

TLB and VHPT Search Faults

Fault

Description

VHPT Instruction/Data

Alternate Instruction/Data
TLB Miss

Instruction/Data TLB Miss

Data Nested TLB

Instruction/Data Page Not
Present

Instruction/Data NaT Page
Consumption

Instruction/Data Key Miss

Instruction/Data Key
Permission

Instruction/Data Access
Rights

Data Dirty Bit
Instruction/Data Access Bit

4.1.9

4-22

Raised if there is an additional TLB miss when the VHPT walker attempts to
access the VHPT. Typically used to construct leaf table mappings for linear page
table configurations.

Raised when the VHPT walker is not enabled and an instruction or data reference
causes a TLB miss. For example, the VHPT walker can be disabled within a given
virtual region so region-specific translation algorithms can be utilized.
Raised when the VHPT walker is enabled, but the processor:

» cannot locate the required VHPT entry, or

« the processor aborts the VHPT search for implementation-specific
reasons, or
» the VHPT walker is not implemented, or
« the referenced region specifies a non-supported VHPT preferred page
size, or
« reserved fields or unimplemented PPN bits are used in the translation, or
» the hash address falls into unimplemented virtual address space, or
» the hash address matches a data debug register.
Instruction/Data TLB Miss handlers are essentially software walkers of the VHPT.
Raised when a Data TLB Miss, Alternate Data TLB Miss, or VHPT Data
Translation fault occurs and PSR.ic is 0 and not in-flight (e.g. fault within a TLB
miss handler). Data Nested TLB faults enable software to avoid overheads for
potential data TLB Miss faults.

The referenced translation’s P-bit is 0.

A non-speculative load, store, mandatory RSE load/store, execution on, or
semaphore operation accesses a page marked with the physical memory attribute
NaTPage. See Section 4.4.8, “Not a Thing Attribute (NaTPage)” for details.

The referenced translation’s permission key is not present in the set of valid
protection key registers.

The referenced translation is denied read, write, execute permissions by the
matching protection key registers.

Page granular read, write, execute and privilege level accesses are denied.

The referenced translation’s Dirty bit is 0 on a store or semaphore operation.
The referenced translation’s Access bit is 0.

32-bit Virtual Addressing

32-hit virtual data addressing is supported by three models: zero-extension, sign-extension, and
pointer “swizzling”. |A-32 memory references use the zero-extension model, all 1A-32 32-hit
virtual linear addresses are zero extended into the 64-bit virtual address space.

The | A-64 zero-extension model performs address computations with the add and shl add
instructions while software ensures that the upper 32-bits are always zeros. Thismodel constrains
32-bit virtual addressing to virtua region zero. In thismodel, regions 1 to 7 are accessible only by

64-bit addressing.

IA-64 Addressing and Protection

In the 1A-64 sign-extension model, software ensures that the upper 32-bits of avirtual address are
always equal to bit 31. Address computations use the add, shl add, and sxt instructions. This
model splitsthe 32 bit address space into 2 halves that are spread into 231 bytes of virtual regions 0
and 7 within the 64-bit virtual address space. In this model, regions 2 to 6 are accessible only by
64-bit addressing.

The | A-64 pointer “swizzling” model performs address computations with the addp4, and

shl addp4 instructions. These instructions generate a 32-bit address within the 64-bit virtual
address space as shown in Figure 4-16. The 32-bit virtual address spaceis divided into 4 sections
that are spread into 230 bytes of virtual regions 0 to 3 within the 64-bit virtual address space. In this
model, regions 4 to 7 are accessible only by 64-bit addressing.

Figure 4-16. 32-bit Address Generation using addp4

4.1.10

Base Offset
63 32313029 0 63 3231 0
|| | | \
63 6!61 60 3231 0
0 | 000000 | |

In the pointer “swizzling” model, mappings within each region do not necessarily start at offset
zero, since the upper 2-bits of a 32-hit address serve both as the virtual region number and an offset
within each region. Virtual address bits{ 62:61} do not participate in the address addition, therefore
some regions may be effectively larger than 2°C bytes due to the addition of a 32-bit offset and lack
of acarry into bits{ 62:61} . Note that the conversion is non-destructive: a converted 64-bit pointer
can be used as a 32-bit pointer. Flat 31 or 32 bit address spaces can be constructed by assigning the
same region identifier to contiguous region registers. Branches into another 23%-byte region are
performed by first calculating the target address in the 32-bit virtual space and then converting to a
64-bit pointer by addp4. Otherwise, branch targets will extend above the 23 byte boundary within
the originating region.

Virtual Aliasing

Virtual aliasing (two or more virtual pages mapped to the same physical page) isfunctionally
supported for IA-32 and 1A-64 memory references, however performance may be degraded on
some processor models where the distance between virtual aliasesislessthan 1 MB. To avoid any
possible performance degradation, software is advised to use aliases whose virtual addresses differ
by an integer multiple of 1 MB. The processor ensures cache coherency and data dependenciesin
the presence of an alias. Stores using a virtual alias followed by aload with another alias to the
same physical location see the effects of prior storesto the same physical memory location.

To support advanced loads in the presence of avirtual alias, the processor ensures that the
Advanced Load Address Table (ALAT) isresolved using physical addresses and is coherent with
physical memory. For details, please refer to Section 4.4.5.3, “ Detailed Functionality of the ALAT
and Related Instructions’ in Volume 1.

IA-64 Addressing and Protection 4-23

4.2

4.3

4.3.1

Physical Addressing

Objectsin memory and 1/O occupy a common 63-bit physical address space that is accessed using
byte addresses. Accesses to physical memory and 1/0 may be performed viavirtual addresses
mapped to the 63-bit physical address space or by direct physical addressing. Current page table
formats allow for mapping virtual addresses into 50 bits of physical address space (on processor
implementations that support this many physical address bits). Future extensionsto the page table
formats will allow larger mappings, up to the full 63 bits of physical address space.

Physical addressing for I1A-32 and 1A-64 instruction references is enabled when PSR.it is 0, IA-32
and 1A-64 data references when PSR.dt is 0, and | A-64 register stack references when PSR.rt is 0.

While software views the physical addressing as being 63-bits, implementations may implement
between 32 and 63 physical address bits. All processor models must implement a contiguous set of
physical address bits starting at bit 32 and continuing upwards. |mplementations must validate that
memory references are performed to implemented physical address bits. Instruction references to
unimplemented physical addresses result in an Unimplemented I nstruction Address Trap on the last
valid instruction. Datareferences to unimplemented physical addresses result in an Unimplemented
Data Address fault. Memory references to unpopulated address ranges result in an asynchronous
Machine Check abort, when the platform signal's a transaction time-out. Exact machine check
behavior is model specific.

Unimplemented Address Bits

Based on the processor model, some physical and/or virtual address bits may not be implemented.
Regardless of the number of implemented address bits, all general purpose, branch, control and
application registersimplement all 64 register bits on all processors. Similarly, regardless of the
number of implemented address bits, data and instruction breakpoint registers must implement all
64 address bits and all 56 mask bits on all processors.

Unimplemented Physical Address Bits

Asshown in Figure 4-17, aphysical address consists of three fields: physical memory attribute
(PMA), unimplemented and implemented bits.

Figure 4-17. Physical Address Bit Fields

4-24

63 62 IMPL_PA_MSB 0
‘ PMA ‘ unimplemented implemented
1 62-IMPL_PA_MSB IMPL_PA_MSB+1

All processor modelsimplement at least 32 physical address hits, bits 0 to 31, plus the physical
memory attribute bit. Additional implemented physical bits must be contiguous starting at bit 32.
IMPL_PA_MSB is the implementation-specific position of the most significant implemented
physical address bit. In a processor that implements all physical address bits, IMPL_PA_MSB
is62.

IA-64 Addressing and Protection

4.3.2

If unimplemented physical address bits are set by software, an Unimplemented Data Address fault
israised during the TLB insert instructions (i t c, i t r). Inserts performed by the VHPT walker, as
noted in Section 4.1.6, “VHPT Hashing”, abort the VHPT search if unimplemented or reserved
fields are used. For trandations marked as Not-Present (TLB.p is 0), the processor does not check
the validity of PPN and some reserved bits as noted in Figure 4-5.

When a processor model does not implement all physical address bits, the missing bits are defined
to be zero. Physical addressesin which bits PA{62:min(IMPL_PA_MSB+1,62)} are not zero are
considered “unimplemented” physical addresses on that processor model. Physical addresses are
checked for correctness on use by ensuring that PA{62:min(IMPL_PA_MSB+1,62)} bits are zero.

Unimplemented Virtual Address Bits

As shown in Figure 4-18, a 64-hbit virtual address consists of three bit fields: virtual region number
(VRN), unimplemented and implemented bits.

Figure 4-18. Virtual Address Bit Fields

4.3.3

63 61 IMPL_VA_MSB 0
‘ VRN ‘ unimplemented implemented
3 60-IMPL_VA_MSB IMPL_VA_MSB+1

All processor models provide three VRN bitsin VA{63:61}. IMPL_VA_MSB isthe
implementation-specific bit position of the most significant implemented virtual address bit. In
addition to the three VRN bits, all processor models implement at least 51 virtual address bits; i.e.
the smallest IMPL_VA_MSB is50. In a processor that implements all 64 virtual address bits
IMPL_VA_MSB is 60.

When a processor model does not implement all virtual address bits, the missing bits are defined to
be asign-extension of VA{IMPL_VA_ MSB}. Virtual addresses in which bits
VA{60:min(IMPL_VA_MSB+1,60)} do not match VA{IMPL_VA_ MSB} are considered
“unimplemented” virtual addresses on that processor model. Virtual addresses are checked for
correctness on use by ensuring that VA{60:min(IMPL_VA_MSB+1,60)} bitsareidentical to
VA{IMPL_VA_MSB}.

Instruction Behavior with Unimplemented Addresses

The use of an unimplemented address affects instruction execution as follows:

« Non-speculative memory references (non-speculative loads, stores, and semaphores), the
following non-accessreferences: f ¢, t pa, | f et ch. faul t, and pr obe. f aul t , and mandatory
RSE operations to unimplemented addresses result in an Unimplemented Data Address fault.

* Virtual addresses used by instruction and data TL B purge/insert operations are checked, and if
the base address (register r3 of the purge, |FA for inserts) targets an unimplemented virtual
address, a Unimplemented Data Address fault is raised. The page size of the insert or purgeis
ignored.

« Speculative loads from unimplemented addresses always return a NaT bit in the target register.

» A non-faulting pr obe instruction to an unimplemented address returns zero in the target
register.

¢ A tak instruction to an unimplemented address returns one in the target register.

IA-64 Addressing and Protection 4-25

4.4

4.4.1

A non-faulting | f et ch to an unimplemented address is silently ignored.
 Eager RSE operations to unimplemented addresses do not fault.

* A branch (taken or fall-through), anr f i , or an instruction fetch to an unimplemented virtual
address results in an Unimplemented I nstruction Address Trap on the branch, ther fi , or the
last executed instruction.

« Whenptc. g or pt c. ga operations place avirtual address on the bus, the virtual addressis
sign-extended to afull 64-bit format. If anincoming pt c. g or pt c. ga presents a virtual
address base that targets an unimplemented virtual address, the upper (unimplemented) virtual
address bits are dropped, and the purge is performed with the truncated address.

Memory Attributes

When virtual addressing is enabled, memory attributes defining the speculative, cacheability and
write-policies of the virtually mapped physical page are defined by the TLB. When physical
addressing is enabled, memory attributes are supplied as described in Section 4.4.2, “ Physical
Addressing Memory Attributes’.

Virtual Addressing Memory Attributes

For virtual memory references, the memory attribute field of each virtual translation describes
physical memory properties as shown in Table 4-10.

Table 4-10. Virtual Addressing Memory Attribute Encodings

4-26

- P
Attribute Mnemoni ma | Cacheability | Write Policy Speculation Coherent® with
c respect to
Write Back WwB 000 cacheable write back . WB, WBL
- non-sequential &
Write . |ati b
. wcC 110 coalescing speculative not MP coherent
Coalescing
Uncacheable uc 100 | uncacheable tial &
non- sequential
Uncacheable UCE | 101 coalescing | non-speculative uc, UCE
Exported

NaTPage NaTPage | 111 cacheable |n/a speculative n/a

a. The Coherency column in this table refers to multi-processor coherence on normal, side-effect free memory.
The data dependency rules defined in Section 4.4.7, “Memory Access Ordering” in Volume 1 ensure uni-
processor coherence for the memory attributes listed in each row.

b. WC is not MP coherent w.r.t. any memory attribute, but is uni-processor coherent w.r.t. itself.

c. This memory attribute is reserved for Software use.

The attribute UCE isidentical to UC except when executing an 1A-64 f et chadd instruction. UCE
enables the exporting of the f et chadd instruction outside the processor. Support for UCE is
model-specific; see “ Effects of Memory Attributes on Memory Reference Instructions” on

page 4-36 for details.

IA-64 Addressing and Protection

Insert TLB instructions (i t ¢, i t r) that attempt to insert reserved memory attributes (Table 4-10)
into the TLB raise Reserved Register/Field faults. External system operation is undefined if
software inserts amemory attribute supported by the processor but not supported by the external

system.

If software modifies the memory attributes for a page, software must flush any processor cache
copies with the Flush Cache (f c) instruction for the following memory attribute changes:

specul ative/non-specul ative, cacheable/uncacheable (for transitions from cacheable to
uncacheable), and coherency. Software must flush any coalescing buffersif a pageis changed from
coalescing to any other attribute. See “ Coal escing Attribute” on page 4-29.

It is recommended that processor model s report a Machine Check abort if any of the following

attribute aliases are detected:

» Coalescing buffer hit on a non-coal escing page.

« Cache hit on an uncacheable page, other than asthe target of alocal or remote flush cache (f ¢)
instruction (see “ Effects of Memory Attributes on Memory Reference Instructions’ on

page 4-36).

4.4.2 Physical Addressing Memory Attributes

The selection of memory attributes for physical addressing is selected by bit 63 of the address

contained in the address base register as shown in Figure 4-19 and Table 4-11.

Figure 4-19. Physical Addressing Memory

63 62 Base Register 0

62 0
attribute \ \
Physical Address
Table 4-11. Physical Addressing Memory Attribute Encodings
a2
Bit{63} Mnemonic Cacheability Write Policy Speculation Coherent® with
respect to
0 WBL cacheable write back non-sequential & WBL, WB
limited speculation
1 uc uncached non-coalescing sequential & UC, UCE
non-speculative

a. Coherency here refers to multi-processor coherence on normal, side-effect free memory.

See Section 4.4.6, “ Specul ation Attributes’ for a description of physical addressing limited
speculation. Bit{ 63} is discarded when forming the physical address, effectively creating awrite-
back name space and an uncached name space as shown in Figure 4-20.

Software must use the correct name space when using physical addressing; otherwise, 1/0 devices
with side-effects may be accessed speculatively. Physical addressing accesses are ordered only if
ordered loads or ordered stores are used. Otherwise, physical addressing memory references are

unordered.

IA-64 Addressing and Protection

4-27

Figure 4-20. Addressing Memory Attributes

4.4.3

4.4.4

4-28

254 base register

264
uncached
non-speculative uc .
name space 23 physical

Address Space
263 >
263

cached write-back
limited speculation| WBL
name space

0

Cacheability and Coherency Attribute

A page can be either cacheable or uncacheable. If a page is marked cacheable, the processor is
permitted to allocate alocal copy of the corresponding physical memory in al levels of the
processor memory/cache hierarchy. Allocation may be modified by the cache control hints of
memory reference instructions.

A page which is cached is coherent with memory; i.e. the processor and memory system ensure that
thereisaconsistent view of memory from each processor. Processors support multiprocessor cache
coherence based on physical addresses between all processors in the coherence domain (tightly
coupled multiprocessors). Coherency is supported in the presence of virtua aliases, although
software is recommended to use aliases which are an integer multiple of 1 MB apart to avoid any
possible performance degradation.

Processors are not required to maintain coherency between processor local instruction and data
cachesfor IA-64 code; i.e. locally initiated 1A-64 stores may not be observed by the local
instruction cache. Processors are required to maintain coherency between processor local
instruction and data caches for |A-32 code. Instruction caches are also not required to be coherent
with multi-processor | A-64 instruction set originated memory references. Instruction caches are
required to be coherent with multi-processor 1A-32 instruction set originated memory references.
The processor must ensure that transactions from other 1/0 agents (such as DMA) are physically
coherent with the instruction and data cache.

For non-cacheabl e references the processor provides no coherency mechanisms; the memory
system must ensure that a consistent view of memory is seen by each processor. See Section 4.4.5,
“Coalescing Attribute” for a description of coherency for the coal escing memory attribute.

Cache Write Policy Attribute

Write-back cacheable pages need only modify the processor’s copy of the physical memory
location; written data need only be passed to the memory system when the processor’s copy is
displaced, or a Flush Cache (f c) instruction is issued to flush avirtual address. A cache line can
only be written back to memory if a store, semaphore (successful or not), thel d. bi as, a
mandatory RSE store, or a. excl hinted Ifetch instruction targeting that line has executed without a
fault. These events enable write-backs. A synchronized f ¢ instruction disables subsequent write-
backs (after the line has been flushed).

IA-64 Addressing and Protection

4.4.5

Asdescribed in “Invalidating ALAT Entries” in Volume 1, platform visible removal of cache lines
from a processor’s caches (e.g. cache line write-backs or platform visible replacements) cause the
corresponding ALAT entries to be invalidated.

Coalescing Attribute

For uncacheable pages, the coalescing attribute informs the processor that multiple stores to this
page may be collected in a coalescing buffer and issued later as a single larger merged transaction.
The processor may accumul ate stores for an indefinite period of time. Multiple pending |oads may
also be coalesced into asingle larger transaction which is placed in a coal escing buffer. Coalescing
is aperformance hint for the processor; a processor may or may not implement coal escing.

An 1A-64 processor with multiple coalescing buffers must provide a flush policy that flushes
buffers at roughly equal rate even if some buffers are only partially full. The processor may make
coal esced buffer flushes visible in any order. Furthermore, individual bytes within asingle

coal esced buffer may be flushed and made visible in any order.

IA-32 or |A-64 stores, which are coalesced, are performed out of order; coalescing may occur in
both the space and time domains. For example, awrite to bytes4 and 5 and awrite to bytes 6 and 7
may be coalesced into asingle write of bytes4, 5, 6, and 7. In addition, awrite of bytes 5 and 6 may
be combined with awrite of bytes 6 and 7 into asingle write of bytes 5, 6, and 7.

Any |A-64 rel ease operation (regardless of whether it references a page with a coal escing memory
attribute), or any 1A-64 fence type instruction, forces write-coalesced data to become visible prior
to the instruction itself becoming visible. (See Table 4-14 for alist of release and fence
instructions.) Any |A-32 serializing instruction, or access to an uncached memory type, forces
write-coal esced data to become visible prior to itself becoming visible. Even though |A-32 stores
and loads are ordered, the write-coalesced datais not flushed unlessthe 1A-32 stores or loads are to
uncached memory types.

The Flush Cache (f c¢) instruction flushes all write-coalesced data whose address is within at least
32 bytes of the 32-byte aligned address specified by the f ¢ instruction, forcing the data to become
visible. Thef ¢ instruction may also flush additional write-coalesced data. The Flush Write buffers
(fwb) instructionisa“hint” to the processor to expedite flushing (visibility) of any pending stores
held in the coalescing buffer(s), without regard to address.

No indication is given when the flushing of the storesis completed. An f wb instruction does not
ensure ordering of coalesced stores, since later stores may be flushed before prior stores. To ensure
prior coal esced stores are made visible before |later stores, software must issue a release operation
between stores.

The processor may at any time flush coalesced stores in any order before explicitly requested to do
so by software.

Coalesced pages are not ensured to be coherent with other processors’ coalescing buffers or caches,
or with the local processor’s caches. Loads to coalesced memory pages by a processor see the
results of all prior stores by the same processor to the same coalesced memory page. Memory
references made by the coalescing buffer (e.g. buffer flushes) have an unordered non-sequential
memory ordering attribute. See “ Sequentiality Attribute and Ordering” on page 4-32.

IA-64 Addressing and Protection 4-29

4.4.6

4-30

intel.

Datathat has been read or prefetched into a coalescing buffer prior to execution of an 1A-64 acquire
or fencetypeinstruction isinvalidated by the acquire or fence instruction. (See Table 4-14 for alist
of acquire and fence instructions.)

Speculation Attributes

For present pages (TLB.p=1) which are marked with a speculative or a NaT Page memory attribute,
the processor may prefetch 1A-32 or | A-64 instruction bundles, perform address generation and
perform |A-32 or |A-64 load accesses without resolving prior control dependencies, including
predicates, branches and interruptions. A page should only be marked speculative if accessesto that
page have no side-effects. For example, many memory-mapped 1/0 devices have side-effects
associated with reads and should be marked non-speculative. If apage is marked speculative, a
processor can read any location in the page at any time independent of a programmer’s intentions
or control flow changes. As aresult, software isrequired, at all times, to maintain valid page table
attributes for the ppn, ps and mafields of all present translations whose memory attribute is
speculative or NaTPage. High-performance operation is only attainable on speculative pages. The
speculative attribute is a hint; a processor may behave non-speculatively.

Prefetches are enabled if a speculative translation exists. Prefetches are asynchronous data and
instruction memory accesses that appear logically to initiate and finish between some pair of
instructions. This access may not be visible to subsequent flush cache (f ¢c) and/or TLB purge
instructions. This behavior is implementation-dependent.

The processor will not initiate memory references (16-byte | A-64 instruction bundle fetches, 1A-32
instruction fetches, RSE fills and spills, VHPT references, and data memory accesses) to non-
speculative pages until all previous control dependencies (predicates, branches, and exceptions) are
resolved; i.e. the memory reference is required by an in-order execution of the program.
Additionally, for references to non-specul ative pages, the processor:

« May not generate any memory access for a control or data speculative data reference.
» Will generate exactly one memory access for each non-specul ative data reference.

» May generate multiple 16-byte memory accesses (to the same address) for each 16-byte |IA-64
instruction bundle fetch reference.

Limited speculation is used for physical addressing to cached memory. The processor may only
speculatively issue IA-32 or | A-64 instruction or data references, prefetch or eager RSE memory
references to a 4K -byte physical pageif a non-speculative instruction or data reference was
previously made to the same page by an in-order execution of the program through the write-back
limited speculation memory attribute, or if the pageis till enabled for prefetch through a
speculative memory attribute.

To ensure virtual and physical accesses to non-speculative pages are performed in program order
and only once per program order occurrence, the rulesin Table 4-12 and Table 4-13 are defined.

Software should also ensure that RSE spill/fill transactions are not performed to non-speculative
memory that may contain I/O devices; otherwise, system behavior is undefined.

IA-64 Addressing and Protection

intel.

Table 4-12. Permitted Speculation

Memory Load Speculative Load Advanced Load Speculative Advanced Load
Attribute (Id) (Id.s) (Id.a) (Id.sa)
speculative yes yes yes yes
non-speculative yes always fail always fail always fail
limited speculation yes always fail yes always fail

Table 4-13. Register Return Values on Non-faulting Advanced/Speculative Loads

44.6.1

Speculative Load Advanced Load Speculative Advanced Load
Memory (Id.s) (Id.a) (Id.sa)
Attribute - - -
success failure success | failure success failure
speculative value NaT? value n/a value NaT?
non-speculative n/a NaTP n/a zero® |n/a NaTP
limited speculation n/a NaTP value n/a n/a NaTP

a. Speculative or speculative advanced loads that cause deferred exceptions result in failed speculation. The
processor aborts the reference. If the target of the load is a GR, the processor sets the register's NaT bit to
one. If the target of the load is an FR, the processor sets the target FR to NaTVal. The processor performs all
other side-effects (such as post-increment).

b. Speculative or speculative advanced loads to limited or non-speculative memory pages result in failed
speculation. The processor aborts the reference. If the target of the load is a GR, the processor sets the
register’s NaT bit to 1. If the target of the load is an FR, the processor sets the target FR to NaTVal. The
processor performs all other side-effects (such as post-increment).

c¢. Advanced loads to non-speculative memory pages always fail. The processor aborts the reference, sets the
target register to zero, and performs all other side-effects (such as post-increment).

Disabling Prefetch and Removing Cacheability

To change a cacheabl e page to an uncacheable page, software must perform the following
architected sequence to disable prefetch and remove cacheability from the old translation (assume
the page “ X" in question isinitially mapped by a cacheable memory attribute):

On the processor initiating the disabling process, perform the following steps 1-3:

1. PTE[X.p =0 /1 Mark page as not present
2. ptc.ga [X ;; /1 Global shootdown and ALAT invalidate for the entire page
3. nf ;; /1 Ensure visibility of pt c. ga tolocal datastream

srlz.i ;; /1 Ensure visibility of pt c. ga tolocal instruction stream

After step 3, no processor in the coherence domain will initiate new memory references or
prefetches to the old translation. Note, however, that memory references or prefetches initiated to
the old trandlation prior to step 2 may still be in progress after step 3. These outstanding memory
references and prefetches may return instructions or data which may be placed in the processor
cache hierarchy; this behavior isimplementation-specific. To ensure that no processor in the
coherence domain contai ns addresses belonging to page “X” in its caches, software must perform
the following additional steps:

4. call PAL_PREFETCH_VISIBILITY
If the return code from PAL_PREFETCH_VISIBILITY indicates that PAL support for disabling

prefetch is not required on remote processors, then software may skip the [Pl in step 5 and go
straight to step 6 below.

IA-64 Addressing and Protection 4-31

4.4.7

4-32

intel.

5. Using the IPI mechanism defined in “Inter-processor Interrupt Messages’ on page 5-32 to
reach all processors in the coherence domain, perform step 4 above on all processorsin the
coherence domain, and wait for all PAL_PREFETCH_VISIBILITY callsto complete on all
processors in the coherence domain before continuing.

After steps 4 and 5, no more new instruction or data prefetches will be made to page “X” by any
processor in the coherence domain. However, processor caches in the coherence domain may still
contain “stale” data or instructions from prior prefetch or memory referencesto page “ X”.

On the processor initiating the disabling process, continue the sequence:

6. Insert new uncacheable trandation for page “X”.

7. fc [X /1 flush all processor caches in the coherence domain
Ca /1 ...for al of page“X" (page size = ps)
fc [X+ps]
sync.i ;; /1 wait for al f ¢ instructions to become visible
nf ;; /1 wait for al sync. i tobecomevisible

After step 7, all flush cache instructions initiated in step 7 are visible to al processorsin the
coherence domain, i.e. no processor in the coherence domain will respond with a cache hit on a
memory reference to an address belonging to page “X”.

Note: Thissequenceis ONLY required to change a page from a cacheable memory attribute to
an uncacheable memory attribute. It is not required for typical OS paging (programmed
[/0 or DMA) or address space teardowns, for example.

To further guarantee that any cache lines containing addresses belonging to page [X] have been
evicted from all cachesin the coherencedomainandwri tten back to nenory, software must
performa PAL_MC_DRAIN operation on al processorsin the coherence domain (viathe IPI
mechanism) after executing the above sequence.

Sequentiality Attribute and Ordering

Memory ordering is defined in Section 4.4.7, “Memory Access Ordering” in Volume 1. This
section defines additional ordering rules for non-cacheable memory, cache synchronization (sync.i)
and global TLB purge operations (ptc.g, ptc.ga).

Asdescribed in Section 4.4.7, “Memory Access Ordering” in Volume 1, read-after-write, write-
after-write, and write-after-read dependencies to the same memory location (memory dependency)
are performed in program order by the processor. Otherwise, al other | A-64 memory references
may be performed in any order unless the reference is specifically marked as ordered. 1A-32
memory references follow a stronger processor consistency memory model. See “1A-32 Memory
Ordering” on page 10-23 for |A-32 memory ordering details. Explicit ordering takes the form of a
set of |A-64 instructions: ordered load and check load (I d. acq, | d. c. cl r. acq), ordered store
(st . rel), semaphores (cnpxchg, xchg, f et chadd), memory fence (nf), synchronization
(sync.i)and global TLB purge (ptc. g, ptc.ga). Thesync.i instructionisused to maintain an
ordering relationship between instruction and data caches on local and remote processors. The
global TLB purge instructions maintain multi-processor TLB coherence.

Table 4-14 defines a set of “Orderable Instructions’ that follow one of four ordering semantics:
unordered, release, acquire or fence. The table defines the ordering semantics and the
instructions of each category. Only these | A-64 instructions can be used to establish multi-
processor ordering relations.

IA-64 Addressing and Protection

intel.

Table 4-14. Ordering Semantics and Instructions

Orderlrjg Description Orderable 1A-64 Instructions
Semantics
Unordered instructions may become visiblein |1d,ld.s,ld.a,ld.sa,ld.fill,
any order. ldf,1df.s,ldf.sa,ldf.fill,
| df p, I df p. s, | df p. sa,
Unordered st,st.spill,
stf,stf.spill,
nf.a,sync.i,
I d.c,chk.a
Release instructions guarantee that all cnpxchg. rel , fetchadd. rel,
Release previous orderable instructions are made st.rel,ptc.g,ptc.ga
visible prior to being made visible themselves.
Acquire instructions guarantee that they are cnpxchg. acq, f et chadd. acq,
Acquire made visible prior to all subsequent orderable xchg,l d. acq, I d.c.clr.acq
instructions.
Fence instructions combine the release and nf
acquire semantics into a bi-directional fence;
i.e. they guarantee that all previous orderable
Fence . f .)
instructions are made visible prior to any
subsequent orderable instruction being made
visible.

In the following discussion, the terms previous and subsequent are used to refer to the program
specified order. The term visible is used to refer to al architecturally visible effects of performing
an instruction. For memory accesses and semaphores thisinvolves at least reading or writing
memory. For nf . a, visibility is defined by platform acceptance of previous memory accesses.
Visibility of sync. i isdefined by visibility of previous flush cache (f c) operations. For ALAT
lookups (I d. ¢, chk. a), visibility is determination of ALAT hit or miss. For global TLB purge
operations, visibility is defined by removal of an address translation from the TLBs on all
processorsin the TLB coherence domain. Global TLB purge instructions (pt c. g and pt c. ga)
follow release semantics both on the local and the remote processor.

| A-64 memory accesses to sequential pages occur in program order with respect to all other
sequential pagesin the same peripheral domain, but are not necessarily ordered with respect to non-
sequential page accesses. A peripheral domain is a platform-specific collection of uncacheable
addresses. An 1/O device is normally contained in a peripheral domain and all sequential accesses
from one processor to that device will be ordered with respect to each other. Sequentiality ensures
that uncacheable, non-coalescing memory references from one processor to a peripheral domain
reach that domain in program order. Sequentiality does not imply visibility.

Inter-Processor Interrupt Messages (8-byte stores to a Processor Interrupt Block address, through a
UC memory attribute) are exceptions to the sequential semantics. |PI’s are not ordered with respect
to other IPI’s directed at the same processor. Further, fence operations do not enforce ordering
between two IPI’s. See Section 5.8.4.2, “Interrupt and 1Pl Ordering”.

Table 4-15 defines the ordering between unordered, release, acquire and fence type operations to
sequential and non-sequential pages. Table 4-15 defines the minimal ordering requirements; an
implementation may enforce more restrictive ordering than required by the architecture. The actual
mechanism for enforcing memory access ordering isimplementation dependent.

IA-64 Addressing and Protection 4-33

Table 4-15. Ordering Semantics

Second Operation
)) Non-sequential Sequential®
First Operation Fence
Acquire | Release Unordered Acquire Release | Unordered
fence o o O (0] O (0] O
non-sequential acquire (0] (0] (@) (0] (@) (0] (@)
release (@] - O - - (@] -
unordered (@] - O - - (@] -
sequential? acquire (0] (0] (@) (0] oS os oS
release (o] - (0] - S oS S
unordered 0 - oP - sd 0s*® S

T OO0 T o

. Except for IPI.
. “O” indicates that the first and second operation become visible in program order.

. A dash indicates no ordering is implied.

. “S” indicates that the first and the second operation reach a peripheral domain in program order.
. “OS” implies that both “O” and “S” ordering relations apply.

Table 4-15 establishes an order between operations on a particular processor. For operations to
cacheable write-back memory the order established by these rulesis observed by all observersin
the coherence domain.

For example, when this sequence is executed on a processor:

st [a]
st.rel

[b]
and a second processor executes this sequence:

Id.acq [b]
Id [a]

if the second processor observes the store to [b], it will also observe the storeto [a].

Unless an ordering constraint from Table 4-15 prevents amemory read! from becoming visible, the
read may be satisfied with values found in a store buffer (or any logically equivalent structure).
These values need not be globally visible even when the operation that created the value was a
st.rel . Thislocal bypassing behavior may make accesses of different sizes but with overlapping
memory references appear to complete non-atomically. To ensure that a memory writeis globally
observed prior to amemory read, software must place an explicit fence operation between the two
operations.

Aligned st . r el and semaphore operations2 from multiple processors to cacheable write-back
memory become visible to all observersin asingletotal order (i.e. in aparticular interleaving; if it
becomes visible to any observer, then it is visible to all observers), except that for st . rel each
processor may observe (vial d or | d. acq) itsown update prior to it being observed globally.

1. Thisincludes all typesof loads (I d and | d. acq), and RSE and VHPT memory reads. Note, however, that the read
operation of semaphores cannot be satisfied with values found in a store buffer.
2. Both acquire and release semaphore forms.

4-34

IA-64 Addressing and Protection

I A-64 ensures this single total order only for aligned st . r el and semaphore operations to
cacheable write-back memory. Other memory operations! from multiple processors are not
reguired to become visible in any particular order, unless they are constrained w.r.t. each other by
the ordering rules defined in Table 4-15.

Ordering of loads is further constrained by data dependence. That is, if one load reads avalue
written by an earlier load by the same processor (either directly or transitively, through either
registers or memory), then the two loads become visible in program order.

For example, when this sequence is executed on a processor:

st [a] = data
st.rel [b] = a

and a second processor executes this sequence:

ld x = [b]
ldy = [x]

if the second processor observes the store to [b], it will also observe the store to [4].
Also for example, when this sequence is executed on a processor:

st [4]
st.rel [b] = ‘new

and a second processor executes this sequence:
ld x = [b
cnp.eq pl = x, ‘new

(p1) Idy =][a

if the second processor observes the store to [b], it will also observe the store to [4].

And for example, when this sequence is executed on a processor:

st [4]
st.rel [b] = ‘new

and a second processor executes this sequence:

Id x =[h]
cnp.eq pl = x, ‘new
(pl1) br target

target:'
ldy = [a]

if the second processor observes the store to [b], it will also observe the store to [4].

1. For example, unordered stores, loads, | d. acq, or memory operations to pages with attributes other than write-back
cacheable.

IA-64 Addressing and Protection 4-35

4.4.8

4.4.9

4-36

intel.

The flush cache (f ¢) instruction follows data dependency ordering. f ¢ is ordered with respect to
previous and subsequent load, store, or semaphore instructions to the same line, regardless of the
specified memory attribute. f ¢ is not ordered with respect to memory operations to different lines.
nf does not ensure visibility of f ¢ operations. Instead, the sync. i instruction synchronizesf ¢
instructions, and the sync. i is made visible using an nf instruction.

Not a Thing Attribute (NaTPage)

A NaTPage attribute prevents non-speculative references to a page, and ensures that speculative
references to the page always defer the Data NaT Page Consumption fault. However, as described
in “ Speculation Attributes” on page 4-30, the processor may issue memory referencesto a
NaTPage. As aresult, all NaTPages must be backed by avalid physical page.

| A-64 speculative or speculative advanced |oads to pages marked as a NaT Page cause the deferred
exception indicator (NaT or NaTVal) to be written to the |oad target register, and the memory
reference is aborted. However, al other effects of the load instruction such as post-increment are
performed. |A-32 or | A-64 instruction fetches, |A-32 loads, |A-64 non-speculative loads, |A-32 or
| A-64 stores, or semaphores to pages marked as NaT Page raise a NaT Page Consumption fault.

A specul ative reference to a page marked as NaTPage may still take lower priority faults, if not
explicitly deferred in the DCR. See*Deferral of 1A-64 Speculative Load Faults’ on page 5-10.

Effects of Memory Attributes on Memory Reference
Instructions

Memory attributes affect the following | A-64 instructions:

* | df e, st f e: Hardware support for 10-byte memory accesses to a page that is neither a
cacheable page with write-back write policy nor a NaTPageis optional. On processor
implementations that do not support such accesses, an Unsupported Data Reference Fault is
raised when an unsupported reference is attempted.

For extended floating-point loads the fault is delivered only on the normal, advanced, and
check load flavors (1 df e, | df e. a, | df e. c. nc, | df e. c. cl r). Control speculative flavors of
the | df e instruction that target pages that are not cacheable with write-back policy always
defer the fault. Refer to “Deferral of |A-64 Speculative Load Faults’ on page 5-10 for details.

» cnpxchg and xchg: These instructions are only supported to cacheabl e pages with write-back
write policy. cnmpxchg and xchg accesses to NaTPages causes a Data NaT Page Consumption
fault. cnpxchg and xchg accesses to pages with other memory attributes cause an
Unsupported Data Reference faullt.

 fetchadd: Thef et chadd instruction can be executed successfully only if the accessisto a
cacheable page with write-back write policy or to a UCE page. f et chadd accessesto
NaT Pages cause a Data NaT Page Consumption fault. Accessesto pages with other memory
attributes cause an Unsupported Data Reference fault. When accessing a cacheable page with
write-back write policy, atomic fetch and add operation is ensured by the processor cache-
coherence protocol. For highly contended semaphores, the cache line transactions required to
guarantee atomicity can limit performance. In such cases, a centralized “fetch and add”
semaphore mechanism may improve performance. If supported by the processor and the
platform, the UCE attribute allows the processor to “export” the f et chadd operation to the
platform as an atomic “fetch and add” . Effects of the exported f et chadd are platform

IA-64 Addressing and Protection

4.4.10

dependent. If exporting of f et chadd instructions is not supported by the processor, a
f et chadd instruction to a UCE page takes an Unsupported Data Reference fault.

¢ Flush Cache Instructions—f ¢ instructions must always be “broadcast” to other processors,
independent of the memory attribute in the local processor. It is lega to use an uncacheable
memory attribute for any valid address when used as aflush cache (f ¢) instruction target. This
behavior is required to enable transitions from one memory attribute to another and in case
different memory attributes are associated with the address in another processor.

* Prefetchinstructions—1I f et ch and any implicit prefetches to pages that are not cacheable are
suppressed. No transaction isinitiated. This alows programs to issue prefetch instructions
even if the program is not sure the memory is cacheable.

Effects of Memory Attributes on Advanced/Check Loads

The ALAT behavior of advanced and check loads is dependent on the memory attribute of the page
referenced by the load. These behaviors are required; advanced and check load completers are not
hints.

All speculative pages have identical behavior with respect to the ALAT. Advanced loads to
speculative pages always alocate an ALAT entry for the register, size, and address tuple specified
by the advanced |oad. Speculative advanced loads allocate an ALAT entry if the speculative load is
successful (i.e. no deferred exception); if the speculative advanced load results in a deferred
exception, any matching ALAT entry isremoved and no new ALAT entry isallocated. Check |oads
with clear completers(I d. c. cl r,ld.c.clr.acq,l df.c.cl r)removeamatching ALAT entry on
ALAT hit and do not change the state of the ALAT on ALAT miss. Check loads with no-clear
completers(l d. c. nc, | df . c. nc) allocatean ALAT entry on ALAT miss. On ALAT hit, the ALAT
isunchanged if an exact ALAT match isfound (register, address, and size); anew ALAT entry with
the register, address, and size specified by the no-clear check load may be alocated if a partial
ALAT match isfound (match on register).

Advanced loads (speculative or non-speculative variants) to hon-specul ative pages always remove
any matching ALAT entry. Check |oads to non-speculative pagesthat missthe ALAT never allocate
an ALAT entry, even in the case of a no-clear check load. ALAT hits on check loads to non-

specul ative pages (which can occur if a previous advanced load referenced that page viaa
speculative memory attribute) result in undefined behavior; when changing an existing page from
speculative to non-speculative (or vice-versa), software should ensure that any ALAT entries
corresponding to that page are invalidated.

Limited speculation pages behave like non-specul ative pages with respect to speculative advanced
loads, and behave like speculative pages with respect to all other advanced and/or check loads.

Table 4-16 describes the ALAT behavior of advanced and check loads for the different speculation
memory attributes.

IA-64 Addressing and Protection 4-37

Table 4-16. ALAT Behavior on Non-faulting Advanced/Check Loads

4.5

4-38

Id.c.clr,
Id.c.nc,
Id.sa Id.c.clr.acq,
Response Idf.c.clr ldf.c.nc
Memory p Id.a e Response
Attribute Response Response
noNaT | NaT ALAT | ALAT | ALAT | ALAT
hit miss hit miss
speculative alloc remove alloc remove nop unchanged?® alloc
non-speculative n/a remove remove undefined nop undefined must not
alloc
limited speculation | n/a remove alloc remove nop unchanged?® alloc

a. May allocate a new ALAT entry if size and/or address are different than the corresponding Id.a or Id.sa whose
ALAT entry was matched.

Memory Datum Alignment and Atomicity

All 1A-64 instruction fetches, aligned |A-32 and aligned | A-64 load, store and semaphore
operations are atomic, except for floating-point extended memory references (1 df e, st f e, and

| A-32 10-byte memory references) to non-write-back cacheable memory. In some processor
models, aligned 10-byte 1A-64 floating-point extended memory references to non-write-back
cacheable memory may raise an Unsupported Data Reference fault. See “ Effects of Memory
Attributes on Memory Reference Instructions’ on page 4-36 for details. Loads are allowed to be
satisfied with values obtained from a store buffer (or any logically equivalent structure) where
architectural ordering permits, and values loaded may appear to be non-atomic. For details, refer to
“Sequentiality Attribute and Ordering” on page 4-32.

Load pair instructions are performed atomically under the following conditions: a 16-byte aligned
load integer/double pair is performed as an atomic 16-byte memory reference. An 8-byte aligned
load single pair is performed as an atomic 8-byte memory reference.

Aligned | A-64 data memory references never raise an Unaligned Data Reference fault. Minimally,
each |A-64 instruction and its corresponding template are fetched together atomically. |A-64
unordered |oads can use the store buffer for data values. See “ Sequentiality Attribute and Ordering”
on page 4-32 for details.

When PSR.ac is 1, any 1A-64 data memory reference that is not aligned on a boundary the size of
the operand resultsin an Unaligned Data Reference fault; e.g. 1, 2, 4, 8, 10, and 16-byte datums
should be aligned on 1, 2, 4, 8, 16, and 16-byte boundaries respectively to avoid generation of an
Unaligned Data Reference fault. When PSR.ac is 1, any |A-32 data memory reference that is not
aligned on a boundary the size of the operand resultsin an | A-32_Exception(AlignmentCheck)
fault.

Note: 10-byte and floating-point load double pair datum alignment is 16-bytes. The alignment of
long format 32-byte VHPT referencesis always 32-bytes.

Unaligned 1A-64 semaphore references (cnpxchg, xchg, f et chadd) result in an Unaligned Data
Reference fault regardless of the state of PSR.ac.

When PSR.ac is 0, | A-64 data memory references that are not aligned may or may not result in an
Unaligned Data Reference fault based on the implementation. The level of unaligned memory
support isimplementation specific. However, all implementations will raise an Unaligned Data

IA-64 Addressing and Protection

Reference fault if the |A-64 datum spans a4K aligned boundary, and many implementations will
raise an Unaligned Data Reference fault if the 1A-64 datum spans a cache line. Implementations
may also raise an Unaligned Data Reference fault for any other unaligned | A-64 memory reference.
Software is strongly encouraged to align data values to avoid possible performance degradation for
both IA-32 and | A-64 code. When PSR.ac is 0 and |A-32 alignment checks are also disabled, no
fault is raised regardless of alignment for 1A-32 data memory references.

Unaligned | A-64 advanced loads are supported, though a particular implementation may choose
not to allocate an ALAT entry for an unaligned advanced load. Additionally, the ALAT may
“pessimistically” allocate an entry for an unaligned load by allocating alarger entry than the natural
size of the datum being loaded, aslong asthe larger entry completely covers the unaligned address
range (e.0. al d4. a to address 0x3 may allocate an 8-byte entry starting at address 0x0). Stores
(unaligned or otherwise) may also pessimistically invalidate unaligned ALAT entries.

IA-64 Addressing and Protection 4-39

4-40

IA-64 Addressing and Protection

tel.

|A-64 Interruptions 5

5.1

Interruptions are events that occur during |A-32 or |A-64 instruction processing, causing the flow
control to be passed to an interruption handling routine. In the process, certain processor stateis
saved automatically by the processor. Upon completion of interruption processing, a return from
interruption (r f i) is executed which restores the saved processor state. Execution then proceeds
with the interrupted 1A-32 or 1A-64 instruction.

From the viewpoint of response to interruptions, the processor behaves asiif it were not pipelined.
That is, it behaves asif asingle | A-64 instruction (along with its template) is fetched and then
executed; or asif asingle |A-32 instruction is fetched and then executed. Any interruption
conditions raised by the execution of an instruction are handled at execution time, in sequential
instruction order. If there are no interruptions, the next 1A-64 instruction and its template, or the
next |A-32 instruction, are fetched.

This chapter describes both the |A-64 and | A-32 interruption mechanisms as well asthe
interactions between them. The descriptions of the | A-64 interruption vectors and 1A-32
exceptions, interruptions, and intercepts are in Chapter 8, “1A-64 Interruption Vector Descriptions’.

Interruption Definitions

Depending on how an interruption is serviced, interruptions are divided into: 1VA-based
interruptions and PAL-based interruptions.

» |VA-based interruptions are serviced by the operating system. | VA-based interruptions are
vectored to the Interruption Vector Table (IVT) pointed to by CR2, the IVA control register
(See “IVA-based Interruption Vectors” on page 5-17).

» PAL-based interruptions are serviced by PAL firmware, system firmware, and possibly the
operating system. PAL-based interruptions are vectored through a set of hardware entry points
directly into PAL firmware (See Chapter 11, “1A-64 Processor Abstraction Layer”).

Interruptions are divided into four types: Aborts, Interrupts, Faults, and Traps.

» Aborts
A processor has detected a Machine Check (internal malfunction), or a processor reset. Aborts
can be either synchronous or asynchronous with respect to the instruction stream. The abort
may cause the processor to suspend the instruction stream at an unpredictable |ocation
with partially updated register or memory state. Aborts are PAL-based interruptions.

» Machine Checks (MCA)
A processor has detected a hardware error which requires immediate action. Based on the
type and severity of the error the processor may be able to recover from the error and
continue execution. The PALE_CHECK entry point is entered to attempt to correct the
error.

* Processor Reset (RESET)
A processor has been powered-on or areset request hasbeen sent toit. The PALE_RESET
entry point is entered to perform processor and system self-test and initialization.

IA-64 Interruptions 5-1

intel.

e Interrupts
An external or independent entity (e.g. an I/O device, atimer event, or another processor)
requires attention. Interrupts are asynchronous with respect to the instruction stream. All
previous IA-32 and | A-64 instructions appear to have completed. The current and
subsequent instructions have no effect on machine state. Interrupts are divided into
Initialization interrupts, Platform Management interrupts, and External interrupts.
Initialization and Platform Management interrupts are PAL -based interruptions;
external interrupts are | VA-based interruptions.

« Initialization Interrupts (INIT)
A processor has received an initialization request. The PALE_INIT entry point is entered
and the processor is placed in a known state.

 Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform error handling,
memory scrubbing, or power management has been received by a processor. The
PALE_PMI entry point is entered to service the request. Program execution may be
resumed at the point of interruption. PM|Is are distinguished by unique vector numbers.
Vectors 0 through 3 are available for platform firmware use and are present on every
processor model. Vectors 4 and above are reserved for processor firmware use. The size of
the vector space is model specific.

« External Interrupts (INT)
A processor has received arequest to perform a service on behalf of the operating system.
Typically these requests come from 1/0O devices, although the requests could come from
any processor in the system including itself. The External Interrupt vector is entered to
handle the request. External Interrupts are distinguished by unique vector numbersin the
range 0, 2, and 16 through 255. These vector numbers are used to prioritize external
interrupts. Two special cases of External Interrupts are Non-Maskable I nterrupts and
External Controller Interrupts.

* Non-Maskable Interrupts (NMI)
Non-Maskable Interrupts are used to request critical operating system services. NMlIs
are assigned external interrupt vector number 2.

» External Controller Interrupts (ExtINT)
External Controller Interrupts are used to service Intel 8259A-compatible external
interrupt controllers. ExtINTs are assigned locally within the processor to external
interrupt vector number O.

* Faults
The current |A-64 or 1A-32 instruction which requests an action which cannot or should not be
carried out, or system intervention is required before the instruction is executed. Faults are
synchronous with respect to the instruction stream. The processor completes state changes
that have occurred in instructions prior to the faulting instruction. The faulting and
subsequent instructions have no effect on machine state. Faults are 1 VA-based
interruptions.

e Traps
The IA-32 or 1A-64 instruction just executed requires system intervention. Traps are
synchronous with respect to the instruction stream. The trapping instruction and all
previous instructions are completed. Subsequent instructions have no effect on
machine state. Traps are | VA-based interruptions.

Figure 5-1 summarizes the above classification.

IA-64 Interruptions

intel.

Figure 5-1. Interruption Classification

5.2

Aborts Interrupts Faults Traps
INIT
RESET
PMI
INT
MCA (NMI, ExtINT, ...)

I:I PAL-based Interruptions

I:I IVA-based Interruptions

000922

Unless otherwise indicated, the term “interruptions” in the rest of this chapter refersto I VA-based
interruptions. PAL-based interruptions are described in detail in Chapter 11, “1A-64 Processor
Abstraction Layer”.

Interruption Programming Model

When an interruption event occurs, hardware saves the minimum processor state required to enable
software to resolve the event and continue. The state saved by hardwareisheld in a set of
interruption resources, and together with the interruption vector gives software enough information
to either resolve the cause of the interruption, or surface the event to a higher level of the operating
system. Software has compl ete control over the structure of the information communicated, and the
conventions between the low-level handlers and the high-level code. Such a scheme allows
software rather than hardware to dictate how to best optimize performance for each of the
interruptionsin its environment. The same basic mechanisms are used in all interruptionsto support
efficient IA-64 low-level fault handlers for events such as a TLB fault, speculation fault, or akey
miss fault.

On an interruption, the state of the processor is saved to alow an | A-64 software handler to resolve
the interruption with minimal bookkeeping or overhead. The banked general registers (see
“Efficient Interruption Handling” on page 5-8) provide an immediate set of scratch registersto
begin work. For low-level handlers (e.g. TLB miss) software need not open up register space by
spilling registers to either memory or control registers.

Upon an interruption, asynchronous events such as external interrupt delivery is disabled
automatically by hardwareto allow 1A-64 software to either handle the interruption immediately or
to safely unload the interruption resources and save them to memory. Software will either deal with
the cause of the interruption and r f i back to the point of the interruption, or it will establish a new
environment and spill processor state to memory to prepare for acall to higher-level code. Once
enough state has been saved (such asthe IR, IPSR, and the interruption resources needed to resolve
the fault) the low-level code can re-enable interruptions by restoring the PSR.ic bit and then the
PSR.i hit. (See “Re-enabling External Interrupt Delivery” on page 5-24.) Since thereisonly one set
of interruption resources, software must save any interruption resource state the operating system
may require prior to unmasking interrupts or performing an operation that may raise a synchronous
interruption (such as amemory reference that may cause a TLB miss).

IA-64 Interruptions 5-3

5.3

5-4

intel.

The PSR.ic (interruption state collection) bit supports an efficient nested interruption model. Under
normal circumstances the PSR.ic bit is enabled. When an interruption event occurs, the various
interruption resources are overwritten with information pertaining to the current event. Prior to
saving the current set of interruption resources, it is often advantageous in a miss handler to
perform avirtual reference to an area which may not have atranslation. To prevent the current set
of resources from being overwritten on a nested fault, the PSR.ic bit is cleared on any interruption.
Thiswill suppress the writing of critical interruption resources if another interruption occurs while
the PSR.ic bit iscleared. If adata TLB miss occurs while the PSR.ic bit is zero, then hardware will
vector to the Data Nested TLB fault handler.

For a complete description of interruption resources (IFA, [P, IPSR, ISR, IIM, 1IPA, ITIR, IHA,
IFS) see Section 3.3.3, “Control Registers’.

Interruption Handling during Instruction Execution

Execution of 1A-64 instructions involves cal culating the address of the current bundle from the
region registers and the IP and then fetching, decoding, and executing instructions in that bundle
(see Section 3.4, “Instruction Sequencing Considerations’ in Volume 1). Execution of 1A-32
instructions involves cal culating the 64-bit linear address of the current instruction from the EIP,
code segment descriptors, and 1A-64 region registers and then fetching, decoding, and executing
the 1A-32 instruction. .

The execution process involves performing the events listed below. The values of the PSR bits are
the values that exist before the instruction is executed (except for the case of instructions that are
immediately preceded by a mandatory RSE load which clears the PSR.da and PSR.dd bits).
Changes to the PSR bits only affect subsequent instructions, and are only guaranteed to be visible
by the insertion of the appropriate serializing operation. See “ Serialization” on page 3-1. Execution
flow is shown in Figure 5-2.

Resets are always enabled, and may occur anytime during instruction execution.
If the PSR.mc bit is 0 then machine check aborts may occur.

The processor checks for enabled pending INITs and PMIs, and for enabled unmasked
pending external interrupts.

4. For 1A-64 code, the processor checks for avalid register stack frame.
« If incomplete and RSE Current Frame Load Enable (RSE.CFLE) is set, then perform

amandatory RSE load and start again at step one. The mandatory |oad operation may
fault. A non-faulting mandatory RSE load will clear PSR.da and PSR.dd.

* If valid, then clear RSE.CFLE.
5. For IA-32 code, IA-32 instruction addresses are checked for possible instruction breakpoint
faults. The | A-32 effective instruction address (EIP) is converted into a 64-bit virtual linear

address | P and | A-32 defined code segmentation and code fetch faults are checked and may
result in afault.

IA-64 Interruptions

intel.

Figure 5-2. Interruption Processing

RFI
»
Ll
Perform Mandatory 4__\@3 Invalid Frame and Unmaizzglfn(:erru N
RSE Load RSE.CFLE !=0? . P
Pending?
T
|
Fetch Current)
No) ; -
¢ —— Fault Pending? Instruction, Execute Vegto_r to Highest
. Priority Interrupt
Current Instruction
T
Yes |
|
* |
|
|
Vector to Highest- Yes ’ |
_ I ?
Priority Fault < Fault Pending? :
T |
| |
| |
|
X . SN SN .
| | : | |
| Process Fault | Commit State for I Process Interrupt |
| Instruction |
Lo] L]
| RFI | RFI
<« Y :
|
|
Vector to Highest- Yes) |
__E ?
Priority Trap < Trap Pending® :
T |
| No |
| |
—_—_——v - [
| | |
: Process All Traps | :
L q————- 1 :
I RFI |
|
v P]
Note: The solid line represents the normal execution path.
000923

6. When PSR.isis O, the IA-64 bundle is fetched using the IP. When PSR.isis 1, an |A-32
instruction is fetched using IP.
« If the PSR.it bit is 1, virtual address trandlation of the instruction addressis

performed. Address trandation may result in afault.
« If the PSR.pk bit is 1, access key checking is enabled and may result in afault.

¢ For |A-64 code the IBR registers are checked for possible instruction breakpoint
faults.

* Thefetched |A-32 or |A-64 instruction is decoded and executed.

e For |A-32 code, the fetched IA-32 instruction is checked to see if the opcode is an
illegal opcode, resultsin an instruction intercept or the opcode bytes are longer than
15 bytes resulting in an fault.

« If afault occurs during execution, the processor completes all effects of the
instructions prior to the faulting 1A-32 or |A-64 instruction, and does not commit the

IA-64 Interruptions 5-5

5.4

5-6

intel.

effect of the faulting instruction and all subsequent instructions. It then takes the
interruption for the fault. 11P is loaded with the IP of the |A-64 bundle or A-32
instruction which contains the instruction that caused the fault.

e ThePSR.dd, PSR.id, PSR.ia, PSR.da, and PSR.ed bits are set to 0 after an |A-64
instruction is successfully executed without raising afault. The PSR.da and PSR.dd
bits are also set to 0 after the execution of each mandatory RSE memory reference
that does not raise afault. PSR.da, PSR.ia, PSR.dd, and PSR.ed bits are cleared before
thefirst IA-32 instruction starts execution after abr. i aorrfi instruction. EFLAG.rf
and PSR.id bits are set to 0 after an |A-32 instruction is successfully executed.

e Ifanrfi instructionisin the current IA-64 bundle, then onthe executionof rfi, the
value from the l1Pis copied into the I P, the value from IPSR is copied into the PSR,
and the RSE.CFLE isset. Onanrfi if IFS.visset, then IFS.pfm is copied into CFM
and the register stack BOF is decremented by CFM .sof. The following 1A-32 or
|A-64 instruction is executed based on the new IP and PSR values.

7. Trapsare handled after execution is complete.
« If theinstruction just completed set the instruction pointer (1P) to an unimplemented
address, an Unimplemented Instruction Address trap is taken.

« If theinstruction just completed was an |1 A-64 floating-point instruction which raised
atrap, afloating-point trap is taken.

» For 1A-32 ingtructions, if Data Breakpoint traps are enabled and one or more data
breakpoint registers matched during execution of the instruction, a Data Breakpoint
trap is taken.

« If the PSR.Ip bitis 1, and an | A-64 branch lowers the privilege level, then a
Lower-Privilege Transfer trap is taken.

« If the PSR.tb bit is 1 and an | A-32 or 1A-64 branch occurred during execution, then a
Taken Branch trap occurs.

« If no other trap was taken and the PSR.ss bit is 1, then a Single Step trap occurs.

« If more than onetrap istriggered (such as Unimplemented Instruction Address trap,
Lower-Privilege Transfer trap, and Single Step trap) the highest priority trap is taken.
The I SR.code contains a bit vector with one bit set for each trap triggered.

A sequential execution model is presented in the preceding description. Implementations are free to
use avariety of performance techniques such as pipelined, speculative, or out-of-order execution
provided that, to the programmer, the illusion that instructions are executed sequentially is
preserved.

PAL-based Interruption Handling

The actions a processor takes and the state that it modifiesimmediately after a PAL-based
interruption is received are implementation dependent, unless otherwise indicated. For example, an
implementation may choose to support a set of shadow resources on a machine check abort which
enables recovery even when PSR.ic is 0. It may also choose to use the same resources as an
IVA-based interruption event, and hence only support recovery if PSR.icis 1 at the time of the
abort. On the other hand, a processor must set PSR.it to 0 and PSR.mc to 1 after a machine check
abort. See Chapter 11, “1A-64 Processor Abstraction Layer” for details on PAL-based interruptions.

IA-64 Interruptions

5.5 IVA-based Interruption Handling

IVVA-based interruption handling is implemented as afast context switch. On 1VA-based
interruptions, instruction and data translation is left unchanged, the endian modeis set to the system
default, and delivery of most PSR-controlled interruptions is disabled (including delivery of
asynchronous events such as external interrupts). The processor isresponsible for saving only a
minimal amount of state in the interruption resource registers prior to vectoring to the | A-64
software handler.

When an interruption occurs, the processor takes the following actions:

1

IA-64 Interruptions

If PSR.icisO:

» IPSR, IR, IIPA, and IFS.v are unchanged.

« Interruption-specific resources IFA, [IM, and IHA are unchanged.
If PSR.icis1:

* PSRissavedin IPSR. If PSR isin-flight, IPSR will get the most recent in-flight value of
PSR (i.e. PSR is serialized by the processor before it iswritten into IPSR). For |A-64
traps, the value written to IPSR.ri is the next instruction slot that would have been
executed if there had been no trap. For al other interruptions, the value written to |PSR.ri
istheinstruction slot on which the interruption occurred. For interruptions in the 1A-32
instruction set, IPSR.ri is set to 0.

 IPiswritteninto IIP. For faults and external interrupts, the saved IP isthe IP at which the
interruption occurred. For traps, the saved | P is the value after the execution of the |A-32
or |A-64 instruction which caused the trap. For branch-related traps, |1P iswritten with the
target of the branch; for all other traps, 1P iswritten with the address of the IA-64 bundle
or |A-32 instruction containing the next sequential instruction.

* |IPA receivesthe IP of the last successfully executed 1A-64 instruction. For |A-32
instructions, 11PA receivesthe IP of the faulting or trapping 1A-32 instruction.

e Theinterruption resources IFA, 1IM, IHA, and ITIR are written with information specific
to the particular fault, trap, or interruption taken. These registers serve as parameters to
each of the interruption vectors. The IFS valid bit (IFS.v) is cleared. All other bitsin the
IFS are undefined.

If PSR.icisin-flight:

* Interruption state may or may not be collected in I1P, IPSR, I1PA, ITIR, IFA, 1IM, and
IHA.

» Thevalue of IFS (including IFS.v) is undefined.

ISR bits are overwritten on all interruptions except for a Data Nested TLB fault. The |A-64
instruction slot which caused the interruption is saved in ISR.el. For |A-32 code, ISR.€ is
setto 0. If PSR.icis 0 or in-flight when the interruption occurs, ISR.ni isset to 1. Otherwise,
ISR.ni isset to 0. ISR.ni is always O for interruptions taken in 1A-32 code.

The defined bitsin the PSR are set to zero except as follows:
* PSR.up, PSR.mfl, PSR.mfh, PSR.pk, PSR.dt, PSR.rt, PSR.mc, and PSR.it are unchanged
for al interruptions.

» PSR.beis set to the value of the default endian bit (DCR.be). If DCR.beisin-flight at the
time of interruption, PSR.be may receive either the old value of DCR.be or the in-flight
value.

5-7

5.5.1

5-8

intel.

» PSR.ppisset to the value of the default privileged performance monitor bit (DCR.pp). If
DCR.ppisin-flight at the time of interruption, PSR.pp may receive either the old value of
DCR.pp or the in-flight value.

Since PSR.cpl is set to zero, the processor will execute at the most privileged level.
RSE.CFLE is set to zero.

I P gets the appropriate | VA vector for the interruption. If IVA isin-flight at the time of
interruption, IP receives either the vector specified by the old IVA value or the vector
specified by the in-flight value.

6. The processor performs an instruction serialization and | A-64 execution begins at the IP
obtained in step 5 above. The instruction serialization event ensures that all previous control
register changes and side effects due to such changes are visible to the first instruction of the
interruption handler.

Efficient Interruption Handling

A set of 16 banked registers are provided by the processor to assist in the efficient processing of
low-level 1A-64 interruptions and instruction emulation. These registers allow alow-level routine
to have immediate access to a small set of static registers without having to save and restore their
contents to memory at the start and end of each handler. The extra bank of registers existsin the
same name space as the normal registers, overlapping GR16 to GR31. Which set of physical
registers are accessed through GR16 to GR3L1 is determined by the PSR.bn bit. On an interruption
thisbit isforced to zero allowing access to the alternate set of 16 registers which can be used as
scratch space or to hold predetermined values. Software can return to the original set of 16 GRs by
setting the PSR.bn bit to one with bswinstruction. Therfi instruction may also restore the PSR.bn
bit to the value at the time of theinterruption which isheld in the IPSR. Eight additional registers
(KRO-KR7) can be used to hold latency critical information for a handler. These application
registers (KR0O-KR7) can be read but not written by non-privileged code.

When the processor handles an interruption event the current stack frame remains unchanged and
the IFS valid hit is cleared. The remaining contents of |FS are undefined. While the interruption
handler is running, the register stack engine (RSE) may spill/fill registers to/from the backing store
if eager RSE stores/loads are enabled. The RSE will not load or store registersin the current frame
(except asrequiredonabr.ret orrfi inorder to load the contents of the frame before continuing
execution). For most low-level interruptions the current frame will not be modified. High-
performance interruption handlers will not need to perform any register stack manipulation. For
example, aTLB miss handler does not need accessto any registersin theinterrupted frame. Anrfi
instruction after an interruption and before acover operation will aso leave the frame marker
unchanged (desired behavior for alow-level interruption handler). When an interruption handler
falls off the fast path it isrequired to issue acover instruction so that the interrupted frame can
become part of backing store. See “ Switch from Interrupted Context” on page 6-15.

It may be desirable to emulate a faulting instruction in the interruption handler and r f i back to the
next sequential instruction rather than resuming at the faulting instruction. Some | A-64 instructions
can be emulated without having to read the bundle from memory, through knowledge of the vector,
software convention, and information from the ISR (e.g. emulation of t pa). However, most 1A-64
instructions will require reading the bundle from memory and decoding the operation (e.g. an
unaligned load). To correctly emulate an unaligned load, the bundle is read from memory using the
valuein the I1P which contains the bundle address. The instruction within the bundle that caused

IA-64 Interruptions

5.5.2

the interruption is determined by the ISR.ei field. Once the operation is decoded and emulation
completes, the effect of the faulting instruction must be nullified when control is returned to the
point of the fault.

AnlA-64instruction is skipped by adjusting PSR.ri and possibly I1P prior to performingtherfi to
the interrupted bundle. Thisisdone by incrementing IPSR.ri by the number of slotsthisinstruction
occupies (usually 1). If the resulting IPSR.ri is 3, then reset IPSR.ri to 0 and advance |1P by one
bundle (16 bytes). Emulating X -unit instructions requires setting IPSR.ri to 0 and setting 1P to the
next bundle (X-unit instructions take up two instruction slots). IPSR, 1P, and IFS.pfm (if valid) will
berestored onanrfi tothe PSR, IR, and CFM registers.

Non-access Instructions and Interruptions

The non-access |A-64 instructions are: f c, | f et ch, pr obe, t pa, and t ak. These instructions
reference the TLB but do not directly read or write memory. They are distinguished from normal
load/store instructions since an operating system may wish to handle an interruption raised by a
non-access instruction differently.

All non-access 1A-64 instructions can cause interruptions (t pa, f c, pr obe, t ak only for non-TLB
related reasons). | SR.code will be set to indicate which non-access instruction caused the
interruption. See Table 5-1 for ISR field settings for non-access instructions.

Table 5-1. ISR Settings for Non-access Instructions

5.5.3

Instruction ISR Fields

code{3:0} na r w
t pa 0 1 0 0
fc 1 1 1 0
pr obe 2 1 Oor1? Oor1?
t ak 3 1 0 0
|fetch,|Ifetch.fault 4 1 1 0
probe. faul t 5 1 Oor1? Oor1?

a. Sets r or w or both to 1 depending on the pr obe form.

Single Stepping

The processor can single step through a series of instructions by enabling the single step PSR.ss hit.
Thisisaccomplished by setting the IPSR.ss bit and performing anr fi back to the instruction to be
single stepped over. When single stepping, the processor will execute one 1A-32 instruction or one
I A-64 instruction slot pointed to by the IPSR.ri field.

After single stepping | A-64 instruction slot 2 (IPSR.ri = 2) or when the templateisMLX and single
stepping instruction slot 1 (IPSR.ri = 1), the 1P will point to the next bundle, and IPSR.ri will point
toslot 0.

IA-64 Interruptions 5-9

5.5.4

5.5.5

Single Instruction Fault Suppression

Four bits, PSR.id, PSR.da, PSR.ia, and PSR.dd are defined to suppress faults for one |A-64
instruction or one mandatory RSE memory operation. The PSR.id bit is used to suppress the
instruction debug fault for one 1A-32 or |A-64 instruction. This bit will be cleared in the PSR after
the first successfully executed instruction. The PSR.iabit is used to suppress the Instruction Access
Bit fault for one | A-64 instruction. This bit will be cleared in the PSR after the first successfully
executed instruction. The PSR.da and PSR.dd bits are used to suppress Dirty-Bit, Data Access-Bit
and Data Debug faults for one | A-64 instruction, or for one mandatory RSE memory reference. The
PSR.da and PSR.dd bits will be cleared in the PSR after the first instruction is executed without
raising afault, or after the first mandatory RSE memory reference that does not raise a fault
completes. PSR.da, PSR.iaand PSR.dd are cleared before the first IA-32 instruction starts
execution after abr.iaorrfi instruction. Software may set the PSR.id, PSR.da, PSR.iaand
PSR.dd bitsinthe IPSR priortoanrfi . Therfi will restore the PSR from the IPSR. By using
these disable bits, software may step over a debug or dirty/access event and continue execution.

Deferral of IA-64 Speculative Load Faults

Specul ative and specul ative advanced | oads can defer fault handling by suppressing the speculative
memory reference, and by setting the deferred exception indicator (NaT bit or NaTVal) of the load
target register. Other effects of the instruction (such as post increment) are performed. Additionally,
software can suppress the memory reference of speculative and speculative advanced loads
independent of any exception.

Deferral isthe process of generating a deferred exception indicator and not performing the
exception processing at the time of its detection (and potentially never at all). Once a deferred
exception indicator is generated, it will propagate through all uses until the speculation is checked
by using either achk. s instruction, achk. a instruction (for speculative advanced loads), or a
non-speculative use. This causes the appropriate action to be invoked to deal with the exception.

Three different programming models are supported: no-recovery, recovery and always-defer. In
the no-recovery model, only fatal exceptional conditions are deferred - these are conditions which
cannot be resolved without either involving the program’s exception-handling code or terminating
the program. In the recovery model, performance may be increased by deferring additional
exceptional conditions. The recovery model is used only if the program provides additional
“recovery” codeto re-execute failed specul ative computations. When a specul ative load is executed
with PSR.ic equal to 1, and ITLB.ed equal to 0, the no-recovery model isin effect. When PSR.icis
landITLB.edis1, therecovery model isin effect. The always-defer model is supported for usein
system code which has PSR.ic equal to 0. In thismodel, all exceptional conditions which can be
deferred are deferred. This permits speculation in environments where faulting would be
unrecoverable.

Table 5-2. Programming Models

5-10

PSR.ic PSR.it ITLB.ed Model DCR-based Deferral
0 X X Always defer No
1 0 X No recovery No
1 1 0 No recovery No
1 1 1 Recovery Yes

IA-64 Interruptions

Speculative load exceptions are categorized into three groups:
1. Oneswhich alwaysraise afault.
2. Oneswhich always defer.

3. Oneswhich alwaysraise afault in the no-recovery model, but can defer based on the
speculative deferral control bitsin the DCR control register, in the recovery model.

Aborts, external interrupts, RSE or instruction-fetch-related faults that happen to occur on a
speculative load are always raised (since they are not related to the speculative load instruction).
Ilegal Operation faults and Disabled Floating-point Register faults that occur on a speculative load
are aways raised.

Processing of exception conditions for speculative and speculative advanced loads is done in three
stages: qualification, deferral and prioritization.

During the execution of aload instruction, multiple exception conditions may be detected
simultaneously. For non-speculative |oads these exception conditions are prioritized and only the
highest priority one raises afault. For speculative loads, however, some exception conditions may
be deferred. Asaresult, it is possible for lower priority exceptions, which are not also deferred, to
raise afault. For some exception conditions, though, other lower priority conditions are
meaningless, and are said to be qualified, or precluded. Exception qualification is described in
Table 5-3.

After exception conditions are detected and qualified, the remaining exception conditions are
checked for deferral. Deferral occurs after fault qualification and determines which memory access
exceptions raised by speculative loads are automatically deferred by hardware.

Deferral is controlled by PSR.ed, PSR.it, PSR.ic, the speculative deferral control bitsin the DCR,
the exception deferral bit of the code page’sinstruction TLB entry (ITLB.ed), and the memory
attribute of the referenced data page. The specul ative load and speculative advanced load exception
deferral conditions are as follows:

¢ When PSR.icis 0 and regardless of the state of DCR, and I TLB.ed bits (see Table 5-2), al
exception conditions related to the data reference are deferred.

* Regardliess of the state of DCR, PSR.it, PSR.ic, and ITLB.ed bits, Unimplemented Data
Address exception conditions and Data NaT Page Consumption exception conditions (caused
by references to NaTPages) are always deferred.

« When PSR.it and ITLB.ed are both 1, and the appropriate DCR hit is 1 for the exception, the
speculative load exception is deferred.

» When PSR.it and ITLB.ed are both 1, Unaligned Data Reference exception conditions are
deferred.

The conditions for deferral are given in Table 5-4. See also “ Default Control Register (DCR —
CRO0)” on page 3-13.

Table 5-3. Exception Qualification

Exception condition Precluded by concurrent exception condition

Register NaT Consumption none
(NaT’ed address)

Unimplemented Data Address | Register NaT Consumption

Alternate Data TLB Register NaT Consumption Unimplemented Data Address

VHPT data Register NaT Consumption Unimplemented Data Address

IA-64 Interruptions 5-11

5-12

Table 5-3.

Exception Qualification (Continued)

Exception condition

Precluded by concurrent exception condition

Data TLB

Register NaT Consumption

Unimplemented Data Address

Data Page Not Present

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB

Data NaT Page Consumption

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Miss

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Permission

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB

Alternate Data TLB
Data Page Not Present
Data Key Miss

Data Access Rights

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Access Bit

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Debug

Register NaT Consumption

Unimplemented Data Address

Unaligned Data Reference

Register NaT Consumption

Unimplemented Data Address

Unsupported Data Reference

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Table 5-4.

Qualified Exception Deferral

Qualified Exception Deferred if
Register NaT Consumption (NaT’ed address) always
Unimplemented Data Address always

Alternate Data TLB

IPSR.ic || (PSR.it && ITLB.ed && DCR.dm)

VHPT data

IPSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data TLB

IPSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data Page Not Present

IPSR.ic || (PSR.it && ITLB.ed && DCR.dp)

Data NaT Page Consumption

always

Data Key Miss

IPSR.ic || (PSR.it && ITLB.ed && DCR.dk)

Data Key Permission

IPSR.ic || (PSR.it && ITLB.ed && DCR.dx)

Data Access Rights

IPSR.ic || (PSR.it && ITLB.ed && DCR.dr)

Data Access Bit

IPSR.ic || (PSR.it && ITLB.ed && DCR.da)

Data Debug

IPSR.ic || (PSR.it && ITLB.ed && DCR.dd)

Unaligned Data Reference

IPSR.ic || (PSR.it && ITLB.ed)

Unsupported Data Reference

always

After checking for deferral, execution of a speculative load instruction proceeds as follows:

* When PSR.ed is 1, then adeferred exception indicator (NaT bit or NaTVal) iswritten to the
load target register, regardless of whether it has an exception or not and regardless of the state

of DCR, PSR.it, PSR.ic and the ITLB.ed hits.

IA-64 Interruptions

5.6

» If PSR.ed is0 and thereis at least one exception condition which is neither precluded nor
deferred, then afault is taken corresponding to the highest-priority exception condition which
is neither precluded nor deferred. Prioritization of non-deferred speculative load faults follows
the same interruption priorities as non-speculative instruction faults (Table 5-5 on page 5-14).
However, deferred speculative load faults do not take part in the prioritization. As aresult,
depending on DCR settings, a lower priority fault may be taken, even if ahigher priority
exception condition exists, but is deferred.

« If PSR.ed is 0 and there are exception conditions, but all are either precluded or deferred, then
adeferred exception indicator (NaT bit or NaTVal) iswritten to the load target register.

 If PSR.ed is 0, and there are no exception conditions, and if the memory attribute of the
referenced page is uncacheable or limited speculation, then a deferred exception indicator
(NaT bit or NaTVal) iswritten to the load target register. See “ Speculation Attributes’ on
page 4-30.

» Otherwise, the load executes normally.

If automatic hardware deferral is not enabled, software may still choose to defer exception
processing (for speculative loads) at the time of the fault. If the code page hasits ITLB.ed bit equal
to 1, then the operating system may choose to defer a non-fatal exception. It is expected that the
operating system will always defer fatal exceptions. To assist software in the deferral of non-fatal
or fatal exceptions, the system architecture provides three additional resources: I1SR.sp, ISR.ed, and
PSR.ed.

I SR.sp indicates whether the exception was the result of a speculative or specul ative advanced load.
The I SR.ed bit captures the code page ITLB.ed bit, and allows deferral of a non-fatal exception due
to a speculative load. If both the ISR.sp and I SR.ed bit are 1 on an interruption, then the operating

system may defer a non-fatal exception by using the PSR.ed bit to perform the action of hardware

deferral for one executed instruction. Software may use the same PSR.ed mechanism to defer fatal

speculative load exceptions.

Interruption Priorities

Table 5-5 contains a complete list of the architecture defined 1A-32 and 1A-64 interruptions,
grouped according to type (aborts, interrupts, faults and traps), instruction set, and listed in priority
order. Interruptions are delivered in priority order. If more than one instruction detects an
interruption within abundle, the interruption occurring in the lowest numbered instruction slot is
raised. Lower priority faults and traps are discarded. Lower priority interrupts are held pending.

The shaded interruptions are disabled if the instruction generating the interruption is predicated off.
All other interruptions are either “bundle related” (so the predicate bits do not affect them) or are
caused by instructions that cannot be predicated off. Incomplete Register frame (IR) faults 6
through 17 are identical in behavior to faults 43, 48 through 59 (exclusive of 57) except they are of
ahigher priority. IR faults 6 through 17 can only be caused by mandatory RSE load operations that
result frombr. ret, orrfi instructions, but not from| oadr s instructions (for details see

Section 6.6, “RSE Interruptions”).

The number in parenthesis after each vector nameis the page number where the vector is described
in detail.

IA-64 Interruptions 5-13

Table 5-5. Interruption Priorities
Type Inssettr. Interruption Name Vector Name éf;sgsza
Aborts 1 Machine Reset (RESET) PALE_RESET vector
52 | 2 Machine Check (ca) PALE_CHECK vector n/a
Interrupts 3 Initialization Interrupt (INIT) PALE_INIT vector
4 Platform Management Interrupt (PMI) PALE_PMI vector na
5 External Interrupt (INT) External Interrupt vector
Faults 6 IR Unimplemented Data Address fault General Exception vector
7 IR Data Nested TLB fault Data Nested TLB vector
8 IR Alternate Data TLB fault Alternate Data TLB vector
9 IR VHPT Data fault VHPT Translation vector
10 IR Data TLB fault Data TLB vector
11 IR Data Page Not Present fault Page Not Present vector n/a
IA-64 | 12 IR DataNaT Page Consumption fault NaT Consumption vector
13 IR Data Key Miss fault Data Key Miss vector
14 IR Data Key Permission fault Key Permission vector
15 IR Data Access Rights fault Data Access Rights vector
16 IR Data Access Bit fault Data Access-Bit vector
17 IR Data Debug fault Debug vector
Faults IA-32 | 18 1A-32 Instruction Breakpoint fault IA-32 Exception vector (Debug)
19 1A-32 Code Fetch fault? IA-32 Exception vector (GPFault)
20 Alternate Instruction TLB fault Alternate Instruction TLB vector
21 VHPT Instruction fault VHPT Translation vector
22 Instruction TLB fault Instruction TLB vector A
23 Instruction Page Not Present fault Page Not Present vector
IA-32, | 24 Instruction NaT Page Consumption fault | NaT Consumption vector
1A-64 - -
25 Instruction Key Miss fault Instruction Key Miss vector
26 Instruction Key Permission fault Key Permission vector
27 Instruction Access Rights fault Instruction Access Rights vector
28 Instruction Access Bit fault Instruction Access-Bit vector
IA-64 | 29 Instruction Debug fault Debug vector
30 IA-32 Instruction Length > 15 bytes IA-32 Exception vector (GPFault)
1A-32 31 1A-32 Invalid Opcode fault IA-32 Intercept vector (Instruction) =
32 IA-32 Instruction Intercept fault IA-32 Intercept vector (Instruction)
33 lllegal Operation fault General Exception vector
IA-64 | 34 lllegal Dependency fault General Exception vector
35 Break Instruction fault Break Instruction vector
36 Privileged Operation fault General Exception vector
5-14 IA-64 Interruptions

intgl.

Table 5-5. Interruption Priorities (Continued)
Type Igztr. Interruption Name Vector Name éIAa:SZa
37 Disabled Floating-point Register fault Disabled FP-Register vector
Iaiﬁ 38 Disabled Instruction Set Transition fault | General Exception vector 5
39 1A-32 Device Not Available fault IA-32 Exception vector (DNA)
IA-32 40 |A-32 FP Error fault® IA-32 Exception vector (FPError)
IA-82, | 41 Register NaT Consumption fault NaT Consumption vector ¢
1A-64
42 Reserved Register/Field fault General Exception vector
IA64 1 43 Unimplemented Data Address fault General Exception vector
44 Privileged Register fault General Exception vector
45 Speculative Operation fault Speculation vector
46 |1A-32 Stack Exception IA-32 Exception vector (StackFault)
A-32 1" 47 1A-32 General Protection Fault IA-32 Exception vector (GPFault)
Faults 48 Data Nested TLB fault Data Nested TLB vector
49 Alternate Data TLB fault® Alternate Data TLB vector
50 VHPT Data faultd VHPT Translation vector
51 Data TLB fault® Data TLB vector c
52 Data Page Not Present fault Page Not Present vector
A3, 53 Data NaT Page Consumption faultd NaT Consumption vector
IA.64 | 54 DataKey Miss fault® Data Key Miss vector
55 Data Key Permission fault® Key Permission vector
56 Data Access Rights faultd Data Access Rights vector
57 Data Dirty Bit fault Dirty-Bit vector
58 Data Access Bit fault Data Access-Bit vector
59 Data Debug fault? Debug vector
IA64 1 6o Unaligned Data Reference faultd Unaligned Reference vector
61 1A-32 Alignment Check fault IA-32 Exception vector (AlignmentCheck)
62 1A-32 Locked Data Reference fault IA-32 Intercept vector (Lock)
IA-32 | 63 IA-32 Segment Not Present fault IA-32 Exception vector (NotPresent)
64 1A-32 Divide by Zero fault IA-32 Exception vector (Divide) c
65 1A-32 Bound fault IA-32 Exception vector (Bound)
66 |A-32 Streaming SIMD Extension Numeric | |A-32 Exception vector (StreamSIMD)
Error fault
67 Unsupported Data Reference fault Unsupported Data Reference vector
st 68 Floating-point fault Floating-point Fault vector
Traps 69 Unimplemented Instruction Address trap | Lower-Privilege Transfer Trap vector
70 Floating-point trap Floating-point Trap vector
IA-6a | 71 Lower-Privilege Transfer trap Lower-Privilege Transfer Trap vector
72 Taken Branch trap Taken Branch Trap vector
73 Single Step trap Single Step Trap vector
IA-64 Interruptions 5-15

Table 5-5. Interruption Priorities (Continued)

Type

Insséttr. Interruption Name Vector Name é’IAa_sssi‘
74 1A-32 System Flag Intercept trap IA-32 Intercept vector (SystemFlag)
75 IA-32 Gate Intercept trap IA-32 Intercept vector (Gate)
76 1A-32 INTO trap IA-32 Exception vector (Overflow)
77 1A-32 Breakpoint (INT 3) trap IA-32 Exception vector (Debug) D
IA-32 | 78 |A-32 Software Interrupt (INT) trap IA-32 Interrupt vector (Vector#)
79 1A-32 Data Breakpoint trap IA-32 Exception vector (Debug)
80 1A-32 Taken Branch trap IA-32 Exception vector (Debug)
81 IA-32 Single Step trap 1A-32 Exception vector (Debug)

a. IA-32 Interruption Class, see Section 5.6.1 for details.
b. IA-32 Code Fetch faults include Code Segment Limit Violation and other Code Fetch checks defined in Section 6.2.3.3 of

Volume 1.

c. I1A-32 FP Error fault conditions detected on an IA-32 FP instruction are reported as a fault on the next IA-32 FP instruction that
performs an FWAIT operation.

d. If not deferred.

5.6.1

5-16

IA-32 Interruption Priorities and Classes

Table 5-5 establishes awell defined priority between |A-32 and 1A-64 faults, traps and interrupts.
However, | A-32 instruction set generated interruptions are divided into interruption classes. While
priority among these | A-32 interruption classesiswell defined by the table (except as noted below),
interruption priority within each |A-32 interruption class is implementati on-dependent and may
vary from processor to processor as defined below.

Class A - Faults from fetching an instruction. Priority of 1A-32 Instruction Breakpoint, |A-32 Code
Fetch (GPFault(0)), and Instruction TLB faults (Alternate Instruction TLB fault to Instruction
Access Bit fault) may vary based on instruction alignment and page boundariesin amodel specific
way. Faults are prioritized as defined in thetable if the instruction does not span avirtual page. If an
I A-32 instruction spansavirtual page, 1A-32 Code Fetch faults (I1A-32_Exception(GPFault)) dueto
code segment (CS) Limit violations can be raised above or below Instruction TLB faults as defined
bel ow:

« If the starting effective address of the |A-32 instruction exceeds the code segment limit, then
the A-32 Code Fetch fault has higher priority than any Instruction TLB faults. If the starting
effective address of the | A-32 instruction is within the code segment limit, then Instruction
TLB faults have higher priority for the starting effective address.

« If the IA-32 instruction spans a virtual page and the code segment limit is equal to the page
boundary, the |A-32 Code Fetch fault has higher priority than any Instruction TLB faults on
the second page. Otherwise if the code segment limit is greater than the page boundary, any
Instruction TLB faults on the second page have higher priority than the 1A-32 Code Fetch
fault.

Class B - Faults from decoding an instruction. Priority of |A-32 Instruction Length, 1A-32 Invalid
Opcode, and | A-32 Instruction Intercept, Disabled Floating Point Register, Disabled Instruction Set
Transition, and Device Not Available faults are model specific. If the |A-32 instruction spans a
virtual page, |A-32 Instruction Length >15 byte Faults (IA-32_Exception(GPFault)) can have
higher priority than Instruction TLB faults as defined below:

IA-64 Interruptions

5.7

* If the IA-32 prefix bytes on the first page are >= 15 bytes, an |A-32 Instruction >15 byte fault
(GPFault) istaken first regardless of any Instruction TLB faults on the second page.

« If the IA-32 prefix bytes on the first page are <15 bytes, Instruction TLB faults on the second
page may or may not have priority over any possible | A-32 Instruction Length fault.

Class C - Faults resulting from executing an instruction. Priority of faultsis model specific and can
vary across processor implementations. Most faults are related to data memory references, other
fault priorities can vary due to model-specific differences across processor implementations. The
memory fault priorities (I1A-32 Stack Exception through Data Access Bit fault) defined in the table
only apply to asingle | A-32 data memory reference that does not cross avirtual page. If an |A-32
instruction requires multiple data memory references or a single data memory reference crosses a
virtual page:

* If any given IA-32 instruction requires multiple data memory references, all possible faults are
raised on the first data memory reference before any faults are checked on subsequent data
memory references. Thisimplieslower priority faults on an earlier memory reference will be
raised before higher priority faults on alater data memory reference within asingle 1A-32
instruction. The order of datamemory referencesinitiated by an 1A-32 instruction is
implementation dependent and may vary from processor to processor. Software can not
assume all higher priority data memory faults are raised before all lower priority data memory
faults within a single 1A-32 instruction.

« If asingle |A-32 data memory reference crosses a virtual page, the processor checks for faults
inamodel specific order: Any faults present on one page are checked and reported before any
faults are checked and reported on the other page. Thisimplies that a single datareference that
crosses avirtual page can raise lower priority data memory faults on one page before higher
priority data memory faults are raised on the other page. For example, Data Key Miss faults
(lower priority) onthe first page could beraised beforeaData TLB Miss Fault (higher priority)
on the second page. Software can not assume all higher priority data memory faults are raised
before al lower priority data memory faults within asingle | A-32 instruction.

Class D — Traps on the current 1A-32 instruction. Trap conditions are reported concurrently on the
same exception vector or via atrap code specifying all concurrent traps.

IVA-based Interruption Vectors

Table 5-6 contains the processor’s interruption vector table (IVT). The base of the IVT isheld in
the IVA control register. The size of the IVT is 32KB. Thefirst 20 vectors are designed to provide
more code space by alowing 64 bundles per vector (16 bytes per bundle) for performance-critical
interruption handlers. The second 48 vectors provide 16 bundles per vector. Several vectors have
more than one interruption associated with them. Information provided in the ISR allows the
handler to distinguish which fault or trap caused the event.

Some vectors require additional software decoding to determine the cause of the interruption.
Additional information for this decoding is provided in the ISR.code field. See Chapter 8, “|A-64
Interruption Vector Descriptions’ for a complete specification of the information supplied in the
ISR for each of the vectors.

Note: PAL-based interruptions (RESET, MCA, INIT, and PMI) do not reference the IVT.

IA-64 Interruptions 5-17

5-18

Table 5-6. Interruption Vector Table (IVT)

0x6200
0x6300
0x6400
0x6500
0x6600
0x6700
0x6800

Offset Vector Name Interruption(s) Page
0x0000 | VHPT Translation vector 9, 21, 50 8-7

0x0400 | Instruction TLB vector 22 8-9

0x0800 | Data TLB vector 10,51 8-10
0x0c00 | Alternate Instruction TLB vector 20 8-11
0x1000 | Alternate Data TLB vector 8, 49 8-12
0x1400 | Data Nested TLB vector 7,48 8-13
0x1800 | Instruction Key Miss vector 25 8-14
0x1c00 | Data Key Miss vector 13,54 8-15
0x2000 | Dirty-Bit vector 57 8-16
0x2400 | Instruction Access-Bit vector 28 8-17
0x2800 | Data Access-Bit vector 16, 58 8-18
0x2c00 | Break Instruction vector 35 8-19
0x3000 | External Interrupt vector 5 8-20
0x3400

0x3800

0x3c00

0x4000

0x4400

0x4800

0x4c00

0x5000 | Page Not Present vector 11, 23, 52 8-21
0x5100 | Key Permission vector 14, 26, 55 8-22
0x5200 | Instruction Access Rights vector 27 8-23
0x5300 | Data Access Rights vector 15, 56 8-24
0x5400 | General Exception vector 6, 33, 34, 36, 38, 42, 43, 44 8-25
0x5500 | Disabled FP-Register vector 37 8-27
0x5600 | NaT Consumption vector 12, 24, 41, 53 8-28
0x5700 | Speculation vector 45 8-30
0x5900 | Debug vector 17, 29, 59 8-31
0x5a00 | Unaligned Reference vector 60 8-32
0x5b00 | Unsupported Data Reference vector 67 8-33
0x5c00 | Floating-point Fault vector 68 8-34
0x5d00 | Floating-point Trap vector 70 8-35
0x5e00 | Lower-Privilege Transfer Trap vector 69, 71 8-36
0x5f00 | Taken Branch Trap vector 72 8-37
0x6000 | Single Step Trap vector 73 8-38
0x6100

IA-64 Interruptions

intel.

Table 5-6. Interruption Vector Table (IVT) (Continued)

5.8

Offset Vector Name Interruption(s) Page

0x6900 | 1A-32 Exception vector 18, 19, 30, 39, 40, 46, 47, 61, 8-39
63, 64, 65, 76, 77, 79, 80, 81

0x6a00 | IA-32 Intercept vector 31, 32,62, 74,75 8-40

0x6b00 |1A-32 Interrupt vector 78 8-41

0x6¢00

0x7f00

Interrupts

This section describes the programming model of the | A-64 high performance interrupt
architecture. As shown in Figure 5-3, interrupts are managed by the processor and by one or more
intelligent external interrupt controllers or devices in the 1/0O subsystem. The processor is
responsible for queuing and masking interrupts, sending and receiving inter-processor interrupt
(IP1) messages, receiving interrupt messages from external interrupt controller(s), and managing
local interrupt sources. This document describes the processor’s interrupt control mechanism only;
for details on external interrupt controllers or 1/0O devices refer to platform documentation.

Figure 5-3. Interrupt Architecture Overview

< INIT
< PMI
Processor Processor Processor
< LINTO
[LINT1
A \ ~ IPI Messages . A f f
< \ A System Bus i e 1,
A [
' |l 1
- O Interrupt
Brl(:ge Messages
|1
< /0 Bus A >
I 1 A
A y ! 'y
Devices > External Interrupt Devices
Controller
000924

Asdefined in “Interruption Definitions” on page 5-1 there are three kinds of interrupts:
initialization interrupts (INITs), platform management interrupts (PMIs), and external interrupts
(INTs).

The processors and external interrupt controllers communicate over the processor’s system bus
with an implementation specific interrupt messaging protocol. Interrupts are generated by a number
of different interrupt sourcesin the system:

e External (I/0) devices - Interrupt messages from any external source can be directed to any
one processor by an external interrupt controller or by I/O devices capable of directly sending
interrupt messages. An interrupt message informs the processor that an interrupt request is
being made, and, in the case of PMIs and external interrupts, specifies a unique vector number

IA-64 Interruptions 5-19

5-20

intel.

for the interrupt. Interrupt messages are only issued on the “assertion edge” of an interrupt;
“deassertion” of an interrupt does not result in an interrupt message.

L ocally connected devices - These interrupts originate on the processor’s interrupt pins
(LINT, INIT, PMI), and are always directed to the local processor. The LINT pins can be
connected directly to an Intel 8259A-compatible external interrupt controller. The LINT pins
are programmable to be either edge-sensitive or level-sensitive, and for the kind of interrupt
that gets generated. If programmed to generate external interrupts, the vector number isa
programmed constant per LINT pin. Only the LINT pins connected to the processor can
directly generate level-sensitive interrupts (See “Edge and Level Sensitive Interrupts’ on
page 5-34). LINT pins cannot be programmed to generate level-sensitive PMIs or INITs. The
INIT and PMI pins generate their corresponding interrupts. For PMI pins a PMI vector O
interrupt is generated.

Internal processor interrupts- such asinterval timer, performance monitoring, and corrected
machine checks. These are aways directed to the local processor. A unique vector number can
be programmed for each source.

Other processors - A processor can interrupt any individual processor, including itself, by
sending an Inter-Processor Interrupt (IP1) message to a specific target processor. See
“Inter-processor Interrupt Messages’ on page 5-32.

The destination of an interrupt message is any one processor in the system, and is specified by a
unique processor identifier. A different destination can be specified for each interrupt. Thereisno
mechanism to “broadcast” asingle interrupt to all processors in the system.

The following terms are used in the interrupt definition:

The processor is said to receive an interrupt, if one of the processor’sinterrupt pinsis asserted,
the processor detected an interrupt message bus transaction containing the processor’s unique
identifier, or the processor detected an internal interrupt event.

After receiving an interrupt, the processor internally holds the interrupt pending. Theinterrupt
issaid to be pended when it isreceived and held by the processor.

For edge-sensitive interrupts, an external interrupt is held pending until the interrupt is
acquired by software at which point it issaid to bein-service. INITsand PMIs are held pending
until the corresponding PAL vector is entered and PAL firmware clears the pending indication
at which point they are said to be completed. For level-sensitive interrupts programmed
through the LINT pins, the interrupt is held pending as long as the pin is asserted. Deassertion
of alevel-sensitive interrupt removes the pending indication (see “Edge and Level Sensitive
Interrupts’ on page 5-34).

The processor maintains an individual interrupt pending indication for INITs. Since external
interrupts and PMIs are also signified by a unique interrupt vector number, the processor
maintains individual pending indications per vector. An occurrence of an interrupt on a vector
that is already marked as pending cannot be distinguished from previousinterrupts on the same
vector because the interrupts are pended in the same internal pending bit, and are therefore
treated as “the same” interrupt occurrence.

When interrupt delivery is enabled and the highest priority pending interrupt is unmasked (as
defined below), the processor accepts the pending interrupt, interrupts the control flow of the
processor and transfers control to the software interrupt handler.

An external interrupt is said to be in-service when software acquiresthe interrupt vector from
the processor by reading the IV R register (see “External Interrupt Vector Register (IVR —
CR65)” on page 5-26). The processor then removes the pending indication for the interrupt
vector. The processor maintains one in-service indicator for each unique vector number. Note
that there are no in-service indicators for INITsand PMIs.

IA-64 Interruptions

Once an external interrupt isin-service it remains so until software indicates service for that
externa interrupt is complete. By writing to the EOI register (see “End of External Interrupt
Register (EOI — CR67)” on page 5-28) software indicates that service for the highest-priority
in-service external interrupt is complete. The processor then removes the in-service indication
for the highest-priority external interrupt vector. INITs and PMIs are completed when PAL
firmware clears the corresponding pending indication.

The priority of interruptsis defined in Table 5-7. Entry A ishigher priority than interrupt B, if
entry A appears at ahigher location in the table than entry B. Interrupt priority is used to select
interrupts that require urgent service over less urgent interrupt requests.

Interrupt delivery is enabled when software programs the processor to accept any unmasked
interrupt. INITs delivery is enabled when PSR.mc is 0. PMIs delivery is enabled when PSR.ic
is 1. For |A-64 code execution, external interrupts delivery is enabled when PSR.i is 1.

Masking applies only to external interrupts. Unmasked interrupts are those external interrupts
of higher priority than the highest priority external interrupt vector currently in-service (if any)
and whose priority level is higher than the current priority masking level specified by the TPR
register (see “Task Priority Register (TPR — CR66)” on page 5-27). Masking conditions are
defined in Table 5-7. PSR.i does not affect masking of external interrupts.

Figure 5-4 shows how this terminology is applied to the handling of a PAL-based interrupt.
Similarly, Figure 5-5 shows the handing of a vectored external interrupt n. Both figures show the
different states and transitions interrupts go through.

Figure 5-4. PAL-based Interrupt States

INACTIVE

pending =0

CPU receives PAL firmware

interrupt completes
interrupt
pending =1
5.8.1 Interrupt Vectors and Priorities

Asindicated in Table 5-5 on page 5-14, INITs have higher priority than PMIs, which in turn have
higher priority than external interrupts. PMIs and external interrupts are further prioritized by
vector number.

IA-64 Interruptions

5-21

5-22

intel.

PMIs have a separate vector space from external interrupts. PMI vectors 0-3 can be used by
platform firmware. PMI vectors 4 and above are reserved for use by processor firmware. Assertion
of the processor’s PMI pin resultsin PMI vector number 0. PMI vector priorities are described in
Chapter 11, “I A-64 Processor Abstraction Layer”.

Figure 5-5. External Interrupt States

INACTIVE

pending[n] =0
in-service[n] = 0

CPU receives
interrupt n

OS completes interrup
n (writes to EOI)

level-sensitive interrupt
signal n is deasserted

IN-SERVICE
OS acquires interrupt n none pending

(reads IVR) pending[n] = 0
in-service[n] =1

PENDING

pending[n] =1
in-service[n] =0

level-sensitive interrup
signal n is deasserted

IN-SERVICE
one pending

pending[n] =1
in-service[n] =1

CPU receives

OS completes interru .
interrupt n

n (writes to EOI)

Each external interrupt (INT) in the system is distinguished from other external interrupts by a
unique vector number. There are 256 distinct vector numbers in the range 0 - 255. Vector numbers
1 and 3 through 14 are reserved for future use. Vector number 0 (ExtINT) is used to service Intel
8259A -compatible external interrupt controllers. Vector number 2 is used for the Non-Maskable
Interrupt (NMI). The remaining 240 external interrupt vector numbers (16 through 255) are
available for general operating system use. Table 5-7 summarizes the interrupt priority model.

NMI (vector 2) has higher interrupt priority than ExtINT (vector 0), which has higher priority than
external interrupt vectors 16 through 255.

External interrupts vectors 16 through 255 are divided into 15 interrupt priority classes. Sixteen
different interrupt vectors share asingle interrupt priority class, with class 1 being the lowest
priority and class 15 being the highest. For these external interrupts, higher number external
interrupts have priority over lower number external interrupts, including those within the same
priority class.

IA-64 Interruptions

Vector number 15 is used to indicate that the highest priority pending interrupt in the processor is at
apriority level that is currently masked or there are no pending external interrupts. Thisencodingis
referred to asa “spurious’ interrupt.

Table 5-7. Interrupt Priorities, Enabling and Masking

5.8.2

L Interrupt
Priority Priority Interrupt Vector Delivery Interrupt U.n'masked
Class Number Condition
Enabled
Highest n/a INIT n/a if PSR.mcis 0 |always
PMI 0.3 if PSR.icis 1 always
INT 2 (NM1) if PSR.iis 12 interrupt is higher priority than
all in-service external interrupts
0 (ExtINT) TPR.mmi is 0, and interrupt is
higher priority than all in-service
external interrupts
15 240..255
14 224..239
13 208..223
12 192..207 TPR.mmi is 0, and interrupt is
- higher priority than all in-service
11 176..191 external interrupts, and Vector
10 160..175 Number{7:4} > TPR.mic
9 144..159
8 128..143
7 112..127
6 96..111
5 80..95
4 64..79
3 48..63
2 32..47
Lowest 1 16..31

a. For IA-64 code execution external interrupt delivery is enabled if PSR.i is 1. For IA-32 code execution external
interrupt delivery is enabled if (PSR.i AND (ICFLAG.if OR EFLAG.if)) is true.

Interrupt Enabling and Masking

Upon receiving an interrupt, the processor holds the interrupt pending internally until interrupt
delivery isenabled and, in the case of external interrupts, the interrupt is unmasked. When all of the
interrupt enabling and unmasking conditions are satisfied (see Table 5-7), the processor accepts the
pending interrupt, interrupts the control flow of the processor, and transfers control to the External
Interrupt handler for external interrupts, or to PAL firmware for INITs and PMIs.

Note: The TPR controls the masking of external interrupts. TPR is described in “Task Priority
Register (TPR — CR66)” on page 5-27.

The processor provides nested interrupt priority support for external interrupt vectors 0, 2, and
16 through 255 by:

¢ Automatically masking external interrupts of equal or lower priority than the highest priority
external interrupt currently in-service. This raises the in-service external interrupt masking
level when each external interrupt begins service by an IVR read.

IA-64 Interruptions 5-23

5.8.2.1

5.8.2.2

5-24

intel.

» Associating EOI writeswith the highest priority in-service external interrupt, and removing the
in-service indication for this external interrupt. Thislowersthe in-service masking level to that
of the next highest priority currently in-service external interrupt (if any).

This mechanism allows software external interrupt handlers to be interrupted by higher priority
externa interrupts.

For example, assume software acquires an external interrupt vector 45 by reading IVR. During the
service of thisinterrupt other external interrupts can still be received and are pended. If software
sets PSR.i to a 1, pending external interrupts of equal or lower priority than 45 are masked.
However, a higher priority pending external interrupt can be accepted by the processor (provided it
is not masked by TPR.mmi or TPR.mic). Assuming external interrupt vector 80 is received by the
processor, the processor will accept the interrupt by interrupting the control flow of the processor.
During the service of thisinterrupt, external interrupts of equal or lower priority than vector 80 are
masked. When EQI isissued by software, the processor will remove the in-service indication for
external interrupt vector 80. External interrupt masking will then revert back to the next highest
priority in-service external interrupt, vector 45. External interrupt vectors of equal or lower priority
than vector 45 would remain masked until EOI isissued by software. The in-service indication for
vector 45 isthen removed by the writeto EOI.

Re-enabling External Interrupt Delivery

When emerging from code in which external interrupt delivery is disabled and interruption state
collection is turned off, the following minimal code sequence describes the architectural method
with which to re-enable interruption collection and enable external interrupts:

ssmPSRic /1 enable interruption collection
srlz.d // guarantee that interruption collection is enabl ed
ssm PSR i /1 enable external interrupts

The processor does not ensure that enabling external interrupts isimmediately observed after the
ssmPSR.i instruction. Software must perform a data serialization operation after ssmPSR.i to
ensure that external interrupt delivery is enabled prior to agiven point in program execution.

External Interrupt Sampling

Assuming that external interrupt delivery is currently disabled (PSR.i is 0), the following minimal
code sequence describes the architectural method with which to briefly open the external interrupt
window for external interrupt sampling (typically PSR.ic is 1 to enable interruption collection):

ssm PSR i
srlz.d // external interrupts may be sanpl ed anywhere here
rsmPSR |

The stop following thesr | z. d instruction in the above code sequenceis required to force the Reset
System Mask (r sm) instruction into a subsequent instruction group. The stop guarantees that the
srl z. d will open the external interrupt window for at least one cycle before the r sminstruction
closesit again.

IA-64 Interruptions

5.8.2.3

5.8.3

Note: Inthe above code sequence, the effect of disabling interrupts due to the r sminstruction is
observed on the next instruction following ther sm

Disabling of External Interrupt Delivery and rsm

When the current privilege level is zero, an r sminstruction whose mask includes PSR.i may cause
externa interrupt delivery to be disabled for an implementati on-dependent number of instructions,
even if the qualifying predicate for the r sminstruction is false. Architecturally, the extents of this
delivery disable “window” are defined as follows:

1. Externa interrupt delivery may be disabled for any instructionsin the sameinstruction
group as ther sm including those that precede the r smin sequential program order,
regardless of the value of the qualifying predicate of the r sminstruction.

2. If the qualifying predicate of the r smistrue, then external interrupt delivery is disabled
immediately following the r sminstruction.

3. If the qualifying predicate of ther smisfalse, then external interrupt delivery may be
disabled until the next data serialization operation that follows the r sminstruction.

The delivery disable window is guaranteed to be no larger than defined by the above criteria, but it
may be smaller, depending on the implementation.

When the current privilege level is non-zero, an r sminstruction whose mask includes PSR.i may
briefly disable external interrupt delivery, regardless of the value of the qualifying predicate of the
r sminstruction. However, the implementation guarantees that non-privileged code cannot lock out
externa interruptsindefinitely (e.g. viaan arbitrarily long sequence of r smPSR.i instructions with
zero-valued qualifying predicates).

External Interrupt Control Registers

Software interacts with external interrupts by reading and writing the external interrupt control
registers (CR64-81). These registers are summarized in Table 5-8, and are used to prioritize and
deliver external interrupts, and to assign external interrupt vectors for processor-internal interrupt
sources such asinterval timer, performance monitoring, and corrected machine check.

The external interrupt control registers can only be accessed at privilege level 0, otherwise a
Privileged Operation fault is raised.

Table 5-8. External Interrupt Control Registers

Register Name Description
CR64 LID Local ID
CR65 IVR External Interrupt Vector Register (read only)
CR66 TPR Task Priority Register
CR67 EOQI End Of External Interrupt
CR68 IRRO External Interrupt Request Register 0 (read only)
CR69 IRR1 External Interrupt Request Register 1 (read only)
CR70 IRR2 External Interrupt Request Register 2 (read only)
CR71 IRR3 External Interrupt Request Register 3 (read only)
CR72 ITV Interval Timer Vector
CR73 PMV Performance Monitoring Vector

IA-64 Interruptions 5-25

Table 5-8. External Interrupt Control Registers (Continued)

5.8.3.1

Register Name Description
CR74 CMCV Corrected Machine Check Vector
CR80 LRRO Local Redirection Register 0
CR81 LRR1 Local Redirection Register 1

Local ID (LID — CR64)

The LID register contains the processor’s local interrupt identifier. Two fields (id and eid) serve as
the processor’s physical name for all interrupt messages (external interrupts, INITs, and PMIs).
LID isloaded by firmware during platform initialization based on the processor’s physical location
within the system. Processors receiving an interrupt message on the system bus compare their
id/eid fields with the target address for the interrupt message. In case of a match, the processor
receives the interrupt and internally holds the interrupt pending.

LID isaread-write register. To ensure that future arriving interrupts see the updated L 1D value by a
given point in program execution, software must perform a data serialization operation after aLID
write and prior to that point. The Local ID fields are defined in Figure 5-6 and Table 5-9.

Figure 5-6. Local ID (LID — CR64)

63 32 31 24 23 16 15 0
32 8 8 16
Table 5-9. Local ID Fields
Field Bits Description
id/eid 31:16 The low order bits of id correspond to a unique, geographically significant address of

5.8.3.2

5-26

the processor on the local system bus. The high order bits of id and the eid field
correspond to a unique address of the local system bus within the entire system.
These fields are initialized by platform firmware to an implementation-dependent
value and should not be modified by software. The two fields corresponds to physical
address bits{19:4} of the inter-processor interrupt message.

External Interrupt Vector Register (IVR — CR65)

A read of VR returns the highest priority, pending, unmasked external interrupt vector,
independent of the value of PSR.i. The external interrupt vector isan 8-bit encoded number. If there
are no pending external interrupts or all external interrupts are currently masked, VR returns the
“spurious” interrupt indication (vector 15). VR fields are shown in Figure 5-7. See “Interrupt
Unmasked Condition” column in Table 5-7 on page 5-23 for masking conditions.

IVR reads also have two atomic side effects:

» Theinterrupt pending bit in IRR is cleared for the reported external interrupt vector.
Subsequent 1V R reads will not report the interrupt as pending unless a new interrupt was
pended for the specified interrupt vector.

» The processor marks the interrupt vector as being in-service and masks al pending external
interrupts with equal or lower priority until software writes the end-of-interrupt (EOI) register
for the in-service interrupt.

IA-64 Interruptions

To ensure | VR side effects are observed by a given point in program execution (e.g. before the next
IVR read, EOI write, or PSR.i write to enable external interrupt delivery), software must perform a
data serialization operation after an IVR read and prior to that point. To ensure that the reported
external interrupt vector is correctly masked before the next VR read, software must perform a
data serialization operation after a TPR or EOI write and prior to that VR read.

Software must be prepared to service any possible external interrupt if it reads VR, since IVR
reads are destructive and removes the highest priority pending external interrupt (if any).

IVR isaread-only register; writesto VR result in alllegal Operation fault.

IVR reads do not issue an external INTA cycle. If the interrupt vector must be acquired from an
Intel 8259A-compatible external interrupt controller, software should perform aload from the
INTA byte. See“Interrupt Acknowledge (INTA) Cycle” on page 5-34 for details.

Figure 5-7. External Interrupt Vector Register (IVR — CR65)

5.8.3.3

63 8 7 0
vector
56 8

Task Priority Register (TPR — CR66)

The processor’s Task Priority Register (TPR) provides the ability to create additional masking of
external interrupts based on a“priority class’. The 240 external interrupt vectors (16 - 255) are
divided into 15 priority classes of 16 numerically contiguous interrupt vectors each. The value
written in TPR.mic masks all external interrupts of equal or lower priority classes.

To ensure that new priority levels are established by agiven point in program execution (e.g. before
PSR.i is set to 1), software must perform a data serialization operation after a TPR write and prior

to that point. A data serialization operation must be performed after TPR iswritten and before IVR
isread to ensure that the reported I VR vector is correctly masked. The TPR fields are described in
Figure 5-8 and Table 5-10.

Figure 5-8. Task Priority Register (TPR — CR66)

63 17 16 15 8 7 4 3 0
ignored ‘mmi_ mic ignored
47 1 8 4 4

Table 5-10. Task Priority Register Fields

Field Bits Description

mic 7:4 Mask Interrupt Class: all external interrupt vectors of equal or lower priority classes
then the TPR.mic field are masked. For example, if mic field is 4, interrupt priority
classes 1, 2, 3, and 4 are masked. A TPR.mic value of 0 has no masking effect; a
value of 15 will mask all external interrupt vectors in the range 16 - 255. TPR.mic has
no effect on external interrupt vectors 0 and 2, INITs and PMIs. See “Processor
Interrupt Block” on page 5-31.

mmi 16 Mask Maskable Interrupts: When 1, masks all external interrupts other than NMI
(vector 2). When 0, external interrupt vectors 16 - 255, are masked by the TPR.mic
field.

IA-64 Interruptions 5-27

intel.

5.8.34 End of External Interrupt Register (EOI — CR67)

A write to the EOI (end-of-external interrupt) register, shown in Figure 5-9, indicates that software
has finished servicing the highest priority in-service external interrupt. The processor removesits
internal in-serviceindication for the highest priority currently in-service external interrupt vector.
Pending external interrupts are then masked by the next highest priority in-service external
interrupt (if any).

Writes to EOI affect the local processor only, and do not propagate to other processors or external
interrupt controllers. EOI is aread-write register. Reads return O.

Data associated with the EOI writes isignored.

Figure 5-9. End of External Interrupt Register (EOI — CR67)
63 0
ignored
64

To ensure that the previous in-service interrupt indication has been cleared by a given point in
program execution, software must perform a data serialization operation after an EOI write and
prior to that point. To ensure that the reported | VR vector is correctly masked before the next IVR
read, software must perform a data serialization operation after an EOI write and prior to that IVR
read.

5.8.35 External Interrupt Request Registers (IRR0-3 — CR68,69,70,71)

Four 64-bit read-only External Interrupt Regquest Registers (IRR0-3, see Figure 5-10) provide the
capability for software to determine the set of pending asynchronous externa interrupts. IRRO
contains vectors <63:0> where vector O isin bit position 0, IRR1 contains vectors <127:64>, IRR2
contains vectors <191:128>, and IRR3 contains vectors <255:192>. A hit inthe IRR,
corresponding to the pending interrupt vector number, is set when the processor receives an
external interrupt. The IRR bit is cleared when software reads the I VR and the vector number
corresponding to the IRR bit value isreturned in the IVR. The IRR bit is also cleared when a
level-sensitive external interrupt signal is deasserted, effectively removing the pending interrupt.

Since IRRO-3 are read-only registers, writes to these registersresult in lllegal Operation faults.
Figure 5-10. External Interrupt Request Register (IRR0-3 — CR68, 69, 70, 71)

63 16 15 3 2 1 0
IRRO | vectors < 63:16> | 00000000 | |0 |
IRR1 | vectors <127:64> |
IRR2 | vectors <191:128> |
IRR3 | vectors <255:192> |

64

5-28 IA-64 Interruptions

5.8.3.6 Interval Timer Vector (ITV — CR72)

ITV specifies the external interrupt vector number for Interval Timer Interrupts. To ensure that
subsequent interval timer interrupts reflect the new state of the ITV by agiven point in program
execution, software must perform a data serialization operation after an ITV write and prior to that
point. See Figure 5-11 and Table 5-11 for the definitions of the ITV fields.

Figure 5-11. Interval Timer Vector (ITV — CR72)

63 17 16 15 13 12 11 8 7 0
ignored ‘ m m vector
47 1 3 1 4

Table 5-11. Interval Timer Vector Fields

Field Bits Description
vector 7:0 External interrupt vector number to use when generating an Interval Timer interrupt.
Vector values can be 0, 2 or 16-255. All other vectors are ignored and reserved for future
use.
m 16 Mask: When 1, occurrences of Interval Timer interrupts are discarded and not pended.
When 0, occurrences of Interval Timer interrupts are pended.

5.8.3.7 Performance Monitoring Vector (PMV — CR73)

PMV specifies the external interrupt vector number for Performance Monitoring overflow
interrupts. To ensure that subsequent performance monitor interrupts reflect the new state of PMV
by a given point in program execution, software must perform a data serialization operation after a
PMV write and prior to that point. See Figure 5-12 and Table 5-12 for the definitions of the PMV

fields.
Figure 5-12. Performance Monitor Vector (PMV — CR73)
63 17 16 15 13 12 11 8 7 0
47 1 3 1 4 8

Table 5-12. Performance Monitor Vector Fields

Field Bits Description
vector 7:0 Vector number to use when generating a Performance Monitor interrupt. Vector values
can be 0, 2, or 16-255. All other vectors are ignored and reserved for future use.
m 16 Mask: When 1, occurrences of Performance Monitor interrupts are discarded and not
pended. When 0, occurrences of Performance Monitor interrupts are pended.

5.8.3.8 Corrected Machine Check Vector (CMCV — CR74)

CMCYV specifies the external interrupt vector number for Corrected Machine Checks. To ensure
that subsequent corrected machine check interrupts reflect the new state of CMCV by a given point
in program execution, software must perform a data serialization operation after aCMCV write and
prior to that point. See Figure 5-13 and Table 5-13 for the CMCV field definitions.

IA-64 Interruptions 5-29

Figure 5-13. Corrected Machine Check Vector (CMCV — CR74)
63 17 16 15 13 12 11 8 7 0

8

a7 1 3 1 4

Table 5-13. Corrected Machine Check Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Corrected Machine Check. Vector values can
be 0, 2, or 16 - 255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Corrected Machine Check interrupts are discarded and
not pended. When 0, occurrences of Corrected Machine Check interrupts are pended.

5.8.3.9 Local Redirection Registers (LRRO-1 — CR80,81)

Local Redirection Registers (LRRO-1) steer external signal based interrupts that are directly
connected to the local processor to a specific external interrupt vector. All processors support two
direct external interrupt pins. These external interrupt signals (pins) are referred to as Local
Interrupt O (LINTO) and Local Interrupt 1 (LINT1).

To ensure that subsequent interrupts from LINTO and LINT1 reflect the new state of LRR prior to a
given point in program execution, software must perform a data serialization operation after an
LRR write and prior to that point. The LRR fields are defined in Figure 5-14 and Table 5-14.

Figure 5-14. Local Redirection Register (LRR — CR80,81)
63 17 16 15 14 13 12 11 10 8 7 0

ignored ‘m‘tm.ipp‘ig. dm vector
47 111 1 11 3

Table 5-14. Local Redirection Register Fields

Field Bits Description

vector 7:0 External interrupt vector number to use when generating an interrupt for this entry. For
INT delivery mode, allowed vector values are 0, 2, or 16-255. All other vectors are
ignored and reserved for future use. For all other delivery modes this field is ignored.

dm 10:8 000 INT — pend an external interrupt for the vector number specified by the vector
field in LRR. Allowed vector values are 0, 2, or 16-255. All other vector numbers
are ignored and reserved for future use.

010 PMI — pend a Platform Management Interrupt Vector number O for system
firmware. The vector field is ignored.

100 NMI — pend a Non-Maskable Interrupt. This interrupt is pended at external
interrupt vector number 2. The vector field is ignored.

101 INIT — pend an Initialization Interrupt for system firmware. The vector field is
ignored.

111 ExtINT — pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 5-34. The vector
field is ignored.

ipp 13 Interrupt Pin Polarity — specifies the polarity of the interrupt signal. When 0, the signal is
active high. When 1, the signal is active low.

5-30 IA-64 Interruptions

intel.

Table 5-14. Local Redirection Register Fields (Continued)

5.8.4

Field Bits Description

tm 15 Trigger Mode — When 0, specifies edge sensitive interrupts. If the m field is 0, assertion
of the corresponding LINT pin pends an interrupt for the specified vector corresponding
to the dm field. The pending interrupt indication is cleared by software servicing the
interrupt. When 1, specifies level sensitive interrupts. If the m field is 0, assertion of the
corresponding LINT pin pends an external interrupt for the specified vector. Deassertion
of the corresponding LINT pin clears the pending interrupt indication. The processor has
undefined behavior if the dm and tm fields specify level sensitive PMIs or INITs.

m 16 Mask — When 1, edge or level occurrences of the local interrupt pins are discarded and
not pended. When 0, edge or level occurrences of local interrupt pins are pended.

Processor Interrupt Block

Inter-Processor Interrupt (1PI) messages, Interrupt Acknowledge (INTA) cycles, and External Task
Priority (XTP) cycles on the processor system bus are initiated by software by accessing a special
physical memory range known as the “ Processor Interrupt Block”. Figure 5-15 defines its memory
layout. The entire 2 MByte Processor Interrupt Block isrelocatable by a PAL firmware call and
must be aligned on a 2 M Byte boundary; by default, the block islocated at physical address
(0x0000 0000 FEEO 0000.

Figure 5-15. Processor Interrupt Block Memory Layout

+OX1FFFFF A
Ignored, reserved for futureuse |....
XTP | +0x1E0008
Ignored, reserved for future use T
INTA | +Ox1E0000
Ignored, reserved for future use +0x100000 %
....................... 1)
IPI +0x000020 c%
IPI +0x000018 "
Pl +0x000010 %
IPI +0x000008 s
IPI +0x000000 —
ib_base

The Inter-Processor Interrupt region occupies the lower half of the Processor Interrupt Block; by
default its physical address range is 0x0000 0000 FEEO 0000 through 0x0000 0000 FEEF FFFF. A
processor generates | nter-Processor Interrupts by performing an aligned 8-byte store to this
memory region.

The Processor Interrupt Block does not support all forms of memory operations. Unsupported
memory accesses result in undefined processor operation.

» When targeted at the inter-processor interrupt delivery region (lower half of the Processor
Interrupt Block), the following memory operations are undefined: instruction fetch, RSE

IA-64 Interruptions 5-31

intel.

accesses, or memory read references (only writes are permitted), references other than aligned
8-byte accesses, and references through any memory attribute other than UC.

« When targeted at the upper half of the Processor Interrupt Block, the following memory
operations are undefined: instruction fetches, references other than 1-byte accesses, and
references through any memory attribute other than UC.

5.84.1 Inter-processor Interrupt Messages

A processor can interrupt any individual processor, including itself, by issuing an inter-processor
interrupt message (1PI). A processor generates an |PI by storing an 8-byte interrupt command to an
8-byte aligned address in the interrupt delivery region of the Processor Interrupt Block defined in
“Processor Interrupt Block” on page 5-31. (If the addressis not 8-byte aligned, the processor must
either generate an Unaligned Data Reference Fault, see Section 4.5, “Memory Datum Alignment
and Atomicity” on page 4-38, or have undefined behavior.) The address being stored to designates
the target processor to receive the interrupt. The store address and data format of the inter-processor
interrupt message are defined in Figure 5-16 and Figure 5-17. The datafields are defined in

Table 5-16. The address processor identifier fields specify the target processor and are defined in
Table 5-15.

Figure 5-16. Address Format for Inter-processor Interrupt Messages

63 20 19 12 11 4 3 2 0
ib_base id eid ir| o |
8 8 1 3

Figure 5-17. Data Format for Inter-processor Interrupt Messages

63 11 10 8 7 0
ignored, reserved for future use ‘ dm ‘ vector
53 3 8

Table 5-15. Address Fields for Inter-processor Interrupt Messages

Field Bits Description

ir 3 Interrupt Redirection bit. The processor propagates the Interrupt Redirection bit
along with the Inter-Processor Interrupt (IPI) message into the external system.
When this bit is 0, the external system must send the IPI to the processor specified
by the id/eid fields.

When this bit is 1 on platforms that support interrupt redirection, the external system
may perform interrupt load balancing and send the IPI to a processor with the lowest
External Task Priority level. Alternatively, the external system may ignore the
Interrupt Redirection bit and send the IPl message to the processor specified by the
eid/id fields. Software must always program a valid eid/id field since the external
system may or may not redirect the interrupt. If the eid/id field is not programmed
with the address of a valid destination processor the IPI message may be lost. See
“External Task Priority (XTP) Cycle” on page 5-34 for details on External Task
Priority levels.

On platforms that do not support interrupt redirection, software must not set the
Interrupt Redirection bit to 1. Doing so will result in undefined behavior.

Software can consult system specific firmware to determine if the Interrupt
Redirection feature is supported by the external system.

5-32 IA-64 Interruptions

intel.

Table 5-15. Address Fields for Inter-processor Interrupt Messages (Continued)

Table 5-16. Data Fields for Inter-processor Interrupt Messages

5.8.4.2

Field Bits Description
id/eid 19:4 Specify the target processor. See Table 5-9 on page 5-26 for a definition of these
fields.
ib_base 63:20 Physical Base address of Processor Interrupt Block. This is a PAL relocatable

physical address. The default is 0x0000 0000 FEE. See “Processor Interrupt Block”
on page 5-31. Based on the processor model some of the high order physical
address bits may be reserved.

Field Bits Description

vector 7:0 Vector number for the interrupt. For INT delivery, allowed vector values are 0, 2, or
16-255. All other vectors are ignored and reserved for future use. For PMI delivery,
allowed PMI vector values are 0-3. All other PMI vector values are reserved for use by
processor firmware.

dm 10:8 000 INT — pend an external interrupt for the specified vector to the processor listed
in the destination. Allowed vector values are 0, 2, or 16-255. All other vector
numbers are ignored and reserved for future use.

010 PMI - pend a PMI interrupt for the specified vector to the processor listed in the
destination. Allowed PMI vector values are 0-3. All other PMI vector values are
reserved for use by processor firmware.

100 NMI — pend an external interrupt as an NMI (vector 2) to the processor listed in
the destination. The vector field is ignored.

101 INIT — pend an Initialization Interrupt for platform firmware on the processor
listed in the destination. The vector field is ignored.

111 ExtINT — pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 5-34. The vector
number field is ignored.

ignored 63:11 Ignored, reserved for future use

Interrupt and IPI1 Ordering

Interrupt messages from external device(s), or external interrupts routed to the processor’s LINT
pins, may arrive at one or more processors and become pending in any order. No ordering is
enforced by the processor or the platform.

Asobserved by areceiving processor, |PIs emitted from the sameissuing processor may be pended
in any order, even when the receiving processor and the issuing processor are the same.

Asobserved by areceiving processor, |Pls are pended after all prior loads and stores emitted by the
same issuing processor arevisibleif and only if the IPI isissued withast . rel (or proceeded by an
nf), even when the receiving processor and the issuing processor are the same. For all other cases,
no ordering isimplied between IPI transactions and prior cacheable or uncached memory
references.

As observed by areceiving processor, no ordering isimplied between | Pls and subsequent
|oads/stores from the same issuing processor, even when the receiving processor and the issuing
processor are the same. Subsequent loads or stores may become visible before an IPI is seen as

IA-64 Interruptions 5-33

5.8.4.3

5.8.4.4

5.8.5

5-34

intel.

pending. Data or instruction serialization operations, memory fences (nf or nf . a), or st.rel do
not ensure an IPI is pending at the target processor (including self) by a given point in program
execution on the local processor.

Interrupt Acknowledge (INTA) Cycle

Intel 8259A-compatible external interrupt controllers can not issue interrupt messages and
therefore do not specify an external interrupt vector number when theinterrupt request is generated.
When accepting an external interrupt, software must inspect the vector number supplied by the VR
register. If the vector matches the vector number assigned to the external controller (can be ExtINT,
or any other vector number based on software convention), software must acquire the actual
external interrupt vector number from the external interrupt controller by issuing a 1-byte load from
the INTA Byte.

The INTA Byteislocated within the upper half of the Processor Interrupt Block, at offset
0x1E0000 from the base. A single byteload from the INTA address causes the processor to emit the
INTA cycle on the processor system bus. An Intel 8259A-compatible external interrupt controller
must respond with the actual interrupt vector number as the data to be loaded. If two INTA cycles
arerequired by the external interrupt controller, the platform must provide this functionality.

Software must issue an EOI to the local processor, to clear the interrupt in-service indication for the
vector associated with the external interrupt controller.

External Task Priority (XTP) Cycle

Some model-specific system configurations support an External Task Priority Register (XTPR) per
processor in external buslogic. A processor’s X TPR can be modified by storing one byte of datato
the processor’s X TP Byte address. This generates a special bus transaction required to change the
processor’s X TPR within the system. Please refer to system specific documentation for XTPR bit
format and field definitions. The processor does not interpret any data stored to the XTP Byte
address and all data bits are passed to the external system unmodified.

XTPR iswritten by operating system code to notify the system that the processor’s current task
priority has been changed. Based on this task priority information, system implementations can
steer interrupt messages from the 1/0 subsystems to the processors that have registered the lowest
task priority levels. The XTPR register is a system performance “ hint”, and need not be updated by
operating system code nor be implemented in al system configurations. If the system does not
implement the XTPR, it must still accept a processor’s X TP cycle and discard it. Operating system
code can issue XTPR updates regardless of external system support.

Edge and Level Sensitive Interrupts

The processor’s LINT pins directly support edge and level sensitive interrupts, however al other
interrupt sources are edge sensitive. A single external interrupt messagesis issued only on the
assertion of an interrupt by external interrupt controllers or devices, deassertion of an external
interrupt sends no interrupt message to the processor. Since the processor removes the pending
interrupt when the interrupt is serviced, the processor guarantees exactly-one interrupt acceptance
for each external interrupt message. By definition external interrupt messages are edge sensitive.

IA-64 Interruptions

Level sensitive external interrupts can be supported using edge sensitive interrupt messages as
follows:

 Software services the external interrupt generated by an edge interrupt message.

 Software removes the external interrupt request from the requesting device, the device should
then deassert its interrupt request line.

» Toavoid spurious external interrupts, it is highly recommended that software issue a dummy
read from the device to ensure that the interrupt request has been actually been removed before
the interrupt is resampled in the next step.

 Software issues acommand to the external interrupt controller to resample the interrupt
(typically an external interrupt controller end-of-interrupt command). The external interrupt
controller must issue another interrupt message back to the processor if serviceis still required
by the processor for a given vector number. For example, if there are other devices still
requiring service that are attached to the same level sensitive interrupt request line.

IA-64 Interruptions 5-35

5-36

IA-64 Interruptions

intel.

|A-64

Register Stack Engine 6

6.1

The | A-64 register stack engine (RSE) moves registers between the register stack and the backing
store in memory without explicit program intervention. The RSE operates concurrently with the
processor and can take advantage of unused memory bandwidth to dynamically issue register spill
and fill operations. In this manner, the latency of register spill/fill operations can be overlapped
with useful program work. The basic principles of the register stack are discussed in Section 4.1 in
Volume 1. This chapter presents the internal state, the programming model and the interruption
behavior of the register stack engine.

RSE and Backing Store Overview

The register stack frames are mapped onto a set of physical registers which operate as a circular
buffer containing the most recently created frames. The RSE spills and fillsthese physical registers
to/from a backing store in memory. The RSE moves registers between the physical register stack
and the backing store without explicit program intervention. Asindicated in Figure 6-1, the RSE
operates on the physical stacked registers outside of the currently active frame (as defined by
CFM). These registers contain the frames of the parent procedures of the current procedure.

Asshown in Figure 6-1, the backing store is organized as a stack in memory that grows from lower
to higher addresses. The Backing Store Pointer (BSP) application register contains the address of
thefirst (lowest) memory location reserved for the current frame (i.e. the location at which GR32 of
the current frame will be spilled). RSE spill/fill activity occurs at addresses below what is contained
in the BSP since the RSE spills/fills the frames of the current procedure’s parents. The BSPSTORE
application register contains the address at which the next RSE spill will occur. The address register
which corresponds to the next RSE fill operation, the BSP load pointer, is not architecturally
visible. The addresses contained in BSP and BSPSTORE are always aligned to an 8-byte boundary.
The backing store contains the local area of each frame. The output areais not spilled to the
backing store (unless it later becomes part of acallee’slocal area). Within each stack frame,
lower-addressed registers are stored at lower memory addresses. RSE spills of NaTed stacked
general registers are subject to the same memory update constraints as software spills(st 8. spi | ')
of NaTed static general registers (see Section 4.4.4.6 "Register Spill and Fill" in Volume 1).

The RSE aso spillgffills the NaT bits corresponding to the stacked registers. The NaT bits
corresponding to the static subset must be spilled/filled as necessary by software. The NaT bits are
the 65th bit of each general register. The NaT bits for the stacked subset are spilled/filled in groups
of 63 corresponding to 63 consecutive physical stacked registers. When the RSE spills aregister to
the backing store the corresponding NaT bit is copied to the RSE NaT collection (RNAT)
application register. Whenever bits 8:3 of BSPSTORE are all ones, the RSE stores RNAT to the
backing store. As shown in Figure 6-2, thisresultsin abacking store memory imagein which every
63 register values are followed by a collection of NaT bits. Bit 0 of the NaT collection corresponds
to the first (lowest addressed) of the 63 register values; bit 62 corresponds to the 63rd register
value. Bit 63 of the NaT collection is aways written as zero. When the RSE fills a stacked register
from the backing store it also fills the register’s NaT bit. Whenever bits 8:3 of the RSE backing
store load pointer are al ones, the RSE reloads a NaT collection from the backing store. Bit 63 of
the NaT collection isignored when read from the backing store.

IA-64 Register Stack Engine 6-1

6-2

Figure 6-1. Relationship between Physical Registers and Backing Store

_——

/ \

Unallocated Currently
Active Frame

sof, procC P —

T

Backing Store

| procA calls procB calls procC

Addresses 1

soly procB B RSE procB
- Loads / Stores
sol, procA ‘ procA
Unallocated
. procA’s
! , Ancestors
return /l Higher
| - Register |

Higher
Memory
Addresses

—— AR[BSP]

<— AR[BSPSTORE]

000925

Figure 6-2. Backing Store Memory Format

8 Bytes
SPSTORE{10:3} T
11 000000
10 111111 NaT Collection
10 111110
63 Stacked
General Registers
10 000000
01111111 NaT Collection
01111110
63 Stacked
General Registers
01 000000
00111111 -

000926

IA-64 Register Stack Engine

6.2

The RSE operates concurrently and asynchronously with respect to instruction execution by taking
advantage of unused memory bandwidth to dynamically perform register spill and fill operations.
The algorithm employed by the RSE to determine whether and when to spill/fill isimplementation
dependent. Software can not depend on the spill/fill algorithm. To ensure that the processor and
RSE activities do not interfere with each other, software should not access stacked registers outside
of the current stack frame. The architecture guarantees register stack integrity by faulting on writes
to out-of-frame registers. Reads from out-of-frame registers may interact with RSE operations and
return undefined data values. However, out-of-frame reads are required to propagate NaT bits.

The operation of the RSE is controlled by the Register Stack Configuration (RSC) application
register. Activity between the processor and the RSE is synchronized only when al | oc, f | ushr s,
l oadrs, br.ret,orrfi instructions actually require registers to be spilled or filled, or when
software explicitly requests RSE synchronization by executing amov to/from RSC, BSPSTORE or
RNAT application register instruction.

RSE Internal State

Table 6-1 describes architectural state that is maintained by the register stack engine. The RSE
internal state elements described here are not directly exposed to the programmer as architecturally
visible registers. Asaconsequence, RSE internal state does not need to be preserved across context
switches or interruptions. Instead, it is modified as the side-effect of register stack-related
instructions. To describe the effects of these instructions a compl ete definition of the RSE internal
state is essential. To distinguish them from architecturally visible resources, all RSE internal state
elements are prefixed with “RSE”. Other RSE related resources are architecturally visible and are
exposed to software as application registers: RSC, BSP, BSPSTORE, and RNAT.

Table 6-1. RSE Internal State

Name Description Corresponds to:

RSE.N_STACKED_PHYS Number of Stacked Physical registers:
Implementation dependent size of the stacked
physical register file.

RSE.BOF Bottom-of-frame register number: Physical register AR[BSP]
number of GR32.
RSE.StoreReg RSE Store Register number: Physical register number | ARIBSPSTORE]

of next register to be stored by RSE.

RSE.LoadReg RSE Load Register number: Physical register number | RSE.BspLoad
one greater than the next register to load (modulo the
number of stacked physical registers).

RSE.BspLoad Backing Store Pointer for memory loads: 64-bit RSE.BspLoad
Backing Store Address 8 bytes greater than the next
address to be loaded by the RSE.

RSE.RNATBitIndex RSE NaT Collection Bit Index: 6-bit wide RNAT AR[BSPSTORE]{8:3}
Collection Bit Index (defines which RNAT collection bit
gets updated)

RSE.CFLE RSE Current FrameLoad Enable: Control bit that
permits the RSE to load registers in the current frame
afterabr.ret orrfi.

RSE.ndirty Number of dirty registers on the register stack
RSE.ndirty_words Number of dirty words on the register stack plus AR[BSP] -
corresponding number of NaT collection registers AR[BSPSTORE]

IA-64 Register Stack Engine 6-3

6.3

6-4

Register Stack Partitions

The processor’s physical register file provides at |east 96 stacked registers. The actual number of
stacked registers (RSE.N_STACKED_PHY'S) isimplementation dependent and must be an even
multiple of 16. Figure 6-3 illustrates the circular nature of the physical register file, and shows the
correspondence of the registersto the backing store. Figure 6-3 also shows the four partitions of the
stacked register file:
Clean partition (lightly-shaded): registers that contain values from parent procedure frames.
The registers in this partition have been successfully spilled to the backing store by the RSE
and their contents have not been modified since they were written to the backing store.

Dirty partition (medium-shaded): registers that contain values from parent procedure frames.
Theregistersin this partition have not yet been spilled to the backing store by the RSE. The
number of registers contained in the dirty partition (distance between RSE.StoreReg and
RSE.BOF) isreferred to as RSE.ndirty.

Current frame (shaded dark): stacked registers allocated for computation. The position of the
current frame in the physical stacked register file is defined by the Bottom-of-frame register
(RSE.BOF). The number of registersin the current frame is defined by the size of frame field
in the current frame marker (CFM .sof).

Invalid partition (diagonally striped): registers outside the current frame that do not contain
values from parent procedure frames. They are immediately available for alocation into the
current frame or for RSE load operations.

The boundaries between the four register stack partitions are defined by the current frame marker
(CFM) and three physical register numbers: aload, store and bottom-of-frame register number. As
described in Table 6-1 each of these physical register numbers has a corresponding 64-bit backing
store memory address pointer. (For example, AR[BSP] always contains the address where GR[32]
of the current frame will be stored.)

Figure 6-3 aso shows the effects of various instructions on the partition boundaries. RSE loads use
invalid registers. RSE stores use dirty registers. Eager RSE loads and stores grow the clean
partition. A br.cal |, brl.call, or cover instruction can increase the bottom-of-frame pointer
(RSE.BOF) which moves registers from the current frame to the dirty partition. An al | oc may
shrink or grow the current frame by updating CFM.sof. A br . ret or rfi instruction may shrink or
grow the current frame by updating both the bottom-of-frame pointer (RSE.BOF) and CFM.sof.

IA-64 Register Stack Engine

intel.

Figure 6-3. Four Partitions of the Register Stack

6.4

Invalid

Physical Stacked Registers

RSE.LoadReg RSE.StoreReg RSE.BOF
CFM.sof

Clean Current

- — > -
RSE Load: : RSE Store return, rfi:call, cover return, rfi, alloc
'y ¢y ¢ ! [
A 4 A
Higher Addresses
RSE.BspLoad AR[BSPSTORE] AR[BSP]

Backing Store

000927,

RSE Operation

Theregister stack backing store is organized as a stack in memory that grows from lower addresses
towards higher addresses. The top of the backing store stack is defined by the Backing Store
Pointer (BSP) application register, which points to the first memory location reserved for the
current frame. The RSE load and store activities take place at lower addresses, defined relative to
BSP by the sizes of the clean and dirty partitions. Although the stack is conceptually infinite in both
directions, the effective base of the stack is expected to be the first memory location of the first
page alocated to the backing store.

To allow the highest possible degree of concurrent execution, the processor and the RSE operate
independently of each other during normal program execution. The RSE distinguishes between
mandatory and eager |oad/store operations. Mandatory |oad/store operations occur as the result of
alloc,flushrs,loadrs, br.ret orrfi instructions. Eager operations occur when the RSE is
speculatively working ahead of program execution, and it is not known whether this register
spill/fill is actually required by the program.

When the RSE works in the background, it issues eager RSE spill and fill operations to extend the
size of the clean partition in both directions—by decreasing the RSE load pointer and loading
values from the backing store into invalid registers (eager RSE load), and by saving dirty registers
to the backing store and increasing the RSE store pointer (eager RSE store). Allocation of a
sufficiently largeframe (using al | oc) or execution of af | ushr s instruction may cause the RSE to
suspend program execution and issue mandatory RSE stores until the required number of registers
have been spilled to the backing store. Similarly abr. ret orrfi back to asufficiently large frame
or execution of al oadr s instruction may cause the RSE to suspend program execution and issue

IA-64 Register Stack Engine 6-5

intel.

mandatory RSE |oads until the required number of registers have been restored from the backing
store. The RSE only operates in the foreground and suspends program execution whenever forward
progress of the program actually requires registers to be spilled or filled.

Table 6-2 describes the RSE operation instructions and state modifications.

Table 6-2. RSE Operation Instructions and State Modification

6.5

6.5.1

Instruction
Affected State ~ all ‘;C) . 2 bri. call? . a rfi
rl—elar .opri, i, r.call® brl.cal r.ret when CR[IFSLv = 1
AR[BSP]{63:3} |unchanged AR[BSP}{63:3} + AR[BSP}{63:3} — AR[BSP]{63:3} —
CFM.sol + (AR[BSP]{8:3} | AR[PFS].pfm.sol — CR[IFS].ifm.sof —
+ CFM.so0l)/63 (62-AR[BSP]{8:3}+ | (62-AR[BSP}{8:3}+
AR[PFS].pfm.sol)/63 | CR[IFS].ifm.sof)/63
AR[PFS] unchanged AR[PFS].pfm = CFM unchanged unchanged
AR[PFS].pec = AR[EC]
AR[PFS].ppl = PSR.cpl
GRIr 1] AR[PFS] N/A N/A N/A
CFM CFM.sof = CFM.sof = CFM.sol AR[PFS].pfm CRJIFS].ifm
i+l +o CFM.sol =0 orb
CFM.sol =i+l |CFM.sor=0 CFM.sof =0
CFM.sor=r1 >> | CFM.rrb.gr =0 CFM.sol =0
3 CFM.rrb.fr=0 CFM.sor =0
CFM.rrb.pr=0 CFM.rrb.gr=0
CFM.rrb.fr=0
CFM.rrb.pr=0

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete
Register Frame” on page 6-13.

b. Normal br . r et instructions restore CFM with AR[PFS].pfm. However, if a bad PFS value is read by the
br . r et instruction, all CFM fields are set to zero. See “Bad PFS used by Branch Return” on page 6-11.

RSE Control

The RSE can be controlled at all privilege levels by means of threeinstructions (cover, f | ushrs,
and | oadr s) and by accessing four application registers (mov to/from RSC, BSP, BSPSTORE and
RNAT). This section first presents each of the RSE application registers, and then discusses the
three RSE control instructions.

Register Stack Configuration Register

The layout of the Register Stack Configuration application register (RSC) is defined in Section
3.1.8.2 of Volume 1. This section describes the semantics of the mode, the privilege level and the
byte order fields of the RSC. The loadrsfield is described as part of thel oadr s instruction in
Section 6.5.4.

IA-64 Register Stack Engine

RSE Mode: Two mode bitsin the RSC register determine when the RSE generates register spill or
fill operations. When both mode bits are zero (enforced lazy mode) the RSE issues only mandatory
loads and stores (whenanal | oc, br.ret, flushrs orrfi instruction requires registersto be
spilled or filled). Bit 0 of the RSC.mode field enables eager RSE stores and bit 1 enables eager RSE
loads. Table 6-3 defines all four possible RSE modes.

Table 6-3. RSE Modes (RSC.mode)

Mode RSE Loads RSE Stores RSC.mode
Enforced Lazy Mandatory only Mandatory only 00
Store Intensive Mandatory only Eager and Mandatory 01
Load Intensive Eager and Mandatory Mandatory only 10
Eager Eager and Mandatory Eager and Mandatory 11

The algorithm that decides whether and when to speculatively perform eager register spill or fill
operations is implementation dependent. Software may not make any assumptions about the RSE
load/store behavior when the RSC.mode is hon-zero. Furthermore, access to the BSPSTORE and
RNAT application registers and the execution of the | oadr s instructions require RSC.mode to be
zero (enforced lazy mode). If | oadr s, move to/from BSPSTORE or move to/from RNAT are
executed when RSC.mode is non-zero an |llegal operation fault is raised. Eager spill/fill of the
RNAT register to/from the backing storeis only permitted if the RSE isin store/load intensive or
eager mode. In enforced lazy mode, the RSE may spill/fill the RNAT register only if a subsequent
mandatory register spill/fill is required.

RSE Privilege L evel: When address trandation is enabled (PSR.rt is one), the RSE operates at a
privilege level defined by two privilege level bits in the Register Stack Configuration register
(RSC.pl). All privilege level checks for RSE virtual accesses are performed using the privilege
level in RSC.pl. When the RSC iswritten, the privilege level bits are clipped to the current
privilege level of the process, i.e. the numerical maximum of the current privilege level and the
privilege level in the source register is written to RSC.pl.

Protection is also checked based on the current entriesin the data TLB. The RSE always remains
coherent with respect to the data TLB. If atrandlation that is being used by the RSE is changed or
purged, the RSE will immediately begin using the new trandlation or suffer a TLB miss. Only
mandatory loads and stores can cause RSE memory related faults. Details on RSE fault delivery are
described in Section 6.6 "RSE Interruptions” Although eager RSE loads and stores do not cause
interruptions they can, under certain conditions, cause a VHPT walk and TLB insert. Details on
when RSE loads and stores can cause a VHPT walk are described in “VHPT Environment” on
page 4-19.

The RSE expects its backing store to be mapped to cacheabl e speculative memory. If RSE spill/fill
transactions are performed to non-specul ative memory that may contain 1/0O devices, system
behavior is unpredictable.

RSE Byte Order: Because the RSE runs asynchronously with the processor, it may be running on
behalf of a context with a different byte order from the current one. Consequently, the RSE defines
its own byte ordering bit: RSC.be. When RSC.be is zero, registers are stored in little-endian byte
order (least significant bytesto lower addresses). When RSC.beis one, registers are stored in
big-endian byte order (most significant bytes to lower addresses). RSC.be a so determines the byte
order of NaT collections spilled/filled by the RSE. RSC.be may be written by code at any privilege
level. Changes to RSC.be should only be made by software when RSC.mode is zero. Failure to do
so results in undefined backing store contents.

IA-64 Register Stack Engine 6-7

6.5.2

6.5.3

6-8

intel.

Register Stack NaT Collection Register

Asdescribed in Section 6.1, the RSE is responsible for saving and restoring NaT bits associated
with the stacked registers to and from the backing store. The RSE writesits NaT collection register
(the RNAT application register) to the backing store whenever BSPSTORE{ 8:3} = Ox3F (1 NaT
collection for every 63 registers). The RNAT acts as atemporary holding areafor up to 63 unsaved
NaT bits. The RSE NaT collection bit index (RSE.RNATBitIndex) determines which bit of the
RNAT register receives the NaT bit of a spilled register as the result of an RSE store. The six-bit
wide RSE.RNATBiItIndex is aways equal to BSPSTORE{8:3}. Asaresult, RNAT{x} corresponds
to the register saved at

concat enat e(BSPSTORE{ 63: 9}, x{ 5: 0}, 0{2: 0}) .

The RSE never saves partial NaT collections to the backing store, so software must save and restore
the RNAT application register when switching the backing store pointer. RSE.RNATBitIndex
determines which RNAT bitsarevalid. Bits RNAT{ RSE.RNATBItIndex:0} contain defined values,
and bits RNAT{62:RSE.RNATBiItIndex+1} contain undefined values. Bit 63 of the RNAT
application register always reads as zero. Writes to bit 63 of the RNAT application register are
ignored. The execution of RSE control instructions nov to BSPSTORE and | oadr s aswell asan
RSE spill of the RNAT register cause the contents of the RNAT register to become undefined. The
RNAT application register can only be accessed when RSC.modeis zero. If RSC.mode is hon-zero,
accessing the RNAT application register resultsin an lllegal Operation fault.

Backing Store Pointer Application Registers

The RSE defines two Backing Store Pointer application registers: BSPSTORE and BSP. Since the
RSE backing store pointers are always 8-byte aligned, bits { 2:0} of the backing store pointers
always read as zero. When writing the BSPSTORE application register, bits { 2:0} in the presented
address are ignored.

The RSE Backing Store Pointer for memory stores (BSPSTORE) is a 64-bit application register
that provides the main interface to the three RSE backing store memory pointers: BSP, BSPSTORE
and RSE.BspL.oad. The BSPSTORE application register can only be accessed when RSC.mode is
zero. If RSC.mode is non-zero, accessing BSPSTORE resultsin an I1legal Operation fault.

Reading BSPSTORE (mov from BSPSTORE application register) returns the address of the next
RSE store.

Writing BSPSTORE (nov to BSPSTORE application register) has side-effects on al three RSE
pointers and the NaT collection process. The operation is defined as follows: the BSPSTORE and
RSE.BspLoad pointers are both set to the address presented, which forces the size of the clean
partition to zero. Writes to the BSPSTORE application register do not change the size of the dirty
partition: the BSP pointer is set to the address presented plus the size of the dirty partition plus the
size of any intervening NaT collections. The dirty partition is preserved to allow softwareto change
the backing store pointer without having to flush the register stack. Writing BSPSTORE causes the
contents of the RNAT register to become undefined. Therefore software must preserve the contents
of RNAT prior to writing BSPSTORE. After writing to BSPSTORE, the NaT collection bit index
(RSE.RNATBiItIndex) is set to bits{ 8:3} of the presented address. If an unimplemented addressin
BSPSTORE is used by a mandatory RSE spill or fill, an Unimplemented Data Address fault is
raised.

IA-64 Register Stack Engine

The RSE Backing Store Pointer (BSP) is a 64-bit read-only application register. Writing BSP (nov
to BSP application register) resultsin an Illegal Operation fault. Reads from BSP (nov from BSP
application register) return the address of the top of the register stack in memory. Thislocationis
the backing store address to which the current GR32 would be written. Reading BSP does not have
any side-effect on any of the internal RSE pointers or the NaT collection process. Therefore, BSP
can be read regardless of the RSE mode, i.e. even when RSC.mode is non-zero. Since BSPis
determined by BSPSTORE and the size of the dirty partition, it is possible for BSPSTORE to
contain an implemented address and for BSP to contain an unimplemented address. BSP reads
always return afull 64-bit (possibly unimplemented) address; only a subsequent data memory
reference with an unimplemented address will cause an Unimplemented Data Address fault.

Table 6-4 summarizes the effects of the three instructions that access the backing store pointer
application registers.

Table 6-4. Backing Store Pointer Application Registers

6.5.4

Instruction
Affected State Reer\T(:)SSP Read BnSDF;STORE Write BSPSTORE?

r ;=AR[BSP| r ;=AR BSPSTORE] mov AR BSPSTCORE] =r 2
GRIr 4] AR[BSP] AR[BSPSTORE] N/A
AR[BSP]{63:3} Unchanged Unchanged (GRI[r 5]{63:3} + RSE.ndirty) +

((GRIr ,]{8:3} + RSE.ndirty)/63)

AR[BSPSTORE}{63:3} Unchanged Unchanged GRIr 5]{63:3}
RSE.BspLoad {63:3} Unchanged Unchanged GRI[r 5]{63:3}
AR[RNAT] Unchanged Unchanged UNDEFINED
RSE.RNATBiItIndex Unchanged Unchanged GRIr »]{8:3}

a. Writing to AR[BSPSTORE] has undefined behavior with an incomplete frame. See “RSE Behavior with an
Incomplete Register Frame” on page 6-13.

RSE Control Instructions

This section describes the RSE control instructions; cover, f | ushrs and | oadr s. The effects of
the three RSE control instructions on the RSE state are summarized in Table 6-5.

The cover instruction adds all registersin the current frame to the dirty partition, and allocates a
zero-size current frame. Asaresult AR[BSP] is updated. cover clearsthe register rename base
fieldsin the current frame marker CFM. If PSR.ic is zero, the original value of CFM is copied into
CR[IFS].ifm and CR[IFS].v is set to one. The cover instruction must be specified as the last
instruction in abundle group otherwise an |llegal Operation fault is taken.

Thef | ushrs instruction spills all dirty registers to the backing store. When it compl etes,
RSE.ndirty is defined to be zero, and BSPSTORE equals BSP. Sincef | ushr s may cause RSE
stores, the RNAT application register is updated. A f | ushr s instruction must be the first
instruction in an instruction group otherwise the results are undefined.

Thel oadr s instruction ensures that a specified portion of the backing store below the current BSP
is present in the physical stacked registers. The size of the backing store section is specified in the
| oadr s field of the RSC application register (AR[RSC].loadrs). After loadrs completes, al
registers and NaT collections between the current BSP and the tear-point

(BSP-(RSC.loadrs{ 13:3} << 3)), and no more than that, are guaranteed to be present and marked as

IA-64 Register Stack Engine 6-9

intel.

dirty in the stacked physical registers. When| oadr s completes BSPSTORE and RSE.BspL.oad are
defined to be equal to the backing store tear-point address. All other physical stacked registers are
marked invalid.

« If the tear-point specifies an address below RSE.BspLoad, the RSE issues mandatory loads to
restore registers and NaT collections. All registers between the current BSP and the tear-point
are marked dirty.

« If the RSE has already |oaded registers beyond the tear-point when the| oadr s instruction
executes, the RSE marks clean registers below the tear-point as invalid and marks clean
registers above the tear-point as dirty.

« If the tear-point specifies an address greater than BSPSTORE, the RSE marks clean and dirty
registers below the tear-point asinvalid (in this case dirty registers are lost).

Table 6-5. RSE Control Instructions

Instruction
Affected State
cover flushrs? loadrs?
AR[BSP]{63:3} AR[BSP]{63:3}+ CFM.sof + Unchanged Unchanged
(AR[BSP]{8:3} + CFM.sof)/63
AR[BSPSTORE}63:3} | Unchanged AR[BSP{63:3} AR[BSP{63:3} —
AR[RSC].loadrs{13:3}
RSE.BspLoad{63:3} Unchanged Model specificb AR[BSP{63:3} —
AR[RSC].loadrs{13:3}
AR[RNAT] Unchanged Updated UNDEFINED
RSE.RNATBItIndex Unchanged AR[BSPSTORE]{8:3} | AR[BSPSTORE}{8:3}
CRJIFS] if (PSR.ic == 0) { Unchanged Unchanged
CR[IFS].ifm = CFM
CR[IFS].v=1
}
CFM CFM.sof =0 Unchanged Unchanged
CFM.sol =0
CFM.sor =0
CFM.rrb.gr=0
CFM.rrb.fr=0
CFM.rrb.pr=0

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete
Register Frame” on page 6-13.

b. In general, eager RSE implementations will preserve RSE.BspLoad during af | ushr s. Lazy RSE
implementations may set RSE.BsplLoad to AR[BSPSTORE] after f | ushr s completes or faults.

By specifying a zero RSC.loadrs value | oadr s can be used to invalidate all stacked registers
outside the current frame. | oadr s causes the contents of the RNAT register to become undefined.
The NaT collectionindex is set to bits{8:3} of the new BSPSTORE. A | oadr s instruction must be
the first instruction in an instruction group otherwise the results are undefined. The following
conditions cause | oadr s to raise an Illegal Operation fault:

 |f RSC.mode is non-zero.
* |f both CFM.sof and RSC.loadrs are non-zero.

« If RSC.loadrs specifies more words to be |oaded than will fit in the stacked physical register
file (RSE.N_STACKED_PHYS).

6-10 IA-64 Register Stack Engine

6.5.5

6.6

Bad PFS used by Branch Return

Onabr. ret, if the PFS application register defines an output areawhich islarger than the number
of implemented stacked registers minus the size of dirty partition ((AR[PFS].sof — AR[PFS].sol) >
(RSE.N_STACKED_PHY S — RSE.ndirty)), the return will not restore CFM with AR[PFS].pfm
(normal behavior); instead, the return setsall fieldsin the CFM (of the procedure being returned to)
to zero.

Typical procedure call and return sequences that preserve PFS values and that do not use cover or
| oadr s instructions will not encounter this situation.

The RSE will detect the above condition on abr . r et , and update its state as follows:

» Theregister rename base (RSE.BOF), AR[BSP], and AR[BSPSTORE] are updated as required
by the return.

e The CFM (after the return) isforced to zero; i.e. all CFM fields (including CFM.sof and
CFM.s0l) are set to zero.

» Theregisters from the returned-from frame and the preserved registers from the returned-to
frame are added to the invalid partition of the register stack.

e Thedirty partition of the register stack is shrunk by AR[PFS].pfm.sol.

» The clean partition of the register stack remains unchanged. RSE.Bspl oad and RSE.L cadReg
remain unchanged.

» No other indication is given to software.

Since the size of the current frame is set to zero, the contents of some (possibly all) stacked GRs
may be overwritten by subsequent eager RSE operations or by subsequent instructions allocating a
new stack frame and then targeting a stacked GR. Therefore, explicit register stack management
sequences that manipulate PFS, usethe cover instruction, or user thel oadr s instruction must
avoid this situation by executing one of the two following code sequences prior to abr. ret :

» Useaflushrsinstruction prior tothebr . r et . This preservesall dirty registers to memory, and
sets RSE.ndirty to zero, which avoids the condition.

» Usealoadrsinstruction with an AR[RSC].loadrs value in the following range:

AR[RSC].loadrs <= 8* (ndirty_max + ((62 — AR[BSP]{ 8:3} + ndirty_max) / 63)),
where ndirty_max = (RSE.N_STACKED_ PHY S - (AR[PFS].sof — AR[PFS].s0l))

This adjusts the size of the dirty partition appropriately to avoid the condition. A | oadr s with
RSC.loadrs=0 works on all processor models, regardless of the number of implemented stacked
physical registers. Note that | oadr s may cause registers in the dirty partition to be lost.

RSE Interruptions

Although the RSE runs asynchronously to processor execution, RSE related interruptions are
delivered synchronously with the instruction stream. These RSE interruptions are a direct
conseguence of register stack-related instructionssuch as: al | oc, br.ret,rfi,flushrs,| oadrs,
ornov to/from BSP, BSPSTORE, RSC, PFS, IFS, or RNAT. Register spills and fillsthat are
executed by the RSE in the background (eager RSE loads or stores) do not raise interruptions. If a
faulting/trapping register spill or fill operation is required for software to make forward progress
(mandatory RSE load or store) then the RSE will raise an interruption.

IA-64 Register Stack Engine 6-11

intel.

Mandatory RSE stores occur in the context of al | oc and f | ushr s instructions only. Any faults
raised by these instructions are delivered on the issuing instruction. Faults raised by mandatory
RSE loads caused by al oadr s are delivered on the issuing instruction. Mandatory RSE loads
which fault while restoring the frame for abr. ret orrfi deliver thefault on the target
instruction, and the ISR.ir (incomplete register frame) bit is set. When a mandatory RSE load
faults, AR[BSPSTORE] points to a backing store location above the faulting address reported in
CR[IFA]. This alows handlersthat service RSE load faults to use the backing store switch routine
described in “ Switch from Interrupted Context” on page 6-15.

Thebr.ret andtherfi instructions set the RSE Current Frame Load Enable bit (RSE.CFLE) to
oneif the register stack frame being returned to is not entirely contained in the stacked register file.
This enables the RSE to restore registers for the current frame of the target instruction. When
RSE.CFLE is set, instruction execution is stalled until the RSE has completely restored the current
frame or an interruption occurs. Thisisthe only time that the RSE issues any memory traffic for the
current frame. Interruption delivery clears RSE.CFLE which allows an interruption handler to
execute in the presence of an incomplete frame (e.g. to handle the fault raised by the mandatory
RSE load). The RSE.CFLE bit is RSE internal state and is not architecturally visible.

Table 6-6 summarizes RSE raised interruptions.

Table 6-6. RSE Interruption Summary

Instruction Interruption Description
al | oc lllegal Operation fault Malformed al | oc immediate.
all oc Reserved Register/Field fault al | oc instruction which attempted to change the size

of the rotating region when one or more of the RRB
values in CFM were non-zero.

al | oc, Unimplemented Data Address fault | AR[BSPSTORE] contains an unimplemented address.
flushrs, Data Nested TLB fault
| oadrs Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault
Data NaT Page Consumption fault AR[BSPSTORE] pointed to a NaTVal data page.
Data Key Miss fault

Data Key Permission fault
Data Access Rights fault
Data Dirty Bit fault

Data Access Bit fault
Data Debug fault

br.call, No RSE related interruptions

brl.call

br.ret No RSE load related faults RSE load related faults are delivered on target
instruction.

rfi No RSE related interruptions RSE load related faults are delivered on target
instruction.

IA-64 Register Stack Engine

intel.

Table 6-6. RSE Interruption Summary (Continued)

6.7

6.8

Instruction Interruption Description
Target of IR Unimplemented Data Address Mandatory RSE load targeted an unimplemented
br.ret or fault address.
rfi IR Data Nested TLB fault br.ret withPSR.ic=0orrfi executed when
IPSR.ic = 0.

IR Alternate Data TLB fault

IR VHPT Data TLB fault

IR Data TLB fault

IR Data Page Not Present fault
IR Data NaT Page Consumption fault | RSE.BspLoad pointed at a NaTPage.
IR Data Key Miss fault

IR Data Key Permission fault
IR Data Access Rights fault
IR Data Access Bit fault

IR Data Debug fault

RSE Behavior on Interruptions

When the processor raises an interruption, the current register stack frame remains unchanged. If
PSR.icisone, the valid bit in the Interruption Function State register (IFS.v) is cleared. When the
IFS.v bit is clear, the contents of the interruption frame marker field (IFS.ifm) are undefined.

While an interruption handler is running and the RSE isin store/load intensive or eager mode, the
RSE continues spilling/filling registers to/from the backing store on behalf of the interrupted
context as long as the registers are not part of the current frame as defined by CFM.

A sequence of mandatory RSE loads or stores (from al | oc, br.ret,flushrs, |l oadrs andrfi)
can be interrupted by an external interrupt.

When PSR.ic is 0, faults taken on mandatory RSE operations may not be recoverable.

RSE Behavior with an Incomplete Register Frame

The current register frame is considered incomplete when one of the mandatory RSE |oads after a
br.ret or arfi faults, leaving BSPSTORE pointing to alocation above BSP (i.e. RSE.ndirty_wordsis
negative). The frame becomes complete when RSE.ndirty words becomes non-negative, either by
executing a cover instruction, or by handling the fault and completing the origina sequence of
mandatory RSE loads.

When the current frame is incomplete the following instructions have undefined behavior: al | oc,
br.call,brl.call,br.ret,flushrs,| oadrs, and moveto BSPSTORE. Software must
guarantee that the current frame is complete before executing these instructions.

IA-64 Register Stack Engine 6-13

6.9

6.10

6-14

RSE and ALAT Interaction

The ALAT (see Section 4.4.5 in Volume 1) uses physical register addresses to track advanced
loads. RSE.BOF may only change astheresult of abr. cal I (by CFM.sol), cover (by CFM.sof),
br.ret (by AR[PFM].s0l) orrfi (by CR[IFS].ifm.sof when CR[IFS].v =1). This ensures, for
ALAT invalidation purposes, that hardware does not update virtual to physical register address
mapping, unless explicitly instructed to do so by software.

When software performs backing store switches that could cause program values to be placed in
different physical registers, then the ALAT must be explicitly invalidated with thei nval a
instruction. Typically this happens as part of a process or thread context switch, longjmp or call
stack unwind, when software re-writes AR[BSPSTORE], but cannot guarantee that RSE.BOF was
preserved.

A stacked register is said to be ‘deallocated” whenanal | oc, br. ret, orrfi instruction changes
the top of the current frame such that the register is no longer part of the current frame. Once a
stacked register is deallocated, its value, its corresponding NaT bit, and its ALAT state are
undefined. If that register is subsequently made part of the current frame again (either via another
al | oc instruction, or viaabr.ret orrfi toapreviousframethat contained that register), the
value stored in the register, the NaT bit for the register, and the corresponding ALAT entry for the
register remain undefined.

Note: RSE stores do not invalidate ALAT entries. Therefore, software cannot use the ALAT to
track RSE stores to the backing store. (While an implementation is allowed to remove
entries from the ALAT at any time, performance considerations strongly encourage not
invalidating ALAT entries due to RSE stores.)

Backing Store Coherence and Memory Ordering

RSE loads and stores are coherent with respect to the processor’s data cache at all times. The
backing store below BSPSTORE is defined to be consistent with the register stack (the memory
image contains consecutive register values and NaT collections). Addresses below BSPSTORE are
not modified by the RSE until br. ret, rfi or amove to BSPSTORE causes BSP to drop below
the original BSPSTORE value. The RSE never writes to a memory address greater than or equal to
BSP.

In order for software to modify avaluein the backing store and guarantee that it be loaded by the
RSE, software must first place the RSE into enforced lazy mode (RSC.mode=0), and read BSP and
BSPSTORE to determine the location of the RSE store pointer. If the location to be modified lies
between BSPSTORE and BSP, software must issueaf | ushr s, update the backing storelocationin
memory, and issue al oadr s instruction with the RSC.loadrs set to zero (thisinvalidates the
current contents of the physical stacked registers, except the current frame, which forcesthe RSE to
reload registers from the backing store). If the location to be modified lies below BSPSTORE,
unnecessary memory traffic can be avoided as follows:. software must read the RNAT application
register, update the backing store location in memory, rewrite BSPSTORE with the original value,
and then rewrite RNAT.

RSE loads and stores are weakly ordered. Thef | ushr s and| oadr s instructions do not include an
implicit memory fence. Turning on and off the RSE does not affect memory ordering. To ensure
ordering of RSE loads and stores on a multi-processor system, software is required to issue explicit
memory fence (nf) instructions.

IA-64 Register Stack Engine

6.11

6.11.1

6.11.2

RSE Backing Store Switches

The implementation of system calls, operating system context switches, user-level thread packages,
debugging software, and certain types of exception handling (e.g. setjmp/longjmp, structured
exception handling and call stack unwinding) require explicit user-level control of the RSE and/or
knowledge of the backing store format in memory. Therefore, the RSE and the backing store can be
controlled at all privilege levels.

Three RSE backing store switches are described here:

1

Switching from an interrupted context (as part of exception handler or interrupt bubble-up
code).

Returning to a previoudly interrupted context.

Non-preemptive, synchronous backing store switch (covers system calls, user-level thread
and operating system context switches).

Failure to follow these sequences may result in undefined RSE and processor behavior.

Switch from Interrupted Context

To switch from the backing store of an interrupted context to a new backing store:

© N oo g~ WD PE

Read and save the RSC and PFS application registers.

Issue acover instruction for the interrupted frame.

Read and save the | FS control register.

Place RSE in enforced lazy mode by clearing both RSC.maode bits.
Read and save the BSPSTORE and RNAT application registers.
Write BSPSTORE with the new backing store address.

Read and save the new BSP to calculate the number of dirty registers.
Select the desired RSE setting (mode, privilege level and byte order).

Return to Interrupted Context

To return to the backing store of an interrupted context:

Allocate a zero-sized frame.

Subtract the BSPSTORE value written in step 6 of Section 6.11.1 from the BSP valueread in
step 7 of Section 6.11.1, and deposit the difference into RSC.loadrs along with a zero into
RSC.mode (to place the RSE into enforced lazy mode).

Issue al oadr s instruction to insure that any registers from the interrupted context which
were saved on the new stack have been loaded into the stacked registers.

Restore BSPSTORE from the interrupted context (saved in step 5 of Section 6.11.1).
Restore RNAT from the interrupted context (saved in step 5 of Section 6.11.1).
Restore PFS and |FS from the interrupted context (saved in steps 1 and 3 of Section 6.11.1).

IA-64 Register Stack Engine 6-15

intel.

7. Restore RSC from the interrupted context (saved in step 1 of Section 6.11.1). This restores
the setting of the RSE mode bits as well as privilege level and byte order.

8. Issuean rfi instruction (IFS.ifm will become CFM).

6.11.3 Synchronous Backing Store Switch

A non-preemptive, synchronous backing store switch at any privilege level can be accomplished as
follows:

1. Read and save the RSC, BSP and PFS application registers.

Issue afl ushrs instruction to flush the dirty registers to the backing store.
Place RSE in enforced lazy mode by clearing both RSC.mode bits.

Read and save the RNAT application register.

o &~ w D

Invalidate the ALAT using thei nval a instruction when switching from code that does not
restore RSE.BOF to its original setting. A different RSE.BOF will cause program valuesin
the new context to be placed in different physical registers. See “RSE and ALAT
Interaction” on page 6-14 for details.

6. Writethe new context’s BSPSTORE (was BSP after f | ushr s when switching out).
Write the new context’s PFS and RNAT.
Write the new context’s RSC which will set the RSE mode, privilege level and byte order.

6.12 RSE Initialization

At processor reset the RSE is defined to be in enforced lazy mode, i.e. the RSC.mode hits are both
zero. The RSE privilege level (RSC.pl) is defined to be zero. RSE.BOF points to physical register
32. The values of AR[PFS].pfm and CR[IFS].ifm are undefined. The current frame marker (CFM)
is set as follows:; sof=96, sol=0, sor=0, rrb.gr=0, rrb.fr=0, and rrb.pr=0. This gives the processor
access to 96 stacked registers.

The RSE performs no spill/fill operations until either anal | oc,br.ret,rfi,flushrs orl oadrs
require amandatory RSE operation, or software explicitly enables eager RSE operations. Software
must provide the RSE with avalid backing store address in the BSPSTORE application register
prior to causing any RSE spill/fill operations. Failure to initialize BSPSTORE resultsin undefined
behavior.

6-16 IA-64 Register Stack Engine

tel.

|A-64 Debugging and Performance
Monitoring 7

7.1

| A-64 processors provide comprehensive debugging and performance monitoring facilities for both
IA-32 and |A-64 instructions. This chapter describes the debug registers, performance monitoring
registers and their programming models. The debugging facilities include several data and
instruction break point registers, single step trap, breakpoint instruction fault, taken branch trap,
lower privilege transfer trap, instruction and data debug faults. The performance monitoring
facilitiesinclude two sets of registers to configure and collect various performance-rel ated
statistics.

Debugging

Several Data Breakpoint Registers (DBR) and I nstruction Breakpoint Registers (IBR) are defined
to hold address breakpoint values for data and instruction references. In addition the following
debugging facilities are supported:

» Single Step trap —When PSR.ssis 1, successful execution of each |A-64 instruction resultsin
a Single Step trap. When PSR.ssis 1 or EFLAG.tf is 1, successful execution of each |A-32
instruction resultsin an |A_32_Exception(Debug) single step trap. After the trap, 11P and
IPSR.ri point to the next instruction to be executed. 11PA and ISR.ei point to the trapped
instruction. See Section 5.5.3 "Single Stepping” for complete single stepping behavior.

e Break Instruction fault —execution of an |A-64 br eak instruction resultsin a Break
Instruction fault. 1M is loaded with the immediate operand from the instruction. 1IM values
are defined by software convention. br eak can be used for profiling, debugging and entry into
the operating system (although Enter Privileged Code (epc) isrecommended sinceit haslower
overhead). Execution of the IA-32 INT 3 (break) instruction resultsin a
IA_32_ Exception(Debug) trap.

» Taken Branch trap — When PSR.tb is 1, a Taken Branch trap occurs on every taken |1A-64
branch instruction. When PSR.tbis 1, alA_32_Exception(Debug) taken branch trap occurs on
every taken 1A-32 branch instruction (CALL, Jcc, IMP, RET, LOOP). Thistrap is useful for
debugging and profiling. After the trap, 1P and IPSR.ri point to the branch target instruction
and I1PA and ISR.ei point to the trapping branch instruction.

e Lower Privilege Transfer trap —When PSR.Ip bit is 1, and an | A-64 branch demotes the
privilege level (numerically higher), aLower Privilege Transfer trap occurs. Thistrap allows
for auditing of privilege demotions, for example to remove permissions which were granted to
higher privilege code. After the trap, IIP and IPSR.ri point to the branch target and I1PA and
ISR.el point to the trapping branch instruction. 1A-32 instructions can not raise this trap.

* Instruction Debug faults —When PSR.db is 1, any | A-64 instruction memory reference that
matches the parameters specified by the IBR registers results in an Instruction Debug fault.
Instruction Debug faults are reported even if |A-64 instructions are nullified due to afalse
predicate. If PSR.id is 1, 1A-64 Instruction Debug faults are disabled for one instruction. The
successful execution of an 1A-64 instruction clears PSR.id. When PSR.dbis 1, any 1A-32
instruction memory reference that matches the parameters specified by the IBR registers

I1A-64 Debugging and Performance Monitoring 7-1

7.1.1

intel.

resultsinan |A_32 Exception(Debug) fault. If PSR.idis1 or EFLAG.rf is1, IA-32 Instruction
Debug faults are disabled for one instruction. The successful execution of an |A-32 instruction
clearsthe PSR.id and EFLAG.f hits.

» Data Debug faults—When PSR.dbis 1, any 1A-64 data memory reference that matches the
parameters specified by the DBR registers resultsin a Data Debug fault. Data Debug faults are
only reported if the qualifying predicate is true. Data Debug faults can be deferred on
speculative loads by setting DCR.dd to 1. If PSR.dd is 1, Data Debug faults are disabled for
one instruction or one mandatory RSE memory reference. When PSR.db is 1, any 1A-32 data
memory reference that matches the parameters specified by the DBR registers resultsin a
IA_32 Exception(Debug) trap. | A-32 data debug events are traps, not faults as defined for the
|A-64 instruction set. The reported trap code returns the match status of the first 4 DBR
registersthat matched during the execution of the | A-32 instruction. See“1A-32 Trap Code” on
page 9-1 for trap code details. Zero, one or more DBR registers may be reported as matching.

Data and Instruction Breakpoint Registers

| A-64 instruction or data memory addresses that match the Instruction or Data Breakpoint
Registers (IBR/DBR) shown in Figure 7-1, Figure 7-2, and Table 7-1 result in an Instruction or
Data Debug fault. 1A-32 Instruction or data memory addresses that match the Instruction or Data
Breakpoint Registers (IBR/DBR) result in an 1A-32_Exception(Debug) fault or trap. Even
numbered registers contain breakpoint addresses, odd registers contain breakpoint mask conditions.
At least 4 data and 4 instruction register pairs are implemented on all processor models.
Implemented registers are contiguous starting with register O.

Figure 7-1. Data Breakpoint Registers (DBR)

63 62 61 60 59 56 55 0
DBRy 4., | addr |

DBR1’3’5__‘F‘W‘ ig ‘ plm ‘ mask ‘
11 2 4 56

Figure 7-2. Instruction Breakpoint Registers (IBR)

7-2

63 62 61 60 59 56 55 0

IBRo24. | addr |

IBR; 35.. ‘ X ‘ ig ‘ plm ‘ mask ‘
1 3 4 56

The |A-64 instruction and data memory addresses presented for matching are aways in the
implemented address space. Programming an unimplemented physical addressinto an IBR/DBR
guarantees that physical addresses presented to the IBR/DBR will never match. Similarly,
programming an unimplemented virtual addressinto an IBR/DBR guarantees that virtual addresses
presented to the IBR/DBR will never match.

IA-64 Debugging and Performance Monitoring

intel.

Table 7-1. Debug Breakpoint Register Fields (DBR/IBR)

Field

Bits

Description

addr

63:0

Match Address — 64-bit virtual or physical breakpoint address. Addresses are interpreted as
either virtual or physical based on PSR.dt, PSR.it or PSR.rt. Data breakpoint addresses trap
on load, store, semaphore, and mandatory RSE memory references. For |A-64 instruction
set references, IBR.addr{3:0} is ignored in the address match. For IA-32 instruction set
references, IBR{31:0} are used in the match. For IA-32 memory references, addr{63:32}
must be zero to match. All 64 bits are implemented on all processors regardless of the
number of implemented address bits.

mask

55:0

Address Mask — determines which address bits in the corresponding address register are
compared in determining a breakpoint match. Address bits whose corresponding mask bits
are 1, must match for the breakpoint to be signaled, otherwise the address bit is ignored.
Address bits{63:56} for which there are no corresponding mask bits are always compared.
For 1A-32 memory references, mask{63:32} are ignored. All 56 bits are implemented on all
processors regardless of the number of implemented address bits.

plm

59:56

Privilege Level Mask — enables data breakpoint matching at the specified privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 56 corresponding to privilege
level 0, bit 57 with privilege level 1, etc. A value of 1 indicates that the debug match is
enabled at that privilege level.

62

Write match enable — When DBR.w is 1, any non-nullified mandatory RSE store, |1A-32 or
IA-64 store, semaphore, pr obe. w. f aul t or probe. rw. f aul t to an address
matching the corresponding address register causes a breakpoint.

63

Read match enable — When DBR.r is 1, any non-nullified 1A-32 or 1A-64 load, mandatory
RSE load, semaphore, | f et ch. faul t, probe.r.fault orprobe.rw fault to
an address matching the corresponding address register causes a breakpoint. When DBR.r
is 1, a VHPT access that matches the DBR (except those for a t ak instruction) will cause an
Instruction/Data TLB Miss fault. If DBR.r and DBR.w are both 0, that data breakpoint register
is disabled.

63

Execute match enable — When IBR.x is 1, execution of an IA-32 instruction or |1A-64
instruction in a bundle at an address matching the corresponding address register causes a
breakpoint. If IBR.x is 0, that instruction breakpoint register is disabled. Instruction
breakpoints are reported even if the qualifying predicate is false.

ig

62:60

Ignored

Four privileged instructions, defined in Table 7-2, allow access to the debug registers. Register
access isindirect, where the debug register number is determined by the contents of a general
register. DBR/IBR registers can only be accessed at privilege level 0, otherwise a Privileged
Operation fault is raised.

Table 7-2. Debug Instructions

I1A-64 Debugging and Performance Monitoring

. _— . Instr Serialization
Mnemonic Description Operation Type Required
mov dbr[rg] =r, Move to data breakpoint DBR[GR[r3]] « GRI[rj] M data
register
mov rq = dbr[rg] Move from data breakpoint | GR[r;] — DBR[GR][r3]] M none
register
mov ibrlrg] =1, Move to instruction IBR[GR[r3]] — GRIr;] M |inst
breakpoint register
mov ry =ibr[rs] Move from instruction GR[rq] «~ IBR[GR]r3]] M none
breakpoint register
break imm Breakpoint Instruction fault if (PSR.ic) IIM « imm B/I/M | none
fault(Breakpoint_Instruction)
7-3

7.1.2

7-4

intel.

Changes to debug registers and PSR are not necessarily observed by following instructions.
Software should issue a data serialization operation to ensure modificationsto DBR, PSR.db,
PSR.tb and PSR.Ip are observed before a dependent instruction is executed. For register changes to
IBR and PSR.db that affect fetching of subsequent instructions, software must issue an instruction
serialization operation.

On some implementations, a hardware debugger may use two or more of these registers pairsfor its
own use. When a hardware debugger is attached, as few as 2 DBR pairs and as few as 2 IBR pairs
may be available for software use. Software should be prepared to run with fewer than the
implemented number of IBRs and/or DBRsif the software is expected to be debuggable with a
hardware debugger. When a hardware debugger is not attached, at least 4 IBR pairsand 4 DBR
pairs are available for software use.

Any debug registers used by an attached hardware debugger are allocated from the highest register
numbersfirst (e.g. if only 2 DBR pairs are available to software, the available registers are
DBR[0-3]).

Note: When a hardware debugger is attached and is using two or more debug registers pairs, the
processor does not forcibly partition the registers between software and hardware debug-
ger use; that is, the processor does not prevent software from reading or modifying any of
the debug registers being used by the hardware debugger. However, if software modifies
any of the registers being used by the hardware debugger, processor and/or hardware
debugger operation may become undefined; or the processor and/or hardware debugger
may crash.

Debug Address Breakpoint Match Conditions

For virtual memory accesses, breakpoint address registers contain the virtual addresses of the
debug breakpoint. For physical accesses, the addresses in these registers are treated as a physical
address. Software should be aware that debug registers configured to fault on virtual references,
may also fault on a physical referenceif trandations are disabled. Likewise a debug register
configured for physical references can fault on virtual references that match the debug breakpoint
registers.

The range of addresses detected by the DBR and IBR registers for | A-64 memory referencesis
defined as:

« Instruction and single or multi-byte aligned data memory references that access any memory
byte specified by the IBR/DBR address and mask fields results in an Instruction/Data Debug
fault regardless of datum size. Implementations must only report a Debug fault if the specified
aligned byte(s) are referenced.

* Floating-point load double/integer pair, floating-point spill/fill and 10-byte operands are
treated as 16-byte datums for breakpoint matching, if the accesses are aligned. Floating-point
load single pair operands are treated as 8-byte datums for breakpoint matching, if the accesses
are aigned.

« If datamemory references are unaligned, multi-byte memory references that access any
memory byte specified by DBR address and mask fields result in a breakpoint Data Debug
fault regardless of datum size. Processor implementations may also report additional
breakpoint Data Debug faults for addresses not specifically specified by the DBR registers.
Debugging software should perform a byte by byte breakpoint analysis of each address
accessed by multi-byte unaligned datums to detect true breakpoint conditions.

IA-64 Debugging and Performance Monitoring

7.2

Address breakpoint Data Debug faults are not reported for the Flush Cache (f ¢), non-faulting

pr obe, non-faulting | f et ch,insert TLB (itc, itr),purge TLB (ptc, ptr),or trandation access
(thash, ttag, tak, tpa)instructions. Accesses by the RSE to adebug region are checked, but
the Data Debug fault is not reported until asubsequent al | oc, br.ret,rfi,l oadrs,orflushrs
which requires that the faulting load or store actually occur.

The range of addresses detected by the DBR and IBR registers for | A-32 memory referencesis
defined as:

* Instruction memory references where the first byte of the IA-32 instruction match the IBR
address and mask fields resultsin an 1A-32_Exception(Debug) fault. Subsequent bytes of a
multiple byte 1A-32 instruction are not compared against the IBR registers for breakpoints.
The upper 32-bits of the IBR addr field must be zero to detect 1A-32 instruction memory
references.

» |A-32 single or multi-byte data memory references that access any memory byte specified by
the DBR address and mask fields resultsin an | A-32_Exception(Debug) trap regardless of
datum size and alignment. The upper 32-bits of DBR addr field must be zero to detect |1A-32
data memory references. The processor ensures that all data breakpoint traps are precisely
reported. Data breakpoint traps are reported if and only if any byte in the |A-32 data memory
reference matches the DBR address and mask fields. No spurious data breakpoint events are
generated for 1A-32 data memory operands that are unaligned, nor are breakpoints reported if
no bytes of the operand lie within the address range specified by the DBR address and mask
fields.

Performance Monitoring

Performance monitors allow processor events to be monitored by programmable counters or give
an external notification (such as apin or transaction) on the occurrence of an event. Monitors are
useful for tuning application, operating system and system performance. Two sets of performance
monitor registers are defined. Performance Monitor Configuration (PMC) registers are used to
control the monitors. Performance Monitor Data (PMD) registers provide data values from the
monitors. The performance monitors can record performance values from either the IA-32 or |1A-64
instruction set.

Asshown in Figure 7-3, al processor implementations provide at least four performance counters
(PMC/PMD[4]..PMC/PMD]7] pairs), and four performance counter overflow status registers
(PMCIQ]..PMCI3]). Performance monitors are also controlled by bits in the processor status
register (PSR), the default control register (DCR) and the performance monitor vector register
(PMV). Processor implementations may provide additional implementation-dependent PMC and
PMD registers to increase the number of “generic” performance counters (PMC/PMD pairs), The
remainder of the PMC and PMD register set isimplementation dependent.

Event collection for implementation-dependent performance monitors is not specified by the
architecture. Enabling and disabling functions are implementation dependent. For details, consult
processor specific documentation.

Processor implementations may not populate the entire PMC/PMD register space. Reading of an
unimplemented PMC or PMD register returns zero. Writes to unimplemented PMC or PMD
registers are ignored; i.e. the written value is discarded.

I1A-64 Debugging and Performance Monitoring 7-5

7.2.1

7-6

intel.

Writesto PMD and PMC and reads from PMC are privileged operations. At non-zero privilege
levels, these operations result in a Privileged Operation fault, regardless of the register address.

Reading of PMD registers by non-zero privilege level codeis controlled by PSR.sp. When PSR.sp
isone, PMD register reads by non-zero privilege level code return zero.

Generic Performance Counter Registers

Generic performance counter registers are PMC/PMD pairs that contiguously populate the
PMC/PMD name space starting at index 4. At least 4 performance counter register pairs
(PMC/PMD[4]..PMC/PMDJ7]) areimplemented in all processor models. Each counter can be
configured to monitor events for any combination of privilege levels and one of several event
metrics. The number of performance counters isimplementation specific. The figures and tables
use the symbol “p” to represent the index of the last implemented generic PMC/PMD pair. The
bit-width W of the countersis also implementation specific. A counter overflow interrupt occurs
when the counter wraps; i.e. a carry out from bit W-1 is detected. Figure 7-4 and Figure 7-5 show
thefieldsin PMD and PMC respectively, while Table 7-3 and Table 7-4 describe the fieldsin PMD
and PMC respectively.

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the
performance monitor freeze bit (PM C[0].fr) affect the behavior of all generic performance monitor
registers. Finer, per monitor, control of generic performance monitorsis provided by two PMC
register fields (PMC[i].plm, PMC[i].pm). Event collection for a generic monitor is enabled under
the following constraints:

 Generic Monitor Enabl€[i] =(not PMC[Q].fr) and PMC[i].pIm[PSR.cpl] and

((not (PMCJi].pm) and PSR.up) or (PMC[i].pm and PSR.pp))

Generic performance monitor data registers (PMD[i]) can be configured to be user readable (useful
for user level sampling and tracing user level processes) by setting the PM CJi].pm bit to 0. All
user-configured monitors can be started and stopped synchronously by the user mask instructions
(r umand sunj by atering PSR.up. User-configured monitors can be secured by setting PSR.spto 1.
A user-configured secured monitor continues to collect performance values; however, reads of
PMD, by non-privileged code, return zeros until the monitor is unsecured.

IA-64 Debugging and Performance Monitoring

intel.

Figure 7-3. Performance Monitor Register Set

Generic Performance Monitoring Register Set

Performance Counter
Overflow Status Registers

63 0

pmc,
pmc,
pmc,
pmcs

Performance Counter
Configuration Registers

63 0

pmc,
pmcs

pme, [

Performance Counter
Data Registers

63 0

pmd,
pmds

Processor Status Register

63

o

PSR

Default Control Register

63
cry

o

DCR

Performance Monitor
Vector Register

Implementation-dependent Performance Monitoring Register Set

63 0

pmdo
pmd,
pmd,
pmds;

63 0

PMCyiy
pMCy.z

pmezs |

63 0
Crz3 PMV
63 0
pmdy.,
pmd;., |

pmces [|

000928

Figure 7-4. Generic Performance Counter Data Registers (PMD[4]..PMD[p])

PMDI[4]. PMDp] |

63

W W-1

sxt \

count

64-W

Table 7-3. Generic Performance Counter Data Register Fields

w

Field Bits Description
sxt 63:W Writes are ignored.
Reads return the value of bit W-1, so count values appear as sign extended.
count W-1:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit W-1).

Figure 7-5. Generic Performance Counter Configuration Register (PMC[4]..PMD[p])

PMC[4]..PMD[p] \

63

1615

87 6 5 4 3

0

implementation specific

‘ig‘pm‘oi‘ev‘ plm ‘

48

I1A-64 Debugging and Performance Monitoring

es
8

11

7-7

7-8

intel.

Table 7-4. Generic Performance Counter Configuration Register Fields (PMC[4]..PMD[p])

Field Bits

Description

plm 3.0

Privilege Level Mask — controls performance monitor operation for a specific privilege
level. Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to
privilege level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor
is enabled at that privilege level. Writing zeros to all plm bits effectively disables the
monitor. In this state, the corresponding PMD register(s) do not preserve values, and
the processor may choose to power down the monitor.

ev 4

External visibility — When 1, an external notification (such as a pin or transaction) is
provided whenever the monitor overflows. Overflow occurs when a carry out from bit
W-1 is detected.

oi 5

Overflow interrupt — When 1, a Performance Monitor Interrupt is raised and the
performance monitor freeze bit (PMC[0].fr) is set when the monitor overflows. When 0,
no interrupt is raised and the performance monitor freeze bit (PMCJ[0].fr) remains
unchanged. Overflow occurs when a carry out from bit W-1 is detected. See Section
7.2.2 "Performance Monitor Overflow Status Registers (PMCJ[0]..PMC[3])" for details on
configuring interrupt vectors.

Privileged monitor — When 0, the performance monitor is configured as a user monitor,
and enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as
a privileged monitor, enabled by PSR.pp, and the corresponding PMD can only be read
by privileged software.

ignored

es 15:8

Event select — selects the performance event to be monitored. Actual event encodings
are implementation dependent. Some processor models may not implement all event
select (es) bits. At least one bit of es must be implemented on all processors.
Unimplemented es bits are ignored.

implem. 63:16
specific

Implementation specific bits — Reads from implemented bits return
implementation-dependent values. For portability, software should write what was read;
i.e. software may not use these bits as storage. Hardware will ignore writes to
unimplemented bits.

Monitors configured as privileged (PMCJi].pm is 1) are accessible only at privilege level 0;
otherwise, reads return zeros. All privileged monitors can be started and stopped synchronously by
the system mask instructions (r smand ssn) by altering PSR.pp. Table 7-5 summarizes the effects
of PSR.sp, PMCJi].pm, and PSR.cpl on reading PMD registers.

Updates to generic PMC registers and PSR bits (up, pp, is, sp, cpl) require implicit or explicit data
serialization prior to accessing an affected PMD register. The data serialization ensures that al
prior PMD reads and writes as well as al prior PMC writes have compl eted.

Table 7-5. Reading Performance Monitor Data Registers

PSR.sp PMC[i].pm PSR.cpl PMD Reads Return
0 0 0 PMD value
0 1 0 PMD value
1 0 0 PMD value
1 1 0 PMD value
0 0 >0 PMD value
0 1 >0 0
1 0 >0 0
1 1 >0 0

IA-64 Debugging and Performance Monitoring

Generic PMD counter registers may be read by software without stopping the counters. The
processor guarantees that software will see monotonically increasing counter val ues. Software must
accept alevel of sampling error when reading the counters due to various machine stall conditions,
interruptions, and bus contention effects, etc. The level of sampling error isimplementation
specific. More accurate measurements can be obtained by disabling the counters and performing an
instruction serialize operation for instruction events or data serialize operation for data events
before reading the monitors. Other (non-counter) implementation-dependent PMD registers can
only be read reliably when event monitoring is frozen (PMC[0] .fr is one).

For accurate PMD reads of disabled counters, data serialization (implicit or explicit) is required
between any PMD read and a subsequent ssmor sum(that could toggle PSR.up or PSR.pp from 0
to 1), or asubsequent epc, demoting br . r et or branch to IA-32 (br . i a) (that could affect PSR.cpl
or PSR.is). Note that implicit post-serialization semantics of sumdo not meet this requirement.

Table 7-6 defines the instructions used to access the PMC and PMD registers.

Table 7-6. Performance Monitor Instructions

71.2.2

Instr | Serialization

nemonic escription Operation Type Required

mov pmd[rz] =r, Move to performance monitor PMD[GR[r3]] — GRIrs] M | data/inst
data register

mov ry = pmd]rs] Move from performance monitor | GR[r;] — PMD[GR][r3]] M | none
data register

mov pmc[rg] =1, Move to performance monitor PMCIGRIr3]] — GRIry] M | data/inst
configure register

mov ry = pmc[rs] Move from performance monitor | GR[r;] — PMC[GR]r3]] M | none
configure register

Performance Monitor Overflow Status Registers
(PMCI0]..PMCI[3])

Performance monitor interrupts may be caused by an overflow from a generic performance monitor
or an implementation-dependent event from a model -specific monitor. The four performance
monitor overflow registers (PMC[0]..PMC[3]) shown in Figure 7-6 indicate which monitor caused
the interruption.

Each of the 252 overflow bits in the performance monitoring overflow status registers
(PMCIQ]..PMCJ3]) corresponds to a generic performance counter pair or to an
implementation-dependent monitor. For generic performance counter pairs, overflow status bit
PMCJi/64]{i%64} corresponds to generic counter pair PMC/PMDJi], where 4<=i<=p, and p isthe
index of the last implemented generic PMC/PMD pair.

When a generic performance counter pair (PMC/PMDIn]) overflows and its overflow interrupt bit
(PMCIn].oi) is 1, or an implementation-dependent monitor wants to report an event with an
interruption, then the processor:

¢ Setsthe corresponding overflow status bit in PMC[0]..PMC[3] to one, and
» Setsthe freeze bit in PMC[0] which suspends event monitoring.

I1A-64 Debugging and Performance Monitoring 7-9

intel.

When a generic performance counter pair (PMC/PMDI[n]) overflows, and its overflow interrupt bit
(PMCIn].oi) is 0, the corresponding overflow status register bit is set to one. However, in this case
of counter wrap without interrupt, the freeze bit in the PMC[0] is left unchanged, and event
monitoring continues.

If control register bit PMV.mis one, a performance monitoring overflow interrupt is disabled from
being pended. When PMV.m is zero, the interruption is received and held pending. (Further
masking by the PSR.i, TPR and in-service masking can keep the interrupt from being raised.)
Figure 7-6 shows the Performance Monitor Overflow Status registers.

I mplementati on-dependent PM D registers 0-3 cannot report eventsin the overflow registers; those
4-hit positions are used for other purposes.

Figure 7-6. Performance Monitor Overflow Status Registers (PMC[0]..PMCJ[3])

63 4 3 1 0

‘ overflow ‘ ig ‘ fr ‘
60 3 1

‘ overflow ‘

‘ overflow ‘

‘ overflow ‘

If the PMC[0] freeze bit is set (either by a performance counter overflow or an explicit software
write), the processor suspends all event monitoring, i.e. counters do not increment, and overflow
bits as well as model-specific monitoring are frozen. Writing a zero to the freeze bit resumes event
monitoring.

Table 7-7. Performance Monitor Overflow Register Fields (PMC[0]..PMC[3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit. This bit is volatile
state, i.e. it is set by the processor whenever:

» ageneric performance monitor overflow occurs
and its overflow interrupt bit (PMC[n].oi) is set
to one.

» a model-specific performance monitor signals
an interrupt.

The freeze bit can also be set by software to enable or
disable all event monitoring.

If the freeze bit is one, event monitoring is disabled.

If the freeze bit is zero, event monitoring is enabled.

PMC[0] ig 31 Ignored
PMCI0]..PMCJ[3] overflow |implemented Bit vector indicating which performance monitor
monitors overflowed. Overflow status bits are sticky, they are set

to 1 by the processor if the corresponding PMD
overflows; otherwise they are left unchanged. Multiple
overflow status bits may be set, independent of
whether counter overflow causes an interrupt or not.

unimplemented Ignored
monitors

7-10 IA-64 Debugging and Performance Monitoring

7.2.3

7.2.4

7.24.1

Multiple overflow bits may be set, if counters overflow concurrently. The overflow bits and the
freeze bit are ticky; i.e. the processor sets them to one but never resets them to zero. It is software’s
responsibility to reset the overflow and freeze bits.

The overflow status bits are populated only for implemented counters. Overflow bits of
unimplemented counters read as zero and writes are ignored.

Performance Monitor Events

The set of monitored events is implementation specific. All processor models are required to
provide at least two events: the number of retired instructions, and the number of processor clock
cycles. Events may be monitorable only by a subset of the available counters. PAL calls provide an
implementation-independent interface that provides information on the number of implemented
counters, their bit-width, the number and location of other (non-counter) monitors, etc.

Implementation-independent Performance Monitor Code
Sequences

This section describes implementation-independent code sequences for servicing overflow
interrupts and context switches of the performance monitors. For forward compatibility, the code
sequences outlined in Section 7.2.4.1 and Section 7.2.4.2 use PAL-provided
implementation-specific information to collect/preserve data values for all implemented counters.

Performance Monitor Interrupt Service Routine

When a performance counter register overflows and, for generic performance counters, the
PMCIn].oi bit is set, the processor suspends event collection, and sets the freeze bit in PMCJ[Q].
Event monitoring remains frozen until software clears the freeze bit. Performance monitor
interrupts may be caused by an overflow of any of the counters. The processor indicates which
performance monitor overflowed in the performance monitor overflow status registers
(PMCIQ]..PMCI3]). If multiple counters overflow concurrently, multiple overflow bits will be set
to one. For forward compatibility, event collection interrupt handlers should follow the
implementati on-independent overflow interrupt service routine outlined in Figure 7-7.

After a context switch from a context which had performance monitoring enabled to an
unmonitored context, the freeze bit will be set (see Section 7.2.4.2). A pending overflow interrupt
which was targeted at a monitored process may not be delivered until a non-monitored processis
running. A bogusinterrupt is one where the freeze bit is zero or performance monitoring is disabled
inthe PSR.

I1A-64 Debugging and Performance Monitoring 7-11

intel.

Figure 7-7. Performance Monitor Interrupt Service Routine (implementation independent)

7.24.2

7-12

/ Assumes PSR up and PSR pp are switched to zero together
f ((PMJO].fr==1) && (PSR up == 1) || (PSR pp == 1)){

[l freeze bit is set. Search for interrupt.

for (i=0; i< 4; i++) {

/
i

if (PMC[i] !'= 0)
starthit = (i==0) ? 4 : 0;
for (j=startbit; j < 64 ; j++) {

peepMil iy ¢
counter _id = 64*i + j;
if (counter_id > PAL_GENERI C_ PMCPMD_PAI RS) ({
| mpl enent ati on_Speci fic_Update(counter _id);

}
else { // Generic PMJ PMD counter
if (PMJ counter_id].oi)
ovflcount[counter _id] += 1;

}

} /] scan overflow bits

}
}

/ Either ignore bogus interrupt or clear PMJ3]..PMJ1]
/ and PMCJ O] last (clears freeze bit)

or (i=3; 1>=0; i--) { PMJi] =0; }

fi

—_ —h o~~~

Performance Monitor Context Switch

The context switch routine described in Figure 7-8 defines the implementati on-independent context
switching of 1A-64 performance monitors. Using bit masks provided by PAL (PALPMOmask,
PALPMDrask) the routine can generically save/restore the contents of all implementation-specific
performance monitoring registers. If the outgoing context is monitored (PSR.pp or PSR.up are set),
then in addition to preserving all PMC and PMD registers, if the context switch routine determines
(by reading the freeze bit) that the outgoing context has a pending performance monitor interrupt,
software preservesthe outgoing context’s overflow status registers (PMC[0]..PM C[3]). The context
switch handler then restores the performance monitor freeze bit which resets event collection for
the new context. Sometime into the incoming (possibly unmonitored) context, the performance
overflow interrupt service routine will run, but by looking at the status of the freeze bit software
can determine whether thisinterrupt can be ignored (for details refer to Section 7.2.4.1).

When switching back to the original context (that originally caused the counter overflow), the
previously saved freeze bit can be inspected. If it was set (meaning there was a pending
performance monitor interrupt), then the context switch routine posts an interrupt message to the
incoming context’s processor at the performance monitor vector specified by the PMV register.
Thiswill result in a new performance monitor overflow interrupt in the correct context. Essentialy,
the interrupt message is “replaying” the overflow interrupt that was missed because of the context

switch.

IA-64 Debugging and Performance Monitoring

intel.

Figure 7-8. Performance Monitor Overflow Context Switch Routine

/!l in context or thread sw tch

if (outgoing process is nonitored (PSR up or PSR pp are set)) {

1. Turn-off counting and ignore interrupts for context swtch
of counters.
la) if not already done, raise interrupt priority above

perf. mon overfl ow vector

1b) read and preserve PSR up, PSR pp, PSR sp
1c) cl ear PSR up, clear PSR pp
1d) srlz.d

2. Check for pending interrupt: Preserve Interrupt State
2a) read and preserve PMJ0]..PMJ 3]

3. Set freeze bit
This ensures that PMD registers remain stable for context
switch. Also, for restoration of incomng context, if PSR
of the incom ng process enables PSR up or PSR pp, the
counters won't start up, until they have been conpletely
restored.
3a) wite one to freeze bit (PMJO].fr=1)
3b) srlz.d

4. Preserve PMC/PMD contents
4a) For each PMC whose PALPMCrask bit is set, preserve PMC
4b) For each PNMD whose PALPMDmask bit is set, preserve PMD.

conti nue context switch

/1 Now in inconing process/thread

if (incoming process is nonitored (PSR up or PSR pp are set)) {
/1 Note that the context switch itself already restored PSR
/1 with the original values of PSR pp, PSR up and PSR sp
/1 (inverse of step 1b above). Event counting is disabl ed,
/1 because PMCJO].fr is one (step 3a above).

5. Restore PMCJ PMD contents (inverse of step 4 above)
5a) For each PMC whose PALPMCrmask bit is set, reload PMC
5b) For each PMD whose PALPMDmask bit is set, reload PMD.

6. Restore Interrupt State (inverse of step 2 and la above)
6a) if (preserved freeze bit was set) {
send nyself a performance nonitor interrupt
(store to interrupt address)
}
6b) Restore PMC 3], PMJ 2], PMJ 1], and finally PMJO].
Wite PMJ 0] last, which restores the state of the
performance nonitor freeze bit.
6¢) srlz.d
6d) [ower interrupt priority bel ow perf. non overfl ow
vect or

I1A-64 Debugging and Performance Monitoring 7-13

7-14

IA-64 Debugging and Performance Monitoring

tel.

|A-64 Interruption Vector Descriptions 8

8.1

8.2

Chapter 5 describes the 1A-64 interruption mechanism and programming model. This chapter
describes the 1VA-based interruption handlers. “Interruption Vector Descriptions” describes all the
| A-64 IVA-based interruption vectors and “1A-32 Interruption Vector Definitions’ describes all of
the IA-32 interrupt vectors. PAL-based interruptions are described in Chapter 11, “1A-64 Processor
Abstraction Layer”. Note that unless otherwise noted, references to “interruption” in this chapter
refer to IVA-based interruptions. See “Interruption Definitions” on page 5-1.

Interruption Vector Descriptions

The section lists all the |A-64 interruption vectors. It describes the interruption vectors and the
parameters that are defined when the vector is entered.

If an interruption isindependent of the executing instruction set (1A-64 or 1A-32), such asan
external interrupt or TLB fault, common |A-64 interruption vectors are used. For exceptions and
intercept conditions that are specific to the |A-32 instruction set three 1A-32 specific vectors are
used; 1A-32_Exception, 1A-32_Interrupt, and |A-32_Intercept.

Table 8-1 defines which interruption resources are written, are left unmodified, or are undefined for
each interruption vector. The individual vector descriptions below list interruption specific
resources for each vector.

See “1VA-based Interruption Handling” on page 5-7 for details on how the processor handles an
interruption. See “Interruption Control Registers’ on page 3-16 for the definition of bit fields
within the interruption resources.

ISR Settings

For each of the interruption vectors, a figure depicts the ISR setting. These figures show the value
that hardware writes into the I SR for the corresponding interruption.

Table 8-2 provides an overview of ISR settings for al of the interruption vectors.

For some of the vectors, certain bits will always be 0 (or 1) simply because no instruction that
would set that bit differently can ever end up on that vector. For example, ISR.spisaways0inthe
Break Instruction vector because ISR.sp is only set by speculative loads, and specul ative loads can
never take a Break Instruction fault.

After interruption from the |A-32 instruction set, the following ISR bits will always be zero -
ISR.ni, ISR.na, ISR.5p, ISR.rs, ISR.ir, ISR.€i, and ISR.ed.

IA-64 Interruption Vector Descriptions 8-1

8.3

In

tel

I SR.code settings for non-access instructions are described in “Non-access I nstructions and
Interruptions’ on page 5-9. Table 8-3 on page 8-5 provides an overview of 1SR.code field on all

|A-64 traps.

|A-64 Interruption Vector Definition

Table 8-1. Writing of Interruption Resources by Vector

8-2

IIP, IPSR,

Interruption Resource IIPA, IFS.v IFA ITIR IHA 1IM ISR
PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1
Interruption Vector

Alternate Data TLB vector n/a? WP |nfa|W |nfal W |na|x® |na| x |na|Ww
Alternate Instruction TLB vector -d w - w - W | x X X X | W | W
Break Instruction vector - W X X X X X X - W W W
Data Access Rights vector - w - W - W | x X X X | W | W
Data Access-Bit vector - w - W - w X X X X W | W
Data Key Miss vector - W - w - W X X X X W | W
Data Nested TLB vector - n/a - |nfa| - |na| - |na| x |na| - |nla
Data TLB vector n/a w na| W |nfa|l W |[na| W |na| x |na| W
Debug vector - w - W X X X X X X W | W
Dirty-Bit vector - w - W - W | x X X X | W | W
Disabled FP-Register vector - W X X X X X X X X | W | W
External Interrupt vector - W X X X X X X X X W | W
Floating-point Fault vector - W X X X X X X X X W | W
Floating-point Trap vector - w X X X X X X X X | W | W
General Exception vector - W X X X X X X X X W | W
1A-32 Exception Vector n/a w na| x |nla| x |nla| x |nla| x |na| W
1A-32 Intercept Vector n/a w nal| x |na| x |[na| x |[nla| W |nla| W
1A-32 Interrupt Vector n/a W na| x |nla| x |nfa| x |nla| x |na| W
Instruction Access Rights vector - W - w - W X X X X W | W
Instruction Access-Bit vector - w - w - W | x X X X | W | W
Instruction Key Miss vector - W - w - W X X X X W | W
Instruction TLB vector - w - W - w - w X X W | W
Key Permission vector - w - W - W | x X X X | W | W
Lower-Privilege Transfer Trap vector - w X X X X X X X X W | W
NaT Consumption vector

-reg - w - X X X X X X X W | W
- data/instr - w - W | x X X X X X | W | W
Page Not Present vector - w - W - w X X X X W | W
Single Step Trap vector - w X X X X X X X X | W | W
Speculation vector - W X X X X X X - W | W | W

IA-64 Interruption Vector Descriptions

In

tel

Table 8-1.

Table 8-2.

Writing of Interruption Resources by Vector (Continued)
. 1P, IPSR,
Interruption Resource IIPA. IFS.v IFA ITIR IHA 1IM ISR
PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1
Interruption Vector
Taken Branch Trap vector - \W% X X X X X X X X | W | W
Unaligned Reference vector - W - W | x X X X X X | W | W
Unsupported Data Reference vector - w - W X X X X X X W | W
VHPT Translation vector n/a W nfa| W |na| W |na| W |[na| x |na| W
a. “n/a” indicates that this cannot happen.
b. “W” indicates that the resource is written with a new value.
c. “X” indicates that the resource may or may not be written; whether it is written and with what value is
implementation specific.
d. “-” indicates that the resource is not written.
ISR Values on Interruption
Vector / Interruption ed | ei®|so | ni®|irc|rsd sp® nal | r|w|x
Alternate Data TLB vector
Alternate Data TLB fault edk |ri so |ni' |0 |rs sp |na |r
IR Alternate Data TLB fault 0 ri 0 |ni 1 0 0 1/0 |0
Alternate Instruction TLB vector
Alternate Instruction TLB fault 0 ri 0 |ni 0 0 0 0 0(0 |1
Break Instruction vector
Break Instruction fault 0 ri 0 |ni 0o |0 0 0 0|0 |0
Data Access Rights vector
Data Access Rights fault ed |ri SO | ni 0O |rs |sp |na |r
IR Data Access Rights fault 0 ri 0 |ni 1 0 0 1/0
Data Access-Bit vector
Data Access Bit fault edk |ri SO | ni 0 |rs |sp |na |r
IR Data Access Bit fault 0 ri 0 |ni 1 0 0 1|0
Data Key Miss vector
Data Key Miss fault ed |ri SO | ni 0O |rs |sp |na |r
IR Data Key Miss fault 0 ri 0 |ni 1 0 0 1/0
Data Nested TLB vector9
Data Nested TLB fault - - - - - - - - - - -
IR Data Nested TLB fault - - - - - - - - - - -
Data TLB vector
Data TLB fault ed |ri so [nil |0 |rs sp |na |r
IR Data TLB fault 0 ri 0 |ni 1 0 0 1/0 |0
Debug vector
Data Debug fault edk |ri ni rs |sp |na |r
Instruction Debug fault 0 ri ni 0 0|0
IR Data Debug fault 0 ri ni 1
Dirty-Bit vector
Data Dirty Bit fault ed |ri |so |[ni |0 |rs |0 |na" |r |1 |O
Disabled FP-Register vector
Disabled Floating-point Register fault 0 ri 0 |ni 0o |0 sp |0 riw |0
8-3

IA-64 Interruption Vector Descriptions

8-4

Table 8-2.

ISR Values on Interruption (Continued)

Vector / Interruption ed | ei®|so|ni® |irc|rsd|sp®|naf|r|w]x

External Interrupt vector

External Interrupt 0 ri 0 |ni ir |0 0 0 0|0 |0
Floating-point Fault vector

Floating-point Exception fault 0 ri 0 |ni 0 |0 0 0 0|0 |0
Floating-point Trap vector

Floating-point Exception trap 0 ei |0 |ni 0 |0 0 0 0|0 |0
General Exception vector

Disabled ISA Transition fault 0 ri 0O [(ni |O |O 0 0 0|0 |O

lllegal Dependency fault 0 ri 0 |ni 0 |0 0 0 0|0 |0

lllegal Operation fault 0 ri 0 |ni 0 |0 0 0 00 |0

IR Unimplemented Data Address fault 0 ri 0 |ni 1 |1 0 0 1|0 (O

Privileged Operation fault 0 ri 0 |ni 0 |0 0 na [0[|0 |0

Privileged Register fault 0 i 0 |ni 0 |0 0 0 00 |O

Reserved Register/Field fault 0 ri 0 |ni 0 |0 0 0 00 |0

Unimplemented Data Address fault 0 ri 0 |ni 0 |[rs |0 na [r |w |0
IA-32 Exception vector 0 0 0 |0 0 0|0 |x
IA-32 Intercept vector 0 0 0 0 r w0
IA-32 Interrupt vector 0 0 0 (0 0 0 0 0 00 |O
Instruction Access Rights vector

Instruction Access Rights fault 0 ri 0 |ni 0 |0 0 0 00 |1
Instruction Access-Bit vector

Instruction Access Bit fault 0 ri 0 [(ni |O |O 0 0 0|0 |1
Instruction Key Miss vector

Instruction Key Miss fault 0 ri 0 |ni 0 |0 0 0 00 |1
Instruction TLB vector

Instruction TLB fault 0 ri 0 [(ni |O |O 0 0 0|0 |1
Key Permission vector

Data Key Permission fault ed® |ri SO | ni 0 |[rs |sp |na |r

Instruction Key Permission fault 0 ri 0 |ni 0 0 0 0

IR Data Key Permission fault 0 ri ni
Lower-Privilege Transfer Trap vector

Lower-Privilege Transfer trap 0 ei |0 |ni ir 0 0 0|0 |0

Unimplemented Instruction Address trap 0 ei |0 |ni ir 0 0 0|0 |0
NaT Consumption vector

Data NaT Page Consumption fault 0 ri SO | ni 0 |[rs |O na |r |w [0

Instruction NaT Page Consumption fault 0 ri ni 0 |0 0 00 |1

IR Data NaT Page Consumption fault 0 ri ni 1 0 1|0 |0

Register NaT Consumption fault 0 ri 0 |ni 0 0 na |r |w [0
Page Not Present vector

Data Page Not Present fault ed |ri SO | ni 0O |rs |sp |na |[r |w |0

Instruction Page Not Present fault 0 ri ni 0 |0 0

IR Data Page Not Present fault 0 ri ni 1 |1 0 0 1|0 (O
Single Step Trap vector

Single Step trap 0 ei |0 |ni ir |0 0 0 0|0 |0

Speculation vector

IA-64 Interruption Vector Descriptions

In

tel

Table 8-2.

Table 8-3.

ISR Values on Interruption (Continued)
Vector / Interruption ed | ei®|so| ni® |irc |rsd|sp®|nal |r|w
Speculative Operation fault 0 ri 0 |ni 0 |0 0 0 0|0

Taken Branch Trap vector
Taken Branch trap 0 ei |0 |ni ir |0 0 0 0(0 |0
Unaligned Reference vector

Unaligned Data Reference fault ed |ri 0 |ni 0 |0 sp |0 riw |0
Unsupported Data Reference vector

Unsupported Data Reference fault ed |ri 0 |ni 0 |0 0 0 1|1 |0
VHPT Translation vector

IR VHPT Data fault 0 |ri |0 |n' |2 |2 |0 |o |1]o0

VHPT Data fault edk |ri so |ni' |0 |rs sp |na |r

VHPT Instruction fault 0 ri 0 |ni 0 |0 0 0 0|0

a. ISR.ei is equal to IPSR.ri for all faults and external interrupts. For traps, ISR.ei points at the excepting
instruction.

. If ISR.ni is 1, the interruption occurred either when PSR.ic was 0 or was in-flight.

. ISR.ri captures the value of RSE.CFLE at the time of an interruption.

. ISR.rs is 1 for interruptions caused by mandatory RSE fills/spills and 0 for all others.

. ISR.sp is 1 for interruptions caused by speculative loads and zero for all others.

. ISR.na is 1 for interruptions caused by non-access instructions and zero for all others.

g. ISR is not written.

h. A faulting pr obe. w. f aul t or probe. rw. f aul t can cause a Dirty Bit fault on a non-access instruction.

i. An external interrupt was taken when mandatory RSE fills caused by a br . ret orrfi were re-loading the
current register stack frame.

j-Afaulting | f et ch. faul t or probe. f aul t to an unimplemented address will set ISR.na to 1.

k. ISR.ed is 0 if the interruption was caused by a mandatory RSE fill or spill.

I. If PSR.ic was 0 when the interruption was taken, these faults do not occur, but a Data Nested TLB fault is
taken.

® Q0T

—h

Table 8-3 provides the definition for the ISR.code field on all 1A-64 traps. Hardware will always
deliver the highest priority enabled trap. Software must look at the ISR.code hit vector to determine
if any lower priority trap occurred at the same time as the trap being processed.

ISR.code Fields on IA-64 Traps

Field Bit Range Description
fp 0 Floating-point Exception trap
Ip 1 Lower-Privilege Transfer trap
tb 2 Taken Branch trap
Ss 3 Single Step trap
ui 4 Unimplemented Instruction Address trap
fp trap code 7 IEEE O (overflow) exception (Parallel FP-LO)
fp trap code 8 IEEE U (underflow) exception (Parallel FP-LO)
fp trap code 9 IEEE | (inexact) exception (Parallel FP-LO)

fp trap code 10 FPA, Added one to significand when rounding (Parallel FP-LO)

fp trap code 11 IEEE O (overflow) exception (Normal or Parallel FP-HI)

fp trap code 12 IEEE U (underflow) exception (Normal or Parallel FP-HI)

fp trap code 13 IEEE | (inexact) exception (Normal or Parallel FP-HI)

fp trap code 14 FPA, Added one to significand when rounding (Normal or Parallel FP-HI).

IA-64 Interruption Vector Descriptions 8-5

8-6

Table 8-4.

Interruption Vectors Sorted Alphabetically

Vector Name Offset Page
Alternate Data TLB vector 0x1000 8-12
Alternate Instruction TLB vector 0x0c00 8-11
Break Instruction vector 0x2c00 8-19
Data Access Rights vector 0x5300 8-24
Data Access-Bit vector 0x2800 8-18
Data Key Miss vector 0x1c00 8-15
Data Nested TLB vector 0x1400 8-13
Data TLB vector 0x0800 8-10
Debug vector 0x5900 8-31
Dirty-Bit vector 0x2000 8-16
Disabled FP-Register vector 0x5500 8-27
External Interrupt vector 0x3000 8-20
Floating-point Fault vector 0x5c00 8-34
Floating-point Trap vector 0x5d00 8-35
General Exception vector 0x5400 8-25
1A-32 Exception vector 0x6900 8-39
IA-32 Intercept vector 0x6a00 8-40
1A-32 Interrupt vector 0x6b00 8-41
Instruction Access Rights vector 0x5200 8-23
Instruction Access-Bit vector 0x2400 8-17
Instruction Key Miss vector 0x1800 8-14
Instruction TLB vector 0x0400 8-9
Key Permission vector 0x5100 8-22
Lower-Privilege Transfer Trap vector 0x5e00 8-36
NaT Consumption vector 0x5600 8-28
Page Not Present vector 0x5000 8-21
Single Step Trap vector 0x6000 8-38
Speculation vector 0x5700 8-30
Taken Branch Trap vector 0x5f00 8-37
Unaligned Reference vector 0x5a00 8-32
Unsupported Data Reference vector 0x5b00 8-33
VHPT Translation vector 0x0000 8-7

IA-64 Interruption Vector Descriptions

Name VHPT Translation vector (0x0000)

Cause The hardware VHPT walker encountered a TLB miss while attempting to reference the virtually
addressed hashed page table for an 1A-32 or |A-64 memory reference.

Interruptions on this vector:

IR VHPT Datafault
VHPT Instruction fault
VHPT Datafault

Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.

IHA — The virtual address in the hashed page table which the hardware VHPT walker was
attempting to reference.

ITIR-ThelTIR contains default translation information for the virtual address contained in the
IHA. The access key field within this register is set to the region id value from the region register
selected by the virtual addressin the IHA. The ITIR.psfield is set to the RR.ps field from the
selected region register. All other fields are set to O.

If the fault is due to a VHPT data fault for both original instruction and data references:

* |IFA — Thefaulting address that the hardware VHPT walker was attempting to resolve.

¢ ISR—-ThelSR bitsare set to reflect the original access on whose behalf the VHPT walker was
operating. If the original operation was a non-access instruction then the |SR.code bits { 3:0}
are set to indicate the type of the non-access instruction; otherwise they are set to 0. For
mandatory RSE fill or spill references, ISR.ed isaways 0. The ISR.ni bitis0if PSR.icwas 1
when the interruption wastaken, and is 1 if PSR.ic wasin-flight. For | A-32 memory references
the ISR.code, ni, ed, €, ir, rs, sp, and na bits are always 0. The defined I SR bits are specified
below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ ni‘ ir ‘ rs‘sp‘na‘ r ‘w‘ 0 ‘

If the fault is due to a VHPT instruction fault:

* IFA —Thevirtual address of the |A-64 bundle or the 16 byte aligned | A-32 instruction address
zero extended to 64-bits or, if the hardware VHPT walker was attempting to resolve a TLB
miss, the virtual address of the trandation.

¢ ISR—-The ISR hits are set based on the original instruction fetch that the VHPT walker was
attempting to resolve. The defined ISR bits are specified below. The ISR.ni bitis0if PSR.ic
was 1 when the interruption was taken, and is 1 if PSR.ic was in-flight. For 1A-32 memory
references the e and ni bits are always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

| 0 (0| e [o|nijo/ojo]o/o]0|1]
Notes This fault can only occur when PSR.ic is 1 or in-flight, and the VHPT walker is enabled for the

referenced region. Refer to “VHPT Environment” on page 4-19 for details on VHPT enabling.

IA-64 Interruption Vector Descriptions 8-7

8-8

intel.

The original 1FA address will be needed by the operating system page fault handler in the case
where the page containing the VHPT entry has not yet been allocated. When the trandation for the
VHPT is available the handler must first move the address contained in the IHA to the IFA prior to
the TLB insert.

IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Instruction TLB vector (0x0400)

Theinstruction TLB entry needed by an 1A-64 or |A-32 instruction fetch is absent, and the
hardware VHPT walker could not find the translation in the VHPT, or the hardware VHPT walker is
enabled but not implemented on this processor.

Interruptions on this vector:
Instruction TLB fault
1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.

IHA — The virtual address of the hashed page table entry which corresponds to the reference that
raised this fault.

ITIR-ThelTIR contains default translation information for the original instruction address. The
access key field within this register is set to the region id value from the referenced region register.
TheITIR.psfieldis set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The virtual address of the | A-64 bundle or the 16 byte aligned 1 A-32 instruction address zero
extended to 64-bits.

ISR —The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. The ISR.ni bitis0if PSR.ic was 1 when the interruption was taken, and is
1if PSR.ic wasin-flight. The ISR.ei and ni bits are always 0 for 1A-32 memory references.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\o\o\o\o\o\o\l\

This fault can only occur when PSR.ic is 1 or in-flight, the VHPT hardware walker is enabled for
the referenced region, the PSR.it bit is 1, and the fetched instruction bundle is to be executed. Refer
to “VHPT Environment” on page 4-19 for details on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag mismatch,
illegal entry, or it may have terminated before reading the data. Software must be able to handle the
case where the VHPT walker fails.

IA-64 Interruption Vector Descriptions 8-9

intel.

Name Data TLB vector (0x0800)

Cause For IA-32 and | A-64 memory references, the data TLB entry needed by the data accessis absent,
and the hardware VHPT walker could not find the translation in the VHPT, or the hardware VHPT
walker is not implemented on this processor.

Interruptions on this vector:

IR Data TLB fault
Data TLB fault

Parameters IR, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.

IHA —The virtual address of the hashed page table entry which corresponds to the reference that
raised this fault.

ITIR-ThelTIR contains default translation information for the address contained in the IFA. The
access key field within thisregister is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The address of the data being referenced.

ISR — If the interruption was due to a nhon-access operation then the |SR.code bits { 3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed isalways 0. The ISR.ni bitisQif PSR.ic was 1 when the interruption was
taken, and is 1 if PSR.ic wasin-flight. The ISR.code, ed, €i, ir, rs, sp and na bits are always 0 for
IA-32 memory references. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘ ir ‘rs‘sp‘na‘ r ‘W‘ O‘
Notes The fault can only occur on an 1A-32 or 1A-64 load, store, semaphore, or non-access operation

when PSR.dt is 1, and the VHPT hardware walker is enabled for the referenced region. This fault
can only occur on a mandatory RSE load/store operation if PSR.rt is 1, and the VHPT hardware
walker is enabled for the referenced region. Refer to “VHPT Environment” on page 4-19 for details
on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag mismatch,
illegal entry, or it may have terminated before reading the data. Software must be able to handle the
case where the VHPT walker fails. The Data TLB fault isonly taken if PSR.icis 1 or in-flight,
otherwise a Data Nested TLB fault istaken.

8-10 IA-64 Interruption Vector Descriptions

Name Alternate Instruction TLB vector (0x0c00)

Cause Theinstruction TLB entry needed by an 1A-32 or |A-64 instruction fetch is absent, and the
hardware VHPT walker was not enabled for this address.

Interruptions on this vector:
Alternate Instruction TLB fault
Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.

ITIR—-ThelTIR contains default translation information for the original instruction address. The
access key field within thisregister is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
setto 0.

IFA — The virtual address of the |A-64 bundle or the 16 byte aligned | A-32 instruction address zero
extended to 64-bits.

ISR — For |A-64 memory references, the | SR.el bits are set to indicate which instruction caused the
exception and ISR.ni is set to 0 if PSR.ic was 1 when the interruption was taken, and set to 1 if
PSR.ic was 0 or in-flight. For 1A-32 memory references the ISR.ei and ni bits are 0. The defined

I SR bits are specified bel ow.

The ISR.& bits are set to indicate which instruction caused the exception. The defined ISR bits are
specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\o\o\o\o\o\o\l\

Notes This fault can only occur when the VHPT walker is disabled for the referenced region, and the
fetched instruction bundle is to be executed. Refer to “VHPT Environment” on page 4-19 for
details on VHPT enabling.

IA-64 Interruption Vector Descriptions 8-11

Name

Cause

Parameters

Notes

8-12

intel.

Alternate Data TLB vector (0x1000)

For an |A-32 or IA-64 memory references, the data TLB entry needed by data accessis absent, and
the hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

IR Alternate Data TLB fault
Alternate Data TLB fault

[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ITIR-ThelITIR contains default translation information for the address contained in the IFA. The
access key field within thisregister is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
set to O.

IFA — The address of the data being referenced.

ISR — If the interruption was due to a non-access operation then the |SR.code bits { 3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed isalways 0. The ISR.ni bitisQif PSR.ic was 1 when the interruption was
taken, and is 1 if PSR.ic wasin-flight. For 1A-32 memory references the ISR.code, ed, €, ir, rs, sp
and nabits are 0. The defined | SR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘ ir‘rs‘sp‘na‘ r ‘W‘O‘

The fault can only occur on an 1A-64 or 1A-32 load, store, semaphore, or non-access operation
when PSR.dt is 1, and the VHPT hardware walker is disabled for the referenced region. This fault
can only occur on a mandatory RSE load/store operation if PSR.rt is 1, and the VHPT hardware
walker is disabled for the referenced region. The Alternate Data TLB faultisonly taken if PSR.icis
1 or in-flight, otherwise a Data Nested TLB fault is taken. Refer to “VHPT Environment” on
page 4-19 for details on VHPT enabling.

IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Data Nested TLB vector (0x1400)

For memory references, the data TLB entry needed for a datareferenceis absent and PSR.icisO.
Note: Data Nested TLB faults can not occur during 1A-32 instruction set execution, since PSR.ic
must be 1.

Interruptions on this vector:

IR Data Nested TLB fault
Data Nested TLB fault

1P, IPSR, IIPA, IFS, ISR are unchanged from their previous values; they contain information
relating to the original interruption.

ITIR —isunchanged from the previous value.

IFA —is unchanged from the previous value and contains the original address of the data being
referenced.

This fault can only occur when PSR.dt is 1 and PSR.ic is O on a load, store, semaphore, or
non-access instruction, or when PSRu.rt is 1 and PSR.ic is 0 on a RSE mandatory load/store
operation. Since the operating system is in control of the code executing at the time of the nested
fault, it can by convention know which register contains the address that raised the nested event. As
the PSR.ic bit is 0 on a nested fault, the IFA contains the original data address if the original
interruption was caused by a data TLB fault. If the trandation table entry required by the nested
miss handler has not yet been allocated, then the address in the IFA will be passed to the operating
system page fault handler. If the trandation for the entry is available then the general register
containing the nested fault address must be moved to the IFA prior to the insert. The ISR contains
the ISR for the original faulting instruction, and not the ISR for the instruction that caused the
nested fault.

IA-64 Interruption Vector Descriptions 8-13

Name

Cause

Parameters

8-14

intel.

Instruction Key Miss vector (0x1800)

For 1A-32 and |A-64 instruction fetches, the PSR.it bit is 1, the PSR.pk bit is 1, and the access key
from the TLB entry for the address of the executing instruction bundle does not match any of the
valid protection keys.

Interruptions on this vector:
Instruction Key Miss fault
[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ITIR-ThelTIR contains default translation information for the original instruction address. The
access key field within thisregister is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
set to O.

IFA — The virtual address of the |A-64 bundle or the 16 byte aligned 1 A-32 instruction address zero
extended to 64-bits.

ISR —The ISR.qi bits are set to indicate which instruction caused the exception. For |A-32 memory
references the ISR.ei and ni bits are 0. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\o\o\o\o\o\o\l\

IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Data Key Miss vector (0x1c00)

For 1A-32 and | A-64 memory references, the PSR.dt bitis 1, the PSR.pk bit is 1, and the access key
from the TLB entry for the address referenced by aload, store, pr obe, or semaphore operation
does not match any of the valid protection keys. The RSE may cause this fault if PSR.rtis 1, the
PSR.pk bit is 1, and the access key from the TLB entry for the address referenced by an RSE
mandatory load or store operation does not match any of the valid protection keys.

Interruptions on this vector:

IR DataKey Missfault
DataKey Missfault

1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.

ITIR-ThelTIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
TheITIR.psfieldis set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — Faulting data address.

ISR — If the interruption was due to a non-access operation then the | SR.code bits{ 3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, 1ISR.ed isalways 0. For 1A-32 memory references, the ISR.code, ed, &, ni, ir, rs,
sp, and na bits are 0. The value for the I SR bits depend on the type of access performed and are
specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ ni‘ ir ‘ rs‘sp‘na‘ r ‘W‘ 0 ‘

pr obe and the faulting variant of | f et ch are the only non-access instructions that will cause a data
key missfault.

IA-64 Interruption Vector Descriptions 8-15

Name

Cause

Parameters

Notes

8-16

intel.

Dirty-Bit vector (0x2000)

IA-32 or IA-64 store or semaphore operations to a page with the dirty-bit (TLB.d) equal to 0 in the
data TLB.

Interruptions on this vector:
Data Dirty Bit fault
[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ITIR-ThelITIR contains default translation information for the address contained in the IFA. The
access key field within thisregister is set to the region id value from the referenced region register.
The ITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
setto 0.

IFA — Faulting data address.

ISR — The value for the I SR bits depend on the type of access performed and are specified below.
For mandatory RSE spill references, 1SR.ed is aways 0. For 1A-32 memory references, ISR.ed, €,
ni, andrsare 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 0 0 |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘o‘rs‘o‘na‘r‘l‘o‘

Dirty Bit fault can only occur in these situations:
e when PSR.dtis 1 on an |A-32 or |A-64 store or semaphore operation
« when PSR.dtis1onaprobe. w. fault orprobe. rw. faul t
« when PSR.rt is 1 on an RSE mandatory store operation

For probe. w. faul t or probe. rw. f aul t theISR.nahit is set.

Only an |A-32 or |A-64 semaphore, or pr obe. rw. f aul t operation would set ISR.r on adirty bit
fault.

Software isinvoked to update the dirty bit in the data TLB entry and the Page table. The PSR.da bit
can be used to suppress this fault for one executed instruction or one mandatory RSE store
operation.

IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Instruction Access-Bit vector (0x2400)

For 1A-32 or |A-64 instruction fetches, the access bit (TLB.a) in the TLB entry for this pageis O,
and an instruction on the page is referenced.

Interruptions on this vector:
Instruction Access Bit fault
1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.

ITIR-ThelITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
setto 0.

IFA — The virtual address of the |A-64 bundle or the 16 byte aligned | A-32 instruction address zero
extended to 64-bits.

ISR —ThelSR.ei bitsare set to indicate which instruction caused the exception. For |A-32 memory
references the ISR.ei and ni bits are 0. The defined I SR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\o\o\o\o\o\o\l\

The fault can only occur when PSR.it is 1 on an IA-32 or 1A-64 instruction reference. Software
uses thisfault for memory management page replacement algorithms. The PSR.ia bit can be used to
suppress this fault for one executed instruction.

IA-64 Interruption Vector Descriptions 8-17

Name

Cause

Parameters

Notes

8-18

intel.

Data Access-Bit vector (0x2800)

For 1A-32 or | A-64 data memory references, the access bit (TLB.a) inthe TLB entry for this pageis
0, and the page is referenced.

Interruptions on this vector:

IR Data Access Bit fault
Data Access Bit fault

[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ITIR-ThelITIR contains default translation information for the address contained in the IFA. The
access key field within thisregister is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
set to O.

IFA — Faulting data address.

ISR — The value for the I SR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For 1A-32 memory references,
ISR.code, ed, €, ni, ir, rs, naand sp are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘ ir‘rs‘sp‘na‘ r ‘W‘O‘

These faults can only occur in these situations:
* when PSR.dtis1 onan|A-32 or |A-64 |load, store, or semaphore operation
« when PSR.dtis1onaprobe. faul t
* whenPSR.dtislonanlfetch. fault
* when PSR.rt is 1 on an RSE mandatory load/store operation
For probe. faul t orlfetch. fault thelSR.nabitis set.
Software uses this fault for memory management page replacement algorithms. The PSR.dabit can

be used to suppress this fault for one executed instruction or one mandatory RSE memory
reference.

IA-64 Interruption Vector Descriptions

Name Break Instruction vector (0x2c00)
Cause An attempt is made to execute an 1A-64 br eak instruction.

Interruptions on this vector:

Break Instruction fault

Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.

IIM — Is updated with the br eak instruction immediate value.

ISR —The ISR.€i bits are set to indicate which instruction caused the exception. The defined ISR

bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 (0| e [o|nijo/ojo]o]o]0|0]
Notes This fault cannot be raised by 1A-32 instructions.
IA-64 Interruption Vector Descriptions 8-19

intel.

Name External Interrupt vector (0x3000)

Cause There are unmasked external interrupts pending from external devices, other processors, or internal
processor events and:

« PSR.iis 1, while executing | A-64 instructions
e PSR.island (CFLAG.if is0Oor EFLAG.if is 1), while executing | A-32 instructions
IPSR.isindicates which instruction set was executing at the time of the interruption.

Interruptions on this vector:
External Interrupt
Parameters IR, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.

IVR — Highest priority unmasked pending external interrupt vector number. If there are no
unmasked pending interrupts the “ spurious” interrupt vector (15) is reported.

ISR — The ISR.€el bits are set to indicate which instruction was to be executed when the external
interrupt event was taken. The defined | SR bits are specified bel ow. For external interrupts taken in
the |A-32 instruction set, ISR.€i, ni and ir bitsare 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 (0| e |ofnijirjojoj0]0/0|0
Notes: Software is expected to avoid situations which could cause ISR.ni to be 1.

8-20 IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Page Not Present vector (0x5000)

The |A-64 bundle or 1A-32 instruction being executed resides on a page for which the P-bit
(TLB.p) intheinstruction TLB entry is O, or the data being referenced resides on a page for which
the P-bit in the data TLB entry is 0.

Interruptions on this vector:

IR Data Page Not Present fault
Instruction Page Not Present fault
Data Page Not Present fault

1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.

ITIR-ThelTIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
TheITIR.psfieldis set to the RR.ps field from the referenced region register. All other fields are
set to 0.

If the fault is due to a data page not present fault for both instruction and data original references:

» IFA —Thevirtual address of the data being referenced.

« ISR - If theinterruption was due to a non-access operation then the I SR.code bits { 3:0} areset to
indicate the type of the non-access instruction; otherwise they are set to 0. The value for the ISR
bits depend on the type of access performed and are specified below. For mandatory RSE fill or
spill references, |SR.ed is always 0. For |A-32 memory references, |SR.code, ed, €, ni, ir, rs, sp
and nabits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ ni‘ ir ‘ rs‘sp‘na‘ r ‘w‘ 0 ‘

If the fault is due to an instruction page not present fault:
* IFA —Thevirtual address of the |A-64 bundle or the 16 byte aligned |A-32 instruction address
zero extended to 64-hits.

* ISR—-ThelSR.ei bits are set to indicate which instruction caused the exception. The defined
ISR bits are specified below. For |A-32 memory referencesthe ISR.ei and ni bitsare 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\o\o\o\o\o\o\l\

This fault can only occur when PSR.it is 1 on an instruction reference, when PSR.dt is 1 on aload,
store, semaphore, or non-access operation, or when PSR.rt is 1 on a RSE mandatory |load/store
operation.

IA-64 Interruption Vector Descriptions 8-21

Name

Cause

Parameters

Notes

8-22

intel.

Key Permission vector (0x5100)

|A-32 or IA-64 data access: The PSR.dt bit is 1, the PSR.pk bit is 1 and read or write permission is
disabled by the matching protection register on aload, store, or sesmaphore operation. The RSE may
cause thisfault if PSR.rtis 1, the PSR.pk bit is 1 and read or write permission is disabled by the
matching protection register on an RSE mandatory |oad/store operation. |A-32 or | A-64 instruction
access: The PSR.it bit is 1, the PSR.pk bit is 1 and execute permission is disabled by the matching
protection register.

Interruptions on this vector:

IR Data Key Permission fault
Instruction Key Permission fault
Data Key Permission fault

[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ITIR-ThelTIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region
register.The ITIR.psfield is set to the RR.ps field from the referenced region register. All other
fieldsare setto O.

If the fault is due to a data key permission fault:

¢ IFA —Faulting data address.

* ISR—Thevauefor the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed isaways 0. For 1A-32 memory references, the
ISR.code, ed, €, ni, ir, rs, sp bitsare 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘ ir‘rs‘sp‘na‘ r ‘W‘O‘

If the fault is due to an instruction key permission fault:
¢ IFA —The virtual address of the |A-64 bundle or the 16 byte aligned |A-32 instruction address
zero extended to 64-hits.

¢ ISR—-ThelISR.ei bits are set to indicate which instruction caused the exception. The defined
ISR bits are specified below. For |A-32 memory references, ISR.ei and ni are set to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\o\o\o\o\o\o\l\

For probe.faul t orlfetch. fault thelSR.nabitis set.

IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Instruction Access Rights vector (0x5200)

For 1A-32 and |A-64 instruction fetches, the PSR.it bit is 1, and the access rights for this page do
not allow execution or do not allow execution at the current privilege level.

Interruptions on this vector:
Instruction Access Rights fault
1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.

ITIR-ThelITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
setto 0.

IFA — The virtual address of the |A-64 bundle or the 16 byte aligned | A-32 instruction address zero
extended to 64-bits.

ISR —The ISR.ei hits are set to indicate which instruction caused the exception. The defined
I SR bits are specified below. For 1A-32 memory references, ISR.ei and ni bitsare 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\o\o\o\o\o\o\l\

This fault does not occur if PSR.itisO.

IA-64 Interruption Vector Descriptions 8-23

Name

Cause

Parameters

Notes

8-24

intel.

Data Access Rights vector (0x5300)

For 1A-32 and |A-64 memory references, the PSR.dt bit is 1, and the access rights for this page do
not allow read access or do not allow read access at the current privilege level for load and
semaphore operations. The PSR.dt bit is 1, and the access rights for this page do not allow write
access or do not allow write access at the current privilege level for store and semaphore
operations.

The PSR.rt bitis 1, and the access rights for this page do not allow read access or do not allow read
access at the current privilege level for the RSE mandatory |oad operation. The PSR.rt bit is 1, and
the access rights for this page do not allow write access or do not allow write access at the current
privilege level for the RSE mandatory store operation.

Interruptions on this vector:

IR Data Access Rights fault
Data Access Rights fault

1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ITIR-ThelTIR contains default translation information for the address contained in the IFA. The
access key field within thisregister is set to the region id value from the referenced region register.
TheITIR.psfield is set to the RR.ps field from the referenced region register. All other fields are
setto 0.

IFA — Faulting data address.

ISR — The value for the I SR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For 1A-32 memory references,
ISR.code, ed, €i, ni, ir, rs, and sp bitsare 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘ ir‘rs‘sp‘na‘ r ‘W‘O‘

For probe.fault orlfetch. fault thelSR.nabit is set.

IA-64 Interruption Vector Descriptions

Name General Exception vector (0x5400)

Cause An attempt is being made to execute an illegal operation, privileged instruction, access a privileged
register, unimplemented field, unimplemented register, unimplemented address, or take an
inter-instruction set branch when disabled.

Interruptions on this vector:

IR Unimplemented Data Address fault
Illegal Operation fault

I1legal Dependency fault

Privileged Operation fault

Disabled Instruction Set Transition fault
Reserved Register/Field fault
Unimplemented Data Address fault
Privileged Register fault

Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.

ISR —The ISR.ei hits are set to indicate which instruction caused the exception. For 1A-32
instruction set faults, ISR.€i, ni, na, sp, rs, ir, ed bits are always 0.

« If the fault was caused by a non-accessinstruction, |SR.code{ 3:0} specifies which non-access
instruction. See “Non-access Instructions and Interruptions’ on page 5-9.

e ISR.code{ 7:4} = 0: IA-64 lllegal Operation fault. Cannot be raised by |A-32 instructions.
» An attempt is being made to execute an illegal operation. Illegal operations include:

Attempts to execute instructions containing reserved major opcodes, reserved
sub-opcodes, or reserved instruction fields, writing GR 0, FR 0 or FR 1, writing a
read-only register, or accessing areserved register.

Attempts to execute a reserved template encoding. Anrfi to areserved template
encoding preserves IPSR.ri and will set ISR.& to IPSRu.ri.

Attempts to execute a bundle of template MLX when PSR.ri == 2. This can only be
caused by doing anr fi with an improper setting of IPSR.ri. In this case, IPSR.ri and
ISR.ei will both be 2.

Attempts to write outside the current register stack frame.

Attempts to specify the same GR, when the instruction has two GR targets (e.g.
post-increment).

If the instruction has two PR targets, and specifies the same PR for both. Predicated

off unconditional compares, f cl ass, t bi t,andt nat instructionstakethisfault, even
when their qualifying predicateis zero.

Register bank conflict on a floating-point load pair instruction.

An accessto BSPSTORE or RNAT is performed with a non-zero RSC.mode, or a
| oadr s is performed with a non-zero RSC.mode.

A | oadr s is performed with a non-zero CFM .sof and a non-zero RSC.loadrs, or a
| oadr s causes more registers to be loaded from memory than can fit in the physical
stacked register file.

Attemptsto predicate abr . i a instruction or to execute br . i a when
AR[BSPSTORE] !'= AR[BSP].

Attempts to execute epc if PFS.ppl islessthan PSR.cpl.

Attempts to access interruption registersif PSR.icis 1.

IA-64 Interruption Vector Descriptions 8-25

8-26

intel.

« Attemptsto executeani tc oritr instruction if PSR.icis1.
 ISR.code{ 7:4} = 1: 1A-64 Privileged Operation fault. Cannot be raised by 1A-32 instructions.
» ISR.code{ 7:4} = 2: 1A-64 Privileged Register fault. Cannot be raised by 1A-32 instructions.

 ISR.code{ 7:4} = 3: 1A-64 Reserved Register/Field fault, Unimplemented Data Address fault
or IR Unimplemented Data Address fault. Cannot be raised by |A-32 instructions. For
Unimplemented Data Address fault:

* If ISR.rs=0: A data memory reference to an unimplemented address has occurred.
e If ISR.rs= 1. A mandatory RSE reference to an unimplemented address has occurred.

For details, refer to Section 3.1.1, “Reserved and Ignored Registers and Fields’ on page 3-2 in
Volume 1 and “Unimplemented Address Bits’ on page 4-24.

* ISR.code{ 7:4} = 4: Disabled Instruction Set Transition fault. An instruction set transition was
attempted while PSR.di was 1. Thisfault can beraised by either the|A-64 br . i a instruction or
the lA-32j npe instruction. IPSR.is indicates the faulting instruction set.

 ISR.code{ 7:4} = 8: 1A-64 |llegal Dependency fault. Cannot be raised by 1A-32 instructions.
The processor has detected a resource dependency violation.

If the fault isdueto an Illegal Operation fault or Illegal Dependency fault:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code(7:4}| 0 |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\o\o\o\o\o\o\o\

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ 0 0 0 ‘ code{7:4} ‘ code{3:0} ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘0‘ ei ‘O‘ni‘ir‘rs‘sp‘na‘r‘w‘o‘

IA-64 Interruption Vector Descriptions

Name Disabled FP-Register vector (0x5500)
Cause An attempt is made to reference a floating-point register set that is disabled.

When PSR.dfl is 1, execution of any |A-32 FP, SSE or MM X instructions raises a Disabled FP
Register Low Fault (regardless of whether FR2 - FR31 are actually referenced).

When PSR.dfhis 1, execution of thefirst IA-32 instruction followingabr.iaorrfi raisesa
Disabled FP Register High fault.

If concurrent |A-32 Disabled FP Register High and Low faults are generated, the Disabled FP
Register High fault takes precedence and is reported in the ISR code, the Disabled FP Register Low
fault is discarded and not reported in the ISR code.

Interruptions on this vector:
Disabled Floating-point Register fault
Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.
ISR — The defined ISR bits are specified bel ow.

¢ ISR.code{ 0} = 1: FR2 - FR31 disabled and access attempted.
¢ ISR.code{ 1} = 1: FR32 - FR127 disabled and access attempted.
For 1A-32 references, ISR.ei, ni, sp, r, and w bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ 0 ‘ 0 0 ‘code‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\o\o\sp\o\r\w\o\

IA-64 Interruption Vector Descriptions 8-27

intel.

Name NaT Consumption vector (0x5600)

Cause A non-speculative I1A-64 or | A-32 operation (e.g. load, store, control register access, instruction
fetch etc.) read a NaT source register, NaTVal source register, or referenced a NaT Page.

Interruptions on this vector:

IR Data NaT Page Consumption fault
Instruction NaT Page Consumption fault
Register NaT Consumption fault

Data NaT Page Consumption fault

Parameters IR, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.

If the fault is due to a Data NaT Page Consumption fault or an IR Data NaT Page Consumption
fault:

A non-speculative 1A-64 integer/FP instruction or instruction fetch or |A-32 data memory
reference accessed a page with the NaT Page memory attribute.

* |IFA —faulting data address.

* ISR —-Thevalue for the ISR bits depend on the type of access performed and are specified
below. For mandatory RSE fill or spill references, |SR.ed isaways 0. For the | A-32 instruction
set, ISR.ed, €, ni, ir, rsand nabitsare 0. For probe. faul t orl fetch. faul t thelSR.nabitis
Set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | 2| code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘0‘ ei ‘so‘ni‘ir‘rs‘o‘na‘r‘w‘o‘

If the fault is due to an Instruction NaT Page Consumption fault:
A non-speculative 1A-64 integer/FP instruction or instruction fetch accessed a page with the
NaTPage memory attribute.

* IFA —Thevirtual address of the |A-64 bundle or the 16 byte aligned | A-32 instruction address
zero extended to 64-hits.

* ISR —Thevalue for the ISR bits depend on the type of access performed and are specified
below. For the IA-32 instruction set, ISR.ni and e bitsare 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ 0 0 0 \ 2 \ 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
\ 0 \o\ ei \o\m\o\o\o\o\o\o\l\

8-28 IA-64 Interruption Vector Descriptions

If the fault is due to an Register NaT Consumption fault:

A non-speculative 1A-64 instruction reads a NaT’ ed GR or an FR containing NaTVal. An
IA-32 integer instruction reads a NaT’ ed GR. For 1A-32 instructions behavior of NaT and

NaTVal valuesis model specific, see Section 6.4.3 "I A-64 NaT/NaTVal Response for |A-32
Instructions" in Volume 1 for details.

¢ ISR —Thevaluefor the ISR bits depend on the type of access performed and are specified
below. For the IA-32 instruction set, ISR.ed, €, ni, ir, rs, r, w, and na bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 |1 | code{3.0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\o\o\o\na\r\w\o\

IA-64 Interruption Vector Descriptions 8-29

intel.

Name Speculation vector (0x5700)

Cause A chk. a, chk. s, or f chkf instruction needsto branch to recovery code, and the branching
behavior is unimplemented by the processor. This fault can not be raised by 1A-32 instructions.

Interruptions on this vector:
Specul ative Operation fault
Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.
1M — contains the immediate value from the chk. s, chk. a, or f chkf instruction.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The type of

instruction which caused the fault is encoded in the lower four bits of the | SR.code field.
 If ISR.code{3:0} = 0: chk. a general register speculation fault.

If ISR.code{3:0} = 1: chk. s general register speculation fault.

If ISR.code{3:0} = 2: chk. a floating-point speculation fault.

If ISR.code{3:0} = 3: chk. s floating-point speculation fault.

If ISR.code{3:0} = 4: f chkf fault.

The defined ISR hits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 | 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\o\o\o\o\o\o\o\

8-30 IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Debug vector (0x5900)

A debug fault has occurred. Either the instruction address matches the parameters set up in the
instruction debug registers, or the data address of aload, store, semaphore, or mandatory RSE fill
or spill matches the parameters set up in the data debug registers. All 1A-32 instruction set debug
events are delivered on the IA_32_ Exception(Debug) vector; see Chapter 9, “IA-32 Interruption
Vector Descriptions’. | A-32 instructions can not raise this fault, |A-32 debug events are delivered
on the IA-32_Exception(Debug) vector.

Interruptions on this vector:

IR Data Debug fault
Instruction Debug fault
Data Debug fault

1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.
If the fault is due to a data debug fault or an IR Data Debug fault:

¢ IFA —The address of the data being referenced.

¢ ISR—Thevaluefor the ISR bits depend on the type of access performed and are specified
below. For mandatory RSE fill or spill references, ISR.ed is always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 0 0 | code{3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘O‘ni‘ir‘rs‘sp‘na‘r‘w‘o‘

If the fault is due to an instruction debug fault:

¢ IFA — Faulting instruction fetch address.

¢ ISR—-TheISR.ei bits are set to indicate which instruction caused the exception. The defined
ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\o\o\o\o\o\o\l\

On aninstruction reference this fault is suppressed if the PSR.db bit isO or if the PSR.id bitis 1. On
a data reference this fault is suppressed if the PSR.db bit is O or if the PSR.dd bit is 1. The only
non-access data operations which can cause a debug fault are the faulting variants of | f et ch and
pr obe.

IA-64 Interruption Vector Descriptions 8-31

Name

Cause

Parameters

8-32

intel.

Unaligned Reference vector (0x5a00)

If PSR.ac is 1, and the |A-64 data address being referenced is not aligned to the natural size of the
load, store, or semaphore operation, or adata reference is made to a misaligned datum not
supported by the implementation. See Section 4.4 "Memory Access Instructions” in Volume 1. For
| A-32 data memory references, an |A_32_Exception(Alignment Check) fault is raised; see
Chapter 9, “1A-32 Interruption Vector Descriptions’. | A-32 instructions can not raise this fault,
IA-32 unaligned events are delivered on the | A-32_Exception(Alignment_Check) vector.

If the data reference specified is both unaligned to the natural datum size and unsupported, then an
Unaligned Data Reference fault is taken.

Interruptions on this vector:
Unaligned Data Reference fault
[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.
IFA — The address of the data being referenced.
ISR — The value for the I SR bits depend on the type of access performed and are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ 0 0 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘O‘nl‘o‘o‘sp‘o‘r‘w‘o‘

IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Unsupported Data Reference vector (Ox5b00)
An attempt was made to:

e Executeaf et chadd, cnpxchg, xchg, or unsupported 10-byte memory reference (I df e or
st f e) instruction to a page that is neither cacheable with write-back write policy nor a
NaT Page.

« Executeaf et chadd instruction to a page that is an uncacheabl e exported (UCE) page and the
processor model does not support exporting of f et chadd instructions.

See “Effects of Memory Attributes on Memory Reference Instructions’ on page 4-36 for details.
I A-32 instructions can not raise this fault, | A-32 locked faults are delivered on the
IA-32_Intercept(L ock) vector.

If the data reference specified is both unaligned to the natural datum size and unsupported, then an
Unaligned Data Reference fault is taken.

| A-32 data memory references that require an external atomic lock when DCR.Icis 1, raise an
IA_32_Intercept(Lock) fault; see Chapter 9, “IA-32 Interruption Vector Descriptions”.

Interruptions on this vector:
Unsupported Data Reference fault
1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.
IFA — The address of the data being referenced.
ISR —The value for the I SR bits depend on the type of access performed and are specified below.
‘31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \ed\ ei \o\ni\o\o\o\o\l\l\o\

IA-64 Interruption Vector Descriptions 8-33

intel.

Name Floating-point Fault vector (0x5c00)

Cause A floating-point exception fault has occurred. | A-32 numeric instructions can not raise this fault,
| A-32 floating-point faults are delivered on the | A-32_Exception(floating-point) vector.

Interruptions on this vector:
Floating-point Exception fault
Parameters |IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.
ISR — The ISR.ei bits are set to indicate which instruction caused the exception.

I SR.code contains information about the FP exception fault. The ISR.code field has eight bits
defined. See Chapter 5, “1A-64 Floating-point Programming Model” in Volume 1 for details.
* ISR.code{0} = 1: IEEE V (invalid) exception (Normal or Parallel FP-HI)
 ISR.code{ 1} = 1: Denormal/Unnormal operand exception (Normal or Parallel FP-HI)
» ISR.code{ 2} = 1: IEEE Z (divide by zero) exception (Normal or Parallel FP-HI)
 ISR.codg{ 3} = 1: Software assist (Normal or Parallel FP-HI)
* ISR.code{4} = 1: IEEE V (invalid) exception (Paralel FP-LO)
* ISR.codg{ 5} = 1: Denormal/Unnormal operand exception (Parallel FP-LO)
» ISR.code{ 6} = 1: IEEE Z (divide by zero) exception (Paralel FP-LO)
* ISR.code{ 7} = 1: Software assist (Parallel FP-LO)
The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 | 0 | 0 | code{7:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\o\o\o\o\o\o\o\

8-34 IA-64 Interruption Vector Descriptions

Name Floating-point Trap vector (0x5d00)
Cause A floating-point exception trap has occurred. |A-32 numeric instructions can not raise this trap.
Interruptions on this vector:
Floating-point Exception trap
Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.
ISR —The ISR.€i hits are set to indicate which instruction caused the exception.

I SR.code contains information about the type of FP exception and |EEE information. The ISR code
field contains a bit vector (see Table 8-3 on page 8-5) for all traps which occurred in the
just-executed instruction. The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ 0 ‘ 0 ‘O‘ fp trap code ‘O‘O‘O‘ss‘o‘o‘l‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\o\o\o\o\o\o\o\

IA-64 Interruption Vector Descriptions 8-35

Name

Cause

Parameters

Notes

8-36

Lower-Privilege Transfer Trap vector (0x5e00)
Two trapping conditions transfer control to this vector:

« An attempt is made to execute an instruction at an unimplemented address, resulting in an
Unimplemented Instruction Address trap. See “Unimplemented Address Bits’ on page 4-24.

» ThePSR.Ip bitis 1, and a branch lowers the privilege level.
| A-32 instructions can not raise this trap.

Interruptions on this vector:

Unimplemented Instruction Address trap
Lower-Privilege Transfer trap

[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The | SR.code
contains a hit vector (see Table 8-3 on page 8-5) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ 0 ‘ 0 ‘ fp trap code ‘O‘O‘ui‘ss‘tb‘lp‘fp‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 (0| e |ofnijirjojoj0]0/0|0

The Unimplemented I nstruction Address trap can be the result of an inline instruction fetch, ataken
or not-taken branch or anr f i . The lower privilege transfer trap is only taken on a branch demotion,
andnotanrfi return.

IA-64 Interruption Vector Descriptions

Name Taken Branch Trap vector (0x5f00)

Cause A taken branch was executed, and the PSR.tb bit is 1. | A-32 instructions can not raise this trap,
| A-32 taken branch traps are delivered on the | A-32_Exception(Debug) vector.

The Taken Branch trap isnot taken onanr fi instruction.
Interruptions on this vector:
Taken Branch trap
Parameters 1IP, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.

ISR —The ISR.€i hits are set to indicate which instruction caused the exception. The I SR.code
contains a bit vector (see Table 8-3 on page 8-5) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 | 0 | 0 0fofo]ss[1]o]0]
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\m\ur\o\o\o\o\o\o\

IA-64 Interruption Vector Descriptions 8-37

Name

Cause

Parameters

8-38

intel.

Single Step Trap vector (0x6000)

An instruction was successfully executed, and the PSR.ss it is 1. For |A-32 instruction set, this
condition is delivered on the IA_32 Exception(Debug) vector; see Chapter 9, “IA-32 Interruption
Vector Descriptions’. 1A-32 instructions can not raise thistrap, |A-32 single step events are
delivered on the |A-32_Exception(Debug) vector.

The Single Step trap isnot takenonanr fi instruction.
Interruptions on this vector:
Single Step trap
[P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for adetailed description.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The | SR.code
contains a hit vector (see Table 8-3 on page 8-5) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 0 | 0 | 0 ofofof1]0]0]0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\ir\o\o\o\o\o\o\

IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

IA-32 Exception vector (0x6900)

A fault or trap was raised while executing from the 1A-32 instruction set.

Interruptions on this vector:

IA-32 Instruction Debug fault

| A-32 Code Fetch fault

IA-32 Instruction Length > 15 bytes fault
IA-32 Device Not Available fault
|A-32 FP Error fault

IA-32 Segment Not Present fault
| A-32 Stack Exception fault

| A-32 General Protection fault
IA-32 Divide by Zero fault
IA-32 Alignment Check fault
|A-32 Bound fault

IA-32 INTO trap

IA-32 Breakpoint (INT 3) trap
|A-32 Data Breakpoint trap
|A-32 Taken Branch trap

IA-32 Single Step trap

1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.
IFA —isundefined. The faulting |A-32 addressis contained in [1PA.
ISR — ISR.vector contains the | A-32 exception vector number. |SR.code contains the 1A-32 error

code for faults or atrap code listing concurrent trap events for traps.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

‘ 0 vector error_code/trap_code ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 0/ o Jofojojojojojo]o]x

See Chapter 9, “IA-32 Interruption Vector Descriptions’ for complete details on each 1A-32
Exception and for error code and trap code definition.

IA-64 Interruption Vector Descriptions 8-39

intel.

Name IA-32 Intercept vector (0x6a00)

Cause An intercept fault or trap was rai sed while executing from the | A-32 instruction set. This vector
handles all the 1A-32 intercepts described in Chapter 9, "IA-32 Interruption Vector Descriptions'.

Interruptions on this vector:

IA-32 Invalid Opcode fault

|A-32 Instruction I ntercept fault
|A-32 Locked Data Reference fault
|A-32 System Flag Intercept trap
IA-32 Gate Intercept trap

Parameters IR, IPSR, IIPA, IFS —are defined; refer to page 8-1 for a detailed description.
[IM — 64-bit information describing the cause of the intercept.
ISR — ISR.vector contains a number specifying the type of intercept. | SR.code contains the |A-32

specific intercept information or atrap code listing concurrent trap events for traps.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 intercept_number intercept_code/trap_code
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 0 o Jofojoj0joo]r|w]o
Notes See Chapter 9, “IA-32 Interruption Vector Descriptions’ for complete details on each 1A-32

Intercept and for the intercept code and trap code definition.

8-40 IA-64 Interruption Vector Descriptions

Name

Cause

Parameters

Notes

IA-32 Interrupt vector (0x6b00)

An 1A-32 software interrupt trap was executed. This vector handles all the |1A-32 software
interrupts described in Chapter 9, “IA-32 Interruption Vector Descriptions’.

Interruptions on this vector:
IA-32 Software Interrupt (INT) trap
1P, IPSR, IIPA, IFS — are defined; refer to page 8-1 for a detailed description.
ISR — ISR.vector contains the |A-32 defined interruption vector number. 1SR.code contains a trap

code listing concurrent trap events.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 vector trap_code
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 0] o Jofojojojojojojo]o

See Chapter 9, “1A-32 Interruption Vector Descriptions’ for complete details on this vector and the
trap code definition.

IA-64 Interruption Vector Descriptions 8-41

8-42

IA-64 Interruption Vector Descriptions

IA-32 Interruption Vector Descriptions 9

This section gives detailed description of al possible | A-32 exceptions, interrupts and intercepts
that can occur during 1A-32 instruction set execution in the | A-64 System Environment.
Interruption resources not noted below are undefined after the interruption. For all cases where an
interruption is taken out of the IA-32 instruction set, IPSR.isis set to 1.

9.1 IA-32 Trap Code

The following trap code is defined for concurrent traps reported during 1A-32 instruction set
execution. Thereis abit for every possible concurrent trap condition.
Figure 9-1. IA-32 Trap Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 \bs\bz\bl\bo\ss\tb\ 0 \

Table 9-1. IA-32 Trap Code

Bit Name Description
2 tb taken branch trap, set if an 1A-32 branch is taken and branch traps are enabled
(PSR.this 1)
3 Ss single step trap, set after the successful execution of every 1A-32 instruction if PSR.ss
or EFLAG.tfis 1.
4-7 b0 to b3 Data breakpoint trap due to a match with the corresponding IA-64 data breakpoint

registers. Each bit indicates a match with the corresponding DBR registers; bO=DBR0/
1, b1=DBR2/3, b2=DBR4/5, b3=DBR6/7. Zero, one or more bits may be set. These
bits accumulate data breakpoint register matches that occurred during the duration of
executing one IA-32 instruction. In order to be reported, the DBR register address and
mask registers must precisely match the IA-32 data memory reference address, and
the DBR read, write bits match the type of memory transaction, and the DBR privilege
level mask match the value in PSR.cpl.

9.2 IA-32 Interruption Vector Definitions

Following are the definitions of 1A-32 exceptions, interrupts and intercepts that can occur during
I A-32 instruction set execution in the | A-64 environment.

IA-32 Interruption Vector Descriptions 9-1

intel.

Name IA_32_Exception(Divide) - Divide Fault

Cause IA-32 IDIV or DIV instruction attempted a divide by zero operation. Refer to the Intel Architecture
Software Devel oper’s Manual for a complete definition of this fault.

Parameters 1IP- virtua |A-32 instruction address zero extended to 64-bits
[1PA - virtual address of the faulting 1A-32 instruction zero extended to 64-bits.

ISR.vector - 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0] o Joo[o[o]o]o[o]o]o]

9-2 IA-32 Interruption Vector Descriptions

Name

Cause

Parameters

IA_32_Exception(Debug) - Code Breakpoint Fault

| A-64 debug facilities triggered an |A-32 code breakpoint fault on alA-32 instruction fetch and
PSR.id and EFLAG.rf are 0. Refer to the Intel Architecture Software Developer’s Manual for a
complete definition of thisfault.

[P - virtual 1A-32 instruction address zero extended to 64-bits
I1PA - virtual address of the faulting IA-32 instruction zero extended to 64-bits.
ISR.vector - 1

ISRx -1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
L | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o JoJojo]o[o]o]o]o]1]

IA-32 Interruption Vector Descriptions 9-3

Name

Cause

Parameters

9-4

intel.

IA_32_Exception(Debug) - Data Breakpoint, Single Step, Taken Branch Trap

| A-64 debug facilities triggered an |A-32 data breakpoint, single-step or branch trap. In the |A-64
System Environment, 1A-32 Mov SS or Pop SS single step and data breakpoint traps are NOT
deferred to the next instruction. Refer to the Intel Architecture Software Developer’s Manual for a
complete definition of this trap.

[1PA - virtual address of the trapping |A-32 instruction (zero extended to 64-hits) if there was a
taken branch trap. Otherwise, if there was no taken branch trap (data breakpoint and/or single step)
[1PA is set to the same value as | IP.

[P - next |A-64 instruction address or the virtual 1A-32 instruction address zero extended to
64-bits.

ISR.vector - 1

ISR.code - Trap Code, indicates Concurrent Single Step, Taken Branch, Data Breakpoint Trap
events

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0] o Joo[o[o]o]o[o]o]o]

IA-32 Interruption Vector Descriptions

intel.

Name IA_32_Exception(Break) - INT 3 Trap

Cause IA-32 breakpoint instruction (INT 3) triggered atrap. Refer to the Intel Architecture Software
Developer’s Manual for a complete definition of thistrap.

Parameters 1IPA - trapping virtual 1A-32 instruction address zero extended to 64-bits
[P - next virtual 1A-32 instruction address zero extended to 64-bits
ISR.vector - 3
ISR.code -Trap Code, indicates Concurrent Single Step condition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3 ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o JoJojojojo]o]o]o]o]

IA-32 Interruption Vector Descriptions 9-5

intel.

Name IA_32_Exception(Overflow) - Overflow Trap

Cause IA-32 INTO instruction execution when EFLAG.of is set to one. Refer to the Intel Architecture
Software Devel oper’s Manual for a complete definition of this trap.

Parameters |IPA - trapping virtual |A-32 instruction address zero extended to 64-bits
[P - next virtual 1A-32 instruction address zero extended to 64-bits
ISR.vector - 4
ISR.code - Trap Code, indicates Concurrent Single Step

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4 ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0] o Joo[o[o]o]o[o]o]o]

9-6 IA-32 Interruption Vector Descriptions

intel.

Name IA_32_Exception(Bound) - Bounds Fault

Cause Failed | A-32 Bound check instruction. Refer to the Intel Architecture Software Developer’s Manual
for acomplete definition of this fault.

Parameters |IP - virtua |A-32 instruction address zero extended to 64-bits
I1PA - virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector - 5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
5 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o JoJojo]o[o]o]o]o]o]

IA-32 Interruption Vector Descriptions 9-7

intel.

Name IA_32_Exception(InvalidOpcode) - Invalid Opcode Fault

Cause All lA-32 invalid opcode faults are delivered to the | A-32_Intercept(I nstruction) handler, including
IA-32 illegal, unimplemented opcodes, MM X and Streaming SIMD Extension instructions if
CRO.EM is 1, and Streaming SIMD Extension instructions if CR4.fxsr is 0. All illegal 1A-32
floating-point opcodes result in an 1A-32_Intercept(Instruction) regardless of the state of CR0.em.

9-8 IA-32 Interruption Vector Descriptions

Name IA_32_Exception(DNA) - Device Not Available Fault
Cause The processor executed an 1A-32 ESC or floating-point instruction with CRO.emis 1. Or an 1A-32

WAIT, ESC, floating-point instruction, MM X or Streaming SIMD Extension instruction is
executed and CRO.ts bit is 1.

Refer to the Intel Architecture Software Developer’s Manual for a complete definition of this fault.
Parameters 1IP - virtual 1A-32 instruction address zero extended to 64-bits

I1PA - virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector - 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o JoJojojojo]o]o]o]o]

IA-32 Interruption Vector Descriptions 9-9

intel.

Name Double Fault
Cause |A-32 Double Faults (1A-32 vector 8) are not generated by the processor in the |A-64 System
Environment.

9-10 IA-32 Interruption Vector Descriptions

Name Invalid TSS Fault

Cause IA-32 Invalid TSS Faults (I1A-32 vector 10) are not generated in the |A-64 System Environment.

IA-32 Interruption Vector Descriptions 9-11

intel.

Name IA_32_Exception(NotPresent) - Segment Not Present Fault
Cause Generated when the processor detects the Present-bit of the memory segment descriptor is zero

during an IA-32 segment load or far control transfer instructions. Refer to the Intel Architecture
Software Devel oper’s Manual for a complete definition of this fault and error codes.

Parameters |IP - virtual 1A-32 instruction address zero extended to 64-bits
[1PA - virtual address of the faulting | A-32 instruction zero extended to 64-bits.
ISR.vector - 11
ISR.code - | A-32 defined error code. See Intel Architecture Software Developer’s Manual.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
11 ‘ error_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o Jojojojojojo]o]o]o]

9-12 IA-32 Interruption Vector Descriptions

Name IA_32_Exception(StackFault) - Stack Fault

Cause I A-32 defined set of stack segment fault conditions detected during stack segment load operations
or memory references relative to the stack segment, refer to the Intel Architecture Software
Developer’s Manual for acomplete list of al 1A-32 faulting conditions. Stack faults can also be
generated when the processor detects an inconsistent stack segment register descriptor value during
an |A-32 stack referenceinstruction (e.g. PUSH, POP, CALL, RET,). See Section 6.2.3.2 " Segment
Descriptor and Environment Integrity” in Volume 1 for alist of possible inconsistent register
descriptor conditions.

Parameters |IP - virtua |A-32 instruction address zero extended to 64-bits
I1PA - virtual address of the faulting IA-32 instruction zero extended to 64-bits.
ISR.vector - 12

ISR.code - |A-32 defined ErrorCode. Zero if aninconsistent register descriptor is detected during a
memory reference relative to the stack segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
12 ‘ error_code or zero ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o Jojojojojojo]o]o]o]

IA-32 Interruption Vector Descriptions 9-13

Name

Cause

Parameters

9-14

intel.

IA_32_Exception(GPFault) - General Protection Fault

| A-32 defined set of data and code segment fault conditions detected during data or code segment
load operations or memory references relative to code or data segments, refer to the Intel
Architecture Software Developer’s Manual for acompletelist of al 1A-32 General Protection Fault
conditions. General Protection faults can also be generated when the processor detects an
inconsistent code or data segment register descriptor value during an | A-32 code fetch or data
memory reference. See Section 6.2.3.2 " Segment Descriptor and Environment Integrity" in
Volume 1 for alist of possible inconsistent register descriptor conditions.

[P - virtual 1A-32 instruction address zero extended to 64-bits
I1PA - virtual address of the faulting 1A-32 instruction zero extended to 64-bits.
ISR.vector - 13

ISR.code-1A-32 defined ErrorCode. Zero if aninconsistent register descriptor is detected during a
memory reference relative to a code or data segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
13 ‘ error_code or zero ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0] o [ofofo[o]o[o[o[o]o]

IA-32 Interruption Vector Descriptions

Name Page Fault
Cause | A-32 defined page faults (1A-32 vector 14) can not be generated in the 1A-64 System
Environment.

IA-32 Interruption Vector Descriptions 9-15

Name

Cause

Parameters

9-16

intel.

IA_32_Exception(FPError) - Pending Floating Point Error

An unmasked 1A-32 floating-point exception is delivered on the next non-control |A-32 floating-
point, MM X, WAIT, or IMPE instruction trigger delivery of this exception. Floating-point errors are
delivered regardless of the state of CRO.ne in the |A-64 System Environment. | A-32 numeric
exception delivery is not triggered by 1A-64 numeric exceptions or the execution of |A-64 numeric
instructions. Refer to the Intel Architecture Software Developer’s Manual for a complete definition
of thisfault.

[P - virtual 1A-32 instruction address zero extended to 64-bits
I1PA - virtual address of the faulting 1A-32 instruction zero extended to 64-bits.
FSR, FIR, FDR and FCR contain the | A-32 floating-point environment and exception information

ISR.vector - 16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
16 \ 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o/ o Jofojojo]o]o]o]0]0]

IA-32 Interruption Vector Descriptions

Name IA_32_Exception(AlignmentCheck) - Alignment Check Fault

Cause An1A-32 instruction performed an unaligned data memory reference while PSR.ac is 1, or
EFLAG.acis1and CRO.amis 1 and the effective privilege level is 3. Refer to the Intel Architecture
Software Developer’s Manual for a complete definition of this fault.

Parameters |IP - virtua |A-32 instruction address zero extended to 64-bits
I1PA - virtual address of the faulting IA-32 instruction zero extended to 64-bits.
IFA - referenced virtual data address (byte granular) zero extended to 64-bits

ISR.vector - 17

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
17 \ 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o/ o [ofojojojo]o]oj0 0]

IA-32 Interruption Vector Descriptions 9-17

Name

Cause

9-18

Machine Check
IA-32 Machine Check (1A-32 vector 18) is not generated in the |A-64 System Environment.

IA-32 Interruption Vector Descriptions

Name IA_32_Exception(StreamingSIMD) -Streaming SIMD Extension Numeric Error Fault

Cause An unmasked | A-32 Streaming SIMD Extension numeric error occurred. Numeric faults generated
on Streaming SIMD Extension instructions are reported precisely on the faulting Streaming SIMD
Extension instruction. Streaming SIMD Extension instructions do NOT trigger the report of any
pending 1 A-32 floating-point exceptions. Streaming SIMD Extension instructions always ignore
CRO.ne and the IGNNE pin. Refer to the Intel Architecture Software Developer’s Manual for a
complete definition of thisfault.

Parameters |IP - virtua |A-32 instruction address zero extended to 64-bits
I1PA - virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector - 19

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
19 \ 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0o o jofofofofofofofojo]

IA-32 Interruption Vector Descriptions 9-19

intel.

Name IA_32_Interrupt(Vector #N) - Software Trap

Cause ThelA-32 INT ninstruction forces an |A-32 interrupt trap. The IA-32 IDT is not consulted nor are
any values pushed onto a memory stack.

Parameters |IPA - trapping virtual 1A-32 instruction address (pointsto the INT instruction) zero extended to
64-bits

[P - next virtual 1A-32 instruction address zero extended to 64-bits
I SR.vector - vector number
ISR.code - TrapCode, Indicates Concurrent Single Step Trap condition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
vector ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o [ofofofo]o]o]o]o]o]

9-20 IA-32 Interruption Vector Descriptions

Name

Cause

Parameters

IA_32_Intercept(Instruction) - Instruction Intercept Fault

Execution of unimplemented 1A-32 opcodes, illegal opcodes or sensitive privileged 1A-32
operating system instructions results in an instruction intercept. Intercepted opcodes include (but
are not limited to); CLTS, HLT, INVD, INVLPG, IRET, LIDT, LGDT, LLDT, LMSW, LTR, MOV
to CRs, MOV to/from DRs, RDMSR, RSM, SIDT, SGDT, SLDT, SMSW, WBINVD, WRMSR,
and all other unimplemented and illegal opcode patterns. If CRO.emis 1, execution of all 1A-32
MMX and 1A-32 Streaming SIMD Extension instructions resultsin thisintercept. If CR4.FXSR is
0, execution of al |A-32 Streaming SIMD Extension instructions results in this intercept. All
illegal 1A-32 floating-point opcodesresult in an |A-32_|ntercept(Instruction) regardless of the state
of CRO.em. Intercepted opcodes are nullified and alter no architectura state.

I1P - virtual 1A-32 instruction address zero extended to 64-bits, points to the first byte of the
intercepted 1A-32 opcode (including prefixes).

I1PA -virtual address of the faulting | A-32 instruction zero extended to 64-bits.

IIM - Opcode bytes, contains the first 8-bytes of the 1A-32 instruction following all prefix bytes.
All prefix bytes are decoded and presented as a bitmask in the Intercept Code along with the prefix
length in bytes. Opcode bytes are loaded into IIM in the same format as encountered in memory
and as defined in the Intel Architecture Software Developer’s Manual. The lowest memory address
byteis placed in byte 0 of 1M, higher memory address bytes are placed in increasingly higher
numbered bytes within 1IM.

The 8-byte opcode loaded into 1M is stripped of the following prefixes; lock, repeat, address size,
operand size, and segment override prefixes (opcode bytes 0xF3, OxF2, 0xFO, 0x2E, 0x36, Ox3E,
0x26, 0x64, 0x65, 0x66, and 0x67). The OxOF opcode series prefix is not stripped from the opcode
bytesloaded into I1M. The opcode loaded into 1M includes all 1 A-32 opcode components,
including 1 to 3 bytes of opcode, mod r/m bytes, sib bytes and any possible immediates and/or
displacements.

If the opcode loaded in 1IM isless than 8-bytes, the remainder higher order numbered bytes are set
to 0. If the opcode is larger than 8-bytes, bytes after the 8th byte (following all stripped prefixes)
are not reported. If required, emulation code must retrieve the extra opcode bytes by reading from
the memory locations specified by 1P,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

byte3 ‘ byte2 ‘ bytel ‘ byteO ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
byte7 ‘ byte6 ‘ byte5 ‘ byte4 ‘

ISR.vector - O, indicates instruction intercept.

ISR.code - Intercept Code indicates prefixes and prefix lengths.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 ‘ intercept_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0| o Jofojojoj0jofojo]0

Figure 9-2 defines intercept codes for 1A-32 instruction set intercepts. Intercept code fields are
defined by Table 9-2 and Table 9-3 on page 9-22.

IA-32 Interruption Vector Descriptions 9-21

9-22

Figure 9-2. IA-32 Intercept Code

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 O

len

0 ‘ seg ‘sp‘np‘rp‘lp‘as‘os‘o

Table 9-2. Intercept Code Definition

Bit Name Description

1 0s Operand Size - (OperandSize Prefix XOR CSD.d bit). When 1, indicates the effective
operand size is 32-bits, when 0, 16-bits.

2 as Address Size - (AddressSize Prefix XOR CSD.d bit). When 1, indicates the effective
address size is 32-bits, when 0, 16-bits.

3 Ip Lock Prefix - If 1, indicates a lock prefix is present

4 p REP or REPE/REPZ Prefix - If 1, indicates a REP/REPE/REPZ prefix is in effect

5 np REPNE/REPNZ Prefix - If 1, indicates a REPNE/REPNZ prefix is in effect

6 sp Segment Prefix - If 1, indicates a Segment Override prefix is present.

79 seg Segment Value - Segment Prefix Override value, see Figure 9-3 for encodings. If
there is no segment prefixes this field is undefined.

12:15 len Length of Prefixes - Length of all prefix (in bytes) stripped from IIM. If there are no

prefixes this field has a value of zero.

Table 9-3.

Segment Prefix Override Encodings

Seg Value

Segment Prefix

ES Segment Override

CS Segment Override

SS Segment Override

DS Segment Override

FS Segment Override

GS Segment Override

reserved

N[O bW N PO

reserved

IA-32 Interruption Vector Descriptions

intel.

Name IA_32_Intercept(Gate) - Gate Intercept Trap

Cause If an 1A-32 control transfer isinitiated through a GDT/LDT descriptor that transfers control
through a Call Gate, Task Gate or Task Segment this interception trap is generated.

Parameters 1IPA - trapping virtual 1A-32 instruction address zero extended to 64-bits
I1P - next sequential virtual |A-32 instruction address zero extended to 64-bits
IFA - Gate Selector. The gate selector isloaded in IFA{15:0}.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
gate selector

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

[IM - Gate, Task Gate or Task Segment Descriptor. The descriptor loaded in [IM adheres to the
IA-32 GDT/LDT memory format, where byte 0 of the descriptor isin IM{7:0}.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
gate_descriptor{31:0} ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
gate_descriptor{63:32}

Table 9-4. Gate Intercept Trap Code Identifier

Instruction ISR.code{15:14}
CALL 00
JMP 01

ISR.vector - 1, indicates gate interception.
ISR.code - TrapCode, Indicates Concurrent Data Debug, taken Branch, and Single Step Events
ISR.code{ 15:14} - indicates whether CALL or IM P generated the trap. See Table 9-4 for details.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 ‘ident‘ trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ECICICICICICICICICY

IA-32 Interruption Vector Descriptions

Name IA_32_Intercept(SystemFlag) - System Flag Trap
Parameters System Flag Intercept Traps are generated for the following conditions:

CLI, STI, POPF, POPFD ingtructions. If the EFLAG.if bit changes state and CFLG.ii is 1, or
EFLAG.tf or EFLAG.ac change state, a System Flag intercept notification trap is delivered after the
instruction completes. [IM contains the previous value of EFLAG before the trapping instruction
executed. If |A-32 code does not have IOPL or CPL permission to modify the EFLAG bits, no
intercept is generated. Thisintercept trap condition can be used to provide virtual interrupt services,
and delay enabling of interrupts after the STI instruction.

MOV SS, POP SSinstructions. After these instructions complete execution, a System Flag
intercept notification trap is delivered. This intercept trap condition can be used to inhibit
interrupts, and code breakpoints between Mov/Pop SS and the next instruction and to inhibit Single
Step and Data Breakpoint traps on the Mov, or Pop SSinstruction.

[P - next virtual 1A-32 instruction address zero extended to 64-bits
[1PA - trapping virtual |A-32 instruction address zero extended to 64-bits
1M - contains the previous EFLAG value before the trapping instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ old EFLAG \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ISR.vector - 2
ISR.code - Trap Code, indicates Concurrent Single Step Trap, Debug trap condition.
ISR.code{ 15:14} indicates which instruction generated the trap.

Table 9-5. System Flag Intercept Instruction Trap Code Instruction Identifier

Instruction ISR.code{15:14}
CLI 00
STI 01
POPF, POPFD 10
MOV/POP SS 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
2 ‘ ident ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o [o]o[o]o]o[o[o]e]o]

9-24 IA-32 Interruption Vector Descriptions

Name

Cause

Parameters

IA_32_Intercept(Lock) - Locked Data Reference Fault

For 1A-32 locked operations, if the DCR.Ic bit is 1, and an atomic operation to made to non-write-
back memory or to unaligned write-back memory that would result in a read-modify-write
sequence being performed externally under an external bus lock, the processor raises a L ocked
Data Reference fault.

I1P - faulting virtual 1A-32 instruction address zero extended to 64-bits

I1PA - virtual address of the faulting 1A-32 instruction zero extended to 64-bits
IFA - faulting virtual data address (byte granular) zero extended to 64-bits

I SR.vector - 4

ISR.code- 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
4 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o JoJojojojojo]s]1]o]

IA-32 Interruption Vector Descriptions 9-25

9-26

IA-32 Interruption Vector Descriptions

intel.

|A-64 Operating System Interaction
Model with 1A-32 Applications 10

This section describes the 1A-32 system execution model from the perspective of an |1A-64
operating system interfacing with | A-32 code, while operating in the | A-64 System Environment.
The main features covered are:

« |1A-32 system and control register behavior

* |A-32 virtual memory support

¢ |A-32 fault and trap handling

* [A-32instruction behavior

10.1 Instruction Set Transitions

Instruction set transitions are defined in Section 6.1, “Instruction Set Modes” in Volume 1.
Operating systems can disable instruction set transitions (JMPE and br . i a) by setting PSR.di to
one. If PSR.di isone, execution of JMPE or br . i a to |A-32 target resultsin a Disabled Instruction
Set Transition Fault and the operation is nullified.

The processor also transitions into an 1A-64 operating system when |A-32 privileged system
resources are accessed, on an interruption, or when the following conditions are detected:

« Instruction Interception — | A-32 system level privileged instructions are executed.

» System Flag Interception — Various EFLAG system flags are modified, (e.g. AC, TF and
| F-bits).

 Gate Interception — Control transfers are made through call gate, or transfers through atask
switch (TSS segment or Task Gate).

All software interrupts, external interrupts, faults, traps and machine checks transition the processor
to the 1A-64 instruction set, regardless of the state of PSR.di. A-32 defined exceptions and
software interrupts are delivered to | A-64 interruption handlers.

10.2 System Register Model

Registers are assigned the following conventions during transitions between |A-32 and |A-64
instruction sets.

» |A-32 State: The register contains an | A-32 register during | A-32 instruction set execution.
Expected 1A-32 values should be loaded before switching to the IA-32 instruction set. After
completion of 1A-32 instructions, these registers contain the results of the execution of 1A-32
instructions. These registers may contain any value during | A-64 instruction execution
according to 1A-64 software conventions. Software should follow |A-32 and |A-64 software
calling conventions for these registers.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-1

intel.

 Shared: Shared registers contain valuesthat have similar functionality in either instruction set.
For example, all 1A-64 control registers, debug registers are used for both 1A-32 and 1A-64
memory references. The stack pointer (ESP) and instruction pointer (1P) are also shared.

« Unmaodified: These registers are not altered by | A-32 execution. 1A-64 code can rely on these
values not being modified during IA-32 instruction set execution. The register will have the
have the same contents when entering the | A-32 instruction set and when exiting the |A-32
instruction set.

» Undefined: Registers marked as undefined may be used as scratch areas for execution of
| A-32 instructions. Software can not rely on the value of these registers across an instruction
set transition.

Table 10-1. IA-32 System Register Mapping

1A-64 Reg 1A-32 Reg Convention ‘ Size ‘ Description

Application Registers

EFLAG EFLAG 32 1A-32 System/Arithmetic flags,
writes of some bits are conditioned by PSR.cpl and
EFLAG.iopl.

CSD CSD |A-32 state 64 1A-32 code segment (register format)

SSD SSD IA-32 stack segment (register format)

CFLG CRO/CR4 64 1A-32 control flags, CRO=CFLG{31:0},
CR4=CFLG{63:32}2, writable at PSR.cpl=0 only.

Kernel Registers

KRO IOBASEP 1A-32 virtual I/O port Base register

KR1 TSSD® IA-32 state 64 IA-32 TSS descriptor (register format)

KR2 CR3/CR2¢ IA-32 CR2=KR2{63:32}, CR3=KR2{31:0}

KR3-7 unmodified IA-64 preserved registers

Banked General Registers

GR16-31 unmodified ‘ preserved for operating system use

Control Registers

DCR unmadified, controls 1A-64 and |A-32 instruction set execution
shared
IFA, IIP,
IPSR, ISR, IA-64 interruption registers may be overwritten on
1IM, 1IPA, shared 64 any TLB fault, interruption or exception encountered
ITTR, IHA, during IA-32 or IA-64 instruction set execution.
IFS, IVA
PTA shared shared page table base for I1A-64 and 1A-32 memory
64 references
IT™ shared shared IA-64 interruption/timer resources
LID, IVR,
TPR, EOQI,
IRRO, IRR1, IA-64 external interruption registers are used to
IRR2, IRR3, N))
shared 64 generate, prioritize and delivery external interrupts
TV, PMV, during 1A-32 or 1A-64 instruction set execution
LRRO, 9 :
LRR1,
CMCV

IA-64 Operating System Interaction Model with IA-32 Applications

intel.

Table 10-1. IA-32 System Register Mapping (Continued)

10.3

IA-64 Reg IA-32 Reg Convention ‘ Size ‘ Description

Translation Resources

TRs

TCs shared All 1A-64 virtual memory registers can be used for

RRs IA-32 and IA-64 memory references.

PKRs

Debug Registers

IBRs dr0-3, dr7 shared 64 IA-64 debug registers are used IA-32 and I1A-64

DBRs dro-3. dr7 memory references.

Performance Monitors

PMCs shared 64 IA-64 performance monitors measure IA-32 and
IA-64 performance events.

PMDs shared 64 reflect performance monitor results of IA-32 and
IA-64 execution

a. IA-32 MOV from CRO and CR4 return the value in the CFLG register.

b. The I0Base register is used by IN/OUT instructions. If IN/OUT operations are disabled via CFLG.io, this
register can be used for other values.

c. The TSSD registers are used by IN/OUT instructions for I/O permission via CFLG.io. If access to the TSS is
disabled, these registers can be used for other values.

d. The mov from CR2,CR3 instructions return the value contained in KR2.

IA-32 System Segment Registers

System Descriptors are maintained in an unscrambled format shown in Figure 10-1 that differs
from the | A-32 scrambled memory descriptor format. The unscrambled register format is designed
to support fast conversion of 1A-32 segmented 16/32-bit pointersinto virtual addresses by 1A-64
code. |A-32 segment register load instructions unscramble the GDT/LDT memory format into the
descriptor register format on a segment register load. | A-64 software can also directly load
descriptor registers provided they are properly unscrambled by software. For acomplete definition
of al bit fields and field semantics refer to the Intel Architecture Software Developer’s Manual.

Figure 10-1. IA-32 System Segment Register Descriptor Format (LDT, GDT, TSS)

63 62 60 59 58 57 56 55 52 51 32 31 0
‘g‘ ig ‘p‘ dpl ‘s‘ stype ‘ lim{19:0} ‘ base{31:0}

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS)

Field Bits Description

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for IA-32 instruction set memory references.
This value is ignored for 1A-64 instruction set memory references.

lim 51:32 | Segment Limit. Contains the maximum effective address value within the segment. See the
Intel Architecture Software Developer’'s Manual for details and segment limit fault
conditions.

stype 55:52 | Segment Type identifier. See the Intel Architecture Software Developer’'s Manual for
encodings and definition.

S 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 | Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32

instruction set memory references.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-3

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS) (Continued)

10.3.1

10.3.2

10-4

Field Bits Description
p 59 Segment Present bit. If 0, and an 1A-32 memory reference uses this segment an
IA_Exception(GPFault) is generated.
ig 62:60 |Ignored - For the LDT/GDT/TSS descriptors reads of this field return the last value written

by IA-64 code. Reads of this field return zero if written by IA-32 descriptor loads.These field
is ignored by the processor during IA-32 instruction set execution. This field may have a
future use and should be set to zero by software.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | OxFFF for IA-32
instruction set memory references.

System segment selectors and descriptorsfor GDT and LDT are maintained in 1A-64 general
registers to support segment register loads used extensively by segmented 16-bit code. On the
transition into the |A-32 instruction set, GDT/LDT descriptor table must be initialized if |A-32
code will perform protected mode segment register loads or far control transfers.

Within the 1A-32 System Environment, GDT and LDT are considered privileged operating system
segmentation resources. However, in the | A-64 System Environment, applications can transition
between the IA-32 and | A-64 instruction set and bypass | A-32 segmentation. 1A-64 user level
instructions can also directly modify all selectors and descriptorsincluding GDT and LDT. An
operating system should either protect memory with 1A-64 defined virtual memory management
mechanisms or disabled application level instruction set transitions. Within the | A-64 System
Environment, GDT/LDT memory spaces must be mapped into user space, since supervisor
overrides for accessesto GDT/LDT are disabled.

The TSSD descriptor points to the I/O permission bitmap. If CFLG.iois 1, IN, INS, OUT, and
OUTS consult the TSSD 1/0 permission bitmap as defined in the Intel Architecture Software
Developer’'s Manual. If CFLG.iois0, the TSSD 1/0O permission bitmap is not checked. See
Section 10.7, “1/O Port Space Maodel” for details on /O port permission and for TLB-based access
control. The TSSD register is not used within the |A-64 System Environment to support task
switches or inter-level control transfers. If the TSSD is used for 1/O permissions, |A-64 operating
system software must ensure that avalid 286 or 386 Task State Descriptor is|oaded, otherwise
IN/OUT operations to the TSSD 1/O permission bitmap will result in undefined behavior.

The IDT descriptor is not supported or defined within the |A-64 System Environment.

IA-32 Current Privilege Level

PSR.cpl isthe current privilege level of the processor for | A-64 and | A-32 instruction set
execution. PSR.cpl is used by the processor for all |A-32 descriptor segmentation and paging
permission checks. PSR.cpl is a secured register. Typical 1A-32 processors used SSD.dpl asthe
official privilege level of the processor. Since, SSD.dpl is not secured from user modification,
processor implementations must base al privilege checks and state backups based on PSR.cpl.

IA-32 System EFLAG Register

The EFLAG (AR24) register is made of two major components, user arithmetic flags (CF, PF, AF,
ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None of
the arithmetic or system flags affect 1 A-64 instruction execution. The arithmetic flags are used by
the 1A-32 instruction set to reflect the status of 1A-32 operations, control 1A-32 string operations,

IA-64 Operating System Interaction Model with IA-32 Applications

and control branch conditions for | A-32 instructions. System flags are typically managed by an
operating system and are used to control the overall operations of the processor. System flags are
broken into two categories, system flags that control 1A-32 instruction set execution behavior and
virtualizable system flags. The NT system flag shown in bold font in Figure 10-2 is virtualized.

Figure 10-2. IA-32 EFLAG Register

10.3.2.1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ reserved (set to 0) ‘ld‘wp‘wf‘ac‘vm‘rf‘O‘nt‘ iopl ‘of‘df‘|f‘tf‘sf‘zf‘0‘af‘0‘pf‘1‘cf‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

‘ reserved (set to 0)

System flags AC, TF, RF, VIF, VIP, IOPL and VM directly control the execution of 1A-32
instructions. These bits do not control any | A-64 instructions. See Table 10-3 for acomplete
definition these bits.

The NT bit does not directly control the execution of any 1A-32 or |A-64 instructions. All 1A-32
instructions that modify this bit isintercepted (e.g. IRET, Task Switches).

Virtualized Interrupt Flag

To provide for virtualization of 1A-32 code, the IF bit is virtualizable in the context of an operating
system. Interrupts are enabled for |A-32 instructions, if (PSR i and (~CFLG if or
EFLAG i f)) istrue. For IA-64 code, interrupts are enabled if PSR.i is 1.

An optional System Flag intercept trap can be generated if CFLG.ii is 1, and the IF-flag changes
state due to 1 A-32 code executing CLI, STI, or POPF. See Section 10.3.3.1, “IA-32 Control
Registers’ for CFLG details. Using this model, virtualization code can set CFLG.if to 0 and
CFLG.ii to 0, IA-32 instruction set modifications of EFLAG.if does not affect actual interrupt
masking, therefore no notification events need be sent to virtualizing software. When virtualization
code, detects and queues an external interrupt for delivery into a virtualized 1A-32 operating
system/application, it can set CFLG.ii tol to force notification the next time the | F-bit changes
state, indicating | A-32 codeis either opening or closing the interrupt window. Setting CFLG.if to 1,
allowsfor direct IA-32 control of interrupt masking.

Virtualization of the IF flag is independent of VME extensions. Both mechanisms can be used
independently, see the Intel Architecture Software Developer’s Manual for the complete VME
definition.

Table 10-3. IA-32 EFLAG Field Definition

EFLAG? Bits Description
EFLAG.cf 0 IA-32 Carry Flag. See the Intel Architecture Software Developer’s Manual for
details.
1 Ignored - Writes are ignored, reads return one for IA-32 and 1A-64 instructions.
3,5, Ignored - Writes are ignored, reads return zero for IA-32 and 1A-64 instructions.
15 Software should set this bits to zero.
EFLAG.pf 2 IA-32 Parity Flag. See the Intel Architecture Software Developer’'s Manual for
details.
EFLAG.af 4 IA-32 Aux Flag. See the Intel Architecture Software Developer’s Manual for details.
EFLAG.zf 6 IA-32 Zero Flag. See the Intel Architecture Software Developer’s Manual for details.
EFLAG.sf 7 IA-32 Sign Flag. See the Intel Architecture Software Developer’s Manual for details.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-5

10-6

Table 10-3. IA-32 EFLAG Field Definition (Continued)

EFLAG?

Bits

Description

EFLAG.tf

IA-32 Trap Flag- In the IA-64 System Environment, IA-32 instruction single stepping
is enabled when EFLAG.tf is 1 or PSR.ss is 1. EFLAG.tf does not control single
stepping for 1A-64 instruction set execution. When single stepping is enabled, the
processor generates a I1A-32_Exception(Debug) trap event after the successful
execution of each IA-32 instruction. If EFLAG.tf is modified by the POPF or POPFD
instruction an IA-32_Intercept(SystemFlag) trap is raised. See the Intel Architecture
Software Developer’s Manual for details on this bit.

EFLAG.if

IA-32 Interruption Flag. In the 1A-64 System Environment, when PSR.i and
(~CFLG.if or EFLAG.If) is 1, external interrupts are enabled during 1A-32 instruction
set execution, otherwise external interrupts are held pending. If CFLG.if is 1,
modification of the EFLAG.if directly affects external interrupt enabling. If CFLG.if is
0, EFLAG.if does not affect interrupt enabling. The IF-bit does not affect external
interrupt enabling for 1A-64 instructions nor NMI interrupts.

The IF bit can be modified by IA-64 and IA-32 code only when PSR.cpl is less than
or equal to EFLAG.iopl. If PSR.cpl is greater than EFLAG.iopl, writes to the IF-bit
are silently ignored.

If CFLG.ii is 1, successful modification of the IF-bit by CLI, STI, or POPF results in
an IA-32_Intercept(SystemFlag) trap, otherwise the IF-bit is modified without
interception. Modification of this bit by 1A-64 instructions does not result in an
intercept. See the Intel Architecture Software Developer’'s Manual for details on this
bit.

EFLAG.df

10

IA-32 Direction Flag. See Intel Architecture Software Developer’s Manual for details.

EFLAG.of

11

IA-32 Overflow Flag. See Intel Architecture Software Developer’s Manual for details.

EFLAG.iopl

13:12

IA-32 In/Out Privilege Level, controls accessibility by IA-32 IN/OUT instructions to
the 1/O Port space and permission to modify the IF-bit for IA-64 and |1A-32
instructions. If PSR.cpl > IOPL, permission is denied for IA-32 IN/OUT instructions
and 1A-32 and IA-64 instruction set modifications of EFLAG.if are ignored. IOPL can
only be modified by IA-32 or IA-64 instructions executing at privilege level 0,
otherwise modifications of this bit by 1A-64 or IA-32 instructions is silently ignored.
This bit is supported in both the IA-32 and 1A-64 System Environments. See the
Intel Architecture Software Developer’s Manual for details on this bit.

EFLAG.nt

14

1A-32 Nested Task switch. In the IA-32 System Environment, indicates a nested task
flag when chaining interrupted and called IA-32 tasks. IA-32 task switches are not
directly supported in the IA-64 System Environment, since IRET, interruptions, calls,
and jumps through task gates are always intercepted. EFLAG.nt can be modified by
the POPF or POPFD instruction in both system environments. Modification of
EFLAG.nt by POPF and POPFD does not result in a System Flag Intercept. See the
Intel Architecture Software Developer’s Manual for details on this bit.

EFLAG.rf

16

IA-32 Resume Flag. In the 1A-64 System Environment, when EFLAG.rf or PSR.id is
1, code breakpoint faults are temporarily disabled for one IA-32 instruction, so that
IA-32 instructions can be restarted after a code breakpoint fault without causing
another code breakpoint fault. EFLAG.rf does not affect I1A-64 code breakpoint
faults. After the successful execution of each IA-32 instruction, PSR.id and
EFLAG.f are cleared to zero. On entry into the 1A-32 instruction set viar f i or
br.ia, EFLAG.rf and PSR.id is not cleared until the successful completion of the
first (target) 1A-32 instruction. JMPE clears the PSR.id and the EFLAG.If bit.
EFLAG.rf is set to 1 if a repeat string sequence (REP MOVS, SCANS, CMPS,
LODS, STOS, INS, OUTS) takes an external interrupt, trap or fault before the final
iteration. EFLAG.rf and PSR.id are set to 0 after the last iteration. For all other
cases, external interrupts, faults, traps, and intercept conditions EFLAG.rf is
unmodified.

The RF-bit can be modified by IA-64 instructions running at any privilege level. IA-32
instructions cannot directly modify the RF-bit or PSR.id. Specifically, POPF cannot
modify the RF-bit and execution of IRET is always intercepted in the 1A-64 System
Environment. See the Intel Architecture Software Developer’'s Manual for details on
this bit.

IA-64 Operating System Interaction Model with IA-32 Applications

intel.

Table 10-3. IA-32 EFLAG Field Definition (Continued)

10.3.3

10.3.3.1

EFLAG? Bits Description

EFLAG.vm 17 IA-32 Virtual Mode 86. When 1, IA-32 instructions execute in the VM86
environment. This bit can only be modified by IA-32 or 1A-64 instructions executing
at privilege ring 0, otherwise modifications of this bit by IA-64 or IA-32 instructions is
silently ignored. IA-64 software is responsible for initializing the processor with the
required VM86 register state before transferring to 1A-32 VM86 environment. This
bit is supported in both the 1A-32 and 1A-64 System Environments. See the Intel
Architecture Software Developer’s Manual for complete details of the VM86
environment. Software must ensure the processor is in 1A-32 Protected Mode when
setting the VM bit.

EFLAG.ac 18 IA-32 Alignment Check. In the IA-64 System Environment, |1A-32 instructions raise
an |A-32_Exception(AlignmentCheck) fault if an unaligned reference is performed
and PSR.ac is 1 or (CFLG.am is 1 and EFLAG.ac is 1 and memory is accessed at
an effective privilege level of 3). Neither EFLAG.ac, CR0.am nor privilege level
affect alignment check faults for 1A-64 instructions. See “Memory Alignment” for
details on alignment conditions. This bit can be modified by 1A-32 and 1A-64
instructions at any privilege level. Modification of this bit by the POPF instructions
results in an 1A-32_Intercept(SystemFlag) trap. See the Intel Architecture Software
Developer’s Manual for details on this bit.

EFLAG.vif 19 1A-32 Virtual Interrupt Flag. See VME extensions in the Intel Architecture Software
Developer’s Manual for details. Affects execution of POPF, PUSHF, CLI and STI.
This bit is supported in both the IA-32 and 1A-64 System Environments. A IA-32
Code Fetch fault (GPFault(0)) is generated on every IA-32 instruction (including the
targetof r f i and br. i a), if the following condition is true:

EFLAG.vip & EFLAG.vif & CFLG.pe & PSR.cpl==3 & (CFLG.pvi | (EFLAG.vm &
CFLG.vme))

EFLAG.vip 20 1A-32 Virtual Interrupt Pending. See VME extensions in the Intel Architecture
Software Developer's Manual for programming details. Affects execution of POPF,
PUSHF, CLI and STI. This bit is supported in both the IA-32 and 1A-64 System
Environments.

EFLAG.id 21 IA-32 Identifier bit, can be written and read by IA-32 instructions, indicates IA-32
CPUID instruction is supported. This bit is supported in both the IA-32 and 1A-64
System Environments.

63:22 reserved must be set to zero.

a. On entry into the 1A-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
1A-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits
alter the behavior of IA-64 instruction set execution.

IA-32 System Registers

IA-32 system registers such as CR3, CR2, debug registers, performance counters. | A-32 control
registers do not affect execution of 1A-64 instructions. All 1A-32 privileged instructions that access
prior 1A-32 system registers are intercepted.

IA-32 Control Registers

I A-32 control registers CRO and CR4 are mapped into the |A-64 application register CFLG
(AR27). 1A-32 control bits, shown in Figure 10-3, only control execution of the |A-32 instruction
set. Additional CRO bits are defined in CFL G to control virtualization of |A-32 code (namely the
IO and IF bits) as shown in Figure 10-3. CFLG isreadable by |A-64 code at all privilege levels but
can only be written and privilege level 0, otherwise a Privileged Register fault is generated.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-7

intel.

Figure 10-3. Control Flag Register (CFLG, AR27)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
|PG|CD[NW]| ignored (set to 0) |am]ig [wP| ignored (setto 0) | ‘IF‘IO‘ NE‘ ET‘TS‘EM‘MP‘ PE‘
63 62 61 60595857565554 535251 50 49 48 47 4645444342 41 403938 37 36 35 34 33 32

PIPIM[P|[P|[D|T|P|V
clglc|A|S|E|S|V|M
E|IE|E|E | E D| I |E

reserved (set to 0)

XmMmXZZ
T WX T

» Stateinitalicsisvirtualized. This state has no impact on alA-32 or 1A-64 instruction set
execution.

 Statein bold only affects | A-32 instruction set execution, |1A-64 execution is not affected.

Table 10-4 defines all 1A-32 control register state and the behavior of each bit in the | A-64 System
Environment.

Table 10-4. IA-32 Control Register Field Definition

Bit IA-64 State Bit Description

CRO CFLG{31:0} CRO: 1A-32 Mov to CRO result in a instruction interception fault. Mov from CRO returns
the value contained in CFLG{31:0}. IA-64 code modification of CFLG{31:0} only alters
the CRO state, no side effects (such as TLB flushes) occur.

CRO.PE CFLG.pe 0 Protected Mode Enable: This bit determines whether the processor operates in IA-32
Protected Mode or Real Mode. This bit affects only 1A-32 instruction set execution,
IA-64 operations are not affected by this bit. Modification of this bit by 1A-64 code
does have NOT any side effects such as flushing the TLBs. This bit is supported in
both the 1A-32 and |A-64 System Environments. See Intel Architecture Software
Developer’'s Manual for details on this bit and the Protected Mode environment.

CRO.MP CFLG.mp 1 Monitor co-Processor: When CFLG.ts is 1 and CFLG.mp is 1, execution of IA-32
FWAIT/WAIT instructions results in an Device Not Available fault. This bit is ignored
by 1A-64 floating-point instructions. This bit is supported in both IA-32 and 1A-64
System Environments. See the Intel Architecture Software Developer’'s Manual for
details on this bit.

CRO.EM CFLG.em 2 Emulation: When CFLG.em is set, execution of IA-32 ESC and floating-point
instructions generates an IA-32_exception(DNA) fault. When CFLG.em is 1,
execution of IA-32 MMX™ or Streaming SIMD Extension instructions results in an
1A-32_Intercept(Instruction) fault. This bit does not affect 1A-64 floating-point
instructions. This bit is supported in both the IA-32 and IA-64 System Environments.
See Intel Architecture Software Developer’s Manual for details on this bit.

CRO.TS CFLG.ts 3 Task Switched: When CFLG.ts is 1, execution of an IA-32 ESC, floating-point
instruction, MMX or Streaming SIMD Extension instruction results in a
1A-32_Exception(DNA) fault. When CFLG.ts is 1 and CFLG.mp is 1, execution of
1A-32 FWAIT/WAIT instructions results in an IA-32_Exception(DNA) fault. This bit is
ignored by I1A-64 instructions. This bit is supported in both the 1A-32 and IA-64 System
Environments. See Intel Architecture Software Developer’s Manual for details on this
bit.

CRO.ET CFLG.et 4 Extension Type: ET is ignored since i387 co-processor instructions are supported.
This bit is reserved on all Pentium® processors. Reads always return 1. This bit is
supported in both the IA-32 and 1A-64 System Environments.

CRO.NE CFLG.ne 5 Numeric Error: Numeric errors are always enabled in the |A-64 System Environment.
The NE bit and the IGNNE# pin are ignored by the processor and the FERR# pin is
not asserted for any numeric errors on IA-32 or 1A-64 floating-point instructions.

In the IA-32 System Environment, this bit is supported as defined in the Intel
Architecture Software Developer’s Manual.

10-8 IA-64 Operating System Interaction Model with IA-32 Applications

intel.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Bit

IA-64 State

Bit

Description

CFLG.io

I/O Enable: If CFLG.io is 1 and CPL>IOPL, IA-32 IN, INS, OUT, OUTS instructions
consulted the TSS for I/0O Permission. If CFLG.io is 0 or CPL<=IOPL, permission is
granted regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced). This bit always returns zero when read by the |1A-32 Mov from CRO
instruction. This bit is not defined in the 1A-32 System Environment.

CFLG.if

IF Enable: When CFLG.if is 1, EFLAG.if can be used to enabled or disable external
interrupts for IA-32 instructions. If CFLG.if is 0, EFLAG.if does not control external
interrupt enabling. External interrupts are enabled for the 1A-32 instruction set by if
PSR.i and (~CLFG.if or EFLAG.if). This bit always returns zero when read by the
IA-32 Mov from CRO instruction. This bit is not defined in the I1A-32 System
Environment.

CFLG.ii

IF Intercept: When CFLG.ii is 1, successful modification of the EFLAG.if bit by IA-32
CLI, STl or POPF instructions result in a 1A-32_Intercept(SystemFlag) trap. This bit
always returns zero when read by the IA-32 Mov from CRO instruction. This bit is not
defined in the IA-32 System Environment.

ignored

9:15,
17,
19:28

Ignored - May have a possible future use. Software should set these fields to zero.

CRO.WP

CFLG.wp

16

Write Protect: This bit is ignored in the IA-64 System Environment. In the IA-32
System Environment, WP controls supervisor write-protection for IA-32 paging. See
Intel Architecture Software Developer’s Manual for details on this bit.

CRO.AM

CFLG.am

18

Alignment Mask: For IA-32 instructions an I1A-32_Exception(AlignmentCheck) fault is
generated on a reference to an unaligned data memory operand if PSR.ac is 1 or
(CFLG.am is 1 and EFLAG.ac is 1 and memory is accessed at an effective privilege
level of 3). Neither EFLAG.ac, CR0.am nor privilege level affect alignment check
faults for 1A-64 instructions. This bit is supported in both the 1A-32 and 1A-64 System
Environments. See the Intel Architecture Software Developer’s Manual for details on
this bit.

CRO.NW

CFLG.nw

29

CRO0.CD

CFLG.cd

30

Not Write-through and Cache Disable: These bits are ignored in the IA-64 System
Environment. Cacheability is controlled virtual memory attributes. These bits are
provided as storage for compatibility purposes.

CRO.PG

CFLG.pg

31

Paging Enable: In the 1A-64 System Environment, this bit is ignored for I1A-32 and
IA-64 memory references. Virtual translations are enabled via PSR.it and PSR.dt.
This bit is provided as storage for compatibility purposes. Modification of this bit by
IA-64 code does NOT have any side effects such as flushing the TLBs. This bit is
supported as defined in the Intel Architecture Software Developer’s Manual for the
IA-32 System Environment.

CR2

KR2{63:32}

IA-32 Page Fault Virtual Address: IA-32 Mov to CR2 result in an interception fault.
Mov from CR2 returns the value contained in KR2{63:32}. CR2 is replaced by IFA in
the IA-64 System Environment.

CR3

KR2{31:0}

IA-32 Page Table Address: IA-32 Mov to CR3 result in an interception fault. Mov from
CR3 return the value contained in KR2{31:0}. CR3 is replaced by PTA in the IA-64
System Environment. Modification of KR2{31:0} by IA-64 code does NOT have the
side effect of flushing the TLBs.

CR3.PWT

KR4.pwt

CR3.PCD

KR4.pcd

Page Write-Through and Cache Disabled: In the |1A-64 System Environment, these
bits are ignored. This bit are provided as storage for compatibility purposes. These
bits are supported as defined in the Intel Architecture Software Developer’s Manual
for the IA-32 System Environment.

CR4

CFLG{63:32}

CR4: A-32 Mov to CR4 result in an instruction interception fault. Mov from CR4
returns the value contained in CFLG{63:32}. IA-64 code modification of CFLG{63:32}
only alters the register state, no side effects (such as TLB flushes) occur.

CR4.VME

CFLG.vme

32

CR4.PVI

CFLG.pvi

33

IA-32 Virtual Machine Extension and Protected Mode Virtual Interrupt Enable: These
bits control the VM86 VME extensions and Protected Mode Virtual Interrupt
extensions defined in the Intel Architecture Software Developer’'s Manual for STI, CLI
and PUSHF. These bits have no effect on 1A-64 instructions. This bit is supported in
both the 1A-32 and |A-64 System Environments.

IA-64 Operating System Interaction Model with 1A-32 Applications

10-9

Table 10-4. IA-32 Control Register Field Definition (Continued)

Bit

I1A-64 State

Bit

Description

CR4.TSD

CFLG.tsd

34

Time Stamp Disable: 1A-32 RDTSC user level reads of the Time Stamp Counter are
enabled when CR4.tsd when zero. Otherwise execution of the RDTSC instruction
results in a GPFault. CFLG.tsd is ignored by IA-64 instructions. This bit is supported
in both the IA-32 and IA-64 System Environments. See the Intel Architecture
Software Developer’s Manual for details on these bits.

CR4.DE

CFLG.de

25

Debug Extensions: In the |1A-64 System Environment, this bit is ignored by IA-32 or
IA-64 references to the 1/0 Port Space. This bit is provided as storage for
compatibility purposes. This bit is supported as defined in the Intel Architecture
Software Developer’s Manual for the 1A-32 System Environment.

CR4.PSE

CFLG.pse

36

Page Size Extensions: In the 1A-64 System Environment, this bit is ignored by 1A-32
or 1A-64 references. In the 1A-32 System Environment, this bit enables 4M-byte page
extensions for IA-32 paging. Modification of this bit by 1A-64 code does have any side
effects such as flushing the TLBs.

CR4.PAE

CFLG.pae

37

Physical Address Extensions: In the IA-32 System Environment, this bit enables
1A-32 Physical Address Extensions for IA-32 paging This bit is ignored in the |1A-64
System Environment. Modification of this bit by IA-64 code does have any side effects
such as flushing the TLBs.

CR4.MCE

CFLG.mce

38

Machine Check Enable: This bit is ignored in the 1A-64 System Environment. This bit
is provided as storage for compatibility purposes. This bit is supported as defined in
the Intel Architecture Software Developer’s Manual for the |1A-32 System
Environment.

CR4.PGE

CFLG.pge

39

Paging Global Enable: This bit is ignored in the IA-64 System Environment. This bit is
provided as storage for compatibility purposes. This bit is supported as defined in the
Intel Architecture Software Developer’'s Manual for the IA-32 System Environment,
where this bit enables global pages for the 1A-32 paging. Modification of this bit by
IA-64 code does have any side effects such as flushing the TLBs.

CR4.PCE

CFLG.pce

40

Performance Counter Enable: IA-32 RDPMC user level reads of the performance
counters are enabled when CR4.pce is 1. Otherwise execution of the RDPMC
instruction results in a GPFault. CFLG.pce is ignored by 1A-64 instructions. This bit is
supported in both the IA-32 and IA-64 System Environments. See the Intel
Architecture Software Developer’s Manual for details on these bits.

CRA4.
FXSR

CFLG.
FXSR

41

Streaming SIMD Extension FXSR Enable. When 1, enables the Streaming SIMD
Extension register context. When 0, execution of all Streaming SIMD Extension
instructions results in an I1A-32_Intercept(Instruction) fault. This bit does not control
the behavior of 1A-64 instructions. This bit is supported in both the 1A-32 and IA-64
System Environments. See the Intel Architecture Software Developer’s Manual for
details on these bits.

CR4.
MMXEX

CFLG.
MMXEX

42

Streaming SIMD Extension Exception Enable: When 1, enables Streaming SIMD
Extension unmasked exceptions. When 0, all Streaming SIMD Extension Exceptions
are masked. This bit does not control the behavior of IA-64 instructions. This bit is
supported in both the IA-32 and IA-64 System Environments. See the Intel
Architecture Software Developer’s Manual for details on these bits.

reserved

43:63

Reserved

10.3.3.2

10-10

IA-32 Debug Registers

Within the 1A-64 System Environment, the | A-32 debug registers (DRO - DR7) are superseded by
the |A-64 debug registers DBRO-7 and IBRO-7, see Section 10.8.1, “Data Breakpoint Register
Matching” for details. Accessesto the | A-32 debug registers result in an interception fault.

The | A-64 debug registers are designed to facilitate debugging of both |A-32 and | A-64 code.
Specifically, instruction and data breakpoints can be programmed by loading 64-bit virtual
addressesinto IBR and DBR along with an address mask. | A-64 defined single stepping

IA-64 Operating System Interaction Model with IA-32 Applications

10.3.3.3

10.3.3.4

10.3.3.5

10.3.3.6

10.4

mechanisms and taken branch traps are also defined to trap on 1A-32 instructions. See
Section 10.8.1, “Data Breakpoint Register Matching” for details on 1A-32 instruction set behavior
with respect to the | A-64 debug facilities.

IA-32 Memory Type Range Registers (MTRRS)

Within the | A-64 System Environment, |A-32 MTRR registers are superseded by physical memory
attributes supplied by the TLB, as defined in Section 4.4.3, “ Cacheability and Coherency
Attribute”. 1A-32 instruction references to the MTRRs in the M SR register space resultsin an
instruction intercept fault.

IA-32 Model Specific and Test Registers

Within the IA-64 System Environment, the |A-32 Model Specific Register space (MSRs) are
superseded by the PAL firmware interface. Cache testing, initialization, processor configuration
should be performed through the 1A-64 PAL interface. See Section 11.8, “PAL Procedures’ for a
complete definition of the PAL functions and interfaces. Accesses to the IA-32 Model Specific
Register space result in an instruction interception fault.

IA-32 Performance Monitor Registers

Within the 1A-64 System Environment, the | A-64 performance monitors are designed to measure
IA-32 and 1A-64 instructions, and system performance through a unified performance monitoring
facility. |A-64 code can program the performance monitors for | A-32 and/or | A-64 events by
configuring the PMC registers. Count values are accumulated in the PMD registers for both |A-32
and 1A-64 events.

I A-32 code can sample the performance counters by issuing the RDPMC instruction. RDPMC
returns count values from the specified | A-64 performance monitor. Operating systems can secure
the monitors from being read by | A-32 code by setting PSR.sp to 1, or setting CR4.pceto 0, or
setting the performance monitor’s pm-bit. Reads of a secured counter by RDPMC return a
IA-32_Exception(GPFault(0)). | A-32 code cannot write or configure the performance monitors, al
writes to the M SR register space are intercepted.

IA-32 Machine Check Registers

Within the |A-64 System Environment, | A-32 machine check registers are superseded by the |1A-64
machine check architecture. See Section 11.3, “Machine Checks’ for details. | A-32 accessesto the
Pentium® 111 processor machine check registers results in an instruction intercept.

Register Context Switch Guidelines for 1A-32 Code

The following section gives operating system performance guidelines to minimize the amount of
register context that must be saved and restored for 1A-32 processes during a context switch.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-11

10.4.1

10.4.2

10-12

intel.

Entering IA-32 Processes

High FP registers (FR32-127) - The processor requires access to all high FP registers during the
execution of IA-32 instructions. It is recommended on entering an 1A-32 process, that the OS save
the high FP registers belonging to a prior context and then enable the high FP registers (PSR.dfh
is 0). Otherwise, the processor will immediately raise a Disabled FP Register fault on the first

| A-32 instruction executed in the 1A-32 process. Performing the state save of the prior high FP
register context during the context switch avoids the unnecessary generation of the Disabled FP
Register fault.

Low FP registers (FR2-31) - The processor does not require access to the low FP registers unless
executing 1A-32 FP, MM X or Streaming SIMD Extension instructions. It is recommended on entry
to an 1A-32 process, that the OS disable the low FP registers by setting PSR.dfl to 1. PSR.dfl set to
0 indicates that there was a possibility that |A-32 FP, MM X or Streaming SIMD Extension
instruction could execute and write FR8-31. If the low FP registers are enabled on entry to an A-32
process (PSR.dfl is 0), al low FP registers will appear to be dirty on 1A-32 process exit.

High Integer Registers (GR32-127) - Since the processor leaves all high registersin the register
stack in an undefined state, these registers must be saved by the RSE before entering an 1A-32
process.

Low Integer registers (GR1-31) - These registers must be explicitly saved before entering an |A-32
process.

Exiting IA-32 Processes

High FP registers (FR32-127) - PSR.mfh is unmodified when leaving the A-32 instruction set.
IA-32 instruction set execution leaves FR32-127 in an undefined state. Software can not rely on
register values being preserved across an instruction set transition. These registers do NOT need to
be preserved across a context switch.

Low FP registers (FR2-31) - PSR.mfl indicates there is a possibility that FR8-31 were modified by
IA-32 FP, MMX, or Streaming SIMD Extension instruction. The modify bit is set by the processor
when leaving the IA-32 instruction set, if PSR.dfl is 0, otherwise PSR.mfl is unmodified. During
the state save of the outbound 1A-32 process, it is recommended that the OS save FR2-31 if and
only if the lower FP registers are marked as modified.

High Integer Registers (GR32-127) - Since the processor leaves all high registers undefined across
an instruction set transition, these registers do NOT need to be preserved across an | A-32 context
switch.

Low Integer registers (GR1-31) - These registers must be explicitly preserved across a context
switch.

IA-64 Operating System Interaction Model with IA-32 Applications

intel.

10.5 |A-32 Instruction Set Behavior Summary

Table 10-5 summarizes | A-32 instruction behavior within the | A-64 System Environment. All

I A-32 instructions are unchanged from the Intel Architecture Software Developer’s Manual except
where noted. 1A-32 instructions can also generate additional |A-64 related register and memory
faults as defined in Table 5-5. Please refer to the Intel Architecture Software Devel oper’s Manual
for the behavior of all 1A-32 instructions in the | A-32 System Environment.

For all listed and unlisted |A-32 instructions in Table 10-5 the following relationships hold:

» Writes of any 1A-32 general purpose, floating-point or MM X technology or Streaming SIMD
Extension registers by 1A-32 instructions are reflected in the | A-64 registers defined to hold
that 1A-32 state when the | A-32 instruction set completes execution.

* Reads of any 1A-32 general purpose, floating-point or MM X technology or Streaming SIMD
Extension registers by | A-32 instructions see the state of the | A-64 registers defined to hold the
|A-32 state after entering the |A-32 instruction set.

¢ 1A-32 numeric instructions are controlled by and reflect their statusin FCW, FSW, FTW, FCS,
FIR, FOP, FDS and FEA. On exit from the |A-32 instruction set, | A-64 registers defined to hold
|A-32 state reflect the results of al |A-32 prior numeric instructions (FSR, FCR, FIR, FDR).
| A-64 numeric status and control resources defined to hold 1A-32 state are honored by |A-32
numeric instructions when entering the |A-32 instruction set.

In Table 10-5, unchanged indicates there is no change in behavior with respect to the |A-32 System

Environment.

Table 10-5. IA-32 Instruction Summary

IA-32 Instruction

IA-64 System Environment

Comments

AAA, AAD. AAM, AAS

ADC, ADD, AND,

ADDPS, ADDSS,
ANDNPS, ANDPS

ARPL

BOUND

BSF, BSR

BSWAP

BT, BTC, BTS, BTR

unchanged

CALL

near: no change
far: no change

gate more privilege: Gate
Intercept

gate same privilege: Gate
Intercept

task gate: Gate Intercept
+ additional taken branch trap

Intercept if through a call or task gate

if PSR.tb is 1, raise a taken branch trap.

CBW, CWDE, CDQ

unchanged

CLC, CLD

CLI Optional System Flag Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept

CLTS Instruction Intercept IA-32 privileged instruction

CMC

CMOoV

CMP unchanged

IA-64 Operating System Interaction Model with 1A-32 Applications

10-13

Table 10-5. IA-32 Instruction Summary (Continued)

10-14

IA-32 Instruction

IA-64 System Environment

Comments

CMPPS, CMPSS,
COMISS

CMPS

CMPXCHG, 8B

Optional Lock Intercept

If Locks are disabled (DCR.Ic is 1) and a processor
external lock transaction is required

CPUID

CWD, CDQ

CVTPI2PS,
CVTPS2PI,
CVTSIZSS,
CVTSS2sSl,

CVTTPS2PI,
CVTTSS2SI

unchanged

DAA, DAS

DEC

DIV

DIVPS, DIVSS

ENTER

EMMS

unchanged

F2XM1

FABS

FADD, FADDP, FIADD

FBLD

FBSTP

FCHS

FCLEX, FNCLEX

FCMOV

FCOM, FCOMPP

FCOMI, FCOMIP

FUCOMI, FUCOMIP

FCOS

FDECSTP

FDIV, FDIVP, FIDIV

FDIVR, FDIVRP, FDIVR

FFREE

FICOM, FICOMP

FILD

FINCSTP

FINIT, FNINIT

FIST, FISTP

FLD

FLD constant

FLDCW

FLDENV

FMUL, FMULP, FIMUL

FNOP

FPATAN, FPTAN

FPREM, FPREM1

unchanged

1A-32 numeric instructions manipulate the 1A-32
numeric register stack contained in

f8-f15, status is reflected in FSR.
Modification of the IA-32 numeric environ-
ment changes FIR, FDR FCR and FSR.

IA-64 Operating System Interaction Model with IA-32 Applications

intel.

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction IA-64 System Environment Comments
FRNDINT
FRSTOR
FSAVE, FNSAVE
FSCALE
FSIN, FSINCOS
FSQRT
FST, FSTP
FSTCW, FENSTCW
FSTENV, FNSTENV
FSTSW, FNSTSW

FSUB, FSUBP, FISUB IA-32 numeric instructions manipulate the IA-32
numeric register stack contained in

FSUBR, FSUBRP, unchanged f8-f15, status is reflected in FSR. Modification of

FISUBR the 1A-32 numeric environ-

FTST ment changes FIR, FDR FCR and FSR.

FUCOM, FUCOMP

FWAIT

FXAM

FXCH

FXTRACT

FXRSTOR, FXSAVE
FYL2X, FYL2XP1

IDIV unchanged
IMUL
IN, INS unchanged + I/O Ports are If CFLG.io is 0, the TSS I/O Permission bitmap is
mapped virtually not consulted. IA-64 TLB faults control accessibility
to 1/0O Ports.
INC unchanged

additional taken branch trap | if PSR.tbis 1, raise a taken branch trap.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-15

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction IA-64 System Environment Comments

LAHF

LAR
LDMXCSR

LDS, LES, LFS, LGS, unchanged
LSS

LEA

LEAVE

Lock prefix Optional Lock Intercept If Locks are disabled (DCR.Ic is 1) and a processor

external lock transaction is required

LODS unchanged

LOOP, LOOPcc additional taken branch trap | if PSR.th is 1, raise a taken branch trap.
LSL unchanged user level instruction

MASKMOVQ

MAXPS, MAXSS, MINPS,

MINSS

MoV unchanged

MOVNTPS, MOVNTQ

MOV from CR unchanged

MOVAPS, MOVHPS,
MOVLPS,
MOVMSKPS,
MOVSS, MOVUPS unchanged
MOVD, MOVQ
MOVS

MOVSX, MOVZX
MUL

MULPS, MULSS

NOP unchanged

ORPS

OUT, OUTS unchanged + I/O Ports are If CFLG.io is 0, the TSS I/O Permission bitmap is
mapped virtually not consulted. IA-64 TLB faults control accessibility
to I/O Ports.

PACKSS, PACKUS
PADD, PADDS, PADDUS
PAND, PANDN
PCMPEQ, PCMPGT
PEXTRW, PINSRW unchanged

10-16 IA-64 Operating System Interaction Model with IA-32 Applications

In

tel

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction

IA-64 System Environment

Comments

PMADD

PMULHW, PMULLW,
PMULHUW

PMOVMSKB

POP, POPA

POPF, POPFD

Optional System Flag
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept if EFLAG.ac, or tf change state.

POR

PREFETCH

PSHUFW

PSLL, PSRA, PSRL

PSUB, PSUBS,
PSUBUS

PUNPCKH,
PUNPCKL

PXOR

unchanged

PUSH, PUSA

PUSHF, PUSHFD

RCL, RCR, ROL,
ROR

unchanged

pushes value in EFLAG, no intercept

RCPPS, RSQRTPS

RDTSC

RDPMC

Optional GPFault

no longer faults in VM86, GPFault if secured by

PSR.si or CFLG.tsd.

REP, REPcc prefix

unchanged

SAHF
SAL, SAR, SHL, SHR
SBB unchanged
SCAS
SFENCE
SETcc
[SGDT,SLOT [instructionintercept [IA-32privileged instructon |
SHLD, SHRD unchanged
SHUFPS, SQRTPS,
SQRTSS
STC, STD unchanged
STI Optional System Flag Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept

IA-64 Operating System Interaction Model with 1A-32 Applications

10-17

Table 10-5. IA-32 Instruction Summary (Continued)

10.6

10-18

IA-32 Instruction IA-64 System Environment Comments
STMXCSR unchanged
STOS
STR Instruction Intercept IA-32 privileged instruction
SUB unchanged
SUBPS, SUBSS
TEST
UCOMISS unchanged
UNPCKHPS,
UNPCKLPS
ub2 Instruction Intercept reserved undefined opcodes
VERR, VERW unchanged user level instruction
WAIT
WBINVD Instruction Intercept IA-32 privileged instructions
WRMSR
XADD Optional Lock Intercept If Locks are disabled (DCR.Ic is 1) and a processor
XCHG external lock transaction is required than a Lock
Intercept.
XLAT, XLATB
XOR unchanged
XORPS

System Memory Model

Within the 1A-64 System Environment, a unified memory model is presented to the programmer.
Applications and the operating system see the same 64-bit virtual memory space and virtual
addressing mechanisms regardless of the referencing instruction set. A virtual address pointsto the
same physical storage location from both 1A-32 and 1A-64 instruction sets.

| A-64 operating systems must not use |A-32 segmentation as a protected system resource. An

| A-64 operating system must use | A-64 defined virtual memory management to secure |A-32 and
| A-64 applications, memory and |/O devices. |A-64 is defined to be unsegmented architecture and
all 1A-64 memory references bypass | A-32 segmentation and protection checks. In addition, |A-64
user level code can directly modify 1A-32 segment selector and descriptor values for all segments
(including GDT and LDT). If operating systems do not rely on segmentation for protection, there
are no security concerns for exposing | A-32 segment registers and descriptorsto 1A-64 user level
applications.

|A-32 instruction and data reference addresses are generated as 16/32-bit effective addresses as
shown in Figure 10-6. 1A-32 segmentation is then applied to map 32-bit effective addresses into
32-bit virtual addresses, the processor then converts the address into a 64-bit virtual address by zero
extension from 32 to 64-bits. | A-64 instructions bypass all of these steps and directly generate
addresses within the 64-bit virtual address space.

For both 1A-32 and | A-64 instruction set memory references, | A-64 virtual memory management is
used to map a given virtual addressinto a physical address. |A-64 virtual memory management
hardware does not distinguish between 1A-64 and 1A-32 instruction set generated memory
references during the conversion from avirtual to physical address.

IA-64 Operating System Interaction Model with IA-32 Applications

intel.

Figure 10-4. IA-32 and 1A-64 Virtual Memory Addressing

10.6.1

10.6.2

16-/32-bit 32-bit 64-bit 64-bit
Effective Virtual Virtual Physical
Address Address Address Address
Base
A-32 Index i » Zer0 >
Segmentation Extend
Displacement 1A-64
TLB
A-64 Base -
000929

Virtual Memory References

In the I1A-64 System Environment the following virtual memory options are available for
supporting |A-32 and |A-64 memory references.

» Software TLB fills (TLBs are enabled, but the VHPT is disabled).
« 8-byte short format VHPT, see Section 4.1.5, “Virtual Hash Page Table (VHPT)” for details.
» 32-bytelong format VHPT.

IA-64 virtual memory resources can be used by the operating system for al |A-32 memory
references. These resources include virtual Region Registers (RR), Protection Key Registers
(PKR), the Virtual Hash Page Table (VHPT), al supported range of page sizes, Translation
Registers (ITR, DTR), the Trang ation Cache (ITC, DTC) and the complete set of |A-64 defined
virtual memory management faults defined in Chapter 5, “1A-64 Interruptions’.

IA-32 Virtual Memory References

By definition, |A-32 instruction and data memory references are confined to 32-bits of virtual
addressing, the first 4 G-bytes of virtual region 0. However, | A-32 memory references can be
mapped anywhere within the implemented physical address space by operating system code.

Virtual addresses are converted into physical addresses through the process defined in Section 4.1,
“Virtual Addressing”. |A-32 references use the |A-64 TLB resources as follows.

* Region | dentifier s—Operating systems can place | A-32 processes within virtual region 0, and
use the entire 224 region identifier name space. By using region identifiers thereis no
reguirement to flush 1A-32 mappings on a context switch.

e Protection Keys—Operating systems can place mappings used by 1A-32 processes within any
number of protection domains. If PSR.pk is 1, all 1A-32 references search the Protection Key
Registers (PKR) for matching keys. If akey is not found, a Key Miss fault is generated.
Otherwise, key read, write, execute permissions are verified.

» TLB AccessBit —If thisbit is zero, an Access Bit fault is generated during alA-64 or |A-32
instruction set memory references. Note: the processor does not automatically set the Access

IA-64 Operating System Interaction Model with 1A-32 Applications 10-19

10.6.3

10.6.4

10-20

intel.

bit in the VHPT on every reference to the page. Access bit updates are controlled by the
operating system.

e TLB Dirty Bit —-If thishit is zero, a Dirty bit fault is generated during any 1A-64 or |A-32
instruction that stores to a dirty page. Note: the processor does not automatically set the Dirty
bit in the VHPT on every write. Dirty bit updates are managed by the operating system.

IA-32 TLB Forward Progress Requirements

To ensure forward progress while executing 1A-32 instructions, additional TLB resources and
replacement policies must be defined over and above the definition given in Section 4.1.1.2,
“Trandlation Cache (TC)". |A-32 instructions and data accesses may not be aligned resulting in a
worst case scenario for two possible pages being referenced for every memory datum referenced
during the execution of an |A-32 instruction. Furthermore, the worst case non-intercepted 1A-32
opcode can reference up to 4 independent data pages.

The Tranglation Cache's (TC) are required to have the following minimum set of resourcesto
ensure forward progress. Given that software TLB fills can be used to insert entriesinto the TLB
and a hardware page table walker is not necessarily used, the following requirements must be
satisfied by the processor:
« Instruction Translation Cache — at least 1 way set associative with 2 sets, or 2 entriesin afully
associative design. Replacement algorithms must not consistently displace the last 2 entries
installed by software.

» Data Translation Cache — at least 4 way set associative with 2 sets, or 8 entriesin afully
associative design. Replacement algorithms must not consistently displace the last 8 entries
installed by software or the last 8 trandations referenced by an 1A-32 instruction.

« Unified Translation Cache — at least 5 way set associative with 2 sets, or 10 entriesin afully
associative design. The processor must not consistently displace the last 10 entries installed or
the last 10 trandations referenced by an |A-32 instruction.

The processor cannot ensure forward progress unless translations mapping the 1A-64 TLB Miss
handlers are statically mapped by the Instruction Translation Registers.

Multiprocessor TLB Coherency

Global TLB purges can not occur on another processor unless that processor is at an interruptible
point. For |A-32 instruction set execution, interruptible points are defined as; (1) when the
processor is between instructions (regardless of the state of PSR.i and EFLAG.if), and (2) each
iteration of an 1A-32 string instruction, regardless of the state of PSR.i and EFLAG.if

The processor may delay in its response and acknowledgment to a broadcast purge TC transaction
until the processor executing an 1 A-32 instruction has reached a point (e.g. an |A-32 instruction
boundary) where it is safe to process the purge TC request. The amount of the delay is
implementation specific and can vary depending on the receiving processor and what instructions
or operations are executing when it receives the purge request.

IA-64 Operating System Interaction Model with IA-32 Applications

intel.

10.6.5

10.6.6

10.6.7

IA-32 Physical Memory References

When running 1A-32 code, virtual addressing must be utilized by setting PSR.dt to 1 and PSR.it to
1, otherwise processor operation is undefined. Undefined behavior can include, but is not limited
to: machine check abort on entry to | A-32 code, and unpredictable behavior for |A-32 self
modifying code.

Operating systems must ensure PSR.dt and PSR.it are 1 before invoking I1A-32 code. From a
practical standpoint, the TLBs must be enabled so | A-32 code can access the virtual address space,
and access memory areas other than WB (e.g., UC or the I/O Port space).

Supervisor Accesses

If the processor is operating in the |A-64 System Environment, supervisor override is disabled, and
LDT, GDT, TSS references are performed at the privilege level specified by PSR.cpl. Unaligned
processor referencesto LDT, GDT, and TSS segments will never generate an EFLAG.ac enabled

I A-32 Exception (AlignmentCheck) fault, even if PSR.cpl equals 3 and supervisor overrideis
disabled.

Operating systems must ensure that the GDT/LDT are mapped to pages with user level read/write
access.

Write permission isrequired if GDT, or LDT memory descriptor Access-bits are zero regardless of
supervisor override conditions. If all GDT/LDT descriptor Access-bits are one, write permission
can be removed. Otherwise, Access Rights, Key Miss or Key Miss faults can be generated during
all segment descriptor referencing instructions.

If afault is generated during a supervisory access, the | SR.so bit indicates that CPL is zero or a
supervisor override condition was in effect (reference as made to GDT, LDT or TSS).

Memory Alignment

Depending on software conventions, memory structures may have different alignment or padding
restrictions for the |A-32 and | A-64 instruction sets. |A-64 and |A-32 software should use aligned
memory operands as much as possible to avoid possible severe performance degradation associated
with un-aligned values and extra over-head for unaligned data memory fault handlers.

The processor provides full functional support for all cases of un-aligned 1A-32 data memory
references. If PSR.acis1 or EFLAG.acis 1 and CRO.am is 1and the effective privilege level is 3,
unaligned | A-32 memory references result in an 1A-32 Exception (AlignmentCheck) fault.
Unaligned processor referencesto LDT, GDT, and TSS segmentswill never generate an EFLAG.ac
enabled 1A-32 Exception (AlignmentCheck) fault, even if the effective privilege level is 3 and
supervisor override is disabled.

Alignment conditions for | A-64 memory references are not affected by the EFLAG.ac, CFLG.am
bits.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-21

10.6.8

10-22

intel.

If EFLAG.ac and CFLG.am are 1 and the reference is done at privilege level 3, 1A-32 instruction
set unaligned conditions are; 2-byte references not a 2-byte boundary, 4-byte references not on a
4-byte boundary, 8-byte references not on a 8-byte boundary, and 10-byte references not on a
8-byte boundary.

If PSR.acis 1, IA-32 instruction set unaligned conditions are; 2-byte references not a 2-byte
boundary, 4-byte references not on a 4-byte boundary, 8-byte references not on a 8-byte boundary,
and 10-byte references not on a 16-byte boundary.

The processor exhibits the following behavior when accesses are made to un-aligned data operands
that span virtual page boundaries:

* 1A-32instruction set — If either page contains a fault, no memory location is modified. For
reads, the destination register is not modified.

« 1A-64 instruction set —All page crossers result in an unaligned reference fault. Memory
contents and register contents are not modified.

Atomic Operations

All 1A-64 load/stores and | A-32 non-locked memory references up to 64-bits that are aigned to
their natural data boundaries are atomic.

Both 1A-32 and | A-64 atomic semaphore operations can be performed on the same shared memory
location. The processor ensures | A-32 |ocked read-modify-write opcodes and 1A-64 semaphore
operations are performed atomically even if the operations are initiated from the other instruction
set by the same processors, or between multiple processors in an multi-processing system.

There are some restrictions placed on | A-64 atomic sequences that may prevent 1A-64 code from
manipulating | A-32 semaphores in some rare cases.

» Unaligned |1A-64 semaphore operations result in an Unaligned Data Reference fault. |A-64
code manipulation of an 1A-32 semaphore can only be performed if the 1A-32 semaphoreis
aligned.

* 1A-64 semaphore operations to memory which is neither write-back cacheable nor a NaT Page
result in an Unsupported Data Reference fault (regardless of the state of the DCR.Ic). IA-64
code manipulation of an 1A-32 semaphore can only be performed if the IA-32 semaphoreis
allocated in aligned write-back cacheable memory.

If an1A-32 locked atomic operation requires the processor to initiate a read-modify-write operation
external to the processor under external buslock and if DCR.Icissetto 1, an
IA-32_Intercept(Lock) fault isgenerated. External buslocksarerequired for | A-32 atomic accesses
that are made to non-write back memory or are unaligned across an implementation specific
non-supported boundary (for most processors this boundary is 8 bytes).

Unaligned 1A-32 atomic references are supported by the processor but their usage is strongly
discouraged since they are typically performed outside the processor’s cache on the processor bus
under a“bus lock”. External bus locks can severely degrade performance of the system. 1A-32
external bus locks may not be supported in future processor implementations.

For 1A-32 semaphores, atomicity to uncached memory areas (UC) is platform specific, atomicity
can only be ensured by the platform design and can not be enforced by the processor.

IA-64 Operating System Interaction Model with IA-32 Applications

10.6.9

Multiprocessor Instruction Cache Coherency

An 1A-64 processor and platform ensure the processor’s instruction cache is coherent for the
following conditions:

 For al processorsin the coherency domain, local and remote instruction cache coherency on

all processorsis enforced for any store generated by any processor running the 1A-32
instruction set.

For all processors in the coherency domain, instruction cache coherency on al processorsis
enforced for all coherent /O traffic. (For non-coherent 1/0O, a processor may or may not see the
results of an I/O operation.)

For all processors in the coherency domain, instruction cache coherency is not enforced for
stores generated by any processor running the 1A-64 instruction set. To ensure instruction
cache coherency, |A-64 code must use the code sequence defined in Section 4.4.6.2, “Memory
Consistency” in Volume 1.

Table 10-6. Instruction Cache Coherency Rules

iginati E |
Orlgln.atlng Local Processor xterna Coherent I/O Non-coherent I/O
Instruction Set Processor
1A-32 Coherent Coherent
Coherent May be non-
IA-64 May be non- May be non- coherent
coherent coherent

10.6.10

IA-32 Memory Ordering

I A-32 memory ordering follows the Pentium 11 defined processor ordered model for cacheable and
uncacheable memory. |A-32 processor ordered memory references are mapped onto the |A-64
memory ordering model as follows:

IA-64 Operating System Interaction Model with 1A-32 Applications

All 1A-32 stores have rel ease semantics. Except for 1A-32 stores to write-coal escing memory

that are unordered. Subsequent loads are allowed to bypass buffered local store databeforeitis
globally visible. The amount of store buffering is model specific and can vary across processor
generations.

All 1A-32 loads have acquire semantics. Some high performance processor implementations
may speculatively issue acquire loads into the memory system for speculative memory types,
if and only if the loads do not appear to pass other |oads as observed by the program. If thereis
acoherency action that would result in the appearance to the program of aload bypassing other
load, the processor will reissue the load operation(s) in program order.

All 1A-32 read-modify-write or locked instructions have memory fence semantics. All
buffered stores are flushed.

IA-32 IN, OUT and serializing operations (as defined in the Intel Architecture Software
Developer’s Manual) have memory fence semantics. In addition, the processor will wait for
completion (acceptance by the platform) of the IN or OUT before executing the next
instruction. All buffered stores are flushed before the IN or OUT operation.

|A-32 SFENCE has release semantics and will flush all buffered stores.

10-23

intel.

Table 10-7. IA-32 Load/Store Sequentiality and Ordering

10-24

I1A-32 Memory Reference Uncacheable Write Coalescing Cacheable
store sequential non-sequential non-sequential
release?® unordered release®
load sequential non-sequential non-sequential
acquire? unordered acquireb
locked sequential non-sequential non-sequential
or read-modify-write fence fence fence
operation flush prior stores flush prior stores flush prior stores
IN, INS, OUT, OUTS sequential undefined undefined
fence
flush prior stores
IA-32 Serialization fence, flush prior stores
SFENCE release, flush prior stores

a. However, 1A-32 loads/stores to uncacheable memory flush the write coalescing buffers.
b. However, 1A-32 load/stores to cacheable memory do not flush the write coalescing buffers.

Per Table 10-7, |A-32 memory references can be expressed in terms of |A-64 acquire, release,
fence and sequential ordering rules. | A-32 data memory references follow the same ordering
relationships as defined for 1A-64 code as defined in “ Sequentiality Attribute and Ordering” on
page 4-32. The following additional clarifications need to be made for 1A-32 instruction set
execution:

| A-32 loads and instruction fetches to specul ative memory can occur randomly. Read accesses
to speculative memory can occur at arbitrary times even if the in-order execution of the
program does not require aread or instruction fetch from a given memory location.

I A-32 instruction fetches and |oads to non-speculative memory occur in program order. 1A-32
instruction cache line fetch accesses to uncached memory occur in the order specified by an
in-order execution of the program. Note however that the same cache line may be fetched
multiple times by the processor as multipleinstructions within the cache line are executed. The
size of a cache line and number of instruction fetchesis model specific.

| A-32 instruction fetches are not perceived as passing prior |A-32 stores. |A-32 storesinto the
| A-32 instruction stream are observed by the processor’s self modifying code logic.

Specul ative instruction fetches may be emitted by the processor before a store is seen to the
instruction stream and then discarded. Self modifying code due to |A-64 storesis not detected
by the processor.

| A-32 instruction fetches can pass prior loads or memory fence operations from the same
processor. Data memory accesses, and memory fences are not ordered with respect to |1A-32
instruction fetches.

| A-32 instruction fetches can not pass any serializing instructions, including 1A-64 srl z. i
and 1A-32 CPUID. For speculative memory types the processor may prefetch ahead of a
serialization operation and then discard the prefetched instructions.

| A-32 serializing operations wait for all previous stores and |oads to complete, and for al prior
stores buffered by the processor to become visible. | A-32 serializing instructions include
CPUID.

A-32 OUT instructions may be buffered, however the processor will not start execution of the
next 1A-32 instruction until the OUT has completed (been accepted by the platform).

The processor does not begin execution of the next |A-32 instruction until the IN or OUT has
been completed (accepted) by the platform. This statement does not apply for 1A-64 memory

IA-64 Operating System Interaction Model with IA-32 Applications

references to the 1/O Port Space. The processor may issue instruction fetches and VHPT walks
ahead of an IN or OUT.

« VHPT Walks are speculative and can occur at any time. VHPT walks can pass al prior |A-32
loads, stores, instruction fetches, 1/0 operations and serializing instructions.

10.6.10.1 Instruction Set Transitions

Instruction set transitions do not automatically fence memory data references. To ensure proper
ordering software needs to take into account the following ordering rules.

10.6.10.1.1 1A-64 to IA-32 Transitions

* All data dependencies are honored, 1A-32 loads see the results of all prior 1A-64 and 1A-32
stores.

* |A-32 stores (release) can not pass any prior |A-64 load or store.

» |A-32loads (acquire) can pass prior |A-64 unordered loads or any prior |A-64 storeto a
different address. | A-64 software can prevent 1A-32 loads from passing prior 1A-64 loads and
stores by issuing an acquire operation (or nf) before the instruction set transition.

10.6.10.1.2 1A-32 to IA-64 Transitions

« All data dependencies are honored, |A-64 loads see the results of all prior 1A-64 and 1A-32
stores.

* |A-64 stores or loads can not pass prior |A-32 loads (acquire).

¢ |A-64 unordered stores or any | A-64 load can pass prior |A-32 stores (release) to a different
address. | A-64 software can prevent 1A-64 |oads and stores from passing prior 1A-32 stores by
issuing arelease operation (or nf) after the instruction set transition.

10.7 I/O Port Space Model

A consistent unified addressing model is used for both |A-32 and | A-64 references to the I/O port
space. On prior 1A-32 processors, two 1/0 models exist: memory mapped 1/0 and the 64KB 1/0
port space. On | A-64 processors, the 64KB 1/0 port space defined by 1A-32 processorsis
effectively mapped into the 64-bit virtual address space of the processor, producing asingle
memory mapped I/O model as shown in Figure 10-6. This model allows 1A-64 normal load and
store instructions to also access the 1/0 port space.

| A-64 operating system code can directly control 1A-32 IN, OUT instruction and |A-32 or I1A-64
load/store accessibility to blocks of 4 virtual 1/0O ports using the |A-64 TLBs. The entire range of

| A-64 defined virtual memory mechanisms: access rights, dirty, access bits, protection keys, region
identifiers can be used to control permission and addressability.

Inthe |A-64 System Environment, the virtual location of the 64MB 1/O port spaceis determined by

operating system. For IA-32 IN and OUT instructions, the operating system can specify the virtual
base |ocation viathe | OBase register.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-25

10.7.1

intel.

Any |A-32 or 1A-64 load or store within the virtual region mapped by the operating system to the
platform’s physical 64MB 1/0 port block, directly accesses physical 1/0 devices within the 1/0 port
space. The location of the 64MB 1/O port block within the 268 byte physical address spaceis
determined by platform conventions, see Section 10.7.2, “Physical 1/0 Port Addressing” for
details.

Virtual I/O Port Addressing

The |A-32 defined 64-KB 1/O port space is expanded into 64MB. This effectively places 4 1/0
ports per each 4KB virtual and physical page. Since there are 4 ports per virtual page, the |A-64
TLBs can be used port address translation and permission checks as shown in Figure 10-6.

For IA-32 IN and OUT instructions a port’s virtual address is computed as:

port_virtual _address = | OBase | (port{15:2}<<12) | port{11l: 0}

Figure 10-5. I/0 Port Space Model

Virtual Address Space Physical Address Space
264 2% Memory
Mapped 1/0
Memory Map 1/0
IA-32/IA-64 Load/Stores - > >
64MB
INJOUT \ Sgggrr?;
1/0 Ports [
16 } 216
2 64MB |
IA32 __p A |
IN/OUT : [
[
| | 0
0 | |
I [
I
I
| \/
I
Platform
1A-32/1A-64 Load/Stores | Physical
v 1/0 Block
I0Base
0 0
000931

10-26

IA-64 Operating System Interaction Model with IA-32 Applications

intel.

Figure 10-6. I/O Port Space Addressing

IA-32
IN,
ouT

IA-64
Load,
Store

64-bit virtual 64-bit
‘ IOBase ‘ address physical address

Port{15:2 Shift

KIO Ptc))rt oIS et >
umber 12-bits
I1A-64

Port{11:0} TLB
I/0O Port
Address >

This address computation places 4 ports on each 4K page and expands the space to 64M B, with the
ports being at arelative offset specified by port{ 11:0} within each 4K-byte virtual page. |IOBaseis
akernel register (KR) maintained by the operating system that points to the base of the 64MB
virtual 1/0 port space. The value in |OBase must be aligned on a 64MB boundary otherwise port
address aliasing will occur and processor operation is undefined.

For 1A-64 load and stores accesses to the /O port space, aport’s virtual address can be computed in
the same manner, specifically.

port_virtual _address = | OBase | (port{15:2}<<12) | port{11: 0}

In practice this address is a constant for any given physical 1/0 device.

Software Warning: Inthe generation of the I/O port virtual address, software MUST ensure that
port_virtual_address{11:2} are equal to port{11:2} bits. Otherwise, some
processor implementations may place the port data on the wrong bytes of the
processor’s bus and the port will not be correctly accessed.

IA-32 IN and OUT instructions and | A-64 or 1A-32 load/store instructions can reference 1/O ports
in 1, 2, or 4-byte transactions. References to the legacy /0O port space cannot be performed with
greater than 4 byte transactions due to bus limitations in most systems. Since an |A-32 IN/OUT
instruction can access up to 4 bytes at port address OxFFFF, the I/O port space effectively extends
3 bytes beyond the 64K B boundary. Operating systems can; (1) not map the excess 3 bytes,
resulting in denial of permission for the excess 3 bytes, or (2) map viathe TLB the excess 3 bytes
back to port address O effectively wrapping the 1/0O port space at 64KB.

Operating system code can map each virtual 1/0O port space page anywhere within the physical
address space using the Data Trand ation Registers or the Data Trandation Cache. Large page
translations can be used to reduce the number of mappings required in the TLB to map the I/O port
space. For example, one 64MB tranglation is sufficient to map the entire expanded 64MB 1/0 port
space. The UC memory attribute must be used for al 1/0 port space mappings to avoid
speculative processor references to 1/0 devices, otherwise processor and platform operation is
undefined.

Operating System Warning: Operating system code can not remap a given port to another port
address within the 1/O port space, such that port_physical_address{21:12} =
port_physical_address{ 11:2} . Otherwise, based on the processor model, 1/0 port data may be
placed on the wrong bytes of the processor’s bus and the port will not be correctly accessed.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-27

10.7.2

10.7.2.1

10-28

intel.

1/O port space breakpoints can be configured by loading the address and mask fields with the
virtual address defined by the operating system to correspond to the 1/O port space.

The processor (as defined in the next section) ensures that |oad, store references will not result in
references to 1/0 devices for which permission was not granted.

All memory related faults defined in Chapter 5, “1A-64 Interruptions” can be generated by 1A-32
IN and OUT references to the 1/0 port space, including | A-32_Exception(Debug) traps for data
address breakpoints and 1A-32_Exception(AlignmentCheck) for unaligned references.
(EFLAG.ac enabled unaligned port references are not detected by the processor). |A-64 Data
Breakpoint registers (DBRs) can be configured to generate debug traps for referencesinto the I/0
port space by either IA-32 IN/OUT instructions or by 1A-32 or |A-64 |oad/store instructions.

Physical I/O Port Addressing

Some processors implementations will provide an M/10 pin or bus indication by decoding physical
addresses if references are within the 64MB physical 1/0 Block. If so the 64MB 1/O port spaceis
compressed back to 64KB. Subsequent processor implementations may drop the M/IO pin (or bus
indication) and rely on platform or chip-set decoding of a range of the 64MB physical address
space.

Through the PAL firmware interface, the 64MB physical 1/0 block can be programmed to any
arbitrary physical location. It is suggested that to be compatible with | A-32 based platforms, the
platform physical location of the physical 1/0 block be programmed above 4G-bytes and above all
useful DRAM, ROM and existing memory mapped 1/0 areas.

Based on the platform design, some platforms can accept addresses for the expanded 64MB 1/0
block, while other platforms will require that the 1/O port space be compressed back to 64KB by
the processor. If the 1/O port space needs to be compressed either the processor or platform (based
on the implementation) will perform the following operation for all memory references within the
physical 1/0 block.

1 O address{1: 0} = PA{1:0}
| O _addr ess{15: 2} = PA{25: 12} //bytestrobesaregenerated from the lower 10_address bits

The processor ensures that the bus byte strobes and bus port address are derived from
PA{25:12,1:0}. Thus allowing an operating system to control security of each 4 portsviaTLB
management of PA{25:12}.

I/O Port Addressing Restrictions

For the 64MB physical 1/0 port block the following operations are undefined and may result in
unpredictable processor operation; references larger than 4-bytes, instruction fetch references,
references to any memory attribute other than UC, or semaphore references which require an
atomic lock. To ensure |/O ports accesses are not granted for which the TLB has not been
consulted, the processor ensures:

« All byte addresses within the same 4KB page alias to the 4 ports defined by the mapped
physical 1/0 port page.

« All unaligned loads and stores (both | A-32 and | A-64) that cross a 4-byte boundary to the
processor’s physical 1/0 port block are truncated. That is the bus transaction to the area before

IA-64 Operating System Interaction Model with IA-32 Applications

the 4-byte boundary is performed (the number of bytes emitted is model specific). No bus
transaction is performed for the bytes that are beyond the 4-byte boundary. Four-byte crosser
loads while return some undefined data. 4-byte crosser stores will not write all intended bytes.

For IA-32 IN/OUT accesses that cross a4-port boundary the processor will break the operation
into smaller 1, 2, or 3 byte 1/0 port transactions within each 4KB virtual page.

10.7.3 IA-32 IN/OUT Instructions

IA-321/Oinstructions (IN, OUT, INS, OUTS) defined in the Intel Architecture Software
Developer’s Manual are augmented as follows:

1/O Instructions first check for IOPL permission. If PSR.cpl<=EFLAG.iopl, access permission
is granted. Otherwise the TSS I/O permission bitmap may be consulted as defined below. If the
bitmap denies permission or is not consulted an 1A-32_Exception(GPFault) is generated.

If IOPL permission isdenied and CFLG.iois 1, the TSS /O permission bitmap is consulted for
access permission. If the corresponding bit(s) for the I/O port(s) is 1, indicating permission is
denied, a GPFault is generated. Otherwise access permission is granted. The TSS1/0
permission bitmap provides 1 port permission control at the expense of additional processor
data memory references. This mechanism can be used in the |A-64 System Environment, but is
not recommended since |A-64 TLB access controls are faster and provide a consistent control
mechanism for both |A-64 and | A-32 code. Whereas, the |A-64 TLB mechanism provides a
control mechanism for both |A-32 and | A-64 memory references.

If CFLG.iois0, the TSS I/O permission bitmap is not consulted and if the IOPL check failed
an |1A-32_Exception(GPFault) is generated. By setting CFLG.io to 0, operating system code
can disable al processor referencesto the TSS. By setting |OPL<PSR.cpl and setting CFLG.io
to 0, operating system code can block all user level execution of 1A-32 1/O instructions, no
TSS needs to be allocated or defined by the operating system.

1/0O port references generate a virtual port address relative to the |OBase register as defined
inSection 10.7.1, “Virtual 1/O Port Addressing”.

If datatranslations are enabled, the TLB is consulted for the required virtual to physical
mapping. If the required mapping is not present aVVHPT Translation, Data TLB Miss or
Alternative Data TLB Missfault is generated.

If datatranglations are enabled, Access Rights, Permission Keys, Access, Dirty and Present
bits are checked and faults generated.

If datatranslations are disabled (PSR.dt is 0) or the referenced 1/0 port is mapped to an
unimplemented virtual address (viathe |OBase register), a GPFault israised on the referencing
IA-32IN, OUT, INS, or OUTS instruction.

Alignment and Data Address breakpoints are also checked and may result in an
IA-32_Exception(AlignmentCheck) fault (if PSR.ac is 1) or |A-32_Exception(Debug) trap.
If an 1A-32 IN/OUT 1/O port accesses cross a 4-port boundary the processor will break the
operation into smaller 1, 2, or 3 byte transactions.

Assuming no faults, a physical transaction is emitted to the mapped or specified physical
address.

The processor ensures that 1A-32 IN, INS, OUT, OUTS references are fully ordered and will not
allow prior or future data memory references to pass the 1/0O operation as defined in

Section 10.6.10, “IA-32 Memory Ordering”. The processor will wait for acceptance for IN and
OUT operations before proceeding with subsequent externally visible bus transactions.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-29

10.7.4

10.8

10-30

intel.

I/O Port Accesses by Loads and Stores

If an access is made to the 1/0 port block using |A-32 or 1A-64 loads and stores the following
differencesin behavior should be noted; EFLAG.iopl permission is not checked, TSS permission
bitmap is not checked, and stores and |oads do not honor IN and OUT memory ordering and
acceptance semantics (the processor will not automatically wait for a store to be accepted by the
platform).

Virtual addresses for the 1/0 port space should be computed as defined in Section 10.7.1, “Virtual
I/O Port Addressing”. If data trandations are enabled, the TLB is consulted for mappings and
permission, and the resulting mapped physical address used to address the physical 1/0 device.

If 1A-32 ordering semantics are required to a particular 1/0O port device (or memory mapped |/O
device), |A-64 or | A-32 software must enforce ordering to the I/O device. Software can either
perform a memory ordering fence before and after the transaction, or use an load acquire or store
release.

To ensure the processor does not specul atively access an 1/0O device, all 1/0 devices must be
mapped by the UC memory attribute.

If 1A-32 acceptance semantics are required (i.e. additional data memory transactions are not
initiated until the 1/O transaction is completed), |A-64 code can issue a memory acceptance fence.
Conversely, if certain 1/0 devices do not require |A-32 IN/OUT ordering or acceptance semantics,
| A-64 code can relax ordering and acceptance requirements as shown bel ow.

aut
[nf]/ [/Fence prior nmenmory references, if required

add port_addr = | O _Port_Base, Expanded_Port_Nunber
st.rel (port_addr), data

[nf.a] //Wait for platformacceptance, if required
[nf] // Fence future nenory operations, if required

I'N

[nf] // Fence prior menory references, if required
add port_addr = | O _Port_Base, Expanded_Port_Nunber
Id.acq data, (port_addr)

[nf.a] //Wait for platformacceptance, if required
[nf] //Fence future nenory references, if required

Debug Model

The | A-64 debug facilitates are designed to support debugging of both the IA-64 and 1A-32
instruction set. The following debug events can be triggered during 1A-32 instruction set execution
by 1A-64 debug resources.
* Single Step trap —When PSR.ssis 1 (or EFLAG.tf is 1), successful execution of each |A-32
instruction, resultsin an 1A-32_Exception(Debug) trap. After the single step trap, |1 P points to
the next 1A-32 instruction to be executed.

IA-64 Operating System Interaction Model with IA-32 Applications

10.8.1

Breakpoint Instruction trap — Execution of INT 3 (breakpoint) instruction resultsin a
|A-32_Exception(Debug) trap.

Instruction Debug fault — When PSR.db is 1 and PSR.id is0 and EFLAG.rf is 0, any |A-32
instruction fetch that matches the parameters specified by the IBR registers resultsin an
IA-32_Exception(Debug) fault. After servicing a Debug fault, debuggers can set PSR.id (or
EFLAG.If for |A-32 instructions) before restarting the faulting instruction. If PSR.id is 1,
Instruction Debug faults are temporarily disabled for one 1A-64 instruction. If PSR.idis1 or
EFLAG.rf is 1, Instruction Debug faults are temporarily disabled for one 1A-32 instruction.
The successful execution of an |A-32 instruction clears both PSR.id and EFLAG.rf bits. The
successful execution of an 1A-64 instruction only clears PSR.id.

Data Debug traps—When PSR.db is 1, any 1A-32 data memory reference that matches the
parameters specified by the DBR registersresultsin a | A-32_Exception(Debug) trap. 1A-32
data debug events are traps, not faults as defined for |A-64 instruction set data debug events.
Trap behavior is required since any given |A-32 instruction can access several memory
locations during its execution. The reported trap code returns the match status of the first four
DBR registers that matched during the execution of the |A-32 instruction. Zero, one or DBR
registers may be reported as matching.

Taken Branch trap — When PSR.tbis 1, alA-32_Exception(Debug) trap occurs on every
I A-32 taken branch instruction (CALL, Jcc, IMP, RET, LOOP). After thetrap, 1P pointsto the
branch target.

Lower Privilege Transfer trap — Does not occur during | A-32 instruction set execution.

For virtual memory accesses, breakpoint address registers contain the virtual addresses of the
debug breakpoint. For physical accesses, the addresses in these registers are treated as a physical
address. Software should be aware that debug registers configured to fault on virtual references,
may also fault on a physical referenceif transations are disabled. Likewise a debug register
configured for physical references can fault on virtual references that match the debug breakpoint
registers.

Data Breakpoint Register Matching

Each | A-64 data breakpoint register has the following matching behavior for |A-32 instruction set
data memory references:

DBR.addr —1A-32 single or multi-byte data memory references that access ANY memory
byte specified by the DBR address and mask fields results in a debug breakpoint trap
regardless of datum size and alignment. The upper 32-bits of DBR.addr must be zero to detect
I A-32 data memory references. Since | A-32 data breakpoints are traps, al processor
implementations ensure data breakpoint traps are precise. Traps are only reported if any bytein
the datamemory reference ANDed with the DBR mask bitwise matches the DBR addressfield
ANDed with the DBR mask. No spurious data breakpoint faults are generated for |A-32 data
memory operands that are unaligned, nor are matches reported if no bytes of the operand lie
within the address range specified by the DBR address and mask fields. Note, 1A-64
instruction set generated unaligned data memory references may result in spurious imprecise
breakpoint faults.

DBR.mask — by programming the mask a breakpoint range of 1, 2, 4, 8, or any power of 2
combination can be supported. Mask bits above bit 31 are checked by the processor during
| A-32 data memory references.

trap code B bits— are set indicating a match with the corresponding data breakpoint register
DBRO-3. For | A-32 data debug traps, any number of B-bits can be set indicating a match.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-31

10.8.2

10.9

10-32

intel.

The B-bits are only set and a data breakpoint trap generated if 1) the breakpoint register precisely
matches the specified DBR address and mask, 2) it is enabled by the DBR read or write bits for the
type of the memory transaction, 3) the DBR privilege field matches PSR.cpl, 4) PSR.dbis 1, and 5)
no other higher priority faults are taken.

1/O port space breakpoints can be configured by loading the address and mask fields with the
virtual address defined by the operating system to correspond to the 1/O port space.

Instruction Breakpoint Register Matching

Each | A-64 instruction breakpoint register has the following matching behavior for 1A-32
instruction set memory fetches:

* IBR.addr —an IBR register matches an |A-32 instruction fetch address, if the first byte of an
|A-32 instruction address ANDed with the IBR mask bitwise matches the IBR address field
ANDed with the IBR mask. Note that only the first byte is analyzed. The upper 32-bits of
IBR.addr must be zero to detect | A-32 instruction fetches.

« IBR.mask —by programming the mask a breakpoint range of 1, 2, 4, 8, or any power of 2
combination can be supported. Mask bits above bit 31 areignored during IA-32 instruction
fetches.

Theinstruction breakpoint fault is generated if (1) the breakpoint register precisely matches the
specified IBR address and mask, (2) it is enabled by the IBR execute bit, (3) the IBR privilege field
matches PSR.cpl, (4) PSR.db is 1, (5) PSR.id is 0, and (6) no other higher priority faults are taken.

Interruption Model

Within the 1A-64 System Environment, all interruptions originating out of the IA-32 or |A-64
instruction sets are delivered to |A-64 Interruption Handlers within the | A-64 operating system.
Virtual memory management faults, machine checks, and external interrupts are always delivered
to |A-64 interruption handlers regardless of the instruction set running at the time of the
interruption. |A-32 exceptions, control transfers through gates, task switches, and accesses to
sensitive |A-32 system resources are intercepted into 1A-64 interruption handlers. Using these
intercepts, | A-64 software can implement specific policies with regard to that resource. Policies
may include virtualization, emulation of an 1A-32 opcode or memory access, or various permission
policies.

In general, if an interruption is independent of the executing instruction set (such as an external
interruption or TLB fault) common | A-64 handlers are invoked. For classes of exceptions and
intercept conditions that are specific to the |A-32 instruction set, three special | A-64 software
handlers are invoked to deal with 1A-32 instruction set interruptions. Table 10-8 shows the three
interruption handlers defined to support 1A-32 events. See Section 9.2, “1A-32 Interruption Vector
Definitions” for details on these interruption handlers.

This grouping of interruption handlers simplifies software handlers such that they do not need to be
concerned with behavior of both 1A-32 and 1A-64 instruction sets.

IA-64 Operating System Interaction Model with IA-32 Applications

| A-64 defined interruption registers (defined in Chapter 3, “1A-64 System State and Programming
Model") record the state of 1A-32 execution at the point of interruption. For 1A-32 exceptions, ISR
contains |A-32 defined error codes and vector numbers as defined by the Intel Architecture
Software Developer’s Manual. 1A-32 instruction set related exceptions and software interruptions
vector directly through the 1A-64 defined interruption mechanism without consulting the |A-32
IDT or performing any memory stack pushes.

Table 10-8. IA-32 Interruption Vector Summary

Handler

Description

I1A_32_Intercept

Intercepted IA-32 instructions, 1/O, system flag manipulation and gate transfers.

IA-32_Exception

IA-32 instruction set generated exceptions.

IA_32_Interrupt

IA-32 instruction set generated software interrupts

10.9.1 Interruption Summary

Table 10-9 summarizes the set of all 1A-32 interruptions and how they are mapped to 1A-64
interruption handlers within the 1A-64 System Environment. See Chapter 9, “IA-32 Interruption
Vector Descriptions’ and Chapter 8, “1A-64 Interruption Vector Descriptions’ for a detailed
definition of each interruption.

Table 10-9. IA-32 Interruption Summary

1A-32 . ISR "

Vector IA-64 Interruption Handler Vect ISR Code Description

IA-32 defined interruptions

0 1A-32_Exception (Divide) 0 I1A-32 divide by zero fault

1 1A-32_Exception (Debug) 0 I1A-32 instruction breakpoint fault.

1 1A-32_Exception (Debug) TrapCode IA-32 debug events. The Trap Code
indicates concurrent taken branch, data
breakpoint and single step trap
conditions.

2 External Interrupt 0 0 NMI is delivered through the 1A-64
External Interrupt vector.

3 1A-32_Exception(Break) 3 TrapCode IA-32 INT 3 instruction

4 1A-32_Exception(INTO) 4 TrapCode IA-32 INTO detected overflow trap

5 1A-32_Exception (Bound) 5 0 1A-32 BOUND range exceeded fault

6 1A-32_Intercept(Inst) 0 InterceptCode All 1A-32 unimplemented and illegal
opcodes

7 1A-32_Exception(DNA) 7 0 IA-32 Device not available fault

8 - na IA-32 Double fault can not be generated
in the 1A-64 System Environment, Intel
reserved

9 - na Intel reserved

10 - na IA-32 Invalid TSS fault can not
generated in the 1A-64 System
Environment, Intel reserved,

11 1A-32_Exception(NotPrese |11 ErrorCode? IA-32 Segment Not present fault

nt)
12 1A-32_Exception (Stack) 12 ErrorCode 1A-32 Stack Exception fault
13 1A-32_Exception (GPFault) |13 ErrorCode IA-32 General Protection fault

IA-64 Operating System Interaction Model with 1A-32 Applications

10-33

Table 10-9. IA-32 Interruption Summary (Continued)

10.9.2

10-34

1A-32 . ISR .
Vector IA-64 Interruption Handler Vect ISR Code Description
14 IA-64 TLB faults see Data TLB faults below 1A-32 Page fault can not be generated
in the 1A-64 System Environment,
replaced by 1A-64 TLB faults, Intel
reserved,
15 -- na Intel reserved
16 IA-32_Exception (FPError) |16 IA-32 floating-point fault
17 IA-32_Exception(AlignChec | 17 IA-32 un-aligned data references
K)
18 Corrected MCHK na 1A-32 Machine Check can not be
generated in the 1A-64 System
Environment, replaced by the PAL
Machine Check Architecture, Intel
reserved
19 IA-32_Exception 19 0 1A-32 Streaming SIMD Extension
(StreamSIMD) Numeric Error fault
20-31 -- na Intel reserved
0-255 External Interrupt 0 0 External interrupts are delivered
through the 1A-64 External Interrupt
vector. Software must read the IVR
register to determine the vector number.
0-255 IA-32_Interrupt (vector #) Vect# | TrapCode IA-32 Software Interrupt trap. ISR
contains the vector number.
1A-32 interceptions
IA-32_Intercept(Inst) 0 InterceptCode Intercept for unimplemented, illegal or
privileged IA-32 opcodes.
IA-32_Intercept(Gate) 1 TrapCode Intercept for control transfers through a
Call Gate, Task gate or Task Segment.
IA-32_Intercept(SystemFla |2 TrapCode Intercept for modification of system flag
9) values.
IA-32_Intercept(Lock) 4 0 IA-32 semaphore operation requires an
external bus lock when DCR.Ic is 1.
3,5-25 | -- Intel reserved
5

a. The 1A-32 Error Code is defined as a Selector Index, and the TI, IDT and EXT bits are zero based on the
exception; see Intel Architecture Software Developer’s Manual for the complete definition.

IA-32 Numeric Exception Model

| A-32 numeric instructions follow the |A-32 delayed floating-point exception model. Specifically
| A-32 numeric exceptions are held pending until the next |A-32 numeric instruction or MMX
instruction as defined in the Intel Architecture Software Developer’s Manual. Numeric faults
generated on Streaming SIMD Extension instructions are reported precisely on the faulting
Streaming SIMD Extension instruction. Streaming SIMD Extension instructions do NOT trigger
the report of pending | A-32 numeric exceptions.

For voluntary transitions out of the |A-32 instruction, an implicit FWAIT operation is performed by
the JMPE instruction to ensure all pending numeric exceptions are reported. For involuntary
transitions out of the 1A-32 instruction set (external interruptions, TLB faults, exceptions, etc.) the
processor does not perform a FWAIT operation. However, every |A-32 numeric instruction that

IA-64 Operating System Interaction Model with IA-32 Applications

10.10

10.10.1

generates a pending numeric exception loads the application registers FSR, FIR, and FDR with the
I A-32 floating-point state on the instruction that generating the exception. This state contains
information defined by the IA-32 FSTENV and FLDENYV instructions. During a process context
switch, the operating system must save and restore FSR, FIR, and FDR (effectively performing an
FSTENV and FLDENV) to ensure numeric exceptions are correctly reported across a process
switch.

Processor Bus Considerations for IA-32 Application
Support

The section briefly discusses bus and platform considerations when supporting | A-32 applications
in the |A-64 System Environment.

| A-64 code does not assert the SPLCK and LOCK pins. The LOCK pinisused by I1A-32 codeto
signal an external atomic bus transaction for which atomicity cannot be enforced within the
processor’s caches, whereas, SPL CK indicatesif an unaligned external buslock requires a split lock
operation and hence several bus transactions. For |A-32 code, if the platform does not support
LOCK or SPLCK, the operating system must disable external bus lock transactions by setting
DCR.Icto 1. When DCR.Icis 1, any |A-32 atomic reference not serviced internally in the
processor’s caches results in an 1A-32_Intercept(L ock) fault. See “Default Control Register (DCR
— CRQ0)” for details. When DCR.Ic is 0, operating system code is responsible for emulation of the
IA-32 instruction and ensuring atomicity (if required).

The A20M and IGNE pins are ignored in the | A-64 System Environment. FERR is not asserted in
the 1A-64 System Environment.

In both IA-32 and 1A-64 System Environments, the M/1O pin (or an external busindication) is
asserted by any memory reference to the 64MB 1/0 port block range of the physical address space.
See “1/0 Port Space Model” for details.

SMI and the SMM environment are not supported on 1A-64 processors. The PMI interrupt and PAL
firmware environment replace them. See Section 11.5, “ Platform Management Interrupt (PM1)” for
details.

IA-32 Compatible Bus Transactions

Within the 1A-64 System Environment, the following bus transactions are initiated:

¢ INTA —Interrupt Acknowledge - emitted by the operating system (viaaread to the INTA byte
in the processor’s Interrupt Block) to acquire the interrupt vector number from an external
interrupt controller.

* HALT — Emitted when the processor has entered the halt state due to the operating
system/platform firmware calling PAL halt firmware.

 SHUTDOWN — Emitted when the processor has entered the shutdown state due to the
operating system/platform firmware calling PAL shutdown firmware.

» STPACK — Stop Acknowledge. Emitted by platform firmware via PAL halt firmwarein
response to a platform request to stop clocksin the system.

IA-64 Operating System Interaction Model with 1A-32 Applications 10-35

intel.

e FLUSH — Emitted by the PAL_CACHE_FLUSH operation. Indicates external caches (if any)
should be flushed.

e SYNC - Emitted by the PAL_CACHE_FLUSH operation. Indicates external caches (if any)
should copy all modified caches lines back to main memory.

10-36 IA-64 Operating System Interaction Model with IA-32 Applications

intel.

|A-64

Processor Abstraction Layer 11

11.1

This chapter defines the architectural requirements for the Processor Abstraction Layer (PAL)
for all 1A-64 processors. It isintended for | A-64 processor designers, firmware/BlIOS designers,
system designers, and writers of diagnostic and low level operating system software.

PAL is part of the | A-64 processor architecture and its goal isto provide a consistent firmware
interface to abstract processor implementation-specific features.

The objectives of this chapter are to define:

» The architectural behavior and interface requirements for processor testing, configuration and
error recovery. Thisincludes the hardware entrypointsinto PAL and the PAL interfacesto
platform firmware and system software.

¢ A set of boot and runtime PAL procedures to access processor implementation specific
hardware and to return information about processor implementation-dependent configuration.

» A computing environment for both PAL entrypoints and procedures such that:
» Memory used by PAL procedures is allocated by the caller of PAL procedures.
* PAL code runs little endian.
* PAL interfaceis as endian neutral as possible.
* PAL islA-64 code.
» PAL coderuns at privilege level 0.

» PAL procedures can be called without backing store, except where memory based
parameters are returned.

» The processor and platform hardware requirements for PAL. Thisincludes minimizing PAL
dependencies on platform hardware and clearly stating where those dependencies exist.

» A PAL interface and requirements to support firmware update and recovery.

Firmware Model

Asshown in Figure 11-1, |A-64 firmware consists of three major components. Processor
Abstraction Layer (PAL), System Abstraction Layer (SAL), and Extensible Firmware Interface
(EFI) layer. PAL, SAL, and EFI together provide processor and system initialization for an
operating system boot. PAL and SAL provide machine check abort handling and other processor
and system functions which would vary from implementation to implementation. The interactions
of the various servicesthat PAL, SAL, and EFI provide are shown in Figure 11-2.

In the context of this model and throughout the rest of this chapter, the System Abstraction Layer
(SAL) isafirmware layer which isolates operating system and other higher level software from
implementation differences in the platform, while PAL isthe firmware layer that abstracts the
processor implementation.

IA-64 Processor Abstraction Layer 11-1

11.

11-2

Figure 11-1. Firmware Model

Operating System Software

Transfe(s to OS ' 0S Boot EFI
Entrypoints Handoff Procedure
for Hardware Calls
Events
e Extensible Firmware
‘‘‘‘ > Interface (EFI)
A
OS Boot B »
Selection
SAL Procedure B
Calls //
Instruction
Platform/System Abstraction Layer Execution
(SAL)
A
Acess to PAL Procedure
Platform Calls
Resources | ¥ \
< Transfers to SAL
Entrypoints [S >
P

Processor Abstraction Layer
(PAL)

Interrupts,
Traps and
Faults

/
/
/
Ve

<

Processor (Hardware)

-
"
\,
\,

Non—pérformance Critical
Hardware Events, e.g.
Reset, Machine Checks

\\
S

Performance Critical
Hardware Events,
e.g. Interrupts

A

T

Platform (Hardware)

000950

1.1

Processor Abstraction Layer (PAL) Overview

The purpose of the Processor Abstraction L ayer, isto provide afirmware abstraction between the
processor hardware implementation and system software and platform firmware, so asto maintain
asingle software interface for multiple implementations of the processor hardware. PAL is defined
to be independent of the number of processors on aplatform.

PAL encapsulates those processor functions that are likely to change on an implementation to
implementation basis so that SAL firmware and operating system software can maintain a
consistent view of the processor. These include non-performance critical functions dealing such as
processor initialization, configuration and error handling.

IA-64 Processor Abstraction Layer

intel.

Figure 11-2. Firmware Services Model

Operating System Software
OS Machine .
OS Loader Check OS Init
Handler
Handler
/ A
A A 1
Runtime 0S
. Boot
Services .
Services
A /
[___17___1 SAL
: Boot :
| Services |
I (Transient) :
\ | A
Platfprm Platform Platform Platform Platform
Runtime .
X Reset Error Init PMI
Services Handler Handl Handler Handler
(Procedures) andler
A A J ; J A
________ Reset Event
I
T
Y Yy v PAL
Proce_ssor Processor Processor Processor Processor
Runtime .
Services Reset Error Init PMI
Handler Handler Handler Handler
(Procedures)
/ / / /
Reset / Machine Initialization PMI
Power On Check Event Event
Platform/Processor Hardware
000933

PAL consists of two main components:

< Entrypoints, which are invoked directly by hardware events such as reset, init and machine
checks. These interruption entrypoints perform functions such as processor initialization and
€rror recovery.

» Procedures, which may be called by higher level firmware and software to obtain information
about the identification, configuration, and capabilities of the processor implementation; to
perform implementation-dependent functions such as cache initialization; or to allow software
to interact with the hardware through such functions as power management or
enabling/disabling processor features.

IA-64 Processor Abstraction Layer 11-3

11.1.2 Firmware Entrypoints

Figure 11-3. Firmware Entrypoints Logical Model

PAL SAL EFI oS
Firmware Recovery Complete
Bootstrap Processor (BSP)
BSP BSP
Reset Y
» PALE_RESET »> »| SAL RESET » EFl Boot Manager —» OS_LOADER
Power-On |
Application
Processors |
(APs) |
Wake Up
E SAL BOOT_RENDEZ |« — — — — — — — — -
>
I'ul
w
-
Initialize &
—— > PALE_INIT > » SAL_INIT > OS_INIT
Error Bootstrap Processor (BSP)
—» PALE_CHECK > » SAL CHECK > OS_MCA
I I
A | MC_Rendezvous |
Interrupt
Rendezvous Complete | Wake Up |
- — >» SAL MC_RENDEZ |= — — -
Application Processors (APS)
PMI
. S
< PALE_PMI SALE_PMI
Resume T

11.1.3 PAL Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:
* Power-on/reset
» Hardware errors (both correctable and uncorrectabl€)
« Initialization event (via external interrupt bus message or processor pin)
« Platform management interrupt (via external interrupt bus message or processor pin)

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in
Figure 11-3):
* PALE_RESET - Initializes and tests the processor following power-on or reset and then
branchesto SALE_ENTRY to determine whether to perform firmware recovery update, or to
boot the machine for OS use. See Section 11.1.4.

11-4 IA-64 Processor Abstraction Layer

11.1.4

11.1.5

11.1.6

* PALE_CHECK — Determinesif errors are processor related, saves processor related error
information and corrects errors where possible (for example, by flushing a corrupted
instruction cache line and marking the cache line as unusable). In al cases, PALE_CHECK
branchesto SALE_ENTRY to complete the error logging, correction, and reporting.

« PALE_INIT —Savesthe processor state, places the processor in aknown state, and branches to
SALE_ENTRY. PALE_INIT is entered as aresponse to an initialization event.

» PALE_PMI —Savesthe processor state and branchesto SALE_PMI. PALE_PMI isentered asa
response to a platform management interrupt.

SAL Entrypoints

There are two entrypoints from PAL into SAL:

* SALE ENTRY —PAL branchesto this SAL entrypoint after a power-on, reset, machine check,
or initialization event. If SALE_ENTRY was invoked by a machine check or initialization
event, SALE_ENTRY branches to the appropriate routine:

» SAL_CHECK isinvoked after a machine check.
* SAL_INIT isinvoked after an initialization event.

If SALE_ENTRY wasinvoked by areset or power on, it checks to determine if afirmware
recovery condition exists. If it does, SALE_ENTRY performs the firmware update, then
performs a RESET operation to invoke PAL_RESET. If arecovery condition does not exist,
SAL_ENTRY returnsto PAL_RESET to complete processor self-test. PAL_RESET then
branches back to SALE_ENTRY, which, in turn, branchesto SAL_RESET.

» SALE _PMI — Platform management interrupt. PALE_PMI branchesto this SAL entrypoint
after saving processor state in response to the platform management interrupt.

OS Entrypoints

There are several entrypoints from SAL into an operating system (or equivalent software).
Entrypoints from SAL into the operating system are expected to meet the following model:

» OS BOQOT — Operating System Boot interface.

* OS_MCA — Operating System Machine Check Abort Handler.

* OS_INIT — Operating System Initialization Handler.

* OS_RENDEZ — Operating System Multiprocessor Rendezvous interface.

Firmware Address Space

The firmware address space occupies the 16 MB region between 4 GB - 16 MB and 4 GB
(addresses 0xFF00_0000 through OxFFFF_FFFF). This address space is shown in Figure 11-4.
This firmware address space layout allows for recovery or update of the PAL or SAL firmware
components.

This address space is shared by SAL and PAL. Some of the SAL/PAL boundaries are
implementation-dependent. The address space contains the following regions and locations.

¢ The 16 bytes at OxFFFF_FFFO (4GB-16) contain IA-32 Reset Code.
» The 8 bytes at OxFFFF_FFE8 (4GB-24) contain the address of the SALE_ENTRY entrypoint.

IA-64 Processor Abstraction Layer 11-5

intel.

» The 8 bytes at OXFFFF_FFEO (4GB-32) contain the address of the Firmware Interface Table.

 The 16 bytes at OXFFFF_FFDO (4GB-48) contain the FIT entry for the PAL_A code provided
by the processor vendor.

» The 16 bytes at OXFFFF_FFCO (4GB-64) are zero-filled and reserved for future use.

Figure 11-4. Firmware Address Space

4GB —»

4 GB-16 —»
4 GB-24 —»
4GB-32—>
4 GB-48 —»

4GB-64 —»
PALE_RESET—»
PALE_INI T—
PALE_CHECK—»

4 GB-X
SALE_ENTRY

4 GB-(X+Y)
FIT_BASE

4 GB-(X+Y+C)
PAL_BASE

4 GB-(X+Y+C+D)
SAL_BASE

4 GB-16 MB —»

IA-32 Reset Vector (16 bytes)
SALE_ENTRY Address (8 bytes) r———t———f-—— 1
Firmware Interface Table Address (8 bytes) r———F———|-—— La
PAL_A FIT Entry (16 bytes) s4bytes | o
I
Reserved (16 bytes) (Protected | :
Bootblock) : :
I
N
. A I
PAL_A Block (multiple of 16 bytes) (PAL_A Size) : :
I
I
! ¥
I
B |
SAL_A Block)) I
_ I
(IA-64 and optional 1A-32 code) (multiple of 16 bytes) | (SAL_A Size) | :
I
I
|
' .
) . |
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT Size) !
|
Reserved PAL Space (optional) (multiple of 16 bytes)
16 MB
PAL_B Block (multiple of 16 bytes) Maximum
C
(PAL_B Size)
Reserved SAL Space (optional) (multiple of 16 bytes)
SAL_B Block (multiple of 16 bytes)
D
(SAL_B Size)
Available Space
A
0009354

11-6

IA-64 Processor Abstraction Layer

* PAL_A code resides below OxFFFF_FFCO. This area contains the hardware-triggered
entrypoints PALE_RESET, PALE_INIT, and PALE_CHECK, aswell as minimal processor
stepping-invariant initialization code. The PAL_A code areais amultiple of 16 bytesin length.

e SAL_A code occupies the region immediately below the PAL_A code. This area contains the
SALE_ENTRY entrypoint aswell as optional implementation-independent firmware update
code. The SAL_A code areais amultiple of 16 bytesin length.

» The collection of regions above from the beginning of the SAL_A codeto 4GB is called the
Protected Bootblock. The size of the Protected Bootblock is SAL_A size + PAL_A size + 64.

¢ Underneath the Protected Bootblock is the Firmware Interface Table (FIT). It comprises
16-byte entries containing starting address and size information for the firmware components.
The FIT isgenerated at build time, based on the size and location of the firmware components.

e The PAL_B block occupies the space underneath the FIT. It contains the PAL code that is not
required for firmware update. The PAL_B code areais amultiple of 16 bytesin length. The
PAL_B block must be aligned on a 32K byte boundary.

» Theremainder of the firmware address space (beneath the PAL_B block) is occupied by
SAL_B code. SAL code may include 1A-32 BIOS. The location of the SAL and |1A-32 BIOS
code within the firmware address space, not previously defined, isimplementation-dependent.

The firmware code and data within the firmware address range must be accessible from the
processor without any special system fabric initialization sequence. Thisimplies that the system
fabricisimplicitly initialized at power on for accessing the firmware address space or that the
special hardware which contains the firmware code and data is implemented on the processor and
not accessed across the system fabric.

The Firmware Interface Table (FIT) contains starting addresses and sizes for the different firmware
components. Because these code blocks may be compiled at different times and places, code in one
block (such as PAL_A) cannot branch to code in another block (such as PAL_B) directly. The FIT
allows code in one block to find entrypoints in another. Figure 11-5 below shows the FIT layout.

Figure 11-5. Firmware Interface Table

| |
| |
4GB-X
OEM use (16 bytes)
OEM use (16 bytes)
OEM use (16 bytes)
PAL_B entry (16 bytes)
FIT header (16 bytes)
4GB-(X+Y)
| |

Each FIT entry contains information for the corresponding firmware component. The first entry
contains size and checksum information for the FIT itself and the second entry is used for the
PAL_B block. OEMs may use additional entries for other firmware components.

* Sze- A 3-bytefield containing the size of the component in bytes divided by 16.

IA-64 Processor Abstraction Layer 11-7

* Reserved — All fields listed as reserved must be zero filled.
 \ersion— A 2-byte field containing the component’s version number.
» Type— A 7-bit field containing the type code for the element. Types are defined in Table 11-1.

OEMs may define unique types for one or more blocks of SAL_B, IA-32 BIOS, etc., within
the OEM-defined type range of 0x10 to OX7E.

Figure 11-6. Firmware Interface Table Entry

Start + 16 63 565554 4847 32 31 24 23 0

Chksum l\(;

Address (8 bytes)

\ Type ‘ Version (2 bytes) ‘ Reserved ‘ Size (3 bytes)
Start+8 — »

Start of entry ——»

Table 11-1. FIT Entry Types

11.2

11.2.1

11-8

Type Meaning
0x00 FIT Header

0x01 PAL_B (required)
0x02- Ox0F Reserved

0x10- Ox7E OEM-defined
OX7F Unused Entry

« C_V-—A1-hit flag indicating whether the component has avalid checksum. If thisfield is zero,
the value in the Chksumfield is not valid.

« Chksum— A 1-byte field containing the component’s checksum. The modulo sum of all the
bytes in the component and the value in this field (Chksum) must add up to zero. Thisfield is
only validif the C_V flag is non-zero. If the checksum option is selected for the FIT, inthe FIT
Header entry (FIT type 0), the modulo sum of all the bytesinthe FIT table must add up to zero.

» Address— An 8-byte field containing the base address of the component. For the FIT header,
thisfield containsthe ASCII value of “_FIT_<sp><sp><sp>" (<sp> represents the space
character).

The FIT allows simpler firmware updates. Different components may be updated independently.
This address layout can also support firmware images spanning multiple storage devices. FIT
entries must be arranged in ascending order by the typefield, otherwise execution of firmware code
will be unpredictable.

PAL Power On/Reset

PALE_RESET

The purpose of PALE_RESET isto initialize and test the processor. Upon receipt of a power-on
reset event the processor begins executing code from the PALE_RESET entrypoint in the firmware
address space. PALE_RESET initializes the processor and may perform aminimal processor self-
test. PAL may optionally perform authentication of the PAL firmware to ensure data integrity. If the
authentication code runs cacheable by default, then a processor-specific mechanism will be

IA-64 Processor Abstraction Layer

11.2.2

provided to disable caching for diagnostic purposes. PALE_RESET then branchesto
SALE_ENTRY to determineif arecovery condition exists, which would require an update of the
firmware. If it does, SALE_ENTRY performsthe update and resets the system. If not, SAL returns
to PALE_RESET, which performs afull processor self-test and initialization. PAL may execute
IA-32 instructions to fully test and initialize the processor. This 1A-32 code will not generate any
special 1A-32 bus transactions nor will it require any special platform featuresto correctly execute.
PAL then branchesto SALE_ENTRY to conduct platform initialization and testing before loading
the operating system software.

PALE_RESET Exit State

* GRs: The contents of all general registers are undefined except the following:

GR20 (bank 1) containsthe SALE_ENTRY State Parameter asdefined in Figure 11-7. For
the function field of the SALE_ENTRY State Parameter, only the values 3, RECOVERY
CHECK, for thefirst call to SALE_ENTRY, and 0, RESET, for the second call to
SALE_ENTRY arevalid.

GR32 contains 0 indicating that SALE_ENTRY was entered from PALE_RESET.

GR33 contains the geographically significant unique processor ID. The value is the same
asthat returned by PAL_FIXED_ADDR.

GR34 contains the physical address for making a PAL procedure call. If the call isfor
RECOVERY CHECK, only the subset of PAL procedures needed for SALE_ENTRY to
perform firmware recovery will be available. These procedures are;

* PAL_PLATFORM_ADDR, PAL_PROC_GET_FEATURES (to view current
settings),
* PAL_PROC_SET_FEATURES (enable/disable cache), PAL_CACHE_INIT
(level=all, sides=both, restrict=no), and
» Animplementation specific PAL procedure for PAL authentication.
GR35 contains the Self-test State Parameter as defined in Figure 11-8.
GR36 containsthe PAL_RESET return address for SALE_ENTRY to returntoif a
recovery condition does not exist. When PAL_RESET calls SALE_ENTRY the second
timeto initialize the system for operating system use, this register will contain the physical

address for making an implementation specific PAL procedure call for PAL
authentication.

Note:For all other PAL procedure calls, the physical address at GR34 should be used).
Banked GRs: All bank 0 general registers are undefined.

» FRs: The contents of all floating-point registers are undefined. The floating-point registers are
enabled unless the state field of the Self-test State Parameter is FUNCTIONALLY
RESTRICTED and the floating-point unit failed self-test. Then, the floating-point registers are
disabled. Refer to Section 11.2.2.2 for the definition of FUNCTIONALLY RESTRICTED.

 Predicates: The contents of all predicate registers are undefined.
* BRs: The contents of all branch registers are undefined.
» ARs: The contents of all application registers are undefined except the following:

» RSC: All fieldsin the register stack configuration register are 0, which places the
RSE in enforced lazy mode.

» CFM: The CFM isset up so that all stacked registers are accessible, CFM.sof = 96
and al other CFM fields are 0.

IA-64 Processor Abstraction Layer 11-9

intel.

e PSR: PSR.bnis1; PSR.df1 and PSR.dfh are 1 if the floating-point unit failed self-test. All
other PSR bitsare 0. PSR.ic and PSR.i are zero to ensure external interrupts, NMI and PMI
interrupts are disabled.

» CRs: The contents of all control registers are undefined except the following:
¢ DCR: containsthe value 0.

« IVA: containsthe physical address of an interruption vector table previously set up by
PAL. SAL may choose to change this value. The IVA will be O when the
SALE_ENTRY State Parameter function is RECOVERY CHECK.

* RRs: The contents of all region registers are undefined.

« PKRs: The contents of all protection key registers are undefined.

» DBRs:. The contents of all data breakpoint registers are undefined.

» IBRs: The contents of all instruction breakpoint registers are undefined.

» PMCs: The contents of al performance monitor control registers are undefined.
* PMDs: The contents of all performance monitor data registers are undefined.

 Cache: The processor internal caches are enabled and invalidated. The caches themselves, and
the paths from the caches to the processor core have been tested. The path from external
memory to the caches have not been tested.

e TLB: The TRsand TCs are initialized with all entries having been invalidated. The TLB is
disabled because PSR.it=PSR.dt=PSR.rt=0 and is not available for use until after the second
phase of processor self-test. (See PAL_TEST_PROCESSOR).

Prior to passing control to SALE_ENTRY, PALE_RESET must ensure that the processor Interrupt
block pointer is set to point to address 0x0000_0000_FEEQ_0000.

11.2.2.1 Definition of SALE_ENTRY State Parameter

Figure 11-7. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
status ‘ function ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

« function — An 8-bit field indicating the reason for branching to SALE_ENTRY.

Table 11-2. function Field Values

Function Value | Description

RESET 0 System reset or power-on
MACHINE CHECK 1 Machine check event

INIT 2 Initialization event
RECOVERY CHECK 3 Check for recovery condition

All other values of function are reserved.

* status— A function-dependent 8-hit field indicating the firmware status on entry to
SALE_ENTRY. If the function value is RESET or RECOVERY _CHECK, the status values
are:

11-10 IA-64 Processor Abstraction Layer

intel.

Table 11-3. status Field Values

Status Value | Description

NORMAL

o

Normal reset.

FIT HEADER FAILURE FIT header is incorrect

FIT CHECKSUM FAILURE FIT checksum is incorrect

PAL_B CHECKSUM FAILURE PAL_B checksum is incorrect

PAL_A AUTHENTICATION FAILURE PAL_A failed authentication

PAL_B AUTHENTICATION FAILURE PAL_B failed authentication

PAL_B NOT FOUND FIT Entry for PAL_B missing

INCOMPATIBLE PAL_B is incompatible with the processor’s stepping

O Nl W NP

UNALIGNED PAL_B IVT is not aligned on a 32KB boundary

All other values of status are reserved.

Definitions of status valuesfor other values of function are listed in the machine check and init
sections.

For the case of RECOVERY CHECK, authentication of PAL_A and PAL_B should be
completed before call to SALE_ENTRY.

11.2.2.2 Definition of Self-test State Parameter:

Figure 11-8. Self-test State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0

il o] o]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
test_status

e state— A 2-bit field indicating the state of the processor after self-test.
Table 11-4. state Field Values

State Value Description

CATASTROPHIC N/A The processor is not capable of continuing. In this case it does not branch to

FAILURE SALE_ENTRY.

HEALTHY 00 No hardware failures have occurred in testing that would affect either the
performance or functionality of the processor.

PERFORMANCE 01 A hardware failure has occurred in testing that does not affect the functionality

RESTRICTED of the processor, but performance may be degraded.

FUNCTIONALLY 10 A hardware failure has occurred in testing that affects the functionality of the

RESTRICTED processor, but firmware code can still be run. The processor may also be
performance restricted.

To further qualify FUNCTIONALLY RESTRICTED, the following requirements will be met:

» The processor has detected and isolated the failing component so that it will not be used.

¢ The processor must have at least one functioning memory unit, ALU, shifter, and branch
unit.

¢ The floating-point unit may be disabled.
« The RSE isnot required to work, but register renaming logic must work properly.

IA-64 Processor Abstraction Layer 11-11

11.3

11.3.1

11-12

intel.

 The paths between the processor controlled caches and the register files must work during
thetestsin PALE_RESET, and the entire path from memory through the caches to the
register file must work during the testsin PAL_TEST_PROCESSOR.

 Loads and storesto firmware address space must work correctly.

Additional information about the failure can be obtained by examining the test_statusfield of
the Self-test Sate Parameter.

For the case of FUNCTIONALLY RESTRICTED, it isrequired that higher level firmware or
OS not use failing functional units during their execution. PAL will not prevent failing
functional units from being used.

» te—A 1-bit field indicating whether testing has occurred. If thisfield is zero, the processor has
not been tested, and no other fieldsin the Self-test Sate Parameter are valid. The processor can
be tested prior to entering SALE_ENTRY for both RECOVERY CHECK and RESET
functions.

If the state field indicates that the processor isfunctionally restricted, then the fields vm, ia and
fp specify additional information about the functional failure.

e vm—A 1-bit field, if set to 1, indicating that virtual memory features are not available.

* ia—A1-bit field, if set to 1, indicating that 1A-32 execution is not available.

« fp—A 1-bit fidld, if set to 1, indicating that floating-point unit is not available.

o mf —al-bit field, if set to 1, indicating miscellaneous functional failure other than vm, ia,
or fp. The test_status field provides additional information about this failure on an
implementation specific basis.

* test status— An unsigned 32-hit-field providing additional information on test failures when

the state field returns a value of PERFORMANCE RESTRICTED or FUNCTIONALLY
RESTRICTED. The value returned is implementati on-dependent.

Machine Checks

PALE_CHECK

When amachine check abort (MCA) occurs, PALE_CHECK is responsible for saving minimal
processor state to a uncacheabl e platform specific memory location previously registered with PAL
viathePAL_MC_REGISTER_MEM procedure. This platform location is called the Minimal State
Save Area (min-state save area) and is described in Section 11.3.2.3. PALE_CHECK isalso
responsible for correcting processor related errors whenever possible. PALE_CHECK terminates
by branching to SALE_ENTRY, passing the state of the processor at the time of the error. The level
of recovery provided by PALE_CHECK isimplementation-dependent and is beyond the scope of
this chapter.

At the hand-off from PALE_CHECK to SALE_ENTRY, error information is passed in the
Processor State Parameter described in Section 11.3.2.1. After exit from PALE_CHECK, more
detailed error information is available by calling the PAL_ MC_ERROR_INFO procedure.
Information about i mplementati on-dependent state is available by calling the
PAL_MC_DYNAMIC_STATE procedure. The interrupted process may be resumed by calling the
PAL_MC_RESUME procedure. See Section 11.3.3 for more information on returning to the
interrupted context and Section 11.8, “PAL Procedures’ on page 11-28 for detailed descriptions of
all these procedure calls.

IA-64 Processor Abstraction Layer

11.3.1.1

Code for handling machine checks must take into consideration the possibility that nested machine
checks may occur. A nested machine check is a machine check that occurs while a previous
machine check is being handled.

PALE_CHECK isentered in the following conditions:
* When PSR.mc = 0 and an error occurs which resultsin a machine check, or
* When PSR.mc changes from 1 to 0 and there is a pending machine check from an earlier error.

PSR.mcisset to 1 by the hardware when PALE_CHECK isentered. PSR.mc will remain set for the
duration of PALE_CHECK, and PALE_CHECK will exit with PSR.mc set. SAL must not clear
PSR.mc to 0 before all the information from the current machine check islogged. If SAL enables
machine checks (by setting PSR.mc=0) during the SAL MCA handling, there is a potential for the
error logs in the processor and the min-state save area to be overwritten by a subsequent MCA
event. PALE_CHECK must attempt to branch to SALE_ENTRY unless code execution is hot
possible.

The error information logged will reflect the state at the time the error occurred. State information
from adifferent point intimewill NOT belogged. If completeinformation isnot availableacodeis
logged which indicates that the information is not available.

» The processor state information used to resume a process for which an error has been corrected
will reflect the state at the time the machine check interruption occurred and will be sufficient
to resume the interrupted process.

» When asingle error is signalled multiple times (for example, multiple operationsto asingle
bad cache line), hardware and firmware will be able to perform the same logging and recovery
asif the error had been signalled once.

For testing and configuration purposes, it may be necessary for software to intentionally generate a
machine check. In this case PALE_CHECK will log the error information, but not attempt recovery
before branching to SALE_ENTRY. To allow for this, the PAL_MC_EXPECTED procedurecall is
defined to indicate that PALE_CHECK should not to attempt recovery.

Resources Required for Machine Check and Initialization Event
Recovery

While the level of recovery from machine checksisimplementation-dependent, for each particular
level of recovery thereis aset of architecturally required resources. The following paragraphs
define the required and optional resources needed to support firmware and software recovery of
machine checks and initialization events.

« Minimal resources required to allow software recovery of machines checks when PSR.ic=1:

» XRO register: memory pointer to min-state save area previously registered with PAL via
the PAL_MC_REGISTER_MEM call. Thelayout of this memory areais described in
Section 11.3.2.3.

» Bank zero registers GR 24 through GR 31. These registers are not preserved across
interruptions and may be used as scratch registers by machine check recovery code. See
Section 3.3.7, “Banked General Registers’ for the definition of the bank O registers.

» Additional resources required to allow software recovery of machine checks when PSR.ic=0.
The presence of these resources is processor implementation specific. The
PAL_PROC_GET_FEATURES procedure described on page 11-92 returns information on the
existence of these optional resources.

IA-64 Processor Abstraction Layer 11-13

11.3.2

11-14

intel.

» XIP, XPSR, XFS: interruption resources implemented to store information about the IR,
PSR and IFS when the machine check occurred. A model specific version of ther f i
instruction must also be implemented to restore the machine context from these resources.

» XR1-XR3: scratch registersimplemented to preserve bank 0 GR 24 through GR 31.

Each of the registers described above should be accessed only by PAL in order to support firmware
and software recovery of machine checks.

PALE_CHECK Exit State

The state of the processor on exiting PALE_ CHECK is:

» GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static registers
and bank one static registers (GR16-31) at the time of the MCA have been saved in the
min-state save area and are available for use.

« If recovery isnot supported when PSR.ic=0 then GR24 - GR31 (bank 0) are undefined and
their contents have been lost. In this case, recovery is not possible. See Section 11.3.1.1
for details.

» GR16 through GR20 (bank 0) contain parameters which PALE_CHECK passes to
SALE_ENTRY for diagnostic and recovery purposes:

» GR16 contains the address to the first available location in the min-state save areafor use
by SAL. The address is 8-byte aligned.

» GR17 contains the value of the min-state save area address stored in XRO.

» GR18 contains the Processor State Parameter, as defined in Figure 11-9.

» GR19 containsthe PALE_CHECK return address for rendezvous, or O if noreturnis
expected. (See Section 11.3.2.2.)

* GR20 containsthe SALE_ENTRY State Parameter as defined in Figure 11-12.

* FRs: The contents of all floating-point registers are unchanged from the time of the MCA.

* Predicates: All predicate registers have been saved in the min-state save area and are available
for use.

» BRs: The contents of all branch registers are unchanged from the time of the MCA, except the
following:

* BRO has been saved to the min-state save area and is available for use.

» ARs: The contents of all application registers are unchanged from the time of the MCA, except
the RSE control register (RSC) and the RSE backing store pointer (BSP). The RSE will bein
enforced lazy mode and the RSC at the time of the MCA is saved in the min-state save area. A
cover ingtructionisexecuted inthe PALE_CHECK handler which allocates anew stack frame
of zero size. BSP will be modified to point to a new location, since all the registers from the

current frame at the time of interruption were added to the RSE dirty partition by the allocation
of anew stack frame.

* CFM: The CFM register points to a zero-size current frame and al the rotating register bases
are set to zero. The CFM register at the time of the MCA has been saved to the min-state save
areain either the IFS or XFS slot depending on the implementation.

» RSE: Isin enforced lazy mode, and stacked registers are unchanged from the time of the MCA.

¢ PSR: PSR.mcis 1; all other bits are 0. The PSR at the time of the MCA is saved in the
min-state save area.

IA-64 Processor Abstraction Layer

¢ CRs: The contents of all control registers are unchanged from the time of the MCA with the
exception of interruption resources, which are described bel ow.

* RRs: The contents of all region registers are unchanged from the time of the MCA.
* PKRs: The contents of all protection key registers are unchanged from the time of the MCA.
« DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the MCA.

« Cache: The processor internal cacheis enabled and is unchanged from the time of the MCA
except for any lines that were invalidated to correct the error.

e TLB: The TCs may beinitialized and the TRs are unchanged from the time of the MCA.
* Interruption Resources:

¢ IRR: PALE_CHECK may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

¢ The contents of 1P, IPSR and IFS at the time of the MCA are saved to the min-state save
areaand are available for use.

11.3.2.1 Processor State Parameter (GR 18)

Figure 11-9. Processor State Parameter

30 29 28 27 26 25 2423 22 21 20 19 18 17 16 15 14 13 12 11 10 9

10
‘gr‘bo‘bl‘fp‘pr‘br‘ar‘ rr‘tr‘dr‘pc‘ cr‘ex‘cm‘ rs‘ in ‘dy‘pm‘pl‘ml‘tl ‘hd‘us‘ ci ‘co‘sy‘mn‘me‘ra‘rz-

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
|

Theterm “valid” in Table 11-5 indicates that the registers are either unchanged from the time of
interruption or that the values have been preserved in the min-state save area.

Table 11-5. Processor State Parameter Fields

Field
name

Iz

Bit

Description

The attempted processor rendezvous was successful if set to 1.

ra

A processor rendezvous was attempted if set to 1.

me

Distinct multiple errors have occurred, not multiple occurrences of a single correctable
error. Software recovery is not possible. Some error information may have been lost.

Min-state save area has been registered with PAL if set to 1.

Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and that
no loads or stores beyond that point occurred. See Table 11-6.

Continuable. A value of 1 indicates that all in-flight operations from the processor where
the machine check occurred were either completed successfully (such as a load), were
tagged with an error indication (such as a poisoned store), or were suppressed and will
be re-issued if the current instruction stream is restarted. This bit can only be set if the
architectural state saved on a machine check is all valid. If this bit is set, then us must be
cleared to 0, and ci must be set to 1. See Table 11-6.

Machine check is isolated. A value of 1 indicates that the error has been isolated by the
system, it may or may not be recoverable. If 0, the hardware was unable to isolate the
error within the CPU and memory hierarchy. The error may have propagated off the
system (to persistent storage or the network). If ci = 0 then us will be setto 1, and co and
sy are cleared to 0. See Table 11-6.

IA-64 Processor Abstraction Layer

11-15

Table 11-5. Processor State Parameter Fields (Continued)

Field Bit Description
name

us 9 Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is set
to 1, then co and sy will always be cleared to 0. See Table 11-6.

hd 10 Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

tl 11 Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi 12 More information. A value of 1 indicates that more error information about the machine
check event is available by making the PAL_MC_ERROR_INFO procedure call.

pi 13 Precise instruction pointer. A value of 1 indicates that the machine logged the instruction
pointer to the bundle responsible for generating the machine check. An operating system
may rely on this to determine if the error is recoverable.

pm 14 Precise min-state save area. A value of 1 indicates that the min-state save area contains
the state of the machine for the instruction responsible for generating the machine
check. When this bit is set, the pi bit will always be set as well.

dy 15 Processor Dynamic State is valid. (1=valid, O=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 Interruption caused by INIT. (O=machine check, 1=INIT)

rs 17 The RSE is valid. (1=valid, O=not valid)

cm 18 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 A machine check was expected. (1=expected, 0=not expected)

cr 20 Control registers are valid. (1=valid, 0=not valid)

pc 21 Performance counters are valid. (1=valid, 0=not valid)

dr 22 Debug registers are valid. (1=valid, O=not valid)

tr 23 Translation registers are valid. (1=valid, 0=not valid)

T 24 Region registers are valid. (1=valid, O=not valid)

ar 25 Application registers are valid. (1=valid, 0=not valid)

br 26 Branch registers are valid. (1=valid, 0O=not valid)

pr 27 Predicate registers are valid. (1=valid, O=not valid)

fp 28 Floating-point registers are valid. (1=valid, O=not valid)

bl 29 Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 Preserved bank zero general registers are valid. (1=valid, 0=not valid)

ar 31 General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 | Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

cc 59 Cache check. A value of 1 indicates that a cache related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 TLB check. A value of 1 indicates that a TLB related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

bc 61 Bus check. A value of one indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 Register file check. A value of one indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

11-16

IA-64 Processor Abstraction Layer

11.3.2.1.1 Using Processor State Parameter to Determine if Software
Recovery of a Machine Check is Possible

The us, ¢i, co, and sy bitsin the Processor State Parameter are valid only if the error has not been
previously corrected in hardware or firmware (cm bit is 0). Even then, only the bit combinations
shownin Table 11-6 are valid. If the multiple error bit is set (me=1) both the co and sy bits must be
0. Theusand ci bits will be set according to the worst case of the errors that occurred.

Table 11-6. Software Recovery Bits in Processor State Parameter

11.3.2.2

cm | us | ci | co | sy Description
1 X X X X The machine check is corrected. The us, ci, co, and sy bits are not valid.
0 The error was not isolated. Software must reset system. Data on disk may be
corrupt.

0 1 1 0 0 The error was isolated but not contained. Corrupt data was not written to 1/O, but
may remain in the CPU or memory untagged. Software must reset system.

0 0 1 0 0 The error was isolated and contained, but is not continuable. The current
instruction stream cannot be restarted without loss of information. Partial
recovery may be possible.

0 0 1 1 0 The error was isolated, contained, and is continuable. If software can correct the
error the current instruction stream can be continued with no loss of information.
0 0 1 1 1 The error was isolated, contained, and is continuable. The instruction pointer
points to the instruction where the error occurred. If software can correct the error
the current instruction stream can be continued with no loss of information.

Multiprocessor Rendezvous Requirements for Handling Machine
Checks

When PALE_CHECK has determined that an error has occurred which could cause a
multiprocessor system to lose error containment, it must rendezvous the other processors in the
system before proceeding with further processing of the machine check. Thisis accomplished by
branching to SALE_ENTRY with a non-zero return vector addressin GR19. It is then the
responsibility of SAL to rendezvous the other processors and return to PALE_CHECK through the
addressin GR19. If the rendezvous was successful GR19 must be set to O before return.

At thetime PALE_CHECK makes the rendezvous call to SALE_ENTRY, the processor stateis
exactly the same as defined in Section 11.3.2, “PALE_CHECK Exit State” with the following
reguirement on the use of registers by SAL.:

Any processor state not listed below must be either unchanged or restored by SAL before returning
to PALE_CHECK.

e SAL will preservethe valuesin GR4-GR7 and GR17-GR18.

¢ SAL will returnto PALE_CHECK viathe address in GR19.
SAL will set up GR19 to indicate the success of the rendezvous before returning to PAL.

* GR19iszero to indicate the rendezvous was successful .
* GR19isnon zero to indicate that the rendezvous was unsuccessful .

« All other non-banked (GR1-3, GR8-15), bank 0 GRs (GR20-GR31) and BRO are undefined
and availablefor use by SAL.

IA-64 Processor Abstraction Layer 11-17

11.3.2.3

intel.

After return from the SAL rendezvous call, PALE_CHECK will complete processing the machine
check if the rendezvous was successful and then branch to SALE_ENTRY with GR19 set to zero.
The processor state when transferring to SAL isasdefined in Section 11.3.2, “PALE_CHECK Exit
State”. If therendezvousfailed PALE_CHECK will simply construct the Processor State Parameter
and branchto SALE_ENTRY.

Any further discussion of multiprocessor rendezvous, including platform requirements and

implications, is beyond the scope of this chapter. See the relevant SAL/Error handling documents
for further information.

Processor Min-state Save Area Layout

The processor min-state save areais 4KB in size and must be in an uncacheable region. The first
1KB of thisareais architectural state needed by the PAL code to resume during MCA and INIT
events (architected min-state save area + reserved). Theremaining 3K B is a scratch buffer reserved
exclusively for PAL use, therefore SAL and OS must not use this area. The layout of the processor
min-state save area is shown in Figure 11-10.

Figure 11-10. Processor Min-state Save Area Layout

11-18

Min-state save ptr + 4KB —®

PAL scratch memory 3KB

Min-state save ptr + 1IKB —®

Architectural 1KB

Min-state save ptr >

The layout for the processors portion of the architectural 1KB processor min-state save areais
shown in Figure 11-11. When SAL registers the areawith PAL, it passesin a pointer to offset zero
of the area. When PALE_CHECK is entered as aresult of a machine check, it fillsin processor
state, processes the machine check, and branchesto SALE_ENTRY with a pointer to the first
available memory location that SAL can usein GR16. SAL may allocate avariable sized area
above the address passed in GR16 up to the 1KB architectural limit, but thisisinternal to SAL and
not known to PAL.

The base address of the min-state save area must be aligned on a 512-byte boundary. All savesand
restores to and from the min-state save area are made using 8-byte wide load and store instructions.
If the processor min-state save areais not registered viathe PAL_MC_REGISTER_MEM call prior
to the machine check, software recovery is not possible.

IA-64 Processor Abstraction Layer

The value passed in GR16 to SAL may point beyond the defined processor state shown in
Figure 11-11. PAL may use this areafor implementation-dependent processor state that needsto be
saved and restored.

Figure 11-11. Processor State Saved in Min-state Save Area

0xf8
0xf0
Oxe8
0xe0
0xd8
0xdO
0xc8
0xcO
0xb8
0xb0
Oxa8
0xa0
0x98
0x90
0x88
0x80
0x78
0x70
0x68
0x60
0x58
0x50
0x48
0x40
0x38
0x30
0x28
0x20
0x18
0x10
0x8
0x0

Bank 0 GR31

Bank 0 GR30

Bank 0 GR29

Bank 0 GR28

Bank 0 GR27

Bank 0 GR26

Bank 0 GR25

Bank 0 GR24

Bank 0 GR23

Bank 0 GR22

Bank 0 GR21

Bank 0 GR20

Bank 0 GR19

Bank 0 GR18

Bank 0 GR17

Bank 0 GR16

GR15

GR14

GR13

GR12

GR11

GR10

GR9

GR8

GR7

GR6

GR5

GR4

GR3

GR2

GR1

NaT bits for saved GRs

IA-64 Processor Abstraction Layer

i

I~
0x1c0 XFS or undefined
0x1b8 XPSR or undefined
0x1b0 XIP or undefined
0x1a8 IFS
0x1a0 IPSR
0x198 1P
0x190 RSC
0x188 BRO
0x180 Predicate Registers
0x178 Bank 1 GR31
0x170 Bank 1 GR30
0x168 Bank 1 GR29
0x160 Bank 1 GR28
0x158 Bank 1 GR27
0x150 Bank 1 GR26
0x148 Bank 1 GR25
0x140 Bank 1 GR24
0x138 Bank 1 GR23
0x130 Bank 1 GR22
0x128 Bank 1 GR21
0x120 Bank 1 GR20
0x118 Bank 1 GR19
0x110 Bank 1 GR18
0x108 Bank 1 GR17
0x100 Bank 1 GR16

GR16

11-19

11.3.2.4 Definition of SALE_ENTRY State Parameter

Figure 11-12. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* function — An 8-bit field indicating the reason for branching to SALE_ENTRY.
All other values of function are reserved.

Table 11-7. function Field Values

Function Value Description
RESET 0 System reset or power-on
MACHINE CHECK 1 Machine check event
INIT 2 Initialization event
RECOVERY CHECK 3 Check for recovery condition in SAL

11.3.3 Returning to the Interrupted Process

The PAL_MC_RESUME procedure is defined to return to the interrupted context after handling a
machine check or initialization event. See page 11-89 for a description of the PAL_MC_RESUME
procedure. If software attempts to return to the interrupted context without using this call, processor
behavior is undefined.

There are certain error cases that may require returning to a new context in order to handle the
machine check. If this occurs a new context can be returned to viathe PAL_ MC_RESUME
procedure with the new_context flag set. The caller needs to set up the new processor min-state
save area as shown in Figure 11-11 for all the listed register states. The lIP, IPSR, IFS and the XIP,
XPSR, and XFS should both contain the new instruction pointer, PSR value, and CFM values. The
IPSR and XPSR must have the PSR.ic bit set to one, since return to an interruption handler is not
supported.

When returning to a new context, the memory area from XFS up to the 1KB architectural limit is
ignored by the PAL_MC_RESUME call. When anew context is returned to, the state originally
saved in the min-state save area (old context) shall be discarded and never used again.

11.4 PAL Initialization Events

11.4.1 PALE_INIT

PALE_INIT isentered when aninitialization event (INIT) occurs, as aresult of the assertion on an
INIT signal to the processor or an INIT interruption occurring. If PSR.mc = 1, theinitialization
event is held pending until PSR.mc becomes 0. The purpose of PALE_INIT isto save the
architecturally defined processor state to the Minimal State Save Area (min-state save area) and to
branchto SALE_ENTRY. The code sequenceinterrupted by theinitialization event can be restarted

11-20 IA-64 Processor Abstraction Layer

11.4.2

viaPAL_MC_RESUME if PSR.ic = 1. The code sequence interrupted by the initialization event
can be restarted if PSR.ic = 0 and the processor has implemented the optional recovery resources
described in Section 11.3.1.1, “Resources Required for Machine Check and Initialization Event
Recovery”. If PSR.ic = 0 and the optional recovery resources have not been implemented, then the
initialization event is not recoverable.

PALE_INIT Exit State

The state of the processor on exiting PALE_INIT is;
» GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static registers

and bank one static registers (GR16-31) at the time of the INIT have been saved in the
min-state save area and are available for use.

« If recovery isnot supported when PSR.ic=0 then GR24 - GR31 (bank 0) are undefined and
their contents have been lost. In this case, recovery is not possible. See Section 11.3.1.1
for details.

GR16 through GR20 (bank 0) contain parameterswhich PALE_INIT passesto SALE_ENTRY
for diagnostic and recovery purposes:

» GR16 contains the address to the first available location in the min-state save areafor use
by SAL. The addressis 8-byte aligned.

* GR17 contains the value of the min-state save area address stored in X RO.

» GR18 contains the Processor State Parameter, as defined in Figure 11-9 on page 11-15,
with the exception of the following fields. cm, op, tl, hd, us, sy, me, uc, bc, tc, and cc are
al 0.ci,inand co are 1. (See Table 11-5 on page 11-15.)

* GR19 containsthe PALE_INIT return address for rendezvous, or O if no return is
expected. (See Section 11.3.2.2.)

* GR20 containsthe SALE_ENTRY state as defined in Figure 11-12.
FRs: The contents of all floating-point registers are unchanged from the time of the INIT.

Predicates: All predicate registers have been saved in the min-state save area and are available
for use.

BRs: The contents of all branch registers are unchanged from the time of the INIT except the
following:

» BRO is has been saved to the min-state save area and is avail able for use.

ARs: The contents of all application registers are unchanged from the time of the INIT, except
the RSE control register (RSC) and the RSE backing store pointer (BSP). The RSE will bein
enforced lazy mode and the RSC at the time of the INIT is saved in the min-state save area. A
cover instruction is executed inthe PALE_INIT handler which allocates a new stack frame of
zero size. BSP will be modified to point to a new location, since al the registers from the
current frame at the time of interruption were added to the RSE dirty partition by the allocation
of anew stack frame.

CFM: The CFM register points to a zero-size current frame and all the rotating register bases
are set to zero. The CFM register at the time of the INIT has been saved to the min-state save
areain either the IFS or XFS dot depending on the implementation.

RSE: The RSE isin enforced lazy mode, and all stacked registers are unchanged from the time
of the INIT.

PSR: PSR.mcis1; all other bitsare 0. The PSR at thetime of the INIT is saved in the min-state
save area

IA-64 Processor Abstraction Layer 11-21

intel.

* CRs: The contents of all control registers are unchanged from the time of the INIT with the
exception of the interruption resources, which are described bel ow.

* RRs: The contents of all region registers are unchanged from the time of the INIT.

* PKRs: The contents of all protection key registers are unchanged from the time of the INIT.

» DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the INIT.
 Cache: The contents of the caches are unchanged from the time of the INIT.

e TLB: The TCs may beinitialized and the TRs are unchanged from the time of the INIT.

* Interruption Resources:

« IRR: PALE_INIT may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

* The contents of IIP, IPSR and IFS at thetime of INIT are saved to the min-state save area
and are available for use.

11.4.2.1 Definition of SALE_ENTRY State Parameter

Figure 11-13. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* function — An 8-bit field indicating the reason for branching to SALE_ENTRY.
All other values of function are reserved.

Table 11-8. function Field Values

Function Value Description
RESET 0 System reset or power-on
MACHINE CHECK 1 Machine check event
INIT 2 Initialization event
RECOVERY CHECK 3 Check for recovery condition in SAL

11.5 Platform Management Interrupt (PMI)

11.5.1 PMI Overview

PMI is an asynchronous highest priority external interrupt that encapsulates a collection of
platform-specific interrupts. Platform Management Interrupts occur during instruction processing,
causing the flow of control to be passed to the PAL PMI handler. In the process, certain processor
state is saved away automatically by the processor hardware and the processor starts executing
instructions at the PALE_PMI entrypoint which then transitionsto SAL PMI code. Upon
completion of processing, the SAL PMI code returnsto PAL PMI code to restore the interrupted
processor state and to resume execution at the interrupted instruction.

11-22

IA-64 Processor Abstraction Layer

Asshown in Figure 11-14, PMI code consists of two major components, namely the PAL PMI
handler which handles all processor-specific processing, and the SAL PMI handler which handles
all platform-related processing.

Figure 11-14. PMI Entrypoints

PAL SAL 0S

» PALE_PMI - SALE_PMI

The hardware events that can cause the PMI request are referred to as PMI events. PMI events are
the highest priority external interrupts and are only maskable when the system software is
processing very critical tasks with PSR.ic=0. When PSR.icis 1, PMI events are unmasked. PSR.i
has no effect on PMI events. All PMI events are internally latched into an array of implementation
specific latches in the processor. The PAL PMI handler reads the latches to determine what PMI
vector requests are pending and dispatches them in priority order. Table 11-9 lists the PMI events
and their priority.

Table 11-9. PMI Events and Priorities

11.5.2

PMI Events Priority
PMI message for PAL (vectors 4-15) High
PMI message for SAL (vectors 1-3)

PMI pin (vector 0) Low

PMI messages can be delivered by an external interrupt controller, or as an inter-processor interrupt
using delivery mode 010. Table 11-10 shows the PM| message vector assignments. Vectors 4-15
arereserved for PAL, and within these PAL vectors, a higher vector number has higher priority.
Vectors 1-3 are availablefor SAL to use, and within these SAL vectors, a higher vector number has
higher priority. Vector 0 is used to indicate the PMI pin event. The PMI vector number is passed to
the SAL PMI handler in GR 24. Vectors described as Intel reserved will beignored by the
processor.

PALE_PMI Exit State

The state of the processor on exiting PALE_PMI is:

» GRs: The contents of non-banked general registers are unchanged from the time of the
interruption.

¢ Bank 1 GRs: The contents of all bank one general registers are unchanged from the time of the
interruption.

» Bank 0:GR16-23: The contents of these bank zero general registers are unchanged from the
time of the interruption.

¢ Bank 0:GR24-31: contain parameterswhich PALE_PMI passesto SALE_PMI.
* GR24 contains the value decoded as follows:
¢ Bits 7-0: PMI Vector Number
» Bit 63-8: Reserved

IA-64 Processor Abstraction Layer 11-23

* GR25 contains the value of the min-state save area address stored in X RO.

Table 11-10. PMI Message Vector Assignments

11-24

Priority Vector Description
Low » 0 PMI pin
% 1
¢ 3 2 Available for SAL firmware
High | o 3

1A-32 Machine Check Rendezvous

» GR26 contains the value of saved RSC. The contents of this register shall be preserved by
SAL PMI handler.

» GR27 contains the value of saved BO. The contents of this register shall be preserved by
SAL PMI handler.

» GR28 contains the value of saved B1. The contents of this register shall be preserved by
SAL PMI handler.

* GR29 containsthe value of the saved predicate registers. The contents of this register shall
be preserved by SAL PMI handler.

» GR30-31 are scratch registers available for use.

FRs: The contents of all floating-point registers are unchanged from the time of the
interruption.

Predicates: The contents of all predicate registers are undefined and available for use.

BRs: The contents of all branch registers are unchanged, except the following which contain
the defined state.

+ BR1 isundefined and available for use.
« BRO PAL PMI return address.

ARs: The contents of all application registers are unchanged from the time of the interruption,
except the RSE control register (RSC), which isin enforced lazy mode.

CFM: The contents of the CFM register is unchanged from the time of the interruption.

RSE: Isin enforced lazy mode, and stacked registers are unchanged from the time of the
interruption.

PSR: All PSR bits are equal to 0.

IA-64 Processor Abstraction Layer

11.5.3

11.6

CRs: The contents of all control registers are unchanged from the time of the interruption with
the exception of interruption resources, which are described below.

RRs: The contents of all region registers are unchanged from the time of the interruption.

PKRs: The contents of all protection key registers are unchanged from the time of the
interruption.

DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the
interruption.

Cache: The processor internal cache is not specifically modified by the PMI handler but may
be modified due to normal cache activity of running the handler code.

TLB: The TCsare not modified by the PALE_PMI handler and the TRs are unchanged from
the time of the interruption.

Interruption Resources:
* IRRs: The contents of IRRs are unchanged from the time of the interruption.
* |IPand IPSR contain the value of IP and PSR. The IFS.v bit isreset to O.

Resume from the PMI Handler

To return to the instruction that was interrupted by the PMI event, SAL PMI must branch to the
PAL PMI target addressin BRO. All register contents must be preserved as specified in
Section 11.5.2.

Power Management

This section describes the architecturally supported set of required and optional power states that
may be implemented to reduce power consumption in implementations where thisis a design goal.
In addition, the PAL interfaces required to manage these states are described.

The state diagram in Table 11-15 shows state transitions for the various power states and the
software interfaces required for the transitions.

* NORMAL —Thenormal, fully functional, highest power state.
* LOW-POWER - An implementation may choose to dynamically reduce power via

microarchitectural low power techniques. The operation of interrupts, snoops, etc., in
low-power mode will be identical to those in normal-power mode. This dynamic power
reduction is optional for an implementation to support. The PAL procedures
PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES returns whether an
implementation supports dynamic power reduction. If an implementation supports dynamic
power reduction then this call will allow the caller to enable or disable this feature.

The following software controllable low power states may be provided. They are described below.
* LIGHT_HALT —Entered by calling PAL_HALT_LIGHT. This state reduces power by

stopping instruction execution, but maintains cache and TLB coherence in response to external
reguests. The processor transitions from this state to the NORMAL state in response to any
unmasked external interrupt (including NMI), machine check, reset, PMI or INIT. An
unmasked external interrupt is defined to be an interrupt that is permitted to interrupt the
processor based on the current setting of the TPR.mic and TPR.mmi fields. This stateisa
required state.

IA-64 Processor Abstraction Layer 11-25

Figure 11-15. Power States

PAL_HALT_LIGHT

NORMAL/
LOW-POWER

Unmasked

Unmasked

PAL_HALT

External Interrupts, External Interrupts,
Machine Check, Machine Check,
LIGHT HALT Reset, PMI Reset, PMI HALT 1
Cache and INIT and INIT Cache not
COheI’entY CoherentY
but no instruction no instruction

execution. Unmasked execution.

PAL_HALT External Interrupts,

Machine Check,
Reset, PMI
and INIT

HALT 2 -7
No instruction
execution.
Implementation
dependent state.

000936

e HALT 1-Entered by calling PAL_HALT with apower state argument equal to one. This
implementation-dependent low power state will maintain the processor caches but will ignore
any coherency bus traffic. This state is optional for a processor to implement. It isthe
responsibility of the caller to ensure cache coherency in this state.

e HALT 2- 7 —These are optional implementation-dependent states entered by calling
PAL_HALT with a power state argument in the range of 2-7. Before making this call, the
operating system software should first ascertain that the states are implemented by calling
PAL_HALT_INFO. Theinformation returned from the PAL_HALT _INFO call will aso
specify the coherency of caches and TLBs for each of these low power states.

Theinterval timer within the processor will function at a constant frequency in all the power states
as long as the input clock to the processor is maintained.

The PAL procedure PAL_HALT _INFO returns information about the power states implemented in
aparticular processor. Thisinformation allows the caller to decide which low power states are
implemented and which ones to call based on the callers requirements.

11-26 IA-64 Processor Abstraction Layer

intel.

11.7 PAL Glossary

Corrected Machine Check (CMC)
A corrected machine check is a machine check that as been successfully corrected by hardware and/or
firmware. Information about the cause of the error is recorded, and an interrupt is set to allow the Operating
System software to examine and diagnose the error. Return is controlled to the program executing at the time
of the error.

Entrypoint
A firmware entrypoint is a piece of code which istriggered by a hardware event, usually the assertion of a
processor pin, or the receipt of an interruption. If return to the caller isdone, it is though the RFI instruction.
The currently defined PAL entrypoints are PALE_RESET, PALE_INIT, PALE_PMI, and PALE_CHECK.

Machine Check (M C)
A machine check is a hardware event that indicates that a hardware error or architectural violation has
occurred that threatens to damage the architectural state of the machine, possibly causing data corruption. The
occurrence of the error triggers the execution of firmware code which records information about the error, and
attempts to recover when possible.

OLR

On line replacement. The replacement of a computer component while the system is up and running without
requiring a reboot.

Preserved
When applied to an entrypoint, preserved means that the value contained in aregister at exit from the
entrypoint code is the same as the value at the time of the hardware event that caused the entrypoint to be
invoked. When applied to a procedure, preserved means that the value contained in aregister at exit from the
procedure is the same as the value at entry to the procedure. The value may have been changed and restored
before exit.

Processor Abstraction Layer (PAL)
PAL isfirmware that abstracts processor implementation differences and provides a consistent interface to
higher level firmware and software. PAL has no knowledge of platform implementation details.

Procedure
A firmware procedure is a piece of code which is called from other firmware or software, and which uses the
return mechanism of the 1A-64 Runtime Calling Conventionsto return to its caller.

Reserved
When applied to adata variable, it means that the variable must not be used to convey information. All
software passing the variable must place a value of zero in the variable. The occurrence of a non-zero value
may cause undefined results.

When applied to arange of values, any values not defined in the range and specified as reserved must not be
used. The occurrence of areserved value may cause undefined results.

Scratch

When applied to either an entrypoint or procedure, scratch means that the contents of the register has no
meaning and need not be preserved. Further the register is available for the storage of local variables. Unless
otherwise noted, the register should not be relied upon to contain any particular value after exit.

IA-64 Processor Abstraction Layer 11-27

intel.

Stacked Calling Convention
The firmware calling convention which adheres fully to the 1A-64 Runtime Calling Conventions. To use this
calling convention, the RSE must be working and usable.

Static Calling Convention
The firmware calling convention which adheres to the 1A-64 Runtime Calling Conventions for the static
genera registers, branch registers, predicate registers, but for which all other registers are unused except for
the RSE control registers. The RSE is placed in enforced lazy mode, and the stacked general registers or
memory are not referenced.

System Abstraction Layer (SAL)
SAL isfirmware that abstracts platform implementation differences for higher level software. SAL has no
knowledge of processor implementation details.

Unchanged
When applied to an entrypoint, unchanged means that the register referenced has not been changed from the
time of the hardware event that caused the entrypoint to be invoked until it exited to higher level firmware or
software. When applied to a procedure, unchanged means that the register referenced has not been changed
from procedure entry until procedure exit. In al cases, the value at exit isthe same as the value at entry or the
occurrence of the hardware event.

11.8 PAL Procedures

PAL procedures may be called by higher level firmware and software to obtain information about
the identification, configuration, and capabilities of the processor implementation, or to perform
implementation-dependent functions such as cache initialization. These procedures access
processor implementation-dependent hardware to return information that characterizes and
identifies the processor or implements a defined function on that particular processor.

PAL procedures are implemented by a combination of firmware code and hardware. The PAL
procedures are defined to be relocatable from the firmware address space. Higher level firmware
and software must perform this rel ocation during the reset flow. The PAL procedures may be called
both before and after this relocation occurs, but performance will usually be better after the
relocation.

PAL procedures are provided to return information or allow configuration of the following
processor features:

 Cache and memory features supported by the processor
* Processor identification, features, and configuration

» Machine Check Abort handling

» Power state information and management

* Processor self-test

* Firmware utilities

PAL procedures are implemented asa single high level procedure, named PAL_PROC, whosefirst
argument is an index which specifies which PAL procedureis being called. Indices are assigned
depending on the nature of the PAL procedure being referenced, according to Table 11-11.

11-28 IA-64 Processor Abstraction Layer

intel.

Table 11-11. PAL Procedure Index Assignment

11.8.1

Index Description
0 Reserved
1-255 Architected calls; static register calling conventions
256 - 511 Architected calls; stacked register calling conventions
512 - 767 Implementation specific calls; static registers calling conventions
768 - 1023 Implementation specific calls; stacked register calling conventions
1024 + Reserved

The assignment of indices for all architected callsis controlled by this document. The assignment
of indices for implementation specific callsis controlled by the specific processor for which the
calls are implemented. No implementation specific calls should be required for the correct
operation of aprocessor. No SAL or operating system code should ever haveto call an
implementation specific call. They are reserved for diagnostic and bring-up software and the results
of such calls may be unpredictable.

Some architected procedure may be designated a required or optional. If a procedure is designated
as optional, a unique return code must be returned to indicate the procedure is not present in this
PAL implementation. It isthe caller’s responsibility to check for this return code after calling any
optional PAL procedure.

In addition to the calling convention, calls may be madein physica mode (PSR.it=0, PSR.rt=0, and
PSR.dt=0) or virtual mode (PSR.it=1, PSR.rt=1, and PSR.dt=1). All PAL procedures may be called
in physical mode. Only those procedures specified later in this chapter may be called in virtual
mode. PAL procedures written to support virtual mode, and the caller of PAL procedureswrittenin
virtual mode must obey the restrictions documented in this chapter, otherwise the results of such
calls may be unpredictable.

PAL Procedure Summary

The following tables summarize the PAL procedures by application area. Included are the name of
the procedure, the index of the procedure, the class of the procedure (whether required or optional),
and the calling convention used for the procedure (static or stacked), and whether the procedure can
be called in physical mode only or both physical and virtual modes.

Table 11-12. PAL Cache and Memory Procedures

Procedure ldx | Class Conv. Mode Description
PAL_CACHE_FLUSH 1 |Req. Static Both Flush the instruction or data caches.
PAL_CACHE_INFO 2 | Req. Static Both Return detailed instruction or data cache

information.
PAL_CACHE_INIT 3 |Req. Static Phys. Initialize the instruction or data caches.
PAL_CACHE_PROT_INFO 38 |Req. Static Both Return instruction or data cache protection
information.
PAL_CACHE_SUMMARY 4 | Req. Static Both Return a summary of the cache hierarchy.
PAL_MEM_ATTRIB 5 |Req. Static Both Return a list of supported memory attributes.

IA-64 Processor Abstraction Layer 11-29

Table 11-12. PAL Cache and Memory Procedures (Continued)

Procedure ldx | Class Conv. Mode Description

PAL_PREFETCH_VISIBILITY 41 | Req. Static Both Used in architected sequence to transition
pages from a cacheable, speculative attribute
to an uncacheable attribute. See Section
4.4.6.1, “Disabling Prefetch and Removing
Cacheability”.

PAL_PTCE_INFO 6 |Req. Static Both Return information needed for ptc. e
instruction to purge entire TC.

PAL_VM_INFO 7 | Req. Static Both Return detailed information about virtual
memory features supported in the processor.

PAL_VM_PAGE_SIZE 34 | Req. Static Both Return virtual memory TC and hardware
walker page sizes supported in the processor.

PAL_VM_SUMMARY 8 |Req. Static Both Return summary information about virtual
memory features supported in the processor.

PAL_VM_TR_READ 261 |Req. Stacked | Phys. Read contents of a translation register.

Table 11-13. PAL Processor Identification, Features, and Configuration Procedures

Procedure Idx | Class Conv. Mode Description

PAL_BUS_GET_FEATURES 9 |Req. Static Phys. Return configurable processor bus interface
features and their current settings.

PAL_BUS_SET_FEATURES 10 |Req. Static Phys. Enable or disable configurable features in
processor bus interface.

PAL_DEBUG_INFO 11 |Req. Static Both Return the number of instruction and data
breakpoint registers.

PAL_FIXED_ADDR 12 |Req. Static Both Return the fixed component of a processor’s
directed address.

PAL_FREQ_BASE 13 | Opt. Static Both. Return the frequency of the output clock for
use by the platform, if generated by the
processor.

PAL_FREQ_RATIOS 14 |Req. Static Both. Return ratio of processor, bus, and interval

time counter to processor input clock or
output clock for platform use, if generated by
the processor.

PAL_PERF_MON_INFO 15 |Req. Static Both Return the number and type of performance
monitors.

PAL_PLATFORM_ADDR 16 |Req. Static Both Specify processor interrupt block address and
1/0O port space address.

PAL_PROC_GET_FEATURES 17 |[Req. Static Phys. Return configurable processor features and
their current setting.

PAL_PROC_SET_FEATURES 18 |[Req. Static Phys. Enable or disable configurable processor
features.

PAL_REGISTER_INFO 39 |Req. Static Both Return AR and CR register information.

PAL_RSE_INFO 19 |[Req. Static Both Return RSE information.

PAL_VERSION 20 |Req. Static Both Return version of PAL code.

11-30 IA-64 Processor Abstraction Layer

intel.

Table 11-14. PAL Machine Check Handling Procedures

Procedure Idx | Class Conv. Mode Description

PAL_MC_CLEAR_LOG 21 |Regq. Static Both Clear all error information from processor
error logging registers.

PAL_MC_DRAIN 22 | Req. Static Both Ensure that all operations that could cause an
MCA have completed.

PAL_MC_DYNAMIC_STATE 24 | Opt. Static Phys. Return Processor Dynamic State for logging
by SAL.

PAL_MC_ERROR_INFO 25 |Req. Static Both Return Processor Machine Check Information
and Processor Static State for logging by
SAL.

PAL_MC_EXPECTED 23 |Req. Static Phys. Set/Reset Expected Machine Check
Indicator.

PAL_MC_REGISTER_MEM 27 |Req. Static Phys. Register min-state save area with PAL for
machine checks and inits.

PAL_MC_RESUME 26 |Req. Static Phys. Restore minimal architected state and return

to interrupted process.

Table 11-15. PAL Power Information and Management Procedures

Procedure ldx | Class Conv. Mode Description
PAL_HALT 28 | Opt. Static Phys Enter the low power HALT state or an
implementation-dependent low power state.
PAL_HALT_INFO 257 | Req. Stacked | Both Return the low power capabilities of the
processor.
PAL_HALT_LIGHT 29 |Req. Static Both Enter the low power LIGHT HALT state
Table 11-16. PAL Processor Self-test Procedures
Procedure ldx | Class Conv. Mode Description
PAL_CACHE_LINE_INIT 31 |Req. Static Phys. Initialize tags and data of a cache line for
processor testing.
PAL_CACHE_READ 259 | Opt. Stacked | Phys. Read tag and data of a cache line for
diagnostic testing.
PAL_CACHE_WRITE 260 | Opt. Stacked | Phys. Write tag and data of a cache for diagnostic
testing.
PAL_MEM_FOR_TEST 37 |Req. Static Phys. Return the amount of memory needed for late
processor self-test.
PAL_TEST_PROC 258 | Req. Stacked Phys. Perform late processor self-test.
Table 11-17. PAL Support Procedures
Procedure Idx | Class Conv. Mode Description
PAL_COPY_INFO 30 |Req. Static Phys. Return information needed to relocate PAL
procedures and PAL PMI code to memory.
PAL_COPY_PAL 256 | Req. Stacked | Phys. Relocate PAL procedures and PAL PMI code
to memory.
PAL_ENTER_IA 32 _ENV 33 | Opt. Static Phys. Enter IA-32 System environment.
PAL_PMI_ENTRYPOINT 32 |Req. Static Phys. Register PMI memory entrypoints with

processor.

IA-64 Processor Abstraction Layer

11-31

11.8.2

11.8.2.1

PAL Calling Conventions

The following general rules govern the definition of the PAL procedure calling conventions.

Definition of Terms

The terms used in the definition of the requirements have the following meaning:

Table 11-18. Definition of Terms

11.8.2.2

11-32

Term Description
entry Start of the first instruction of the PAL procedure.
exit Start of the first instruction after return to caller’s code.
0 Must be zero at entry to the procedure or on exit from the procedure. If the value at entry is
not zero, the procedure may return an illegal argument or execute in an undefined manner.
1 Must be one at entry to the procedure or on exit from the procedure. If the value at entry is

not one, the procedure may return an illegal argument or execute in an undefined manner.

reserved When any input parameter is listed as reserved, this value must be zero. If an input value
has a range of values, any values outside the range, listed as reserved, must not be used.
For either case, the PAL procedure may return an illegal argument or execute in an
undefined manner.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it must
be the same as the value at entry.

unchanged The PAL procedure must not change these values from their entry values during execution of
the procedure.

scratch The PAL procedure may modify these values as necessary during execution of the
procedure. The caller cannot rely on these values.

preserved The PAL procedure may modify these values as necessary during execution of the
procedure. However, they must be restored to their entry values prior to exit from the
procedure.

Overview of Calling Conventions

There are two calling conventions supported for PAL procedures. (static and stacked) Any single
PAL procedure will support only one of the two calling conventions. In addition, PAL procedure
may be called in either Physical Mode (PSR.it=0, PSR.rt=0, and PSR.dt=0) or Virtua Mode
(PSR.it=1, PSR.rt=1, and PSR.dt=1).

11.8.2.2.1 Coding Requirements for PAL Procedures

All PAL procedures should be written as Position Independent Code (PIC). All references to
constant data should be IP relative.

« Static registers only. This calling convention isintended for boot time usage before main
memory may be available or error recovery situations, where memory or the RSE may not be
reliable. All parameters are passed in the lower 32 static genera registers. The stacked
registers should not be used within the procedure. No memory arguments may be passed as
parameters to or from PAL procedures written using the static register calling convention. To
avoid RSE activity, static register PAL procedures should be called with the br.cond
instruction, not the br.call instruction.

 Stacked registers. This calling convention isintended for usage after memory has been made
available, and for procedures which require memory pointers as arguments. The stacked

IA-64 Processor Abstraction Layer

11.8.2.3

registers are also used for parameter passing and local variable allocation, This convention
conforms to the | A-64 Software Conventions and Runtime Architecture Guide. Thus,
procedures using the Stacked register calling convention can be written in the C language.
There is one exception to the runtime conventions. The first argument to the procedure must
also be copied to GR28 prior to making the call. This allows callswritten using both Static and
Stacked register calling conventionsto call asingle PAL_PROC entrypoint. This should be
accomplished by having the Stacked register procedures call a stub module which copies
GR32 to GR28, then call PAL_PROC. It isthe responsibility of the caller to provide this stub.

11.8.2.2.2 Making PAL Calls in Physical or Virtual Mode

PAL procedure callswhich are made in Physical M ode must obey the calling conventions described
in this chapter, but there are no additional restrictions beyond those noted above. PAL procedure
calls made in Virtual Mode must have the region occupied by PAL_PROC virtually mapped with
an ITR. It needs to map this same areawith either aDTR or DTC using the same trandlation as the
ITR. In addition, it must also provide aDTR or DTC mapping for any memory buffer pointers
passed as arguments to a procedure. It is the responsibility of the caller to provide these mappings.

If the caller chooses to map the PAL_PROC area or any memory pointers with aDTC it must call
the procedure with psr.ic = 1 to handle any TLB faults that could occur. The PAL_PROC code
needs to be mapped with an ITR. Unpredictable results may occur if it is mapped withan ITC
register.

Processor State

The PAL procedures are only available to the code running at privilege level 0. They must run in
physical mode (unless specified as callablein virtual mode). PAL procedures are not interruptible
by external interrupt or NMI, since PSR.i must be 0 when the PAL procedureis called. PAL
procedures are not interruptible by PMI events, if PSR.icisO. If PSR.icis 1, PAL procedures can be
interrupted by PMI events. PAL procedures can be interrupted by machine checks and initialization
events.

Table 11-19 defines the requirements for the PSR at entry to and at exit from a PAL procedure call.
The operating system must follow the state requirements for PSR shown below. PAL calls made by
SAL may impose additional requirements. PAL_TEST_PROC may change PSR bits shown as
unchanged in order to test the processor. These bits must be preserved in this case. PSR bits are
described in increasing bit number order. Any PSR bit numbers not specified are reserved and
should be unchanged.

Table 11-19. State Requirements for PSR

PSR bit Description Entry Exit Class
be big-endian memory access enable 0 0 preserved
up user performance monitor enable C C unchanged
ac alignment check C C preserved
mifl floating-point registers f2-f31 written C C preserved
mfh floating-point registers f32-f127 written C C preserved
ic interruption state collection enable® 0 0 unchanged

1 1 preserved
i interrupt enable 0 0 unchanged
pk protection key validation enable C C unchanged

IA-64 Processor Abstraction Layer 11-33

intel.

Table 11-19. State Requirements for PSR (Continued)

PSR bit Description Entry Exit Class
dt data address translation enable? 0 0 unchanged
1 1 preserved
dfl disabled FP register 2 to f31 0 0 unchanged
dfh disabled FP register f32 to f127°¢ 0 0 unchanged
1 1 unchanged
sp secure performance monitors C C unchanged
pp privileged performance monitor enable C C unchanged
di disable ISA transition C C preserved
si secure interval timer C C unchanged
db debug breakpoint fault enable 0 0 unchanged
Ip lower-privilege transfer trap enable 0 0 unchanged
tb taken branch trap enable 0 0 unchanged
rt register stack translation enableP 0 0 unchanged
1 1 preserved
cpl current privilege level 0 0 unchanged
is instruction set 0 0 preserved
mc machine check abort mask® 0 0 preserved
1 1 unchanged
it instruction address translation enable®? 0 0 unchanged
1 1 preserved
id instruction debug fault disable 0 0 unchanged
da data access and dirty-bit fault disable 0 0 unchanged
dd data debug fault disable 0 0 unchanged
S single step trap enable 0 0 unchanged
ri restart instruction 0 0 preserved
ed exception deferral 0 0 preserved
bn register bank 1 1 preserved
ia instruction access-bit fault disable 0 0 unchanged

a. The PAL procedure PAL_CACHE_FLUSH must be called with psr.ic = 0. The implementation will ensure no
virtual data references are made that may cause a data TLB fault.

b. PAL procedures which are called in Physical mode must remain in Physical mode for the duration of the call.
PAL procedures which are called in virtual mode, may perform specific actions in Physical mode, but must
return to the same virtual mode state before returning from the call.

c. PAL_TEST_PROC and an implementation specific authentication procedure call need to be called with psr.dfh
equal to 0. If they are not they will return invalid argument. All other PAL procedure calls may be called with
psr.dfh equal to O or 1.

d. Most PAL runtime procedures should be called with psr.mc = 0 except for code flow involved in handling
machine checks.

Generally PAL calls should not enable interruptions not aready enabled by the caller. Any PAL call
that might cause interruptions must install an 1VA handler set up to handle them.
PAL_TEST_PROC may generate any interruptions it needs to test the processor. It may also
change System Registers marked as unchanged in order to test the processor. In this case they must
be preserved. Control registers are described in register number order.

11-34 IA-64 Processor Abstraction Layer

intel.

11.8.2.4

System Registers

Table 11-20. System Register Conventions

11.8.2.5

IA-64 Processor Abstraction Layer

Name Description Class
DCR Default Control Register preserved
IT™M Interval Timer Match Register unchanged
IVA Interruption Vector Address preserved
PTA Page Table Address preserved
IPSR Interruption Processor Status Register scratch
ISR Interruption Status Register scratch
P Interruption Instruction Bundle Pointer scratch
IFA Interruption Faulting Address scratch
ITIR Interruption TLB Insertion Register scratch
IIPA Interruption Instruction Previous Address scratch
IFS Interruption Function State scratch
IIM Interruption Immediate Register scratch
IHA Interruption Hash Address scratch
LID Local Interrupt ID unchanged
IVR Interrupt Vector Register (read only) unchanged
TPR Task Priority Register unchanged
EOI End Of Interrupt unchanged
IRRO-IRR3 Interrupt Request Registers 0-3 (read only) unchanged
ITV Interval Timer Vector unchanged
PMV Performance Monitoring Vector unchanged
cMcv Corrected Machine Check Vector unchanged
LRRO-LRR1 Local Redirection Registers 0-1 unchanged
RR Region Registers preserved
PKR Protection Key Registers preserved
TR Translation Registers unchanged?®
TC Translation Cache scratch
IBR/DBR Break Point Registers preserved
PMC Performance Monitor Control Registers preserved
PMD Performance Monitor Data Registers unchangedb

a. If an implementation provides a means to read TRs for PAL, this should be preserved.

b. No PAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance
monitor events during a procedure call. The exception is PAL_TEST_PROC, which tests the performance

counters.

General Registers

PAL will use one of two general register calling conventions described in Section 11.8.2.2,

depending on the availability of memory and the stacked registers at the time of the call. The
following tables describe the contents of the general registers.

11-35

Table 11-21. General Registers - Static Calling Convention

Register Conventions
GRO always 0
GR1 preserved
GR2 - GR3 scratch, used with 22 bit immediate add
GR4 - GR7 preserved
GRS8 - GR11 scratch, procedure return value
GR12 preserved
GR13 unchanged
GR14 - GR27 scratch
GR28 - GR31 input arguments, scratch (PAL index must be passed in GR28)
Bank 0 Registers preserved
(GR16 - GR23)
Bank O Registers scratch
(GR 24 - GR31)
GR32 - GR127 unchanged

Table 11-22. General Registers - Stacked Calling Conventions

(GR 24 - GR31)
GR32 - GR127

Register Conventions
GRO always 0
GR1 preserved
GR2 - GR3 scratch, used with 22 bit immediate add
GR4 - GR7 preserved
GR8 - GR11 scratch, procedure return value
GR12 special, stack pointer (sp)
GR13 special, thread pointer (tp)
GR14 - GR27 scratch
GR28 input argument, scratch (PAL Index must be passed in GR28)
GR29-GR31 scratch
Bank 0 Registers preserved
(GR16 - GR23)
Bank O Registers scratch

stacked registers;

in0 -in95: input arguments (PAL index must be in0)
locO - loc95: local variables

outO - out95: output arguments

The caller must initialize SP for physical and virtual calls only prior to calling a PAL procedure. A
minimum 8 KB of room must be available for the stack space of the PAL procedure. The caler to a
PAL procedure should set up the RSE backing store before making any procedure calls using the
stacked calling conventions. The backing store memory should have a minimum of 8 KB of room

for RSE spills.

PAL shall be called with PSR.bn=1. The GR specifications for GR16 through GR31 are for bank
one. The bank zero register requirements are specified as a separate line item.

IA-64 Processor Abstraction Layer

11.8.2.6 Floating-point Registers
Although there isno PAL procedure that passes floating-point parameters, the floating-point
register conventions are the same as those of the |1A-64 Software Conventions and Runtime
Architecture Guide.
11.8.2.7 Predicate Registers
The conventions for the predicate registers follow the | A-64 Software Conventions and Runtime
Architecture Guide.
11.8.2.8 Branch Registers
The conventions for the branch registers follow the | A-64 Software Conventions and Runtime
Architecture Guide.
11.8.2.9 Application Special Registers
Table 11-23. Application Register Conventions
Register Description Class
KRO-7 Kernel Registers unchanged
RSC Register Stack Configuration Register unchanged
BSP Backing Store Pointer (read only) unchanged?
BSPSTORE Backing Store Pointer for Memory Stores unchanged?
RNAT RSE NaT Collection Register unchanged?
FCR 1A-32 Floating-point Control Registers preserved
EFLAG I1A-32 EFLAG register preserved
CSsD 1A-32 Code Segment Descriptor preserved
SSD 1A-32 Stack Segment Descriptor preserved
CFLG 1A-32 Combined CRO and CR4 Register preserved
FSR 1A-32 Floating-point Status Register preserved
FIR 1A-32 Floating-point Instruction Register preserved
FDR 1A-32 Floating-point Data Register preserved
ccv Compare and Exchange Compare Value Register scratch
UNAT User NaT Collection Register according to GR class
FPSR Floating-point Status Register preserved
ITC Interval Time Counter unchangedb
PFS Previous Function State preserved
LC Loop Counter Register preserved
EC Epilog Counter Register preserved

a. BSP, BSPSTORE, and RNAT may not be changed by PAL, but the value at exit may be different due to RSE
activity. PAL_TEST_PROCESSOR is an exception to this rule, and the RSE contents may not be relied on
after making this call.

b. No PAL procedure writes to the ITC. The value at exit is the value at entry plus the elapsed time of the
procedure call.

IA-64 Processor Abstraction Layer 11-37

11.8.2.10

11.8.2.11

11.8.3

11-38

intel.

PAL procedures that use the static calling conventions do not use stacked registers or the RSE.
Therefore RSE internal state and the CFM are unchanged by these procedures.

Return Buffers

Any addresses passed to PAL procedures as buffers for return parameters must be 8-byte aligned.
Unaligned addresses may cause undefined results.

Invalid Arguments

The PAL procedure calling conventions specify rules that must be followed. These rules specify
certain PSR values, they specify that reserved fields and arguments must be zero filled and specify
that values not defined in arange and defined as reserved must not be used.

If the caller of a PAL procedure does not follow these rules, an invalid argument return value may
be returned or undefined results may occur during the execution of the procedure.

PAL Procedure Specifications

The following pages provide detailed interface specifications for each of the PAL procedures
defined in this document. Included in the specification are the input parameters, the output
parameters, and any required behavior.

IA-64 Processor Abstraction Layer

intel.

PAL_BUS_GET_FEATURES

Get Processor Bus Dependent Configuration Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Provides information about configurable processor bus features.

Static Registers Only
Physical
Argument Description
index Index of PAL_BUS_GET_FEATURES within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_BUS_GET_FEATURES procedure.
features_avalil 64-bit vector of features implemented. See Table 11-24. (1-implemented, O=not
implemented)
feature_status 64-bit vector of current feature settings. See Table 11-24.
feature_control 64-bit vector of features controllable by software. (1=controllable, 0= not controllable)
Status Value Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Table 11-24 defines the set of possible businterface features and their bit position in the return
vector. Different busses will implement similar featuresin different ways. For example, data error
detection may be implemented by ECC or parity. In other cases, certain features may be tied
together. In this case, enabling any one feature in a group will enable all featuresin the group, and
similarly, disabling any one feature in a group will disable all features. Caller algorithms should be
written to obtain desired resultsin these instances. Only those configuration features for which a 1
isreturned in feature_control can be changed viaPAL_BUS SET_FEATURES.

For all valuesin Table 11-24, the Class field indicates whether a feature is required to be available
(Reg.) or is optional (Opt.). The Control field indicates which features are required to be
controllable. These features will either be controllable through this PAL call or through other
hardware means like forcing bus pins to a certain value during processor reset. The control field
applies only when the feature is available. The sense of the bitsis chosen so that for features which
are controllable, the default hand-off value at exit from PALE_RESET should be 0. PALE_CHECK
and PALE_INIT should not modify these features. An operating system should not modify bus
features without detailed information about the platform it is running on.

Table 11-24. Processor Bus Features

Bit Class Control Description

63 Opt. Req. Disable Bus Data Error Checking. When 0, bus data errors are detected and
single bit errors are corrected. When 1, no error detection or correction is done.

62 Opt. Req. Disable Bus Address Error Signalling. When 0, bus address errors are signalled
on the bus. When 1, no bus errors are signalled on the bus. If Disable Bus
Address Error Checking is 1, this bit is ignored.

61 Opt. Req. Disable Bus Address Error Checking. When 0, bus errors are detected, single
bit errors are corrected, and a CMCI or MCA is generated internally to the
processor. When 1, no bus address errors are detected or corrected.

60 Opt. Req. Disable Bus Initialization Event Signalling. When 0, bus protocol errors are
signalled on the bus.When 1, bus protocol errors are not signalled on the bus. If
Disable Bus Initialization Event Checking is 1, this bit is ignored.

IA-64 Processor Abstraction Layer 11-39

PAL_BUS_GET_FEATURES

Table 11-24. Processor Bus Features (Continued)

11-40

Bit

Class

Control

Description

59

Opt.

Req.

Disable Bus Initialization Event Checking. When 0, bus protocol errors are
detected and single bit errors are corrected, and a CMCI or MCA is generated
internally to the processor. When 1, no bus protocol checking is done.

58

Opt.

Req.

Disable Bus Requester Bus Error Signalling. When 0, BERR# is signalled if a
bus error is detected. When 1, bus errors are not signalled on the bus.

57

Opt.

Req.

Disable Bus Requester Internal Error Signalling. When 0, BERR# is signalled
when internal processor requester initiated bus errors are detected. When 1,
internal requester bus errors are not signalled on the bus.

56

Opt.

Req.

Disable Bus Error Checking. When 0, the processor takes an MCA if BERR# is
asserted. When 1, the processor ignores the BERR# signal.

55

Opt.

Req.

Disable Response Error Checking. When 0, the processor asserts BINIT# if it
detects a parity error on the signals which identify the transactions to which this
is a response. When 1, the processor ignores parity on these signals.

54

Opt.

Req.

Disable Transaction Queuing. When 0, the in-order transaction queue is limited
only by the number of hardware entries. When 1, the processor’s in-order
transactions queue is limited to one entry.

53

Opt.

Req.

Enable a bus cache line replacement transaction when a cache line in the
exclusive state is replaced from the highest level processor cache and is not
present in the lower level processor caches. When 0, no bus cache line
replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

52

Opt.

Req.

Enable a bus cache line replacement transaction when a cache line in the
shared state is replaced from the highest level processor cache and is not
present in the lower level processor caches. When 0, no bus cache line
replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

51-32

N/A

N/A

Reserved

31

Opt.

Opt.

Enable Half transfer rate. When 0, the data bus is configured at the 2x data
transfer rate.When 1, the data bus is configured at the 1x data transfer rate,

30

Req.

Req.

Disable Bus Lock Mask. When 0, the processor executes locked transactions
atomically. When 1, the processor masks the bus lock signal and executes
locked transactions as a non-atomic series of transactions.

29

Req.

Req.

Request Bus Parking. When 0, the processor will deassert bus request when
finished with each transaction. When 1, the processor will continue to assert
bus request after it has finished, if it was the last agent to own the bus and if
there are no other pending requests.

28-0

N/A

N/A

Reserved

IA-64 Processor Abstraction Layer

intel.

PAL_BUS_SET_FEATURES

Set Processor Bus Dependent Configuration Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

IA-64 Processor Abstraction Layer

Enabl es/disabl es specific processor bus features.

Static Registers Only

Physical

Argument Description

index Index of PAL_BUS_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
Reserved 0

Reserved 0

Return Value Description

status

Reserved
Reserved
Reserved

Status Value

Return status of the PAL_BUS_SET_FEATURES procedure.
0
0
0

Description

0 Call completed without error
-2 Invalid argument
-3 Can not complete call without error

PAL_BUS GET_FEATURES should be called to ascertain the implemented processor bus

configuration features, their current setting, and whether they are software controllable, before

caling PAL_BUS SET FEATURES. Thelist of possible processor featuresis defined in

Table 11-24. Attempting to enable or disable any feature that cannot be changed will be ignored.

11-41

PAL_CACHE_FLUSH

Flush Data or Instruction Caches

Purpose:

Calling Conv:

Flushes the processor instruction or data caches.

Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_CACHE_FLUSH within the list of PAL procedures.
cache_type Unsigned 64-bit integer indicating which cache to flush. See Table 11-25.
operation Formatted bit vector indicating the operation of this call. See Figure 11-16.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.
Returns: Return Value Description
status Return status of the PAL_CACHE_FLUSH procedure.
vector Unsigned 64-bit integer specifying the vector number of the pending interrupt.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.
Reserved 0
Status: Status Value Description
1 Call has not completed flushing due to a pending external event
0 Call completed without error
-2 Invalid argument
-3 Call completed with error
Description: Flushes the instruction or data caches controlled by the processor as specified by the cache _type

parameter. Encoding for the cache_type parameter follows:

Table 11-25. cache_type Encoding

11-42

Value Description

Flush all caches containing instructions.
Flush all caches containing data.
Flush all caches (instruction and data).

A W DN P

Make local instruction caches coherent with the data caches.

All other values of cache type are reserved. If the cache is unified, both instruction and data lines
are flushed, regardless of the value of cache type.

Flushing all caches containing instructions, causes the instruction and unified caches to be flushed.
Flushing all caches containing data, causes all data and unified caches to be flushed. Flushing all
caches causes al data, instruction, and unified caches to be flushed.

When the caller specifies to make local instruction caches coherent with the data caches, this
procedure will ensure that the local instruction caches will see the effects of stores of instruction
code done on the processor. Refer to Section 4.4.3, “ Cacheability and Coherency Attribute” on
page 4-28 for more information on stores and their coherency requirements with local instruction
caches.

The effects of flushing data and unified caches is broadcast throughout the coherency domain. The
effects of flushing instruction caches may or may not be broadcast throughout the coherency
domain. The procedure will perform the necessary serialization and synchronization as required by
the architecture.

This call does not ensure that data in the processors coal escing buffers are flushed to memory. See
Section 4.4.5 on page 4-29 on how to flush the coalescing buffers.

IA-64 Processor Abstraction Layer

PAL_CACHE_FLUSH

The operation parameter controls how this call will operate. The operation parameter hasthe

following format:

Figure 11-16. operation Parameter Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

« inv - 1 bit field indicating whether to invalidate clean lines in the cache.

If thisbitisO, all modified cachelinesfor the specified cache_type are copied back to memory.
Optimally, modified and non-modified cache lines are | eft valid in the specified cachein a
clean (non-modified) state. However based on the processor implementation cache linesin the
specified cache may alternatively be invalidated.

If thishitis 1, all modified cache lines for the specified cache_type are flushed by copying the
cache lineto memory. All cache linesin the specified cache are then invalidated.

If cache_typeisequal to 4 (makelocal instruction caches coherent with the data caches) theinv
bit will beignored.

Table 11-26 will clarify the effects of theinv bit. The modified state represents a cache line that
contains modified data. The clean state represents a cache line that contains no modified data.

int - 1 bit field indicating if the processor will periodically poll for external interrupts and PMIs
while flushing the specified cache_type(s).

If this bit isa 0, unmasked external interrupts or PMIswill not be polled. The processor will
ignore all pending unmasked external interrupts and PMI interrupts until all cache linesin the
specified cache _type(s) are flushed. Depending on the size of the processor’s caches, bus
bandwidth and implementation characteristics, flushing the caches can take along period of
time, possibly delaying interrupt response times and potentially causing /0O devices to fail.

If thishitisal, external interrupts and PMIswill be polled periodically and will exit the
procedure if oneis seen. If an unmasked external interrupt or PMI becomes pending, this
procedure will return and allow the caller to service the interrupt before all cache linesin the
specified cache _type(s) are flushed.

Table 11-26. Cache Line State when inv =0

Old State New State Comments
Invalid Invalid
Clean Clean?
Modified Clean? Modified data is copied back to memory

a. Based on the processor implementation the cache line can be invalidated or left in a model specific clean state

Table 11-27. Cache Line State when inv =1

Old State New State Comments
Invalid Invalid
Clean Invalid
Modified Invalid Modified data is copied back to memory.

IA-64 Processor Abstraction Layer

11-43

PAL_CACHE_FLUSH |n‘te| .

11-44

The progress_indicator is an unsigned 64-bit integer specifying the starting position of the flush
operation. Valuesin this parameter are model specific and will vary across processor
implementations.

Thefirst time this procedure is called, the progress_indicator must be set to zero. If this procedure
exits due to an external interrupt and this procedure is then again called to resume flushing, the
progress_indicator must be set to the value previously returned by PAL_CACHE_FLUSH.
Software must program no value other than zero or the value previously returned by
PAL_CACHE_FLUSH otherwise behavior is undefined.

This procedure makes one flush pass through all caches specified by cache type and all setsand
associ ativities within those caches. The specified cache type(s) are ensured to be flushed only of
cache lines resident in the caches prior to PAL_CACHE_FLUSH initially being called with the
progress indicator set to 0.

This procedure ensures that prefetches initiated prior to making this call with progress_indicator
set to 0 are flushed based on the cache_type argument passed.

« If cache type specifiesto flush all instruction caches then the call ensures all prior instruction
prefetches are flushed.

« If cache_type specifiesto flush all data cachesthen the call ensuresall prior data prefetches are
flushed.

« If cache_type specifiesto flush al caches then the call ensures all prior instruction and data
prefetches are flushed from the caches.

« If cache_type specifiesto make local instruction caches coherent with the data caches, then the
call will ensure all prior instruction prefetches are flushed.

This procedure must be called with PSR.i and PSR.ic set to zero to ensure external interrupts are
not taken before this procedure begins to flush the cache(s) or while this procedure is terminating.
PSR.i and PSR.ic must be zero regardless of the value of theint field.

Due to the following conditions, software cannot assume that when this procedure completes the
entire flush pass that the specified cache_type(s) are empty of al clean and/or modified cache lines.

« After aninterruption, the flush pass resumes at the interruption point (specified by
progress indicator). Due to execution of the interrupt handlers during the flush pass, the
specified caches may contain new and possibly modified cache lines in sections of the caches
already flushed.

« Prior prefetches initiated before this procedureis called are disabled and flushed from the
cache as described above. However, if a speculative trandation existsin either the ITLB or
DTLB, speculative instruction or data prefetch operation could immediately reload a
non-modified cache line after it was flushed. To ensure prefetches do not occur, software must
remove all speculative translation before calling this routines. Alternatively, software can
disable the TLBs by setting PSR.it, PSR.dt, and PSR.rt to O.

 The specified caches may also contain PAL firmware code cache entries required to flush the
cache.

This procedure does ensure that all cache lines resident in the specified cache_type(s) prior to this
procedure being initially called are flushed regardless of intervening external interrupts. It also
ensures that prefetches initiated prior to the initial call to this procedure that affect the caches
specified in cache_type, as described above, are flushed regardless of intervening external
interrupts.

IA-64 Processor Abstraction Layer

in‘tel . PAL_CACHE_FLUSH

To ensure forward progress, PAL_CACHE_FLUSH advances through the cache flush sequence at
least by one cache line before sampling for pending external interrupts or PMI. The amount of
flushing that occurs before interrupts are polled will vary across implementations.

PAL_CACHE_FLUSH will return the following values to indicate to the caller the status of the
call.

* Satus

When the call returnsa 1, it indicates that the call did not have any errors but is returning due
to a pending unmasked external interrupt or PMI. To continue flushing the caches, the caller
must call PAL_CACHE_FLUSH again with the value returned in the progress _indicator
return value.

When the call returns a0, it indicates that the call completed without any errors. All cachelines
that were present in the cache (when the most recent call to PAL_CACHE_FLUSH with a
progress indicator of zero) are flushed and possibly invalidated. All intermediate calls must
have used the proper progress indicator, otherwise behavior is undefined.

* vector - If the return statusis 1 and this procedure exited due to a pending unmasked external
interrupt, this field returns the interrupt vector number. The external interrupt will have been
removed. Theinterrupt is considered to be “in-service” and software must servicethisinterrupt
for the specified vector and then issue EOI. If this procedure exited due to a pending PMI
interrupt, thisfield will contain the “spurious’ vector number. Software must enable PSR.ic so
the processor can respond to the PMI interrupt. If the return statusis not 1, the values returned
is undefined.

e progress indicator - When the return statusis 1, specifies the current position in the flush pass.
The value returned is model specific and will vary across processor implementations. If the
return statusis not 1, the value returned is undefined.

IA-64 Processor Abstraction Layer 11-45

PAL_CACHE_INFO

intel.

Get Detailed Cache Information

Purpose:

Calling Conv:

Returns information about a particular processor instruction or data cache at a specified level inthe

cache hierarchy.

Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_CACHE_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is
requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.
cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.
Reserved 0
Returns: Return Value Description
status Return status of the PAL_CACHE_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-17.
config_info_2 The format of config_info_2 is shown in Figure 11-18.
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: Thiscall describesin detail the characteristics of a given processor controlled cache in the cache

hierarchy. It returns information in the config_info_1 and config_info_2 returns parameters.

The config_info_1 return value has the following structure;

Figure 11-17. config_info_1 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ stride ‘ line_size ‘ associativity
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ load_hints ‘ store_hints ‘ load_latency ‘ store_latency ‘

e u-hitthat is1if the cacheisunified and O if the cacheis split.
* at - 2-bit field denoting cache memory attributes, as follows:

Table 11-28. Cache Memory Attributes

Value Description

Write through cache
Write back cache

2-3 Reserved

11-46 IA-64 Processor Abstraction Layer

in‘tel o PAL_CACHE_INFO

 associativity - unsigned 8-bit integer denoting the associativity of the cache. A value of 0
indicates a fully associative cache. A value of 1 indicates a direct mapped cache.

« line_size - unsigned 8-hit integer denoting the binary logarithm (log2) of the minimum write
back size of a flush operation to memory or the line size of the cache if the cache contents
never get flushed to memory (for example an instruction cache).

« stride - unsigned 8-bit integer denoting the binary log of the most effective stride in bytes for
flushing the cache.

 store latency - unsigned 8-bit integer denoting the number of cycles after issue until the value
iswritten into the cache. If the cache cannot accept a store (like an instruction cache) the value
returned will be 256 (Oxff).

« load_latency - unsigned 8-hit integer denoting the number of processor cycles after issue until
the value may be used if it isfound in the cache.

 store_hints - 8-bit vector dencting hints implemented by the processor store instruction. For
instruction caches this value will be areserved value.

Table 11-29. Cache Store Hints

Bit # Description
0 Temporal, level 1
1-2 Reserved
3 Non-temporal, all levels
4-7 Reserved

 load_hints - 8-bit vector denoting hints implemented by the processor load instruction.

Table 11-30. Cache Load Hints

Bit # Hint
Temporal, level 1

Non-temporal, level 1
Reserved
Non-temporal, all levels

A W N P O

-7 Reserved

The config_info_2 return value has the following structure:

Figure 11-18. config_info_2 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ cache_size ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ reserved tag_ms_bit tag_Is_bit alias_boundary ‘

« cache_size - unsigned 32-bit integer denoting the size of the cache in bytes.

« dlias boundary - unsigned 8-bit integer indicating the binary log of the minimum number of
bytes which must separate aliased addresses in order to obtain the highest performance.

« tag Is bit - unsigned 8-bit integer denoting the least-significant address bit of the tag.
e tag ms _bit - unsigned 8-hit integer denoting the most-significant address bit of the tag.

IA-64 Processor Abstraction Layer 11-47

PAL_CACHE_INIT

Initialize Caches

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Initializes the processor controlled caches.

Static Registers Only

Physical

Argument Description

index Index of PAL_CACHE_INIT within the list of PAL procedures.

level Unsigned 64-bit integer containing the level of cache to initialize. If the cache level can be
initialized independently, only that level will be initialized. Otherwise
implementation-dependent side effects will occur.

cache_type Unsigned 64-bit integer with a value of 1 to initialize the instruction cache, 2 to initialize the
data cache, or 3 to initialize both. All other values are reserved.

restrict Unsigned 64-bit integer with a value of 0 or 1. All other values are reserved. If restrict is 1

and initializing the specified level and cache_type of the cache would cause side effects,
PAL_CACHE_INIT will return -4 instead of initializing the cache.

Return Value Description
status Return status of the PAL_CACHE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description

0
-2
-3
-4

Call completed without error

Invalid argument

Call completed with error

Call could not initialize the specified level and cache_type of the cache without side effects
and restrict was 1.

Initializes one or all the processor’s caches. The effect of this procedureisto initialize the caches
without causing writebacks. This procedure cannot be used where coherency is required because
any datain the caches will be lost.

The level argument must either be -1, indicating all cache levels, or a non-negative number
indicating the specific level to initialize. In the latter case, level must be in the range from O up to
one less than the cache levels return value from PAL_CACHE_SUMMARY:

Table 11-31. PAL_CACHE_INIT level Argument Values

Value Description
-1 Initializes all cache levels (cache_type and restrict are ignored)
OtoN Initialize only the specified cache level.

The restrict argument specifies how to handle potential side effects, where:

Table 11-32. PAL_CACHE_INIT restrict Argument Values

11-48

Value Description
0 No restriction: initialize the specified level and cache_type of the cache, even if doing so will
cause side effects in other caches.
1 Restrict initialization to the specified level and cache_type without side effects to other cache
levels. If this cannot be done, return -4.

All other values of restrict are reserved.

IA-64 Processor Abstraction Layer

intel.

PAL_CACHE_LINE_INIT

Initialize a Data Cache line

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

IA-64 Processor Abstraction Layer

Initializes the tags and data of adata or unified cache line of a processor controlled cache to known
values without the availability of backing memory.

Static
Physical
Argument Description
index Index of PAL_CACHE_LINE_INIT within the list of PAL procedures.
address Unsigned 64-bit integer value denoting the physical address from which the physical page
number is to be generated. The address must be an implemented physical address, bit 63
must be zero.
data_value 64-bit data value which is used to initialize the cache line.
Reserved 0
Return Value Description
status Return status of the PAL_CACHE_LINE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Can not complete call without error

A linein the data or unified cacheisinitialized to the values passed in the arguments of this
procedure. The physical page number of the lineis derived from the address value passed. Thetags
of theline are set to Private, Dirty, and Valid. The cache lineisinitialized using data_value

repeated until it fillsthe line. This procedure replicates data_value to asize equal to the largest line
size in the processor-controlled cache hierarchy.

This procedure call cannot be used where coherency is required.

11-49

PAL_CACHE_PROT_INFO

intel.

Get Detailed Cache Protection Information

Purpose:

Calling Conv:

Returns protection information about a particular processor instruction or data cache at a specified
level in the cache hierarchy.

Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_CACHE_PROT_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is
requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.
cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.
Reserved 0
Returns: Return Value Description
status Return status of the PAL_CACHE_PROT_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-19.
config_info_2 The format of config_info_2 is shown in Figure 11-20.
config_info_3 The format of config_info_3 is shown in Figure 11-21.
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error
Description: PAL_CACHE_PROT_INFO returns information about the data and tag protection method for the

specified cache. The three returns compose a six-element array of 32-bit protection information

structures.

The config_info_1 return value has the following structure;

Figure 11-19. config_info_1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

11

10 9 8 7 6 5 4 3 2 1 O

‘ cache_protection[0]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44

43

42 41 40 39 38 37 36 35 34 33 32

‘ cache_protection[1]

The config_info_2 return value has the following structure;

Figure 11-20. config_info_2 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

1

109 8 7 6 5 4 3 2 10

‘ cache_protection[2]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44

43

42 41 40 39 38 37 36 35 34 33 32

‘ cache_protection[3]

The config_info_3 return value has the following structure:

Figure 11-21. config_info_3 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

11

10 9 8 7 6 5 4 3 2 1 O

‘ cache_protection[4]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44

43

42 41 40 39 38 37 36 35 34 33 32

‘ cache_protection[5]

11-50

IA-64 Processor Abstraction Layer

| ntel o PAL_CACHE_PROT_INFO

Each cache_protection element has the following structure:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ t d ‘ method prot_bits tagprot_msb tagprot_Isb data_bits

 data_hits - unsigned 8-hit integer denoting the number of data bits that each unit of protection
covers. For example, if the cache hardware generates 8 bits of ECC per 64 bhits of data,
data_bitswould be 64. Thisfield isonly validift disO0, 2, or 3.

« tagprot_Isb - unsigned 6-bit integer denoting the least-significant tag address bit that this
protection method covers. Thisfield isonly validift dis1, 2, or 3.

« tagprot_msb - unsigned 6-bit integer denoting the most-significant tag address bit that this
protection method covers. Thisfield isonly validift dis1, 2, or 3.

e prot_bhits - unsigned 6-bit integer denoting the number of protection bits generated for the field
specified by thet_d element.

« method - unsigned 4-bit integer denoting the protection method, where:

Value Description
0 no ECC or parity protection
1 odd parity protection
2 even parity protection
3 ECC protection

All other values of method are reserved.

e t_d- 2-bit field denoting whether this protection method applies to the tag, the data, or both. If
over both, the tag and data unit could be concatenated with the tag either to the left (more
significant) or to theright (less significant) than a unit of data. For the values of 2 and 3, the
difference of tagprot_msb and tagprot_|sb indicates the number of tag bits that are protected
with the data bits. The data bits are described by the data_bits field below. Thisfield is
encoded as follows:

Value Description

Data protection
Tag protection
Tag-+data protection (tag is more significant)

w N B O

Data+tag protection (data is more significant)

When obtaining cache information viathis call, information for the data cache should be obtained
first, then if the u bit of the config_info_1 parameter is not set, obtain the information for the
instruction cache.

IA-64 Processor Abstraction Layer 11-51

PAL_CACHE_READ

Read Values from the Processor Cache

Purpose: Reads the data and tag of a processor-controlled cache line for diagnostic testing.

Calling Conv: Stacked Registers

Mode: Physical

Arguments: Argument

Description

index
line_id
address

Reserved

Returns: Return Value

Index of PAL_CACHE_READ within the list of PAL procedures.

8-byte formatted value describing where in the cache to read the data.

64-hit 8-byte aligned physical address from which to read the data. The address must be an
implemented physical address on the processor model with bit 63 set to zero.

0

Description

status
data
length
mesi

Status: Status Value

Return status of the PAL_CACHE_READ procedure.
Right-justified value returned from the cache line.
The number of bits returned in data.

The status of the cache line.

Description

1
0

The word at address was found in the cache, but the line was invalid.
Call completed without error.

Unimplemented procedure

Invalid argument

Call completed with error.

The word at address was not found in the cache.

The operation requested is not supported for this cache_type and level.

Description: A valueisread from the specified cache line, if present. This procedure allows reading cache data,
tag, protection, or status bits.

Theline_id argument is an 8-byte quantity in the following format:

Figure 11-22. Layout of line_id Return Value

3 3 2 2 2
1 0 9 8 7

2 2 2 2 2 2 21

111 1 11 1
6 5 4 3 2 10 9 8 7 6 5 4 3 0 9 87 65 43 210

‘ part

‘ way ‘ level ‘ cache_type ‘

6 6 6 6 5
3 2 1 0 9

5 5 5 5 5 55 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3
8 7 6 5 4 3 2 1 0 9 8 7 6 5 9 8 7 6 5 4 3 2

« cache_type - unsigned 8-bit integer denoting whether to read from instruction (1) or
data/unified (2) cache. All other values are reserved.

« level - unsigned 8-bit integer specifying which cache within the cache hierarchy to read. This
value must be in the range from 0 up to one less than the cache _|evels return value from
PAL_CACHE_SUMMARY.

* way - unsigned 8-bit integer denoting within which cache way to read. If the cache is
direct-mapped this argument isignored.

« part - unsigned 8-hit integer denoting which portion of the specified cache line to read:

Value

Description

data
tag
data protection bits

11-52

IA-64 Processor Abstraction Layer

intel o PAL_CACHE_READ

Value Description

tag protection bits
4 combined protection bits for data and tags®

a. Note that for this part no data is returned. Only protection bits are returned.

All other values of part are reserved.

The data return value contains the value read from the cache. Its contents are interpreted according
totheline_ id.part field as follows:

Part Data
64-bit data.
right-justified tag of the specified line.

right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses
less than 64-bits of data to generate protection, data will contain more than one value. For
example if a cache generates parity for every 8-bits of data, this return value would contain 8
parity values. The PAL_CACHE_PROT_INFO call returns information on how a cache
generates protection information in order to decode this return value. If a cache uses greater
than 64-bits of data to generate protection, data will contain the value to use for the portion of
the cache line indicated by address.

right-justified protection bits for the cache line tag.
right-justified protection bits for the cache line tag and 64 bits of data at address.

The length return value contains the number of valid bits returned in data.

The mesi return value contains the status bits of the cache line. Values are defined as follows:

Value Description

invalid
shared
exclusive

w N B O

modified

All other values of mesi are reserved.

To guarantee correct behavior for this procedure, it is required that there shall be no RSE activity
that may cause cache side effects.

IA-64 Processor Abstraction Layer 11-53

PAL_CACHE_SUMMARY

Get Cache Hierarchy Summary

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-54

Returns summary information about the hierarchy of caches controlled by the processor.

Static Registers Only

Physical and Virtual

Argument Description

index Index of PAL_CACHE_SUMMARY within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
cache_levels

unique_caches

Reserved

Status Value

Return status of the PAL_CACHE_SUMMARY procedure.

Unsigned 64-bit integer denoting the number of levels of cache implemented by the
processor. Strictly, this is the number of levels for which the cache controller is integrated into
the processor (the cache SRAMs may be external to the processor).

Unsigned 64-bit integer denoting the number of unique caches implemented by the
processor. This has a maximum of 2*cache_levels, but may be less if any of the levels in the
cache hierarchy are unified caches or do not have both instruction and data caches.

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

Software is expected to call PAL_CACHE_SUMMARY before calling PAL_CACHE_INFO to
determine the number of times PAL_CACHE_INFO should be called and the amount of storage
that must be allocated to hold all of the information returned by PAL_CACHE_INFO.

IA-64 Processor Abstraction Layer

intel.

PAL_CACHE_WRITE

Write Values into the Processor Cache

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Writes the data and tag of a processor-controlled cache line for diagnostic testing.
Stacked Registers

Physical
Argument Description
index Index of PAL_CACHE_WRITE within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to write the data.
address 64-bit 8-byte aligned physical address at which the data should be written. The address must
be an implemented physical address on the processor model with bit 63 set to 0.
data unsigned 64-bit integer value to write into the specified part of the cache.
Return Value Description
status Return status of the PAL_CACHE_WRITE procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error.
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-7 The operation requested is not supported for this cache_type and level.

The value of data iswritten into the specified level, way, and part of the cache. This procedure
allows writing cache data, tag, protection, or status bits.

This procedure may also be used to seed errorsinto a cache line. It calcul ates the protection bits
based on the value of data, then inverts a specified bit field before writing data to the cache. Bit
field inversion is only used for writes to the cache data or tag.

If seeding an error into the instruction cache or seeding an unrecoverable error, then return back to
the caller may not be possible.

This procedure call cannot be used where coherency is required.

Theline_id argument is an 8-byte quantity in the following format:

Figure 11-23. Layout of line_id Return Value

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
part ‘ way ‘ level ‘ cache_type ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

trigger ‘ length ‘ start ‘ mesi ‘

« cache_type - unsigned 8-bit integer denoting whether to write to instruction (1) or data/unified
(2) cache. All other values are reserved.

« leve - unsigned 8-hit integer specifying which cache within the cache hierarchy to write data.
This value must be in the range from O up to one less than the cache levels return value from
PAL_CACHE_SUMMARY.

« way - unsigned 8-bit integer denoting within which cache way to write data. If the cacheis
direct-mapped this argument is ignored.

 part - unsigned 8-bit integer denoting where to write data into the cache:

IA-64 Processor Abstraction Layer 11-55

PAL_CACHE_WRITE intel®

Value Description

A W N P O

data

tag

data protection
tag protection

combined data and tag protection

All other values of part are reserved.

mesi - unsigned 8-bit integer denoting whether the line should be written as clean or dirty,
shared or exclusive. Though there may be multiple callsto PAL_CACHE_WRITE to the same
cache line, thelast call’s mesi will be in effect. Values are defined as follows:

Value Description

wWw N P O

invalid
shared
exclusive

modified

All other values of mesi are reserved.

start - unsigned 8-bit integer denoting the least-significant bit of the field in data to invert. If
lengthisO or partisnot O or 1, thisfield isignored.

length - unsigned 8-hit integer denoting the number of bitsto invert. If length is 0, no bits are
inverted and start isignored. If partisnot 0 or 1, thisfield isignored.

trigger - unsigned 8-bit integer denoting whether to trigger the error while in procedure. If
trigger is O, the procedure writes data and returns. If trigger is 1 and cache typeis
data/unified, the procedure writes data and executes a 64-bit load from address before
returning. If trigger is 1 and cache_type is set to instruction, the procedure writes data and
branches to the address. All other values are reserved.

The data argument contains the value to write into the cache. Its contents are interpreted based on
the part field as follows:

Part Data

64-bit data to write to the specified line (with optional bit field inversion).

right-justified tag to write into the specified line (with optional bit field inversion).

right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses less
than 64-bits of data to generate protection, data will contain more than one value. For example if a
cache generates parity for every 8-bits of data, this return value would contain 8 parity values. The
PAL_CACHE_PROT_INFO call returns information on how a cache generates protection
information in order to decode this return value. If a cache uses greater than 64-bits of data to
generate protection, data will contain the value to use for the portion of the cache line indicated by
address.

right-justified protection bits for the cache line tag.

right-justified protection bits for the cache line tag and 64 bits of data at address.

To guarantee correct behavior for this procedure, it is required that there shall be no RSE activity
that may cause cache side effects.

11-56

IA-64 Processor Abstraction Layer

intel.

PAL_COPY_INFO

Return Parameters to Copy PAL Procedures to Memory

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns the parameters needed to copy relocatable PAL code from the firmware address space to
memory.

Static Registers Only

Physical

Argument Description

index Index of PAL_COPY_INFO within the list of PAL procedures.

copy_type
platform_info

Unsigned integer denoting type of procedures for which copy information is requested.
8-byte formatted value describing the number of processors and the number of interrupt
controllers currently enabled on the system.

Unsigned integer denoting the number of bytes that SAL needs for the min-state save area
for each processor.

mca_proc_state_i
nfo

Return Value Description
status Return status of the PAL_COPY_INFO procedure.
buffer_size Unsigned integer denoting the number of bytes of PAL information that must be copied to
main memory.
buffer_align Unsigned integer denoting the starting alignment of the data to be copied.
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This procedureis called to obtain the information needed to rel ocate runtime PAL procedures, PAL
PMI code, and PAL code needed to support | A-32 operating systems from the firmware address
space to memory. The information returned in this call isused by SAL to allocate amemory region
on the required alignment, and call PAL_COPY _PAL to copy the relocatable PAL code.

The copy_type input argument indicates which type of procedure for which copying information is
regquested. A value of 0 denotes proceduresrequired for SAL, PMI, and | A-64 operating systems. A
value of 1 denotes procedures required for 1A-32 operating systems. All other values are reserved.
If the copy_typeisO, then SAL shall call PAL_COPY_PAL call subsequently to copy the PAL
procedures and PAL PMI code to the allocated memory region. If the copy_typeis 1, SAL shall
pass the allocated memory size and start address through the PAL_ENTER _IA_32 ENV call
before booting an |A-32 OS.

The platform_info input argument is required only when copy_type = 1. If copy_type=0,
platform_info should be 0. Platform info has the following format.

Figure 11-24. Layout of platform_info Input Parameter

IA-64 Processor Abstraction Layer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ num_iopics ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ num_procs ‘

* num _iopicsisthe number of interrupt controllers currently enabled on the system.
e num_procsisthe number of processors currently enabled on the system.
The buffer_align return value must be a power of two between 4 KB and 256 KB.

11-57

PAL_COPY_PAL | n‘tel o

Copy PAL Procedures to Memory

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-58

Copy relocatable PAL procedures from the firmware address space to memory.
Stacked Registers

Physical
Argument Description
index Index of PAL_COPY_PAL within the list of PAL procedures.
target_addr Physical address of a memory buffer to copy relocatable PAL procedures and PAL PMI code.
alloc_size Unsigned integer denoting the size of the buffer passed by SAL for the copy operation.
processor Unsigned integer denoting whether the call is being made on the boot processor or an
application processor
Return Value Description
status Return status of the PAL_COPY_PAL procedure.
proc_offset Unsigned integer denoting the offset of PAL_PROC in the relocatable segment copied.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This procedureis called to rel ocate runtime PAL procedures and PAL PMI code from the firmware
address space to main memory. This procedure a so updates the PAL_PMI entrypoint in hardware.
If the call is made on an application processor, the copy is not performed. The processor argument
denotes whether the call is being made on the boot processor (value of 0) or an application
processor (value of 1). All other values are reserved.

PAL_COPY_INFO should be called first to determine the size and alignment requirements of the
memory buffer to which the PAL code will be copied. Bit 63 of target_addr must be set
consistently with the cacheability attribute of the memory buffer being copied to. It isPAL’'s
responsibility to ensure that the firmware address space contents that are being copied from, are not
in any processor caches. It isthe caller’s responsibility to ensure that the contents of the memory
buffer copied to, are flushed out of the internal processor’s data caches if target_addr has a
cacheable memory attribute.

If aPAL procedure makes callsto internal PAL functions that execute only out of the firmware
address space, that portion of code will continue to execute out of firmware address space, even
though the main procedure has been copied to RAM. Thisistrue only for some PAL procedures
that can be called only in physical mode.

PAL_COPY_PAL call ismandatory as part of the system boot process. Higher level firmware
should guarantee that PAL_COPY _PAL iscalled on all processors before OS launch. Thisisto
guarantee that full processor functionality is available. This procedure can be called more than
once.

IA-64 Processor Abstraction Layer

intel.

PAL_DEBUG_INFO

Get Debug Registers Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns the number of instruction and data debug register pairs.
Static Registers Only

Physical or Virtual

Argument Description
index Index of PAL_DEBUG_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_DEBUG_INFO procedure.
i_regs Unsigned 64-bit integer denoting the number of pairs of instruction debug registers
implemented by the processor.
d_regs Unsigned 64-bit integer denoting the number of pairs of data debug registers implemented
by the processor.
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This call returns the number of pairs of registers. Even numbered registers contain breakpoint
addresses and odd numbered registers contain breakpoint mask conditions. For exampleif i_regsis
4, there are 8 instruction debug registers of which 4 are breakpoint addressregisters (IBRg 5 4 6) and
4 are breakpoint mask registers (IBR; 3 5.7). The minimum value for bothi_regsand d_regsis 4.

On some implementations, a hardware debugger may use two or more debug register pairsfor its
own use. When a hardware debugger is attached, PAL_DEBUG_INFO may return avalue for
i_regsand/or d_regs less than the implemented number of debug registers. When a hardware
debugger is attached, PAL_DEBUG_INFO may return a minimum value of 2 for d_regsand a
minimum of 2 fori_regs.

IA-64 Processor Abstraction Layer 11-59

PAL_ENTER_IA_32_ENV i ntel ®

Enter IA-32 System Environment

Purpose: This call configures the processor for execution of an 1A-32 operating system and switches from
the |A-64 System Environment to the IA-32 System Environment.

Calling Conv: Static Registers Only*

Note: *Sincethisisaspecia call, it does not follow the PAL static register calling convention.
GR28 containstheindex of PAL_ENTER_IA_32 ENV within thelist of PAL procedures.
All other input arguments including GR29-GR31 are setup by SAL to values as required
by the | A-32 operating system defined in Table 11-33. The registers that are designated as
preserved, scratch, input arguments and procedure return values by the static procedure
calling convention are not followed by this call. For instance, GR5 and GR6 need not be
preserved since these are regarded as scratch by the | A-32 operating system.

Note: *Inan MP system, this call must be COMPLETED on the first CPU to enter the I1A-32
system environment (may or may not be the BSP) prior to being called on the remaining
processors in the MP system.

Mode: Physical

Arguments: GR28 containsthe index of the PAL_ENTER_IA_32 ENV call within the list of PAL procedures.
All other input arguments are defined in Table 11-33.

Returns: This procedure continues to execute indefinitely in the 1A-32 System Environment until power
down, reset, an error condition, or aj npe instruction is executed at privilege ring 0. In case of an
error condition or j npe, the procedure transitions the processor back to |A-64 System Environment
and continues execution at the physical 1A-64 termination | P specified in GR3 by SAL as defined
in Table 11-33. The register state at the physical |A-64 termination |P is defined in Table 11-37.

Status: The status is returned in GR4 as defined in Table 11-37.

Description: This PAL firmware call configures the processor for execution of an |A-32 operating system and
switches between the | A-64 System Environment to the |A-32 System Environment.

Any required PAL firmware for supporting | A-32 operating systemsis copied to the memory buffer
pointed to by GR36. Firmware then configures the processor for execution in the |A-32 System
Environment. Thisincludes:

* Purging the TLB of al entries (both TRs and TCs)

» Programming all 1A-64 resources - |A-64 general registers, floating-point registers, predicate,
branch, RSE registers (RSC, BSP, BSPSTORE, RNAT), CCV, UNAT, FPSR, PFS, LC, EC,
GPTA, ITM, TPR, RR and PKR, IBR, DBR, PMC, PMD registers to a state consistent with
|A-32 System Environment.

The configuration of this state isimplementation specific, based on implemented |A-64 resources.
This PAL firmware call registerswith SAL “call back” points for the following system related
interrupts that may occur during the execution of the | A-32 system environment: OS_MCA and
OS _INIT. SAL code MUST pass these events back through the “call back” points when these

platform related interruptions occur. The PAL firmware also registers the machine check
rendezvous and wake-up mechanisms to be used during machine check processing.

The firmware then initializes the processor state as supplied in the parameter list.

ThelA-32 APIC isinitially hardware enabled when the | A-32 System Environment is entered. The
initial state of all APIC registersis extracted from the current interruption register values.

11-60 IA-64 Processor Abstraction Layer

PAL_ENTER_IA_ 32 _ENV

Note: Only NMI and ExtINT pending interrupts will be delivered per the | A-32 definition. All
other existing pending interrupts in IRR0-3 are discarded.

MTRR physical memory attribute values and ranges are initialized to the same physical memory
values specified by the SAL System Table.

Note: When the |A-32 System Environment isterminated, the SAL System Table will not reflect
changes made to the MTRR physical attribute values by | A-32 code.

The processor will begin execution at the instruction and | A-32 mode (e.g. Real Mode, Protected
Mode, VM86, 16/32-hit) as defined by the entry parametersin Table 11-33.

Table 11-33 describes the | A-64 register state required at entry to the 1A-32 System Environment:

Table 11-33. IA-32 System Environment Entry Parameters

IA-64 Register IA-32 State Description

GR2{31:0} ip First IA-32 instruction set address. IA-32 physical address or
virtual address if CRO.pg is 1. The upper 32-bits are ignored.

GR3 Termination IP. On termination of the IA-32 System Environment
due to j npe at ring 0 or an error condition, execution will
continue at this 64-bit IA-64 physical address. GR4 indicates the
reason for termination.

GR4 Configuration Flags -

flag{0} - if 1 indicates this call is being performed on the Boot
Strap Processor (BSP), if O this call is being performed on a
processor other than the BSP.

flag{4:1} - Indicates the entry order in which the processor has
been called to enter the 1A-32 system environment. If first
processor, the value will be zero; if second, the value will be one;
and so on. Warning: If this flag value is incorrectly specified,
the system may crash. Also, this value must be unique on
each processor in an MP system.

flag{63:5} - Reserved.

GR5-6 ignored Ignored
GR7 fsd initial state of the 1A-32 fs segment descriptor
GR8-15{31:0} eax, ecx, edx, ebx, esp, |initial 32-bit state of all general purpose registers
ebp, esi, edi
GR16-17 gs, fs, es, ds, tr, Idt, ss, |initial state of all IA-32 segment selectors
cs
GR24,27 esd, dsd initial state of the 1A-32 es and ds segment descriptors.
GR28 PAL index PAL_ENTER_IA 32_ENV index value
GR29-GR31 gsd, Idtd, gdtd initial state of the 1A-32 gs, Idt, and gdt segment descriptors.
AR25,26 csd, ssd initial state of the 1A-32 cs and ss segment descriptors.
GR32 MP_Info_Table: Physical address of the MP Information Table described in Table 11-34
below.
GR33 System_Table: Physical address of the SAL System Table. See the SAL Specification for

details. The System Table defines the physical layout of the /O Port Space, memory, and
all physical memory attributes required for each section of physical memory. The System
Table also defines regions of regular memory, 1/O areas and where existing firmware
resides. This information is used to initialize the 1A-32 System Environment's MTRRs.

GR34 Reserved
GR35 Reserved

GR36 MEMORY_BUFFER: Physical address of the buffer allocated for copying the PAL
procedures to support IA-32 operating systems. Refer to PAL_COPY_INFO for details.

IA-64 Processor Abstraction Layer 11-61

PAL_ENTER_IA_32_ENV

Table 11-33. 1A-32 System Environment Entry Parameters (Continued)

IA-64 Register

IA-32 State

Description

GR37

MEMORY_BUFFER_LEN: Unsigned 64-bit integer containing the size of the buffer
allocated for copying the PAL procedures to support IA-32 operating systems. Refer to
PAL_COPY_INFO for details.

GR38 mca_proc_state_info This is the value that results from calling the
SAL_GET_STATE_INFO_SIZE procedure with the arguments of
mca and proc.

GR39 SAL_IO_Intercept_Function: Physical address of the SAL I/O Intercept callback function.

GR40 SAL_IO_Intercept_Table: Physical address of the SAL I/O Intercept Table described in

Table 11-35 below.

FR8-15 fp0-7,mmO-7 initial IA-32 FP, MMX™ technology register values

FR16-31 xmmO-7 initial IA-32 Streaming SIMD Extension register state

AR21 (fcr) fcw, mxcsr initial 1A-32 numeric and Streaming SIMD Extension control
values

AR24 (eflag) eflags initial state of 1A-32 flags

AR27 (cflg) crO/cr4 initial values for CR0 and CR4

AR28 (fsr) fsw, ftw, mxcsr initial IA-32 numeric and Streaming SIMD Extension status
values

AR29 (fir) fip, fcs, fop initial IA-32 numeric environment opcode, selector, and IP

AR30 (fdr) fea, fds initial IA-32 numeric environment data selector and offset

KR1 tssd initial value for IA-32 TSSD

KR2 cr3/cr2 initial values for CR3 and CR2

KR3 idtd initial value for IA-32 IDTD

CR9 crO/cr4 initial values for CRO and CR4

PSR -- PSR.ic =0, interrupt collection off
PSR.i = 0, interrupts off
PSR.it, PSR.dt, PSR.rt = 02
PSR.mc = 0, machine checks un-masked
PSR.bn = 1, register bank 1 selected
all other bits must be zero

DCR - All bits must be zero

PTA, GPTA - PTA.ve = 0, GPTA.ve=0, VHPT disabled

LID -- unique processor ID, EID address for this processor

ITC tsc ITC = time stamp counter

a. virtual translations are off, ALL translations in the TRs and TCs will be ignored and invalidated

Table 11-34 describes the MP Information Table.

Table 11-34. MP Information Table

11-62

Offset Length Description

(in bytes) (in bytes) P
0 8 Address of Local APIC for use by IA-32 operating systems?
8 4 Number of I/O SAPICs on the system.
12 4 Number of processors on the system
16 7 Reserved (must be zero)
23 1 Checksum. This modulo sum of all the bytes in this table, including

Checksum and Reserved bytes must add up to zero.

IA-64 Processor Abstraction Layer

In

tel

PAL_ENTER_IA_ 32 _ENV

Table 11-34. MP Information Table (Continued)

of 1/0O SAPICs)

_Offset lLength Description
(in bytes) (in bytes)
24 16 A 16-byte entry for each 1/0 SAPIC on the system containing the
following information:
Byte 0:
 bits 0-3: I/0O APIC ID of the I/O SAPIC for use by IA-32 operating
systemsP
* bits 4-7: Must be zero
Byte 1:
» bit 0: 1 if the I/O SAPIC is enabled
* bits 1-7: Must be 0
Bytes 2-7: Reserved
Bytes 8-15:
Address of I/O APIC for use by IA-32 operating systems?
24+(16 * Number 8 A 8-byte entry for each processor on the system containing the following

information:

Byte 0: EID of the processor®

Byte 1: ID of the processor®

Byte 2:

 bits 0-3: Local APIC ID of the processor for use by IA-32
operating systems

* bits 4-7: Must be zero

Byte 3:

 bit 0: 1 if the processor is enabled

* bits 1-7: Must be 0

Bytes 4-7: Reserved

a. SAL must ensure that this address does not conflict with other device addresses on the platform.
b. SAL must generate a unique ID value and store the same ID in the MP table, for use by IA-32 operating

systems. This must by the physical ID.

c. This is the value set by SAL in the LID register of the processor (CR64).

Table 11-35 describes the SAL 1/0O Intercept Table. Thistable must be 8-byte aligned, with a
minimum size of 8 bytes and a maximum size of 128 bytes. Also, the memory allocated for this
table must be allocated in multiples of 8 bytes.

Table 11-35. SAL /O Intercept Table

Offset Length Description
(in bytes) (in bytes) P
0 2 Number of 1/0 Ports to be intercepted. This value must be between 0
and 63 inclusively.
2 2 A 2-byte entry for each intercepting port, specifying the intercepting
port number. This word is little endian.
2+(2*Number of 6 - (Number of | Reserved. This ensures that the table is a multiple of 8 bytes long.

Intercepting Ports)

intercepting
Ports[1:0] * 2)

Table 11-36 describes the | A-32 resource state set at entry to the | A-32 System Environment. Note:
SAL must initialize all the | A-32 resources to a known state, otherwise these resources may
contain |1 A-64 reset values and the | A-32 operating system and applications may not function

properly.

IA-64 Processor Abstraction Layer

11-63

PAL_ENTER_IA_32_ENV

Table 11-36. I1A-32 Resources at IA-32 System Environment Entry

11-64

IA-32 Resource Initial State

eflags =AR24

eax-edi = GR8-15{31:0}

cs:eip = AR25:GR2

cr0, cr4 = AR27

cr2, cr3 =KR2

es, cs, ss, ds, fs, gs, Idt, tr selector = GR16-17{63:0}
descriptor = GR24,AR25,AR26,GR27-31{63:0}

Descriptor values for gs, fs, es, ds, | =GR29,GR28,GR24,GR27,GR30,GR31,AR26,AR25{63:0}

Idt, gdt, ss, cs

idt descriptor = KR3

fp st0-7, mmO-7 =FR8-15

xmmO-7 = FR16-31

fcw, mxcsr(control) = fer

fsw, mxcsr(status), ftw = fsr

fop, fip, fcs =fir

fea, fds =fdr

dr0-3 = 0x0000, disabled debug registers

dré = OxFFFFOFFO, disabled debug registers

dr7 = 0x00000400

TSC = equal to interval timer (ITC)

Perf Monitors = cleared

TLBs = flushed

MCHK registers = cleared

MTRRs = MTRRs of |A-32 state are initialized to be consistent with the memory
entries of the SAL System Table.

APIC = disabled, initial support is for Intel 8259A compatible external interrupt
controller

All other |A-32 and | A-64 application and operating system register values are ignored on input
and may be modified by processor/firmware during execution within the |A-32 System

Environment.

During the execution of the |A-32 System Environment, platform eventsfor PAL_MCA,
PAL_INIT, PAL_RESET and PAL_PMI will interrupt the |A-32 System Environment and vector to

PAL firmware.

Execution continues indefinitely in the |A-32 System Environment until power down, an error
condition occurs or until a j mpe instruction is executed at privilege ring O.

The state of all |A-64 defined registers are left in an undefined state, code can only rely on the
register state defined in “1A-32 System Environment Exit Values,” following termination.
Allocated memory may be reclaimed by SAL or the |A-64 OS.

When the |A-32 System Environment isterminated, the SAL System Table will not reflect changes
made to the memory attribute values by | A-32 code.

Current pending interrupts are left pending.

When the |A-32 system mode is terminated, the auxiliary processors (APs) will exit the 1A-32

system environment first, followed by the boot-strap processor (BSP). Upon termination, the APs
will start execution in |A-64 mode at the termination address specified by the caller. The BSP will

IA-64 Processor Abstraction Layer

then start executing at the termination | P address after all of the APs have exited the IA-32 system

PAL_ENTER_IA_ 32 _ENV

environment. The SAL code at the termination address must ensure synchronization of all the
processorsin an MP system and then continue with the OEM dictated procedure.

Table 11-37 describes the | A-64 register values at 1A-32 System Environment termination.

Table 11-37. Register Values at IA-32 System Environment Termination

IA-64 Register

IA-32 State

Description

GR1

Undefined

GR2

Address of the IA-32 JMPE instruction that caused
termination. 1A-32 physical address or virtual address if
CRO.pgis 1.

GR3

Number of processors that exited the IA-32 system
environment.

GR4

IA-32 System Environment Termination Reason:
-1 Un-implemented procedure

0 JMPE detected at privilege level 0

1 SAL allocated buffer for IA-32 System Environment
operation is too small

1A-32 Firmware Checksum Error

w

SAL allocated buffer for IA-32 system environment
operation is not properly aligned

Error in SAL MP Info Table

Error in SAL Memory Descriptor Table
Error in SAL System Table
Inconsistent IA-32 state

1A-32 Firmware Internal Error

© 00 N o o b

1A-32 Soft Reset (Note: remaining register state is
undefined for this termination reason)

10 Machine Check Error
11 Errorin SAL /O Intercept Table

12 Processor exit due to other processor in MP system
terminating the 1A-32 system environmen. (Note:

remaining register state is undefined for this termination

reason.)

13 1A-64 state corruption by either SAL PMI handler or I/O

Intercept callback function.

GR5-6

Undefined

GR7

apic id

The defined apic id for the processor from the apic lid register

GRS8-15{31:0}

eax, ecx, edx, ebx, esp,
ebp, esi, edi

final 32-bit state of all general purpose registers

GR16-17

es, cs, ss, ds, fs, gs, Idt,
tr

final state of all IA-32 segment selectors (bank 1)

GR24,AR25,
AR26, GR27-31

esd, csd, ssd, dsd,
fsd, gsd, ldtd, gdtd

final state of all IA-32 segment descriptors (bank 1)

GR18-23,25-26,
32-127

Undefined (bank 1)

GR16-31 Bank Register 0 - Undefined
FR8-15 fp0-7, mmO-7 final 1A-32 FP, MMX™ technology register values
FR16-31 xmmO-7 final 1A-32 Streaming SIMD Extension register values

IA-64 Processor Abstraction Layer

11-65

PAL_ENTER_IA_32_ENV i ntel ®

Table 11-37. Register Values at IA-32 System Environment Termination (Continued)

|A-64 Register IA-32 State Description
FR2-7,32-127
PRO-63
BRO-7

RSC, BSP,
BSPSTORE, RNAT,
CCV, UNAT, FPSR,

Undefined

PFS, LC, EC
AR21 (fcr) fcw, mxcsr final 1A-32 numeric and Streaming SIMD Extension control
values
AR24 (eflag) eflags final state of IA-32 flags
AR27 (cflg) crO/cr4 final values for CRO and CR4
AR28 (fsr) fsw, ftw, mxcsr final 1A-32 numeric and Streaming SIMD Extension values
AR29 (fir) fip, fcs. fop final 1A-32 numeric environment opcode, selector, and IP
AR30 (fdr) fea, fds final 1A-32 numeric environment data selector and offset
KR1 tssd final value for 1A-32 TSSD
KR2 cr3fcr2 final values for CR3 and CR2
KR3 idtd final value for IA-32 IDTD
KRO,4-7 Undefined
PSR -- PSR.ic =0, interrupt collection off
PSR.i = 0, interrupts off
PSR.it, PSR.dt, PSR.rt = 02
PSR.mc = 0, machine checks un-masked
PSR.bn = 1, register bank 1 selected
all other bits are 0
DCR -- zeros
PTA - PTA.ve= 0, VHPT is disabled
GPTA - GPTAve =0
LID - received unique ID, EID value for this processor
ITC tsc ITC = final time stamp counter value

IFA, 1IP, IPSR, ISR,
IIM, IIPA, ITTR, IHA,
IFS, IVA, GPTA,
ITM, IVR, TPR,
IRRO-3, ITV, PMV,
LRRO, LRR1, CMCV

TRs, TCs (TLBs)
RR

PKR Undefined
IBR, DBR
PMC, PMD

Undefined

a. virtual translations are off, ALL original translations in the TRs and TCs have been invalidated

11-66 IA-64 Processor Abstraction Layer

intel.

PAL_FIXED_ADDR

Get Fixed Geographical Address of Processor

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns a unique geographical address of this processor on its bus.
Static Registers Only

Physical or Virtual

Argument Description
index Index of PAL_FIXED_ADDR call within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_FIXED_ADDR procedure.
address Fixed geographical address of this processor.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

The address return value will contain a unique unsigned integer denoting the position of this
processor on the current bus. Thisis an arbitrary number which is expected to have geographical
significance and be unique for the bus to which the processor is connected. If the processor is
connected to multiple busses, the address return value must be unique among all such busses. For
each implementation, the value should be the smallest unique value that can be returned on that
implementation. For example, on a bus which could support 6 processors, the address return value
should occupy no more than 3 bits. In any case, it will never be more than 16 bits.

IA-64 Processor Abstraction Layer 11-67

PAL_FREQ BASE |n‘te| o

Get Processor Base Frequency

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-68

Returns the frequency of the output clock for use by the platform is generated by the processor.
Static Registers Only

Physical or Virtua

Argument Description
index Index of PAL_FREQ_BASE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_FREQ_BASE procedure.
base_freq Base frequency of the platform if generated by the processor chip.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Can not complete call without error

If the processor outputs a clock for use by the platform, the base_freq return parameter will be the
frequency of this output clock in ticks per second. If the processor does not generate an output
clock for use by the platform, this procedure will return with a status of -1.

IA-64 Processor Abstraction Layer

intel.

PAL_FREQ_RATIOS

Get Processor Frequency Ratios

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returnstheratios of the processor frequency, bus frequency, and interval timer to the input clock of
the processor, if the platform clock is generated externaly or to the output clock to the platform, if
the platform clock is generated by the processor.

Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_FREQ_RATIOS within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
proc_ratio

bus_ratio

itc_ratio

Return status of the PAL_FREQ_RATIOS procedure.

Ratio of the processor frequency to the input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Ratio of the bus frequency to the input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Ratio of the interval timer counter rate to input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Can not complete call without error

Each of theratiosreturnsis an unsigned 64-bit value, where the upper 32 bits contain the numerator
and the lower 32 hits contain the denominator of the ratio.

IA-64 Processor Abstraction Layer 11-69

PAL_HALT

HALT Processor

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

intel.

Causes the processor to enter the HALT state, or one of the implementation-dependent low power

states.

Static Registers Only

Physical

Argument Description

index Index of PAL_HALT within the list of PAL procedures.

halt_state Unsigned 64-bit integer denoting low power state requested.

io_detail_ptr 8-byte aligned physical address pointer to information on the type of 1/O (load/store)
requested.

Reserved 0

Return Value Description

status Return status of the PAL_HALT procedure.
load_return Value returned if a load instruction is requested in the io_detail_ptr
Reserved 0
Reserved 0
Status Value | Description

0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

This call places the processor in alow power state designated by halt_state. This procedure can
optionally let the platform know it is about to enter the low power state via an 1/0 transaction.

halt_state is an unsigned 64-hit integer denoting the low power state requested. The va ue passed
must be avalid HALT state in the range from 1 to 7, for which information is returned by
PAL_HALT_INFO. All other values are reserved.

The processor informs the platform that it has entered the requested low power statein an
implementation specific manner.

The layout of the information pointed to by theio_detail _ptr is shown Table 11-38.

Table 11-38. I/O Detail Pointer Description

Offset Description
0x0 1/0 size and type information
0x8 Address for 1/10
0x10 Data value to store

 1/O size and type information has the format shown in Figure 11-25.

Figure 11-25. I/O Size and Type Information Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11-70

I/O size ‘ I/O type ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IA-64 Processor Abstraction Layer

PAL_HALT

Value Description

0 No transaction
Perform a load
Perform a store

Value Description

No transaction
1 byte size
2 byte size
4 byte size
8 byte size

o M N B O

« 1/O typeisan unsigned 8-hit integer denoting the type of 1/O transaction to compl ete.
All other values for 1/0 type are reserved.

» 1/O sizeisan unsigned 8-bit integer denoting the size of the I/O transaction to complete.
All other values for /O size are reserved.

¢ Address for the I/0 transaction is a physical pointer for the load or store. The address passed
should be aligned according to the size of the I/O transaction requested. The most significant
bit (63) of the physical address should be set according to the cacheability attribute wanted for
the I/O transaction.

¢ The datavalueto storeisthe value that will be stored out if theio_typeis 2. If io_typeis not
equal to a2, then thisvalueisadon’t care.

If an I/O transaction is requested by the caller, the processor will wait until this transaction has been
received by the platform before entering the low power state.

On receipt of aPMI, machine check, INIT, reset, or unmasked external interrupt (including NMI),
PAL transitions the processor to the normal state. An unmasked external interrupt is defined to be
an interrupt that is permitted to interrupt the processor based on the current setting of the TPR.mic
and TPR.mmi fields in the TPR control register. PAL setsthevalueintheload return return
parameter if theio_typeis 1, otherwise thisvalueis set to zero.

If the processor transitions to normal state viaan unmasked external interrupt, execution resumesto
the caller.

If the processor transitions to normal state viaa PMI, execution resumes to the caller if PMIsare
masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution resumes to
the caller if machine checks and INITs are masked, otherwise execution will resume to the
corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will reset itself and
start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6 on page 11-25.

IA-64 Processor Abstraction Layer 11-71

PAL_HALT_INFO

Get HALT State Information for Power Management

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns information about the processor’s power management capabilities.

Stacked Registers
Physical and Virtual
Argument Description
index Index of PAL_HALT_INFO within the list of PAL procedures.
power_buffer 64-bit pointer to a 64-byte buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_HALT_INFO procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

The power information requested is returned in the data buffer referenced by power _buffer. Power
information is returned about the 8 power states. The low power statesare LIGHT_HALT, HALT,
plus 6 other low power states. The LIGHT _HALT stateisindex 0 in the buffer, and the HALT state
isindex 1. All 8 low power states need not be implemented

The information returned isin the format of Table 11-26. The information about the HALT states
will bein ascending order of the index values.

Figure 11-26. Layout of power_buffer Return Value

11-72

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

entry_latency exit_latency ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

v

|co‘im‘ power_consumption ‘

exit latency - 16-bit unsigned integer denoting the minimum number of processor cyclesto
transition to the NORMAL state.

entry latency - 16-bit unsigned integer denoting the minimum number of processor cyclesto
transition from the NORMAL state.

power_consumption - 28-bit unsigned integer denoting the typical power consumption of the
state, measured in milliwatts.

im - 1-bit field denoting whether thislow power state isimplemented or not. A value of 1
indicates that the low power stateis implemented, avalue of O indicates that it is not
implemented. If thisvalue is 0 then all other fields areinvalid.

co - 1-hit field denoting if the low power state maintains cache and TLB coherency. A value of

lindicatesthat the low power state keeps the caches and TLBs coherent, avalue of O indicates
that it does not.

The latency numbers given are the minimum number of processor cycles that will be required to
transition the states. The maximum or average cannot be determined by PAL due to its dependency
on outstanding bus transactions.

For more information on power management, please refer to Section 11.6 on page 11-25.

IA-64 Processor Abstraction Layer

in‘tel o PAL_HALT LIGHT

Cause Processor to Enter Coherent HALT State

Purpose: Causes the processor to enter the LIGHT HALT state, where prefetching and execution are
suspended, but cache and TLB coherency is maintained.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_HALT_LIGHT within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_HALT_LIGHT procedure.
Reserved 0
Reserved 0
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: ~ This call placesthe processor inthe LIGHT HALT state in an implementati on-dependent fashion
where cache and TLB coherency is maintained, but power consumption is minimized.

The processor acknowledges to the platform that it has entered the LIGHT HALT low power state
in an implementation specific manner.

On receipt of aPMI, machine check, INIT, reset, or unmasked external interrupt (including NMI),
PAL transitions the processor to the normal state. An unmasked external interrupt is defined to be
an interrupt that is permitted to interrupt the processor based on the current setting of the TPR.mic
and TPR.mmi fieldsin the TPR control register.

If the processor transitions to normal state viaan unmasked external interrupt, execution resumesto
the caller.

If the processor transitions to normal state viaa PMI, execution resumes to the caller if PMIsare
masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state viaa machine check or INIT, execution resumes to
the caller if machine checks and INITs are masked, otherwise execution will resume to the
corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will reset itself and
start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6 on page 11-25.

IA-64 Processor Abstraction Layer 11-73

PAL_MC_CLEAR_LOG

Clear Processor Error Logging Registers

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Clearsall processor error logging registers and reset the indicator that allows the error logging
registersto be written. This procedure also checks the pending machine check bit and pending INIT
bit and reports their states.

Static Registers Only

Physical and Virtua

Argument Description

index Index of PAL_MC_CLEAR_LOG within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
pending
Reserved
Reserved

Status Value

Return status of the PAL_MC_CLEAR_LOG procedure.
64-bit vector denoting whether an event is pending.

0

0

Description

0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This procedure is called to clear processor error logging registers after al error information has
been obtained. This procedures re-enables the logging registers in the case of a subsequent error. It
clears any information that would be returned by either the PAL_MC_ERROR_INFO or

PAL_MC _DYNAMIC_STATE procedures.

This procedure does not clear any pending machine checks. The pending return parameter returnsa
value of 0 if no subsequent event is pending, a1 in bit position O, if amachine check is pending,
and/or alin bit position 1 if an INIT is pending. All other values are reserved.

Figure 11-27. Pending Return Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

[in |me

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Table 11-39. Pending Return Parameter Fields

11-74

Field name

Description

mc

Pending machine check

in

Pending initialization event

IA-64 Processor Abstraction Layer

in‘tel o PAL_MC_DRAIN

Complete Outstanding Transactions

Purpose: Ensuresthat all outstanding transactionsin a processor are completed or that any MCA due to these
outstanding transactionsis taken.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_MC_DRAIN within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_MC_DRAIN procedure.
Reserved 0
Reserved 0
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: This call causes all outstanding transactions in the processor to be completed (i.e. loads get their
data returned, stores get issued to the bus, and prefetches are either completed or cancelled). Asa
result of completing these outstanding transactions Machine Check Aborts (MCAS) may be taken.
Thiscal istypically issued by code that needs to guarantee that no MCAs due to outstanding
transactions will occur after a given paint.

IA-64 Processor Abstraction Layer 11-75

PAL_MC_DYNAMIC_STATE I ntel ®

Returns Dynamic Processor State

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-76

Returns the Machine Check Dynamic Processor State.

Static Registers Only

Physical
Argument Description
index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.
offset Offset of the next 8 bytes of Dynamic Processor State to return. (multiple of 8)
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_MC_DYNAMIC_STATE procedure.
size Unsigned 64-bit integer denoting bytes of Dynamic Processor State returned.
pds Next 8 bytes of Dynamic Processor State.
Reserved 0
Status Value | Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Returnsthe 8 bytes of Processor Dynamic State from the location specified by the offset argument.
Thisdatais returned in an 8-byte return values, pds. The offset argument specifies the offset from
the start of the processor dependent error information area. The size return argument specifies the
number of bytes actually returned. In order to obtain all of the error information, software must call
PAL_MC_DYNAMIC_STATE with aninitia offset value of O, adding the size returned from the
previous cal, until it returns a Status of -2 or the sizeis equal to 0.

The Processor Dynamic State isimplementation-dependent.

The information returned by this procedureis cleared by PAL_MC _CLEAR_LOG.

IA-64 Processor Abstraction Layer

intel o PAL_MC_ERROR_INFO

Get Processor Error Information

Purpose: Returns the Processor Machine Check Information

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_MC_ERROR_INFO within the list of PAL procedures.
info_index Unsigned 64-bit integer identifying the error information that is being requested. (See
Table 11-40).
level_index 8-byte formatted value identifying the structure to return error information on. (See

Figure 11-28).
err_type_index Unsigned 64-bit integer denoting the type of error information that is being requested for the
structure identified in level_index. (See Table 11-42)

Returns: Return Value | Description
status Return status of the PAL_MC_ERROR_INFO procedure.
error_info Error information returned. The format of this value is dependent on the input values passed.
inc_err_type If this value is zero, all the error information specified by err_type_index has been returned. If

this value is one, more structure specific error information is available and the caller needs to
make this procedure call again with level_index unchanged and err_type_index,

incremented.
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error
-6 Argument was valid, but no error information was available

Description: ~ This procedure returns error information for machine checks as specified by info_index,
level_index and err_type index. Higher level softwareisinformed that additional machine check
information is available when the processor state parameter mi bit is set to one. See Table 11-5
“Processor State Parameter Fields’ on page 11-15 for more information on the processor state
parameter and the mi bit description.

Theinfo_index argument specifies which error information is being requested. See Table 11-40 on
page 11-78 for the definition of theinfo_index values.

IA-64 Processor Abstraction Layer 11-77

PAL_MC_ERROR_INFO i ntel ®

Table 11-40. info_index values

info_index Error Information Type Description

0 Processor Error Map This info_index value will return the processor
error map. This return value specifies the
processor core identification, the processor
thread identification, and a bit-map indicating
which structure(s) of the processor generated the
machine check. This bit-map has the same layout
as the level_index. A one in the structure bit-map
indicates that there is error information available
for the structure. The layout of the level_index is
described in Figure 11-28 on page 11-78.

1 Processor State Parameter This info_index value will return the same
processor state parameter that is passed at the
PALE_CHECK and PALE_INIT exit state. This
parameter describes the severity of the error and
the validity of the processor state when the
machine check or initialization event occurred.
The Processor State Parameter is described in
Figure 11-9, “Processor State Parameter,” on
page 11-15.

2 Structure Specific Error Information This info_index value will return error information
specific to a processor structure. The structure is
specified by the caller using the level_index and
err_type_index input parameters. The value
returned in error_info is specific to the structure
and type of information requested.

All other values of info_index are reserved. When info_index isequal to O or 1, thelevel _index and
err_type index input values are ignored. When info_index is equal to 2, the level_index and
err_type index define the format of the error_info return value.

The caller is expected to first make this procedure call with info_index equal to zero to obtain the
processor error map. This error map informs the caller about the processor core identification, the
processor thread identification and indicates which structure(s) caused the machine check. If more
than one structure generated a machine check, multiple structure bits will be set. The caller then
uses thisinformation to make sub-sequent callsto this procedure for each structure identified in the
processor error map to obtain detailed error information.

Thelevel _index input argument specifies which processor core, processor thread and structure for
which information is being requested. See Table 11-41 on page 11-79 for the definition of the
level _index fields. This procedure call can only return information about one processor structure at
atime. The caler isresponsible for ensuring that only one structure bit in the level_index input
argument is set at a time when retrieving information, otherwise the call will return that an invalid
argument was passed.

Figure 11-28. level_index layout

31 30 29 28 272625 24 23 222120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
\ erf \ ebh \ edt \ eit \ edc eic tid cid \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ems ‘

11-78 IA-64 Processor Abstraction Layer

intel o PAL_MC_ERROR_INFO

Table 11-41. level_index fields

Field Name Bit Description
cid 3:0 Processor core ID (default is O for processors with a single core)
tid 74 Logical thread ID (default is O for processors that execute a single thread)
eic 11:8 Error information is available for 1st, 2nd, 3rd, and 4th level instruction caches
edc 15:12 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified caches
eit 19:16 Error information is available for 1st, 2nd, 3rd, and 4th level instruction TLB
edt 23:20 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified TLB
ebh 27:24 Error information is available for the 1st, 2nd, 3rd, and 4th level processor bus

hierarchy
erf 31:28 Error information is available on register file structures
ems 47:32 Error information is available on micro-architectural structures

The convention for levels and hierarchy in the level_index field is such that the least significant bit
inthe error information bit-fields represent the lowest level of the structures hierarchy. For example
bit 8 if the eic field represents the first level instruction cache.

The erf field is4-bitswide to allow reporting of 4 concurrent register related machine checks at one
time. One bit would be set for each error. The emsfield is 16-bits wide to allow reporting of
16-concurrent micro-architectural structures at one time. Thereis no significance in the order of
these bits. If only one register file related error occurred, it could be reported in any one of the
4-hits.

The err_type_index specifies the type of information will be returned in error_info for a particular
structure. See Table 11-42 for the values of err_type index.

Table 11-42. err_type_index values

err_type_index

value mod 8 Return Value Description
0 Structure specific error information | The information returned in error_info is dependant
specified by level_index on the structure specified in level_index. See

Table 11-43 for the error_info return formats.

1 Target address The target address is a 64-bit integer containing the
physical address where the data was to be
delivered or obtained. The target address also can
return the incoming address for external snoops
and TLB shoot-downs that generated a machine
check. The structure specific error information
informs the caller if there is a valid target address to
be returned for the requested structure.

2 Requester identifier The requester identifier is a 64-bit integer that
specifies the bus agent that generated the
transaction responsible for generating the machine
check. The structure specific error information
informs the caller if there is a valid requester
identifier.

3 Responder identifier The responder identifier is a 64-bit integer that
specifies the bus agent that responded to a
transaction that was responsible for generating the
machine check. The structure specific error
information informs the caller if there is a valid
responder identifier.

IA-64 Processor Abstraction Layer 11-79

PAL_MC_ERROR_INFO i ntel ®

err_type_index

Return Value Description
value mod 8 P

4 Precise instruction pointer The precise instruction pointer is a 64-bit virtual
address that points to the bundle that contained the
instruction responsible for the machine check. The
structure specific error information informs the caller
if there is a valid precise instruction pointer.

5-7 Reserved Reserved

See Table 11-43 for the format of error_info when structure specific information is requested.

Table 11-43. error_info return format when info_index = 2 and err_type_index =0

11-80

level_index .
field_input error_info return format
eic cache_check return format
edc cache_check return format
eit tlb_check return format
edt tlb_check return format
ebh bus_check return format
erf reg_file_check return format
ems uarch_check return format

The structure specified by the level_index may have the ahility to log distinct multiple errors. This
can occur if the structure is accessed at the same time by more than one instruction and the
processor can log machine check information for each access. To inform the caller of this
occurrence, this procedure will return avalue of onein theinc_err_typereturn value.

It isimportant to note, that when the caller seesthat theinc_err_typereturn valueis one, it should
make a sub-sequent call with the err_type_index value incremented by 8. If the structure specific
error information returns that there is avalid target address, requester identifier, responder
identifier or precise instruction pointer these can be returned as well by incrementing the
err_type index value in the same manner. Refer to the following example for more information.

For exampl e, to gather information on the first error of a structure that can log multiple errors,
err_type index would be called with the value of O first. The caller examines the information
returned in error_info to know if thereis avalid target address, requester identifier, responder
identifier, or precise instruction pointer available for logging. If thereis, it makes sub-sequent calls
with err_type index equal to 1, 2, 3 and/or 4 depending on which valid bits are set. Additionally if
theinc_err_type return value was set to one, the caller knows that this structure logged multiple
errors. To get the second error of the structure it setsthe err_type_index = 8 and the structure
specific information isreturned in error_info. The caller examines this error_info to know if there
isavalid target address, requester identifier, responder identifier, or precise instruction pointer
available for logging on the second error. If thereis, it makes sub-sequent callswith err_type index
equal to 9, 10, 11, and/or 12 depending on which valid bits are set. The caller continues
incrementing the err_type index value in this fashion until theinc_err_typereturn valueis zero.

As shown in Table 11-43, the information returned in error_info varies based on which structure
information is being requested on. The next sections describe the error_info return format for the
different structures.

Cache Check Return Format: The cache check return format isreturned in error_info when the
user requests information on any instruction or data/unified cachesin the level _index input

IA-64 Processor Abstraction Layer

intel o PAL_MC_ERROR_INFO

argument. The cache_check return format is a bit-field that is described in Figure 11-29 and
Table 11-44.

Figure 11-29. Cache_Check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 1817 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
wiv‘ way |mv| mesi |ic‘dc| tl ‘dl- Ievel‘ op |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
|p|‘rp|rq|tv‘mcc‘pv| pl ‘|v||s- index

Table 11-44. Cache_Check Fields

r'f;?rlwde Bits Description
op 3:0 Type of cache operation that caused the machine check:
0 - unknown or internal error
- load
2 - store
3 - instruction fetch or instruction prefetch
4 - data prefetch (both hardware and software)
5 - snoop (coherency check)
6 - cast out (explicit or implicit write-back of a cache line)
7 - move in (cache line fill)
All other values are reserved.
level 5:4 Level of cache where the error occurred. A value of 0 indicates the first level of cache.
[rsva 76 [Reseved 00000000000
dl 8 Failure located in the data part of the cache line.
tl 9 Failure located in the tag part of the cache line.
dc 10 Failure located in the data cache
ic 11 Failure located in the instruction cache
mesi 14:12 0 - cache line is invalid.
1 - cache line is held shared.
2 - cache line is held exclusive.
3 - cache line is modified.
All other values are reserved.
mv 15 The mesi field in the cache_check parameter is valid.
way 20:16 Failure located in the way of the cache indicated by this value.
wiv 21 The way and index field in the cache_check parameter is valid.

51:32 Index of the cache line where the error occurred.

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an 1A-64 instruction. If this bit is set to one, the instruction that generated the
machine check was |IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

IA-64 Processor Abstraction Layer 11-81

PAL_MC_ERROR_INFO i ntel ®

Table 11-44. Cache_Check Fields (Continued)

Field Bits Description
name
rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.
p 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.
pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

TLB_Check Return Format: Thetlb_check return format is returned in error_info when the user
requests information on any instruction or data/unified TLB in the level _index input argument. The
tlb_check return format is a bit-field that is described in Figure 11-30 and Table 11-45.

Figure 11-30. TLB_Check Layout
31302928 27 26 252423222120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

op ‘itc‘dtc‘ itr ‘dtr- level .trv‘ tr_slot |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘pi‘rp|rq|tv‘mcc|pv| pl ‘iv|is

Table 11-45. TLB_Check Fields

:j:l Bits Description
tr_slot 7.0 Slot number of the translation register where the failure occurred.
trv 8 The tr_slot field in the TLB_check parameter is valid.
dtr 16 Error occurred in the data translation registers
itr 17 Error occurred in the instruction translation registers
dtc 18 Error occurred in data translation cache
itc 19 Error occurred in the instruction translation cache
op 23:20 | Type of cache operation that caused the machine check:

0 - unknown

1 - TLB access due to load instruction

2 - TLB access due to store instruction

3 - TLB access due to instruction fetch or instruction prefetch

4 - TLB access due to data prefetch (both hardware and software)
5 - TLB shoot down access

6 - TLB probe instruction (probe, tpa)

7 - move in (VHPT fill)

All other values are reserved.

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an I1A-64 instruction. If this bit is set to one, the instruction that generated the
machine check was |A-32 instruction.

iv 55 The is field in the TLB_check parameter is valid.

pl 57:56 | Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the TLB_check parameter is valid.

11-82 IA-64 Processor Abstraction Layer

intel o PAL_MC_ERROR_INFO

Table 11-45. TLB_Check Fields (Continued)

Field Bits Description
name
mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.
tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.
rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.
p 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.
pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Bus_Check Return Format: The bus_check return format is returned in error_info when the user
reguests information on any level of hierarchy of the processor bus structures as specified in the
level_index input argument. The bus_check return format is a bit-field that is described in

Figure 11-31 and Table 11-46.

Figure 11-31. Bus Check Layout

3130 20 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[bsi [hier | sev [type [cclebib] size |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
[pi[rp[rq[tv]mcclpv] pl [iv]is

Table 11-46. Bus Check Fields

:;?Tl]de Bits Description
size 4:0 Size in bytes of the transaction that caused the machine check abort.
ib 5 Internal bus error
eb 6 External bus error
cc 7 Error occurred during a cache to cache transfer.
type 15:8 Type of transaction that caused the machine check abort.
0 - unknown
1 - partial read
2 - partial write
3 - full line read
4 - full line write
5 - implicit or explicit write-back operation
6 - snoop probe
7 - incoming ptc.g
8 - WC transactions
All other values are reserved
sev 20:16 | Bus error severity. The encodings of error severity are platform specific.
hier 22:21 | This value indicates which level or bus hierarchy the error occurred in. A value of 0
indicates the first level of hierarchy.
bsi 31:24 | Bus error status information. It describes the type of bus error. This field is processor bus
specific.

IA-64 Processor Abstraction Layer 11-83

PAL_MC_ERROR_INFO

Table 11-46. Bus Check Fields (Continued)

Field Bits Description
name
is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an 1A-64 instruction. If this bit is set to one, the instruction that generated the
machine check was IA-32 instruction.
iv 55 The is field in the bus_check parameter is valid.
pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.
pv 58 The pl field of the bus_check parameter is valid.
mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.
tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.
rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.
p 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.
pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Reg_File Check Return Format: Thereg_file check return format isreturned in error_info
when the user requests information on any of the registers as specified in the level _index input
argument. Thereg_file_check return format is a bit-field that is described in Figure 11-32 and
Table 11-47. When thereg_file_check return format is returned, the target address, the requester
identifier and the responder identifier will always be invalid.

Figure 11-32. Reg_File_Check Layout

11-84

31 30 29 28 27 26 2524 23 22 212019 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

mv | reg_num [op | id |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

(oS mecTpv] bl]

IA-64 Processor Abstraction Layer

intel o PAL_MC_ERROR_INFO

Table 11-47. Reg_File_Check Fields

:';I]de Bits Description
id 3.0 Register file identifier:
0 - unknown/unclassified
1 - General register (bankl)
2 - General register (bank 0)
3- Floating-point register
4- Branch register
5- Predicate register
6- Application register
7- Control register
8- Region register
9- Protection key register
10- Data breakpoint register
11 - Instruction breakpoint register
12 - Performance monitor control register
13 - Performance monitor data register
All other values are reserved
op 7:4 Identifies the operation that caused the machine check
0 - unknown
1-read
2 - write
All other values are processor specific
reg_num 14:8 Identifies the register number that was responsible for generating the machine check
rnv 15 Specifies if the reg_num field is valid
I
is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an 1A-64 instruction. If this bit is set to one, the instruction that generated
the machine check was 1A-32 instruction.
iv 55 The is field in the reg_file_check parameter is valid.
pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.
pv 58 The pl field of the reg_file_check parameter is valid.
mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.
lesaved oReD JReeved |
pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.

Uarch_Check Return Format: The uarch_check return format isreturned in error_info when the
user requests information on any of the micro-architectural structures as specified in the
level_index input argument. The uarch_check return format is a bit-field that is described in
Figure 11-33 and Table 11-48.

Figure 11-33. uarch_check layout

3130 29 28 27 26 25 24 23 22 2120 10 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xv]wy| way | op | array_id | level | sid |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
(piTrlralw[meclpv] pl[v]is [l i MESEVEA Bl B ndex |

IA-64 Processor Abstraction Layer 11-85

PAL_MC_ERROR_INFO

Table 11-48. uarch_check fields

:;Li Bits Description

sid 4.0 Structure identification. These bits identify the micro-architectural structure where the
error occurred. The definition of these bits are implementation specific.

level 75 Level of the micro-architectural structure where the error was generated. A value of 0
indicates the first level.

array_id 11:8 Identification of the array in the micro architectural structure where the error was
generated.
0 - unknown/unclassified
All other values are implementation specific

op 15:12 | Type of operation that caused the error
0 - unknown
1 - read or load
2 - write or store
All other values are implementation specific

way 21:16 | Way of the micro-architectural structure where the error was located.

wv 22 The way field in the uarch_check parameter is valid.

XV 23 The index field in the uarch_check parameter is valid.

39:32 Index or set of the micro-architectural structure where the error was located.

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an |A-64 instruction. If this bit is set to one, the instruction that generated
the machine check was |A-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 | Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier
has been logged.

p 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier
has been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.

11-86

IA-64 Processor Abstraction Layer

intel.

PAL_MC_EXPECTED

Set/Reset Expected Machine Check Indicator

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

IA-64 Processor Abstraction Layer

Informs PALE_CHECK whether a machine check is expected so that PALE_CHECK will not
attempt to correct any expected machine checks.

Static Registers Only

Physical

Argument Description

index Index of PAL_MC_EXPECTED within the list of PAL procedures.

expected Unsigned integer with a value of 0 or 1 to set or reset the hardware resource PALE_CHECK
examines for expected machine checks.

Reserved 0

Reserved 0

Return Value Description

status

Return status of the PAL_MC_EXPECTED procedure.

previous Unsigned integer denoting whether a machine check was previously expected.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

If the argument expected contains a value of 1, an implementation-dependent hardware resource is
set toinform PALE_CHECK to expect a machine check. If the argument expected is 0, the resource
isreset, so that PALE_CHECK does not expect any following machine checks. All other values of
expected are reserved.

The implementation-dependent hardware resource should be, by default, in the “not expected”
state. Software or firmware should only call PAL_MC_EXPECTED immediately prior to issuing
an instruction which might generated an expected machine check. It should then immediately reset
the bit to the “ not expected” state after checking the results of the operation.

The previous return parameter indicates the previous state of the hardware resource to inform
PALE_CHECK of an expected machine check. A value of 0 indicates that a machine check was not
expected. A value of 1 indicated that a machine check was expected. All other values of previous
arereserved.

11-87

PAL_MC_REGISTER_MEM

intel.

Register Memory with PAL for Machine Check and Init

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-88

Registers a platform dependent location with PAL to which it can save minimal processor state in
the event of a machine check or initialization event.

Static Registers Only

Physical

Argument Description

index Index of PAL_MC_REGISTER_MEM within the list of PAL procedures.
address Physical address of the buffer to be registered with PAL.
Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_MC_REGISTER_MEM procedure.
Reserved 0

Reserved 0

Reserved 0

Status Value | Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

PAL places the address passed in the XRO register, which is used by PAL as the min-state save area
in the event of a machine check or initialization event. The size and layout of the areareferenced by
the address parameter is defined in Section 11.3.2.3. The address must be aligned on a 512 byte
boundary. The min-state save area must be in uncacheable memory.

IA-64 Processor Abstraction Layer

intel.

PAL_MC_RESUME

Restore Minimal Architected State and Return

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

IA-64 Processor Abstraction Layer

Restores the minimal architectural processor state, setsthe CMC interrupt if necessary, and
resumes execution.

Static Registers Only

Physical

Argument Description

index Index of PAL_MC_RESUME within the list of PAL procedures.

set_cmci Unsigned 64 bit integer denoting whether to set the CMC interrupt. A value of 0 indicates not
to set the interrupt, a value of 1 indicated to set the interrupt, and all other values are
reserved.

save_ptr Physical address of min-state save area used to used to restore processor state.

new_context

Unsigned 64-bit integer denoting whether the caller is returning to a new context. A value of
0 indicates the caller is returning to the interrupted context, a value of 1 indicates that the
caller is returning to a new context.

Return Value Description

status Return status of the PAL_MC_RESUME procedure?.
Reserved 0

Reserved 0

Reserved 0

a. This procedure returns to the caller only in an error situation.

Status Value | Description
-2 Invalid argument
-3 Call completed with error

This procedure will restore the processor minimal architected state and optionally set the CMC
interrupt.

If the set_cmci argument is set to one, this procedure will set the CMC interrupt and return to the
interrupted context. The CMC interrupt handler will be invoked sometime after returning to the
interrupted context.

The save_ptr argument specifies the processor min-state save area buffer from which the processor
state will be restored. This pointer has the same alignment and size restrictions as the address
passed to PAL_MC_REGISTER_MEM procedure on page 11-88.

This procedure is used to resume execution of the interrupted context for both machine check and
initialization events. This procedure can resume execution to the same context or a new context. If
software attempts to resume execution for these events without using this call, processor behavior
is undefined.

If the caller is resuming to the same context, the new_context argument must be set to 0 and the
save ptr argument has to point to a copy of the min-state save areawritten by PAL when the event
occurred.

If the caller is resuming to a new context, the new_context argument must be set to 1 and the
save_ptr argument must point to a new min-state save area set up by the caller.

Please see Section 11.3.3 on page 11-20 3for more information on resuming to the interrupted
context.

11-89

PAL_MEM_ATTRIB

Get Memory Attributes

Purpose: Returns the memory attributes implemented by processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtua
Arguments: Argument Description
index Index of PAL_MEM_ATTRIB within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_MEM_ATTRIB procedure.
attrib 8-bit vector of memory attributes implemented by processor.
Reserved 0
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: Returns a 8-bit vector in the low order 8 bits of the return register that specifies the set of memory
attributes implemented by the processor. The return register is formatted as follows:

Figure 11-34. Layout of attrib Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ma ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Each bit in the bit field ma represents one of the eight possible memory attributes implemented by
the processor. The bit field position corresponds to the numeric memory attribute encoding defined
in Section 4.4 "Memory Attributes”.

11-90

IA-64 Processor Abstraction Layer

i ntel o PAL_MEM_FOR TEST

Memory Needed for Processor Self-Test

Purpose: Returns the amount of memory required for the second phase of processor self-test and the required
alignment of that memory.

Calling Conv: Static Registers Only

Mode: Physical
Arguments: Argument Description
index Index of PAL_MEM_FOR_TEST within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_MEM_FOR_TEST procedure.

bytes_needed Unsigned 64-bit integer denoting the number of bytes of main memory needed to perform
the second phase of processor self-test.

alignment Unsigned 64-bit integer denoting the alignment required for the memory buffer.
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: Returns a 64-bit integer which is the number of bytes of main memory required for
PAL_TEST_PROC to execute the second phase of processor self-test. The amount of memory
reguired is dependent on the size and implementation of the processor’s cache.

IA-64 Processor Abstraction Layer 11-91

PAL_PERF_MON_INFO

intel.

Get Processor Performance Monitor Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns Performance Monitor information about what can be counted and how to configure the
monitors to count the desired events.

Static Registers Only

Physical and Virtual

Argument Description

index Index of PAL_PERF_MON_INFO within the list of PAL procedures.
pm_buffer An address to an 8-byte aligned 128-byte memory buffer.
Reserved 0

Reserved 0

Return Value Description

status
pm_info
Reserved
Reserved

Status Value

Return status of the PAL_PERF_MON_INFO procedure.
Information about the performance monitors implemented.
0

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

PAL_PERF MON_INFO is called to determine the number of performance monitors and the
events which can be counted on the performance monitors. For more information on performance
monitoring, see Section 7.2 "Performance Monitoring". pm_info is aformatted 64-bit return
register, as shown in Figure 11-35.

Figure 11-35. Layout of PM_info Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

retired

‘ cycles ‘ width ‘ generic ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Table 11-49. PM_info Fields

Field name Description
generic Unsigned 8-bit number defining the number of generic PMC/PMD pairs.
width Unsigned 8-bit number in the range 0:60 defining the number of implemented counter bits.
cycles Unsigned 8-bit number defining the event type for counting processor cycles.
retired Unsigned 8-bit number defining the event type for retired instruction bundles.

The pm_buffer argument points to a 128-byte memory area where mask information is returned.
The layout of pm_buffer is shown in Table 11-50.

Table 11-50. PM_buffer Layout

11-92

Offset

Description

0x0

0x20
0x40
0x60

256-bit mask defining which PMC registers are implemented.
256-bit mask defining which PMD registers are implemented.
256-bit mask defining which registers can count cycles.

256-bit mask defining which registers can count retired bundles.

IA-64 Processor Abstraction Layer

intel.

PAL_PLATFORM_ADDR

Set Processor Interrupt Block Address and I/O Port Space Address

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

IA-64 Processor Abstraction Layer

Specifies the physical address of the processor Interrupt Block and 1/0 Port Space.

Static Registers Only

Physical or Virtual

Argument Description
index Index of PAL_PLATFORM_ADDR within the list of PAL procedures.
type Unsigned 64-bit integer specifying the type of block. 0 indicates that the processor interrupt
block pointer should be initialized. 1 indicates that the processor I/O block pointer should be
initialized.
address Unsigned 64-bit integer specifying the address to which the processor 1/0 block or interrupt
block shall be set. The address must specify an implemented physical address on the
processor model, bit 63 is ignored.
Reserved 0
Return Value Description
status Return status of the PAL_PLATFORM_ADDR procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

PAL_PLATFORM_ADDR specifies the physical address that the processor shall interpret as
accesses to the SAPIC memory or the I/O Port space areas.

The default value for the Interrupt block pointer is 0x00000000 FEEOQO0OO. If an alternate address
is selected by this call, it must be aligned on a2 MB boundary, else the procedure will return an
error status. The address specified must also not overlay any firmware addressesin the 16 MB
region immediately below the 4GB physical address boundary.

The default value for the 1/0 block pointer isto the beginning of the 64 MB block at the highest
physical address supported by the processor. Therefore, its physical addressis

implementation-dependent. If an alternate address is selected by this call, it must be aligned on a
64MB boundary, el se the procedure will return an error status. The address specified must also not
overlay any firmware addressesin the 16 MB region immediately below the 4GB physical address
boundary.

The Interrupt and I/O Block pointers should be initialized by firmware before any Inter-Processor
Interrupt messages or 1/0O Port accesses. Otherwise the default block pointer values will be used.

11-93

PAL_PMI_ENTRYPOINT

Set up SAL PMI Entrypoints in Memory

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-94

Setsthe SAL PMI entrypoint in memory.

Static Registers Only

Physical
Argument Description
index Index of PAL_PMI_ENTRYPOINT within the list of PAL procedures.
SAL_PMI_entry 256-byte aligned physical address of SAL PMI entrypoint in memory.
Reserved 0
Reserved 0
Return Value Description

status

Reserved
Reserved
Reserved

Status Value

Return status of the PAL_PMI_ENTRYPOINT procedure.
0
0
0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

Thisprocedureis called to set the SAL PMI entrypoint so that the SAL PMI code shall be executed
out of main memory instead of the firmware address space. Some processor implementations will

allow initialization of the PMI entrypoint only once. Under those situations, this procedure may be
called only once after aboot to initialize the PMI entrypoint register. Subsequent calls will return a
status of -3. This call must be made before PMI is enabled by SAL.

IA-64 Processor Abstraction Layer

intel.

PAL_PREFETCH_VISIBILITY

Make Processor Prefetches Visible

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Used in the architected sequence in Section 4.4.6.1, “Disabling Prefetch and Removing

Cacheability” to transition a page (or set of pages) from a cacheable, speculative attribute to an
uncacheabl e attribute.

Static Registers Only

Physical and Virtual

Argument Description

index Index of PAL_PREFETCH_VISIBILITY within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_PREFETCH_VISIBILITY procedure.

Reserved 0

Reserved 0

Reserved 0

Status Value | Description

1 Call completed without error; this call is not necessary on remote processors

0 Call completed without error; this call must also be performed on all remote processors in the
coherence domain

-2 Invalid argument

-3 Call completed with error

This cal isintended to be used only in the architected sequence in Section 4.4.6.1, “Disabling
Prefetch and Removing Cacheability”. Use of this procedure outside the context of this sequence
resultsin undefined behavior.

After asuccessful return from this procedure in the aforementioned architected sequence, all
prefetches that were initiated by the processor to the cacheable, speculative translation prior to the
call will either not be cached; have been aborted; or are visible to subsequent fc instructions. (from
both the local processor and from remote processors)

If the processor implementation does not require this call on remote processors in this sequence,
this procedure will return a 1 upon successful completion.

A return value of 0 upon successful completion of this procedure is an indication to software that
the processor implementation requiresthat this call be performed on all processorsin the coherence
domain to make prefetches visible in this sequence.

These return code can be used to tune the architected sequence to the particular system on whichis
running; see Section 4.4.6.1, “Disabling Prefetch and Removing Cacheability” for details.

IA-64 Processor Abstraction Layer 11-95

PAL_PROC_GET_FEATURES | n‘tel o

Get Processor Dependent Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Provides information about configurable processor features.

Static Registers Only
Physical
Argument Description
index Index of PAL_PROC_GET_FEATURES within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_PROC_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-51.
feature_status 64-hit vector of current feature settings. See Table 11-51.
feature_control 64-bit vector of features controllable by software.
Status Value Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Table 11-51 defines the set of possible processor feature and their bit position in the return vector.
Different processors will implement similar featuresin different ways. For example, data error
detection may be implemented by ECC or parity. In other cases, certain features may be tied
together. In this case, enabling any one feature in a group will enable all featuresin the group, and
similarly, disabling any one feature in agroup will disable all features. Caller algorithms should be
written to obtain desired resultsin these instances. Only those configuration features for which a 1
isreturned in feature_control can be changed viaPAL_PROC SET FEATURES.

For all valuesin Table 11-51, the Class field indicates whether afeature is required to be available
(Req.) or isoptional (Opt.). The Control field indicates which features are required to be
controllable. Reg. indicates that the feature must be made controllable, Opt. indicates that the
feature may optionally be made controllable, and No indicated that the feature cannot be made
controllable. The control field applies only when the feature is available. The sense of the bitsis
chosen so that for features which are controllable, the default hand-off value at exit from

PALE _RESET should be 0. PALE_CHECK and PALE_INIT should not modify these features.

Table 11-51. Processor Features

11-96

Bit | Class | Control Description

63 | Opt. Req. Enable BERR promotion. When 1, the Bus Error (BERR) signal is promoted to the
Bus Initialization (BINIT) signal, and the BINIT pin is asserted on the occurrence of
each Bus Error. Setting this bit has no effect if BINIT signalling is disabled. (See
PAL_BUS_GET/SET_FEATURES)

62 | Opt. Req. Enable MCA promotion. When 1, machine check aborts (MCAs) are promoted to the
Bus Error signal, and the BERR pin is assert on each occurrence of an MCA. Setting
this bit has no effect if BERR signalling is disabled. (See
PAL_BUS_GET/SET_FEATURES)

61 | Opt. Req. Enable MCA to BINIT promotion. When 1, machine check aborts (MCAs) are
promoted to the Bus Initialization signal, and the BINIT pin is assert on each
occurrence of an MCA. Setting this bit has no effect if BINIT signalling is disabled.
(See PAL_BUS_GET/SET_FEATURES)

IA-64 Processor Abstraction Layer

intel.

PAL_PROC_GET_FEATURES

Table 11-51. Processor Features (Continued)

Bit

Class

Control

Description

60

Opt.

Req.

Enable CMCI promotion When 1, Corrected Machine Check Interrupts (CMCI) are
promoted to MCAs. They are also further promoted to BERR if bit 39, Enable MCA
promation, is also set and they are promoted to BINIT if bit 38, Enable MCA to BINIT
promotion, is also set. This bit has no effect if MCA signalling is disabled (see
PAL_BUS_GET/SET_FEATURES)

59

Opt.

Req.

Disable Cache. When 0, the processor performs cast outs on cacheable pages and
issues and responds to coherency requests normally. When 1, the processor
performs a memory access for each reference regardless of cache contents and
issues no coherence requests and responds as if the line were not present. Cache
contents cannot be relied upon when the cache is disabled.

WARNING: Semaphore instructions may not be atomic or may cause Unsupported
Data Reference faults if caches are disabled.

58

Opt.

Req.

Disable Coherency. When 0, the processor uses normal coherency requests and
responses. When 1, the processor answers all requests as if the line were not
present.

57

Opt.

Req.

Disable Dynamic Power Management (DPM). When 0, the hardware may reduce
power consumption by removing the clock input from idle functional units. When 1,
all functional units will receive clock input, even when idle.

56

Opt.

Req.

Disable a BINIT on internal processor time-out. When 0, the processor may generate
a BINIT on an internal processor time-out. When 1, the processor will not generate a
BINIT on an internal processor time-out. The event is silently ignored.

55-
48

N/A

N/A

reserved

47

Opt.

Opt.

Disable Dynamic branch prediction. When 0, the processor may predict branch
targets and speculatively execute, but may not commit results. When 1, the
processor must wait until branch targets are known to execute.

46

Opt

Opt.

Disable Dynamic Instruction Cache Prefetch. When 0, the processor may prefetch
into the caches any instruction which has not been executed, but whose execution is
likely. When 1, instructions may not be fetched until needed or hinted for execution.
(Prefetch for a hinted branch is allowed even when dynamic instruction cache
prefetch is disabled.)

45

Opt.

Opt.

Disable Dynamic Data Cache Prefetch. When 0, the processor may prefetch into the
caches any data which has not been accessed by instruction execution, but which is
likely to be accessed. When 1, no data may be fetched until it is needed for
instruction execution or is fetched by an Ifetch instruction.

44

N/A

N/A

reserved

43

Opt.

Opt.

Disable Dynamic Predicate Prediction. When 0, the processor may predict predicate
results and execute speculatively, but may not commit results until the actual
predicates are known. When 1, the processor shall not execute predicated
instructions until the actual predicates are known.

42

Opt.

No

XR1 through XR3 implemented. Denotes whether XR1 - XR3 are implemented for
machine check recovery. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

41

Opt.

No

XIP, XPSR, and XFS implemented. Denotes whether XIP, XPSR, and XFS are
implemented for machine check recovery. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

40-

N/A

N/A

reserved

IA-64 Processor Abstraction Layer

11-97

PAL_PROC_SET_FEATURES

Set Processor Dependent Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-98

Enabl es/disables specific processor features.

Static Registers Only

Physical

Argument Description

index Index of PAL_PROC_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
Reserved 0

Reserved 0

Return Value Description

status

Reserved
Reserved
Reserved

Status Value

Return status of the PAL_PROC_SET_FEATURES procedure.
0
0
0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

PAL_PROC_GET_FEATURES should be called to ascertain the implemented processor features
and their current setting before calling PAL_PROC_SET FEATURES. Thelist of possible
processor featuresis defined in Table 11-51. Any attempt to set processor features which cannot be
set will beignored.

IA-64 Processor Abstraction Layer

intel.

PAL_PTCE_INFO

Get PTCE Purge Loop Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns information required for the architected |oop used to purge (initialize) the entire TC.

Static Registers Only

Physical and Virtual

Argument Description

index Index of PAL_PTCE_INFO within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
tc_base

tc_counts

tc_strides

Status Value

Return status of the PAL_PTCE_INFO procedure.

Unsigned 64-bit integer denoting the beginning address to be used by the first PTCE
instruction in the purge loop.

Two unsigned 32-bit integers denoting the loop counts of the outer (loop 1) and inner (loop 2)
purge loops. countl (loop 1) is contained in bits 63:32 of the parameter, and count2 (loop 2)
is contained in bits 31:0 of the parameter.

Two unsigned 32-bit integers denoting the loop strides of the outer (loop 1) and inner (loop 2)
purge loops. stridel (loop 1) is contained in bits 63:32 of the parameter, and stride2 (loop 2)
is contained in bits 31:0 of the parameter.

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

No explicit hardware support is required by this call. See the purge loop example in the description
of the pt c. e instruction in Chapter 2, “IA-64 Instruction Reference” in Volume 3.

IA-64 Processor Abstraction Layer 11-99

PAL_REGISTER_INFO

Return Information about Implemented Processor Registers

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Returns information about implemented Application and Control Registers.

Static Registers Only

Physical or Virtua

Argument Description

index Index of PAL_REGISTER_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer denoting what register information is requested.
Reserved 0

Reserved 0

Return Value Description

status
reg_info_1
reg_info_2
Reserved

Status Value

Return status of the PAL_REGISTER_INFO procedure.

64-bit vector denoting information for registers 0-63. Bit O is register 0, bit 63 is register 63.
64-bit vector denoting information for registers 64-127. Bit O is register 64, bit 63 is register
127.

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

This procedure is called to obtain information about the implementation of Application Registers
and Control Registers. Table 11-52 shows the information that is returned for each request.

Table 11-52. info_request Return Value

11-100

info_request

Meaning of Return Bit Vector

0

A 0-bit in the return vector indicates that the corresponding Application Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Application
Register is implemented.

A 0-bit in the return vector indicated that the corresponding Application Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Application
registers may cause side effects when read.

A 0-bit in the return vector indicates that the corresponding Control Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Control Register is
implemented.

A 0-bit in the return vector indicated that the corresponding Control Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Control
Register may cause side effects when read.

All others

Reserved.

IA-64 Processor Abstraction Layer

intel.

Get RSE Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

PAL_RSE_INFO

Returns information about the register stack and RSE for this processor implementation.
Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_RSE_INFO within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
phys_stacked
hints
Reserved

Status Value

Return status of the PAL_RSE_INFO procedure.
Number of physical stacked general registers.

RSE hints supported by processor.
0

Description

0 Call completed without error
-2 Invalid argument
-3 Call completed with error

The return parameter phys _stacked contains a 64-bit unsigned integer that specifies the number of
physical registers implemented by the processor for the stacked general registers, r32-r127.

phys_stacked will be an integer multiple of 16 greater than or equal to 96.

The return parameter hints contains a 2-bit field that specifies which RSE load/store hints are

implemented.

Figure 11-36. Layout of hints Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[i]si]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Table 11-53. RSE Hints Implemented

A bit field value of 1 specifies that the corresponding mode isimplemented; a value of 0 specifies
that the mode is not implemented. The bit field encodings are:

li si RSE Hints Class
0 0 enforced lazy Required
0 1 eager stores Optional
1 0 eager loads Optional
1 1 eager stores and loads Optional

IA-64 Processor Abstraction Layer

“Lazy” isthe default RSE mode and must be implemented. Hardware is not required to implement
any of the other modes.

11-101

PAL_TEST_PROC

Perform a Processor Self-test

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

11-102

Performs the second phase of processor self-test.
Stacked Registers

PAL_TEST_PROC may modify some registers marked unchanged in the Stacked Register calling
convention. See additional description below.

Physical
Argument Description
index Index of PAL_TEST_PROC within the list of PAL procedures.

test_address

test_size
attributes

Return Value

64-bit physical address of main memory area to be used by processor self-test. The memory
region passed must be cacheable, bit 63 must be zero.

Number of bytes of main memory to be used by processor self-test.

A 16-bit mask of memory attributes to be tested.

Description

status
self-test_state

Reserved
Reserved

Status Value

Return status of the PAL_TEST_PROC procedure.

Formatted 8-byte value denoting the state of the processor after self-test. The format is
described in Section 11.2.2.2.

0

0

Description

0
-2

Call completed without error
Invalid argument

-3 Call completed with error

The PAL_TEST_PROC procedure will perform additional testing of the processor that could not be
completed during PAL_RESET. This procedure will focus on testing features of the processor that
require external processor memory to be thoroughly tested.

test_address points to a contiguous memory region to be used by PAL_TEST_PROC. Thismemory
region should be aligned as specified by the alignment return value from PAL_ MEM_FOR_TEST.
test_size denotes the size of the region passed. test_size must be greater than or equal in size to the
bytes needed return value of the PAL_MEM_FOR_TEST call. The PAL_TEST_PROC routine can
assume that the memory has been initialized and that there are no known uncorrected errorsin the
allocated memory.

The attributes parameter specifies the memory attributes that are allowed to be used with the
memory buffer passed to this procedure. The attributes parameter is a vector where each bit
represents one of the virtual memory attributes defined by the architecture The bit field position
corresponds to the numeric memory attribute encoding defined in “Memory Attributes’. The caller
isrequired to support the cacheabl e attribute for the memory buffer, otherwise an invalid argument
will be returned.

The procedure will only perform memory accesses to the buffer passed to it using the memory
attributes indicated in the attributes parameter. The caller must ensure that the memory region
passed to the procedure isin a coherent state.

PAL_TEST_PROC completesitstest in one of four states; CATASTROPHIC FAILURE,
FUNCTIONALLY RESTRICTED, PERFORMANCE RESTRICTED, or HEALTHY. These
processor self-test states are described in Figure 11-8 on page 11-11. If PAL_TEST_PROC returns
inthe FUNCTIONALLY RESTRICTED or PERFORMANCE RESTRICTED states the
self-test_status return value can provide additional information regarding the nature of the failure.
In the case of a CATASTROPHIC FAILURE, the procedure does not return.

IA-64 Processor Abstraction Layer

i n‘tel o PAL_TEST PROC

PAL_TEST_PROC may modify PSR bits or system registers as necessary to test the processor.
These bits or registers must be restored upon exit from PAL_TEST_PROC with the exception of
the trandation caches, which are evicted as aresult of testing. PAL_TEST_PROC isfreeto
invalidate all cache contents. If the caller depends on the contents of the cache, they should be
flushed before making thiscall. PAL_TEST _PROC assumes that the RSE is set up properly to
handle spills and fills to avalid memory location if the contents of the register stack are needed.
PAL_TEST_PROC assumes that the memory buffer passed to it is not shared with other processors
running in the system. PAL_TEST_PROC will use this memory region in a non-coherent manner.

IA-64 Processor Abstraction Layer 11-103

PAL_VERSION

Get PAL Version Number Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns PAL version information.

Static registers only

Physical or Virtua

Argument Description

index Index of PAL_VERSION within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
min_pal_ver

current_pal_ver

Reserved

Status Value

Return status of the PAL_VERSION procedure.

8-byte formatted value returning the minimum PAL version needed for proper operation of
the processor. See Figure 11-37.

8-byte formatted value returning the current PAL version running on the processor. See
Figure 11-37.

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

PAL_VERSION provides the caller the minimum PAL version needed for proper operation of the
processor as well as the current PAL version running on the processor.

Themin_pal_ver and current_pal_ver return values are 8-byte valuesin the following format:

Figure 11-37. Layout of min_pal_ver and current_pal_ver Return Values
31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11-104

PAL_vendor

PAL_B_version ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PAL_A_version ‘

« PAL B versionisa 16-bit unsigned number that provides identification information about the
PAL_B firmware.

* PAL_vendor isan unsigned 8-bit number indicating the vendor of the PAL code.

» PAL_A versionisa 16-bit unsigned number that provides identification information about the
PAL_A firmware.

The version numbers selected for the PAL_A and PAL_B firmware is specific to the PAL_vendor.

IA-64 Processor Abstraction Layer

intel.

PAL_VM_INFO

Get Virtual Memory Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Return information about the virtual memory characteristics of the processor implementation.
Static Registers Only

Physical and Virtual

Argument Description
index Index of PAL_VM_INFO within the list of PAL procedures.
tc_level Unsigned 64-bit integer specifying the level in the TLB hierarchy for which information is

required. This value must be between 0 and one less than the value returned in the
vm_info_1.num_tc_levels return value from PAL_VM_SUMMARY.

tc_type Unsigned 64-bit integer with a value of 1 for instruction translation cache and 2 for data or
unified translation cache. All other values are reserved.

Reserved 0

Return Value Description

status Return status of the PAL_VM_INFO procedure.

tc_info 8-byte formatted value returning information about the specified TC.

tc_pages 64-bit vector containing a bit for each page size supported in the specified TC, where bit
position n indicates a page size of 2**n.

Reserved 0

Status Value | Description

0 Call completed without error.
-2 Invalid argument.
-3 Call completed with error.

Thetc_info returnis an 8-byte quantity in the following format:

Figure 11-38. Layout of tc_info Return Value

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
‘ num_entries ‘ num_ways ‘ num_sets ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

e num_sets - unsigned 8-bit integer denoting the number of hash sets for the specified level
(1=fully associative)

e num_ways - unsigned 8-bit integer denoting the associativity of the specified level (1=direct).

e num_entries - unsigned 16-bit integer denoting the number of entriesin the specified TC.

« pf - flag denoting whether the specified level is optimized for the region’s preferred page size
(1=optimized). tc_pages indicates which page sizes are usable by this translation cache.

« ut - flag denoting whether the specified TC is unified (1=unified).

« tr - flag denoting whether installed translation registers will reduce the number of entries
within the specified TC.

The num_entrieswill always equal num_ways* num_sets. For adirect mapped TC, num ways=1
and num_sets = num_entries. For afully associative TC, num_sets = 1 and hum_ways =
num_entries.

IA-64 Processor Abstraction Layer 11-105

PAL_VM_PAGE_SIZE

Get Virtual Memory Page Size Information

Purpose: Returns page size information about the virtual memory characteristics of the processor

implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_VM_PAGE_SIZE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_VM_PAGE_SIZE procedure.

insertable_pages

purge_pages

64-bit vector containing a bit for each architected page size that is supported for TLB
insertions and region registers.
64-bit vector containing a bit for each architected page size supported for TLB purge

operations.
Reserved 0
Status: Status Value Description
0 Call completed without error.
-2 Invalid argument
-3 Call completed with error.

Description: The values returned from this call are all 64-bit bitmaps. One bit is set for each page size
implemented by the processor where bit n represents a page size of 2**n. Please refer to Table 4-4
on page 4-10 for the minimum page sizes that are supported.

Theinsertable pages returns the page sizes that are supported for TLB insertions and region

registers.

The purge_pages returns the page sizes that are supported for the TLB purge operations.

11-106

IA-64 Processor Abstraction Layer

i ntel o PAL_VM_SUMMARY

Get Virtual Memory Summary Information

Purpose: Returns summary information about the virtual memory characteristics of the processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_VM_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_VM_SUMMARY procedure.
vm_info_1 8-byte formatted value returning global virtual memory information.
vm_info_2 8-byte formatted value returning global virtual memory information.
Reserved 0
Status: Status Value | Description
0 Call completed without error.
-2 Invalid argument
-3 Call completed with error.

Description: Thevm _info_1 return is an 8-byte quantity in the following format:

Figure 11-39. Layout of vm_info_1 Return Value
31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
‘ hash_tag_id ‘ max_pkr ‘ key_size ‘ phys_add_size ‘vw‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ num_tc_levels ‘ num_unique_tcs ‘ max_itr_entry ‘ max_dtr_entry ‘

« ww - 1-bit flag indicating whether ahardware TLB walker isimplemented (1 = walker present).

e phys add_size - unsigned 7-bit integer denoting the number of bits of physical address
implemented.

 key size- unsigned 8-bit integer denoting the number of bits implemented in the PKR.key
field.

« max_pkr - unsigned 8-hit integer denoting the maximum PKR index (number of PKRs-1).

 hash_tag_id - unsigned 8-bit integer which uniquely identifies the processor hash and tag
algorithm.

e max_dtr_entry - unsigned 8 bit integer denoting the maximum data translation register index
(number of dtr entries - 1).

* max_itr_entry - unsigned 8 bit integer denoting the maximum instruction translation register
index (number of itr entries - 1).

e num_unique_tcs - unsigned 8-bit integer denoting the number of unique TCs implemented.
Thisisamaximum of 2*num tc levels.

» num_tc_levels - unsigned 8-bit integer denoting the number of TC levels.

IA-64 Processor Abstraction Layer 11-107

PAL_VM_SUMMARY i ntel ®

The vm _info_2 return is an 8-byte quantity in the following format:

Figure 11-40. Layout of vm_info_2 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
rid_size ‘ impl_va_msb ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* impl_va_msb - unsigned 8-bit integer denoting the bit number of the most significant virtua
address bit. Thisis the total number of virtual address bits - 1.

* rid_size - unsigned 8-bit integer denoting the number of bitsimplemented in the RR.rid field.

11-108 IA-64 Processor Abstraction Layer

intel.

PAL_VM_TR_READ

Read a Translation Register

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Reads a trandlation register.

Stacked Registers

Physical

Argument Description

index Index of PAL_VM_TR_READ within the list of PAL procedures.

reg_num Unsigned 64-bit number denoting which TR to read.

tr_type Unsigned 64-bit number denoting whether to read an ITR (0) or DTR (1). All other values are
reserved.

tr_buffer 64-bit pointer to the 32-byte memory buffer in which translation data is returned.

Return Value

Description

status Return status of the PAL_VM_TR_READ procedure.
TR_valid Formatted bit vector denoting which fields are valid. See Figure 11-41.
Reserved 0
Reserved 0
Status Value | Description

0 Call completed without error.
-2 Invalid argument
-3 Call completed with error.

This procedure reads the specified trangl ation register and returns its data in the buffer starting at
tr_buffer. The format of the datais returned in Translation Insertion Format, as described in
Figure 4-4 “ Translation Insertion Format” on page 4-7. In addition, bit O of the IFA in Figure 4-4
(an ignored field in the figure) will return whether the trandation isvalid. If bit 0is 1, the
translation is valid.

The information returned for the TR may have someinvalid fields. The validity of the fields
returned is signalled by the TR valid return value.

Figure 11-41. Layout of TR_valid Return Value

IA-64 Processor Abstraction Layer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* av - denotes that the accessrightsfield isvalid

e pv - denotes that the privilege level field isvalid
* dv - denotes that the dirty bit isvalid

« mv - denotes that the memory attributes are valid.

A value of 1 denotesavalid field. A value of O denotes an invalid field. Any value returned in an
invalid field must be ignored.

The tr_buffer parameter should be aligned on an 8 byte boundary.

Warning: This procedure may have the side effect of flushing all the translation cache entries
depending on the implementation.

11-109

PAL_VM_TR_READ

11-110

IA-64 Processor Abstraction Layer

intgl.

Part Il: 1A-64 System
Programmer’s Guide

intel.

About the IA-64 System Programmer’s
Guide 12

Part 11: 1A-64 System Programmer’s Guide is intended as a companion section to the information
presented in Part |: |A-64 System Architecture Guide. While Part | provides a crisp and concise
architectural definition of the |A-64 instruction set, Part 11 providesinsight into programming and
usage models of the | A-64 system architecture feature set. This section emphasizes how the various
architecture features fit together and explains how they contribute to high performance system
software.

Theintended audience for this section is |A-64 system programmers who would like to better
understand the 1A-64 system architecture. The goal of this document isto:

 Familiarize system programmers with 1A-64 system architecture principles and usage models.
* Provide recommendations, |A-64 code examples, and performance guidelines.

This section does not re-define the 1A-64 instruction set. Please refer to Part |: 1A-64 System
Architecture Guide as the authoritative definition of the system architecture.

The reader is expected to be familiar with the contents of Part | and is expected to be familiar with
modern virtual memory and multi-processing concepts. Furthermore, this document is platform
architecture neutral (i.e. no assumptions are made about platform architecture capabilities, such as
busses, chipsets, or 1/0 devices).

12.1 Overview of the IA-64 System Programmer’s Guide

| A-64 provides numerous performance enhancing features of interest to the system programmer.
Many of these instruction set features focus on reducing overhead in common situations. The
chapters outlined below discuss different aspects of the | A-64 system architecture.

Chapter 13, “MP Coherence and Synchronization” describes | A-64 multi-processing
synchronization primitives and the | A-64 memory ordering model. This chapter also discusses
programming rules for self- and cross-modifying 1A-64 code. This chapter is useful for application
and system programmers who write multi-threaded code.

Chapter 14, “Interruptions and Serialization” discusses how 1A-64, despiteits explicitly parallel
instruction execution semantics, provides the system programmer with a precise interruption
model. This chapter describes how the processor serializes execution around interruptions and what
state is preserved and made available to low-level system code when interruptions are taken. This
chapter introduces the | A-64 interrupt vector table and describes how low-level kernel codeis
expected to transfer control to higher level operating system code written in a high-level
programming language. This chapter is useful for |A-64 operating system and firmware
programmers.

About the |IA-64 System Programmer’s Guide 12-1

12-2

intel.

Chapter 15, “Context Management” describes how operating systems need to preserve |1A-64
register contents. In addition to spilling and filling aregister’s data value, |A-64 also requires
software to preserve control and data specul ative state associated with that register, i.e. its NaT bit
and ALAT state. This chapter also discusses |A-64 system architecture mechanisms that allow an
operating system to significantly reduce the number of registers that need to be spilled/filled on
interruptions, system calls, and context switches. These optimizations improve the performance of
an | A-64 operating system by reducing the amount of required memory traffic. This chapter is
useful for | A-64 operating system programmers.

Chapter 16, “Memory Management” introduces various | A-64 memory management strategies.
The | A-64 region register model, protection keys, and the virtual hash page table usage models are
described. This chapter is of interest to 1A-64 virtual memory management software devel opers.

Chapter 17, “Runtime Support for Control and Data Speculation” describes the operating system
support that isrequired for control and data speculation. This chapter describes various speculation
software models and their associated operating system implications. This chapter is of interest to

| A-64 operating system developers and | A-64 compiler writers.

Chapter 18, “Instruction Emulation and Other Fault Handlers’ describes avariety of instruction
emulation handlers that | A-64 operating system are expected to support. This chapter is useful for
| A-64 operating system developers.

Chapter 19, “Floating-point System Software” discusses how | A-64 processors handle
floating-point numeric exceptions and how the 1A-64 software stack provides complete IEEE-754
compliance. Thisincludes a discussion of the floating-point software assist firmware, the FP SWA
EFI driver. This chapter also describes how 1A-64 operating systems are expected to support |EEE
floating-point exception filters. This chapter is useful for 1A-64 operating system devel opers and
floating-point numerics experts.

Chapter 20, “1A-32 Application Support” outlines how software needs to perform instruction set
transitions between | A-64 and | A-32, and what low-level kernel handlers are required in an 1A-64
operating system to support |A-32 applications. This chapter is useful for | A-64 operating system
developers.

Chapter 21, “External Interrupt Architecture” describes the 1A-64 external interrupt architecture
with afocus on how external asynchronous interrupt handling can be controlled by software. Basic
interrupt prioritization, masking, and harvesting capabilities are discussed in this chapter. This
chapter is of interest to operating system developers and to device driver writers.

Chapter 22, “1/0O Architecture” describes the |A-64 1/0O architecture with afocus on platform
considerations and support for the existing 1A-32 1/O port space platform infrastructure. This
chapter is of interest to operating system developers and to device driver writers.

Chapter 23, “Performance Monitoring Support” describes the |1A-64 performance monitor
architecture with afocus on what kind of operating system support is needed from |1A-64 operating
systems. This chapter is of interest to operating system and performance tool developers.

Chapter 24, “Firmware Overview” introducesthe 1A-64 firmware model and how variousfirmware
layers (PAL, SAL, EFI) work together to enable processor and system initialization and operating
system boot. This chapter also discusses how firmware layers and the operating system work
together to provide error detection, error logging, as well as fault containment capabilities. This
chapter is of interest to platform firmware and operating system devel opers.

About the |IA-64 System Programmer’s Guide

intel.

12.2 Related Documents
The following documents are referred to fairly often in this document. For more detail s on software
conventions and platform firmware, please consult these manuals.

[SWC] “l1A-64 Software Conventions and Runtime Architecture Guide’
http://devel oper.intel .com/design/iab4

[EFI] “Extensible Firmware Interface (EFI) Specification”
http://devel oper.intel .com/technol ogy/efi

About the |IA-64 System Programmer’s Guide 12-3

12-4

About the |IA-64 System Programmer’s Guide

intel.

MP Coherence and Synchronization 13

13.1

13.1.1

This chapter describes how to enforce an ordering of memory operations, how to update code
images, and presents examples of several simple multiprocessor synchronization primitives on an
| A-64 processor. These topics are relevant to anyone who writes either user- or system-level
software for multiprocessor systems based on the | A-64 processor.

The chapter begins with a brief overview of |A-64 memory access instructionsintended to
summarize the behaviors that are relevant to later discussionsin the chapter. Next, this chapter
presents the |A-64 memory ordering model and compares it to a sequentially-consistent ordering
model. It then explores versions of several common synchronization primitives for an 1A-64
processor. This chapter closes by describing how to correctly update code images on an 1A-64
processor to implement self-modifying code, cross-modifying code, and paging of code using
programmed 1/O.

An Overview of IA-64 Memory Access Instructions

The | A-64 architecture provides load, store, and semaphore instructions to access memory. In
addition, it also provides a memory fence instruction to enforce further ordering relationships
between memory accesses. As Section 4.4.7, “Memory Access Ordering” in Volume 1 describes,
memory operationsin 1A-64 come with one of four semantics: unordered, acquire, release, or
fence. Section 13.2 on page 13-4 describes how the memory ordering model uses these semantics
to indicate how memory operations can be ordered with respect to each other.

Section 13.1.1 defines the four memory operation semantics. Section 13.2, Section 13.3, and
Section 13.4 present brief outlines of load and store, semaphore, and memory fence instructionsin
the | A-64 architecture. Refer to Section 2, “1A-64 Instruction Reference” in Volume 3 for more
information on the behavior and capabilities of these instructions.

Memory Ordering of Cacheable Memory References

The | A-64 architecture has a relaxed memory ordering model which provides unordered memory
opcodes, explicitly ordered memory opcodes, and a fencing operation that software can use to
implement stronger ordering. Each memory operation establishes an ordering relationship with
other operations through one of four semantics:

¢ Unordered semantics imply that the instruction is made visible in any order with respect to
other orderable instructions.

» Acquire semantics imply that the instruction is made visible prior to al subsequent orderable
instructions.

¢ Release semantics imply that the instruction is made visible after al prior orderable
instructions.

* Fence semantics combine acquire and release semantics (i.e. the instruction is made visible
after al prior orderable instructions and before all subsequent orderable instructions).

MP Coherence and Synchronization 13-1

intel.

In the above definitions “prior” and “ subsequent” refer to the program-specified order. An
“orderable instruction” is an instruction that the memory ordering model can useto establish
ordering relationships®. The term “visible” refersto all architecturally-visible (from the standpoint
of multi-processor coherency) effects of performing an instruction. Specifically,

 Accesses to uncacheable or write-coalescing memory regions are visible when they reach the
processor bus.

* Loads from cacheable memory regions are visible when they hit a non-programmer-visible
structure such as a cache or store buffer.

« Storesto cacheable memory regions are visible when they enter a snooped (in a
multi-processor coherency sense) structure.

Memory access instructions typically have an ordered and an unordered form (i.e. aform with
unordered semantics and a form with either acquire, release, or fence semantics). The |A-64
architecture does not provide all possible combinations of instructions and ordering semantics. For
example, the |A-64 instruction set does not contain a store with fence semantics.

Section 4.4.7, “Memory Access Ordering” in Volume 1 and Section 4.4.7, “ Sequentiality Attribute
and Ordering” discuss ordering, orderable instructions, and visibility in greater depth.

Section 13.2 on page 13-4 describes how the ordering semantics affect the 1A-64 memory ordering
model.

13.1.2 Loads and Stores

In the |A-64 architecture, aload instruction has either unordered or acquire semantics while a store
instruction has either unordered or release semantics. By using acquire loads (1 d. acq) and release
stores (st . r el), the memory reference stream of an | A-64 program can be made to operate
according to the 1A-32 ordering model. The | A-64 architecture uses this behavior to provide |A-32
compatibility. That is, an acquire load on an | A-64 processor is equivalent to an |A-32 load and a
release store on an | A-64 processor is equivalent to an 1A-32 store, from amemory ordering
perspective.

L oads can be either speculative or non-speculative. The speculative forms (1 d. s, | d. sa, and
| d. a) support control and data speculation.

13.1.3 Semaphores

The | A-64 architecture provides a set of three semaphore instructions: exchange (xchg), compare
and exchange (cnpxchg), and fetch and add (f et chadd). Both cnpxchg and f et chadd may have
either acquire or rel ease semantics depending on the specific opcode chosen. The xchg instruction
always has acquire semantics. These instructions read a value from memory, modify this value
using an instruction-specific operation, and then write the modified value back to memory. The
read-modify-write sequence is atomic by definition.

1. The ordering semantics of an instruction do not imply the orderability of the instruction. Specifically, unordered
ordering semantics alone do not make an instruction unorderable; there are orderable instructions with each of the four
ordering semantics.

13-2 MP Coherence and Synchronization

13.1.3.1

13.1.3.2

Considerations for using Semaphores

The memory location on which a semaphore instruction operates on must obey two constraints.
First, the location must be cacheable (the f et chadd instruction is an exception to thisrule; it may
also operate on exported uncacheable locations, UCE). Thus, with the exception of f et chadd to
UCE locations, the |A-64 architecture does not support semaphores in uncacheable memory.
Second, the location must be naturally-aligned to the size of the semaphore access. If either of these
two constraints are not met, the processor generates a fault.

The exported uncacheable memory attribute, UCE, allows an | A-64 processor to export fetch and
add operations to the platform. An | A-64 processor that does not support exported f et chadd will
fault when executing af et chadd to a UCE memory location. If the processor supports exported
f et chadd but the platform does not, the behavior is undefined when executing af et chadd to a
UCE memory location.

Sharing locks between |A-32 and | A-64 code does work with the following restrictions:
* |A-64 code can only manipulate an 1A-32 semaphore if the | A-32 semaphore is aligned.

* |A-64 code can only manipulate an |1A-32 semaphore if the | A-32 semaphore is allocated in
write-back cacheable memory.

An 1A-64 operating system can emulate 1A-32 uncacheabl e or misaligned semaphores by using the
technique described in the next section.

Behavior of Uncacheable and Misaligned Semaphores

An 1A-64 processor raises an Unsupported Data Reference fault if it executes a semaphore that
accesses a location with a memory attribute that the semaphore does not support.

If the alignment requirement for | A-64 semaphores is not met, an | A-64 processor raises an
Unaligned Data Reference fault. Thisfault is taken regardless of the setting of the user mask
alignment checking bit, UM.ac.

The DCR.Ic bit controls how the 1A-64 processor behaves when executing an atomic 1A-32
memory reference under an external buslock. When the DCR.Ic bit (see Section 3.3.4.1, “Default
Control Register (DCR — CR0)”) is 1 and an | A-32 atomic memory reference requires a
non-cacheable or misaligned read-modify-write operation, an |A-32_Intercept(Lock) fault is
raised. Such memory references require an external buslock to execute correctly. To preserve LOCK
pin functionality, an 1 A-64 operating system can virtualize the bus lock by implementing a shared
cacheable global LOCK variable.

To support existing | A-32 atomic read-modify-write operations that require the LOCK pin, an 1A-64
operating system can use the DCR.Ic bit to intercept all external 1A-32 read-modify-write
operations. Then, the |A-32_Intercept(Lock) handler can emulate these operations by first
acquiring a cacheable virtualized LOCK variable, then performing the required memory operations
non-atomically, and then releasing the virtualized LOCK variable. This emulation allows the
read-modify-write sequence to appear atomic to other processors that use the semaphore.

MP Coherence and Synchronization 13-3

intel.

13.1.4 Memory Fences

The memory fence instruction (nf) isthe only instruction in the | A-64 instruction set with fence
semantics. Thisinstruction serializes the set of memory accesses before the memory fencein
program order with respect to the set of memory accesses that follow the fence in program order.

13.2 IA-64 Memory Ordering

Understanding a system’s memory ordering model is key to writing either user- or system-level
multiprocessor software that uses shared memory to communicate between processes and also that
executes correctly on a shared-memory multiprocessor system. For a general introduction to
memory ordering models, see Adve and Gharachorloo [AG95].

Four factors determine how an |A-64 processor or system orders a group of memory operations
with respect to each other:

« Data dependencies define the relationship between operations from the same processor that
have register or memory dependencies on the same address!. This relationship need only be
honored by the local processor (i.e. the processor that executes the operations).

» The memory ordering semantics define the rel ationship between memory operations from a
particular processor that reference different addresses. For cacheable references, this
relationship is honored by all observersin the coherence domain.

« Aligned release stores and semaphore operations (both require and rel ease forms) become
visible to all observersin the coherence domain in asingle total order except each processor
may observe its own release stores (vialoads or acquire loads) prior to their being observed
globally?.

» Non-programmer-visible state, such as store buffers, processor caches, or any
logically-equivalent structure, may satisfy read requests from loads or acquire loads on the
local processor before the data in the structure is made globally visible to other observers.

In the | A-64 architecture, dependencies between operations by a processor have implications for
the ordering of those operations at that processor. The discussion in Section 13.2.1.6 on page 13-8
and Section 13.2.1.7 on page 13-9 exploresthisissuein greater depth.

The following sections examine the | A-64 ordering model in detail. Section 13.2.1 presents several
memory ordering executions to illustrate important behaviors of the model. Section 13.2.2
discusses how memory attributes and the ordering model interact. Finally, Section 13.2.3 describes
how the |A-64 memory ordering model compares with other memory ordering models.

13.2.1 IA-64 Memory Ordering Executions

Multiprocessor software that uses shared memory to communicate between processes often makes
assumptions about the order in which other agents in the system will observe memory accesses. As
Section 13.1.1 on page 13-1 describes, the | A-64 architecture provides arich set of ordering

1. That is, A precedes B in program order and A produces avaue that B consumes. This relationship is transitive.
2. Consequently, each such operation appears to become visible to each observer in the coherence domain at the same
time, with the exception that a release store can become visible to the storing processor before others.

13-4 MP Coherence and Synchronization

13.2.1.1

semantics that allows software to express different ordering constraints on a memory operation,
such as aload. Writing correct multiprocessor software requires that the programmer (or compiler)
select the ordering semantic appropriate to enforce the expected behavior.

For example, an algorithm that requires two store operations A and B become visible to other
processorsin the order { A, B} will use stores with different ordering semantics than an algorithm
that does not require any particular ordering of A and B. Although it is always safe to enforce
stricter ordering constraints than an algorithm requires, doing so may lead to lower performance. If
the ordering of memory operations is not important, software should use unordered ordering
semantics whenever possible for best possible performance.

This section presents multiprocessor executions to demonstrate the ordering behaviors that the

| A-64 architecture allows and to contrast the |A-64 ordering model with other ordering models.
The executions consist of sequences of memory accesses that execute on two or more processors
and highlight outcomes that the 1A-64 memory ordering model either allows or disallows once all
accesses on all processors complete. A programmer can use these executions as a guide to
determine which 1A-64 memory ordering semantics are appropriate to ensure a particular visibility
order of memory accesses.

Section 13.2.1.1 presents the assumptions and notational conventions that the upcoming
discussions use to examine the executions. The remaining eleven sections each explore a different
facet of the 1A-64 ordering model:

» Relaxed ordering of unordered memory operations (Section 13.2.1.2).
 Using acquire and release semantics to order operations (Section 13.2.1.3).
» Loads may pass stores (Section 13.2.1.4) and how to prevent this behavior (Section 13.2.1.5).

» When dependencies do or do not establish memory ordering (Section 13.2.1.6 and
Section 13.2.1.7).

Satisfying loads from store buffers (Section 13.2.1.8) and how to prevent this behavior
(Section 13.2.1.9).

» Semaphore operations and local bypass (Section 13.2.1.10).
 Global visibility order of memory operations (Section 13.2.1.11 and Section 13.2.1.12).

This presentation is organized to begin with simple behaviors and move to increasingly complex
behaviors.

Assumptions and Notation

The discussions of the multiprocessor executions in the upcoming sections adopt two main
notational conventions.

First, the memory accesses in the executionsin this document are written using a pseudo-1A-64
assembly language that allows a store to write an immediate operand to memory. All memory
locations are cacheable and aligned. Unless stated otherwise, memory locations do not overlap.
Initially, all registers and memory |ocations contain zero.

Second, given two different memory operations X and Y, X » Y specifiesthat X precedesY in
program order and X - Y indicatesthat X isvisibleif Y isvisible (i.e. X becomes visible
beforeY).

MP Coherence and Synchronization 13-5

intel.

Using this notation, Figure 13-1 expresses the 1 A-64 ordering semantics from Section 13.1.1 on
page 13-1 and also Section 4.4.7, “Memory Access Ordering” in Volume 1. There are no
implications regarding the ordering of the visibility for the following pairs of operations: arelease
followed by an unordered operation; arelease followed by an acquire; an unordered operation
followed by another; or an unordered operation followed by an acquire.

Figure 13-1. IA-64 Ordering Semantics

13.2.1.2

Acquire » X 0 Acquire — X
X »Release 0 X - Release
X»Fence O X - Fence
Fence»Y O Fence - Y

In Figure 13-1, “Acquire’, “Release’, and “Fence” represent an orderabl e instruction with the
corresponding memory ordering semantics whereas “ X” and “Y” indicate any orderable
instruction.

The 1A-64 Architecture Provides a Relaxed Ordering Model

The |A-64 memory ordering model is arelaxed model. As aresult, the IA-64 architecture permits
any outcome when executing the code shown in Table 13-1.

Table 13-1. The IA-64 Architecture Provides a Relaxed Ordering Model

13.2.1.3

Processor #0 Processor #1

st X =1 /I M1 Id
st =1 1 M2 Id

rl=[y] /I M3
r2 =[x Il M4

Outcomes: all are allowed

Because all of the operationsin Table 13-1 are unordered, the | A-64 memory ordering model does
not place any constraints on the order in which an 1A-64 processor makes the operations visible.

Observing aparticular valuein r2, for example, does not allow any inferences to be made about the
value of r1 because the pair of stores on Processor #0 may become visible in any order. Therefore,
all outcomes are possible as the system may interleave M1, M2, M3, and M4 in any order without
violating the memory ordering constraints.

Enforcing Basic Ordering

Using acquire and rel ease ordering semantics enforces an ordering between both the Processor #0
operations M1 and M2 and the Processor #1 operations M3 and M4 from the Table 13-1 execution
as shown in Table 13-2.

Table 13-2. Acquire and Release Semantics Order IA-64 Memory Operations

13-6

Processor #0 Processor #1

st XI=1 /I M1 Id.acq
st.rel =1 I M2 Id

rl=[y] /I M3
r2 =[x Il M4

Outcome: only rl =1 and r2 = 0 is not allowed

MP Coherence and Synchronization

13.2.1.4

The | A-64 ordering model only disallows the outcome rl = 1 and r2 = 0 in this execution. The
release semantics on M2 and acquire semantics on M3 affect the following ordering constraints:
M1 - M2
M3 - M4

Given the code in Table 13-2, these two ordering constraints along with the assumption that the
outcomeisrl =1 and r2 = 0 together imply that:

ri=10 M2 -~ M8 M1 - M4 (becauseM1 - M2and M3 -~ M4) r2=1

This contradicts the postulated outcome rl = 1 and r2 = 0 and thus the 1A-64 ordering model
disallowstherl =1 and r2 = 0 outcome.

In operational terms, if Processor #1 observes M2, the release storetoy (i.e. rlis 1), it must have
also observed M1, the unordered storeto x (i.e. r2 is 1 aswell), given the ordering constraints.
Therefore, the |A-64 ordering model must disallow the outcomerl =1 and r2 = 0 in this execution
as this outcome violates these constraints.

Stronger ordering models that do not relax |oad-to-load and store-to-store ordering, such as
sequential consistency, impose these same ordering constraintson M1, M2, M3, and M4 and
therefore also do not alow the outcomerl=1andr2=0.

Allow Loads to Pass Stores to Different Locations

The |A-64 memory ordering model allows loads to pass stores as shown in the execution sequence
in Table 13-3. Permitting this behavior can improve performance by allowing the processor to
complete loads that follow a store that misses the cache.

The | A-64 ordering semantics always allow a processor to make operations that follow arelease
visible before the release and to make operations that precede an acquire visible after the acquire.

Table 13-3. Loads May Pass Stores to Different Locations

13.2.1.5

Processor #0 Processor #1
st.rel x=1 /I M1 st.rel yl=1 /I M3
Id.acq rl =[y] /I M2 Id.acq r2 =[x] Il M4

Outcomes: all are allowed

Like the execution shown in Table 13-1 on page 13-6, the IA-64 memory ordering model does not
place any constraints on the ordering of the operations on each processor in this execution either.

Therefore, for reasons similar to those given in Section 13.2.1.2 for the execution shown in
Table 13-1, the 1A-64 memory ordering model allows any outcome in this execution as well.
Further, the | A-64 memory ordering model also allows all outcomesin similar executions that
differ only in the ordering semantics of the load and store operations (e.g. those that replace M1
with an unordered store, etc.). There is no combination of legal ordering semantics on these
operations (recall that the |A-64 instruction set does not provide stores with acquire or fence
semantics) that enforce either M1 - M2or M3 - M4.

Preventing Loads from Passing Stores to Different Locations

The only way to prevent the loads from moving ahead of the storesin the Table 13-3 execution isto
separate them with a memory fence as the execution in Table 13-4 illustrates.

MP Coherence and Synchronization 13-7

Table 13-4. Loads May Not Pass Stores in the Presence of a Memory Fence

13.2.1.6

Processor #0 Processor #1

st xXI=1 /I M1 st =1 Il M4
mf 1 M2 mf /I M5
Id rl=y] /I M3 Id r2 = [x] 1l M6

Outcome: only r1 =0 and r2 = 0 is not allowed

The |A-64 memory ordering model only disallows the outcomerl = 0 and r2 = 0 in this execution.
The memory fences on Processor #0 and Processor #1 (operations M2 and M5) force the load and
store memory accesses to be made visible in program order; no re-ordering is permitted across the
fence. Thus, the following ordering constraints must be met:

M1 - M2 - M3
M4 - M5 - M6

Given the code in Table 13-4, these two constraints along with the assumption that the outcome is
rl =0 and r2 = 0 together imply that
r1=00 M3 - M@l M3 - M6 becauseM4 - M5 - M6

rlI=00 M1 - M3becauseM1 - M2 - M3
M1 - M3andM3 - M60 M1 - M60O r2=1

This contradicts the postulated outcome rl = 0 and r2 = 0 and thus the IA-64 memory ordering
model disallowstherl =1 and r2 = 0 outcome. Specificaly, if M3 reads 0, then M4, M5, and M6
may not yet be visible but M1 and M2 must be visible. Thus, when M6 becomes visible it must
observe x = 1 because M1 is aready visible.

Data Dependency Does Not Establish MP Ordering

The dependency rules define the relationship between memory operations that access the same
address. Specifically, the | A-64 architecture resolves read-after-write (RAW), write-after-read
(WAR), and write-after-write (WAW) dependencies through memory in program order on the local
processor. As Section 13.2 discusses, dependencies are fundamentally different from the ordering
semantics even though both affect ordering rel ationships between groups of memory accesses.

The execution shown in Table 13-5 illustrates this difference.

Table 13-5. Dependencies Do Not Establish MP Ordering (1)

13-8

Processor #0 Processor #1

st X]=1; /I M1 Id.acq r2 =y] Il M4
Id rl=[x]; I M2 Id r3=[x] /I M5
st yl=rls; /I M3

Outcomes: rl =1,r2=1, and r3 =0 is allowed

The following discussion focuses on the outcomerl =1, r2 =1, and r3 = 0. This outcomeis
allowed only because the |A-64 architecture treats data dependencies and the ordering semantics
differently.

The ordering semantics require M4 . M5, but do not place any constraints on the relative order of
operations M1, M2, or M3. Dueto the register and memory dependencies between the instructions
on Processor #0, these operations complete in program order on Processor #0 and al so become

MP Coherence and Synchronization

13.2.1.7

locally visible in this order. However, the operations need not be made visible to remote processors
in program order. In this outcome it appearsto Processor #0 asif M1 - M3 whileto Processor #1 it
appearsthat 3 - M1. There are two thingsto note here. First, the behavior is another example of
the local bypass behavior that Section 13.2.1.8 presents on page 13-11. Second, there are no
dependencies directly between M1 and M3 that requires them to become globally visible in
program order.

Note: All processorswill observe the order established by a particular processor in case of a
WAW memory dependency to the same location. For example, all processors in the coher-
ence domain eventually see avalue of 1 inlocation x in the following code:

0 ML: set [x] to O

st [x] /1
1 /1 M: set [x] to 1, cannot nove above ML due to WAW

st [x]

because there is a WAW memory dependency between from M2 to M1 and the |IA-64
architecture requires that the local processor resolves RAW, WAR, and WAW dependen-
cies between its memory accesses in program order. Thus, M1 - M2 even though the
ordering semantics do not place any constraints on the relative ordering of M1 and M2.

Data Dependency Establishes Local Ordering

In the 1A-64 architecture, a dependency (e.g., alater operation reading the value written by an
earlier operation) can imply alocal ordering relationship between the two operations. This section
focuses on dependencies through registers only. Section 13.2.1.6 discusses dependencies and MP
ordering.

The execution shown in Table 13-6 illustrates how data dependence and memory ordering interact
inasimple “pointer chase”.

Table 13-6. Memory Ordering and Data Dependence

Processor #0 Processor #1
st x=1 1M1 Id ri=[yl; 11 M3
st.rel [yl =x /I M2 Id r2 =[r1] /I M4

Outcome: rl = x and r2 = 0 is not allowed

In this example, Processor #0 could be executing code that updates a shared object with M1 and
then publishes a pointer to the object with M 2. Processor #1 then | oads the pointer and dereferences
it to read the contents of the shared object. The outcomerl = x and r2 = 0 implies that Processor #1
observes the new value of the object pointer, y, but the old value of the datafield, x.

The ordering semanticsrequire M1 - M2 but place no requirements on the relative ordering of M3
and M4.

Thus, the memory semantics alone would allow the outcome rl = x and r2 = 0 in the absence of
other constraints. Using an acquire load for M3 can avoid this outcome as doing so forces

M3 - M4 and thus prevents the outcome. However, this use of acquire is non-intuitive given the
RAW dependency through register r1 between M3 and M4. That is, M3 produces a value that M4
reguiresin order to execute so how should it be possible for them to go out of order? Further, using
an acquirein this case prevents any memory operation following M3 from moving above M3, even
if they are completely independent of M3.

MP Coherence and Synchronization 13-9

intel.

To avoid this potential confusion and performance issue, the | A-64 architecture treats data
dependence and memory ordering in the same fashion on the local processor. That is, if A»B and
A produces avalue that B consumes, then - B on thelocal processor. This relationship isaso
transitive as the execution in Table 13-7 illustrates.

Table 13-7. Memory Ordering and Data Dependence Through a Predicate Register

Processor #0

Processor #1

st x]=1 /I M1 Id rl =[y] /I M3
st.rel [yl =x I M2 cmp.eq pl, p2=rl,x;; /I C1
(p1) Id r2 = [x] /I M4

Outcome: rl = x and r2 = 0 is not allowed

The Processor #0 code is the same asin Table 13-6. The Processor #1 now performs the following
operation: if the pointer valuey is equal to x, load a value from x.

The 1A-64 architecture does not alow the outcomerl = x and r2 = 0 in thisexecution either. Unlike
the execution in Table 13-6, there is no direct dependence between the values that M 3 produces and
the values that M4 consumes. However, there is a RAW through register r1 fromM3to Cl and a
RAW through register p1 from C1 to M4. Thus, by transitivity, M3 - M4.

The execution in Table 13-8 illustrates a similar construct but introduces a control dependence.

Table 13-8. Memory Ordering and Data and Control Dependencies

Processor #0

Processor #1

t:

st x]=1 /I M1 Id rl =[y] /I M3
st.rel [yl =x I M2 cmp.eq pl, p2=rl, x /I C1
(p2) br t /I B1

Id r2 = [x] /I M4

Outcome: rl = x and r2 = 0 is not allowed

This execution is semantically the same as the execution in Table 13-7; however, this execution
uses a control dependence rather than predication to conditionally execute M4. As aresult, the
outcomerl =x andr2 = 0isnot alowed in the Table 13-8 execution.

The execution of the load M4 is data-dependent on the value of p2 that the branch B1 usesto
resolve. Further, p2 is dependent on the value of r1 that the load M3 produces through the compare

C1. Thus, M3 - M4.

The execution in Table 13-9 is a variation on the execution from Table 13-8 where the loads are

truly independent.

Table 13-9. Memory Ordering and Control Dependence

Processor #0

Processor #1

t:

st x]=1 /I M1 Id rl =[y] /I M3
st.rel [yl =x I M2 cmp pl, p2 =13, x /I C1
(p2) br t /I B1

Id r2 = [x] /I M4

13-10

Qutcome: all are allowed

MP Coherence and Synchronization

13.2.1.8

In this execution, there is no dependence between M3 and M4, and thus, there are no constraints on
therelative ordering of M3 and M4. Like the execution in Table 13-8, M4 is data-dependent on the
value of p2 that the branch B1 usesto resolve. However, p2 isindependent of the value that the load
M3 produces (specifically, because the compare does not use the value of register rl that the load
produces). Thus, thereis no chain of dependencies between M3 and M4 and therefore there are no
congtraints on the relative ordering of M3 and M4. Asaresult, all outcomes are allowed in this
execution.

Store Buffers May Satisfy Local Loads

In the IA-64 memory ordering model, store buffers (or other logically-equivalent structures) may
satisfy local read requests from loads or acquire loads even if the stored dataiis not yet visible to
other agentsin the coherency domain. Such bypassing must honor any ordering semanticsin the
memory reference stream. Table 13-10 and Table 13-11 that Section 13.2.1.9 presentsillustrate this
behavior.

Table 13-10. Store Buffers May Satisfy Loads if the Stored Data is Not Yet Globally Visible

MP Coherence and Synchronization

Processor #0 Processor #1

st.rel x=1 /I M1 st.rel =1 /I M4
Id.acq rl =[x] /I M2 Id.acq r3 =[y] /I M5
Id r2 =y] 11 M3 Id r4 = [x] 11 M6

Qutcome:rl=1,r3=1,r2=0,and r4 =0 is allowed

In this sequence, each processor bypasses its locally-written value from a store buffer before the
value becomes visible to the other processor. This behavior may make accesses of different sizes
that have overlapping memory addresses appear to complete non-atomically.

The following discussion focuses on the outcomerl =1, r3=1,r2 =0, and r4 = 0 because this
outcomeis allowed if and only if store buffers can satisfy local |oads (other outcomes are allowed
but do not depend on being able to satisfy local loads from a store buffer).

The | A-64 memory ordering semantics only require that M2 — M3 and M5 - M6. There are no
constraints on the relative ordering of M1 and M2 or M3 nor on the relative ordering of M4 and M5
or M6.

Remember that both dependencies and the memory ordering model place requirements on the
manner in which an | A-64 processor may re-order accesses. Even though the | A-64 memory
ordering model allows loads to pass stores, an | A-64 processor cannot re-order the following
sequence;
st.rel [x] =10
| d. acq ri = [x]

/1 ML: store 0 to [X]
/1 M2: cannot nobve above st.rel due to RAW

Thisis because there isa RAW dependency through memory between M1 and M2 and the |A-64
memory ordering model requires that the local processor resolve RAW, WAR, and WAW
dependencies between its memory accesses in program order. Thus, M1 - M2 even though the
ordering semantics place no constraints on the relative ordering of M1 and M2.

13-11

13.2.1.9

intel.

Because there is a RAW dependency through memory between M1 and M2 and between M4 and
M5, the ordering constraints effectively become:*

M1 - M2 - M3
M4 - M5 - M6

to account for both the memory ordering semantics and dependencies. It isimportant to keepin
mind that the observance of a dependency between two operations does not imply an ordering
relationship (from the standpoint of the memory ordering model) between the operations as
Section 13.2.1.6 describes.

Assuming that a processor can bypass |ocally-written val ues before they are made globally-visible
impliesthat thereisalocal and aglobal visibility points for amemory operation where avalue
always becomeslocally visible before it becomes globally visible. Since M1 and M4 can havelocal
visibility with respect to M2 and M5 aswell as global visibility,

ml - M2 - M3;ml - M1

m4 - M5 - M6; M4 - M4

where m1 and M1 represent local and global visibility of memory operation 1, respectively. There
are two thingsto note. First, the ordering of the local visibilities of operations M1 and M4 (m1 and
md4, respectively) alow each processor to honor its data dependencies. That is, Processor #2 honors
the RAW dependency through memory between M1 and M2 by requiring m1 to become visible
before M2. Second, that these requirements do not place any constraints on the relative ordering
perceived by aremote observer of operation M1 with M2 and M3 or of operation M4 with M5 and
M6 (asthelocal visibilities meet the local ordering constraints that the dependencies impose).

The code in Table 13-10 and these constraints together imply that

rl=10 ml - M2
r3=10 m4 - M5
r2=00 M3 -5 M40 ml - M6becauseml -~ M3and M3 - M4and M4 - M6
r4=00 M6 - M1
ml - M6and M6 -~ M10 ml - M1

Thus, the outcomerl =1,r3=1,r2=0, and r4 = 0 is allowed because these statements are
consistent with our definition of local and global visibility. Specifically, a value becomes locally
visible before it becomes globally visible. Similar reasoning can show that the constraints also
imply that m4 - M4.

Preventing Store Buffers from Satisfying Local Loads

In the code shown in Table 13-10 from Section 13.2.1.8, there are no ordering constraints between
the store and acquire load from the standpoint of memory ordering semantics (however, thereisa
RAW dependency through memory that forces the acquire load to follow the store). Bypassing may
not occur if doing so violates the memory ordering constraints of memory operations between the
store and the bypassing read. Table 13-11 presents a variation on the execution in Table 13-10 from
Section 13.2.1.8 that illustrates this behavior.

1. That is, the store operations must become visible to the local processors before their loads that read the stored value.

13-12

MP Coherence and Synchronization

intel.

Table 13-11. Preventing Store Buffers from Satisfying Local Loads

13.2.1.10

Processor #0 Processor #1
st x=1 /I M1 st =1 /I M5
mf /I M2 mf /I M6
Id.acq rl =[x] /I M3 Id.acq r3 =yl 1 M7
Id r2 =yl Il M4 Id rd = [x] /I M8

Qutcome: r1 =1,r3=1,r2=0, and r4 =0 is not allowed

Like Section 13.2.1.8, the discussion in this section focuses on the outcomerl =1,r3=1,r2 =0,
and r4 = 0 because it is allowed if and only if store buffers can satisfy local loads. The line of
reasoning to show that the outcomerl=1,r3=1,r2=0,andr4 =0isnot allowed in Table 13-11 is
similar to the reasoning used to show that this outcome is allowed in the Table 13-10 execution
from Section 13.2.1.8 on page 13-11.

By the definition of the | A-64 memory ordering semantics,

M1 - M2 -~ M3 - M4
M5 - M6 - M7 - M8

By alowing local and global visibility of operations M1 and M5 (similar to the discussion in
Section 13.2.1.8), this assumption, along with the above constraints, together imply that,

ml-M10 ml- M2 - M3 - M4
m5 - M50 m5 - M6 -~ M7 - M8

Consider these constraints on the Processor #0 operations m1, M1, M2, M3, and M4. Making m1
visible before M2, M3, and M4 correctly honors the data dependence through memory on
Processor #0. However, unlessit constrainsthe global visibility of M1 to occur before M2, M3, and
M4, Processor #0 violates the | A-64 ordering semantics. Specifically, the memory fence M2 must
always be made visible after the store M 1. Allowing global and local visibilities of M1 in this case
violates this constraint, and thus, is not allowed. Essentially, by allowing M1 to become locally
visible early, M3 would see M1 before the fence semantics for M2 were met (namely, that M1 be
visible before M2 and thus M 3). Without local and global visibility of M1 and M5, the ordering
congtraints are as this exampl e originally postulated.

The code in Table 13-11 and these constraints together imply that
r2=00 M4 - M50 M1 - M8becauseM1 - MdandM4 - M5and M5 - M8 r4=1

This contradictstherl =1,r3=1,r2=0, and r4 = 0 outcome. The visibility of the memory fence,
M2, impliesthat all prior operations including the store to x, M1, are globally visible. Thus, the
load from x on Processor #1, M8, must observe the new value of x and M1 - M8 but the outcome
requires 8 - M1.

Semaphores Do Not Locally Bypass

As Section 13.2.1.8 and Section 13.2.1.9 discuss, loads and acquire loads may be satisfied with
values placed in local store buffers (or other logically-equivalent structures) by stores or release
stores before the stored data becomes visible to other agents in the coherency domain. The |A-64
architecture explicitly prohibits such local bypass either to or from semaphore operations. That is,
semaphore operations cannot be satisfied in thisway nor can the data they store be used to satisfy
loads or acquire loads in this way.

MP Coherence and Synchronization 13-13

intel.

The execution in Table 13-12 illustrates a variation on the execution in Table 13-10 where the
acquire loads have been replaced with exchange semaphore operations (which also have acquire
semantics).

Table 13-12. Bypassing to a Semaphore Operation

Processor #0 Processor #1
st.rel xXI=1 /I M1 st.rel =1 Il M4
xchg rl=[x], r5 I M2 xchg r3=[yl], r6 /I M5
Id r2 =1y] I M3 Id r4 = [x] 1 M6

Outcome: r1 =1,r3=1,r2=0, and r4 =0 is not allowed

Although each semaphore operation can be decomposed into a read access followed by awrite
access, the |A-64 architecture does not allow aread request by a semaphore to be satisfied from a
store buffer (or other logically-equivalent structure). Asaresult, theoutcomerl=1,r3=1,r2=0,
and r4 = 0 isnot allowed. The reasoning is similar to that presented in Section 13.2.1.9.

Specifically, by the definition of the | A-64 memory ordering semantics, M2 - M3 and M5 - M6.
The relative ordering between operation M1 and operations M2 or M3 is not constrained. Likewise,
the relative ordering between operation M4 and operations M5 and M6.

Now, assumetheoutcomerl=1,r3=1,r2=0,andr4=0. Giventhatr1=1,r3=1,andr2=0, we
observe the following:

ri=10 M1 - M2
r3=10 M4 - M5
r2=00 M3 - M4
M3 -~ M40 M1 - M6 becauseM1 - M3 - M4 - M6
M1 M6 0Ord=1

This conclusion contradicts the assumed outcome where r4 = 0 and thus the outcomerl=1,r3=1,
r2=0, and r4 = 0isnot allowed. Because M1 and M4 cannot become locally-visibleto M2 and M5
before they become globally-visible to M6 and M3 (as read accesses from semaphores may not
bypass from store buffers or other logically-equivalent structures), it is not possible to avoid this
contradiction.

| A-64 also prohibits local bypass from a semaphore operation to alocal read access from aload or
acquire load as shown in the execution in Table 13-13.

Table 13-13. Bypassing from a Semaphore Operation

13-14

Processor #0 Processor #1
fetchadd.rel r5=[x],1 /I M1 fetchadd.rel 6 =1[y], 1 Il M4
Id.acq rl =[x] I M2 Id.acq r3=1y] /I M5
Id r2 =1y] /I M3 Id r4 = [x] I M6

Qutcome: r1=1,r3=1,12=0,r4=0,r5=0, and r6 = 0 is not allowed

A store buffer may not provide alocal read operation early access to a value written by a
semaphore operation. Therefore, the outcomerl=1,r3=1,r2=0,r4=0,r5=0,and r6 = 0 in the
Table 13-13 execution is not allowed. The reasoning is similar to that used in the previous
execution.

MP Coherence and Synchronization

In

tel

13.2.1.11 Ordered Cacheable Operations are Seen in the Same Order by All

Observers

The | A-64 memory ordering model requires that rel ease stores and semaphore operations (both
acquire and rel ease forms) become visible to all observersin the coherence domain in asingle total
order with the exception that each processor may observe (vialoads or acquire loads) its own
update early. Thus, each observer in the coherence domain sees the same interleaving of release
stores and semaphores (both acquire and rel ease forms) from the other processors in the coherence
domain except that each processor may observe its own rel ease stores (via loads or acquire loads)
prior to their being observed globally. Table 13-14 illustrates this behavior.

Table 13-14. Enforcing the Same Visibility Order to All Observers in a Coherency Domain

Processor #0 Processor #1 Processor #2 Processor #3
strel [x]=1 /IM1 Id.acq r1 = [x] // M2 strel [y]=1 /IM4 Id.acq r3 = [y] // M5
Id r2 =[y] // M3 Id rd = [x] I/ M6

Outcome: onlyrl =1,r3=1,r2 =0, and r4 =0 is not allowed

The | A-64 memory ordering model only disallowsthe outcomerl=1,r3=1,r2=0,andr4=0in
this execution. By the definition of the 1A-64 memory ordering semantics,

M2 - M3
M5 - M6

The l|A-64 memory ordering model does not permittherl=1,r3=1,r2 =0, and r4 = 0 outcome as
thiswould require that Processors #1 and #3 observe the release storesto x and y in different
orders. Specifically, assuming that the outcomeisrl=1,r3=1,r2=0,andr4=0:
ri=10 M1 - M2
r3=10 M4 - M5
r2=00 M3 - M40 M1 - M4becauseM1 - M2, M2 - M3, and M3 - M4
r4=00 M6 - M10 M4 - M1because M4 — M5, M5 - M6, and M6 - M1

The final two statements are inconsistent since both M1 - M4and M4 - M1 cannot be true unless
Processors #1 and #3 are allowed to see the rel ease storesto x and y in different orders.

The |A-64 memory ordering model allowstherl=1,r3 =1, r2=0, and r4 = 0 outcome if either
one or both of the release stores M1 and M4 are unordered since unordered operations need not be
seen in the sametotal order by all observersin the coherence domain. Thus, in aversion of the
execution shown in Table 13-14 with unordered stores, Processor #2 observes M1 - M4 while
Processor #4 observes M4 - M1.

The | A-64 memory ordering model also allows this outcome if the release storesM1 and M4 are
replaced with amemory fence followed by an unordered store. From the standpoint of asingle
processor, arelease store has equivalent ordering semantics on the local processor to a memory
fence followed by an unordered store. However, because the store in the memory fence/unordered
store pair is unordered, it does not have any ordering requirements with respect to aremote
processor. Even when processors are allowed to construct different interleavings, the ordering of an
individual processor’'s memory references within the interleaving must always respect the ordering
constraints placed on those references.

MP Coherence and Synchronization 13-15

intel.

13.2.1.12 Obeying Causality

Asnoted in Section 13.2.1.11, the |A-64 memory ordering model requires that release stores and
semaphore operations (both acquire and release forms) become visible to all observersin the
coherence domain in asingle total order with the exception that each processor may observe (via
loads or acquire loads) its own update early. Thus, each observer in the coherence domain sees the
same interleaving of release stores, and semaphores operations from the other processorsin the
coherence domain.

A consequence of thisisthe fact that the | A-64 memory ordering model respects causality in a
certain way. Specificaly, if arelease store or semaphore operation causally precedes any store or
semaphore operation, then the two operations will become visible to all processorsin the causality
order. Table 13-15 illustrates this behavior. Suppose that M2 reads the value written by M1. In
this case, there is a causal relationship from M1 to M3 (a control dependence could also establish
such arelationship). Thefact that the storeto x is arelease store impliesthat, since thereisacausal
relationship from M1 to M3, M1 must become visible to processor #2 before M3.

Table 13-15. IA-64 Obeys Causality

13.2.2

13-16

Processor #0 Processor #1 Processor #2

st.rel x]=1 /I M1 Id.acq rl =[x] I M2 Id.acq r2 = [y] Il M4
st yI=1 /I M3 Id r3 =[x] /I M5

Outcome: only r1 =1,r2 =1, and r3 = 0 is not allowed

The |A-64 memory ordering model disallowsthe outcomerl=1,r2=1,andr3=0inthis
execution (all other outcomes are allowed). To see this, we note the following. If rl =1, then
M1 - M2 at Processor #1. Because M2 isan acquireload and M2» M3, M2 - m3, where m3
represents the local visibility of memory operation 1 (see Section 13.2.1.8). Thus, M1 -~ m3.
Since M1 is arelease store, it appears to become visible to all processors at the sametime. This
fact and m3 - M3 together imply M1 - M3.

Ifr2=1, M3 - M4. Because M4 isan acquireload, M4 - M5. If r3=0, then M5 - M1
Together, these imply M3 - M1, which contradicts the observation from the previous paragraph.
Thus, the outcomerl =1, r2 =1, and r3 = 0isdisallowed.

The indicated outcome would also be disallowed if M1 were a semaphore operation because, like
release stores, each semaphore must appear to become visible at all processors at the same time.
The indicated outcome would be allowed if M1 were aweak store, as aweak store may appear to
become visible at different timesto different processors.

Memory Attributes

In addition to the ordering semantics and data dependencies, the memory attributes of the page that
is being referenced aso influence access ordering and visibility. Using memory attributes allows
the |A-64 architecture to match the performance and the usage model to the type of device

(e.g. main memory, memory-mapped 1/O device, frame buffer, locations with side-effects, etc.) that
backs a page of memory. Typically, memory with side-effects is mapped uncacheable while
memory without side-effects is mapped as write-back cacheable.

Section 4.4, “Memory Attributes’ describes |A-64 memory attributes in greater depth.

MP Coherence and Synchronization

Memory with the uncacheable UC or UCE attributes is sequential by definition. An 1A-64
processor ensures that accesses to sequential memory |ocations reach a peripheral domain
(aplatform-specific collection of uncacheable locations, colloquially known as“adevice’) in
program order with respect to all other accesses to sequential locations in the same peripheral
domain. The sequential behavior of UC or UCE memory is independent of the ordering semantics
(i.e. acquire, release, fence, or unordered) attached to the accesses.

Other observers (e.g. processors or other peripheral domains) need not see references to UC or
UCE memory in sequential order if at all. When multiple agents are writing to the same device, it is
up to software to synchronize the accesses to the device to ensure the proper interleaving.

The ordering semantics of an access to sequential memory determines how the access becomes
visible to the peripheral domain with respect to other operations. For example, consider the code
sequence shown in Figure 13-2.

Figure 13-2. Interaction of Ordering and Accesses to Sequential Locations

13.2.3

sequenti al _exanpl e:
st [data_0] =0 /1 ML: put data in cacheable mem
st [data_1] =0 [/ M2: put data in cacheable mem
st.rel [ready] =1 /1l M3: tell device to get ready
st [start] =1 [/ M4: tell device to start

Inthiscode, assumethat dat a_0 and dat a_1 are cacheablelocationsandst art andr eady arean
uncacheable UC or UCE locations.

Sequentiality ensuresthat M3 and M4 reach the peripheral domain in program order (i.e. M3 before
M4). Further, the rel ease semantics on M 3 ensures that it is not made visible to the peripheral
domain until after M1 and M2 are made visible to the coherence domain. The M1 and M2 accesses
may become visible to the coherency domainsin any order as they both have unordered semantics.
Even though the memory ordering semantics allow M4 to become visible before M 3, the processor
must make M3 visible before M4 because both r eady and st art are sequential locations.

Understanding Other Ordering Models: Sequential
Consistency and IA-32

To provide a point of reference, it is helpful to understand other memory ordering models. These
ordering models affect not only the programmer’s view of the system, but also the overall system
performance and design. Processors with relaxed memory ordering models may achieve higher
performance than those with strict ordering models.

The most intuitive memory ordering model is“sequential consistency” (SC) which Lamport
formally definesin [L79]. In sequential consistency, all processors see the memory references from
agiven processor in program order, and, in addition, all processors see the same system-wide
interleaving of memory references from each processor.

The SC model precludes many common optimizations made in modern microprocessors to enhance
performance. For example, in an SC system, aload may not pass a prior store until that store
becomes globally visible (because all memory operations must become visible in program order).
This reguirement prevents the SC system from using a store buffer to hide the latency of store
traffic by allowing loads that hit the cache to be serviced under a prior store that miss the cache.

MP Coherence and Synchronization 13-17

13.3

intel.

To address such performance issues, many memory ordering models have been devel oped that
relax the constraints of sequential consistency. Adve categorizes these memory models by noting
how they relax the ordering reguirements between reads and writes and if they allow writes to be
read early [AG95]. The |A-64 architecture allows for relaxed ordering between reads and writes
and also allows writes to be read early under certain circumstances.

Aside from disallowing any relaxation of memory references, sequential consistency has two other
subtle differences from the 1A-64 memory ordering model. First, it requires atotal order of
operations whereas the | A-64 memory ordering model only requires atotal order for release stores
and semaphores. Second, remote processors must always honor data dependencies since the local
processor does not have the option of re-ordering such accesses as can occur on an |A-64 processor.

The |A-32 memory ordering relaxes write to read ordering and allows a processor to read its own
writes before they are globally visible. Further, 1A-32 allows each processor in the coherence
domain to interleave the reference streams from other processors in the coherence domainin a
different order. The per-processor orders must meet some additional constraintsto ensure they are
consistent with each other (enumerating and explaining these constraintsis beyond the scope of this
document). For more information on the | A-32 ordering model see Section 6.3.2, “1A-32
Segmentation” in Volume 1.

Where IA-64 Requires Explicit Synchronization

The | A-64 architecture requires a memory synchronization (sync. i) and amemory fence (nf)
during a context switch to ensure that all memory operations prior to the context switch are made
visible before the context changes. Without this requirement, the ordering constraints may be
violated if the process migrates to a different processor. For example, consider the example shown
in Figure 13-3.

Figure 13-3. Why an IA-64 Processor Requires a Fence during Context Switches

13-18

/ Process A begins executing on Processor #0...

| d. acq ri = [x] /1 1 oad executes on processor #0
/ 1) Context switch occurs
[2) OS nmigrates Process A from Processor #0 to Processor #1

/ 3) Process A resunes at the instruction follow ng the |d.acq

st [y] =r2 /] store executes on processor #1

In this example, Processor #1 may make the unordered store visible to the coherency domain before
Processor #0 makes the acquire |oad visible. This violates the ordering constraints. Executing a
memory fence during the context switch handler ensures that this violation can not occur.

See Section 15.5, “ Context Switching” on page 15-8 on context management in an |A-64
processor.

MP Coherence and Synchronization

13.4

13.4.1

Interruptions do not affect memory ordering. On entry to an interrupt handler, memory operations
from the interrupted program may still be in-flight and not yet visible to other processorsin the
coherence domain. A handler that expects that all memory operations that precede the interruption
to be visible must enforce this requirement by executing a memory fence at the beginning of the
handler.

Synchronization Code Examples

There are many synchronization primitives that software uses in multiprocessor or multi-threaded
environments to coordinate the activities of different code streams. In this section, we present
several typical examplesto illustrate how some common constructs trandate to the |A-64
instruction set. In addition, the discussions identify special considerations with various
implementations.

The examples use the syntax “[f 0o]” to indicate the memory location that holds the variable f oo.
Actual |A-64 assembly language would first move the address of f oo into aregister and then use
this register as an operand to a memory access instruction. The aternate syntax is chosen to
simplify and clarify the examples.

Spin Lock

Software commonly uses spin locks to guard access to a critical region of code. In these locks, the
software “spins” while waiting for a shared lock variable to indicate that the critical region can be
safely accessed. Typically, the lock code uses atomic operations such as compare and exchange or
fetch and add to update the shared lock variable. Figure 13-4 shows a spin lock based on the
cnpxchg instruction.

Figure 13-4. Spin Lock Code

/1 available. If it is 1, another process is in the critical section.

/1

spi n_I ock:
nov ar.ccv =0 /1 cmpxchg | ooks for avail (0)
nov rz=1 /1 cmpxchg sets to held (1)

spi n:
| d8 rli = [lock] ;; /1 get lock in shared state
cnp.ne pl, pO0O =rl, r2 /1 is lock held (ie, lock ==

1)?

(pl) br.cond.spnt spin ;; /1 yes, continue spinning
cnmpxchg8.acqrl = [lock], r2 ;;// attenpt to grab |ock
cnp.ne pl, pO =rl, r2 /1 was | ock enpty?

(pl) br.cond.spnt spin ;; /1 bunmmer, continue spinning

cs_begin:

/1 critical section code goes here...

cs_end:
st8.rel[lock] =710 ;; Il rel ease the | ock

MP Coherence and Synchronization 13-19

13.4.2

intel.

The spin lock codefirst initializes ar . ccv and aregister with the values that indicate that the lock
isavailable and held, respectively. A compare and exchange obtains the lock by exchanging | ock
with 1 if it currently holds 0. Next, the first loop ensures that the code spinsin cache while the lock
is held by someone else. Once thisloop finds that the lock is available, a compare and exchange
instruction attempts to obtain the lock. If thisinstruction fails (e.g. because someone el se obtained
the lock in the meantime), the code resumes spinning in the first loop.

Spinning using only the cpxchg/cnp/br loop may generate excessive coherency traffic. For
example, if the cnpxchg always stores to memory (even if the comparison fails) and the lock is
highly-contested, the platform may have to generate a number of read for ownership transactions
causing | ock to move around the system. Using thefirst | d8/cnp/br loop avoids this problem by
obtaining | ock in ashared state. In the worst case, when | ock isnot contested, thisloop adds only
the overhead of the additional compare and branch.

Theinitial | d8 need not be an acquire load because of the control-flow in the spin loop: thisload
must become visible before the cnpxchg8 because the load must return datain order for the
compare and branch to resolve. Further, the store that relinquishes the lock after the critical section
uses rel ease semantics to prevent memory references from the critical from moving after the
reference that releasesthe lock. Finally, the branches use “ static predict not taken™ hintsto optimize
for the case where the lock is not highly contested.

Simple Barrier Synchronization

A barrier isacommon synchronization primitive used to hold a set of processes at a particular point
in the program (the barrier) until all processors reach the location. Once al processes arrive at the
barrier, they may all continue to execute. Figure 13-5 shows a sense-reversing barrier
synchronization based on the f et chadd instruction from Hennessy and Patterson [HP96].

Thistype of barrier prevents a process that races ahead to the next instance of the barrier from
trapping other (low) processors that are in the process of leaving the barrier.

Figure 13-5. Sense-reversing Barrier Synchronization Code

/1l The total variable is one |ess than the nunber of processors that the
/1 indicates if the processes nust wait at the barrier (initially, this
/1 variable is 0), and local _sense is a per-processor |ocal variable that
/1 indicates the “sense” of the barrier (initially, this variable is 0).

11

sr_barrier:
fetchadd8. acqrl = [count], 1 /1 update counter
| d8 r2 = [total] /1 get nunmber of procs - 1
|1 d8 r3 = [local _sense] ;; [// get local “sense” variable
xor r3 =1, r3 /1 local _sense =! |ocal _sense
cnp. eq pl, p2 =rl, r2;; /1 pl =>last proc to arrive
st8 [l ocal _sense] =r3 /1 save new val ue of |ocal _sense

(pl) st8 [count] =0 /1 last resets count to O

(pl) st8.rel [release] =713 ;; /1 last allows other to | eave

wait_on_ot hers:

(p2) |1 d8 rl = [release] ;; /'l p2 => nore procs to cone

(p2) cnp. ne. and pO, p2 =rl, r3 /1 have all arrived yet?

(p2) br.cond. sptk wait_on_others ;; /1 nope, continue waiting

13-20 MP Coherence and Synchronization

13.4.3

The barrier code begins by atomically updating the number of processors that are waiting at the
barrier, count , using af et chadd instruction. For the last processor that reaches the barrier, the

f et chadd instruction returns the same value asthet ot al shared variable, which is one less than
the number of processors that wait at the barrier. Other processors each get a unique value on the
interval [0, t ot al) based on the order in which they arrive at the barrier.

All processors except the last processor wait in thewai t _on_ot her s loop for the signal that all
have arrived at the barrier. The last processor to arrive at the barrier provides this signal.

The signal to leave the barrier is deduced from the value of ther el ease shared variable and the

| ocal _sense local variable. Upon entering the barrier, each processor complements the valuein
itsprivatel ocal _sense variable. Onceinthe barrier, all processors always have the samevaluein
their | ocal _sense variables. Thisvariableindicatesthevaluethat r el ease must have before the
processor can leave the barrier. The last processor to arrive at the barrier releases the other
processors by setting r el ease tothenew | ocal _sense value.

Dekker’s Algorithm

Dekker’s algorithm [D65] is a common synchronization construct that arbitrates for aresource
through the use of several shared variablesthat indicate which processor is using the resource. Each
processor has its own flag variable that it shares with all other processors in the system. When a
processor attempts to enter the critical section, it setsits flag to one and checks to make sure the
flags for the other processors are all zero.

The codein Figure 13-6 illustrates the core of this agorithm for atwo-way multi-processor system.
In this example, a processor makes a single attempt to acquire the resource; typically, this code
would appear in aloop. Although there is an array of per-processor flag variables, the code uses

fl ag_me andf | ag_you to indicate to the flag variables for the processor attempting to obtain the
resource and the other remote processor, respectively.

Dekker’s algorithm assumes a sequential consistency ordering model. Specifically, it assumes that
loading zero from f | ag_you impliesthat a processor’s load and stores to the flag variables occur
before the other processor’s load and store to the flag variables. If thisis not the case, both
processors can enter the critical section at the same time.

Using unordered loads or storesto accessthef | ag_me and f | ag_you variables does not guarantee
correct behavior as the processor may re-order the accesses asit sees fit. Using an acquire load and
release store is also not sufficient to ensure correct behavior because the ordering semantics always
allow acquire loads to move earlier and release stores to move later. In the absence of thenf , itis
possible for the load from f | ag_you to occur before the storeto f | ag_ne; even with acquire and
release operations.

Thefirst | d8 need not be an acquire load because of the control-flow that skipsthe critical section:
thisload must become visible before any memory operationsin the critical section because the load
must return datain order for the compare and branch to resolve.

MP Coherence and Synchronization 13-21

intel.

Figure 13-6. Dekker’s Algorithm in a 2-way System

13.4.4

/1 The flag_ne variable is zero if we are not in the synchronization and
/1 critical section code and non-zero otherwise; flag_you is simlarly
set
/1 for the other processor. This algorithmdoes not retry access to the
/'l resource if there is contention.
I
dekker :
nmov rl =1 ;; /Il my flag = 1 (i want
access!)
st8 [flag_nme] =r1
nmf // make st visible first
1 d8 r2 = [flag_you] ;; /1 is other’s flag 0?
cnp.eq pl, pO =0, r2
(pl) br.cond. spnt cs_skip ;; /1 if not, resource in use
cs_begi n:
/1 critical section code goes here...
cs_end:
cs_ski p:
st8.rel[flag_nme] =10 ;; /'l rel ease | ock

Lamport’s Algorithm

Like Dekker’s Algorithm, Lamport’s Algorithm [L85] also provides mutual exclusion for critical
sections of code. Lamport’s algorithm is very simple and, in the case of non-contested locks, only
requires two read and two write memory accesses to enter the critical section. The algorithm uses
two shared variables, x and y, and a shared array, b, that identify the process entering and using the
critical section. Figure 13-7 presents Lamport’s Algorithm 2 [L85] for an 1A-64 processor.

Lamport’s algorithm expects that a processor that enters the critical section performs the set of
operations; S={storex, load y, storey, load x} 1. To enforce this ordering, the |A-64 architecture
requires a memory fence in the middle of the { store x, load y} sequence and the { storey, load x}
sequence. No combination of ordered semantics on the operations in each of these sequences will
guarantee the correct ordering.

It is not possible for the storey in the second segquence to passthe load y in the first sequence
because of the data dependency from the load y to the compare and branch. If the processor reaches
the storey in the second sequence, the load of y from the first sequence must be visible. Likewise,
it is not possible for memory operations in the critical section to move ahead of the final load x
because of the data dependency between this load and the compare and branch that guards the
critical section.

The accesses to the b array allow the algorithm to correctly handle contention for the lock. In such
cases, the algorithm backs off and re-trys.

1. There are some additional operations on the b array that are interposed in this sequence when contention for the
resource occurs.

13-22

MP Coherence and Synchronization

intel.

Figure 13-7. Lamport’s Algorithm

/1 The proc_id variable holds a unique, non-zero id for the process that
/] attenpts access to the critical section. x and y are the synchroni zation
/1 variables that indicate who is in the critical section and who is attenpting
/1 entry. ptr_b_1 and ptr_b_id point at the 1'st and id th el enent of b[].
/1
| anport:

| d8 rl = [proc_id] /1 rl = unique process id
start:

st8 [ptr_b_id] =r1 /Il b[id] = “true”

st8 [x] =711 /1l x = process id

nf /1l MJUST fence herel

| d8 r2 = [yl

cnp.ne pl, p0 =0, r2;; [l if (y '=0) then...
(pl) st8 [ptr_b_id] =r0 [l ... b[id] = “fal se”
(pl) br.cond.sptk wait_y [l ... wait until y ==

st8 [y] =11 I/l y = process id

nf /1 MJUST fence herel

| d8 r3 = [x]

cnp.eqpl, pO =rl, r3;; [l if (x ==id) then...
(p1) br.cond. sptk cs_begin /1 ... enter critical section

st8 [ptr_b_id] =7r0 [l b[id] = “fal se”

| d8 r3 = [ptr_b_1] Il r3 = &[1]

nov ar.lc = N1 ;; /1 Ic = nunber of processors - 1
wait_b:

| d8 r2 =[r3]

cnp.ne pl, pO0O =rl, r2 [l if (b[j] !'=0) then...
(pl) br.cond.spnt wait_b ;; [l ... wait until b[j] ==

add r3 =28, r3 [l r3 = &b[j +1]

br.cl oop.sptkwait_b ;; /1 1oop over b[j] for each j

1d8r2 = [y] ;;

cnp.nepl, pO =r2, rl ;; [l if (y !=1id) then...
(p1) br.cond. sptk cs_begin /1 ... enter critical section
wait_y:

| d8 r2 =1yl [l wait until y ==

cnp.ne pl, p2 =0, r2
(p1) br.cond.spnt wait_y

br start /1 back to start to try again
cs_begin:

/1 critical section code goes here...
cs_end:

st8 [y] =710 /1 release the | ock

st8.rel[ptr_b_id] =r0;; /1 b[id] = “fal se”

MP Coherence and Synchronization 13-23

13.5 Updating Code Images

There are four general techniques for updating code imagesin order to modify the code stream of a
local or remote processor.

 Self-modifying code or code that modifies its own image.

» Cross-modifying code or code that modifies the image of code running concurrently on
another processor.

 Programmed |/O for paging of code pages.
» DMA for paging of code pages.

The next four sections discuss these techniques in greater depth.

Toillustrate the code sequences for self- and cross-modifying code, the examplesin this section use
the syntax “st [foo] = new’ to represent agroup of aligned stores that change the instruction at
address f oo to the instruction “new’. The |A-64 architecture requires that the instruction stream
see aligned stores atomically. In addition, the syntax “f ¢ f 0o” represents agroup of flush cache
instructions that flush the cache ling(s) that contain the instruction at addressf oo. Updating more
than one instruction simply requires the appropriate store/flush “pair” for each updated instruction?.

13.5.1 Self-modifying Code

Figure 13-8 presents the | A-64 instruction sequence necessary to update a code image location on
the local processor only.

Figure 13-8. Updating a Code Image on the Local Processor

pat ch_| ocal :

st [code] = new_inst /1l wite new instruction
fc code ;; // flush new instruction
sync.i ;; /1 sync i streamwth store
srlz.i ;; I/ serialize

/'l Local caches and pipeline are now coherent with
new_ inst. ..

This code fragment changes the instruction at the address code to the new instruction new_i nst .
After executing this code, the change is visible to both the local processor’s caches and its pipeline.

Thest andf ¢ instructions first update the code image and then invalidate the cache ling(s) that
contain the updated instruction. Thef ¢ is necessary because the | A-64 architecture does not
require instruction caches to be coherent with data storesfor |A-64 code. Next, thesync. i ensures
that the code update is visible to the instruction stream of the local processor and orders the cache
flush with respect to subsequent operations by waiting for the prior f ¢ instructions to be made
visible. Finally, thesr | z. i instruction forces the pipeline to re-initiate any instruction group
fetches it performed after thesr | z. i and also waits for thesync. i to complete; effectively
making the pipeline coherent with the updated code image.

1. This description hides some of the complexity involved. Specificaly, the flush and store operations have different
sizes. Whereas multiple store instructions are necessary to update a 16 byte instruction, asingle cache line flush inval-
idates at least two 16 byte instructions.

13-24 MP Coherence and Synchronization

13.5.2

The serialization instruction is not necessary if software can guarantee that the processor
encounters an event that re-initiates code fetches performed after the sync. i , such asan
interruption or anr f i , before executing the new code. Events such as an interrupt or r f i both
perform an instruction serialization which in this example waits for the sync. i to complete and
then re-initiates code fetches.

Cross-modifying Code

Consider a multi-threaded program for a multiprocessor system that dynamically updates some
procedure that any processor in the system may execute. The program maintains several digoint
buffersto hold the new code and requires a processor to execute an | P-relative branch instruction at
some address x to reach the code. In this scenario, the program updates the procedure by emitting
the new code into a different buffer and then patching the branch at address x to target this new
buffer. By carefully writing the update code, software can ensure that any processor in the system
sees either:

» Theoriginal branch at address x that targets the original code in the old buffer along with the
original code, or

« The new branch at address x that targets the new code in the new buffer along with the new
code.

The code in Figure 13-9 illustrates an optimized 1A-64 code sequence that implements the
cross-modifying code for this example.

Figure 13-9. Supporting Cross-modifying Code without Explicit Serialization

pat ch:
st [new_code] = new_i nst /!l wite new instruction
fc new_code ;; /1 flush new instruction
sync.i ;; /1l sync i streamwth store

/1 Update the target of the branch that junps to the updated code. This
/1 branch MJUST be ip-relative. Before executing the follow ng store,
/1 the branch junps to sonewhere other than “new_code”.
I
st.rel [x] = “branch <new_code>"

/1 If it is desired to propagate “branch <new code>" to all other
/'l processors now, the follow ng code is al so necessary:
I

fc X /1 flush branch
sync.i ;; /1l sync i streamwth store
nf ;; /1 fence

To reach the new code at new_code, the processor executes the branch instruction at x. Initially,
this branch jumps to an address other than new_code.

The release store ensures a processor cannot see the new branch at address x and the original code
at addressnew_code. That is, if aprocessor encounters“br anch <new_code>" at address x, then
the processor’s instruction cache must be coherent with the code image updates applied before the
release store that updates the branch.

MP Coherence and Synchronization 13-25

intel.

If remote processors may see either the old or new code sequence, the final three instructionsin
Figure 13-9 are not necessary. In this case, the remote processors see the code image updates at
some point in the future. In the meantime, they continue to execute the old code.

The release store ensures that the code image updates are made visible to the remote processorsin
the proper order (i.e. new_code is updated before the branch at address x is updated). Using the

final three instructions ensures that the remote processors will see the new code the next time they
execute the branch at address x.

On the local processor, the branch at address x also serves to force the pipeline to be coherent with
the code image update the machine without requiring an interrupt, r f i instruction, or srl z. i
instruction. Table 13-1 enumerates the potential pipeline behaviorsto illustrate this point.

Table 13-1. Potential Pipeline Behaviors of the Branch at x from Figure 13-9

13.5.3

13-26

Pipeline Operation Scenario #1 Scenario #2 Scenario #3 Scenario #4
Fetch branch at X Old branch Old branch New branch New branch
Predict branch at X Old target New target Old target New target

Code at target

Old instruction

“New” instruction
(but could be stale)

Old instruction

New instruction

Retire branch at X

Old retires

Must flush due to
misprediction

Must flush due
to misprediction

New retires

In the first and fourth scenarios, the pipeline fetches and executes either the old branch and old
target instruction or the new branch and new target instruction. Note that if the pipeline seesthe
new branch, it must also see the new target instruction by virtue of the way the code in Figure 13-9
iswritten. Either of these behaviorsis consistent.

In the second and third scenarios, the pipeline obtains a mix of the old or new branch and the old or
new target instruction. In these cases, the pipeline must flush because the predicted target will not
agree with the branch instruction.

This behavior is not guaranteed unless the branch at address x is |P-relative and taken. The branch
must be | P-relative to ensure that both the instruction and target address can be atomically updated
(thisis only possible with an | P-relative branch because in this type of branch, the target addressis
part of the instruction).

Programmed I/O

Programmed 1/0 requires that the CPU copy data from the device controller to main memory using
load instructionsto read from the device and store instructions to write data into cacheable memory

(page-in).

To ensure correct operation, | A-64 software must exercise care in the presence of Programmed 1/0
due to two features of the architecture. First, the |A-64 architecture does not require an
implementation to maintain coherency between local instruction and data caches for | A-64 code.
Second, the | A-64 architecture allows aggressive instruction prefetching. Specifically, an |1A-64
implementation can move any location from a cacheable page into its instruction cache(s) any time
atrandation for the location indicates that the page is present (i.e. the p bit of the trandation is set).

MP Coherence and Synchronization

A system that performs Programmed /O can use a sequence similar to that shown in Figure 13-8 to
perform the data movement. Figure 13-10 presents a code sequence that updates a code image on
both the local and remote processors.

Figure 13-10. Updating a Code Image on a Remote Processor

patch_| _and_r:

st [code] = new_inst /1l wite new instruction
fc code ;; /1 flush new instruction
sync.i ;; /1l sync i streamwth store

/1 If the local processor nust ensure that renbte processors see the
/1 preceding nenory updates before any subsequent nenory operations,
/1 the following code is al so necessary.

/1
nf ;; /1 make store visible to
ot hers

/1 If the local processor is going to execute the code and cannot
/1 cannot ensure instruction streamserialization, the follow ng code
/1 is al so necessary,
I
srlz.i ;; Il serialize nmy pipeline

/'l Local caches and pipeline are now coherent with new_.inst, renpte
/1 caches are now coherent with new.inst...

This code fragment changes the instruction at the address code to the new instruction new _i nst .
After executing this code, the changeisvisibleto thelocal and remote processor’s caches and to the
local processor’s pipeline, but may not be visible to remote processor’s pipelines.

The sequence in Figure 13-10 is similar to the code from Figure 13-8 except an nf instruction
occurs betweenthesync.i andsrl z. i instructions. The fence is necessary if software must
ensure that the code image update is made visible to al remote processors before any subsequent
memory operations from the local processor. Although the sync. i , which ordersthe st /f ¢ pair,
has unordered semantics, it is an orderable operation and thus obeys the release or fence semantics
of subsequent instructions (unlike an f ¢ instruction; see Section 4.4.7, “ Sequentiality Attribute and
Ordering” for more information).

Because the pipeline is not snooped, the code in Figure 13-10 cannot ensure that a remote
processor’s pipeline is coherent with the code image update. In thelocal case shownin Figure 13-8,
thesrl z. i instruction enforcesthis coherency. As aresult, the remote processor must serialize its
instruction stream beforeit executes the updated code in order to ensure that a stale copy of some of
the updated code is not present in the pipeline. This can be accomplished by explicitly executing a
srl z. i before executing the updated code or by forcing an event that re-initiates any code fetches
performed after the f ¢ is observed to occur, such asan interruptionorrfi .

Several optimizations to this code are possible depending on how software uses the updated code.
Specifically, thenf andsrl z.i can be eliminated under certain circumstances.

MP Coherence and Synchronization 13-27

13.5.4

13.6

13-28

intel.

Thesrl z. i isnot necessary if thelocal processor that updates the code image does not ever
execute the new code. In this case, the local processor does not require its pipeline to be coherent
with the changes to the code image. The fence is not necessary if the code image update can be
made visible to remote processors in any relationship with subsequent memory operations from the
local processor.

Finally, software may also eliminatethenf orsrl z. i instructionsif it guarantees that these
operations will take place el sewhere (e.g. in the operating system) before the processor attempts to
execute the updated code. For example, context switch routines must contain a memory fence (see
Section 13.3 on page page 13-18). Thus, the fence is not required if a context switch always occurs
before any program can use the updated code.

DMA

Unlike Programmed 1/O, which requires intervention from the CPU to move data from the device
to main memory, data movement in DMA occurs without help from the CPU. An |A-64 processor
expects the platform to maintain coherency for DMA traffic. That is, the platform issues snoop
cycles on the bus to invalidate cacheable pages that a DMA access modifies. These snoop cycles
invalidate the appropriate lines in both instruction and data caches and thus maintain coherency.
This behavior alows an operating system to page code pages without taking explicit actions to
ensure coherency.

Software must maintain coherency for DMA traffic through explicit action if the platform does not
maintain coherency for this traffic. Software can provide coherency by using the flush cache
instruction, f c, to invalidate the instruction and data cache lines that a DMA transfer modifies.
Code such asthat shown in Figure 13-8 on page 13-24 and Figure 13-10 on page 13-27 accomplish
this task.

References
[AGY5] S. V. Adveand K. Gharachorloo. “Shared memory consistency models: A Tutorial,” Rice
University ECE Technical Report 9512, September 1995.

[L79] L.Lamport. “How to make a multiprocessor computer that correctly executes
multiprocess programs,” |EEE Transactions on Computers, C-28(9):690-691, September
1979.

[HP96] J.L.Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach,
second edition, Morgan-Kaufmann, 1996.

[D65] E.W. Dijkstra. “Cooperating sequential processes,” Eindhoven, the Netherlands,
Technological University Technical Report EWD-123, 1965.

[L85] L.Lamport.“A Fast Mutual Exclusion Algorithm,” Compag Systems Research Center
Technical Report 7, November 1985.

MP Coherence and Synchronization

intel.

Interruptions and Serialization 14

This chapter discusses the | A-64 interruption and serialization model. Although 1A-64 isan
explicitly parallel architecture, faults and traps are delivered in program order based on IP, and
from left-to-right in each instruction group. In other words, faults and traps are reported precisely
on the instruction that caused them.

14.1 Terminology

In the IA-64 architecture, an interruption is an event which causes the hardware automatically to
stop execution of the current instruction stream, and start execution at the instruction address
corresponding to theinterruption handler for that interruption. When this happens, we say that an
interruption has been delivered to the processor core.

There are two classes of interruptionsin 1A-64. | VA-based interruptions are handled by the
operating system (OS), at an address determined by the location of the interrupt vector table (IVT)
and the particular interruption that has occurred. PAL -based interruptions are handled by the
processor firmware. PAL-based interruptions are not visible to the OS, though PAL may notify the
OSthat a PAL-based interruption has occurred; see Section 24.3, “Event Handling in Firmware” on
page 24-9.

The architecture supports several different types of interruptions. These are defined below:

A fault occurswhen OSintervention isrequired before the current instruction can be executed.
For example, if the current instruction misses the TLBs on adatareference, aData TLB Miss
fault may be delivered by the processor. Faults are delivered precisely on the instruction that
caused the fault. The faulting instruction and all subsequent instructions do not update any
architectural state (with the possible exception of subsequent instructions which violate a
resource dependency?). All instructions executed prior to the faulting instruction update all
their architectural state before the fault handler begins execution.

» A trap occurswhen OS intervention is required after the current instruction has completed.
For example, if the last instruction executed was a branch and PSR.th is 1, a Taken Branch trap
will be delivered after the instruction completes. Traps are delivered precisely on the
instruction following the trapping instruction. The trapping instruction and all prior
instructions update all their architectural state before the trap handler begins execution. All
instructions subsequent to the trapping instruction do not update any architectural state.

« When an external or independent agent (1/0O device, timer, another processor) requires
attention from the processor, an interrupt occurs. There are several types of interrupts. An
initialization interrupt occurs when the processor has received an initialization request. A
Platform Management Interrupt (PMI) can be generated by the platform to request features

1. When an interruption is delivered on an instruction whose instruction group contains one or more illegal depen-
dency violations, instructions which follow the interrupted instruction in program order and which violate the
resource dependency may appear to complete before the interruption handler begins execution. Software cannot
rely upon the value(s) written to the resource(s) whose dependencies have been violated; the value(s) are undefined.
For details refer to Section 3.4, “Instruction Sequencing Considerations” in Volume 1.

Interruptions and Serialization 14-1

14.2

14-2

intel.

such as power management. Initialization interrupts and PMIs are PAL-based interruptions. An
external interrupt occurs when an agent in the system requires the OS to perform some
service on its behalf. External interrupts are IVVA-based interruptions. Interrupts are delivered
asynchronously with respect to program execution. The instruction upon which an interrupt is
delivered may or may not be related to the interrupt itself.

« Anabort is generated by the processor when a malfunction (Machine Check) is detected, or
when a processor reset occurs. Aborts are asynchronous with respect to program execution. If
caused by a particular instruction, an abort may be delivered sometime after that instruction
completes. Aborts are PAL-based interruptions.

An interruption handler returns from interruption when it executesanrfi instruction. Ther f i
instruction copies state from specific control registers known as interruption registersinto their
corresponding architectural state (e.g. IIPis copied into I P and execution begins at that instruction
address). Whether or not the state that isrestored by ther f i isthe same state that was captured
when the interruption occurred is up to the operating system.

Interruption Vector Table

The Interruption Vector Address (IVA) control register defines the base address of the |A-64
interruption vector table (1VT). Each I VA-based interruption has its own architected offset into this
table as defined in Section 5.7, “1VA-based Interruption Vectors”. For the remainder of this section,
“interruption” refersto an 1VA-based interruption, unless otherwise noted.

When an interruption occurs, the processor stops execution at the current P, sets the current
privilege level to 0, and begins fetching instructions from the address of the entry point to the
interruption handler for the particular interruption that occurred. The address of this entry point is
defined by the base address of the IVT contained in the VA register and the architected offset into
the table according to the interruption that occurred.

The IVT is 32Kbytes long and contains the code for each |A-64 and | A-32 interruption handler.
Execution of the interruption handler begins at the entry point. The interruption handler may be
contained entirely in the IVT, or the handler may branch to code outside the IV T if more space is
needed.

When an interruption occurs, if the processor is operating with instruction address translation
enabled (PSR.it is 1), then the addressin I VA istreated as a virtual address; otherwise, it istreated
asaphysical address. Whenever an interruption may occur (i.e. whenever external interrupts are
not masked or disabled, or whenever an instruction may raise afault or trap), the software must
ensure that the processor can safely reference the IVT. Asaresult, the IVT must be permanently
resident in physical memory. If instruction address trandation is enabled, the IVT must be mapped
by an instruction trandlation register and must point at avalid physical page frame. When
instruction address trandlation is disabled, the I VA register should contain the physical address of
the base of the IV T. Software must further ensure that instruction and memory references from
low-level interruption handlers do not generate additional interruptions until enough state has been
saved and interruption collection can be re-enabl ed.

There are many more |A-64 and 1A-32 interruptions than there are interruption vectorsin the IVT.
As specified in Section 5.6, “Interruption Priorities’ there is a many-to-one relationship between
interruptions and interruption vectors. The interruptions that share a common interruption vector
(and hence, the code for an interruption handler) can determine which interruption occurred by

Interruptions and Serialization

14.3

14.3.1

reading the Interruption Status Register (ISR) control register. See Chapter 8, “IA-64 Interruption
Vector Descriptions’ and Chapter 9, “1A-32 Interruption Vector Descriptions’ for details of the
specific ISR settings for each unique interruption.

Interruption Handlers

Execution Environment

Asdefined in Section 5.5, “1VA-based Interruption Handling”, the processor automatically clears
the PSR.i and PSR.ic bits when an interruption is delivered. This disables external interrupts and
interrupt state collection, respectively. PMI delivery is also disabled while PSR.ic is O; other
PAL-based interruptions can be delivered at any point during the execution of the interruption
handler, regardless of the state of PSR.i and PSR.ic.

In addition to clearing the PSR.i and PSR.ic bits, the processor al so automatically clearsthe PSR.bn
bit when an interruption is delivered, switching to bank O of general registers GR16 - GR31. This
provides the interruption handler with its own set of registers which can be used without spilling
any of the interrupted context’s register state, effectively saving GR16 - GR3L1 of the interrupted
context. (This assumes PSR.bn is 1 at the time of interruption; see Section 14.4.3 for how to deal
with the case where PSR.bn is O at the time of interruption.)

As specified in Section 3.3.7, “Banked General Registers’, GR24 - GR31 of bank 0 should not be
used while PSR.ic is 1. By firmware convention, PAL-based interruption handlers may use these
registers without preserving their values when PSR.ic is 1. When PSR.ic is 0, software may safely
use GR24 - GR31 of bank 0 as scratch register.

Several other PSR bits and the RSE.CFLE are modified by the hardware when an interruption is
delivered. Table 14-1 summarizes the execution environment that interruption handlers operatein,
and what each PSR bit and the RSE.CFLE values mean for the interruption handler.

Table 14-1. Interruption Handler Execution Environment (PSR and RSE.CFLE Settings)

PSR Bit New Value Effect on Low-level Interruption Handle
be DCR.be Byte order used by handler is determined by be-bit in DCR register.
ic&i 0 Disables interruption collection and external interrupts. Bank 0 is
bn 0 made active bank. This is discussed above
dt, rt, it, pk unchanged Instruction/Data/RSE address translation and protection key setting
remain unchanged.
dfl & dfh 0 Floating-point registers are made accessible. This allows handlers
to spill FP registers without having to toggle FP disable bits first.
mfl, mth unchanged Modified bits indicate which registers were touched. See

Section 15.2.2, “Preservation of Floating-point State in the OS” on
page 15-5 for details.

pp DCR.pp Privileged Monitoring is determined by pp-bit in DCR register. By
default, user counters are enabled and performance monitors are

up unchanged unsecured in handlers. See Chapter 23, “Performance Monitoring
sp 0 Support” for details.

di 0 Instruction set transitions are not intercepted.

si 0 Interval timer is unsecured.

Interruptions and Serialization 14-3

intel.

Table 14-1. Interruption Handler Execution Environment (PSR and RSE.CFLE Settings)

PSR Bit New Value Effect on Low-level Interruption Handle
ac 0 No alignment checks are performed.
db, Ip, th, ss 0 Debug breakpoints, lower-privilege interception, taken branch and
single step trapping are disabled.
cpl 0 Current privilege level becomes most privileged.
is 0 Instruction set is set to IA-64. Handlers execute |1A-64 instructions.
id, da, ia, dd, ed 0 Instruction/data debug, access bit and speculation deferral bits are

disabled. For details, refer to Section 5.5.4, “Single Instruction Fault
Suppression” and Section 5.5.5, “Deferral of IA-64 Speculative

Load Faults”.
ri 0 Interrupt handler starts at first instruction is bundle.
mc unchanged Software can mask delivery of some machine check conditions by

setting PSR.mc to 1, but the processor hardware does not set this
bit upon delivery of an IVA-based interruption. Delivery of resets
and BINITs cannot be masked.

RSE.CFLE 0 Allows interruption handler to service faults in presence of an
(not a PSR bit) incomplete current register stack frame. This can happen when a
mandatory RSE load takes an exception during when RSE is
servicing a register stack underflow. For details refer to Section 6.6,
“RSE Interruptions”.

14.3.2 Interruption Register State

The | A-64 architecture provides a set of hardware registers which, if interruption collection is
enabled, capture relevant interruption state when an interruption occurs. The state of the PSR.ic bit
at the time of an interruption controls whether collection is enabled. In this section, it is assumed
that interruption collection is enabled (PSR.icis 1); see Section 14.4.3 for details on handling
interruptions when collection is disabled (PSR.ic is 0). For details on collection of interruption
resources for each interruption vector refer to Chapter 8, “1A-64 Interruption Vector Descriptions”
and Chapter 9, “1A-32 Interruption Vector Descriptions’.

An |A-64 processor provides the following interruption registers for collecting information about
the latest interruption or the state of the machine at the time of the interruption:

* IPSR — A copy of the processor status register (PSR) at the moment the interruption occurred.
The OS can use the IPSR to determine the value of any PSR bit when the interruption
occurred. The contents of PSR are restored into the PSR when the OS executesanr f i
instruction. If the OS wishesto change the PSR state of the interrupted process (e.g. to step
over an instruction debug fault), it can do so by modifying the IPSR contents before executing
ther fi . When an interruption occurs, the processor sets IPSR.ri to the slot nhumber (0, 1, or 2)
of the instruction that was interrupted.

 1IP— A copy of theinstruction pointer (IP) where the interruption occurred. The instruction
bundle address contained in 1P, along with the IPSR.ri field, defines the instruction whose
execution was interrupted. This instruction has not completed (i.e. it has not retired), so when
the OS returns to the interrupted context, typically thisisthe instruction at which execution of

14-4 Interruptions and Serialization

14.3.3

the interrupted context resumes’. When the OS executesanr f i instruction, the contents of 11P
are copied into the I P register and the processor begins fetching instructions from this address.

¢ ISR — Contains extrainformation about the specific interruption that occurred. Thisregister is
useful for determining exactly which interruption occurred for interruptions which share the
same |VT vector.

* IFA —Faultsrelated to addressing (e.g. Data TLB fault) materialize the faulting address in this
register.

¢ ITIR — Faultsrelated to addressing materialize the default page size and permission key for the
region to which the faulting address belongs in this register.

* |[IPA — Contains the instruction bundle address of the last instruction to retire successfully
while PSR.ic was 1. In conjunction with ISR.ei, I PA can be used by software to locate the
instruction that caused a trap or that was executed successfully prior to afault or interrupt.

« |IM —Instructions that take a Speculation fault (e.g. chk) or a Break Instruction fault (e.g.
br eak. i) write thisregister with their immediate field when taking these faults. For these
cases, the 1M register can be used to emul ate the instruction, or to passinformation to the fault
handler; for example, software can use a particular immediate field value in abreak instruction
to indicate to the operating system that a system call is being performed.

¢ IHA —Faults related to the VHPT place the VHPT hash address in this register. See
Section 16.3, “Virtual Hash Page Table” on page 16-10 for details.

» IFS—Thisregister can be used by software to save a copy of the interrupted context’s PFS
register, but an interruption handler must do this explicitly; hardware only clears the valid bit
(IFS.v) upon interruption. See below for details.

No other architectural state is modified when an interruption occurs. Note that only I1P, IPSR, ISR,
and IFS arewritten by all | A-64 interruptions (assuming PSR.icis 1 at the time of interruption); the
other interruption control registers are only written by certain interruptions, and their values are
undefined otherwise. For details on which faults update which interruption resources refer to
Chapter 8, “IA-64 Interruption Vector Descriptions’ and Chapter 9, “IA-32 Interruption Vector
Descriptions’.

Resource Serialization of Interrupted State

Asdefined in Section 3.2, “ Serialization”, 1A-64 control register updates do not take effect until
software explicitly serializes the processor’s data or instruction streamwithasrl z. d orasrl z. i
instruction, respectively. Control register updates that change a control register’s value and that
have not yet been serialized are termed “in-flight”. Refer to Section 3.2.3, “ Definition of In-flight
Resources’ for a precise definition.

When an interruption is delivered and before execution begins in the interruption handler, the
processor hardware automatically performs an instruction and data serialization on all “in-flight”
control registers, except for 4 resources:. the IVA control register, DCR.be, DCR.pp, and PSR.ic.

1. When an instruction faults because it requires emulation by the OS, the OS will normally skip the emulated instruc-
tion by returning to the instruction bundle address and slot number that follows 1P in program order. It does so by
writing the next in-order bundle address and slot number into IIP and IPSR.ri, respectively, before executing an
r fi instruction. Details on emulation handlersisin Chapter 18, “Instruction Emulation and Other Fault Handlers'.

Interruptions and Serialization 14-5

14.3.4

14.4

14.4.1

14-6

intel.

Asdescribed in Section 14.3.1 above, these four resources determine the execution environment of
the interruption handler. As aresult, to update these four resources, software must ensure that
external interrupts are disabled and that no instruction or data references will take an exception
until the resource update has been appropriately serialized. Typically, the code toggling these four
resources is mapped by an instruction translation register to avoid TLB related faults.

For example, assume that GR2 contains the new value for IVA and that PSR.i is 1. To modify the
IVA register, software would perform the following code sequence, where the code page is mapped
by an instruction translation register or instruction translation is disabled:

rsmpsr.i /] external interrupts disabled upon next instruction
mov crival =r2

srlz.i /1 writing |VA requires instruction serialization

ssm psr. i /] external interrupts will be re-enabled after next srlz

Resource Serialization upon rfi

Anrfi instruction also performs an instruction and a data serialization operation when it is
executed. Any values that were written to processor register resources by instructionsin an earlier
instruction group than ther f i will be observed by the returned-to instruction, except for those
register resources which are also written by ther f i itself, in which case the value written by the
rfi will beobserved. This makes the interruption handler more efficient by avoiding additional
data and instruction serialization operations before returning to the interrupted context.

Interruption Handling

The | A-64 operating systems need to distinguish the following interruption handler types:

* Lightweight interruptions: Lightweight interruption handlers are allocated 1024 bytes (192
instructions) per handler in the IVT. These are discussed in Section 14.4.1.

» Heavyweight interruptions: Heavyweight interruption handlers are all ocated only 256 bytes
(48 instructions) per handler in the IVT. These are discussed in Section 14.4.2.

* Nested interruptions: If an interruption is taken when PSR.ic was 0 or was in-flight, a nested
interruption occurs. Nested interruptions are discussed in Section 14.4.3.

Lightweight Interruptions

Lightweight interruption handlers are allocated 1024 bytes (192 instructions) per handler in the
IVT. Typically, lightweight handlers are written in | A-64 assembly code, and run in their entirety
with interruption collection turned off (PSR.ic = 0) and external interrupts disabled (PSR.i = 0).
Because these lightweight handlers are usually very short and performance-critical, they are
intended to fit entirely in the space allocated to them in the IVT. An example of alightweight
interruption handler isthe Data TLB vector (offset 0x0800). The first 20 vectorsin the IV T, offsets
0x0000 (VHPT Trandation vector) through 0x4c00 (reserved), are lightweight vectors. Typical
lightweight handlers deal with instruction, dataor VHPT TLB Misses, protection key miss
handling, and page table dirty or access bit updates.

Interruptions and Serialization

14.4.2

A typical lightweight interruption handler can operate completely out of register bank 0. If the bank
0 registers provide sufficient storage for the handler, none of the interrupted context’s register state
need be saved to memory, and the handler does not need to use stacked registers. Assuming no
stacked registers are needed, the lightweight interruption handler can operate with an incomplete
current register stack frame, obviating the need for cover and al | oc instructionsin the handler.
This also allows the TLB related handlersto service TLB misses that result from mandatory RSE
loads to the current frame.

Heavyweight Interruptions

Heavyweight interruption handlers are alocated only 256 bytes (48 instructions) per handler in the
IVT. This stub provides enough space to save minimal processor state, re-enable interruption
collection and external interrupts, and branch to another routine to handle the interruption. Unlike a
lightweight interruption handlers described above, heavyweight interruption handlers use general
register bank 0 only until they can establish a safe memory context for spilling the interrupted
context’s state. This allows heavyweight handlers to be interruptible and to take exceptions.

A heavyweight handler stub (i.e. the portion of the handler that islocated in the IVT) should
determine exactly which type of interruption has occurred based on its offset in the IVT and the
contents of the ISR contral register. It can then branch out of the IVT to the actual interruption
handler. For some heavyweight interruptions (e.g. Data Debug fault), these handlers are typically
written in ahigh-level programming language; for others (e.g. emulation handlers) the interruption
can be handled efficiently in 1A-64 assembly code.

The sequence given below illustrates the steps that an 1A-64 heavyweight handler needsto perform
to save the interrupted context’s state to memory and to create an interruptible execution
environment. These steps assume that the low-level kernel code, the kernel backing store, and the
kernel memory stack are pinned in the TLB (using atrandation register), so that no TLB misses
arise from referencing those memory pages. The ordering of the steps below is approximate and
other operating system strategies are possible.

1. Copy theinterruption resources (I1P, IPSR, I1PA, ISR, IFA) into bank 0 of the banked
registers. To avoid conflicts with processor firmware, use registers GR24-31 for this
purpose. Baoth register bank 0 and the interruption control registers are accessible, since, as
described in Section 14.3.1, the processor hardware, upon an interruption always switchesto
register bank O, and clears PSR.ic and PSR.i.

Preserve the interrupted the predicate registers into bank O of the banked registers.

3. Determine whether interruption occurred in the operating system kernel or in user space by
inspecting both IPSR.cpl and the memory stack pointer (GR12).

a. If IPSR.cpl iszero and the interrupted context was already executing on akernel stack,
then no memory stack switch is required.

b. Otherwise, software needs to switch to akernel memory stack by preserving the
interrupted memory stack pointer to a banked register in bank 0, and setting up a new
kernel memory stack pointer in GR12.

4. Allocate a“trap frame” to store the interrupted context’s state on the kernel memory stack,
and move the interruption state (I1P, IPSR, I1PA, ISR, IFA, IFS), the interrupted memory
stack pointer and the interrupted predicate registers from the banked registersto the trap
frame.

5. Saveregister stack and RSE state by following the steps outlined in Section 6.11.1, “Switch
from Interrupted Context”.

Interruptions and Serialization 14-7

14-8

10.
11
12.

13.
14.

intel.

a. If IPSR.cpl iszero and the interrupted context was not executing on a kernel backing
store (determined by inspecting BSPSTORE), then the new kernel BSPSTORE needsto
be allocated such that enough spaceis provided for the RSE to spill all stacked registers.
The architectural required maximum RSE spill areais 16KBytes. Asaresult,
BSPSTORE should be offset from the base of the kernel backing store base by at least
16K Bytes. This offset can be reduced if the kernel queries PAL for the actual
implementation specific number of stacked physical registers (RSE.N_STACK_PHYS).
Based on RSE.N_STACK_PHY S, the required minimum offset in bytesis:

8 * (RSE. N_STACK PHYS + 1 + truncate((RSE. N_STACK PHYS + 62)/63))

Otherwise, the interrupted context was already executing on the kernel backing store. In
this case, no new BSPSTORE pointer needsto be setup. The sequencein Section 6.11.1,
“Switch from Interrupted Context”, is still required, however, step 6 in that sequence
can be omitted.

In either case, the interrupted register stack and RSE state (RSC, PFS, IFS, BSPSTORE,
RNAT, and BSP) needs to be preserved, and should be saved either to the trap frame on
the kernel memory stack, or to a newly allocated register stack frame.

Switch banked register to bank one and re-enable interruption collection as follows:

ssm 0x2000 // Set PSRic
bsw. 1; ; I/l Switch to register bank 1
srlz.d // Serialize PSR ic update

With interruptions collection re-enabled, the kernel may now branch to paged code and may
reference paged data structures.

Preserve branch register and application register state according to operating system
conventions.

Preserve general and floating-point register state. If thisis an involuntary interruption, e.g.
an external interrupt or an exception, then software must save the interrupted context’s
volatile general register state (scratch registers) to the “trap frame” on the kernel memory
stack, or to the newly allocated register stack frame. If thisis avoluntary system call then
thereisno volatile register state. Preserved registers may or may not be spilled depending on
operating system conventions. Additionally, | A-64 provides mechanisms to reduce the
amount of floating-point register spills and fills. More details on preservation of register
context are given in Section 15.2, “Preserving Register State in the OS” on page 15-3.

At this point enough context has been saved to allow complete restoration of the interrupted
context. Re-enable taking of external interrupts using the ssm instruction as follows:

ssm 0x4000 ;; // Set PSR i

Thereis no need to explicitly serialize the PSR.i update, unless there is arequirement to
force sampling of external interrupts right away. Without the serialization, the PSR.i update
will occur at the very latest when the next exception causes an implicit instruction
serialization to occur.

Dispatch interruption service routine (can be high-level programming language routine).
Return from interruption service routine.

Disable external interrupts as follows:
rsmO0x4000 ;; // dear PSR i

There is no need to explicitly serialize the PSR.i update, since clearing of the PSR.i bit with
the r sminstruction takes effect at the next instruction group. For detailsrefer to thersm
instruction page in Chapter 2, “1A-64 Instruction Reference” of Volume 3.

Restore general and floating-point register state saved in step 8 above.
Restore branch register and application register state saved in step 7 above.

Interruptions and Serialization

14.4.3

15. Disable collection of interruption resources and switch banked register to bank zero as
follows:

rsm 0x2000// dear PSR ic
bsw. 0; ; /1 Switch to register bank 0
srlz.d [/ Serialize PSR update
16. Restore register stack and RSE state by following the steps outlined in Section 6.11.2,
“Return to Interrupted Context”.

17. Restore interrupted context’s interruption state (1B, IPSR, 11PA, ISR, IFA, IFS) from the
“trap frame” on the kernel memory stack.

18. Restore interrupted context’s memory stack pointer and predicate registers from the trap
frame on the kernel memory stack. This step essentially deallocates the trap frame from the
kernel memory stack.

19. Return from interruption using ther fi instruction.

Many of the steps shown above are identical for different heavyweight interruptions, so unless
there is a specific need to create a different handler for a particular interruption, acommon handler
can be used. Because external interrupt handlers use the | A-64 external interrupt registersto
determine the specific external interrupt vector that needs servicing and to mask off other external
interrupt vectors, an external interrupt handler looks somewhat different. Refer to Section 21.4,
“External Interrupt Delivery” on page 21-3 for details on writing external interrupt handlers.

Nested Interruptions

IA-64 provides asingle set of interruption registers whose updates are controlled by PSR.ic. When
an IVA-based interruption is delivered and PSR.ic is 0 or in-flight (e.g. during a lightweight
interruption handler, or at the beginning of a heavyweight interruption handler), we say that a
nested interruption has occurred. On a nested interruption (other than a Data Nested TLB fault)
only ISR isupdated by the hardware. All other interruption registers preserve their pre-interruption
contents.

With the exception of the Data Nested TL B fault, | A-64 does not support nested interruptions. Data
Nested TLB faults are special and are discussed in Section 16.4.4, “Data Nested TLB Vector” on
page 16-15. The remainder of this section does not apply to Data Nested TLB faults.

When anested interruption occurs, the processor will update ISR as defined in Chapter 8, “1A-64
Interruption Vector Descriptions” and it will set the ISR.ni bitto 1. A value of 1inISR.ni isthe
only indication to an interruption handler that a nested interruption has occurred. Since al other
interruption registers are not updated, there is generally no way for the OS to recover from nested
interruptions; the handler for the nested interruption has no context other than ISR for handling the
nested interruption. If anested interruption is detected, it is often useful for the handler to call some
function in the OS that logs the state of ISR, 1P, and any other relevant register stateto aid in
debugging the problem.

Interruptions and Serialization 14-9

14-10

Interruptions and Serialization

intel.

Context Management 15

This chapter discusses | A-64 specific context management considerations. With 128 general
registers and 128 floating-point registers, | A-64 provides a comparatively large amount of state.
This chapter discusses various |A-64 context management and state preservation rules. This
chapter introduces some | A-64 architectural featuresthat help an operating system limit the amount
of register spill/fill and gives recommendations to system programmers as to how to use some of
theinstruction set features.

15.1 Preserving Register State across Procedure Calls

The | A-64 software and runtime architecture conventions [SWC] define a contract on register
preservation between procedures as follows:

 Scratch Registers (Caller Saves): GR2-3, GR8-11, GR14-GR15, and GR16-31 in register bank
1, FR6-15, and FR32-127. Code that expects scratch registers to hold their value across
procedure callsis required to save and restore them.

* Preserved Registers (Callee Saves): GR4-7, FR2-5, and FR16-31. Procedures using these
registers are required to preserve them for their callers.

» Stacked Registers: GR32-127, when allocated, are preserved by the RSE.

¢ Constant Register: GRO isalways 0. FRO is aways +0.0. FR1 is always +1.0.

» Specia Use Registers: GR1, GR12, and GR13 have specia uses.

Additional architectural register usage conventions apply to GR16-31 in register bank 0 which are
used by low-level interrupt handlers and by processor firmware. For details refer to Section 14.3.1.

| A-64 generd registers and floating-point registers contain three state components: their register
value, their control speculative (NaT/NaTVal) state, and their data speculative (ALAT) state. When
software saves and restores these registers, al three state components need to be preserved. As
described in Table 15-1, softwareis required to use different state preservation methods depending
on the type of register. More details on register preservation are provided in the next two sections.

Table 15-1. Preserving IA-64 General and Floating-point Registers

State Components General Registers FIoatmg—pomt
Registers

GR1-31 (static) GR32-127 (stacked) FR2-127

Register Value st8.spill &1d8.fill RSE automatically stf.spill &lIdf.fill
preserve register value. preserves register value. preserve register value.

Control Speculative | st8.spill &1d8.fill RSE automatically stf.spill &lIdf.fill

State (NaT/NaTVal) | preserve register NaT. preserves register NaT. preserve NaTVal.

Data Speculative Software musti nval a. e RSE and ALAT manage Software musti nval a. e

State (ALAT) a register’'s ALAT state stacked register's ALAT a register’'s ALAT state
when restoring the register. | state automatically. when restoring the register.

Context Management 15-1

15.1.1

intel.

Preserving General Registers

The |A-64 general register fileis partitioned into two register sets: GRO-31 are termed the static
general registersand GR32-127 are termed the stacked general registers. Typically, st 8. spi | |
and| d8. fill instructionsare used to preserve the static GRS, and the processor’s register stack
engine (RSE) automatically preserves the stacked GRs.

Usingthest 8. spi |l | and!l d8. fill instructions, the genera register value and its NaT bit are
always preserved and restored in unison. However, these instructions do not save and restore a
register’'s data speculative state in the Advanced Load Address Table (ALAT). To maintain the
correct ALAT state, software istherefore required to explicitly invalidate aregister’'s ALAT entry
using thei nval a. e instruction when restoring a general register. The |A-64 calling conventions
avoid such explicit ALAT invalidations by disallowing data speculation to preserved registers
(GR4-7) across procedure calls.

Spills and fills of general registersusing st 8. spi | | and1d8.fill causeimplicit collection and
restoration of the accompanying NaT bits to/from the User NaT collection application register
(UNAT). The UNAT register needs to be preserved by software explicitly. The spill and fill
instructions derive the UNAT bit index of aspilled/filled NaT bit from the spill/fill memory address
and not from the spilled/filled register index. As aresult, software needs to ensure that the 512-byte
alignment offset! of the spill/fill memory address is preserved when a general register is restored.
This can be an issue particularly for user context data structures that may be moved around in
memory (e.g. aset j np() jump buffer).

Unlikethest 8. spi || andld8.fill instructions, the register stack engine (RSE) preserves not
only register values and register NaT bits, but it also manages the stacked register’'s ALAT state by
invalidating ALAT that could be reused by software when the physical register stack wraps. This
automatic management of ALAT state across procedure calls permits compilers to use speculative
advanced loads (I d. sa) to perform cross-procedure call control and data speculation in stacked
general registers (GR32-127). Whenever software changes the virtual to physical register mapping
of the stacked registers, the ALAT needsto be invalidated explicitly using thei nval a instruction.
Typicaly this happens during process/thread context switchesor in| ongj np() when the register
stack is reloaded with anew BSPSTORE. Refer to Section 15.5.1.1, “Non-local Control Transfers
(setjmp/longjmp)” on page 15-8.

The RSE collectsthe NaT hits of the stacked general registers within the RNAT application register
and automatically saves and restores accumulated RNAT collections to/from fixed | ocations within
the register stack backing store. RNAT collections are placed on the backing store whenever
BSPSTORE bits{ 8:3} are al one, which resultsin one RNAT collection for every 63 registers.
When software copies a backing store to anew location, it is required to maintain the backing
store's 512-byte alignment offset? to ensure that the RNAT collections get placed at the proper
offset.

1. The specific requirement is that (fill_address mod 512) must be equal to (spill_address mod 512).
2. The specific requirement is that (old_bspstore mod 512) must be equal to (new_bspstore mod 512).

15-2

Context Management

intel.

15.1.2

15.2

Preserving Floating-point Registers

| A-64 encodes afloating-point register’s control speculative state as a special unnormalized
floating-point number called NaTVal. Asaresult, | A-64 floating-point registers do not have a NaT
bit. IA-64 providesthestf.spil | and!| df.fill instructionsto save and restore floating-point
register values and control speculative state. These instructions always generate a 16-byte memory
image regardless of the precision of the floating-point number contained in the register.

Preservation of data speculative state associated with floating-point registers needs to be managed
by software. Aswith the general registers, softwareis required to explicitly invalidate aregister's
ALAT entry using thei nval a. e instruction when restoring a floating-point register. The |A-64
calling conventions avoid such explicit ALAT invalidations by disallowing data speculation to
preserved floating-point registers (FR2-5, FR16-31) across procedure calls.

Preserving Register State in the OS

The software calling conventions described in the previous section apply to state preservation
across procedure call boundaries. When entering the operating system kernel either voluntarily (for
asystem call) or involuntarily (for handling an exception or an external interrupt) additional
concerns arise because the interrupted user’s context needs to be preserved in its entirety.

The | A-64 architecture defines alarge register set: 128 general registers and 128 floating-point
registers account for approximately 1 KByte and 2 KBytes of state, respectively. |A-64 provides a
variety of mechanisms to reduce the amount of state preservation that is needed on commonly
executed code paths such as system calls and high frequency exceptions such as TLB miss
handlers.

Additionally, 1A-64 operating systems have opportunities to reduce the amount of context they
need to save by distinguishing various kernel entry and exit points. For instance, when entering the
kernel on behalf of avoluntary system call, the kernel need only preserve registers as outlined by
the calling conventions. Furthermore, the operating system can be sensitive to whether the
preserved context isan |A-64 or an |A-32 context, especially since the | A-32 register context is
substantially smaller than the full |A-64 register set. Ideally, an | A-64 operating system should use
asingle state storage structure which contains a field that indicates the amount of populated state.

Table 15-2 summarizes several key operating system points at which state preservation is needed.

Scratch GRs and FRs, the bulk of al state, only need to be preserved at involuntary interruptions
resulting from unexpected external interrupts or from exceptions that need to call code writtenina
high-level programming language. The demarcation of floating-point registers FR32-127 as
“scratch” along with architectural support for lazy state save/restore of the floating-point register
file allows software to substantially reduce the overhead of preserving the scratch FRs. See
Section 15.2.2 for details.

In principal, preserved GRs and FRs need not be spilled/filled when entering the kernel. Whatever
function is called from the low-level interruption handler or the system call entry point will itself
observe the calling conventions and preserve the registers. The only occasion when preserved
registers need to be spilled/filled is on aprocess or thread context switch. However, many operating
systems provide get _cont ext () functionsthat provide user context upon demand. Although
such functions are called infrequently, many operating systems prefer to pay the penalty of spilling

Context Management 15-3

intel.

preserved registers at system call and at interruption entry pointsto avoid the complexity of piecing
together user state from various potentially unknown kernel stack locations on demand.
Fortunately, the amount of preserved |1A-64 general register state isrelatively small, and the |A-64

architecture provides additional mechanisms for lazy floating-point state management. See
Section 15.2.2 for details.

Table 15-2. Register State Preservation at Different Points in the OS

15.2.1

15-4

Lightweight | Heavyweight Process/Thread
Register Type Num_ber of System Call In;errup- Int_errup- Context Switch
Registers (voluntary) tions? tions
. . (voluntary)
(involuntary) | (involuntary)
Scratch GRs 23 no spill/fill Untouched spill/ill no spill/fill required
required (use banked required (done at interruption)
registers)
Preserved GRs 4 no spill/fill Untouched no spill/fill spillAill
required (use banked required required
registers)
Stacked GRs 96 Backing Store Untouched Backing Store Synchronous
Switch Switch Backing Store Switch
using flushrs®
Scratch FRs 106 no spill/fill Untouched spill/ill no spill/fill required
required required (done at interruption)
Preserved FRs 20 no spill/fill Untouched no spill/fill spillAill
required required required

a. For details on lightweight interruption handlers refer to Section 14.4.1, “Lightweight Interruptions” on

page 14-6.

b. For details on heavyweight interruption handlers refer to Section 14.4.2, “Heavyweight Interruptions” on

page 14-7.

c. Refer to Section 6.11.3, “Synchronous Backing Store Switch” on page 6-16 for details.

Stacked GRs are managed by the register stack engine (RSE). On process/thread context switches
the operating system is required to completely flush the register stack to its backing storein
memory (using the f | ushr s instruction). In cases where the operating system knows that it will
return to the user process along the same path, e.g. in system calls and exception handling code, the
| A-64 architecture allows operating systems to switch the register stack backing store without
having to flush all stacked registersto memory. This allows such kernel entry pointsto switch from
the user’sto the kernel’s backing store without causing any memory traffic, as described in the next

section.

Preservation of Stacked Registers in the OS

A switch from athread of execution into the operating system kernel, whether on behalf of an
involuntary interruption or a voluntary system call, requires preservation of the stacked registers.
Instead of flushing all dirty stacked register’s to memory, the RSE can be used to automatically
preserve the stacked registers of the interrupted context. Automatic preservation offers
performance benefits: the register stack may contain only ahandful of dirty registers, system call
parameters can be passed on the register stack, and, upon return to the interrupted context the

| oadr s instruction only needsto restore registers that were actually spilled to memory. Since
system call rates scale with processor performance, the RSE offers a key method for reducing the
kernel’s execution time of a system call.

Context Management

15.2.2

To ensure operating system integrity the RSE requires avalid backing store (i.e. one with avalid
page mapping). The validity of the current backing store depends on the interrupted context. If the
interrupted context is itself akernel thread, then its backing store isin aknown state, and no
backing store switch is required (assuming that kernel interruptions are nested). If the interrupted
context is a user process, then the backing store could be pointing at an invalid region of memory,
and software isrequired to redirect the RSE at akernel backing store. Section 6.11.1, “ Switch from
Interrupted Context” on page 6-15 describes the code sequence to switch the RSE backing store
without causing memory traffic.

If the kernel redirects the backing store to a kernel memory region, then the kernel must restore the
backing store of the interrupted context prior to resumption of the interrupted context. The kernel
must also restore the register stack to its interrupted state by manually pulling the spilled registers
from the backing store. The kernel usesthel oadr s instruction to restore stacked registers from the
backing store. Thel oadr s instruction requires the backing store pointer to align with any registers
spilled from the interrupted context. Thusthe kernel should have paired all function calls (br . cal |
instructions) with function returns (br . r et instructions), or manually manipulated the kernel
backing store pointer, so that all kernel contents have been removed from the kernel backing store
prior to the | oadr s. After loading the stacked registers, the kernel can switch to the backing store
of the interrupted frame. This code sequence is described in Section 6.11.1, “ Switch from
Interrupted Context” on page 6-15.

The kernel may occasionally gather the complete interrupted user context, such as to satisfy a
debugger request or to provide extended information to a user signal handler. To provide the
preserved register stack contents, including NaT values, the kernel must extract the user context
values from its backing store.

Preservation of Floating-point State in the OS

A full preservation of 1A-64's large floating-point register file requires approximately 2 KBytes of
memory. To reduce the frequency of such large register spills and fills, the | A-64 architecture offers
additional mechanisms for lazy floating-point state management. These features allow the system
programmer to eliminate many unnecessary floating-point state spills and fills especially around
voluntary and involuntary entriesinto the kernel, e.g. around system calls, external interrupts and
exceptions. Lazy state preservation can provide a significant reduction of memory traffic and hence
faster interrupt handlers and system calls, especially since most interrupt handlers and much system
code rarely perform floating-point computations.

The 126 non-constant floating-point registers are architecturally divided into the lower set
(FR2-31) and the higher set (FR32-127). | A-64 processors provides two floating-point register set
“modified” bits, PSR.mfl and PSR.mfh, which are set by hardware upon awrite to any register in
the lower and higher sets, respectively. The “modified” bits are accessible to auser process through
the user mask. Additionally, two “disabled” bits, PSR.dfl and PSR.dfh, are accessible to the
privileged software alone. Setting a“disabled” bit causes a fault into the disabled-fp vector upon
first use (read or write) of the corresponding register set.

As mentioned earlier, an involuntary kernel entry (e.g. interruption) needs to preserve all scratch
floating-point registers. Instead of blindly always spilling all registers, state spills can be
conditionalized upon the “modified” bitsin the PSR. Additionally, the “disabled” bits allow a
deferred, or lazy, approach to both spills and fills. Thisis particularly useful for “on demand” state
motion in an involuntary interruption handler that does not use many floating-point registers. To
perform deferred spills on the high set, the handler sets PSR.dfh immediately upon entry. Any

Context Management 15-5

15.3

15.4

15-6

intel.

reference to a floating-point register in the high set will then fault into the disabled-fp vector which
spills the corresponding state to a prearranged store before allowing use within the handler. Lazy
state restoration is performed in a similar manner: the handler sets the “disabled” bit just before
exit, causing the first reference by the interrupted context to the disabled set to fault into the
kernel’s disabled floating-point vector which can then restore the appropriate state. Note the
importance of agreeing upon prearranged stores for deferred spill/fill policies and the need for a
mechanism to communicate a past fill or spill.

At process or thread context switches all preserved floating-point registers need to be context
switched. The higher (scratch) set is also managed here if the context-switch was occasioned by an
involuntary interruption (e.g. timer interrupt) which did not already spill the higher set. Use of the
“modified” bits by the OS to determine if the appropriate register set is“dirty” with previously
unsaved data can help avoid needless spills and fills.

The “modified” bits areintentionally accessible through the user mask so that a user process can
provide hints to the OS code about its register liveness requirements. Clearing PSR.mfh, for
instance, suggests that the user process does not see the higher register set as containing useful data
anymore.

Preserving ALAT Coherency

Asdescribed in Section 4.4.5.3, “ Detailed Functionality of the ALAT and Related Instructions’ on
page 4-18 of Volume 1, softwareis required to explicitly invalidate the entire ALAT using the

i nval a instruction whenever the virtual to physical register mapping is changed. Typically this
occurs when the cl r r b instruction is used, when a synchronous backing store switch is performed
(e.g. inauser-level or kernel thread context switch), or when software “ discontinuously” remaps
the register to backing store mapping by resetting BSPSTORE (e.g. by calling | ongj np()).

When returning to a user-process after servicing an involuntary interruptions, an | A-64 operating
system isrequired to invalidate the entire ALAT using thei nval a instruction. Thisisrequired
because the operating system may have targeted advanced |oads at scratch registers, and thereby
altered the user-visible ALAT state.

When returning from a system call, however, full ALAT invalidations can be avoided by using

i nval a. e instructions to selectively invalidate ALAT entries of all preserved registers (GR4-7,
FR2-5, and FR16-31), or by ensuring that these registers where never accessible to software during
the system call (see Section 15.2.2 for details). This works, because at the system call entry
user-code may not have any dependencies on the state of the scratch registers.

System Calls

Reducing the overhead associated with system calls becomes more important as processor
efficiency increases. As processor frequencies and pipeline lengths increase, the typica overhead
associated with flushing the processor pipelineto effect privilege domain crossingsisincreased. To
reduce system call overhead, the 1 A-64 architecture provides an efficient “enter privileged code”
(epc) instruction (page 2-39 of Volume 3) that can be paired with the demoting branch return.

Context Management

154.1

15.4.2

Additionally, the |A-64 architecture provides the traditional br eak instruction (page 2-17 of
Volume 3) to enter privileged mode, that istypically paired with ther fi instruction (page 2-197 of
Volume 3) to return to user mode.

The epc instruction offers higher efficiency than the br eak instruction for invoking a kernel
system call. Whereas a br eak instruction will always cause a pipeline flush to change privilege
level, the epc is designed not to. The br eak instruction also passes the system call number as a
parameter, and requires a table lookup with an indirect branch to the system call. With the epc
instruction, the user application can directly branch to the system call code.

More information about epc based system callsis provided in Section 15.4.1. More information
about br eak based system callsis provided in Section 15.4.2. Regardless of whether the epc or
br eak instruction are used, an | A-64 operating system needs to check the integrity of system call
parameters. In addition to traditional integrity checking of the passed parameter values, the |A-64
system call handler should inspect system call parameters for set NaT bits as described in

Section 15.4.3.

epc/Demoting Branch Return

To execute a system call with epc, auser system call stub branchesto an execute-only kernel page
containing the system call, using the br . cal | instruction. The kernel page executesan epc toraise
the privilege level. The privilege level israised to the privilege level of the page mapping
corresponding to the instruction address of the epc instruction. The page mapping must be
execute-only (see Section 4.1.1.6, “Page Access Rights’ on page 4-9 for details).

After the kernel completesits system call, it returns to the user system call stub with abr . r et
instruction. The br . r et demotes the privilege level, by restoring the privilege level contained
within the PFS application register (PFS.ppl). To ensure operating system integrity epc checksthat
the PFS.ppl field is no greater than the PSR.cpl at thetimethe epc is executed.

Asdescribed in Section 15.2.1, interruptions and system callsin atypical 1A-64 operating system
need to switch to the kernel register stack backing store upon kernel entry. The epc instruction does
not disable interrupts nor does it switch the processor to the kernel backing store. As aresult, code
directly following the epc instruction that runs at increased privilege level is till running on the
caller’s backing store. It is recommended that software disable external interrupts right after the
epc until the switch to the kernel backing store has been completed. Additionally, low-level
operating system handlers should not only use IPSR.cpl, but should also check BSPSTORE, to
determine whether they are running on the kernel backing store (imagine an external interrupt
being delivered on the first instruction after the epc).

break/rfi

The br eak instruction, when issued in thei, f, and m syllables, specifies an arbitrary 21-bit
immediate value. The kernel can choose a specific br eak immediate value to differentiate system
calls from other usage of the br eak instruction (such as debug). The br eak instruction jumps to
the br eak fault handler, which should be a valid address mapping for each user application, and
raises the privilege mode to the most privileged level.

The system call number isan additional parameter passed to the kernel when invoking a system call
viathe br eak instruction. The system call number must reside in afixed location. If stored within
GR32, then the system call stub must rearrange its input parameters to map to the register stack

Context Management 15-7

15.4.3

15.5

15.5.1

155.1.1

15-8

intel.

starting at GR33. Thisregister jostling can be avoided by passing the system call number through a
scratch static general register or by using the br eak immediate itself. Additionally, the system call
can utilize al eight input registers of the register stack for system call parameters.

NaT Checking for NaTs in System Calls

In addition to regular range/value checking on system call arguments, |A-64 operating systems
need to additionally ensure that system call arguments passed in by a user application do not have
any NaT bits set. The following code fragment can be used:

mov nmask = Oxff
clrrrb
/1 creafé regi ster stack frame with only output registers for systemcall args
alloc tmp = ar.pfs, 0, 0, 8 O
shl mask = mask, syscall _arg_count
ﬁﬁv pr = mask, OxffO00 /1 define p8 .. pl5
éﬁp.eq p7 =r0, r0 /] set p7 to true

/1 test’for NaT bits in the input argunments

(p8) cnp.eq.and p7 = r32, r32 /1 and type conpare clears p7 if r32 is NaT
(p9) cnp. eq.and p7 = r33, r33

(pl0) cnp.eq.and p7 =r34, r34

(pll) cnp.eq.and p7 = r35, r35

(pl2) cnp.eq.and p7 = r36, r36

(pl3) cnp. eq.and p7 = r37, r37

(pl4) cnp.eq.and p7 =r38, r38

(pl5) cnp.eq.and p7 = r39, r39

(p7) br. cond. sptk ok_argunents /1 No NaTs found

/Il p7 was cleared by at |east one NaT argunent

Context Switching
This section discusses context switching at the user and kernel levels.

User-level Context Switching

Non-local Control Transfers (setjmp/longjmp)

A non-local control transfer such asthe C languageset j np() /l ongj np() pair requires software
to correctly handle the register stack and the RSE. The | A-64 register stack provides the BSP
application register which always contains the backing store address of the current GR32. This
permits execution of aset j np() without having to manipulate any register stack or RSE state. All
register stack and RSE manipulation is postponed to the much less frequent | ongj np() .

Insetjnp() only the RSC, PFS and BSP application registers have to be preserved. This can be
accomplished by reading these registers, and without having to disable the RSE. The preserved
values will bereferredto assetj np_rsc, setj np_pfs, andsetj np_bsp further on.

Context Management

Inl ongj np() restoration of the appropriate register stack and RSE state is more involved, and
software needs to take the following steps:

1
2.
3.

Stop RSE by setting RSC.mode bits to zero.

Read current BSPSTORE (referred to as cur r ent _bspst or e further down).

Find set j np() 's RNAT collection (r nat _val ue).

a. Compute the backing store location of set j np() 's RNAT collection as follows:
rnat_col | ection_address{63:0} = setjnp_bsp{63:0} | Ox1F8

The RNAT location is computed by setting bits{8:3} of set j np() 'sBSPto all ones.
Thisiswhereset j np() 's RNAT collection will have been spilled to memory.

b. If (current_bspstore > rnat_col | ecti on_address), thenthe required RNAT
collection has already been spilled to the backing store.

c. Otherwiseif (current _bspstore <= rnat_col |l ecti on_address), therequired
RNAT collectionisincomplete and is still contained in the register stack. To materialize
the complete RNAT collection, flush the register stack to the backing store using a
f 1 ushrs instruction.

d. Finaly, loadrnat _val ue fromrnat _col | ecti on_addr ess in memory.
Invalidate the contents of the register stack as follows:

a. Allocate a zero size register stack frame using the al | oc instruction.

b. Write RSC.loadrs field with all zeros and execute al oadr s instruction.
c. Invaidatethe ALAT using thei nval a instruction.

Restore set j np() 'sregister stack and RSE state as follows:

a. Write BSPSTORE with setj np_bsp.

b. Write RNAT withrnat _val ue.

c. Write RSC withsetj np_rsc.

d. Write PFSwithsetj np_bsp.

Restore set j np() 'sreturn IP into BRY.

Return from | ongj np() intosetj np() 'scaler using br. r et instruction.

155.1.2 User-level Co-routines

The following steps need to be taken to execute a voluntary user-level thread switch.

1

Context Management

Save all preserved register state of outgoing thread to memory stack. Refer to Section 15.1
for details on preservation of general and floating-point registers.

Preserve predicate, branch, and application registers.

Flush outgoing register stack to backing store, and switch to incoming thread's backing store
as described in Section 6.11.3, “ Synchronous Backing Store Switch” on page 6-16. This
code sequence includes ALAT invalidation.

Switch thread memory stack pointers.
Restore incoming thread's predicate, branch, and application registers.
Restore incoming thread's preserved register state.

15-9

15.5.2

155.2.1

15.5.2.2

15-10

Context Switching in an Operating System Kernel

Thread Switch within the Same Address Space

To switch between different threads in the same address space the following steps are required:

1

Application architecture state associated with each thread (GRS, FRs, PRs, BRs, ARs) are
saved and restores as if this were a user-level coroutine. Thisisdescribed in
Section 15.5.1.2.

Memory Ordering: to preserve correct memory ordering semantics the context switch
routine needs to fence f ¢ and other memory references by performing async. i and an nf
instruction. More details on memory ordering are given in Section 13.3.

Address Space Switching

When an operating system switches address spaces it needs to perform the same steps as a same
address space thread switch (described in the previous section). Additionally, however between the
saves of the outgoing and the restores of the incoming process, the operating system context switch
handler is required to:

1

Save the contents of the protection key registers associated with the outbound context, and
then invalidate the protection key registers.

Save the default control register (DCR) of the outbound context (if the DCR is maintained
0n a per-process basis).

Save the region registers of the outbound address space.
Restore the region registers of the inbound address space.

Restore the default control register (DCR) of theinbound context (if the DCR is maintained
0n a per-process basis).

Restore the contents of the protection key registers associated with the inbound context.

Context Management

intel.

Memory Management 16

16.1

16.1.1

This chapter introduces various 1A-64 memory management mechanisms. The |A-64 region
register model, protection keys, and the virtual hash page table usage models are described. This
chapter also discusses usage of the architecture translation registers and translation caches. Outlines
are provided for common TLB and VHPT miss handlers.

IA-64 Address Space Model

The | A-64 architecture provides a byte-addressabl e 64-bit virtual address space. The address space
isdivided into 8 equally-sized sections called regions. Each region is 262 bytesin size and is tagged
with aunique region identifier (RID). Asaresult, the processor TLBs can hold translations from
many different address spaces concurrently, and need not be flushed on address space switches. The
| A-64 regions provide the basic virtual memory architecture to support multiple address space
(MAYS) operating systems.

Additionally, each trandation in the TLB contains a protection key that is matched against a set of
software maintained protection key registers. The protection keys are orthogonal to the region
model and allow efficient object sharing between different address spaces. The 1A-64 protection
key registers provide the basic virtual memory architecture to support single address space (SAS)
operating systems.

Regions

For each of the eight regions, there is a corresponding region register (RR), which containsa RID
for that region. The operating system is responsible for managing the contents of the region
registers. RIDs are between 18 and 24 bits wide, depending on the processor implementation. This
allows an |A-64 operating system to uniquely address up to 22* address spaces each of which can
be up to 251 bytesin virtual size. An address space is made accessible to software by loading its
RID into one of the eight region registers.

Address Trandation: The upper 3 bits of a 64-hit virtual address (bits 63:61) identify the region to
which the address bel ongs; these are called the virtual region number (VRN) bits. When an 1A-64
virtual addressistrandated to a physical address, the VRN bits select a region register which
provides the RID used for thistranslation. Each TLB entry contains the RID tag bits for the
translation it maps; these are matched against the RID bits from the selected region register when
the TLB islooked up during address trand ation. Address translation only succeedsif the RID and
VPN bits from the virtual address match the RID and VPN bits from the TLB entry. Note that the
VRN bits are used only to select the region register, are not matched against the TLB entries.

Inserting/Pur ging of Trandations: When atrandation isinserted into the processor TLBs (either
by software, or by the processor’s hardware page walker), the VRN bits of the virtual address
translation being inserted are used only to index the corresponding region register; they are not
inserted into the TLB. Likewise, when software purges a translation from the processor's TL Bs, the

Memory Management 16-1

16.1.1.1

16.1.1.2

16-2

intel.

VRN bits of the address used for the purge are used only to index the corresponding region register
and are not used to find a matching trandation. Only the RID and VPN bits are used to find
overlapping trandlations in the TLBs.

The fact that the VRN bits are not contained in the processor TLB allows the same address space
(identified by a RID) to be referenced through any of the eight region registers. In other words, the
combination of RID and VPN establishes a unique 85-bit virtual address, regardless of which VRN
(and region register) was used to form the pair. Independence of VRN allows easy creation of
temporary virtual mappings of an address space and can accel erate cross-address space copying as
described in Section 16.1.1.3.

RID Management

Before a RID that has been used for one address space can be reused for another address space, all
TLB entries relating to the first address space have to be purged. In general, thiswill require a
complete flush of the TLBs of all processors in the system. This can be accomplished by
performing an IPI to all processors and executing the pt c. e loop described in Section 16.2.2.2.2
on each processor in the TLB coherence domain.

A more efficient alternative, depending on the size of the defunct address space, might beto
perform a series of pt c. ga operations on one processor to tear down just the translations used by
the recycled RID. Some | A-64 processor implementations support an efficient region-wide purge
page size such that this can be accomplished with asingle pt c. ga operation.

The frequency of these global TLB flushes can be reduced by using a RID allocation strategy that
maximizes the time between use and reuse of aRID. For example, RIDs could be assigned by using
acounter that is aswide as the number of implemented RID bits and that isincremented after every
assignment. Only when the RID counter wraps around it is necessary to do aglobal TLB flush.
After the flush the operating system can either remember the in-use RIDs or it can re-assign new
RIDsto al currently active address spaces.

Multiple Address Space Operating Systems

Multiple address space (MAS) operating systems provide a separate address space for each process.
Typically, only when a processisrunning is its address space visible to software.

The application view of the virtual address spacein the MAS OS model is a contiguous 64-bit
address space, though normally not all of this virtual address space is accessible by the application.
At least one of the 8 regions must be used to map the OS itself so that the OS can handle
interruptions and system services invoked by the application.

The OS chooses aregion ID and aregion (e.g. region 7) into which to map itself during the boot
process and usually does not change this mapping after enabling address translation. The other
seven regions may be used to map process-private code and data; code and data that are shared
amongst multiple processes; to map large files; temporary mappings to allow efficient
cross-address space copies (see Section 16.1.1.3); and, for operating systems which useit, the long
format VHPT.

InaMAS OS, the RID bits act as an address space identifier or tag. For each process-private
region, aunique RID is assigned to that process by the OS. If a process needs multiple
process-private regions (e.g. the process requires a private 64-bit address space), the OS assigns
multiple unique RIDs for each such region. Because each trand ation in the processor’'s TLBsis

Memory Management

16.1.1.3

16.1.2

tagged with its RID, the TLBs may contain translations from many different address spaces (RIDs)
concurrently. This obviates the need for the OS to purge the processor’s TLBs upon an address
space switch. When the OS performs a context switch from process A to process B, the OS need
only remove process A’s private RIDs from the CPU’s region registers and replace them with
process B's private RIDs.

Cross-address Space Copies in a MAS OS

The use of regions, region registers, and RIDs provides a mechanism for efficient address
space-to-address space copies. Because tranglations are tied to RIDs and not to a particular static
region, aMAS OS can easily copy a memory range from one address space to another by
temporarily remapping the target memory location to another region. This remapping is
accomplished simply by placing the RID to which the target | ocation belongsinto a different region
register and then performing the copy from source to target directly.

For example, assume a MAS OS wishes to copy and 8-byte buffer from virtual address
0x0000000000A 00000 of the currently executing process (process A) to virtual address
0x0000000000A 00000 of another process (process B):

nmv r2 = 2

nov r3 = process_b_rid

movl r4 = 0x0000000000A00000
novl r5 = 0x4000000000A00000; ; ; /1 reference process B through RR[2]
nmov rr[r2] =r3 ;; // put process B RIDinto RR[2]
srlz.d // serialize RRwite
copyl oop:
1d8 r6 = [r4] ;; /1 read buffer from process A addr space
st8 [r5] =716 // store buffer into process B addr space
(p4) br copyl oop // 1oop until done
nov r3 = original _rr2_rid ;;
nmov rr[r2] =r3 ;; /'l restore RR[2] RID
srlz.d Il serialize RRwite

When the OS switches to process B and places process B’s RID into RR[0] and resumes execution
of process B, the process can reference the message via virtual address 0x0000000000A 00000.
Note that no new translations need to be created to make the sequence shown above work; because
translations are tagged by RID and not by region, all existing trandlations for process B's address
space are visible regardless of which region the reference is made to, as long as the region register
for that region contains the correct process B RID. Note that the sequence shown above is intended
for illustrative purposes only; the OS may need to perform other steps as well to perform a
cross-address space copy.

Protection Keys

The | A-64 architecture provides two mechanisms for applying protection to pages. The first
mechanism is the access rights bits associated with each translation. These bits provide privilege
level-granular access to a page. The second mechanism is the protection keys. Protection keys
permit domain-granular access to a page. These are especially useful for mapping shared code and
data segmentsin aglobally shared region, and for implementing domains in a single address space
(SAS) operating system.

Protection key checking is enabled viathe PSR.pk bit. When PSR.pk is 1, instruction, data, and
RSE references go through protection key access checks during the virtual-to-physical address
translation process.

Memory Management 16-3

16-4

intel.

All 1A-64 processors implement at least 16 protection key registers (PKRs) in a protection key
register cache. The OSis responsible for maintaining this cache and keeping track of which
protection keys are present in the cache at any given time.

Each protection key register contains the following fields:

« v—valid bit. When 1, thisregister contains avalid key, and is checked during address
translation whenever protection keys are enabled (PSR.pk is 1).

» wd —write disable. When 1, write permission is denied to translations which match this
protection key, even if the data TLB access rights permit the write.

 rd—read disable. When 1, read permission is denied to translations which match this
protection key, even if the data TLB access rights permit the read.

» xd — execute disable. When 1, execute permission is denied to transl ations which match this
protection key, even if the instruction TLB access rights give execute permission.

« key — protection key. An 18- to 24-hit (depending on the processor implementation) unigque
key which tags a translation to a particular protection domain.

When protection key checking is enabled, the protection key tagged to a referenced trandation is
checked against all protection keys found in the protection key register cache. If amatch isfound,
the protection rights specified by that key are applied to the translation. If the access being
performed is alowed by the matching key, the access succeeds. If the access being performed is not
allowed by the matching key (e.g. instruction fetch to atranslation tagged with a key marked ‘xd'),
a Protection Key Permission fault is raised by the processor. The OS may then decide whether to
terminate the offending program or grant it the requested access.

If no match isfound, a Protection Key Missfault is raised by the processor, and the OS must insert
the correct protection key into the PKRs and retry the access.

Protection keys can be used to provide different access rights to shared translations to each process.
For example, assume a shared data page is tagged with a protection key number of OxA. Two
processes share this data page: oneisthe producer of the data on this page, and the other isonly a
consumer. When the producer processis running, the OSwill insert avalid PKR with the protection
key OxA and the ‘wd' and ‘rd’ bits cleared, to alow this process to both read and write this page.
When the consumer processis running, the OS will insert avalid PKR with the protection key OxA
and the ‘rd’ bit cleared, to allow this process to read from the page. However, the ‘wd’ bit for this
PKR will be set when the consumer process is running to prevent it from writing the page.

The processor hardware has no notion of which protection keys belong to which process. The only
check the hardware performs is to compare the protection key from the translation to any valid
protection keysin the PKR cache. On a context switch, the OS must purge any valid protection
keys from the PKRs which would provide access rights to the switched-to context that are not
allowed. The OS may purge an existing PKR by performing a move to PKR instruction with the
same key as the existing PKR, but with the PKR valid bit set to O.

Protection keys can be read from the processor’s data TLBs viathet ak instruction. However,

instruction TLB key values cannot be read directly. Software must keep track of these valuesin its
own data structures.

Memory Management

16.1.2.1

16.2

16.2.1

Single Address Space Operating Systems

Processesin a single address space (SAS) OS all cohabit aglobal address space. SAS operating
systems running on an 1A-64 processor can view the RID bits as effectively extending the single
virtual address space to between 79 and 85 bits (depending on the number of RID bitsimplemented
by the processor). This address space is then divided into between 218 and 224 61-hit regions, up to
eight of which may be accessed concurrently.

Note that thereisno “SAS OS’ or “MAS OS’ modein the |A-64 architecture. The processor
behavior isthe same, regardless of the address space model used by the OS. The difference
between aSAS OS and aMAS OS on an | A-64 processor is one of OS policy: specifically how the
RIDs and protection keys are managed by the OS, and whether different processes are permitted to
share RIDs for their private code and data. Multiple, unrelated processesin a SAS OS may share
the same RID for their private pages; it isthe responsibility of the OSto use protection keys and the
protection key registers (PKRs) to enforce protection. In aMAS OS, the unique per-process RIDs
enforce this protection.

Hybrid SAS/MAS models that combine unique RIDs for process-private regions and shared RIDs
with protection keys for per-page memory protection in shared regions are also possible.

Translation Lookaside Buffers (TLBS)

All 1A-64 processors implement one or more translation lookaside buffers (TLBs) for fast
virtual-to-physical address translation. The architecture provides instructions for managing
instruction and data TLBs as separate structures.

Both the instruction and data TLBs are further divided into a set of translation registers (TRS),
which are managed exclusively by software and are “locked down” to pin critical address
translations (e.g. kernel memory); and a set of trandation cache entries (TCs), which can be
managed by both software and the processor hardware. The TRs are divided into slots, each of
which are individually addressable on insertion by software. The TCs are treated as a set
associative cache and are not addressabl e by software. The TC replacement policy is determined by
software. All |A-64 processor models implement at least 8 instruction and 8 data TRs, and at |east
oneinstruction and 1 data TC entry.

Software inserts tranglations into the TLBs viainsertion instructions. There are four variants of
insertion instructions. i tr.i anditr. d insert atrandation into the specified instruction or data
TR dlot, respectively.itc.i andit c. d insert atranglation into a hardware-selected instruction or
data TC entry, respectively.

Software TR purge instructions also distinguish between the instruction and data TRs (pt r . i ,
pt r. d). TC purgeinstructions do not.

Translation Registers (TRs)

Once atrandation isinserted by softwareinto aTR, it remainsin that TR until either the translation
is overwritten by software, or the trandation is purged. TRs are used by the OS to pin critical
address trangdlations; all memory references made to a TR translation will always hit the TLB and
will never cause the processor's hardware page walker to walk the VHPT or raise afault. Examples
of memory areas that the OS might cover with one or more TRs are the Interruption Vector Table,

Memory Management 16-5

16.2.1.1

intel.

critical interruption handlers not contained completely in the Interruption Vector Table, the
root-level page table entries, the long format VHPT, and any other non-pageable kernel memory
aress.

Two address trandations are said to overlap when one or more virtual addresses are mapped by
both translations. Software must ensure that translations in an instruction TR never overlap other
instruction TR or TC translations; likewise, software must ensure that translationsin adata TR
never overlap other data TR or TC trandlations. If an overlap is created, the processor will raise a
Machine Check Abort.

The processor hardware will never overwrite or purge avalid TR. TRs that are currently unused
may be used by the processor hardware as extra TC entries, but if software subsequently insertsa
translation into an unused a TR, the TC translation will be purged when the insertion is executed.

TR Insertion

To insert atrandation into a TR, software performs the following steps:

1. If PSR.cis1, clear it and execute asr | z. d instruction to ensure the new value of PSR.icis
observed.

Place the base virtual address of the translation into the IFA control register.!

Place the page size of the trandlation into the ps field of the ITIR control register. If
protection key checking is enabled, also place the appropriate trandlation key into the key
field of the ITIR control register. See below for an explanation of protection keys.

4. Place the slot number of the instruction or data TR into which the trandation is be inserted
into a general register.

5. Place the base physical address of the trandation into another general register.
6. Using the general registers from steps 4 and 5, executetheitr.i oritr. d instruction.

A data or instruction serialization operation must be performed after theinsert (fori tr. d or
itr.i,respectively) before the inserted translation can be referenced.

Software may insert a new trandation into a TR slot already occupied by another valid translation.
However, software must perform a TR purge to ensure that the overwritten translation is no longer
present in any of the processor’'s TLB structures.

Instruction TR inserts will purge any instruction TC entries which overlap the inserted translation,
and may purge any data TC entrieswhich overlapit. Data TR insertswill purge any data TC entries
which overlap the inserted translation and may purge any instruction TC entries which overlap it.

Software may insert the same (or overlapping) translation into both the instruction TRs and the data
TRs. Thismay be desirable for locked pages which contain both code and data, for example.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along with the rest of
the translation. See Section 16.1.1 for details.

16-6

Memory Management

16.2.1.2

16.2.2

16.2.2.1

TR Purge

To purge a TR from the TLBs, software performs the following steps:

1. Place the base virtual address of the translation to be purged into a general register.

2. Place the address range in bytes of the purge into bits{7:2} of a second general register.

3. Using thesetwo GRs, executetheptr. d or ptr.i instruction.
A dataor instruction serialization operation must be performed after the purge (for ptr. d or
ptr.i,respectively) before the trandation is guaranteed to be purged from the processor’s TLBs.
Note: The TR purge instruction operates independently of the slot into which the trandlation was

originally inserted.

A ptr. d instruction will never purge an overlapping translation in an instruction TR, but may
purge an overlapping translation in an instruction TC; likewise, aptr. i instruction will never
purge an overlapping translation in adata TR, but may purge an overlapping translation in a data
TC.

A TR purge does not modify the page tables nor any other memory location, nor doesit affect the
TLB state of any processor other than the one on which it is executed.

Translation Caches (TCs)

The TC array acts as a cache of the dynamic working set for data and instruction trandations. It is
managed by software (viai t ¢ and pt c instructions) and, optionally by hardware, if the processor
provides a hardware page walker (HPW) and the walker is enabled. See Section 16.3 below.

The size, associativity, and replacement policy of the TC array are implementation-dependent. With
the exception of the forward progress rules defined in Section 4.1.1.2, “Trand ation Cache (TC)”,
software cannot depend on the existence or life-span of a TC translation, asa TC entry may be
replaced or invalidated by the hardware at any time.

TC Insertion

To insert a TC entry, software performs the following steps:

1. If PSR.icis1, clear it and executeasr | z. d instruction to ensure the new value of PSR.icis
observed.

Place the base virtual address of the translation into the IFA control regisIer.2

Place the page size of the trandlation into the psfield of the ITIR control register. If
protection key checking is enabled, also place the appropriate trandation key into the key
field of the ITIR control register. See below for an explanation of protection keys.

Place the base physical address of the trandation into a general register.
Using the general register from step 4, executethei tc.i oritc. d instruction.

1. The upper 3 bits (VRN) of this address specify aregion register whose contents are used as part of the trandation to
be purged. See Section 16.1.1 for details.

2. The upper 3 bits (VRN) of this address specify aregion register whose contents are inserted along with the rest of
the trangdlation. See Section 16.1.1 for details.

Memory Management 16-7

16.2.2.2

intel.

A data or instruction serialization operation must be performed after the insert (fori tc. d or
itc.i,respectively) before the inserted translation can be referenced.

Instruction TC inserts always purge overlapping instruction TCs and may purge overlapping data
TCs. Likewise, data TC inserts always purge overlapping data TCs and may purge overlapping
instruction TCs.

TC Purge

There are severa types of TC purge instructions. Unlike the other TLB management instructions,
the TC purge instructions do not distinguish between instruction and data translations; they will
purge any matching tranglations in either the data or instruction TC arrays.

16.2.2.2.1 ptc.|

The most basic TC purge is the local TC purge instruction (pt c. |). To purge a TC from the local
processor TLBs, software performs the following steps:

1. Placethe base virtual address of the translation to be purged into a general register.
2. Placethe address range in bytes of the purge into bits{7:2} of a second general register.

3. Using these two GRs, execute the pt c. | instruction.

A data or instruction serialization operation must be performed after the ptc.| before the
translation is guaranteed to be no longer visible to the local data or instruction stream, respectively.

Thept c. | instruction does not modify the page tables nor any other memory location, nor does it
affect the TLB state of any processor other than the one on which it is executed.

16.2.2.2.2 ptc.e

To purge all TC entries from the local processor’s TLBS, software uses aseriesof ptc. e
instructions. Software must call the PAL_PTCE_INFO PAL routine at boot time to determine the
parameters needed to use the pt c. e instruction. Specifically, PAL_PTCE_INFO returns:

* tc_base— an unsigned 64-bit integer denoting the beginning address to be used by the first
pt c. e instruction in the purge loop.

* tc_counts—two unsigned 32-hit integers packed into a 64-bit parameter denoting the loop
counts of the outer and inner purge loops. countl (outer loop) is contained in bits { 63:32} of
the parameter, and count2 (inner loop) is contained in bits { 31:0} of the parameter.

* tc_strides—two unsigned 32-bit integers packed into a 64-bit parameter denoting the loop
stride of the outer and inner purge loops. stridel (outer loop) is contained in bits{63:32} of the
parameter, and stride2 (inner loop) is contained in bits {31:0} of the parameter.

Software then executes the following sequence:

di sable_interrupts();
addr = tc_base;
for (i =0; i <countl; i++) {
for (j =0; j <count2; j++) {
ptc.e addr;
addr += stride2;

1. The upper 3 bits (VRN) of this address specify aregion register whose contents are used as part of the trandation to
be purged. See Section 16.1.1 for details.

16-8

Memory Management

}

addr += stridel;

}

enabl e_interrupts();

A data or instruction serialization operation must be performed after the sequence shown above
before the translations are guaranteed to be no longer visible to the local data or instruction stream,
respectively.

The pt c. e instruction does not modify the page tables nor any other memory location, nor does it
affect the TLB state of any processor other than the one on which it is executed.

16.2.2.2.3 ptc.g, ptc.ga

The | A-64 architecture supports efficient global TLB shootdownsviathept c. g and pt c. ga
instructions. These instructions obviate the need for performing inter-processor interrupts to
maintain TLB coherence in a multi-processor system. A TLB coherence domain is defined as a
group of processors in a multiprocessor system which maintain TLB coherence via hardware.

For the remainder of this section, pt c. g refersto both the pt c. g and pt c. ga instructions, except
where otherwise noted.

Only one pt c. g operation can bein progress at any time, otherwise one or more of the processors
in the system may raise a Machine Check Abort. To guarantee that only one pt c. g operationisin
progress at atime, software should create a shootdown lock variable which must be acquired before
issuing apt c. g, and released after the pt c. g has completed.

A pt c. g instruction isarelease operation; all memory referencesthat precede apt c. g in program
order are made visible to all other processors before the pt c. g is made visible. To guarantee
visibility of the pt c. g prior to a particular point in program execution, software must use another
release operation or a memory fence.

To purge a trandlation from all TLBs in the coherence domain, software performs the following
steps:

1. Acquire the shootdown lock variable.

2. Placethe base virtual address of the trandation to be purged into a general register.

3. Place the address range in bytes of the purge into bits{7:2} of a second general register.

4

Using these two GRS, execute the ptc.g instruction. Note that the pt c. g instruction must be
followed by a stop.

5. Release the shootdown lock variable.

Global purges can be batched together by performing multiple pt c. g instructions prior to releasing
the lock.

A data or instruction serialization operation must be performed after the sequence shown above
before the translations are guaranteed to be no longer visible to the local data or instruction stream,
respectively. To guarantee the trand ations are no longer visible on remote processors, a release
operation or memory fence instruction is required after the pt c. g instruction.

Memory Management 16-9

16.3

16-10

intel.

The pt c. g instruction does not modify the page tables nor any other memory location. It affects
both the local and all remote TC entries in the TLB coherence domain. It does not remove
translations from either local or remote TR entries, and if apt c. g overlaps atranslation contained
ina TR on either the local processor or on any remote processor in the coherence domain, the
processor containing the overlapping tranglation will raise a Machine Check Abort.

The pt c. ga variant of the global purge instruction behaves just like the pt c. g variant, but it also
removes any ALAT entries which fall into the address range specified by the global shootdown
from all remote processors ALATS. Thept c. ga variant isintended to be used whenever a
tranglation is remapped to a different physical addressto ensure that any stale ALAT entries are
invalidated. Note that the pt c. ga does not affect the issuing processor’s ALAT,; software must
perform alocal ALAT purge viathe invalainstruction on the processor issuing the pt c. ga to
ensure the local ALAT is coherent.

Note that | A-64 processors may support one or more implementati on-dependent purge sizes; some
implementations may include a region-wide purge. The PAL_VM_PAGE_SIZE firmware call
returns the supported page sizes for purges for a particular processor implementation. Refer to
Section 11.8.1, “PAL Procedure Summary” for details. When software wishes to purge an address
range that is much larger than the largest supported purge size from all TCs in the coherence
domain, performance may be enhanced by issuing inter-processor interruptsto all processors and
using the pt c. e loop described in Section 16.2.2.2.2 on each processor, instead of issuing many
pt c. g instructions from one processor.

pt c. g instructions do not apply to processors outside the coherence domain of the processor
issuing the pt c. g instruction. Systems with multiple coherence domains must use a
platform-specific method for maintaining TLB coherence across coherence domains.

Virtual Hash Page Table

The | A-64 architecture defines a data structure that allows for the insertion of TLB entriesby a
hardware mechanism. The data structure is called the “virtual hash page table” (VHPT) and the
hardware mechanism is called the VHPT “walker”.

Unlike the |A-32 page tables, the |A-64 VHPT itself isvirtually mapped, i.e. VHPT walker
references can take TLB faults themselves. Virtual mapping of the page tables is needed because
the page tables for 254 address space are quite large and typically do not fit into physical memory.

| A-64 prescribes the format of aleaf-node page table entry (PTE) seen by the VHPT walker, but
does not impose an OS page table data structure itself. As summarized in Table 16-1, |A-64
processors support two different VHPT formats:

« Short format uses 8-byte PTES, and is alinear page table. The short format VHPT cannot use
protection keys (there are not enough PTE bits for that). Short format is a per-region linear
page table, i.e. the PTEs and hash function are independent of the RID. The short format
prefers use of a self-mapped page table. The short format VHPT is an efficient representation
for address spaces that contain only afew large clusters of pages, like the text, data, and stack
segments of applications running on a MAS operating system.

» Long format uses 32-byte PTEs, and is a hashed page table. The hash function embedded in
hardware. The long format supports protection keys and the use of multiple page sizesin a
region. The long format hash and tag functions incorporate the RID, and allows multiple
address space tranglations to be present in the same VHPT. The long format is expected to be

Memory Management

used either as a cache of the real OS page tables, or as a primary page table with collision
chains. The long format VHPT isamuch better representation for address spaces that are
sparsely populated, since the short format VHPT hasalinear layout and would consume alarge
amount of memory. Single address space operating systems may prefer the long format VHPT
for this reason.

Table 16-1. Comparison of VHPT Formats

16.3.1

Attribute Short Format Long Format
Entry Size 8 Byte 32 Byte
Lookup Linear Hashed
Protection Keys No Yes
Page Size per region per entry

Short Format

The short format VHPT is a per-region linear table that contains trandation entries for every page
in the region’s virtual address space. This makes the VHPT very large, but since the VHPT itself
livesin virtual address space only those parts of the VHPT that actually contain valid trandlation
entries have to be present in physical memory. If the operating system’s page table is a hierarchical
data structure and the last level of the hierarchy isalinear list of trandations, the VHPT can be
mapped directly onto the page table as shown in Figure 16-1.

Figure 16-1. Self-mapped Page Table

m-7
m-7
m=7
m-7
m=7
m-7

m-47
m=7
m=7

PTA

If the VHPT walker triesto access alocation in the VHPT for which no trandation is present in the
TLB, aVHPT Trandation fault israised. The original address for which the VHPT walker was
trying to find an entry in the VHPT is supplied to the fault handler in the IFA register. The fault
handler can use this address to traverse the page table and insert atranslation into the TLB that
maps the address the VHPT walker tried to access (in IHA) to the page that contains the
corresponding leaf page table.

Memory Management 16-11

16.3.2

16.3.3

16.4

16.4.1

16-12

intel.

Long Format

Thelong format VHPT is organized as a hash table which contains a subset of all trandation
entries. The long format VHPT entries contain a 8-byte field that isignored by the VHPT walker
and can be used by the operating system to link VHPT entries to software-walkable hash collision
chainsif it uses the VHPT as its primary page table. The size of the long format VHPT isusually
kept small enough to keep a mapping for it in one of the IA-64 trandation registers (TRs), soit is
not necessary to handle VHPT translation faults.

The long format hash algorithm is based on the per-region preferred page size, but atranslation for
alarger page can still be entered into the VHPT by subdividing the large page into multiple smaller
pages with the preferred page size and placing an entry for the large page at all VHPT locations that
correspond to the smaller pages.

VHPT Updates

The VHPT walker uses unordered |oad semantics to access the in-memory VHPT. Visibility of
VHPT updates to a VHPT walker on another processor follows the rules outlined in Section 4.1.7,
“VHPT Environment”. Since aglobal TLB purge has release semantics, prior modifications to the
VHPT will be visible to operations that occur after the TLB purge operation.

Atomic updates to short format VHPT entries can easily be done through 8-byte stores. For atomic
updates of long format VHPT entries, the “ti” flag in bit 63 of the tag field can be utilized as
follows:

e Setthe“ti” bitto 1.

* |Issue amemory fence.

 Update the entry.

* Clear the “ti” bit through a store with release semantics.

TLB Miss Handlers

The |A-64 architecture enables lightweight TLB fault handlers by providing individual entry points
for different excepting conditions and by pre-setting the translation insertion registers for the
varioustypes of TLB faults. The following subsections list the typical stepsfor resolving each kind
of fault.

Data/lnstruction TLB Miss Vectors

These faults occur when the data or instruction TLB required for a data access or instruction fetch
isnot found in the processor TLBs, the VHPT walker is enabled, and:

« Either the VHPT walker aborted the walk (for any reason and at any time), or

» The VHPT walker found the translation but the insert failed (due to tag mismatch in the long
format or badly formed PTE), or

« Thewalker is not implemented on this processor.

There is a separate vector for each fault type (data and instruction).

Memory Management

16.4.2

Since the VHPT walker may abort awalk at any time and raise these faults, software must always
be ableto handle al TLB faults, even when the VHPT walker is enabled. Upon entry to these fault
handlers, the IHA, ITIR, and IFA control registers are initialized by the hardware as follows:

» IHA —contains the virtual address of the hashed page table address corresponding to the
reference which raised the fault.

* ITIR - contains the default translation information for the reference which raised the fault (i.e.
for the virtual address contained in IFA). The access key field is set to the region ID from the
RR corresponding to the faulting address. The page sizefield is set to the preferred page size
(RR.ps) from the RR corresponding to the faulting address.

¢ |IFA —thevirtual address of the bundle (for instruction faults) or data reference (for data faults)
which missed the TLB.

The fault handler for a short format VHPT performs the following steps, at a minimum, to handle
the fault:

1. MovelHA into ageneral register, chosen by convention to match the register expected by
the nested TLB fault handler.

2. Perform an 8-byte load into another general register from the address contained in this
general register to grab the VHPT entry. Note that the format of thesefirst 8 bytesisidentical
to the format required for TLB insertion. If the VHPT is not mapped by a TR, software must
be prepared to handle a nested TLB fault when performing this load.

3. Using the general register from step 2 that holds the contents of the VHPT entry, perform a
TCinsert (i tc.i forinstruction faults, it c. d for datafaults).

4. Inan MP environment, reload the VHPT entry from step 2 into athird general register and
compare the value to the one loaded in step 2. If the values are not the same, then the VHPT
has been modified by another processor between steps 2 and 3, and the entry will have to be
re-inserted. In this case, purge the entry just inserted using apt c. | instruction. The fault
will re-occur after ther fi in step 5 (unless the VHPT walker succeeds on the next TLB
miss) and the fault handler will re-attempt the insertion. (Uniprocessor environments may
skip this step.)

5 rfi.

For along format VHPT, additional steps are required to load bytes 16-23 of the VHPT entry and
check for the correct tag (the correct tag for the reference can be generated using the ttag
instruction). If the tags do not match, thisindicatesaVHPT collision, and the handler must proceed
to walk the operating system’s collision chain manually to find the correct entry. The handler may
then choose to swap places between the correct entry and the VHPT entry. Note that the pointersfor
acoallision chain can be stored in bytes 24-31 of the VHPT entry format since these bytes are
ignored by the VHPT walker.

If the default page size and key are not sufficient, the handler must also perform additional stepsto
load the correct page size and key into the ITIR register before performing the TC insert in step 3 of
the sequence shown above.

VHPT Translation Vector

| A-64 does not perform recursive TLB hardware page walks. Since the VHPT isitself avirtually
addressed structure, each reference performed by the walker itself goes through the TLBs and may
miss. These faults are raised when the VHPT walker is enabled, but the walker missesthe TLBs
when attempting to service a TLB miss caused by the program.

Memory Management 16-13

intel.

There is a separate vector for each fault type (data and instruction).

Upon entry to thisfault handler, the IHA, IFA, and ITIR control registers are initialized by the
hardware as follows:

« IHA — contains the virtual address of the hashed page table address corresponding to the
reference which raised the fault.

* ITIR — contains the default translation information for the VHPT address which missed the
TLBs(i.e. for thevirtual address contained in IHA). The access key field is set to the region 1D
from the RR corresponding to the VHPT address. The page sizefield is set to the preferred
page size (RR.ps) from the RR corresponding to the VHPT address.

 IFA —contains the original faulting address that the VHPT walker was attempting to resolve.

The fault handler for a short format VHPT performs the following steps, at a minimum, to handle
the fault:

1. MovethelHA register into ageneral register.

2. Perform athash instruction using the general register from step 1 Thiswill produce, in the
target register, the VHPT address of the VHPT entry that maps the VHPT entry
corresponding to the original faulting address (i.e. the addressin IFA).

3. Using thetarget general register of the thash from step 2 as the load address, perform an
8-byte load from the VHPT. Note that the format of these first 8 bytesisidentical to the
format required for TLB insertion. Software must be prepared to take a nested TLB fault if
thisload missesthe TLBs.

Move the IHA value from the general register written in step 1 into the IFA register.

Using the general register from step 3 that holds the contents of the VHPT entry, perform a
dataTC insert using thei t c. d instruction. (VHPT references always go through the data
TLBs)

6. Inan MP environment, reload the VHPT entry from step 3 into a different general register
and compare the value to the one loaded in step 3. If the values are not the same, then the
VHPT has been modified by another processor between steps 3 and 4, and the entry will
have to be re-inserted. In this case, purge the entry just inserted using apt c. | instruction.
Thefault will re-occur after ther fi instep 7 (unlessthe VHPT walker succeeds on the next
TLB miss) and the fault handler will re-attempt the insertion. (Uniprocessor environments
may skip this step.)

7. rfi.

For along format VHPT, additional steps are required to load bytes 16-23 of the VHPT entry and
check for the correct tag; see Section 16.4.1 for more details.

A separate structure other than the VHPT may be used to back VHPT translations, in which casethe
handler would not use the thash instruction to generate the address of the trandl ation mapping the
VHPT entry corresponding to the original faulting address. Instead, the handler would use the
operating system’s own mechanism for finding VHPT back-mappings. Other schemes for handling
VHPT misses are also possible, but are beyond the scope of this document.

16-14 Memory Management

16.4.3

16.4.4

16.4.5

Alternate Data/Instruction TLB Miss Vectors

These faults are raised when an instruction or data reference misses the processor’s TLBs and the
VHPT walker is not enabled for the faulting address, i.e. TLB misses are handled entirely in
software. Operating systems which do not wish to use the VHPT walker can disable the walker and
use these fault vectorsfor software TLB fill handlers. The OS may also choose to enable the walker
on a per-region basis and use these vectors to handle missesin regions where the walker is disabled.

Upon entry to these fault handlers, the IFA and ITIR registers areinitialized by the hardware as
follows:

¢ ITIR —contains the default translation information for the reference which raised the fault (i.e.
for the virtual address contained in IFA). The access key field is set to the region ID from the
RR corresponding to the faulting address. The page sizefield is set to the preferred page size
(RR.ps) from the RR corresponding to the faulting address.

¢ |IFA —thevirtual address of the bundle (for instruction faults) or data reference (for data faults)
which missed the TLB.

The OS needs to lookup the PTE for the faulting address in the OS page table, convert it to the

| A-64 architected insertion format (see Section 4.1.1.5, “ Translation Insertion Format”), and insert
it into the TLB. The mechanism used to handle these faults is OS-specific and is beyond the scope
of this document.

Data Nested TLB Vector

To enable efficient handling of software TLB fills, | A-64 provides a dedicated Data Nested TLB
fault vector. The Data Nested TLB fault handler is intended to be used by the Data TLB fault
handler, which allows the OS to page the page tables themselves. When PSR.icis 0, any data
reference that misses the TLB and would normally raise aData TLB Miss fault (e.g. aload
performed by the Data TLB fault handler to the page tables) will vector to the Data Nested TLB
fault handler instead. Because I FA is not updated when PSR.ic is O, the Data Nested TLB fault
handler must get the faulting address from the general register used as the load address in the Data
TLB fault handler’. Unlike other nested interruptionsin 1A-64, the hardware does not update | SR
when aData Nested TLB fault is delivered.

The processor will not deliver a Data Nested TLB fault when PSR.ic isin-flight; Data Nested TLB
faults are only delivered when PSR.icis 0. If PSR.ic isin-flight, any data references which missthe
TLB and trigger afault will raise a Data TLB fault, and the processor will set ISR.ni to 1.

Dirty Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS page table
and load the PTE into a general register ry. It can then set the “dirty” bit in ry and write the updated
PTE back to the page table. To continue execution, the OS must insert the updated PTE into the data
TLB or update the PTE memory image and let the VHPT walker perform the insertion.

1. Thisrequires aregister usage convention between all TLB miss handlers and the Data Nested TLB miss handler.

Memory Management 16-15

intel.

16.4.6 Data/lInstruction Access Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS page table
and load the PTE into ageneral register r,. It can then set the “access’ bit in r, and to continue
execution, the OS must either:

» Write the updated PTE back to the page table, and have the VHPT walker pick it up, or
* Insert the updated PTE into the TLB usingi tc. i ry forinstruction pages, andi t c. d ry for
data pages, or

 Step over the instruction/data access bit fault by setting the IPSR.ia or IPSR.da bits prior to
performinganrfi .

16.4.7 Page Not Present Vector

Forward the fault to the operating system’s virtual memory subsystem.

16.4.8 Data/Instruction Access Rights Vector

Forward the fault to the operating system’s virtual memory subsystem.

16.5 Subpaging

The native page size an | A-64 bit operating system will choose for its page tablesislikely be larger
than the architectural minimum page size of 4 KB. Some legacy |1A-32 applications, however,
expect a page protection granularity of 4 KB. The following technique alows support for these
applications with minimal impact on the native, larger page size paging mechanism.

A special type of entry isused in the native page table to mark pages that are subdivided into
smaller 4 KByte units. The entry must have its memory attribute field set to the architecturally
“software reserved” encoding (binary 001), and it carries a pointer to an array of 4 KB subentriesin
its most significant 59 bits. An example using a native page size of 16 KB is shown in Figure 16-2.
The use of the “ software reserved” memory attribute prevents the VHPT walker from attempting to
insert the entry into the TLB.

Figure 16-2. Subpaging

Native Page Table Sub-Table
16K PTE — 4K PTE
16K PTE 4K PTE

4K PTE

001 1 4K PTE
16K PTE
16K PTE

16-16 Memory Management

When one of the subdivided pagesis referenced and does not have atrandationinthe TLB, aTLB
miss will occur. The handler for this fault can then use the faulting address to calculate the
appropriate offset into the sub-table and insert the corresponding 4KByte PTE into the TLB.

Some careisrequired to ensure forward progressfor 1A-32 instructions. Each 1A-32 instruction can
reference up to 8 distinct memory pages during its execution (see also Section 10.6.3, “IA-32 TLB
Forward Progress Requirements’). This means that the fault handler not only has to insert the PTE
for the current fault into the TLB, but also the PTEs for up to seven faults that occurred before, if
these faults originate from the same 1A-32 instruction. This can be accomplished by maintaining a
buffer for the most recent faulting I1P and for the parameters of upto 7 TLB insertions. If aTLB
fault occurs while executing in |A-32 mode and the 1P matches the most recent 1B, all TLB
insertionsin the buffer have to be repeated and the parameters for the new TLB fault must be added
to the buffer. Otherwise, the buffer can be cleared out and the most recent |1 P can be updated. The
buffer also has to be cleared out when a TLB purge occurs.

Memory Management 16-17

16-18

Memory Management

intel.

Runtime Support for Control and Data
Speculation 17

17.1

An 1A-64 operating system needs to handle exceptions generated by control speculative loads
(Id. s orl d. sa), data speculative loads (I d. a) and architectural loads (I d) in different ways.

Software does not have to worry about control or data speculative loads potentially hitting
uncacheable memory with side-effects, since lA-641d. s, | d. sa, and | d. a instructions to
non-specul ative memory are always deferred by the processor for details refer to Section 4.4.6,
“Speculation Attributes’. Asaresult, compilers can freely use control and data speculation to all
program variables.

Control speculative loads require special exception handling and 1A-64 provides avariety of
deferral mechanisms for handling of control speculative exception handling. Thisisdiscussed in
Section 17.1.

| A-64 supports different control speculation recovery models. These are discussed in Section 17.2.

Handling of exceptions caused by architectural and data speculative loads is the same, except for
emulation of unaligned data specul ative references, which require specia unaligned emulation
handling. Thisisdiscussed in Section 17.3.1.

Exception Deferral of Control Speculative Loads

Exceptions that occur on control speculative loads (I d. s or | d. sa) can be handled by the
operating system in different ways. The operating system can configure an | A-64 processor in three
ways:
¢ Hardware-Only Deferral: automatic hardware deferral of all control speculative exceptions. In
this case, the processor hardware will always defer excepting control specul ative |oads without
invoking the operating system.

» Combined Hardware/Software Deferral: automatic deferral of some control speculative
exceptions, but deliver othersto software. In this case, some exceptionswill result in hardware
deferral as described above, other exceptions will be reported to the operating system. The
operating system fault handlers can identify that an exception has been caused by a control
speculative load (1SR.sp will be 1). Furthermore, OS handlers can software-defer an exception
on acontrol speculative load by setting IPSR.ed to 1 prior tor f i -ing back to thel d. s or
| d. sa. Thisallows an operating system to service “cheap” non-fatal exceptions (e.g. simple
TLB misses), while software-deferring both “ expensive” non-fatal (e.g. page faults) aswell as
fatal exceptions (e.g. non-recovery protection violation).

« Software-Only Deferral: processor isconfigured to deliver all control speculative exceptionsto
software. In this case, operating system software handles all non-fatal control speculative
exceptions, and software-defers all fatal control speculative exceptions.

Runtime Support for Control and Data Speculation 17-1

17.1.1

17.1.2

17.1.3

17.2

17-2

intel.

Details on these three models are discussed in the next three sections as well asin Section 5.5.5,
“Deferral of | A-64 Speculative Load Faults’.

Hardware-only Deferral

Hardware only deferral is configured by setting all speculation deferral bitsinthe DCR register (dd,
da, dr, dx, dk, dp and dm) to 1. All excepting control speculative loads are automatically deferred
by the processor. As aresult, all excepting control speculative loads that hit non-fatal exceptions,
e.g. aTLB miss or a page fault, will be deferred by the processor hardware, and will cause
speculation recovery code to be invoked. This can cause speculation recovery code to be invoked
more often than strictly necessary.

Combined Hardware/Software Deferral

Setting of a DCR deferral bit to 1 resultsin hardware deferral by the processor, whereas clearing of
adeferral bit causes exceptions to be delivered to software. The operating system may want to
configure the processor to deliver control specul ative exceptionsto its handlersfor certain non-fatal
faults such as TLB misses or protection key misses. Early handling of these exceptions avoids
unnecessary invocation of speculation recovery code, and the associated performance penalty. This
isespecialy useful for exceptions handlers whose overhead is small. Note that handlerswill also be
invoked for excepting control speculative loads that have been hoisted from not taken paths, and
therefore are not needed. As aresult, software handling of control speculative exceptionsis
recommended only for statistically infrequent light weight fault handlers such as TLB miss or
protection key miss handlers. If, while handling the exception, the operating system determines that
thisinstance of the exception may require too much effort, e.g. a TLB miss turns out to be a page
fault, the handler still has the choice of software-deferring the exception.

Software-only Deferral

Software only deferral is configured by clearing all speculation deferral bitsin the DCR register
(dd, da, dr, dx, dk, dp and dm) to 0. Control speculative loads that hit any Debug, Access Bit,
Access Rights, Key Permissions, Key Miss, or Not Present fault, or that suffer aTLB missor a
VHPT Trandlation fault will be delivered to software.

Speculation Recovery Code Requirements

Asdescribed by Table 17-1, |A-64 code generators are not always required to generate speculation
recovery code for al forms of speculation. Compilers and operating systems can collaborate to
provide two models for handling of recovery from failed control speculation:

» ITLB.ed=1 (application with recovery code - the default): The compiler generates appropriate
recovery codefor al | d. s instructions, aswell asfor | d. sa and | d. a instructions that have
speculatively executed uses. Speculation failure of | d. sa and | d. a instructions that have no
speculatively executed uses can be recovered by al d. c instruction, and hence do not require
recovery code. The operating system may defer non-fatal exceptions.

Runtime Support for Control and Data Speculation

« ITLB.ed=0 (no control speculative recovery code): The compiler generates recovery code only
for Id.saand Id.ainstructions that have speculatively executed uses. Speculation failure of
I d. sa and| d. a instructions that have no specul atively executed uses can be recovered by a
| d. ¢ instruction, and hence do not require recovery code. Speculation failure of | d. s
instructions does not require recovery code, because, in this model, the operating system must
guarantee that only fatal exceptionswill be deferred. Thisrequires software-only deferral of all
potential non-fatal exceptions. The motivation for this model is that the absence of chk. s
instructions and their associated recovery code may make for shorter and more compact in-line
code, especially inloops with tight instruction schedul es.

Table 17-1. Speculation Recovery Code Requirements

Usage Model

OS may defer non-fatal exceptions
on control speculative loads
(ITLB.ed=1)

OS must not defer non-fatal
exceptions on control
speculative loads
(ITLB.ed=0)

No Speculative Load Uses

| d. s | Recovery code required; Invoked by No recovery code required;
chk. s or non-speculative use of OS handles all non-fatal exceptions
speculative value recovers from failed | speculatively.
control speculation.
ld.sa,ld. a No recovery code required;

| d. ¢ recovers from failed data speculation.

With Speculative Load Uses

| d. s | Recovery code required; invoked by No recovery code required;
chk. s or non-speculative use of OS handles all non-fatal exceptions
speculative value recovers from failed | speculatively.
control speculation.
ld.sa,ld. a Recovery code required,;

chk. a recovers from failed data speculation.

Presence or lack of control speculation recovery code is communicated from the compiler and the
run-time system to the operating system by marking the code page’s page table entry ed-bit
appropriately (this bit isreferred to as ITLB.ed). When ITLB.ed is 1, the operating system will
expect recovery code to be present; when ITLB.ed is 0 no recovery code is expected. When a
control speculative load takes an exception, the code page’s ITLB.ed bit is copied into | SR.ed and
is made available to the operating system exception handler. Furthermore, a set I1SR.sp hit indicates
that an exception was caused by a control speculative |oad.

17.3

17.3.1

IA-64 Unaligned Handler

Speculation Related Exception Handlers

Misaligned control and data speculative loads, as well as architectural |oads, are not required to be
handled by the processor. As aresult, the operating system’s unaligned reference handler hasto be
prepared to emulate such misaligned memory references, especially in cases where the application
has not provided any recovery code (see Section 17.2 for details). Furthermore, misaligned data
speculative loads (1 d. sa or | d. a) must be forced failed by the unaligned emulation handler,
because the ALAT cannot track all sizes of misalignment for store conflict detection.

Runtime Support for Control and Data Speculation

17-3

17-4

intel.

The following pseudo code outlines the basic steps for an |A-64 unaligned reference handler:

1
2.

Ensure that only ISR.ris 1, and that ISR.w, ISR.x, and ISR.naare 0.

Inspect the ISR.sp and 1SR.ed. If both are 1, then defer this control speculative load by
setting IPSR.ed and r f i -ing.

Crack the instruction opcode to determine:

a. Sizeof theload: 1, 2, 4, 8, 10 bytes

b. Typeoftheload: | d.sa,ld.s,ld.a,ld.c.clr,Id.c.ncorld
c. Target, source and post-increment registers of the load

If thisis adata speculativeload (I d. sa, or | d. a), invalidate the target register’s ALAT
entry using ani nval a. e instruction, andrfi .

If thisisal d. c. cl r instruction invalidate the target register’'s ALAT entry using an
i nval a. e instruction.

Emulate the memory read of the load instruction by updating the target register as follows:

a. Validate that emulated code has the access rights to the target memory location at the
privilege level that it was running prior to taking the alignment fault. The pr obe
instruction can be used on the first and the last byte of the unaligned memory reference.
If both probes succeed the memory reference may proceed.

b. Using architectural | d instructions if the emulated operationisal d or al d. c (either
clear or no clear flavor).

c. Usingl d. s ingtructionsif the emulated operationisal d. s. The result in the target
register may end up with its NaT bit or NaTVal set, if one of the parts of emulation
causes an exception. If ITLB.ed is 0 (no control speculation recovery code), then the
misaligned | d. s may only be deferred if afatal exception occurred on either half or the
I d. s emulation.

If thisis a post-increment load, compute the new value for the source register.

Runtime Support for Control and Data Speculation

intel.

Instruction Emulation and Other Fault
Handlers 18

18.1

This chapter introduces several common emulation handlers that an 1A-64 operating system must
support. A general overview isgiven for:

¢ Unaligned Reference Handler — emulation of misaligned memory references that the processor
hardware cannot handle, or has been configured to fault on.

» Unsupported Data Reference Handler — emulation of memory operations that the processor
hardware does not support. Examples are semaphore, | df e or st f e operations to uncacheable
memory.

« lllegal Dependency Fault Handler —thisisafatal condition that operating system needsto
provide error logging functionality for.

 Long Branch Handler — the Itanium processor does not implement the long branch instruction.
When encountered on the Itanium processor, long branches must be emulated by the operating
system.

Floating-point software assist emulation handlers are not discussed here, but are presented in
Chapter 19, “Floating-point System Software”. Additionally, Section 5.5.1, “Efficient Interruption
Handling” discusses more details about emulation code in the | A-64 architecture.

Unaligned Reference Handler

Misaligned memory references that are not supported by the processor cause Unaligned Reference
Faults. This behavior is implementation-specific but typically occursin cases where the access
crosses a cache line or page boundary. In cases where the operating system chooses to emulate
misaligned operations, some special cases need to be considered:

< Emulation of control and data speculative loads as well as advanced check and “regular” |oads
requires special attention. For details consult Section 17.3.1, “1A-64 Unaligned Handler” on
page 17-3.

» Emulation of unaligned semaphores, especially when interacting with 1A-32 code require
special attention. For details consult Section 13.1.3.2, “Behavior of Uncacheable and
Misaligned Semaphores’ on page 13-3.

| A-32 programs do not use the | A-64 handler to support unaligned references. The hardware that
supports 1A-32 execution in an | A-64 processor provides the appropriate behavior if alignment
checking is disabled through EFLAGS.ac. If an unaligned reference occurs in 1A-32 code when
EFLAGS.ac is set to enable alignment checking, alignment faults are delivered to adifferent vector
from the |A-64 unaligned reference handler. Specifically they are delivered to the

IA_32_ Exception(AlignmentCheck) vector; see Section 9, “1A-32 Interruption Vector
Descriptions’ for details.

Instruction Emulation and Other Fault Handlers 18-1

18.2

18.3

18-2

Unsupported Data Reference Handler

| A-64 processors do not support all types of memory referencesto al memory attributes. In
particular:

 Semaphore operations to uncacheable memory are not supported. For details consult
Section 13.1.3.2, “Behavior of Uncacheable and Misaligned Semaphores’ on page 13-3.

* A 10-byte memory access, e.g. | df e or st f e, to uncacheable memory are not supported by
all |A-64 processors.

The handler for 10-byte memory accesses must go through the following stepsto emulate thel df e
or st f e instructions:

 Determine that the opcode at the faulting addressisan | df e or st f e. On control-speculative
flavors of these instructions (I df e. s or | df e. sa) processor hardware always defers the
unsupported data reference fault. In other words, software does not have to emulate
control-speculative fault deferral.

* If theinstructionisan advanced load | df e. a then the emulation handler should invalidate the
ALAT entry of the appropriate floating-point target register using thei nval a. e instruction.
Furthermore, a zero should be returned in the floating-point target register.

« If theinstructionisaregular | df e or st f e, then software must emulate the load or store
behavior of the instruction taking the appropriate faults if necessary.

« If theinstruction is the base register update form, update the appropriate base register.

A number of these steps may require the use of self-modifying code to patch instructions with the
appropriate operands (for example, the target register of thei nval . e must be patched to the
destination register of thel df e or st f e). See Section 13.5, “Updating Code Images’ on

page 13-24 for more information.

lllegal Dependency Fault

The | A-64 instruction sequencing rules specify that, generally speaking, instructions within an
instruction group are free of dependencies as described in Section 3.4, “Instruction Sequencing
Considerations” in Volume 1. A dependency violation in an 1A-64 processor occurs anytime a
program violates read-after-write (RAW), write-after-write (WAW) or write-after-read (WAR)
resource dependency rules within an instruction group.

As Section 3.4.4, “ Processor Behavior on Dependency Violations™ in Volume 1 describes, an |A-64
implementation may provide hardware to detect and report dependency violations. It isimportant to
note that the presence and capabilities of such hardware is implementation-specific. An 1A-64
processor reports dependency violations through the General Exception Vector with an | SR.code
of 8.

It is recommended that operating systems log the dependency violation and then terminate the
offending application, as hardware behavior is undefined when a dependency violation occurs.

Instruction Emulation and Other Fault Handlers

18.4 Long Branch

The | A-64 architecture supports “long” branches with a 64-bit offset. This provides IP-relative
conditional- and call-type branches that can reach any addressin a 64-bit address space. These
instructions use the ML X template, and similar to the move long instruction (mov|), they encode
their immediate in the L and the X slot of the bundle.

The Intel Itanium processor does not support the long branch instruction, br | , and requires the
operating system to emulate its behavior. When an Itanium processor encountersabr | instruction,
it vectorsto the Illegal Operation Fault handler, regardless of the branches’ qualifying predicate.
Thishandler is expected to emulate the long branch instruction in software. A general outline of the
long branch emulation handler is as follows:

The emulation handler reads the 1P, IPSR, and predicates at the time of the fault.

If the fault occurred in 1A-32 code or if the fault did not occur in slot 2 of abundle (IPSR.ri is
not 2), the handler passes the fault to regular illegal operation fault handler.

Two floating-point registers are spilled into the integer register file to get ready to load the
bundle.

The emulation handler speculatively loads the 128-bit bundle at the faulting IP using the
integer form of the floating-point load pair instruction. Thisinstruction is chosen because it
operates atomically (see Section 4.5, “Memory Datum Alignment and Atomicity”). Using two
64-hit integer loads would require the handler to ensure that another agent does not update the
bundle between the two reads.

If the speculation fails, the recovery code re-issues the |oad. Before re-issuing an architectural
load, the processor must first re-enable PSR.ic to be able to handle potential TLB misses when
reading the opcode from memory. In other words, this becomes a heavyweight handler. For
details see Section 14.4.2, “Heavyweight Interruptions’ on page 14-7. Once the opcode has
been read from memory successfully flow of the emulation continues at the next step.

The 128-bit bundle is moved from the FP register file into two integer registers and the
FP registers are restored to their contents at the time of the fault.

The handler extracts the fields necessary to decode the instruction (specifically, the gp,
template, major opcode, and btype or b, fields of ot 2). It also determines the value of the
qualifying predicate of the instruction in slot 2 from the contents of the predicate register at the
time of the fault. 1A-64 instruction are always stored in memory in little-endian memory
format. When extracting bit fields from the loaded opcode current processor endianness
(PSR.be) must be taken into account.

The emulation handler passes the fault off to the regular illegal operation fault handler if the
bundleisnot an MLX or if the faulting instructionisnotabr| . cond orbrl . cal I .

If the faulting instruction isanot-taken br | . cond or br | . cal | , the code preparesto
change the I1P to the address of the sequential successor of the faulting branch (i.e. [IP + 16)
and jumps ahead to the trap detection code mentioned bel ow.

If thefaulting instructionisatakenbr | . cal | , the handler emul ates the appropriate behavior
of thecall. Thecodeusesabr . cal | to movethe appropriate valuesinto CFM and AR[PFS].
There are several details, however. First, the branch register update from the call must be
backed out (asit is not the correct update for the br | . cal |). Second, AR[PFS].ppl must be
set based on the cpl at the time of the fault (which is given by IPSR.cpl). Finally, the code must
update the branch register specifiedinthebr | . cal | instruction with the I P of the successor
of thebrl . cal | (predication helps here asthe | A-64 instruction set does not provide an
indirect move to branch register instruction).

Instruction Emulation and Other Fault Handlers 18-3

18-4

intel.

» The handler forms the 60-bit immediate | P-offset for the br | target fromthei andi nm20
fields from the X syllable of the bundle (the br | instruction) and thei B9 field from the
L syllable of the bundle.

» The handler checksto seeif there are any trapsto be taken. Specificaly, it verifiesthat the next
IPisat an implemented address (the specific test depends on whether the processor wasin
virtual or physical mode at the time of the fault as IPSR.it indicates), that taken branch traps
are not enabled if the branch istaken, and that single stepping is not enabled.

« If atrap condition is detected, the | SR.code and |1 SR.vector fields are set up as appropriate and
the handler jJumpsto the appropriate operating system entry point after restoring the predicates
at the time of the fault and setting the 1P to the appropriate address.

« If no trap occurs, the handler restores the predicates and returns to the faulting code at the
appropriate IP.

An |A-64 processor typically does not fault on instructions with false qualifying predicates.
However, an | A-64 implementation may take an Illegal Operation Fault on an ML X instruction
with afalse predicate; the Itanium processor is such an implementation. Thisimpliesthat the br |
emulation handler must also provide the means to skip the faulting instruction when its qualifying
predicate isfalse.

Instruction Emulation and Other Fault Handlers

intel.

Floating-point System Software 19

19.1

19.1.1

This chapter details the way floating-point exceptions are handled in the | A-64 architecture and
how the | A-64 architecture can be used to implement the ANSI/IEEE Std. 754-1985 for Binary
Floating-point Arithmetic (IEEE-754). It is useful in creating and maintaining floating-point
exception handling software by operating system writers.

IA-64 Floating-point Exceptions

Floating-point exception handling in 1A-64 has two major responsibilities. The first responsibility
isto assist a hardware implementation to conform to the | A-64 floating-point architecture
specification. The Floating-point Software Assistance (FP SWA) Exception handler supports this
conformance and isincluded as adriver in the Extensible Firmware Interface (EFI). The second
responsibility is to provide conformance to the IEEE-754 standard. The | EEE Floating-point
Exception Filter (IEEE Filter) supports providing this conformance.

When a floating-point exception occurs, a minimal amount of processor state information is saved
in interruption control registers. Additional information is contained in the Floating-point Status
Register (FPSR), i.e. application register (AR40). Thisregister contains the | EEE exception enable
controls, the | EEE rounding controls, the | EEE status flags, and information to determine the
dynamic precision and range of the result to be produced.

When a floating-point exception occurs, execution is transferred to the appropriate interruption
vector, either the Floating-point Fault Vector (at vector address 0x5c00) or the Floating-point Trap
Vector (at vector address 0x5d00.) There the operating system may handle the exception or save
additional processor information and arrange for handling of the exception elsewhere in the
operating system. Floating-point exception faults must be handled differently than other 1A-64
faults. Correcting the condition that caused the fault (e.g. a page not present is brought into
memory) and re-executing the instruction is how most other 1A-64 faults are handled. For floating-
point faults, software is required to emulate the operation and continue execution at the next
instruction asis normally done for traps. Part of this emulation needs to include a check for any
lower priority traps that would have been raised if the instruction hadn’t faulted, e.g. asingle-step

trap.

The Software Assistance Exceptions (Faults and Traps)

There are three categories of Software Assistance (SWA) exceptions that must handled by the
operating system. The first two categories, SWA Faults and SWA Traps, are implementation
dependent and could be generated by any | A-64 floating-point arithmetic instruction that contains a
status field specifier in the instruction's encoding. An implementation may choose to raise a SWA
Fault as needed. The SWA Trap can only be raised under special circumstances. Thethird category,
architecturally mandated SWA Faults, is limited to the scalar reciprocal and scalar reciprocal
sguare-root approximation instructions and is not implementation dependent. It is required for the
correctness of the divide and sgquare root algorithms.

Floating-point System Software 19-1

intel.

19.1.1.1 SWA Faults

The | A-64 architecture allows an implementation to raise SWA faults as required. Therefore an
impl ementati on-independent operating system must be able to emul ate the architectural behavior of
all FPinstructions that can raise a floating-point exception. However, hardware implementations
will limit the cases that raise SWA Faults for performance reasons. The most likely cases would be
for the consumption of denormalized or unnormalized operands and production of denormalized
results.

The general flow of the SWA Fault handler is as follows:

1. Fromtheinterruption instruction bundle pointer (I11P) and faulting instruction index
(IPSR.ri), determine the FP instruction that faulted.

2. From theinstruction, decode the opcode, static precision, status field and input/output
register specifiers.

Read the data from the input registers.

From the opcode and the FPSR’s status field, decode the result range and precision.
From the ISR.code, determine that a SWA Fault has occurred, if not go to the last step.
From the FPSR, determine if the trap disabled or trap enabled result is wanted.
Emulate the | A-64 instruction to produce the |A-64 architecture specified resullt.

Place the result(s) in the correct FR and/or PR registers, if required.

Update the flags in the appropriate status field of the FPSR, if required.

10. Update the ISR.codeif required. (Thisisrequired if the SWA fault has been translated into
an |EEE fault or trap.)

11. Check to seeif an IEEE fault or trap needs to be raised. If so, then queue it to the IEEE
Filter, otherwise continue checking for lower priority traps that may need to be raised and if
required invoke their handler. When finished, continue execution at the next instruction.

© © N o ok~ w

19.1.1.2 SWA Traps

SWA traps are allowed in the |A-64 architecture as an optimization for cases when the hardware
implementation has produced the result of thefirst (exponent unbounded) | EEE rounding and can't
continue with the second (exponent bounded) | EEE rounding to produce the final result. One
option for the implementation would be to throw away the first IEEE rounding result and raise the
SWA Fault. The SWA Fault handler would then have to redo the computation of the first IEEE
rounding. A potentially more efficient option would be for the implementation to return the first
|EEE rounding result and raise a SWA trap. Returning the first IEEE rounded result is the same as
what is done when the |EEE Overflow or Underflow exceptions are enabled. However, hardware
implementations will limit the cases that raise SWA Trapsfor performance reasons. The most likely
case would be for the production of denormalized results.

For ti ny2 results, the SWA Trap handler has the simpler task of taking the intermediate result of the
first IEEE rounding, the ISR.fpaand ISR.i status bits and producing the correctly rounded and
signed minimum normal, denormal or zero. For huge3 results, the SWA Trap handler has the even

1. ANSI/IEEE Std 754-1985 sections 7.3 Overflow and 7.4 Underflow.
2. Tiny numbers are non-zero values with a magnitude smaller than the smallest normal floating-point number.
3. Huge numbers have values larger in magnitude than the largest normal floating-point number.

19-2 Floating-point System Software

simpler task of taking the intermediate result of the first rounding and producing the correctly
signed maximum representable normal or infinity, based on the sign of the result, the rounding
direction, and the result precision and range.

Note: ThelA-64 architecture also alows for SWA Traps to be raised when the result isjust I nex-
act. Thisisatrivial case for the SWA Trap handler, since result of the second | EEE round-
ing isidentical to the first IEEE rounding.

Figure 19-1. IA-64 Floating-point Exception Handling Overview

User Space _ _ __ _ __ _ _ __ _ __ _ _ _____________
: r—————~———~———- | |
| User Application | User Exception Handler : !
I ______________
I T l :
' |
' |
: |
[
: IEEE Filter "Ease of Use"
|
|
Y Y A ;
IEEE?
r———~"~"~"~"=====-— [
OS Kernel : Fault/Trap Vector !
e s
IA-64 System :
R L S
| |
| EFI ; S
: PAL FP Em}JIation Library Functllonahty
| . |
Boot Time
| |
' + & '
: IA-64 Processor Hardware ‘ FP SWA :
| |
e e [
000957

The general flow of the SWA Trap handler is asfollows:

1. Fromtheinterruption instruction previous address (11PA) and exception instruction index
(ISR.€), determine the FP instruction that trapped.

2. From theinstruction, decode the opcode, static precision, status field and input/output
register specifiers.

3. Fromthe ISR.code and FPSR trap enable controls, determine if a SWA Trap has occurred, if
not go to the last step.

4. Read thefirst IEEE rounded result from the FR output register.
From the opcode and the status field, decode the result range and precision.

From the ISR.code’'s FPA, O, U, and | status bits and the intermediate result, produce the
| A-64 architecture specified result.

Floating-point System Software 19-3

19.1.1.3

19.1.2

19-4

Place the result in the output FR register.
Update the flags in the appropriate status field of the FPSR, if required.

Update the ISR.codeif required. (Thisisrequired if the SWA trap has been translated into an
|EEE trap.)

10. Check to seeif an IEEE trap needsto be raised. If so, then queue it to the IEEE Filter,
otherwise continue checking for lower priority traps that may need to be raised and if
reguired invoke their handler. When finished, continue execution at the next instruction.

Approximation Instructions and 1A-64 Architecturally Mandated SWA
Faults

The scaar approximation instructions, f r cpa and f r sqr t a, can raise | A-64 architecturally
mandated SWA Faults. This occurs when their input operands are such that they are potentially
prevented from generating the correct result by the usual software algorithms that are employed for
divide and sgquare root. The reasons for this are that these algorithms may suffer from underflow,
overflow, or loss of precision, because the inputs or result are at the extremes of their range. For
these special cases, the SWA Fault handler must use alternate al gorithms to provide the correct
quotient or square root and place that result in the floating-point destination register. The predicate
destination register is also cleared to indicate the result is not an approximation that needs to be
improved viathe iterative algorithm.

The paralld approximation instructionsf pr cpa andf pr sqrt a have situations similar to the scalar
approximation instruction’s | A-64 architecturally mandated SWA Faults. This occurs when their
input operands are such that they are potentially prevented from generating the correct result by the
usual software algorithms that are employed for divide and square root. For these special cases,
instead of generating a SWA Fault, the parallel approximation instructions indicate that software
must use alternate algorithms to provide the correct reciprocal or square-root reciprocal by clearing
the destination predicate register. The cleared predicate is the indication to the parallel IEEE-754
divide and sgquare root software algorithms that alternative algorithms are required to produce the
correct |EEE-754 quotient or square root.

The IEEE Floating-point Exception Filter

The | A-64 architecture supports the reporting of the five IEEE-754 standard floati ng-point
exceptions and the IA-32 Denormal Operand exception. In the |A-64 architecture the Denormal
Operand exception is expanded to the Denormal/Unnormal Operand exception. When referring to
the |EEE-754 exceptions in the |A-64 architecture the Denormal/Unnormal Operand exception is
included.

At the application level, a user floating-point exception handler could handle the |1A-64 floating-
point exception directly. Thisisthe traditional operating system approach of providing a signal
handler with a pointer to a machine-dependent data structure. It would be more convenient for the
application developer if the operating system wereto first transform the | A-64 results to make them
|EEE-754 conforming and then present the exception to the user in an abstracted manner. It is
recommended that the operating system include such a software layer to enable application
developers that want to handl e floating-point exceptions in their application. The IEEE Floating-
point Exception Filter provides this convenience to the devel oper through three functions.

» Thefirst function of the IEEE Filter isto map the | A-64 architecture's result to the IEEE-754
conforming result. Thisincludes the wrapping of the exponent for Overflow and Underflow

Floating-point System Software

19.1.2.1

19.1.2.2

19.1.2.3

19.1.2.4

exceptions. The |A-64 architecture keeps the exponent in the 17-bit format, which is not
wrapped (i.e. scaled) with the appropriate value for the destination precision.

¢ The second function of an |EEE Filter isto transform the interruption information to a format
that is easier to interpret and to invoke a user handler for the exception. The user's handler may
then provide a value to be substituted for the IEEE default result, based on the operation,
exception and inputs.

» Thethird function of the filter is to hide the complexities of the parallel instructions from the
user. If afloating-point fault occursin the high half of a parallel floating-point instruction and
thereisauser handler provided, the parallel instruction is split into two scalar instructions. The
result for the high half comes from the user handler, while the low half isemulated by the IEEE
Filter. The two results are combined back into a parallel result and execution is continued.
More complicated cases can also occur with multiple faults and/or traps occurring in the same
instruction.

Note: Usage of the IEEE Filter should not be compulsory - the user should be able to choose to
handle enabled floating-point exceptions directly. The |EEE filter just hides the details of
the instruction set and frees the user handler from having to emulate instructions directly
and potentially incorrectly.

Invalid Operation Exception (Fault)

The exception-enabled response of an 1A-64 floating-point arithmetic instruction to an Invalid
Operation exception isto leave the operands unchanged and to set the V bit in the | SR.code field of
the ISR register. The operating system kernel, reached via the floating-point fault vector, will then
invoke the user floating-point exception handler, if one has been registered.

Divide by Zero Exception (Fault)

The exception-enabled response of an |A-64 floating-point arithmetic instruction to a Divide-by-
Zero exception isto leave the operands unchanged and to set the Z bit in the ISR.code field of the
ISR register. The operating system kernel, reached via the floating-point fault vector, will then
invoke the user floating-point exception handler, if one has been registered.

Denormal/Unnormal Operand Exception (Fault)

The exception-enabled response of the |A-64 arithmetic instruction to a Denormal/Unnormal
Operand exception is to leave the operands unchanged and to set the D bit in the ISR.code field of
the ISR register. The operating system kernel, reached via the floating-point fault vector, will then
invoke the user floating-point exception handler, if one has been registered.

Overflow Exception (Trap)

The exception-enabled response of an 1A-64 floating-point arithmetic instruction to an Overflow
exception isto deliver the first (exponent unbounded) | EEE rounded result, and to set the O bit (and
possibly the | and FPA bits) in the ISR.code field of the I SR register and the Overflow flags (and
possibly the Inexact flag) in the appropriate status field of the FPSR register.

The |IEEE-754 standard requires that, when raising an overflow exception, the user handler should
be provided with the result rounded to the destination precision with the exponent range
unbounded. For the huge result to fit in the destination’s range, it must be scaled down by afactor
equal to 2. 02 (with a equal to 3* 2" 2, where n is the number of bitsin the exponent of the

Floating-point System Software 19-5

19.1.2.5

19.1.2.6

19.2

19-6

intel.

floating-point format used to represent the result.) This scaling down will bring the result close to
the middle of the range covered by the particular format. The exponent adjustment factorsto do the
scaling for the various formats are determined as follows:

« 8-bit (single) exponents are adjusted by 3*2% = oxco =192.

 11-bit (doubl€) exponents are adjusted by 3* 2% =0x600 =1536.

« 15-bit (double-extended) exponents are adjusted by 3* 213 = 0x6000 = 24576.
« 17-bit (register) exponents are adjusted by 3* 21° = 0x18000 = 98304.

The actual scaling of the result is not performed by the | A-64 architecture. The |EEE filter that is
invoked before calling the user floating-point exception handler typically performs the scaling.

Underflow Exception (Trap)

The exception-enabled response of an 1A-64 floating-point arithmetic instruction to an Underflow
exception isto deliver the first (exponent unbounded) |EEE rounded result, and to set the U bit (and
possibly the | and FPA bits) in the ISR.code field of the I SR register and the Underflow flag (and
possibly the Inexact flag) in the appropriate status field of the FPSR register.

The |EEE-754 standard requires that, when raising an underflow exception, the user handler should
be provided with the result rounded to the destination precision with the exponent range
unbounded. For thetiny result to fit in the destination’s range, it must be scaled up by afactor equal
to 2. 02 (with a equal to 3* 2"" 2 wheren isthe number of bitsin the exponent of the floating-
point format used to represent the result.). The scaling up will bring result close to the middle of the
range covered by the particular format. The exponent adjustment factors to do this scaling for the
various formats are the same as those for enabled overflow exceptions, listed above.

Just as for overflow, the actual scaling of the result is not performed by the | A-64 architecture. It is
typically performed by the |EEE Filter, which isinvoked before calling the user floating-point
exception handler.

Inexact Exception (Trap)

The exception-enabled response of an | A-64 arithmetic instruction to an Inexact exception isto set
the | bit (and possibly the FPA bit) in the ISR.code field of the ISR register and the Inexact flag in
the appropriate status field of the FPSR register. The operating system kernel, reached via the
floating-point fault vector, will then invoke the user floating-point exception handler, if one has
been registered.

IA-32 Floating-point Exceptions

| A-32 floating-point exceptions may occur when executing code in |A-32 mode. When this
happens, execution is transferred to the |A-64 interruption vector for |A-32 Exceptions (at vector
address 0x6900.) For classic | A-32 floating-point instructions, they are raised viathe
“1A_32_Exception(FPError) - Pending Floating-point Error”. For Streaming SIMD Extension
(SSE) instructions, they areraised viathe “IA_32_Exception(StreamingSIMD) - Streaming SIMD
Extension Numeric Error Fault”. The operating system may schedule |1A-64 and/or 1A-32 mode
exception handlers for these exceptions.

Floating-point System Software

intel.

|A-32 Application Support 20

20.1

The | A-64 architecture enables | A-64 operating systems to host | A-32 applications, |A-64
applications, as well as mixed 1A-32/IA-64 applications. Unless the operating system explicitly
intercepts 1SA transfers (using the PSR.di), user-level code can transition between the two
instruction sets without operating system intervention. This allows |A-32 programsto call |1A-64
subroutines or vice-versa. |A-64 and | A-32 code can share data through registers and/or memory.
Multi-threaded 1A-32 and | A-64 applications can easily communicate with each other or the |A-64
operating system using shared memory. The | A-64 architecture does not support execution of

I A-64 programs on an 1A-32 operating system. While the architecture does not prevent | A-32 code
from executing as part of an | A-64 operating system, it is strongly recommended that 1A-64
operating systems do not contain 1A-32 code.

One of the most compelling motivations for executing 1A-32 code on an 1A-64 operating system is
the ability to run existing unmodified 1A-32 application binaries. Because 1A-32 performs 32-bit
instruction/memory references that are zero-extended into 64-bit virtual addresses, |A-64 operating
systems must ensure that all 1A-32 code and datais located in the lower 4GBytes of the virtual
address space. Compute intensive | A-32 applications can improve their performance substantially
by migrating compute kernels from 1A-32 to 1A-64 while preserving the bulk of the application’s
IA-32 binary code. If mixed | A-32/1A-64 applications are supported, care has to be taken that the
data accessible to 1A-32 portions of the application islocated in the lower 4GBytes of the virtual
address space.

While | A-64 processors are capabl e of supporting awide range of |A-64/IA-32 code mixing, |IA-64
operating systems need to provide a software support infrastructure to enable full 1A-64/IA-32
interoperability. Most 1 A-64 operating systems are expected to support user-level 1A-32
applications, and, as aresult, must be able to provide the full range of operating system services
through a 32-bit system call interface. However, different operating systems and run-time
conventions may reduce the set of interoperability modes as desired by the operating system
vendor.

Whileit is an interesting topic, this chapter does not discuss 32-bit application binary interfaces
provided by specific operating systems. Instead, this chapter focusses on what services are required
from an | A-64 operating system by an | A-64 processor that is executing |A-32 code. In other
words, the focus of this chapter is the low-level processor / operating system interface rather than
the 1A-32 software / operating system (application binary) interface.

Transitioning between 1A-64 and |A-32

As mentioned earlier, user-level code can transition from |A-64 to 1A-32 (or back) without
operating system intervention. As described in Chapter 6, “ 1 A-32 Application Execution Model in
an |A-64 System Environment” in Volume 1, two instructions are provided for this purpose: br . i a
(an 1A-64 unconditional branch), and IMPE (an |A-32 register indirect and absol ute jump). Prior to
executing any 1A-32 instructions, however, the | A-64 operating system needsto setup an execution
environment for executing | A-32 code.

1A-32 Application Support 20-1

20.1.1

20.1.2

20-2

intel.

IA-32 Code Execution Environments

| A-64 processors are capable of executing |A-32 code in real mode, VM 86 mode or protected
mode. When segmentation is enabled both 16 and 32-bit code are supported. Prior to transferring
control to 1A-32 code, an 1 A-64 application and/or operating system is expected to setup the
complete | A-32 execution environment in |A-64 registers.

In particular, | A-64 software must setup | A-32 segment descriptor and selector registersin 1A-64
application registers, and must ensure that code and stack segment descriptors (CSD, SSD) are
pointing at valid and correctly aligned memory areas. It is also worth noting that the |IA-32 GDT
and LDT descriptors are maintained in GR30 and GR31, and are unprotected from | A-64 user-level
code. For more details on the | A-32 execution environment please refer to Section 6.2 "1A-32
Application Register State Model" in Volume 1.

Some | A-32 execution environments may need support from an |1 A-64 operating system. Which
| A-32 software environments are supported by an | A-64 operating system is determined by the

operating system vendor. 1A-64 platform firmware (SAL) provides a run-time environment that
allows execution of real-mode 1A-32 code found in PCI configuration option ROMSs.

br.ia

br. i aisanunconditional indirect branch that transitions from 1A-64 to 1A-32. Prior to entering
IA-32 codewith br . i a, software isalso required to flush the register stack. br . i a setsthe size of
the current register stack frame to zero. The register stack is disabled during 1A-32 code execution.
Because | A-32 code execution uses | A-64 registers, much of the | A-64 register state is overwritten
and |eft in an undefined state when 1A-32 code isrun. Asaresult, software can not rely on the value
of such registers across an instruction set transition. Execution of 1A-32 code also invalidates the
ALAT. For more details refer to Table 6-2 in Volume 1.

For best performance, the foll owing code sequence is recommended for transitioning from 1A-64 to
IA-32:

{.mi
flushrs /1 flush I A-64 register stack
mov b7 = rTarget /1 Setup | A-32 target address
nop. i /1 nop.i or other instruction
{.mb
nop. m /1 nop.mor other instruction
nop. i /1 nop.i or other instruction
br.ia.sptk b7 /1 branch to | A-32 target defined by

/'l lower 32-bits of branch register b7

Key to performance is that the register stack flush (f | ushr s) andthebr . i a instruction are
separated by asingle cycle, and that the br . i a instruction isthe first B-slot in the bundle directly
following thef | ushrs. The nop instruction slots in the code example may be used for other
instructions.

IA-32 Application Support

20.1.3

20.1.4

20.14.1

JMPE

JMPE isan |A-32 instruction that comesin aregister indirect and absolute branch flavors. The code
segment descriptor base is held in the CSD application register (ar.csd).

* JMPE reg16/32 computesthe |A-64 target as | P = ([regl6/32] + CSD.base) & Oxfffffffo
* JMPE disp16/32 computesthe |A-64 target as| P = (di spl6/32 + CSD. base) & Oxfffffffo

| A-64 targets of the |A-32 IMPE instruction are forced to be 16-byte aligned, and are constrained to
the lower 4Gbytes of the 64-bit virtual address space. The IMPE instruction leavesthe |A-32 return
address (address of the 1A-32 instruction following the IMPE itself) in |A_64 register GR1.

Procedure Calls between IA-64 and 1A-32

If procedure call linkage is required between | A-64 and | A-32 subroutines, software needs to
perform additional work as described in the next two sections.

IA-64 caller to IA-32 callee
This section outlines what steps an 1A-64 caller of an 1A-32 procedure needs to perform. The
ordering of the stepsis approximate and need not be executed exactly in the order presented.

1. Setup IA-32 execution environment, if not already done (see Section 20.1.2 for details).
Ensure that no NaTed registers are used to setup 1A-32 environment nor that they are passed
as procedure call argumentsto |A-32 code.

2. Marshall arguments from the register stack to memory stack according to |A-32 software
conventions.

Set up exception handle unwind data structures according to OS convention.

Make sure JM PE knows where to return to, e.g. deposit return address for the IMPE on
memory stack or passit in an |A-32 visible register.

Setup 1A-32 branch target in branch register.
Flush register stack, but no other RSE updates.

br. i aisanindirect branch to IA-32 code. Thereis no need to preserve |A-64 only
application registers, since 1A-32 code execution leaves them unmodified.

Runin the lA-32 callee until it executes a IM PE instruction.

9. JMPE instruction isan unconditional jump to |A-64 code. IMPE should use the return
address specified in step 4.

10. Move return values from memory stack to static |A-64 register used for procedure return
value according to 1A-64 calling conventions.

11. Ensurethat 1A-32 code correctly unwound memory stack, and that memory stack pointer is
correctly aligned.

12. Update exception handle unwind data structures according to OS convention.
13. br.ret returnsto |A-64 caler.

1A-32 Application Support 20-3

20.1.4.2

20.2

20-4

intel.

IA-32 caller to IA-64 callee
This section outlines what steps an 1A-32 caller of an | A-64 procedure needs to perform. The
ordering of the steps is approximate and need not be executed exactly in the order presented.

1. Caller deposits arguments on memory stack, and calls | A-64 transition stub using the IM PE
instruction.

2. Execute IMPE instruction as an unconditional branch to 1A-64 code. The IMPE instruction
will leave the address of the |A-32 instruction following the IMPE itself in |A-64 register
GRL1. This address may be used as a return address | ater.

Allocate aregister stack frame with the al | oc instruction.

Load procedure arguments from memory stack into stacked | A-64 registers. Preserve |A-32
return address in memory or register stack.

Set up exception handle unwind data structures according to OS convention.
br.cal | totarget |IA-64 cdlee.

Execute | A-64 code until it returnsusing br . ret .

Move return value from static |A-64 register to memory stack.

© © N o o

Load 1A-32 return address from step 4 into branch register.

10. Instead of flushing the register stack to memory, the contents of the register stack can be
discarded at this point since 1A-32 code execution will overwrite it anyway. Invalidate
register stack by:

a. Allocating a zero-size stack frame using the al | oc instruction.
b. Writing zero into RSC application register, and executing al oadr s instruction.

c. Restore RSC application register to its original value in preparation for the next call
from 1A-32to |A-64.

11. Ensure memory stack pointer is correctly aligned prior to returning to 1A-32 code.
12. br.iareturnsto |A-32 caller.

IA-32 Architecture Handlers

An |1A-64 operating system needs to be prepared to handle exceptions from | A-64 and | A-32 code.
Depending on the exception cause, | A-64 exception vectors can be:

« Shared I1A-64/1A-32 Exception Vectors: all virtual memory related instruction and data
reference faults share a common exception vector, regardless of whether they were caused by
IA-64 or |A-32 code.

» Unique |A-64 Exception vectors: these are conditions that only 1A-64 code can cause.
Examples are: Instruction Breakpoint fault, I1legal Operation fault, [llegal Dependency fault,
Unimplemented Data Address fault, etc.

« Unique IA-32 Exception Vectors: these conditions can occur only from |A-32 instructions.

A detailed break-down of which exceptions occur on which interruption vector and from which
instruction set is given in Table 5-5. Table 20-1 shown below summarizes all 1A-32 related
exceptions that an | A-64 operating system needs to be ready to handle. These 1A-32 specific
interrupts are grouped into three vectors: the | A-32 Exception vector, the |A-32 Intercept, and the

IA-32 Application Support

IA-32 Interrupt vector. Within each of these vectors the interrupt status register (ISR) provides
detailed codes as to the origin of this exception. Details on the | A-32 vectorsis provided in
Chapter 9, “1A-32 Interruption Vector Descriptions’. More details on debug related 1A-32
exceptionsis given in the following section of this document.

Table 20-1. IA-32 Vectors that Need 1A-64 OS Support

Vector (IVA offset)

Exception Name

Exception Related To

Expected OS Behavior

1A-32 Exception

vector (0x6900) 1A-32 Instruction Debug fault Debug Relay to debugger.
1A-32 Code Fetch fault Segmentation Signal application.
I@éi]I(gﬁtltruction Length > 15 Bad Opcode Signal application.
1A-32 Device Not Available fault | Numeric Signal application.
1A-32 FP Error fault Numeric Signal application.
1A-32 Segment Not Present fault | Segmentation Signal application.
1A-32 Stack Exception fault Segmentation Signal application.
IA-32 General Protection fault Segmentation Signal application.
1A-32 Divide by Zero fault Numeric Signal application.

1A-32 Alignment Check fault

Misaligned IA-32
Memory Reference
with alignment
checking enabled.

Depends on convention.

1A-32 Bound fault Segmentation Signal application.
1A-32 Streaming SIMD Extension Numeric Signal application
Numeric Error Fault 9 pp ’
1A-32 INTO Overflow trap Numeric Signal application.

1A-32 Breakpoint (INT 3) trap

Software Breakpoint

Depends on convention.

IA-32 Data Breakpoint trap Debug Relay to debugger.
1A-32 Taken Branch trap Debug Relay to debugger.
1A-32 Single Step trap Debug Relay to debugger.
1A-32 Invalid Opcode fault Bad Opcode Signal application.

1A-32 Intercept
vector (0x6a00)

1A-32 Instruction Intercept fault

Attempted to access
IA-32 paging, MTRRs,
IDT, IA-32 control
registers, 1A-32 debug
registers or attempted
to execute 1A-32
privileged instructions.

This is not supported on
an |A-64 OS. Signal
application.

1A-32 Locked Data Reference
fault

Attempt to reference
misaligned or
uncacheable
semaphore.

Emulation handler if
needed. Refer to
Section 13.1.3.2,
“Behavior of
Uncacheable and
Misaligned Semaphores”
on page 13-3.

1A-32 System Flag Intercept trap

System Flag intercept

Depends on convention.

IA-32 Gate Intercept trap

Gate/Task transfer
intercept

Depends on convention.

1A-32 Interrupt
vector (0x6b00)

1A-32 Software Interrupt (INT)
trap

Software Interrupt

Depends on convention.

Cannot happen in
IA-64 operating
system

1A-32 Double Fault
1A-32 Invalid TSS Fault,
IA-32 Page Fault,

IA-32 Machine Check

N/A

Don't worry,

1A-32 Application Support

20-5

20.3

20.3.1

20.3.2

20.3.3

20.3.4

20-6

Debugging IA-32 and IA-64 Code

| A-64 operating systems that want to provide debug support for both 1A-32 and | A-64 applications,
need to be aware of the differences between taking instruction and data breakpoint exceptions as
well as single step or taken branch traps on |A-64 and | A-32 instructions.

Instruction Breakpoints

If an 1A-64 instruction matches an instruction breakpoint register (IBR) then an Instruction Debug
Fault is delivered on the |A-64 Debug vector. To step across asingle 1A-64 instruction, IPSR.id
must be set to one. An | A-32 instruction, however, that matches an IBR causesan |A-32 I nstruction
Breakpoint fault which is delivered to the | A-32 Exception vector (Debug). To step acrossasingle
IA-32 instruction, either IPSR.id or EFLAGS.rf must be set to one.

Data Breakpoints

If an |A-64 memory reference matches adata breakpoint register (DBR) then a Data Debug Fault is
delivered on the |A-64 Debug vector. To step across a single | A-64 data breakpoint, IPSR.dd must
be set to one. An | A-32 instruction, however, that matches a DBR causes an | A-32 Data Breakpoint
trap which is delivered to the | A-32 Exception vector (Debug). In other words, the debugger only
gets control after the instruction making the reference has completed. Since | A-32 instruction can
make multiple memory references, asingle | A-32 instruction may cause multiple data break points
to trigger. Details on how thisis communicated to software in the interrupt status register (ISR) is
givenin Section 9.1 "IA-32 Trap Code". Since |A-32 data breakpoints are traps, there is no need to
step over them.

Single Step Traps

When PSR.ss enables single stepping of 1A-64 applications, each instruction that is stepped will
stop at the Single Step trap handler. When PSR.ss or EFLAG.tf enable single stepping of 1A-32
applications, an |A-32_Exception(Debug) trap is taken after each | A-32 instruction. For more
details refer to Section 9.1 "1A-32 Trap Code".

Taken Branch Traps

When PSR.tb enables taken branch trapping on 1A-64 applications, each taken branch will transfer
control to the Taken Branch Trap handler. When PSR.tb is set, taken | A-32 branches transfer
control to the |A-32_Exception(Debug) trap handler taken after each 1A-32 instruction. For more
details refer to Section 9.1 "1A-32 Trap Code".

IA-32 Application Support

intel.

External Interrupt Architecture 21

| A-64 provides a high performance external interrupt architecture. While | A-32 processors
commonly use athree wire shared APIC bus, |A-64 processor utilize a high performance message
based point-to-point protocol between processors and multiple I/O interrupt controllers. To ensure
that 1A-64 processors can fully leverage the large set of existing platform infrastructure and 1/O
devices, compatibility with existing platform infrastructure is provided in the form of direct support
for Intel 8259A compatible interrupt controllers and limited support for level sensitive interrupts.

This chapter introduces the basic external interrupt mechanism provided by 1A-64 processors,
while Section 5.8 "Interrupts" provides the complete architectural definition for the 1A-64 external
interrupt architecture.

21.1 External Interrupt Basics

Interrupts are identified by their vector number. The vector number implies interrupt priority, and
also determines whether the interrupt is delivered to processor firmware as a “ PAL-based”
interrupt, or whether it is delivered to the operating system as an “1VA-based” external interrupt.

This chapter discusses asynchronous external interrupts only. PAL-based platform management
interrupts (PMI) are not discussed here. External interrupts are I VA-based and are delivered to the
operating system by transferring control to code located at address CR[1VVA]+0x3000. This code
location is also known as the external interrupt vector and is described on page 8-20.

Software can distinguish interrupts based on their vector number. Vector numbers range from 0 to
255. Vector numbers also establish interrupt priorities as follows:

* Vector numbersbelow 16 are special, and are architecturally defined in Section 5.8.1 "I nterrupt
Vectors and Priorities'. The non-maskable interrupt (NM1) is always vector 2 and is higher
priority than all in-service external interrupts. ExtINT, Intel 8259A compatible external
interrupt controller interrupt, is always vector 0. Vector numbers below 16 have higher priority
than vectors above 16. Vector 15 is used to indicate that the highest priority pending interrupt
in the processor isat apriority level that is currently masked or there are no pending external
interrupts.

 For vector numbers between 16 and 255, higher vector numbersimply higher priority. In this
range, vectors are freely assignable by software. Thisis achieved by programming of interrupt
controllers and the processor internal interrupt configuration registers.

21.2 Configuration of External Interrupt Vectors

Asdefined in Section 5.8 "Interrupts”, external interrupts originate from one of four sources:
» From external sources, e.g. external interrupt controllers or intelligent external 1/0 devices, or

» From the processor’'s LINTO or LINT1 pins (typically connected to an Intel 8259A compatible
interrupt controller), or

External Interrupt Architecture 21-1

21.3

21.3.1

21.3.2

21-2

» Frominternal processor sources, e.g. timers or performance monitors, or
 From other processors, e.g. inter-processor interrupts (1PIs).

All interrupts are point-to-point communications. Thereis no facility for broadcasting of interrupts.
The interrupt message protocol used by the processor-to-processor and the external
source-to-processor is not defined architecturally, and is not visible to software.

A number of external interrupt control registers (LID,TPR, ITV, PMV, CMCV, LRRO and LRR1)
allow software to directly configure the processor interrupt resources. The Local 1D register (LID)
establishes a processor’s unique physical interrupt identifier. The Task Priority Register (TPR)
allows masking of external interrupts based on vector priority classes. The ITV, PMV, CMCV,
LRRO and LRR1 interrupt control registers configure the vector number for the processor’s local
interrupt sources. Configuration of the external controllers and devicesis controller/device specific,
and is beyond the scope of this document.

External Interrupt Masking

| A-64 processors provides four mechanismsto prevent external interruptsfrom being deliveredto a
processor: ahit in the processor status register (PSR.i), the interrupt vector register (IVR) and the
end-of-interrupt (EOI) register, the task priority register (TPR), and the external task priority
register (XTPR). The next four sections discuss these mechanisms.

PSR.i

When PSR.i is zero, the processor does not accept any external interrupts. However, interrupts
continue to be pended by the processor. Software can use PSR.i to temporarily disable taking of
external interrupts, e.g. to ensure uninterruptable execution of critical code sections. Since clearing
of PSR.i takes effect immediately (refer to the rsm instruction page), software is not necessarily
required to explicitly serialize clearing of PSR.i (unless another processor resource requires
serialization). On the way out of an uninterruptable code section software is not required to
serialize the setting of PSR.i either, unlessit is of interest to software to be able to take interruptsin
the very next instruction group. A code example for this case is given below:

rsmi
/1 rsmof PSR i takes effect on the next instruction

/1 uninterruptabl e code sequence here

ssmi ;;

/1 ssmof PSR i does require data serialization, if we need to ensure
/1 that external interrupts are enabled at the very next instruction. If
/] data serialization is omtted, PSRi is set to 1 at the |atest when
/1 the next exception is taken.

By avoiding the serialization operations on PSR.i the performance of such uninterruptable code
sections isimproved.

IVR Reads and EOI Writes

Asdescribed in Section 21.4, IV R reads return the highest priority, pending, unmasked vector, and
places this vector “in-service”. Additionaly, VR reads have the side-effect of masking all vectors
that have equal or lower priority than one that isreturned by the I VR read. Correspondingly, writes

External Interrupt Architecture

21.3.3

21.3.4

21.4

to the EQI register unmask all vectors with equal or lower priority than the highest priority
“in-service” vector. Dueto nesting of higher priority interrupts, it is possible to have multiple
vectorsin the “in-service” state.

Task Priority Register (TPR)

The Task Priority Register (TPR) provides an additional interrupt masking capability. It allows
software to mask interrupt “priority classes’ of 16 vectors each by specifying the mask priority
classinthe TPR.mic field. The TPR.mmi field allows masking of all maskable external interrupts
(essentialy all but NMI).

An example of TPR useis shown in Section 21.5.2, “TPR and XPTR Usage Example”’ on
page 21-5.

External Task Priority Register (XTPR)

The External Task Priority Register (XTPR) is a per-processor resource that can be provided by
external buslogic in some |A-64 platforms. If supported by the platform, X TPR can be used by the
operating system to redirect external interrupts to other processors in a multi-processor system.

The XTPR is updated by performing a 1-byte store to the X TP byte which is located at an offset of
0x1e0008 in the Processor I nterrupt Block (see Section 5.8.4 "Processor Interrupt Block" for
details). Since the timing of the modification of the X TP register is not time critical thereisno
serialization required. Effects of the one byte store operation are platform specific. Typically, it will
generate a transaction on the system bus identifying it as an X TP register update transaction, and
will indicate which processor generated the transaction as well as the stored data.

An example of XTPR useisincluded in Section 21.5.2, “TPR and XPTR Usage Exampl€e’ on
page 21-5.

External Interrupt Delivery

The architectural interrupt model in Section 5.8 defines how each interrupt vector cycles through
one of four states:

* Inactive: thereis no interrupt pending on this vector.

» Pending: an interrupt has been received by the processor on this vector, but has not been
accepted by the processor and has not been acquired by software. The processor hardware will
accept the interrupt when this vector’s priority level is higher than the highest currently
in-service vector, PSR.i is one, and TPR settings do not mask the interrupt. Thiswill cause the
processor to transfer control flow to the external interrupt handler. Software can then acquire
the highest priority, pending, unmasked vector by reading the IVR control register. The IVR
read returns the 8-bit vector number in aregister and masks all vectorsthat have equal or lower
priority. This vector now enters the In-Service/None Pending state.

* In-Service/None Pending: an interrupt has been received by the processor on this vector, and
has been acquired by software (by reading the IVR control register), but software has not
completed servicing thisinterrupt. In this state, the processor masks all vectors that have equal
or lower priority. In this state, the processor can receive and remember a second interrupt on
this vector. If this happens, the processor transitions this vector to the “1n-Service/One

External Interrupt Architecture 21-3

21-4

intel.

Pending” state. If software completes the interrupt service routine (indicated to the processor
by writing the EQOI register) before another interrupt is received on this vector, then the
processor returns this vector to the Inactive state, and all vectors with equal or lower priority
are unmasked.

In-Service/One Pending: an interrupt has been received by the processor on this vector, and has
been acquired by software (by reading the IVR control register), and software has not
completed servicing thisinterrupt. Additionally, the processor received a second interrupt on
this vector, which is now held pending. If additional interrupts on this vector are received by
the processor while this vector isin the “In-Service/One Pending” state, those additional
interrupts are not distinguishable by the processor hardware. When software compl etes the
interrupt service routine for the original interrupt on this vector (indicated to the processor by
writing the EQI register), then the processor returns this interrupt vector to the Pending state
for the second interrupt that was received on this vector. Additionally, all vectors with equal or
lower priority are unmasked.

It is recommended the following structure for an |A-64 external interrupt handler:

Read and Save TPR, i.e. save Old Task Priority variable (optional).

2. Externa Interrupt Harvest Loop:

a. ReadthelVR control register to determine which vector is being delivered. If the
returned IVR valueis 15, then thisis a spurious interrupt and it can be can ignored;
software can now clear PSR.ic, restore IPSR and [IPand thenr f i to the interrupted
context. If the returned IVR value is not 15, continue with step 2b.

b. Raise TPR register to the interrupt class to which the level read out of IVR belongs
(optional).

c. Software must preserve |IP and IPSR prior to re-enabling PSR.ic and PSR.i which will
re-enable taking of exceptions and higher priority external interrupts.

d. Issueasrl z. d ingtruction. This ensures that updated PSR.ic and PSR.i settings are
visible, and it also makes sure that the IVR read side effect of masking lower or equal
priority interruptsis visible when PSR.i becomes 1.

e. Dispatch the appropriate interrupt service routine.

f. Disable external interrupts by clearing PSR.i with anr sm 0x4000 instruction.This
ensures that external interrupts are disabled prior to the EOI write in the next step.

g- Notify the processor that interrupt handling for thisvector is completed by writing to the
EQI register. Thiswill unmask any pending lower priority interrupts. If thiswas alevel
triggered interrupt, write to the I/O SAPIC EOI register.

h. Lower TPR register to Old Task Priority (optional).

i. Issueasrl z. dinstruction. This ensures that ensure the EOI write from step 2g is
reflected in the future IVR read (in step 24). It also ensures that the TPR update from
step 2h unmasks any interruptsin the priority classes (including the current task priority
level) that were masked by the previous value of TPR.

j. Returnto top of loop (step 2a).

These steps assume that the routine’s caller already performed the required state preservation of
interruption resources. Therefore the focus of the steps above isto check the IVR to acquire the
vector so the operating system can determine what device the interrupt is associated with. The code
issetup to loop, servicing interrupts until the spurious interrupt vector (15) isreturned. Looping and
harvesting outstanding interrupts reduces the time wasted by returning to the previous state just to
get interrupted again. The benefit of interrupt harvesting is that the processor pipelineis not

External Interrupt Architecture

21.5

21.5.1

21.5.2

unnecessarily flushed and that the interrupted context is only saved/restored once for a sequence of
external interrupts. Once the vector is obtained the specific interrupt service routineis called to
service the device request. Upon return from the interrupt service routine, an EOI iswritten and the
IVR is checked once again.

If the operating system does not implement priority levels then there is no need to save and restore
thetask priority level (steps 1, 2b, and 2h are optional). As described in Section 21.3 above, an IVR
read automatically masks interrupts at the current in-service level and below until the
corresponding EOI isissued. For level triggered interrupts, the programmer must not only inform
the processor, but the external interrupt controller that the level triggered interrupt has been
serviced.

Interrupt Control Register Usage Examples

The examples in this section provide an overview of using the IA-64 external interrupt control
registers. Actual and pseudo code fragments are listed to aid in the development of OS code which
will utilize these registers. It is up to the operating system and its writer to determine what
minimum set of control registers are required to be used.

Notation

Preprocessor macros for function ENTRY and END are used in the examples to reduce duplication
of code and reduce document space requirements.

#defi ne ENTRY(I| abel) \
Ltext; \
.align 32;; \
.global |abel; \
.proc |abel; \

| abel : :

#define END(I| abel) .endp

TPR and XPTR Usage Example

This code will allow certain interrupts to be masked by increasing/decreasing the task priority
register. If you don’t want to mask all external interrupts, you can raise the priority level to mask
out only the interrupts that have higher priority (and no effect on your current critical section).

We also take the expensive route here by updating not only the processor TPR, but the External
Task Priority Register used by the chipset (if supported) as a hint to what processor should receive
the next external interrupt.

1

// routine to set the task priority register to mask

/] interrupts at the specific level or bel ow

/1

/1 I NPUT: SPL |evel

/1

TPR_M C=4
TPR_M C_LEN=4

.global external _task_pri_reg// address points to Interrupt Delivery bl ock

External Interrupt Architecture 21-5

21.5.3

21.5.4

21-6

ENTRY(set _spl)
al l oc ri18=ar.pfs,1,0,0,0
dep.z r22=r32, TPR_ M C, TPR_M C_LEN
movl rl1l9=external _task_pri_reg

;"ré)v cr.tpr=r22
1d8 r20=[r19] // get address of EXt. TASK Priority Register

’s’rlz.d /Il srlz.d only required if want TPR update effective i mediately
st1[r20]=r32 // if supported by platform update eXternal Task Priority (XTP)
br.ret.sptk b0

END(’s’et _spl)

EOI Usage Example

Thisexampleisatypical return from an interrupt service routine to the generic interrupt handler.
Interrupts are disabled before returning to the main trap handler in preparation for returning from
kernel space.

return_from.interrupt:
/] disable interrupts here

rsm 0x4000 /'l make sure interrupts disabled

/1 interrupt_eoi# clear the sapic/pic interrupt

sapi c_eoi :
nmov cr. eoi =r0 /1 issue and eoi
srlz.d /1 make sure it takes effect

/] issue the appropriate EO sequence to the external interrupt
/1 controller here.

For level trigger interrupts, the OSis required to issue an EOI not only to the processor, but also the
external interrupt controller where the interrupt originated. This forces the OS to keep track of
whether the vector is associated with alevel or an edge trigger interrupt line.

IRR Usage Example

Waiting on an interrupt with interrupts disabl ed.

nmy_interrupt_| oop::

/1
/1 check for vector 192 (0xcO) via irr3
/1

nov r3=cr.irr3

’ahd r3=0x1,r3

crrp eq p6, p7=0x1,r3
(p7)br.cond. sptk.few my_interrupt_| oop

nmov rd=cr.ivr /1 read the vector

nmov cr.eoi=r0 /'l clear it

External Interrupt Architecture

intel.

21.5.5

Interval Timer Usage Example

The | A-64 architecture provides a 64 bit interval timer for time stamps and elapsed time
notification interrupts. It is equivalent to the IA-32 Time Stamp Counter (TSC). Programming the
|A-64 interval timer consists of initializingthe ITV (CR 72), ITM (CR 1), and ITC (AR 44).

The Interval Timer Vector (ITV) specifies the external interrupt vector number for the Interval
Timer Interrupts. The code examples below show how to clear and initialize the timers vector,
match register, and count registers.

The Interval Time Counter (ITC) gets updated at a fixed relation to the processor clock. The ITM,
Interval Timer Match, is used to determine when ainterval timer interrupt is generated. When the
ITC matches the ITM and the timer is unmasked vial TV then an interrupt will be generated.

/1
// routine to reset the interval tiner to zero..
/1

ENTRY(em tiner_reinit)
nov ar.itc=r0 /1 reset itimer counter
br.ret.spnt.fewrp

END(em tiner_reinit)

// routine to setup the interval tiner.

/1 1) setup the interval timer vector
/1 2) initialize the time counter to zero
/1 3) initialize the match register

/1 INPUTS: timermatch -- value to initialize ITMregister wth.
11 vector nunber -- vector to interrupt with
/1 OUJTPUTS: none

ENTRY(enabl e_mi nterval)
alloc rl4=ar.pfs,0x2,0,0,0 // get ready for input paraneters

nov ar.itc=r0 /1 initialize counter to zero
nov cr.itner32 /1l set match register

srlz.d

nov cr.itv=r33 /1 set interval tinmer vector
srlz.d /1 make sure it goes through
br.ret.sptk.few rp /] return

. endp

Sincethe ITC gets updated at a fixed relation to the processor clock, in order to find out the
frequency at run time, one can use afirmware call to obtain the input frequency information to the
interval time. Using this frequency information the ITM can be set to deliver aninterrupt at a
specific timeinterval (i.e. for operating system scheduling purposes). Assuming the frequency
information returned by the firmware isin ticks per second, the programmer could use a time-out
deltafor delivering atimer interrupt every 10 milliseconds as follows:

ti meout _del ta=ticks_per_second/ 100;

whereti cks_per _second isthe frequency value returned by the firmware and t i meout _del t a will
be the value added to the ITC for setting the next ITM. Therefore, the ITC isleft free running, but

External Interrupt Architecture 21-7

21.5.6

21.5.7

21-8

the ITM must be updated upon every timer interrupt with its next time out match value,
i.e. ITM =ITC +ti neout _del ta.

The only issue with this setup isif the timer interrupt delivery is delayed beyond the point of the
original intended delivery time (i.e. ITC > ITM). This could happen if interrupts were disabled or
blocked by the operating system/device driver longer than the time-out value. In this case the ITM
has to be adjusted in order for the next ITM to be accurate. The following agorithm could be used
to adjust the next ITM before returning from the timer interrupt handler.

for (;;) {
itmnext = itmnext + tinmeout_delta + (read current ITC - read current ITM;
if (itmnext < current ITC {
/* we mssed the next interrupt already, continue */
} else {
set _itm(itmnext);
br eak;

}

wherei t m next wasinitialized to current ITC +ti meout _del t a, and set _i t min |A-64 assembly
would look like:

.global set_itm
.proc set_itm
set_itm
al l oc ri18=ar.pfs,1,0,0,0
nov cr.itmner32
srlz.d
br.ret.sptk b0

.endp set_itm

Local Redirection Example

The Local Redirection Registers (LRRO-1) servesto steer external signal based interruptsthat are
directly connected to the processor. LRRO and LRR1 control the external interrupt signals (pins)
referred to as Local Interrupt O (LINTO) and Local Interrupt 1 (LINTZ1) respectively. The example
below shows how to mask interrupt delivery on LINTO.

movl r18=(1<<16)
}n’)v cr.lrr0=r18

srlz.d // srlz.dis required after LRR wite to ensure wite effect

Inter-processor Interrupts Layout and Example

A processor generates an inter-processor interrupt (1Pl) by storing a64-bit interrupt command to an
8-byte aligned addressin the Interrupt delivery region of the Processor Interrupt block. The address
being stored to determines what target processor receivesthe IPl. The example below isan example
of sending an interrupt to a specific processor based on the destination 1D passed in. The
destination ID consists of the Local interrupt 1D and the Extended interrupt ID.

Writing to improperly aligned addresses in the delivery region or failure to store less than 64 bits
can result in an invalid operation fault. The access must be uncacheablein order to generate an IPI.

External Interrupt Architecture

21.5.8

/1 send_ipi_physical (dest_id, vector)

/1 inputs: processor destination |ID vector to send

/1 (Local 1D (8 bits << 8)| EID(8 hits))

/1

/1

/1

. gl obal ipi_block /1 pointer to processor |/0O block

| Pl _DEST_EI D=0x4

ENTRY(send_i pi _physi cal)
alloc ri9=ar.pfs,2,0,0,0
novl r17=i pi _bl ock;;

1d8 r17=[r17] /'l get pointer to processor block
shl r21=r32,| Pl _DEST_EID; ;

add r20=r21,r17;; /] point to proper processor
st8.rel [r20]=r33 /1 send the IPI

br.ret.sptk bO;;

END(send_i pi _physi cal)

INTA Example

External interrupt controllers, that are compatible with the Intel 8259A interrupt controller can not
issue interrupt messages, so the vector number is not available at the time of the interrupt request.
When an interrupt is accepted the software must check to seeif it came from an external controller
by the vector number (vialVR) to seeif it isthe ExtINT vector.

Once the software determinesit isan ExtINT, it must obtain the actual vector by doing an uncached
1 byte load from the INTA byte located in the upper half of the processor interrupt block, offset
0x1e0000 from the base.

EXTI NT=r 0
| NTA_PHYS_ADDRESS=0x80000000f ef e0000

i nt a_addr ess=r 31
novl inta_address=I NTA PHYS ADDRESS

srlz.d /1 make sure everything is up to date
nov rl14 = cr.ivr /1 read ivr

srlz.d /] serialize before the EO is witten...

cnp.ne pl,p2 = EXTINT,r14 ;:
(pl) br.cond. sptk process_interrupt

/1 A single byte load fromthe | NTA address shoul d cause

/'l the processor to emit the INTA cycle on the processor

/] system bus. Any Intel 8259A conpatible external interrupt
/'l controller nust respond with the actual interrupt

/1 vector number as the data to be | oaded.

Idl rl17 = [inta_address] /1 get the real vector..
I vecto,r, obt ai ned

process_interrupt:

External Interrupt Architecture 21-9

21-10

External Interrupt Architecture

intel.

/O Architecture 22

1/0 devices can be accessed from | A-64 programs using regular loads and stores to uncacheable
space. While cacheable | A-64 memory references may be reordered by the processor, uncacheable
1/O references are always presented to the platform in program order. This “sequentiality” of
uncacheable referencesis discussed in Section 13.2.2, “Memory Attributes’ on page 13-16 and in
more detail in Section 4.4.7, “ Sequentiality Attribute and Ordering”.

Additionally, uncacheable memory pages are defined to be “ non-speculative” which causes all data
and control speculative loads to uncacheabl e pages to defer. Control speculative loadsto
uncacheable memory return a NaT/NaTVal to their target register. Data speculative |loads to
uncacheable memory return zero to their target register. For details, refer to Section 4.4.6,
“Speculation Attributes’.

When configuring chipset registers or setting up device registers, it is sometimes required to know
when a memory transaction has been completed. Compl etion means the processor received
acknowledgment that the transaction finished successfully in the platform, and that al its
side-effects have occurred and will be visible to the next memory operation (issued by the same
processor). To ensure completion of prior accesses on the platform, |A-64 providesthenf . a
instruction. Unlike the nf instruction that waits for visibility of prior operations, the mf . a waits
for completion of prior operations on the platform. More details in Section 22.1.

To fully leverage the large set of existing platform infrastructure and 1/O devices, |A-64 also
supportsthe 1A-32 platform /O port space. The |A-64 instruction set does not provide IN and OUT
instructions, but they can be emulated. The 1/0 port space can be mapped into user-space, and
IA-32 applications can use IN and OUT instructions to directly communicate with the 1/0O port
space. More detailsin Section 22.2.

The | A-64 architecture provides a high-performance, high-bandwidth uncacheable memory
attribute that supports write-coalescing. This allows the processor to burst writes to uncacheable
locations at much higher bandwidth. | A-64 does not guarantee the FIFO delivery of
write-coalescing stores. More details in Section 4.4.5, “ Coalescing Attribute”.

22.1 Memory Acceptance Fence (mf.a)

Annf instruction ensuresthat all cache coherent agents have observed all prior memory operations
made by the processor issuing the nf . However, it does not ensure that those operations have
completed, in | A-64 parlance it does not ensure that they have been “accepted” by the external
platform. For instance, aload may have been made visible to all processors by snooping their
caches, but the data return may still bein progress. Such aload would be visible, but not complete.

Thenf . a instruction on the other hand ensures that all prior data memory references made by the
processor issuing the nf . a have been “accepted” by the external platform. However by itself the
nf . a does not guarantee that all cache coherent agents have observed all prior memory operations.
For instance, an uncacheable store to a chipset register may have completed on the system bus,
however, that does not entail that all prior cacheable transactions (from the processor issuing the
store) have been observed by all other processors in the coherence domain.

1/0 Architecture 22-1

22.2

22-2

intel.

If software needs to ensure that all prior memory operations have been accepted by the platform
and have been observed by all cache coherent agents, both an nf . a and an nf instruction must be
issued. Thenf . a must be issued first, and the nf must be issued second. For more details on
memory ordering between cache coherent agents please refer to Chapter 13, “MP Coherence and
Synchronization”.

Typicaly nf .aisused to configure a system’s 1/O space, e.g. to setup chipset registersthat affect all
subsequent memory operations. Specifically, the mf.ainstruction restrains further data accesses
from initiating on the external platform interface until:

1. All previous sequential (i.e. non write-coal escing uncacheable) loads have been returned
data, and

2. All previous stores have been “accepted” by the platform. Typically acceptance isindicated
by a bus specific signals/phase, e.g. completion of response phase on the system bus.

Architecturally, the definition of “acceptance” is platform dependent. The next section discusses
the usage of the nf .ainstruction in the context of the 1/0O port space.

I/O Port Space

| A-32 processors support two 1/0O models: memory mapped 1/0 and the 64KB 1/O port space. To
support A-32 platforms, the | A-64 architecture all ows operating systemsto map the 64K B 1/O port
space into the 64-bit virtual address space. This allows | A-64 operating systemsto seeall 1/0
devices as a single unified memory mapped 1/0O model, and permits “normal” 1A-64 load and store
instructions as well as1A-32 IN and OUT instructionsto directly access the I/O port space.

Asdescribed in Section 10.7, “1/O Port Space Model”, | A-64 operating systems can map the
physical 64KB 1/O port space into a spread-out 64MB block of virtual address space. The virtual
base address of the 1/0 port space (I0OBase) is maintained by the operating system in kernel register
KRO. When the processor issues | A-64 load and stores accesses to the 1/O port space, aport’s
virtual addressis computed as:

port_virtual _address = | OBase | (port{15:2}<<12) | port{11:0}

For IA-64 loads and stores, this address computation places four 1-byte ports on each 4KB page
and expands the space to 64MB, with the ports being at a relative offset specified by port{ 11:0}
within each 4K B virtual page. When executing an 1A-32 IN or OUT instruction an |A-64 processor
automatically converts the |1A-32 address to the appropriate |A-64 1/0 port space address.

Asaresult of the spreading-out of the I/O portsinto individual 4KB pages, | A-64 operating system
code can control 1A-32 IN, OUT instruction and |A-32 or | A-64 |oad/store accessibility to blocks
of 4 virtual 1/0 ports using the |A-64 TLBs. This allows | A-64 operating systems to securely map
devices that inhabit the 1/0O port space to different 1A-64 device drivers or to user-space |A-64
applications.

| A-64 operating systems must ensure that the I/O port space is always mapped as uncacheable
memory, and that |A-64 software only issues aligned 1, 2 or 4 byte references to 1/O port space,
otherwise device behavior is undefined.

When porting an |A-32 device driver to |A-64 it can be useful to emulate the behavior of 1A-32 IN
and OUT instructions. The following code examples should be used for this purpose, since they
enforce the strict memory ordering and platform acceptance requirementsthat 1A-32 IN and OUT
instructions are subject to. The following | A-64 assembly code outh (out byte) and inb (in byte)
examples assume that theio_port_base is the virtual address mapping pointer set up by the |A_64

1/0 Architecture

operating system. Annf . a instruction is used to verify acceptance by the platform before returning
to the calling routine. Interrupts would expected to be disabled if these routines are called from user
mode. Thisisfor possible issues with process migration after servicing an interrupt.

/1
/1 void outb(unsigned char *io_port,unsigned char byte)
/1
//Qutput a byte to an 1/0O port.
/1
ENTRY(out b)
base_addr ri6
port _addr = r17
port_offset = r18
mask = r19

al | oc ri3 = ar.pfs, 2, 0, 0, 0 /! 2in, 0 local, O out, O rot
nov| base_addr = io_port_base
extr.u port_offset =in0, 2, 14
nov mask = Oxfff
| d8 port _addr = [base_addr]
shl port_offset = port_offset, 12
and in0 = mask, in0
add port_offset = port_offset, in0O
nf
add port _addr = port_addr, port_offset
stl.rel [port_addr] = inl
nf.a
nf
br.ret.spnt.fewrp
END(out b)

/1
/1 unsigned char inb(unsigned char *io_port)
/1
// lnput a byte froman 1/0O port.
/1
ENTRY(i nb)
base_addr rilé
port_addr = r17
port_offset = r18
mask = r19

all oc ri3 = ar.pfs, 2, 0, 0, O /1 2in, 0 local, 0 out, O rot
nov| base_addr = io_port_base
extr.u port_offset =in0, 2, 14
nov mask = Oxfff
| d8 port _addr = [base_addr]
shl port _offset = port_offset, 12
and in0 = mask, in0
add port _offset = port_offset, in0
nf
add port_addr = port_addr, port_offset
I dl.acq r8 = [port_addr]
nf.a
nf
br.ret.spnt.fewrp
END(i nb)

1/0 Architecture 22-3

22-4

1/0 Architecture

intel.

Performance Monitoring Support 23

23.1

I A-64 processors include a minimum of four performance counters which can be programmed to
count processor events. These event counts can be used to analyze both hardware and software
performance. 1A-64 performance counters can be configured to generate a counter overflow
interrupt. Thisinterrupt can be used for event or time based profiling. For hot-spot analysis of
running code, performance monitor interrupts can be used to create a profile of frequently
occurring instruction pointers (1P). Another common use of event counts isto compute processor
performance metrics such as cycles per instructions (CPl), the current branch, cache or TLB miss
rates, etc.

I A-64 provides architected support for context switching of performance monitors by an 1A-64
operating system. If supported by the operating system, this allows performance counter events to
be broken down per thread or per process which isimportant for effective performance tuning of
|A-64 applications.

The remainder of this chapter reviews the architected performance monitoring mechanisms. It aso
discusses the |A-64 operating system support needed for two monitoring usage models: per
process/thread and system-wide event monitoring.

Architected Performance Monitoring Mechanisms

Asdefined in Section 7.2, "Performance Monitoring", | A-64 processors provide a minimum of four
generic performance counter pairs (PMC/PMD[4..7]). The performance monitor control (PMC)
registers are used to select the event to be counted, and to define under what conditions the event
should qualify for being counted (for details refer to Section 7.2.1, "Generic Performance Counter
Registers'). The performance monitor data (PMD) registers contain the event count or data.

The PMC/PMD registers can only be written by privileged software (PSR.cpl must be zero). A
counter can be configured as a“ privileged” counter or a“user-level” counter by setting of the
PMC]Ji].pm bit. Privileged counters can only read at privilegelevel 0, while user-level counters can
by read by user mode code (unless the operating system has explicitly disabled the user-level
monitor reads using PSR.sp).

Once the PMC/PMD registers have been configured, counting is enabled and disabled by setting
bitsin the PSR. User-level counters can be controlled at user-level using the rum and sum
instructions to toggle PSR.up. Privileged counters are controlled by privileged software using the
rsm, ssm, mov from/to PSR instructions to toggle PSR.pp. Counting for all countersis further
controlled by the PMC[0] freeze bit. When PMC[0].fr is 0, all counters are disabled. When
PMCJQ].fris 1, counting is enabled based on PMCJi].pm, PSR.pp and PSR.up. For more detailson
controlling of the performance monitors please refer to Section 7.2.1, "Generic Performance
Counter Registers".

Performance Monitoring Support 23-1

23.2

23-2

intel.

The | A-64 processor firmware provides information about the performance monitor registers that
areimplemented on the processor through the PAL_PERF_MON_INFO PAL call. Information
provided by the PAL includes bit masks which indicate which PMC/PMD registers are
implemented on this processor model, as well as the implemented number of generic PMC/PMD
pairs, and the counter width of the generic counters.

Operating System Support

The monitoring mechanisms discussed in the previous section support two performance monitoring
usage models that need support from an 1A-64 operating system.

* Per Thread/Process Event Monitoring
To monitor processor events per thread the operating system needs to save and restore
performance monitor state at thread/process context switches. This save/restore of PMC and
PMD registers only needs to be done for monitored threads. The effect of the save/restoreis
that when a monitored thread is running, PMD reads will reflect events for the monitored
thread/process only. Section 7.2.4.2, " Performance Monitor Context Switch" defines the steps
required for per-thread context switch of performance monitors. It is worth noting that the
PMC/PMD masks returned from PAL_PERF_MON_INFO indicate which PMC/PMD
registers are implemented. The context switch routine can use the mask to save/restore
implemented monitors without knowing the function of the monitors.

« System Wide Event Monitoring
To monitor processor events system wide (across al processes and the operating system kernel
itself), a monitor must be enabled continuously across all contexts. This can be achieved by
configuring a privileged monitor (PMC.pm=1), and by ensuring that PSR.pp and DCR.pp
remain set for the duration of the monitor session. Since the operating system typically reloads
PSR and possibly DCR on context switch, this requires the operating system to set PSR.pp and
DCR.pp for all contexts that are active during the monitoring session. One way to accomplish
thisisto have code in the context switch routine to always set PSR.pp and DCR.pp when
system wide monitoring isin effect. Another technique isto set the initial state for all new
threads/processes to PSR.pp=1, PSR.up=0, PSR.sp=0 and DCR.pp=1. Setting the per thread
PSR and DCR in this way ensures that privileged monitors will be enabled across all contexts.
When system wide monitoring isin effect, PSR.pp, DCR.pp as well asthe PMC and PMD
registers should not be altered by the context switch routine.

To support both per thread and system wide monitoring, the operating system needs to be aware
which type of monitoring is being performed at any given moment. If per thread/process
monitoring is active, then the operating system must save/restore monitor state for monitored
threads. If system wide monitoring is active, then the operating system must ensure that PSR.pp
and DCR.pp remain set.

The preferred approach for performance monitoring is for | A-64 operating systems to provide a set
of kernel mode services that allow performance monitoring software to be implemented in a
loadable device driver. Such aloadable device driver can support various usage monitoring models,
can be adapted to model -specific processor monitoring capabilities, and is awell-defined isolated
and easily replaceabl e software component. The following operating system services allow akernel
mode device driver to take full advantage of |A-64 performance monitors:

« Allocation/Free Performance monitors — operating system should del egate management of the
performance monitor resources to device driver.

Performance Monitoring Support

* Process create/terminate notification — operating system should notify driver on process create/
terminate

e Thread create/terminate notification — operating system should notify driver on thread create/
terminate

 Context switch notification — operating system should notify driver on thread and process
context switch. The driver will perform the required save/restore depending on the currently
active usage model.

« Performance counter overflow interrupt — operating system should notify driver when a
performance monitor overflow interrupt occurs.

» Get Current Process Identifier — returns a unique identifier for the current process or address
space. This should be callable in any context, e.g. by an interrupt handler.

» Get Current Thread Identifier — returns a unique identifier for the current thread of execution.
This should be callablein any context, e.g. by an interrupt handler.

One of the challenges when doing instruction pointer (IP) profiling isto relate the current IP to an
executable binary module and to an instruction within that module. If appropriate symbol
information is available, the IP can be mapped to aline of source code.

To support this I P to module mapping, it is recommended that the OS provide servicesto enumerate
all kernel and user mode modules in memory, and to allow a kernel mode driver to be notified of
each module load. The following services are recommended:

¢ Enumerate kernel mode modules — provides information each kernel mode module currently
loaded in memory.

» Enumerate threads/processes — provides alist of current threads/processes. The list should
include the unique identifier for each thread/process.

e Enumerate all user mode modules — provides information on each user mode module that is
currently loaded in memory (all processes).

» Enumerate modules for a process — provides information on each user mode module that is
currently loaded in memory for the selected process.

» Module load natification — OS should notify a driver when the OS loads a kernel or user mode
module into memory for execution. The notification should occur before the module begins
execution.

In the above services for module enumeration and load notification, the module information
provided for amodule should include module name, load address, size in bytes, section number (if
asection of amoduleisloaded non-contiguously), and a process/thread identifier that identifies the
process into which the moduleis loaded.

Performance Monitoring Support 23-3

23-4

Performance Monitoring Support

intel.

Firmware Overview 24

24.1

24.1.1

The | A-64 architecture defines three firmware layers: Processor Abstraction Layer (PAL), System
Abstraction Layer (SAL), and Extensible Firmware I nterface (EFI).

The PAL, SAL and EFI layers work together to handle the reset abort event. The reset abort
handling performs processor and system initialization for operating system (OS) boot and provides
alegacy-free API to the operating system loader. The PAL and SAL firmware layers work together
to handle machine check aborts (MCA), initialization events (INIT), and platform management
interrupt (PM1) handling. All threefirmware layers also provide runtime procedure calls to abstract
processor and platform functions that may vary across implementations.

This chapter will provide an overview of the firmware layers and how the firmware layers interact
with each other as well as with the operating system. For the full architecture specifications of the
PAL firmware pleaserefer to Section 11, "I A-64 Processor Abstraction Layer". For full architecture
specifications on SAL and EFI firmware layers please refer to Section 12.2, “.Related Documents”
on page 12-3.

The PAL layer is developed by Intel Corporation and delivered with the processor. The SAL and
EFI firmware is developed by the platform manufacturer and provide a means of supporting value
added platform features from different vendors.

Theinteraction of the various functional firmware blocks with the processor, platform and
operating system is shown in Figure 24-1, “Firmware Model” on page 24-2.

Processor Boot Flow Overview

Firmware Boot Flow

Upon detection of areset event on an 1A-64 processor, execution begins at an architected entry
point inside of PAL. This PAL code will verify the integrity of the PAL code and may perform
some basic processor testing. PAL will then branch to an entry point within the SAL firmware. This
first branch to SAL isto determineif afirmware update is needed requiring re-programming of the
firmware code. If no firmware update is needed SAL will branch back to PAL.

PAL now performs additional processor testing and initialization. These first processor tests are
performed without platform memory. PAL indicates the outcome of the testing and branches to an
entry point within SAL firmware for the second time. SAL will now begin platform testing and
initialization.

The order of steps within the SAL firmware is platform implementation dependent and may vary.
In general, the SAL firmware selects a Bootstrap processor (BSP) in multi-processor (MP)
configurations early in the boot sequence. Next, SAL will find and initialize memory and invoke
PAL procedures to conduct additional processor tests to ensure the health of the processors. SAL
then initializes the system fabric and platform devices. SAL will display the progress of the boot on
the video output device and permit the user to change the system configuration.

Firmware Overview 24-1

Figure 24-1. Firmware Model

Operating System Software
EF| A A
Transfers to OS 0S Boot
Entrypoints Handoff Procedure
for Hardware y Calls
Events\
Extensible Firmware
“““ > Interface (EFI)
OS Boot - >
Selection
SAL Procedure >
Calls yd
\ /
. Instruction
Platform/System Abstraction Layer Execution
(SAL) Interrupts,
Traps and
A Faylts
Acess to PAL Procedure
-
Platform - Calls
R \
Resources N .
N\ \\:*»-»
<7 Transfers to SAL e
4 Entrypoints iy >
-« | A
Processor Abstraction Layer
(PAL) \
Y
Processor (Hardware)
A
- Performance Critical
AN Hardware Events,
Non-performance Critical e.g. Interrupts
Hardware Events, e.g.
Reset, Machine Checks s
) 4
Platform (Hardware)
000950

The SAL firmware layer hands off control to the EFI firmware layer which incorporates a Boot
Manager. The EFI firmware specification [EFI] enables booting from a variety of mass storage
devices such as hard disk, CD, DVD as well as remote boot via a network. At a minimum, one of
the mass storage devices contains an EFl system partition.

The EFI Boot Manager displaysthe list of operating system choices and permits the user to select
the operating system for booting. To support this functionality, the OS setup program stores the

24-2 Firmware Overview

24.1.2

boot paths of the OS loaders and boot optionsin non-volatile storage managed by the EFI. The EFI
reserves the environment variables Boot### (##H# represents values 0000 to OxFFFF) for this
purpose. The OS setup program must also store the OS loader binary images within the EFI System
Partition. The EFI Boot Manager will also allow the user to add boot options, delete boot options,
launch an EFI application, and set the auto-boot time out value.

The EFI System Partition a so contains EFI driversthat will be loaded by the EFI firmware prior to
transfer of control to an |A-64 OS loader. The floating-point software assist (FPSWA) library is
included in these EFI drivers. The FPSWA library may be invoked by the OS during floating-point
exception faults and traps. Please see Section 19.1.1, “ The Software Assistance Exceptions (Faults
and Traps)” on page 19-1 for more information on the usage of thislibrary.

If the user elects to boot an | A-32 operating system, the EFI will load 512 bytes of the first level
boot code (Master Boot Record in the case of disk devices) at |ocation 0x7C00. Next, EFI will
remove its memory footprint and returns to the SAL firmware. The SAL will then invoke a PAL
procedure to set up the |A-32 System environment and jump to the boot code at 0x7C00. The boot
code will load an 1A-32 OS loader which, in turn, loads and transfers control to the |A-32 OS
kernel.

If the user electsto boot an | A-64 operating system, the EFI |oads the appropriate OS |loader from
the EFI System Partition and passes control to it. The OS loader will load other files including the
OS kernel from an OS partition using the EFI boot services which provides alegacy free API
interface to the OS loader. EFI uses SAL to access low level platform resources. The interfaces
between EFI and SAL are platform firmware implementation dependent and not relevant for the
OS loader developers.

The OS loader can obtain information about the memory map usage of the firmware by making the
EFI procedure call GetMemoryMap(). This procedure provides information related to the size and
attributes of the memory regions currently used by firmware.

The OS loader will then jump to the OS kernel that takes control of the system. Until this point,
SAL retained control of key system resources such as the Interrupt Vector Table and provided the
necessary interrupt, trap and fault handlers.

Figure 24-2, “ Control Flow of Boot Processin a Multi-processor Configuration” on page 24-4
depicts the booting stepsin a MP configuration.

Operating System Boot Steps

The firmware will initialize the processor(s) and platform to a specific state before handing off to
the operating system boot |oader. The boot |oader is then responsible for copying the operating
system from some storage medium into memory for running. Once thisis done the operating
system will need to initialize some key registers before entering into a higher level language code
such as C. This section will describe code that an OS will need to execute in order to initialize
system registers for preparing an OSto run in virtual mode and handle interrupts. Appendix B,
“Code Examples’ provides the |A-64 sample assembly code described in this section.

Assuming the specific operating system boot loader hands off to the OS kernel in physical mode,
the operating system should first disable interrupts and interrupt collection viathe PSR. Thisis
done to avoid taking external interrupts from timers, etc and also prepares for writing specific
system registers that require PSR.ic to be O when written.

Firmware Overview 24-3

Figure 24-2. Control Flow of Boot Process in a Multi-processor Configuration

PALE_RESET

PAL_RESET

Recovery?

SALE_ENTRY

SAL_RESET

BSP Selection

Initialization &
Memory Test

PAL Late Self-test

Wake APs for
PAL Late Self-test

v

Load OSLoader
from Boot Device

Optional

Update Firmware, do
System Reset

APs

Rendezvous
Interrupts

EFI

OS Type?

IA-64 OS

A
IA-64 Initialization

IA-32 OS

Wake up the APs ——|—

OS_Loader

Wakeup APs

Set Wakeup Entry, |

Initializatize 1A-32
system params,
enter |A-32 system
environment

Rendez
Interrupt?

Rendez
Interrupt?

I1A-64 OS IA-32 OS

A
Initializatize 1A-32
system params,
enter |1A-32 system

IA-64 Initialization

Jump to OS environment
BOOT_RENDEZ i
Wait for 1A-32
Startup IPI

IA-32 OS

1A-64 OS will issue
Rendezvous interrupt
to wake up the APs

IA-32 OS will issue
Startup IPI to
wake up the APs

000937

24-4

Firmware Overview

Next the operating system startup code invalidatesthe ALAT viathei nval a instruction. The
invalain complete form will invalidate all entriesin the ALAT.

The register stack should be invalidated. This can be done by setting the Register Stack
Configuration Register (RSC) to zero followed by aloadrs instruction. Setting the RSC to zero will
put the register stack in enforced lazy mode and set the RSC.loadrs, load distance to tear point, to
zero. Theloadrs will invalidate all stacked registers outside current frame.

The region registers and protection key registers are then initialized with operating system
implementation dependent values. For example, the OS will initialize the region register with a
preferred page size. It would also disable the VHPT until it was ready for it. In the example, all
region registers are initialized with an 8-KB page size.

An OS must setup akernel stack pointer and backing store pointer for the register stack. The stack
pointer (GR12) is set to the OS kernel stack area with scratch space to cover calling conventions.
AR.RSC must be set to enforced lazy mode before writing to the bspstore register. Initializing the
bspstore has effects on all 3 RSE pointers (BSP, BSPSTORE, and RSE.BspL oad).

In order for the operating systems to handle interruptions, the operating system interrupt vector
table base address must be set up. The size of the vector tableis 32K bytesand is 32K byte aligned.
Setting the location of the table is accomplished by moving the addressinto CR.IVA.

Operating systems setup system address translations for the kernel text and data by using the
translation insertion format described in Section 4.1.1.5, "Trandation Insertion Format”. A
combination of ageneral register, Interruption TLB Insertion Register (ITIR), and the Interruption
Faulting Address register (IFA) are used to insert entriesinto the TLB. To void TLB faultson
specific text and data areas the operating system can lock critical virtual memory translationsin the
TLB by use of Translation Register (TR) section of the TLB. The entries are placed into a TR via
the Insert Translation Register (itr) instruction. The translation will remain unless the software
issues the Purge Translation (ptr) instruction. Other important areas might be locked also, such as
entries for memory mapped 1/O, etc.

After theinitia trandlations have been entered, the OS can make final preparations for enabling
virtual addressing. The OS needsto set several important bits in the IPSR, such as data address
translation (dt), register stack translation (rt), instruction address trandation (it), enabling
interruption collection (ic), and setting the specific register bank (bn).

The Default Control Register (DCR) specifies the default parameters for PSR values on
interruption, some additional global controls, and whether speculative load faults can be deferred.
The example defers all speculation faults. Also, if the operating system is utilizing the performance
monitors then the DCR.pp bit should be set so that on interruption the PSR.pp bit will be set.

The global pointer (GR1) should point to the global data area. It must be setup properly before
using higher level languages such as C. The startup code should also set the following registers to
zero, the Interruption Function State (CR.IFS, to set frame marker to zero), and AR.RNAT (to make
sure no NaT bits are set before OS kernel begins using the RSE.

Before enabling virtual addressing, the Interruption Instruction Bundle Pointer (11P) is set to point a
virtual address. Thisis done so when the return from interruption instruction (r f i) is executed the
instruction fetched will have avirtual address. The rfi will switch modes based on IPSR values
which are moved into the PSR. The | 1P value becomes the new IP.

Firmware Overview 24-5

24.2

24.2.1

24.2.1.1

24-6

Runtime Procedure Calls

The PAL, SAL, and EFI firmware layers provide entry points as runtime interfaces to the OS.
These runtime interfaces allow the OS to obtain information about the processor and platform as
well as perform implementation specific functions on the processor and platform.

The calling conventions for these runtime procedures are documented in the respective firmware
architecture specifications. In general the first input argument to the procedure call specifies the
index of the procedure within the list of supported procedures for each firmware layer.

PAL Procedure Calls

PAL procedure calls are classified into two types: static and stacked. The static calls are intended
for boot-time use before main memory is available or in error recovery situations where memory or
the RSE may not be reliable. All parameters will be passed in the general registers GR28 to GR31
of Bank 1. The stacked registers (GR32 to GR127) will not be used for these calls. The static calls
can be called at both boot-time and runtime.

Stacked register calls are intended for use after memory has been made available. The stacked
registers are used for parameter passing and local variable allocation. These calls aso allow
memory pointers may be passed as arguments. These calls can be made at boot-time after memory
has been tested and initialized as well as runtime.

For alisting of al the PAL procedures and their classification please see Section 11.8.1, "PAL
Procedure Summary".

All PAL calls are re-entrant and can be executed simultaneously on multiple processors.

Making a Static PAL Call

Since the static PAL calls do not use stacked registers, these calls are made as a pure jump with
branch register BO containing the address of the bundle to which control will return. The following
code exampl e describes how to make a static PAL call:

Firmware Overview

24.2.1.2

Cet Feat uresCal | :

nmov rid =ip /1l Get the ip of the current bundle
mov| r28 = PAL_PROC GET_FEATURES// Index of the PAL procedure

nmov| r4 = AddressOf PALProc; ; /1 Address of the PAL proc entry point
| d8 r4 = [rd];; /! Read address from |l ocal pointer
nmov b5 =r4 /1l Move address into a branch register

/1 Conpute the return address in a position i ndependent manner

addl rl4 = (BackHome - GetFeaturesCall),ri14;;
nov b0 = r14 /1 b0 is the return link
nmv r29 =r0 /1 Initialize rest of input arguments
nmov r30 =r0 /Il to zero as required by the
nov r31 =r0 /] architecture.
br.sptk b5;; /1 Make the PAL call.
/1 PAL will return here when the call is conpleted
BackHone:

The sample code below is position independent and functions in both physical and virtual
addressing modes. Since the return address is evaluated by using the runtime instruction pointer (IP
value), it will run from any address. This attribute is important for any rel ocatable code.

The address of the PAL procedure entry point is passed to SAL at the hand-off from PAL to SAL
during reset. SAL will pass this information on to the OS during OS boot as well.

Making a Stacked PAL Call

A stacked PAL call uses the stacked registers for argument passing and local variable allocation.
The stacked PAL calls conform to the calling conventions document [SWC], with the exception
that general register GR28 must also contain the function index input argument. The following
code exampl e describes how to make a stacked PAL call.

novl r4 = AddressOf PALProc; ; /1 Address of the PAL proc entry point
1d8 r4 =1[r4];; /! Read address from |l ocal pointer
nmv b5 =r4 /1 Move address into a branch register

/1 Make the PAL_HALT_I NFO procedure call. PAL_HALT_ | NFO uses stacked register
/1 convention and paraneters are passed with inO-in3

nov r28 = PAL_HALT_I NFQ ; /'l Index of the PAL procedure
nov outO = r28 /1 r28 and inO nust both contain the
/1 index value for stacked PAL calls.
nov outl = ScratchMem Poi nter /1 Pointer to the menory argunent
nov out2 = 0x0 /!l Wite zero to unused input argunents

nov out3 = 0x0
br.call.sptk.few b0 = b5;; /'l PAL stacked call

/1 PAL will return here when the call is conpleted

Firmware Overview 24-7

24.2.1.3

24.2.2

24.2.3

24.2.4

24-8

intel.

PAL Procedure Calls and Performance

PAL procedure calls are designed for anumber of different functions varying from boot-time usage
before platform memory is available to processor specific functions used during runtime by the OS.
PAL runtime procedure calls made by the OS are designed to be flexible with minimal overhead.
The following features aid in this goal:

» PAL procedure calls are relocatable. This feature is useful for platforms that have PAL stored
in non-volatile storage, such as flash. During OS boot the PAL procedures are copied into
RAM which will reduce the memory latency.

» A number of PAL procedure calls are defined to be called in both physical and virtual
addressing. This allows the caller to make the call in its currently executing addressing mode,
thus reducing the need to switch between physical and virtual addressing.

SAL Procedure Calls

All SAL procedure calls use the stacked register calling convention. SAL follows the floating-point
register conventions specified in the calling conventions document [SWC], with the exception that
SAL does not use the floating-point registers FR32 to FR127. This exception eliminates the need
for the OS to save these registers across SAL procedure calls.

SAL procedures are non re-entrant. The OSis required to enforce single threaded accessto the SAL
procedures except for the following procedures:

« SAL_MC_RENDEZ, SAL_CACHE_INIT, SAL_CACHE_FLUSH

EFI Procedure Calls

EFI procedure calls are classified into the following two categories: boot services and runtime
services. The EFI boot services execute in physical addressing mode only. The runtime services can
execute in either physical or virtual addressing mode. The EFI boot services are only available
during the boot process and are terminated by a call to the EfiExitBootServices() procedure. After
this call, only the SAL and EFI runtime services may be invoked by the OS. The EFI runtime
services execute in physical mode until the OS invokes the EFI SetVirtual Address() function to
switch the EFI to virtual mode. After this point, the EFI runtime services may beinvoked in virtual
mode only. For full information on all the EFI boot and runtime services please refer to the EF
specification [EFI].

Physical and Virtual Addressing Mode Considerations

All of the PAL procedures can be called in the physical addressing mode. A subset of PAL callscan
be made using the virtual addressing mode. For PAL calls that can be invoked using virtual
addressing mode, it is the responsibility of the caller to map these PAL procedureswith an ITR as
well aseither aDTR or DTC. If the caller chooses to map the PAL proceduresusingaDTC it must
be ableto handle TLB faultsthat could occur. See Section 11.8.1, "PAL Procedure Summary" for a
summary of all PAL procedures and the calling conventions.

The SAL and the EFI firmware layers have been designed to operate in virtual addressing mode.
EFI provides an interface to the OS loader that describes the physical memory addresses used by
firmware and indicates whether the virtual address of such areas need to be registered by the OS
with EFI. The EFI Specification [EFI] also provides the interfaces for the OS to register the virtual

Firmware Overview

24241

24.3

24.3.1

address mappings. In aMP configuration, the virtual addresses registered by the OS must be valid
globally on all the processorsin the system.

The SAL runtime services may be called either in virtual or physical addressing mode. SAL
procedures that execute during machine check, INIT, and PMI handling must be invoked in
physical addressing mode.

The parameters passed to the firmware runtime services must be consistent with the addressing
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the global pointer (gp) register [SWC] must
contain the physical or virtual address for use by the firmware.

SAL Procedures that Invoke PAL Procedures

Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures. While invoking these SAL procedures in virtual mode, the OS must provide the
appropriate trandlation resources required by PAL (i.e. ITR and DTC covering the PAL code areq).

In general, if SAL needstoinvoke a PAL procedure, it will do so in the same addressing mode in
which it was called by the OS (i.e. without changing the PSR.dt, PSR.rt, and PSR.it bits). If a
particular PAL procedure can only be invoked in physical mode, SAL will turn off translations and
then invoke the PAL procedure. SAL will then restore translations before returning to the caller.
The PAL_CACHE_INIT procedure invoked by the SAL_CACHE_INIT isan example of a
procedure that would require such an addressing mode transition.

Event Handling in Firmware

The PAL and SAL firmware layers are responsible for handling three events. These events are the
machine check abort (MCA), theinitialization event (INIT) and the platform management interrupt
(PMI). When the processor detects these eventsit will pass control to PAL for handling. The
following sections describe the high level overview of the firmware handling of these events.

Machine Check Abort (MCA) Flows

In order to have a highly reliable and fault tolerant computing environment a great deal of
coordination and cooperation between the system entities (i.e. the processor, platform, and system
software) is required. The PAL firmware, the SAL firmware, and the operating system all work
together to meet this goal. This section will provide an overview of the machine check abort
handling.

When the processor detects an error, control istransferred to the PAL_MCA entrypoint. PAL_MCA
will perform error analysis and processor error correction where possible. Subsequently, PAL hands
off control to the SAL MCA component. SAL_MCA will perform error logging and platform error
correction where possible. Errorsthat are corrected by the PAL and SAL firmware are logged and
control isreturned back to the interrupted process/context. For corrected errors, no OSintervention
isrequired for error handling, but the OS is notified of the event for logging purposes through alow
priority asynchronous corrected machine check interrupt (CMCI). See Section 5.8.3.8, "Corrected
Machine Check Vector (CMCV — CR74)" for more information on the CMCI. If the error was not
corrected by firmware, SAL hands off control to the OS_MCA handler.

Firmware Overview 24-9

Figure 24

Figure 24

243.1.1

24-10

intel.

Within the firmware the entire machine check is handled with virtual address trand ations disabled.
However, the OS machine check handler may optionally enable virtual addressing and execute
most of MCA handler in virtual mode.

Figure 24-3 and Figure 24-4 depict an overview of 1A-64 machine check processing. The control
flows are slightly different for corrected and uncorrected machine checks.

-3. Correctable Machine Check Code Flow

PAL_MC_RESUME [@—————

1 2 4
0OS_MCA
MCA ——®| PAL_ MCA ——® SAL MCA — + Log Error
-4. Uncorrectable Machine Check Code Flow
1 2 3 0S_MCA
MCA —»| PAL_ MCA ——®| SAL MCA —»

Correct/Log Error

For multi-processor systems, machine checks are classified aslocal and global. A global MCA
implies a system wide broadcast by hardware of an error condition. During a global MCA
condition, all the processorsin the system will be notified of the MCA, detected by one or more
system components, and each of the processorsin the system will start processing the MCA in their
respective handlers. The SAL firmware and OS layers will coordinate the handling of the error
among the processors.

A local MCA has a scope of influence that is limited to the particular processor which encountered
the error. Thislocal MCA will not be broadcast to other processors in the system and will be
handled on an individual processor basis. At any point in time, more than one processor in the
system may experience alocal MCA and handle it without notifying other processorsin the system.

The next sections will provide an overview of the responsibilities that the PAL, SAL and OS have
for handling machine checks. These sections are not an exhaustive description of the functionality
of the handlers but provides a high level description of how the MCA handling is split among the
different components.

Machine Check Handling in PAL

All machine check abort events are first handled in the PAL firmware layer. The following provides
abrief description of some of the functions of the PAL machine check handler:

« Correct processor errorsif possible.

Firmware Overview

» Attempt to contain the error by requesting a rendezvous for all processorsin the system if
needed.

¢ Hand off control to SAL for further processing, such as error logging.

* Return processor error log information upon request by SAL.

¢ Return to the interrupted context by restoring the state of the processor.

* Notify the OS about corrected machine check conditions through the CMC interrupt.

24.3.1.2 Machine Check Handling in SAL

Before SAL isready to handle machine checks, it must register with PAL an uncacheable memory
buffer that PAL can useto save away processor state. This areais known asthe min-state save area.
If amachine check occurs before this memory location has been registered, return to the interrupted
context is not possible and the machine check is not recoverable.

The following provides a description of some of the functions of the SAL machine check handler.
 Attempt to rendezvous the other processorsin the system on a PAL request.
¢ Process MCA handling after handoff from PAL.
* Retrieve processor error log information via PAL procedure calls and store thisinformation for

logging purposes.

 Issue aPAL clear log request to clear the processor error logs, which enables further logging.
» Log platform state for MCA and retain it until it isretrieved by the OS.
< Attempt to correct processor machine check errors which are not corrected by PAL.
 Attempt to correct platform machine check errors.
¢ Branch to the OS MCA handler for uncorrected errors or optionally reset the system.
* Return to the interrupted context viaa PAL procedure call.

24.3.1.3 Machine Check Abort Handling in OS

Before the OS kernel is ready to handle machine checks, it must register the address of the
OS_MCA entry point and the GP [SWC] value for the OS_MCA handler with SAL. If the OS does
not register its entry point, the occurrence of a machine check will cause a system reset. In MP
configurations, the OS must also register with SAL:

¢ A rendezvous interrupt vector which SAL firmware can use to rendezvous the processors.

» The mechanism that the OS will employ to wake up the processors at the end of machine check
processing.

When the OS registersthe OS_MCA entry point with SAL, it also supplies the length of the code
(or at least the length of the first level OS M CA handler). SAL computes and saves the checksum
of this code area. Prior to entering OS_ MCA, SAL ensures that the OS_MCA vector isvalid by
verifying the checksum of the OS_MCA code. Hence, the OS_MCA code must not contain any self
modifying code.

When an uncorrected machine check event occurs, SAL will invoke the OS MCA handler. The
functionality of thishandler is dependent onthe OS. At aminimum, it must call a SAL procedureto
retrieve the error logging and state information and then call another SAL procedureto release
these resources for future error logging and state save.

Firmware Overview 24-11

24.3.2

24.3.3

24-12

intel.

When the OS_MCA code completes, it decides whether or not to return to the interrupted context.
The OS must take into account the state information retrieved from the SAL with respect to the
continuability of the processor and system. Thus, even if the OS could correct the error, if PAL or
SAL reportsthat it did not capture the entire processor context, resumption of the interrupted
context will not be possible.

The OS must also determine from values stored by PAL in the min-state save area whether the
machine check occurred while operating with PSR.ic set to 0 and whether the processor supports
recovery for this case. Please refer to Section 11.3.1.1, "Resources Required for Machine Check
and Initialization Event Recovery" for more information on processor recovery under this
condition.

To provide better software error handling, some operating systems build mechanisms to identify
whether machine checks occurred during execution of the OS kernel code or in the application
context. One technique to achieve thisisto call the PAL_MC_DRAIN procedure when an
application makes a system call to the OS. This procedure completes all outstanding transactions
within the processor and reports any pending machine checks. This technique impacts system call
and interrupt handling performance significantly, but will improve system reliability by allowing
the OS to recover from more errors than if this mechanism was not included.

INIT Flows

INIT isan initialization event generated by the platform or by software through an inter-processor
interrupt message. The INIT can be due to aplatform INIT event or due to afailed rendezvous on
an application processor.

The INIT event will pass control to the PAL firmware INIT handler. The PAL INIT handler saves
processor state to the registered min-state save area and sets up the architected hand off state before
branching to SAL. See Section 11.5, "Platform Management Interrupt (PM1)" for moreinformation
on the PAL INIT handling.

The SAL INIT handler logs processor state and platform state information and then calls the
OS_INIT handler if oneisregistered. The OS_INIT handler gains control in physical mode but
may switch to virtual mode if necessary. The OS may choose to implement a crash dump or an
interactive debugger within the OS_INIT handler.

The OS must register the OS_INIT entry point with SAL, otherwise the occurrence of an INIT
event will cause a system reset. At the end of OS_INIT handling, the OS must return to SAL with
the appropriate exit status.

Figure 24-5 illustrates the flow of control during INIT processing.

PMI Flows

| A-64 processors implement the Platform Management Interrupt (PM1) to enable platform
developersto provide high level system functions, such as power management and security, in a
manner that is transparent not only to the application software but also to the operating system.

When the processor detects a PMI event it will transfer control to the registered PAL PMI
entrypoint. PAL will set up the hand off state which includes the vector information for the PMI
and hand off control to the registered SAL PMI handler. To reduce the PMI overhead time, the PAL

Firmware Overview

Firmware Overview

PMI handler will not save any processor architectural state to memory. Please see Section 11.5,
"Platform Management Interrupt (PMI1)" for more information on PAL PMI handling.

The SAL PMI handler may choose to save some additional register state to SAL allocated memory
to handle the specific platform event that generated the PMI.

The OS will not seethe PMI events generated by the platform. The platform developer can use PMI
interrupts to provide features to differentiate their platform.

PMI handling was designed to be executed with minimal overhead. The SAL firmware code copies
the PAL and SAL PMI handlersto RAM during system reset and registers these entry-points with
the processor. This code is then run with the cacheable memory attribute to improve performance.

Thereis no special hardware protection of the PMI code’'s memory areain RAM. The protection of
this code space is through the OS memory management’s paging mechanism. SAL sets the correct
attributes for this memory space and passes this information to the OS through the EFl System
table entries [EFI].

Figure 24-5. INIT Flow

INIT Event ——»{ PAL_INIT

A 4

SAL_INIT

Write processor/
platform info to save
area

INIT due to
failure to respond
to rendezvous
interrupt?

v
SAL_MC_RENDEZ

OS_INIT
procedures
valid?

CrashDump
Switch
& 1A-32 0S?

A
OS_INIT |”J90|;ljl§gl Cl)Psl into
Warm Boot Return value
from OS
Return to
- Interrupted

SAL implementation- Context
specific warm boot
(SAL_RESET or reset

event)

>
l

A
PAL_MC_RESUME

000938,

24-13

24-14

Firmware Overview

intel.

|A-64

Resource and Dependency

Semantics A

Al

A.2

Reading and Writing Resources

AnlA-64 instruction is said to be areader of aresource if the instruction’s qualifying predicate is
1 or it has no qualifying predicate or is one of the instructions that reads a resource even when its
qualifying predicate is 0, and the execution of the instruction depends on that resource.

AnlA-64 instruction is said to be an writer of aresourceif theinstruction’s qualifying predicateis
1 or it has no qualifying predicate or writes the resource even when the qualifying predicateis O,
and the execution of the instruction writes that resource.

AnlA-64instructionis said to be areader or writer of aresource evenif it only sometimes depends
on that resource and it cannot be determined statically whether the resource will be read or written.
For example, cover only writes CR[IFS] when PSR.icis0, but for purposes of dependency, it is
treated asif it always writes the resource since this condition cannot be determined statically. On
the other hand, r smconditionally writes severa bitsin the PSR depending on amask which is
encoded as an immediate in the instruction. Since the PSR bits to be written can be determined by
examining the encoded instruction, theinstruction istreated as only writing those bits which have a
corresponding mask bit set. All exceptions to these general rules are described in this appendix.

Dependencies and Serialization

A RAW (Read-After-Write) dependency is a sequence of two events where thefirst isawriter of a
resource and the second is areader of the same resource. Events may be instructions, interruptions,
or other ‘uses’ of the resource such as instruction stream fetches and VHPT walks. Table A-2
covers only dependencies based on instruction readers and writers.

A WAW (Write-After-Write) dependency is a sequence of two events where both events write the
resource in question. Events may be instructions, interruptions, or other ‘updates’ of the resource.
Table A-3 covers only dependencies based on instruction writers.

A WAR (Write-After-Read) dependency is a sequence of two instructions, where thefirst isa
reader of aresource and the second is awriter of the same resource. Such dependencies are always
allowed except asindicated in Table A-4 and only those related to instruction readers and writers
areincluded.

A RAR (Read-After-Read) dependency is a sequence of two instructions where both are readers of
the same resource. Such dependencies are always allowed.

RAW and WAW dependencies are generally not allowed without some type of serialization event
(animplied, data, or instruction serialization after the first writing instruction. (See “ Serialization”
on page 3-1 for details on serialization.) The tables and associated rules in this appendix provide a
comprehensive list of readers and writers of resources and describe the serialization required for the

IA-64 Resource and Dependency Semantics A-1

A.3

A-2

intel.

dependency to be observed and possible outcomesiif the required serialization is not met. Even
when targeting code for machines which do not check for particular disall owed dependencies, such
code sequences are considered architecturally undefined and may cause code to behave differently
across processors, operating systems, or even separate executions of the code sequence during the
same program run. In some cases, different serializations may yield different, but well-defined
results.

The serialization of application level (non-privileged) resourcesis alwaysimplied. This means that
if awriter of that resource and a subsequent read of that same resource are in different instruction
groups, then the reader will see the value written. In addition, for dependencies on PRs and BRs,
where the writer is a non-branch instruction and the reader is a branch instruction, the writer and
reader may be in the same instruction group.

System resources generally require explicit serialization, i.e. theuseof asrl z.i orsrlz.d
instruction, between the writing and the reading of that resource. Note that RAW accesses to CRs
are not exceptional — they require explicit data or instruction serialization. However, in some cases
(other than CRs) where pairs of instructions explicitly encode the same resource, serialization is
implied.

There are cases where it is architecturally allowed to omit a serialization, and that the response
from the CPU must be atomic (act asiif either the old or the new state were fully in place). The
tables in this appendix indicate dependency requirements under the assumption that the desired
result is for the dependency to always be observed. In some such cases, the programmer may not
careif the old or new state is used; such situations are allowed, but the value seen is not
deterministic.

On the other hand, if a dependency whose semantics have potential to fault (as described in this
appendix) is violated, then the program isincorrectly coded and its behavior will not be as
intended.

Resource and Dependency Table Format Notes

» The“Writers” and “Readers’ columns of the dependency tables contain instruction class
names and instruction mnemonic prefixes as given in the format section of each instruction
page. To avoid ambiguity, instruction classes are shown in bold, while instruction mnemonic
prefixes arein regular font. For instruction mnemonic prefixes, all instructions that exactly
match the name specified or those that begin with the specified text and are followed by a“.’
and then followed by any other text will match.

» The dependency on alisted instruction isin effect no matter what values are encoded in the
instruction or what dynamic values occur in operands, unless a superscript is present or one of
the special caseinstruction rulesin Section A.3.1 apply. Instructions listed are still subject to
rules regarding qualifying predicates.

* Instruction classes are groups of related instructions. Such names appear in boldface for clarity.
Thelist of al instruction classesis contained in Table A-5. Note that an instruction may appear
in multiple instruction classes, instruction classes may expand to contain other classes, and that
when fully expanded, a set of classes (e.g. the readers of some resource) may contain the same
instruction multiple times.

» Thesyntax ‘x\y’ where x and y are both instruction classes, indicates an unnamed instruction
class that includes all instructionsin instruction class x but that are not in instruction class y.

IA-64 Resource and Dependency Semantics

Similarly, the notation ‘x\y\z' means all instructionsin instruction class x, but that are not in
either instruction classy or instruction class z.

Resources on separate rows of atable are independent resources. This means that there are no
serialization requirements for an event which references one of them followed by an event
which uses a different resource. In cases where resources are broken into subrows,
dependencies only apply between instructions within asubrow. Instructionsthat do not appear
in a subrow together have no dependencies (reader/writer or writer/writer dependencies) for
the resource in question, although they may still have dependencies on some other resource.

The dependencies listed for pairs of instructions on each resource are not unique — the same
pair of instructions might also have a dependency on some other resource with a different
semantics of dependency. In cases where there are multiple resource dependencies for the same
pair of instructions, the most stringent semantics are assumed: instr overrides data which
overrides impliedF which overrides implied which overrides none.

Arrays of numbered resources are represented in a single row of atable using the % notation as
asubstitute for the number of the resource. In such cases, the semantics of the table are asiif
each numbered resource had its own row in that table and is thus an independent resource. The
range of values that the % can take are given in the “ Resource Name” column.

An asterisk ‘*’ in the “Resource Name” column indicates that this resource may not have a
physical resource associated with it, but is added to enforce special dependencies.

A pound sign ‘# in the “Resource Name” column indicates that this resource is an array of
resources that are indexed by avaluein a GR. The number of individual elementsin the array
is described in the detailed description of each resource.

The“ Semantics of Dependency” column describes the outcome given various serialization and
instruction group boundary conditions. The exact definition for each keyword isgiven in
Table A-1.

A.3.1 Special Case Instruction Rules

The following rules apply to the specified instructions when they appear in Table A-2, Table A-3,
Table A-4, or Table A-5;

Aninstruction always reads agiven resourceif its qualifying predicateis 1 and it appearsin the
“Reader” column of the table (except as noted). An instruction always writes a given resource
if itsqualifying predicateis 1 and it appears in the “Writer” column of the table (except as
noted). An instruction never reads or writes the specified resourceif its qualifying predicateis
0 (except as noted). These rulesinclude branches and their qualifying predicate. Instructionsin
the unpredicatable-instructions class have no qualifying predicate and thus always read or
write their resources (except as noted).

Aninstruction of type mov-from-PR reads all PRsif its PR[gp] istrue. If the PR[qgp] isfalse,
then only the PR[qgp] is read.

An instruction of type mov-to-PR writes only those PRs as indicated by the immediate mask
encoded in the instruction.

A st 8. spi || only writes ARJUNAT]{ X} where X equalsthe value in bits 8:3 of the store's
dataaddress. A 1d8. fill instruction only reads AR[UNAT]{Y} where Y equalsthevauein
bits 8:3 of the load’s data address.

Instructions of type mod-sched-br s always read AR[EC] and the rotating register base
registersin CFM, and always write AR[EC], the rotating register basesin CFM, and PR[63]
even if they do not change their values or if their PR[qp] isfalse.

IA-64 Resource and Dependency Semantics A-3

intel.

Table A-1. Semantics of Dependency Codes

Semantics of

Dependency Serialization Type Required Effects of Serialization Violation
Code
instr Instruction Serialization (See “Instruction | Atomic: Any attempt to read a resource after one
Serialization” on page 3-2). or more insufficiently serialized writes is either the

value previously in the register (before any of the
unserialized writes) or the value of one of any
unserialized writes. Which value is returned is
unpredictable and multiple insufficiently serialized
reads may see different results. No fault will be
caused by the insufficient serialization.

data Data Serialization (See “Data
Serialization” on page 3-2).

implied Instruction Group Break. Writer and
reader must be in separate instruction
groups. (See “Instruction Sequencing
Considerations” on page 3-16 in

Volume 1).
impliedF Instruction Group Break (same as An undefined value is returned, or an lllegal
above). Operation fault may be taken. If no fault is taken,
stop Stop. Writer and reader must be the value returned is unpredictable, and may be

unrelated to past writes, but will not be data which
could not be accessed by the current process
(e.g. if PSR.cpl = 0, the undefined value to return
cannot be read from some control register).

separated by a stop.

none none n/a
specific implementation specific
SC special case Described elsewhere in book, see referenced

section in the entry.

* Instructions of type mod-sched-br s-counted aways read and write AR[LC], even if they do
not change its value.

« For instructions of type pr-or-writersor pr-and-writers, if their completer isor . andcm then
only thefirst target predicate is an or-compare and the second target predicate is an and-
compare. Similarly, if their completer isand. or cm then only the second target predicateis an
or-compare and the first target predicate is an and-compare.

« rumand sumonly read PSR.sp when the bit corresponding to PSR.up (bit 2) is set in the
immediate field of the instruction.

A.3.2 RAW Dependency Table

Table A-2 architecturally defines the following information:

« A list of al architecturally-defined, independently-writable resourcesin 1A-64. Each row
represents an ‘atomic’ resource. Thus, for each row in the table, hardware will probably
require a separate write-enable control signal.

« For each resource, a complete list of readers and writers.

* For each ingtruction, a complete list of all resources read and written. Such alist can be
obtained by taking the union of all the rows in which each instruction appears.

A-4 IA-64 Resource and Dependency Semantics

intel.

Table A-2. RAW Dependencies Organized by Resource

Semantics of

Resource Name Writers Readers
Dependency
ALAT chk.a.clr, mem-readers-alat, none
mem-readers-alat, mem-writers, chk-a,
mem-writers, invala-all invala.e
AR[BSP] br.call, brl.call, br.ret, cover, mov- br.call, brl.call, br.ia, br.ret, cover, impliedF
to-AR-BSPSTORE, rfi flushrs, loadrs,
mov-from-AR-BSP, rfi
AR[BSPSTORE] alloc, loadrs, flushrs, alloc, br.ia, flushrs, impliedF
mov-to-AR-BSPSTORE mov-from-AR-BSPSTORE
AR[CCV] mov-to-AR-CCV br.ia, cmpxchg, impliedF
mov-from-AR-CCV
AR[EC] mod-sched-brs, br.ret, br.call, brl.call, br.ia, mod-sched- impliedF
mov-to-AR-EC brs,
mov-from-AR-EC
AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.sO br.ia, fp-arith-s0, fcmp-s0, fpcmp- | impliedF
s0, fsetc, mov-from-AR-FPSR
AR[FPSR].sfl.controls mov-to-AR-FPSR, fsetc.sl br.ia, fp-arith-s1, fcmp-s1, fpcmp-
s1, mov-from-AR-FPSR
AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 br.ia, fp-arith-s2, fcmp-s2, fpcmp-
s2, mov-from-AR-FPSR
AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 br.ia, fp-arith-s3, fcmp-s3, fpcmp-
s3, mov-from-AR-FPSR
AR[FPSR].sf0.flags fp-arith-s0, fclrf.s0, fcmp-s0, br.ia, fchkf, impliedF
fpcmp-s0, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sfl.flags fp-arith-s1, fclrf.s1, fcmp-s1, br.ia, fchkf.s1,
fpcmp-s1, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sf2.flags fp-arith-s2, fclrf.s2, fcmp-s2, br.ia, fchkf.s2,
fpcmp-s2, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sf3.flags fp-arith-s3, fclrf.s3, fcmp-s3, br.ia, fchkf.s3,
fpcmp-s3, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].traps mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, impliedF
mov-from-AR-FPSR
AR[FPSR].rv mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, impliedF
mov-from-AR-FPSR
AR[ITC] mov-to-AR-ITC br.ia, mov-from-AR-ITC impliedF
AR[K%], mov-to-AR-K! br.ia, mov-from-AR-K® impliedF
%in0-7
AR[LC] mod-sched-brs-counted, mov-to- | br.ia, mod-sched-brs-counted, impliedF
AR-LC mov-from-AR-LC
AR[PFS] br.call, brl.call alloc, br.ia, br.ret, epc, impliedF
mov-from-AR-PFS
mov-to-AR-PFS alloc, br.ia, epc, impliedF
mov-from-AR-PFS
br.ret none
AR[RNAT] alloc, flushrs, loadrs, alloc, br.ia, flushrs, loadrs, impliedF
mov-to-AR-RNAT, mov-from-AR-RNAT
mov-to-AR-BSPSTORE
IA-64 Resource and Dependency Semantics A-5

A-6

Table A-2. RAW Dependencies Organized by Resource (Continued)

intel.

Semantics of

Resource Name Writers Readers Dependency

AR[RSC] mov-to-AR-RSC alloc, br.ia, flushrs, loadrs, impliedF
mov-from-AR-RSC,
mov-from-AR-BSPSTORE,
mov-to-AR-RNAT,
mov-from-AR-RNAT,
mov-to-AR-BSPSTORE

AR[UNAT]{%}, mov-to-AR-UNAT, st8.spill br.ia, 1d8.fill, impliedF

% in0-63 mov-from-AR-UNAT

AR%, none br.ia, mov-from-AR-rvl none

% in 8-15, 20, 22-23, 31, 33-

35, 37-39, 41-43, 45-47, 67-

111

AR%, mov-to-AR-ig? br.ia, mov-from-AR-ig? impliedF

% in 48-63, 112-127

BR%, br.callt, brl.call* indirect-brs?, indirect-brpt, mov- |impliedF

%in0-7 from-BR*

mov-to-BR! indirect-brs? none
indirect-brp?, impliedF
mov-from-BR?

CFM mod-sched-brs mod-sched-brs impliedF
cover, alloc, rfi, loadrs, br.ret, br.call, | impliedF
brl.call
cfm-readers? impliedF

br.call, brl.call, br.ret, clrrrb, cover, | cfm-readers impliedF
rfi
alloc cfm-readers none

CPUID# none mov-from-IND-CPUID3 specific

CR[CMCV] mov-to-CR-CMCV mov-from-CR-CMCV data

CR[DCR] mov-to-CR-DCR mov-from-CR-DCR, data
mem-readers-spec

CRI[EOI] mov-to-CR-EOI none SC Section

5.8.3.4

CR[GPTA] mov-to-CR-GPTA mov-from-CR-GPTA, thash data

CRI[IFA] mov-to-CR-IFA itc.i, itc.d, itr.i, itr.d implied
mov-from-CR-IFA data

CR[IFS] mov-to-CR-IFS mov-from-CR-IFS data
rfi implied

cover rfi, mov-from-CR-IFS implied

CR[IHA] mov-to-CR-IHA mov-from-CR-IHA data

CRI[IIM] mov-to-CR-IIM mov-from-CR-1IM data

CRJIIP] mov-to-CR-IIP mov-from-CR-IIP data
rfi implied

CRJIIPA] mov-to-CR-IIPA mov-from-CR-1IPA data

CR[IPSR] mov-to-CR-IPSR mov-from-CR-IPSR data
rfi implied

CR[IRR%], mov-from-CR-IVR mov-from-CR-IRR? data

%in0-3

CR[ISR] mov-to-CR-ISR mov-from-CR-ISR data

CRI[ITIR] mov-to-CR-ITIR mov-from-CR-ITIR data
itc.i, itc.d, itr.i, itr.d implied

IA-64 Resource and Dependency Semantics

intel.

Table A-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers SD(Z?::S;C?
CR[ITM] mov-to-CR-ITM mov-from-CR-ITM data
CR[ITV] mov-to-CR-ITV mov-from-CR-ITV data
CRJIVA] mov-to-CR-IVA mov-from-CR-IVA instr
CR[IVR] none mov-from-CR-IVR SC Section

5.8.3.2
CRILID] mov-to-CR-LID mov-from-CR-LID SC Section
58.3.1
CR[LRR%], mov-to-CR-LRR? mov-from-CR-LRR? data
%in0-1
CR[PMV] mov-to-CR-PMV mov-from-CR-PMV data
CR[PTA] mov-to-CR-PTA mov-from-CR-PTA, thash data
CR[TPR] mov-to-CR-TPR mov-from-CR-TPR, data
mov-from-CR-IVR
mov-to-PSR-l, rfi, rsm, ssm SC Section
5.8.3.3
CR%, none mov-from-CR-rv! none
% in 3-7, 10-15, 18, 26-63, 75-
79, 82-127
DBR# mov-to-IND-DBR3 mov-from-IND-DBR3 impliedF
probe-all, Ifetch-all, data
mem-readers, mem-writers
DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, | mem-readers, data
itc.i, itc.d, itr.i, itr.d mem-writers, fc, probe-all, tak, tpa
itc.i, itc.d, itr.i, itr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, |impliedF
itc.i, itc.d, itr.i, itr.d
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d | ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d | none
itc.i, itc.d, itr.i, itr.d impliedF
DTC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF
DTR itr.d mem-readers, mem-writers, fc, data
probe-all, tak, tpa
ptc.g, ptc.ga, ptc.l, ptr.d, itr.d impliedF
ptr.d mem-readers, mem-writers, fc, data
probe-all, tak, tpa
ptc.g, ptc.ga, ptc.l, ptr.d none
itr.d, itc.d impliedF
FR%, none fr-readers?! none
%in0-1
FR%, fr-writers\Idf-c\idfp-ct fr-readers?! impliedF
%in 2-127 Idf-cI, Idfp-ct fr-readers?! none
GRO none gr-readers1 none
GR%, Id-c113 gr-readers?! none
%in1-127 gr-writersW\d-c113 gr-readers?! impliedF
IBR# mov-to-IND-IBR3 mov-from-IND-IBR3 impliedF
InService* mov-to-CR-EOI mov-from-CR-IVR data
mov-from-CR-IVR mov-from-CR-IVR impliedF
mov-to-CR-EOQI mov-to-CR-EOQI impliedF
P all all none
IA-64 Resource and Dependency Semantics A-7

Table A-2. RAW Dependencies Organized by Resource (Continued)

intel.

Resource Name Writers Readers SDirS:gélg:C(;f
ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d | epc instr
itc.i, itc.d, itr.i, itr.d impliedF
ptr.i, ptr.d, ptc.e, ptc.g, ptc.ga, ptc.I | none
itc.i, itc.d, itr.i, itr.d epc instr
itc.d, itc.i, itr.d, itr.i, ptr.d, ptr.i, ptc.g, |impliedF
ptc.ga, ptc.|
ITC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF
ITR itr.i itr.i, itc.i, ptc.g, ptc.ga, ptc.l, ptr.i impliedF
epc instr
ptr.i itc., itr.i impliedF
ptc.g, ptc.ga, ptc.l, ptr.i none
epc instr
memory mem-writers mem-readers none
PKR# mov-to-IND-PKR3 mem-readers, mem-writers, data
mov-from-IND-PKR*, probe-all
mov-to-IND-PKR?* none
mov-from-IND-PKR3 impliedF
mov-to-IND-PKR? impliedF
PMC# mov-to-IND-PMC3 mov-from-IND-PMC3 impliedF
mov-from-IND-PMD3 SC3 Section
711
PMD# mov-to-IND-PMD? mov-from-IND-PMD? impliedF
PRO pr-writers! pr-readers-br, none
pr-readers-nobr-nomovprl, mov-
from-PR12,
mov-to-PR12
PR%, pr-writers?, pr-readers-nobr-nomovprl, mov- |impliedF
%in1-15 mov-to-PR-allreg”’ from-PR,
mov-to-PR1?
pr-writers-fpI pr-readers-brl impliedF
pr-writers-int?, pr-readers-brl none
mov-to-PR-allreg”
PR%, pr-writers?, pr-readers-nobr-nomovprl, mov- |impliedF
% in 16 - 62 mov-to-PR-allreg’, from-PR,
mov-to-PR-rotreg mov-to-PR1?
pr-writers-fpT pr-readers-brl impliedF
pr-writers-int?, pr-readers-br! none
mov-to-PR-allreg’,
mov-to-PR-rotreg
PR63 mod-sched-brs, pr-readers-nobr-nomovprl, mov- | impliedF
pr-writers?, from-PR,
mov-to-PR-allreg’, mov-to-PR2
mov-to-PR-rotreg
pr-writers-fpZ, pr-readers-brt impliedF
mod-sched-brs
pr-writers-int?, pr-readers-br! none
mov-to-PR-allreg’,
mov-to-PR-rotreg

A-8

IA-64 Resource and Dependency Semantics

intel.

Table A-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers SD(:S::S;(:?
PSR.ac user-mask-writers-partial’, mov- | mem-readers, mem-writers implied
to-PSR-um
sys-mask-writers-partial’, mov- | mem-readers, mem-writers data
to-PSR-I, rfi
user-mask-writers-partial7, mov- | mov-from-PSR, impliedF
to-PSR-um, mov-from-PSR-um
sys-mask-writers-partial’, mov-
to-PSR-, rfi
PSR.be user-mask-writers-partial’, mov- | mem-readers, mem-writers implied
to-PSR-um
sys-mask-writers-partial7, mov- mem-readers, mem-writers data
to-PSR-, rfi
user-mask-writers-partial’, mov- | mov-from-PSR, impliedF
to-PSR-um, mov-from-PSR-um
sys-mask-writers-partial7, mov-
to-PSR-, rfi
PSR.bn bsw, rfi gr-readers10, gr-writers10 impliedF
PSR.cpl epc, br.ret, rfi priv-ops, br.call, brl.call, epc, implied
mov-from-AR-ITC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, Ifetch-all
PSR.da rfi mem-readers, Ifetch-fault, mem- | data
writers, probe-fault
PSR.db mov-to-PSR-I mem-readers, data
mem-writers, probe-fault
mov-from-PSR impliedF
rfi mem-readers, data
mem-writers,
mov-from-PSR, probe-fault
PSR.dd rfi mem-readers, probe-fault, data
mem-writers, Ifetch-fault
PSR.dfh sys-mask-writers-partial’, mov- | fr-readers®, fr-writers® data
to-PSR-I, rfi mov-from-PSR impliedF
PSR.dfl sys-mask-writers-partial’, mov- | fr-writers®, fr-readers® data
to-PSR-I, rfi mov-from-PSR impliedF
PSR.di sys-mask-writers-partial’, mov- br.ia data
to-PSR-I, rfi mov-from-PSR impliedF
PSR.dt sys-mask-writers-partial”’, mov- mem-readers, mem-writers data
to-PSR-I, rfi mov-from-PSR impliedF
PSR.ed rfi Ifetch-all, data
mem-readers-spec
PSR.i sys-mask-writers-partial’, mov- mov-from-PSR impliedF
to-PSR-I
rfi mov-from-PSR data
PSR.ia rfi none none
IA-64 Resource and Dependency Semantics A-9

Table A-2. RAW Dependencies Organized by Resource (Continued)

intel.

Resource Name Writers Readers Semantics of
Dependency
PSR.ic sys-mask-writers-partial’, mov- mov-from-PSR impliedF
to-PSR-|, rfi cover, itc.i, itc.d, itr.i, itr.d, mov- data
from-CR-ITIR,
mov-from-CR-IFS,
mov-from-CR-1IM,
mov-from-CR-IIP,
mov-from-CR-IPSR,
mov-from-CR-ISR,
mov-from-CR-IFA,
mov-from-CR-IHA,
mov-from-CR-IIPA,
mov-to-CR-ITIR,
mov-to-CR-IFS,
mov-to-CR-1IM,
mov-to-CR-IIP,
mov-to-CR-IPSR,
mov-to-CR-ISR,
mov-to-CR-IFA,
mov-to-CR-IHA,
mov-to-CR-1IPA
PSR.id rfi none none
PSR.is br.ia, rfi none none
PSR.it rfi branches, mov-from-PSR, chk, data
epc, fchkf
PSR.Ip mov-to-PSR-I mov-from-PSR impliedF
br.ret data
rfi mov-from-PSR, br.ret data
PSR.mc rfi mov-from-PSR none
PSR.mfh fr-writers?, mov-from-PSR-um, impliedF
user-mask-writers-partial7,mov- mov-from-PSR
to-PSR-um,
sys-mask-writers-partial’, mov-
to-PSR-I, rfi
PSR.mfl fr-writers?, mov-from-PSR-um, impliedF
user-mask-writers-partial7,mov- mov-from-PSR
to-PSR-um,
sys-mask-writers-partial’, mov-
to-PSR-I, rfi
PSR.pk sys-mask-writers-partial’, mov- mem-readers, data
to-PSR-I, rfi mem-writers, probe-all
mov-from-PSR impliedF
PSR.pp sys-mask-writers-partiaI7, mov- mov-from-PSR impliedF
to-PSR-I, rfi
PSR.ri rfi none none
PSR.rt mov-to-PSR-I mov-from-PSR impliedF
alloc, flushrs, loadrs data
rfi mov-from-PSR, alloc, flushrs, data
loadrs
PSR.si sys-mask-writers-partial’, mov- mov-from-PSR impliedF
to-PSR-1, rfi mov-from-AR-ITC data
A-10 IA-64 Resource and Dependency Semantics

intel.

Table A-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers SD(:S::S;(:?
PSR.sp sys-mask-writers-partial’, mov- mov-from-PSR impliedF
t0-PSR-|, rfi mov-from-IND-PMD, data
mov-to-PSR-um, rum, sum
PSR.ss rfi all data
PSR.tb mov-to-PSR-l, rfi branches, chk, fchkf data
mov-from-PSR impliedF
PSR.up user-mask-writers-partial’, mov- | mov-from-PSR-um, impliedF
to-PSR-um, mov-from-PSR
sys-mask-writers-partial7, mov-
to-PSR-, rfi
RR# mov-to-IND-RR® mem-readers, mem-writers, itc.i, |data
itc.d, itr.i, itr.d, probe-all, ptc.g,
ptc.ga, ptc.l, ptr.i, ptr.d, tak, thash,
tpa, ttag
mov-from-IND-RR® impliedF
RSE rse-writers14 rse-readers® impliedF
A.3.3 WAW Dependency Table

General rules specific to the WAW table:
« All resources require at most an instruction group break to provide sequential behavior.
* Some resources require no instruction group break to provide sequential behavior.

e There are afew specia casesthat are described in greater detail elsewhere in the Intel® 1A-64
Architecture Software Developer’s Manual and are indicated with an SC (special case) result.

« Each sub-row of writers represents a group of instructions that when taken in pairsin any
combination has the dependency result indicated. If the column is split in sub-columns, then
the dependency semantics apply to any pair of instructions where one is chosen from left sub-
column and one is chosen from the right sub-column.

Table A-3. WAW Dependencies Organized by Resource

Resource Name

Writers

Semantics of

Dependency
ALAT mem-readers-alat, mem-writers, chk.a.clr, none
invala-all

AR[BSP] br.call, brl.call, br.ret, cover, mov-to-AR-BSPSTORE, rfi impliedF
AR[BSPSTORE] alloc, loadrs, flushrs, mov-to-AR-BSPSTORE impliedF
AR[CCV] mov-to-AR-CCV impliedF
AR[EC] br.ret, mod-sched-brs, mov-to-AR-EC impliedF
AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.sO impliedF
AR[FPSR].sfl.controls mov-to-AR-FPSR, fsetc.s1 impliedF
AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 impliedF
AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 impliedF
AR[FPSR].sf0.flags fp-arith-s0, fcmp-s0, fpcmp-s0 none

fclrf.s0, fcmp-s0, fp-arith-s0, fclrf.s0, mov-to-AR-FPSR impliedF

fpcmp-s0, mov-to-AR-FPSR

IA-64 Resource and Dependency Semantics A-11

Table A-3. WAW Dependencies Organized by Resource (Continued)

intel.

Semantics of

Resource Name Writers Dependency
AR[FPSR].sfl.flags fp-arith-s1, fcmp-s1, fpcmp-sl none
fclrf.s1, fcmp-s1, fp-arith-s1, fclrf.s1, mov-to-AR-FPSR impliedF
fpcmp-s1, mov-to-AR-FPSR
AR[FPSR].sf2.flags fp-arith-s2, fcmp-s2, fpcmp-s2 none
fclrf.s2, fcmp-s2, fp-arith-s2, fclrf.s2, mov-to-AR-FPSR impliedF
fpcmp-s2, mov-to-AR-FPSR
AR[FPSR].sf3.flags fp-arith-s3, fcmp-s3, fpcmp-s3 none
felrf.s3, fcmp-s3, fp-arith-s3, fclrf.s3, mov-to-AR-FPSR impliedF
fpcmp-s3, mov-to-AR-FPSR
AR[FPSR].rv mov-to-AR-FPSR impliedF
AR[FPSR].traps mov-to-AR-FPSR impliedF
AR[ITC] mov-to-AR-ITC impliedF
AR[K%], mov-to-AR-K1 impliedF
%in0-7
AR[LC] mod-sched-brs-counted, mov-to-AR-LC impliedF
AR[PFS] br.call, brl.call none
br.call, brl.call mov-to-AR-PFS impliedF
AR[RNAT] alloc, flushrs, loadrs, impliedF
mov-to-AR-RNAT,
mov-to-AR-BSPSTORE
AR[RSC] mov-to-AR-RSC impliedF
AR[UNAT]{%}, mov-to-AR-UNAT, st8.spill impliedF
% in0-63
AR%, none none
% in 8-15, 20, 22-23, 31, 33-
35, 37-39, 41-43, 45-47, 67-
111
AR%, mov-to-AR-igl impliedF
% in 48 - 63, 112-127
BRY%, br.calll, brl.call mov-to-BR! impliedF
%in0-7 mov-to-BRT impliedF
br.call, brl.call! none
CFM mod-sched-brs, br.call, brl.call, br.ret, alloc, clrrrb, cover, rfi impliedF
CPUID# none none
CR[CMCV] mov-to-CR-CMCV impliedF
CR[DCR] mov-to-CR-DCR impliedF
CR[EOI] mov-to-CR-EOI SC Section
5.8.3.4
CR[GPTA] mov-to-CR-GPTA impliedF
CRI[IFA] mov-to-CR-IFA impliedF
CR[IFS] mov-to-CR-IFS, cover impliedF
CR[IHA] mov-to-CR-IHA impliedF
CR[lIM] mov-to-CR-1IM impliedF
CRJIIP] mov-to-CR-1IP impliedF
CRIIIPA] mov-to-CR-1IPA impliedF
CR[IPSR] mov-to-CR-IPSR impliedF
CR[IRR%], mov-from-CR-IVR impliedF
%in0-3
CR[ISR] mov-to-CR-ISR impliedF
IA-64 Resource and Dependency Semantics

A-12

intel.

Table A-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers SDZr;:thtjlgic(;f
CRIITIR] mov-to-CR-ITIR impliedF
CR[ITM] mov-to-CR-ITM impliedF
CR[ITV] mov-to-CR-ITV impliedF
CRJIVA] mov-to-CR-IVA impliedF
CRJ[IVR] none SC
CRILID] mov-to-CR-LID SC
CR[LRR%)], mov-to-CR-LRR! impliedF
%in0-1
CR[PMV] mov-to-CR-PMV impliedF
CR[PTA] mov-to-CR-PTA impliedF
CR[TPR] mov-to-CR-TPR impliedF
CR%, none none
% in 3-7, 10-15, 18, 26-63,

75-79, 82-127
DBR# mov-to-IND-DBR® impliedF
DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, itc.d, itr.i, itr.d impliedF
itc.i, itc.d, itr.i, itr.d
DTC_LIMIT* ptc.g, ptc.ga impliedF
DTR itr.d impliedF
itr.d ptr.d impliedF
ptr.d none
FR%, none none
%in0-1
FR%, fr-writers, Idf-cI, Idfp-ct impliedF
% in 2 -127
GRO none none
GR%, Id-c1, gr-writers® impliedF
% in1-127
IBR# mov-to-IND-IBR3 impliedF
InService* mov-to-CR-EOI, mov-from-CR-IVR SC
1P all none
ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, itc.d, itr.i, itr.d impliedF
itc.i, itc.d, itr.i, itr.d
ITR itr.i itr.i, ptr.i impliedF
ptr.i none
memory mem-writers none
PKR# mov-to-IND-PKR3 mov-to-IND-PKR* none
mov-to-IND-PKR? impliedF
PMC# mov-to-IND-PMC3 impliedF
PMD# mov-to-IND-PMD? impliedF
PRO pr-writers! none
IA-64 Resource and Dependency Semantics A-13

Table A-3. WAW Dependencies Organized by Resource (Continued)

intel.

Resource Name Writers SDeerEZ:Sgr?c(;/f
PR%, pr-and-writers! none
%in1-15 pr-or-writers? none

pr-unc-writers-fp1, pr-unc-writers-fp1, impliedF
pr-unc-writers-int, pr-unc-writers-intl,
pr-norm-writers-fpl, pr-norm-writers-fpl,
pr-norm-writers-int, pr-norm-writers-int,
pr-and-writers?, pr-or-writers?,
mov-to-PR-allreg” mov-to-PR-allreg”
PR%, pr-and-writers! none
% in 16 - 62 pr-or-writers? none
pr-unc-writers-fp1, pr-unc-writers-fp1, impliedF
pr-unc-writers-int, pr-unc-writers-int,
pr-norm-writers-fpl, pr-norm-writers-fpl,
pr-norm-writers-int, pr-norm-writers-int,
pr-and-writers?, pr-or-writers?,
mov-to-PR-allreg’, mov-to-PR-allreg?,
mov-to-PR-rotreg mov-to-PR-rotreg
PR63 pr-and-writers! none
pr-or-writers? none
mod-sched-brs, mod-sched-brs, impliedF
pr-unc-writers-fp1, pr-unc-writers-fp?,
pr-unc-writers-int, pr-unc-writers-intl,
pr-norm-writers-fpl, pr-norm-writers-fpl,
pr-norm-writers-int, pr-norm-writers-int,
pr-and-writers?, pr-or-writers?,
mov-to-PR-allreg’, mov-to-PR-allreg?,
mov-to-PR-rotreg mov-to-PR-rotreg
PSR.ac user-mask-writers-partial”’, mov-to-PSR-um, impliedF
sys-mask-writers-partial’, mov-to-PSR-I, rfi
PSR.be user-mask-writers-partial’, mov-to-PSR-um, impliedF
sys-mask-writers-partial’, mov-to-PSR-I, rfi
PSR.bn bsw, rfi impliedF
PSR.cpl epc, br.ret, rfi impliedF
PSR.da rfi impliedF
PSR.db mov-to-PSR-, rfi impliedF
PSR.dd rfi impliedF
PSR.dfh sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.dfl sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.di sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.dt sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.ed rfi impliedF
PSR.i sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.ia rfi impliedF
PSR.ic sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.id rfi impliedF
PSR.is br.ia, rfi impliedF
PSR.it rfi impliedF
PSR.Ip mov-to-PSR-, rfi impliedF
A-14 IA-64 Resource and Dependency Semantics

intel.

Table A-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers %Z?:ngzc(;f
PSR.mc rfi impliedF
PSR.mfh fr-writers® none

user-mask-writers-partial’, mov- | user-mask-writers-partial’, mov- | impliedF
to-PSR-um, fr-writers®, to-PSR-um,
sys-mask-writers-partial”’, mov- sys-mask-writers-partial’, mov-
to-PSR-I, rfi to-PSR-I, rfi
PSR.mfl fr-writers® none
user-mask-writers-partial7, mov- user-mask-writers-partial7, mov- | impliedF
to-PSR-um, fr-writers®, to-PSR-um,
sys-mask-writers-partial”, mov- sys-mask-writers-partial”, mov-
to-PSR-I, rfi to-PSR-I, rfi
PSR.pk sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.pp sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSRuri rfi impliedF
PSR.rt mov-to-PSR-I, rfi impliedF
PSR.si sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.sp sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.ss rfi impliedF
PSR.th mov-to-PSR-I, rfi impliedF
PSR.up user-mask-writers-partial’, mov-to-PSR-um, impliedF
sys-mask-writers-partial’, mov-to-PSR-I, rfi
RR# mov-to-IND-RR® impliedF
RSE rse-writers14 impliedF
A.3.4 WAR Dependency Table

A general rule specific to the WAR table:

1. WAR dependencies are always allowed within instruction groups except for the entry in
Table A-4 below: The readers and subsequent writers specified must be separated by a stop

in order to have defined behavior.

Table A-4. WAR Dependencies Organized by Resource

A.35

IA-64 Resource and Dependency Semantics

Semantics of

Writers Dependency

Resource Name Readers

PR63 pr-readers-br1 mod-sched-brs stop

Listing of Rules Referenced in Dependency Tables

The following rules restrict the specific instances in which some of the instructions in the tables
cause adependency and must be applied where referenced to correctly interpret those entries. Rules
only apply to the instance of the instruction class, or instruction mnemonic prefix wheretheruleis
referenced as a superscript. If the rule is referenced in Table A-5 where instruction classes are
defined, then it appliesto all instances of the instruction class.

A-15

intel.

Rule 1. Theseinstructions only write aregister when that register’s number is explicitly encoded
as atarget of the instruction and is only read when it is encoded as a source of the
instruction (or encoded asits PR[gp]).

Rule 2. These instructions only read CFM when they access arotating GR, FR, or PR. mov-to-
PR and mov-from-PR only access CFM when their qualifying predicate isin the rotating
region.

Rule 3. These instructions use a general register value to determine the specific indirect register
accessed. These instructions only access the register resource specified by the value in bits
{7:0} of the dynamic value of the index register.

Rule 4. Theseinstructions only read the given resource when bits{ 7:0} of the indirect index
register value does not match the register number of the resource.

Rule5. All rules are implementation specific.

Rule 6. Thereisadependency only when both the index specified by the reader and the index
specified by the writer have the same value in bits { 63:61} .

Rule 7. These instructions access the specified resource only when the corresponding mask bit is
Set.

Rule 8. PSR.dfhis only read when these instructions reference FR32-127. PSR.dfl is only read
when these instructions reference FR2-31.

Rule9. PSR.mfl isonly written when these instructions write FR2-31. PSR.mfh is only written
when these ingtructions write FR32-127.

Rule 10. The PSR.bn hit is only accessed when one of GR16-31 is specified in the instruction.

Rule 11. The target predicates are written independently of PR[qgp], but source registers are only
read if PR[qp] istrue.

Rule 12. Thisinstruction only reads the specified predicate register when that register isthe
PR[qp].

Rule 13. This reference to Id-c only applies to the GR whose value is |oaded with data returned
from memory, not the post-incremented address register. Thus, astop is still required
between a post-incrementing ld-c and a consumer that reads the post-incremented GR.

Rule 14. The RSE resource includes the implementation-specific RSE internal state resources. At
least one (and possibly more) of these resources are read by each instruction listed in the
rse-readersclass. At least one (and possibly more) of these resources are written by each
instruction listed in the r se-writers class. To determine exactly which instructions read or
write each individual resource, see the corresponding instruction pages.

Rule 15. This class represents all instructions marked as Reserved if PR[qp] is 1 B-typeinstructions
as described in “Format Summary” on page 4-2 in Volume 1.

Rule 16. This class represents all instructions marked as Reserved if PR[gp] is 1 instructions as
described in “Format Summary” on page 4-2.

A-16 IA-64 Resource and Dependency Semantics

intel.

A.4 Support Tables

Table A-5. Instruction Classes

Class

Events/Instructions

all

predicatable-instructions, unpredicatable-instructions

branches

indirect-brs, ip-rel-brs

cfm-readers

fr-readers, fr-writers, gr-readers, gr-writers, mod-sched-brs, predicatable-
instructions, pr-writers, alloc, br.call, brl.call, br.ret, cover, loadrs, rfi, chk-a, invala.e

chk-a chk.a.clr, chk.a.nc

cmpxchg cmpxchgl, cmpxchg2, cmpxchg4, cmpxchg8

czx czx1, czx2

fcmp-s0 fcmp[Field(sf)==s0]

fcmp-s1 femp[Field(sf)==s1]

fcmp-s2 femp[Field(sf)==s2]

fcmp-s3 femp[Field(sf)==s3]

fetchadd fetchadd4, fetchadd8

fp-arith fadd, famax, famin, fcvt.fx, fevt.fxu, fevt.xuf, fma, fmax, fmin, fmpy, fms, fnma, fnmpy,
fnorm, fpamax, fpamin, fpcvt.fx, fpevt.fxu, fpma, fpmax, fpmin, fpmpy, fpms, fpnma,
fpnmpy, fprepa, fprsqrta, frepa, frsgrta, fsub

fp-arith-sO fp-arith[Field(sf)==s0]

fp-arith-s1 fp-arith[Field(sf)==s1]

fp-arith-s2 fp-arith[Field(sf)==s2]

fp-arith-s3 fp-arith[Field(sf)==s3]

fp-non-arith fabs, fand, fandcm, fclass, fcvt.xf, fmerge, fmix, fneg, fnegabs, for, fpabs, fpmerge,
fpack, fpneg, fpnegabs, fselect, fswap, fsxt, fxor, xma

fpcmp-s0 fpcmp[Field(sf)==s0]

fpcmp-s1 fpcmp[Field(sf)==s1]

fpcmp-s2 fpcmp[Field(sf)==s2]

fpcmp-s3 fpcmp[Field(sf)==s3]

fr-readers fp-arith, fp-non-arith, pr-writers-fp, chk.s[Format in {M21}], getf

fr-writers fp-arith, fp-non-arith\fclass, mem-readers-fp

gr-readers gr-readers-writers, mem-readers, mem-writers, chk.s, cmp, cmp4, fc, itc.i, itc.d, itr.i,

itr.d, mov-to-AR-gr, mov-to-BR, mov-to-CR, mov-to-IND, mov-from-IND, mov-to-
PR-allreg, mov-to-PSR-I, mov-to-PSR-um, probe-all, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i,
ptr.d, setf, tbit, that

gr-readers-writers

mov-from-IND, add, addl, addp4, adds, and, andcm, czx, dep\dep[Format in {I13}],
extr, mem-readers-int, ld-all-postinc, Ifetch-postinc, mix, mux, or, pack, padd,
pavg, pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-nofault, psad,
pshl, pshladd, pshr, pshradd, psub, shl, shladd, shladdp4, shr, shrp, st-postinc,
sub, sxt, tak, thash, tpa, ttag, unpack, xor, zxt

gr-writers alloc, dep, getf, gr-readers-writers, mem-readers-int, mov-from-AR, mov-from-BR,
mov-from-CR, mov-from-PR, mov-from-PSR, mov-from-PSR-um, mov-ip, movl

indirect-brp brp[Format in {B7}]

indirect-brs br.call[Format in {B5}], br.cond[Format in {B4}], br.ia, br.ret

invala-all invala[Format in {M24}], invala.e

ip-rel-brs mod-sched-brs, br.call[Format in {B3}], brl.call, brl.cond, br.cond[Format in {B1}],
br.cloop

Id Id1, Id2, Id4, Id8, Id8.fill

Id-a Id1.a, Id2.a, Id4.a, Id8.a

Id-all-postinc Id[Format in {M2 M3}], Idfp[Format in {M12}], Idf[Format in {M7 M8}]

IA-64 Resource and Dependency Semantics A-17

Table A-5. Instruction Classes (Continued)

Class Events/Instructions
Id-c Id-c-nc, Id-c-clr
Id-c-clr Id1.c.clr, Id2.c.clr, Id4.c.clr, 1d8.c.clr, Id-c-clr-acq
Id-c-clr-acq Id1.c.clr.acq, Id2.c.clr.acq, ld4.c.clr.acq, Id8.c.clr.acq
ld-c-nc Id1.c.nc, Id2.c.nc, Id4.c.nc, 1d8.c.nc
Id-s Id1.s, ld2.s, Id4.s, 1d8.s
Id-sa Id1.sa, Id2.sa, Id4.sa, 1d8.sa
Idf Idfs, Idfd, Idfe, 1df8, Idf.fill
ldf-a Idfs.a, Idfd.a, Idfe.a, Idf8.a
ldf-c Idf-c-nc, Idf-c-clr
Idf-c-clr Idfs.c.clr, Idfd.c.clr, Idfe.c.clr, Idf8.c.clr
ldf-c-nc Idfs.c.nc, Idfd.c.nc, Idfe.c.nc, 1df8.c.nc
Idf-s Idfs.s, Idfd.s, Idfe.s, 1df8.s
Idf-sa Idfs.sa, Idfd.sa, Idfe.sa, 1df8.sa
Idfp Idfps, Idfpd, Idfp8
Idfp-a Idfps.a, Idfpd.a, Idfp8.a
Idfp-c Idfp-c-nc, Idfp-c-clr
Idfp-c-clr Idfps.c.clr, Idfpd.c.clr, Idfp8.c.clr
Idfp-c-nc Idfps.c.nc, Idfpd.c.nc, Idfp8.c.nc
Idfp-s Idfps.s, Idfpd.s, 1dfp8.s
Idfp-sa Idfps.sa, Idfpd.sa, Idfp8.sa
Ifetch-all Ifetch
Ifetch-fault Ifetch[Field(Iftype)==fault]

Ifetch-nofault

Ifetch[Field(Iftype)==]

Ifetch-postinc

Ifetch[Format in {M14 M15}]

mem-readers

mem-readers-fp, mem-readers-int

mem-readers-alat

Id-a, Idf-a, Idfp-a, Id-sa, Idf-sa, Idfp-sa, Id-c, Idf-c, Idfp-c

mem-readers-fp

df, 1dfp

mem-readers-int

cmpxchg, fetchadd, xchg, Id

mem-readers-spec

Id-s, Id-sa, Idf-s, Idf-sa, Idfp-s, Idfp-sa

mem-writers

mem-writers-fp, mem-writers-int

mem-writers-fp

stf

mem-writers-int

cmpxchg, fetchadd, xchg, st

mix

mix1, mix2, mix4

mod-sched-brs

br.cexit, br.ctop, br.wexit, br.wtop

mod-sched-brs-counted

br.cexit, br.cloop, br.ctop

mov-from-AR

mov-from-AR-M, mov-from-AR-I, mov-from-AR-IM

mov-from-AR-BSP

mov-from-AR-M[Field(ar3) == BSP]

mov-from-AR-BSPSTORE

mov-from-AR-M[Field(ar3) == BSPSTORE]

mov-from-AR-CCV

mov-from-AR-M[Field(ar3) == CCV]

mov-from-AR-EC

mov-from-AR-I[Field(ar3) == EC]

mov-from-AR-FPSR

mov-from-AR-M[Field(ar3) == FPSR]

mov-from-AR-I

mov_ar[Format in {I28}]

mov-from-AR-ig

mov-from-AR-IM[Field(ar3) in {48-63 112-127}]

mov-from-AR-IM

mov_ar[Format in {128 M31}]

mov-from-AR-ITC

mov-from-AR-M[Field(ar3) == ITC]

A-18

IA-64 Resource and Dependency Semantics

tel

Table A-5. Instruction Classes (Continued)

Class

Events/Instructions

mov-from-AR-K

mov-from-AR-M[Field(ar3) in {KO K1 K2 K3 K4 K5 K6 K7}]

mov-from-AR-LC

mov-from-AR-I[Field(ar3) == LC]

mov-from-AR-M

mov_ar[Format in {M31}]

mov-from-AR-PFS

mov-from-AR-I[Field(ar3) == PFS]

mov-from-AR-RNAT

mov-from-AR-M[Field(ar3) == RNAT]

mov-from-AR-RSC

mov-from-AR-M[Field(ar3) == RSC]

mov-from-AR-rv

none

mov-from-AR-UNAT

mov-from-AR-M[Field(ar3) == UNAT]

mov-from-BR

mov_br[Format in {I122}]

mov-from-CR

mov_cr[Format in {M33}]

mov-from-CR-CMCV

mov-from-CR[Field(cr3) == CMCV]

mov-from-CR-DCR

mov-from-CR[Field(cr3) == DCR]

mov-from-CR-EOI

mov-from-CR[Field(cr3) == EOI]

mov-from-CR-GPTA

mov-from-CR[Field(cr3) == GPTA]

mov-from-CR-IFA

mov-from-CR[Field(cr3) == IFA]

mov-from-CR-IFS

mov-from-CR[Field(cr3) == IFS]

mov-from-CR-IHA

mov-from-CR[Field(cr3) == IHA]

mov-from-CR-IIM

mov-from-CR[Field(cr3) == [IM]

mov-from-CR-IIP

mov-from-CR[Field(cr3) == IIP]

mov-from-CR-1IPA

mov-from-CR[Field(cr3) == IIPA]

mov-from-CR-IPSR

mov-from-CR[Field(cr3) == IPSR]

mov-from-CR-IRR

mov-from-CR[Field(cr3) in {IRRO IRR1 IRR2 IRR3}]

mov-from-CR-ISR

mov-from-CR[Field(cr3) == ISR]

mov-from-CR-ITIR

mov-from-CR[Field(cr3) == ITIR]

mov-from-CR-ITM

mov-from-CR[Field(cr3) == ITM]

mov-from-CR-ITV

mov-from-CR[Field(cr3) == ITV]

mov-from-CR-IVA

mov-from-CR[Field(cr3) == IVA]

mov-from-CR-IVR

mov-from-CR[Field(cr3) == IVR]

mov-from-CR-LID

mov-from-CR[Field(cr3) == LID]

mov-from-CR-LRR

mov-from-CR[Field(cr3) in {LRRO LRR1}]

mov-from-CR-PMV

mov-from-CR[Field(cr3) == PMV]

mov-from-CR-PTA

mov-from-CR[Field(cr3) == PTA]

mov-from-CR-rv

none

mov-from-CR-TPR

mov-from-CR[Field(cr3) == TPR]

mov-from-IND

mov_indirect[Format in {M43}]

mov-from-IND-CPUID

mov-from-IND[Field(ireg) == cpuid]

mov-from-IND-DBR

mov-from-IND[Field(ireg) == dbr]

mov-from-IND-IBR

mov-from-IND[Field(ireg) == ibr]

mov-from-IND-PKR

mov-from-IND[Field(ireg) == pkr]

mov-from-IND-PMC

mov-from-IND[Field(ireg) == pmc]

mov-from-IND-PMD

mov-from-IND[Field(ireg) == pmd]

mov-from-IND-priv

mov-from-IND[Field(ireg) in {dbr ibr pkr pmc rr}]

mov-from-IND-RR

mov-from-IND[Field(ireg) == rr]

mov-from-PR

mov_pr[Format in {I25}]

mov-from-PSR

mov_psr[Format in {M36}]

IA-64 Resource and Dependency Semantics

A-19

Table A-5. Instruction Classes (Continued)

Class

Events/Instructions

mov-from-PSR-um

mov_um[Format in {M36}]

mov-ip

mov_ip[Format in {I25}]

mov-to-AR

mov-to-AR-M, mov-to-AR-I

mov-to-AR-BSP

mov-to-AR-M[Field(ar3) == BSP]

mov-to-AR-BSPSTORE

mov-to-AR-M[Field(ar3) == BSPSTORE]

mov-to-AR-CCV

mov-to-AR-M[Field(ar3) == CCV]

mov-to-AR-EC mov-to-AR-I[Field(ar3) == EC]

mov-to-AR-FPSR mov-to-AR-M[Field(ar3) == FPSR]

mov-to-AR-gr mov-to-AR-M[Format in {M29}], mov-to-AR-I[Format in {I26}]
mov-to-AR-| mov_ar[Format in {126 127}]

mov-to-AR-ig mov-to-AR-IM[Field(ar3) in {48-63 112-127}]

mov-to-AR-IM mov_ar[Format in {I26 127 M29 M30}]

mov-to-AR-ITC mov-to-AR-M[Field(ar3) == ITC]

mov-to-AR-K mov-to-AR-M[Field(ar3) in {KO K1 K2 K3 K4 K5 K6 K7}]
mov-to-AR-LC mov-to-AR-I[Field(ar3) == LC]

mov-to-AR-M mov_ar[Format in {M29 M30}]

mov-to-AR-PFS

mov-to-AR-I[Field(ar3) == PFS]

mov-to-AR-RNAT

mov-to-AR-M[Field(ar3) == RNAT]

mov-to-AR-RSC

mov-to-AR-M[Field(ar3) == RSC]

mov-to-AR-UNAT

mov-to-AR-M[Field(ar3) == UNAT]

mov-to-BR

mov_br[Format in {I21}]

mov-to-CR

mov_cr[Format in {M32}]

mov-to-CR-CMCV

mov-to-CR[Field(cr3) == CMCV]

mov-to-CR-DCR

mov-to-CR[Field(cr3) == DCR]

mov-to-CR-EOI mov-to-CR[Field(cr3) == EOI]
mov-to-CR-GPTA mov-to-CR[Field(cr3) == GPTA]
mov-to-CR-IFA mov-to-CR[Field(cr3) == IFA]
mov-to-CR-IFS mov-to-CR[Field(cr3) == IFS]
mov-to-CR-IHA mov-to-CR[Field(cr3) == IHA]
mov-to-CR-1IM mov-to-CR[Field(cr3) == 1IM]
mov-to-CR-1IP mov-to-CR[Field(cr3) == 1IP]

mov-to-CR-IIPA

mov-to-CR[Field(cr3) == IIPA]

mov-to-CR-IPSR

mov-to-CR[Field(cr3) == IPSR]

mov-to-CR-IRR mov-to-CRJ[Field(cr3) in {IRRO IRR1 IRR2 IRR3}]
mov-to-CR-ISR mov-to-CR[Field(cr3) == ISR]
mov-to-CR-ITIR mov-to-CR[Field(cr3) == ITIR]
mov-to-CR-ITM mov-to-CR[Field(cr3) == ITM]
mov-to-CR-ITV mov-to-CR[Field(cr3) == ITV]
mov-to-CR-IVA mov-to-CRJ[Field(cr3) == IVA]
mov-to-CR-IVR mov-to-CR[Field(cr3) == IVR]
mov-to-CR-LID mov-to-CR[Field(cr3) == LID]

mov-to-CR-LRR

mov-to-CR[Field(cr3) in {LRRO LRR1}]

mov-to-CR-PMV

mov-to-CR[Field(cr3) == PMV]

mov-to-CR-PTA

mov-to-CR[Field(cr3) == PTA]

mov-to-CR-TPR

mov-to-CR[Field(cr3) == TPR]

A-20

IA-64 Resource and Dependency Semantics

In

tel

Table A-5. Instruction Classes (Continued)

Class

Events/Instructions

mov-to-IND

mov_indirect[Format in {M42}]

mov-to-IND-CPUID

mov-to-IND[Field(ireg) == cpuid]

mov-to-IND-DBR

mov-to-IND[Field(ireg) == dbr]

mov-to-IND-IBR

mov-to-IND[Field(ireg) == ibr]

mov-to-IND-PKR

mov-to-IND[Field(ireg) == pkr]

mov-to-IND-PMC

mov-to-IND[Field(ireg) == pmc]

mov-to-IND-PMD

mov-to-IND[Field(ireg) == pmd]

mov-to-IND-priv

mov-to-IND

mov-to-IND-RR

mov-to-IND[Field(ireg) == rr]

mov-to-PR

mov-to-PR-allreg, mov-to-PR-rotreg

mov-to-PR-allreg

mov_pr[Format in {I23}]

mov-to-PR-rotreg

mov_pr[Format in {I24}]

mov-to-PSR-I mov_psr[Format in {M35}]
mov-to-PSR-um mov_um[Format in {M35}]
mux mux1, mux2

none -

pack pack2, pack4

padd paddl, padd2, padd4
pavg pavgl, pavg2

pavgsub pavgsubl, pavgsub2
pcmp pcmpl, pcmp2, pcmp4
pmax pmax1, pmax2

pmin pminl, pmin2

pmpy pmpy2

pmpyshr pmpyshr2

pr-and-writers

pr-gen-writers-int[Field(ctype) in {and andcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-gen-writers-fp

fclass, fcmp

pr-gen-writers-int

cmp, cmp4, thit, tnat

pr-norm-writers-fp

pr-gen-writers-fp[Field(ctype)==

pr-norm-writers-int

pr-gen-writers-int[Field(ctype)==]

pr-or-writers

pr-gen-writers-int[Field(ctype) in {or orcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-readers-br

br.call, br.cond, brl.call, brl.cond, br.ret, br.wexit, br.wtop, break.b, nop.b,
ReservedBQP

pr-readers-nobr-nomovpr

add, addl, addp4, adds, and, andcm, break.f, break.i, break.m, break.x, chk.s, chk-a,
cmp, cmp4, cmpxchg, czx, dep, extr, fp-arith, fp-non-arith, fc, fchkf, fcirf, fcmp,
fetchadd, fpcmp, fsetc, fwb, getf, invala-all, itc.i, itc.d, itr.i, itr.d, Id, Idf, Idfp, Ifetch-all,
mf, mix, mov-from-AR-M, mov-from-AR-IM, mov-from-AR-I, mov-to-AR-M, mov-
to-AR-I, mov-to-AR-IM, mov-to-BR, mov-from-BR, mov-to-CR, mov-from-CR,
mov-to-IND, mov-from-IND, mov-ip, mov-to-PSR-l, mov-to-PSR-um, mov-from-
PSR, mov-from-PSR-um, movl, mux, nop.f, nop.i, nop.m, nop.x, or, pack, padd,
pavg, pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-all, psad,
pshl, pshladd, pshr, pshradd, psub, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.d, ptr.i,
ReservedQP, rsm, setf, shl, shladd, shladdp4, shr, shrp, srlz.i, srlz.d, ssm, st, stf, sub,
sum, sxt, sync, tak, tbit, thash, tnat, tpa, ttag, unpack, xchg, xma, xmpy, xor, zxt

pr-unc-writers-fp

pr-gen-writers-fp[Field(ctype)==unc], fprcpall, fprsqrtall, frcpall, frsqrtalt

pr-unc-writers-int

pr-gen-writers-int[Field(ctype)==unc]*

IA-64 Resource and Dependency Semantics A-21

Table A-5. Instruction Classes (Continued)

Class

Events/Instructions

pr-writers

pr-writers-int, pr-writers-fp

pr-writers-fp

pr-norm-writers-fp, pr-unc-writers-fp

pr-writers-int

pr-norm-writers-int, pr-unc-writers-int

predicatable-instructions

mov-from-PR, mov-to-PR, pr-readers-br, pr-readers-nobr-nomovpr

priv-ops mov-to-IND-priv, bsw, itc.i, itc.d, itr.i, itr.d, mov-to-CR, mov-from-CR, mov-to-PSR-I,
mov-from-PSR, mov-from-IND-priv, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, rfi, rsm,
ssm, tak, tpa

probe-all probe-fault, probe-nofault

probe-fault probe[Format in {M40}]

probe-nofault

probe[Format in {M38 M39}]

psad psadl

pshl pshi2, pshl4

pshladd pshladd2

pshr pshr2, pshr4
pshradd pshradd2

psub psubl, psub2, psub4
ReservedBQP 15

ReservedQP 16

rse-readers

alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-from-AR-BSP, mov-
from-AR-BSPSTORE, mov-to-AR-BSPSTORE, mov-from-AR-RNAT, mov-to-AR-
RNAT, rfi

rse-writers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-to-AR-BSPSTORE, rfi
st stl, st2, st4, st8, st8.spill

st-postinc stf[Format in {M10}], st[Format in {M5}]

stf stfs, stfd, stfe, stf8, stf.spill

sxt Sxtl, sxt2, sxt4

sys-mask-writers-partial

rsm, ssm

unpack

unpackl, unpack2, unpack4

unpredicatable-instructions

alloc, br.cloop, br.ctop, br.cexit, br.ia, brp, bsw, clrrrb, cover, epc, flushrs, loadrs, rfi

user-mask-writers-partial

rum, sum

xchg

xchgl, xchg2, xchg4, xchg8

zxXt

Zxtl, zxt2, zxt4

A-22

IA-64 Resource and Dependency Semantics

Code Examples B

B.1 OS Boot Flow Sample Code

The sample code given below is aexample of setting up operating system register state to prepare
the processor for running in virtual mode as described in Section 24.1.2, “ Operating System Boot
Steps’ on page 24-3.

/1 This code will performthe follow ng steps:
11 1. Initialize PSRwith interrupt disabled (bit 13)
I/ 2. I nvalidate ALAT via invala instruction
11 3. I nval i date register stack
/1 4, Set region registers rr[r0] - rr[r7] to RI D=0, PS=8K, E=0.
11 5. Di sabl e the VHPt
11 6. Initialize protection key registers
I/ 7. Initialize SP
/1 8. Initialize BSP
/1 9. Enabl e regi ster stack engine.
11 10. Setup IVA
/1 11. Setup virtual ->physical address translation
11 12. Setup GP.
.file“start.s”
/1 globals
.global nain
.type main, @unction // C function we will return to
.global __GLOB DATA PTR // External pointer to A obal Data area
. gl obal | VT_BASE /1 External pointer to |VT_BASE
.text

/1 This is the entry point where primry boot | oader
/] passes control.

pstart::
nov psr.l =r0 /1 Initialize psr.|
;anala /1 Invalidate ALAT
nov ar.rsc =10 /1 Invalidate register stack
ié)adrs

/1 Initialize Region Registers

nov r2 = (13 << 2) /1 8K page size
nov r3 =ro0
nov r4a = 61
Loader _RRLoop:
shl rio =r3, r4
,ni)v rr[r10] =r2

add r3 =1, r3

Code Examples B-1

crrp4 geu p6, p7 =8, r3
(p6) br.cond. sptk.few. clr Loader_RRLoop

// Disable the VHPT wal ker and set up the minimumsize for it (32K) by witing
// to the page table address register (cr.pta)

nmov r2 = (15<<2)

mov cr.pta = r2

/1 Initialize the protection key registers for kernel

mov r2 = (1<< 0)
mov r3 =r0
;"ré)v pkr[r3] =7r2 /1 validate pkr[zero]

mov r2 =r0

pkr _Il oop:
add r3=r3,r0, 1 /] start with index 1
’c}rp.gtu p6,p7 = 8,r3

(p6) }n’)v pkr[r3] =712

(p6) br.cond. sptk.few clr pkr_I oop /1 loop until 8

/] Setup kernel stack pointer (r12)

nmov| sp = kstack + (64*1024) /'l 64K stack

/1 Set up the scratch area on stack
add sp = - 32, sp
/] Setup the Register stack backing store
/1 1st deal with Register Stack Configuration register

/1 NOTE: the RSC npbde nust be enforced lazy (00) to wite to bspstore

/1 mode: = enforced | azy
/1 be =1little endian
nmov ar.rsc =r0
/1 Now have to setup the RSE backing store pointer
” NOTE: initializing the bspstore has effects on all 3 RSE pointers
11 (BSP, BSPSTORE, and RSE. BspLoad)
movl r2 = kstack + ((96 + (96/63))*8)
}n’)v ar. bspstore =r2
/1 Need to setup base address for interrupt vector table...

movl r3 = | VT_BASE

mov cr.iva =r3

B-2 Code Examples

intel.

/1 Setup system address translation for the kerne

I

/1 The Translation Insertion Format |ooks |ike the follow ng..

I/

/1 Belowis the register interface to insert entries into the TLB
I

/1 1) A general register contains an address, attributes, and perni ssions
11 2) ITIR additional info such as protection key page size info
/1 3) IFA specifies the virtual page nunmber for instruction and data
11 TLB inserts

I/

11 Regi sters used:

N R

" |63 53 |52]5150|49 12|119 |8 7|6|54 10|

;// GR | ig led| rv | ppn |ar | pl [d]alma|p|

Il 1TIR | rv {63:32} | key {31:8} | ps {7:2} | rv {1:0}

I

11 I FA | vpn {63:12}| ignored {11:0}

I

11 RR{vrn] | reserved{63:32} | rid {31:8}| ignored {7:2) | rv{1} | ignored {0}
I

I

11 wher e

11 ig = ignored bits

/1 rv = reserved bits

11 p = present bit

11 ma = nmenory attribute

11 a = accessed bit

I d =dirty bit

/1 pl = privilege leve

/1 ar = access rights

/1 ppn = physi cal page nunber

/1 ed = exception deferra

/1 ps = page size of mapping (2**ps)

11 vpn = virtual page nunber

I

/1l Setup virtual page nunber

I

/'l NOTE: The virtual page nunmber depends on a translation’s
/1 page si ze.

I

/1 Add entry for TEXT section
movl r2 = 0x0
Hﬁv cr.ifa =r2
11 setup ITIR (Interruption TLB Insertion Register)
movl r3=((24 << 2) | (0<<8))/l set page size to 16 MB
Hﬁv cr.oitir =7r3

11 now setup the general register to use with itr (insert translation
/1 regi ster), use physical page of zero

movl r10 =((1 << 52)| (0x00000000 << 12)|(3 << 9)|(0 << 7)] \

(1<<6) | (1<<5)]| (1<< 0))
mov rll =r0

itr.i itr[rll] = r10 /1 lInsert translation register

11 Entry for OS Data section

Code Examples B-3

11

11
11

11

11

11

/1 C ear

/'l Need
Itit”

add r11
movl r2

1, rl1 // skip to tr next index
0x0 /'l use vpn O

}n’)v cr.ifa=r2

Setup ITIR (Interruption TLB Insertion Register)
movl r3 = ((24<<2) | (0<<8)) /Il 16 MB
;"ré)v cr.itir =r3

Now setup the general register to use with itr (insert translation
register)

movl r10 =((1 << 52) | (Ox0 << 12) | (3 << 9) | (0 << 7) |\
(1<<6) | (1<<5) | (1<<0))

itr.d dtr[rl1] =r10 /'l Insert translation register

It is nowtinme to set the appropriate bits in the PSR (processor
status register)

movl r3 = ((1 << 44) | (1 << 36) (1 <<38) [(1 <<27) |(1 << 17)
(1 <<15) | (1 <<14) | (1 << 13))
;'ré)vcr.ipsr =r3
Initialize DCR to defer all speculation faults

movl r2 = 0Ox7f00

}n’)v cr.der =712
Initialize the global pointer (gp = r1l)
movl gp = __ GLOB_DATA PTR

out ifs

mov cr.ifs=r0

to do a “rfi” in order to synchronize above instructions and set
and “ed” bits in the PSR

movl r3 = main /1 Setup for mmin, C code
;"ré)v cr.iip =r3 /] Setup iip to hit nmain

rfi

/'l Setup kernel stack

kst ack:

B-4

.data
. gl obal kst ack
.align 16

. ski p(64*1024)

|\

Code Examples

	1 About this Manual
	1.1 Overview of Volume 1: IA-64 Application Architecture
	1.1.1 Part 1: IA-64 Application Architecture Guide
	1.1.2 Part 2: IA-64 Optimization Guide

	1.2 Overview of Volume 2: IA-64 System Architecture
	1.2.1 Part 1: IA-64 System Architecture Guide
	1.2.2 Part 2: IA-64 System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Instruction Set Reference
	1.3.1 Part 1: IA-64 Instruction Set Descriptions
	1.3.2 Part 2: IA-32 Instruction Set Descriptions

	1.4 Overview of Volume 4: Itanium™ Processor Programmer’s Guide
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	2 IA-64 System Environment
	2.1 IA-64 Processor Boot Sequence
	2.2 IA-64 System Environment Overview

	3 IA-64 System State and Programming Model
	3.1 Privilege Levels
	3.2 Serialization
	3.2.1 Instruction Serialization
	3.2.2 Data Serialization
	3.2.3 Definition of In-flight Resources

	3.3 System State
	3.3.1 System State Overview
	3.3.2 Processor Status Register (PSR)
	3.3.3 Control Registers
	3.3.4 Global Control Registers
	3.3.5 Interruption Control Registers
	3.3.6 External Interrupt Control Registers
	3.3.7 Banked General Registers

	4 IA-64 Addressing and Protection
	4.1 Virtual Addressing
	4.1.1 Translation Lookaside Buffer (TLB)
	4.1.2 Region Registers (RR)
	4.1.3 Protection Keys
	4.1.4 Translation Instructions
	4.1.5 Virtual Hash Page Table (VHPT)
	4.1.6 VHPT Hashing
	4.1.7 VHPT Environment
	4.1.8 Translation Searching
	4.1.9 32-bit Virtual Addressing
	4.1.10 Virtual Aliasing

	4.2 Physical Addressing
	4.3 Unimplemented Address Bits
	4.3.1 Unimplemented Physical Address Bits
	4.3.2 Unimplemented Virtual Address Bits
	4.3.3 Instruction Behavior with Unimplemented Addresses

	4.4 Memory Attributes
	4.4.1 Virtual Addressing Memory Attributes
	4.4.2 Physical Addressing Memory Attributes
	4.4.3 Cacheability and Coherency Attribute
	4.4.4 Cache Write Policy Attribute
	4.4.5 Coalescing Attribute
	4.4.6 Speculation Attributes
	4.4.7 Sequentiality Attribute and Ordering
	4.4.8 Not a Thing Attribute (NaTPage)
	4.4.9 Effects of Memory Attributes on Memory Reference Instructions
	4.4.10 Effects of Memory Attributes on Advanced/Check Loads

	4.5 Memory Datum Alignment and Atomicity

	5 IA-64 Interruptions
	5.1 Interruption Definitions
	5.2 Interruption Programming Model
	5.3 Interruption Handling during Instruction Execution
	5.4 PAL-based Interruption Handling
	5.5 IVA-based Interruption Handling
	5.5.1 Efficient Interruption Handling
	5.5.2 Non-access Instructions and Interruptions
	5.5.3 Single Stepping
	5.5.4 Single Instruction Fault Suppression
	5.5.5 Deferral of IA-64 Speculative Load Faults

	5.6 Interruption Priorities
	5.6.1 IA-32 Interruption Priorities and Classes

	5.7 IVA-based Interruption Vectors
	5.8 Interrupts
	5.8.1 Interrupt Vectors and Priorities
	5.8.2 Interrupt Enabling and Masking
	5.8.3 External Interrupt Control Registers
	5.8.4 Processor Interrupt Block
	5.8.5 Edge and Level Sensitive Interrupts

	6 IA-64 Register Stack Engine
	6.1 RSE and Backing Store Overview
	6.2 RSE Internal State
	6.3 Register Stack Partitions
	6.4 RSE Operation
	6.5 RSE Control
	6.5.1 Register Stack Configuration Register
	6.5.2 Register Stack NaT Collection Register
	6.5.3 Backing Store Pointer Application Registers
	6.5.4 RSE Control Instructions
	6.5.5 Bad PFS used by Branch Return

	6.6 RSE Interruptions
	6.7 RSE Behavior on Interruptions
	6.8 RSE Behavior with an Incomplete Register Frame
	6.9 RSE and ALAT Interaction
	6.10 Backing Store Coherence and Memory Ordering
	6.11 RSE Backing Store Switches
	6.11.1 Switch from Interrupted Context
	6.11.2 Return to Interrupted Context
	6.11.3 Synchronous Backing Store Switch

	6.12 RSE Initialization

	7 IA-64 Debugging and Performance Monitoring
	7.1 Debugging
	7.1.1 Data and Instruction Breakpoint Registers
	7.1.2 Debug Address Breakpoint Match Conditions

	7.2 Performance Monitoring
	7.2.1 Generic Performance Counter Registers
	7.2.2 Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])
	7.2.3 Performance Monitor Events
	7.2.4 Implementation-independent Performance Monitor Code Sequences

	8 IA-64 Interruption Vector Descriptions
	8.1 Interruption Vector Descriptions
	8.2 ISR Settings
	8.3 IA-64 Interruption Vector Definition

	9 IA-32 Interruption Vector Descriptions
	9.1 IA-32 Trap Code
	9.2 IA-32 Interruption Vector Definitions

	10 IA-64 Operating System Interaction Model with IA-32 Applications
	10.1 Instruction Set Transitions
	10.2 System Register Model
	10.3 IA-32 System Segment Registers
	10.3.1 IA-32 Current Privilege Level
	10.3.2 IA-32 System EFLAG Register
	10.3.3 IA-32 System Registers

	10.4 Register Context Switch Guidelines for IA-32 Code
	10.4.1 Entering IA-32 Processes
	10.4.2 Exiting IA-32 Processes

	10.5 IA-32 Instruction Set Behavior Summary
	10.6 System Memory Model
	10.6.1 Virtual Memory References
	10.6.2 IA-32 Virtual Memory References
	10.6.3 IA-32 TLB Forward Progress Requirements
	10.6.4 Multiprocessor TLB Coherency
	10.6.5 IA-32 Physical Memory References
	10.6.6 Supervisor Accesses
	10.6.7 Memory Alignment
	10.6.8 Atomic Operations
	10.6.9 Multiprocessor Instruction Cache Coherency
	10.6.10 IA-32 Memory Ordering

	10.7 I/O Port Space Model
	10.7.1 Virtual I/O Port Addressing
	10.7.2 Physical I/O Port Addressing
	10.7.3 IA-32 IN/OUT Instructions
	10.7.4 I/O Port Accesses by Loads and Stores

	10.8 Debug Model
	10.8.1 Data Breakpoint Register Matching
	10.8.2 Instruction Breakpoint Register Matching

	10.9 Interruption Model
	10.9.1 Interruption Summary
	10.9.2 IA-32 Numeric Exception Model

	10.10 Processor Bus Considerations for IA-32 Application Support
	10.10.1 IA-32 Compatible Bus Transactions

	11 IA-64 Processor Abstraction Layer
	11.1 Firmware Model
	11.1.1 Processor Abstraction Layer (PAL) Overview
	11.1.2 Firmware Entrypoints
	11.1.3 PAL Entrypoints
	11.1.4 SAL Entrypoints
	11.1.5 OS Entrypoints
	11.1.6 Firmware Address Space

	11.2 PAL Power On/Reset
	11.2.1 PALE_RESET
	11.2.2 PALE_RESET Exit State

	11.3 Machine Checks
	11.3.1 PALE_CHECK
	11.3.2 PALE_CHECK Exit State
	11.3.3 Returning to the Interrupted Process

	11.4 PAL Initialization Events
	11.4.1 PALE_INIT
	11.4.2 PALE_INIT Exit State

	11.5 Platform Management Interrupt (PMI)
	11.5.1 PMI Overview
	11.5.2 PALE_PMI Exit State
	11.5.3 Resume from the PMI Handler

	11.6 Power Management
	11.7 PAL Glossary
	11.8 PAL Procedures
	11.8.1 PAL Procedure Summary
	11.8.2 PAL Calling Conventions
	11.8.3 PAL Procedure Specifications

	12 About the IA-64 System Programmer’s Guide
	12.1 Overview of the IA-64 System Programmer’s Guide
	12.2 .Related Documents

	13 MP Coherence and Synchronization
	13.1 An Overview of IA-64 Memory Access Instructions
	13.1.1 Memory Ordering of Cacheable Memory References
	13.1.2 Loads and Stores
	13.1.3 Semaphores
	13.1.4 Memory Fences

	13.2 IA-64 Memory Ordering
	13.2.1 IA-64 Memory Ordering Executions
	13.2.2 Memory Attributes
	13.2.3 Understanding Other Ordering Models: Sequential Consistency and IA-32

	13.3 Where IA-64 Requires Explicit Synchronization
	13.4 Synchronization Code Examples
	13.4.1 Spin Lock
	13.4.2 Simple Barrier Synchronization
	13.4.3 Dekker’s Algorithm
	13.4.4 Lamport’s Algorithm

	13.5 Updating Code Images
	13.5.1 Self-modifying Code
	13.5.2 Cross-modifying Code
	13.5.3 Programmed I/O
	13.5.4 DMA

	13.6 References

	14 Interruptions and Serialization
	14.1 Terminology
	14.2 Interruption Vector Table
	14.3 Interruption Handlers
	14.3.1 Execution Environment
	14.3.2 Interruption Register State
	14.3.3 Resource Serialization of Interrupted State
	14.3.4 Resource Serialization upon rfi

	14.4 Interruption Handling
	14.4.1 Lightweight Interruptions
	14.4.2 Heavyweight Interruptions
	14.4.3 Nested Interruptions

	15 Context Management
	15.1 Preserving Register State across Procedure Calls
	15.1.1 Preserving General Registers
	15.1.2 Preserving Floating-point Registers

	15.2 Preserving Register State in the OS
	15.2.1 Preservation of Stacked Registers in the OS
	15.2.2 Preservation of Floating-point State in the OS

	15.3 Preserving ALAT Coherency
	15.4 System Calls
	15.4.1 epc/Demoting Branch Return
	15.4.2 break/rfi
	15.4.3 NaT Checking for NaTs in System Calls

	15.5 Context Switching
	15.5.1 User-level Context Switching
	15.5.2 Context Switching in an Operating System Kernel

	16 Memory Management
	16.1 IA-64 Address Space Model
	16.1.1 Regions
	16.1.2 Protection Keys

	16.2 Translation Lookaside Buffers (TLBs)
	16.2.1 Translation Registers (TRs)
	16.2.2 Translation Caches (TCs)

	16.3 Virtual Hash Page Table
	16.3.1 Short Format
	16.3.2 Long Format
	16.3.3 VHPT Updates

	16.4 TLB Miss Handlers
	16.4.1 Data/Instruction TLB Miss Vectors
	16.4.2 VHPT Translation Vector
	16.4.3 Alternate Data/Instruction TLB Miss Vectors
	16.4.4 Data Nested TLB Vector
	16.4.5 Dirty Bit Vector
	16.4.6 Data/Instruction Access Bit Vector
	16.4.7 Page Not Present Vector
	16.4.8 Data/Instruction Access Rights Vector

	16.5 Subpaging

	17 Runtime Support for Control and Data Speculation
	17.1 Exception Deferral of Control Speculative Loads
	17.1.1 Hardware-only Deferral
	17.1.2 Combined Hardware/Software Deferral
	17.1.3 Software-only Deferral

	17.2 Speculation Recovery Code Requirements
	17.3 Speculation Related Exception Handlers
	17.3.1 IA-64 Unaligned Handler

	18 Instruction Emulation and Other Fault Handlers
	18.1 Unaligned Reference Handler
	18.2 Unsupported Data Reference Handler
	18.3 Illegal Dependency Fault
	18.4 Long Branch

	19 Floating-point System Software
	19.1 IA-64 Floating-point Exceptions
	19.1.1 The Software Assistance Exceptions (Faults and Traps)
	19.1.2 The IEEE Floating-point Exception Filter

	19.2 IA-32 Floating-point Exceptions

	20 IA-32 Application Support
	20.1 Transitioning between IA-64 and IA-32
	20.1.1 IA-32 Code Execution Environments
	20.1.2 br.ia
	20.1.3 JMPE
	20.1.4 Procedure Calls between IA-64 and IA-32

	20.2 IA-32 Architecture Handlers
	20.3 Debugging IA-32 and IA-64 Code
	20.3.1 Instruction Breakpoints
	20.3.2 Data Breakpoints
	20.3.3 Single Step Traps
	20.3.4 Taken Branch Traps

	21 External Interrupt Architecture
	21.1 External Interrupt Basics
	21.2 Configuration of External Interrupt Vectors
	21.3 External Interrupt Masking
	21.3.1 PSR.i
	21.3.2 IVR Reads and EOI Writes
	21.3.3 Task Priority Register (TPR)
	21.3.4 External Task Priority Register (XTPR)

	21.4 External Interrupt Delivery
	21.5 Interrupt Control Register Usage Examples
	21.5.1 Notation
	21.5.2 TPR and XPTR Usage Example
	21.5.3 EOI Usage Example
	21.5.4 IRR Usage Example
	21.5.5 Interval Timer Usage Example
	21.5.6 Local Redirection Example
	21.5.7 Inter-processor Interrupts Layout and Example
	21.5.8 INTA Example

	22 I/O Architecture
	22.1 Memory Acceptance Fence (mf.a)
	22.2 I/O Port Space

	23 Performance Monitoring Support
	23.1 Architected Performance Monitoring Mechanisms
	23.2 Operating System Support

	24 Firmware Overview
	24.1 Processor Boot Flow Overview
	24.1.1 Firmware Boot Flow
	24.1.2 Operating System Boot Steps

	24.2 Runtime Procedure Calls
	24.2.1 PAL Procedure Calls
	24.2.2 SAL Procedure Calls
	24.2.3 EFI Procedure Calls
	24.2.4 Physical and Virtual Addressing Mode Considerations

	24.3 Event Handling in Firmware
	24.3.1 Machine Check Abort (MCA) Flows
	24.3.2 INIT Flows
	24.3.3 PMI Flows

	A IA-64 Resource and Dependency Semantics
	A.1 Reading and Writing Resources
	A.2 Dependencies and Serialization
	A.3 Resource and Dependency Table Format Notes
	A.3.1 Special Case Instruction Rules
	A.3.2 RAW Dependency Table
	A.3.3 WAW Dependency Table
	A.3.4 WAR Dependency Table
	A.3.5 Listing of Rules Referenced in Dependency Tables

	A.4 Support Tables

	B Code Examples
	B.1 OS Boot Flow Sample Code

