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| ntroduction

Developing high-performance applications for Intel® architecture
(1A)-based processors can be more efficient with better understanding of the
newest 1A. Even though the applications devel oped for the 8086/8088,
80286, Intel386™ (DX or SX), and Intel486™ processors will execute on
the Pentiur®, Pentium Pro, Pentium |1 and Pentium 111 processors without
any modification or recomputing, the code optimization techniques
combined with the advantages of the newest processors can help you tune
your application to its greatest potential. This manual provides information
on Intel architecture as well as describes code optimization techniques to
enable you to tune your application for best results, specifically when run on
Pentium 11 and Pentium |1l processors.

Tuning Your Application

Tuning an application to high performance across Intel architecture-based
processors requires background information about the following:
® thelntel architecture.

® critica stall situations that may impact the performance of your
application and other performance setbacks within your application

®  your compiler optimization capabilities

®* monitoring the application’s performance

To help you understand your application and where to begin tuning, you can
use Intel’s VTune™ Performance Analyzer. This tool helps you see the
performance event counters data of your code provided by the Pentium |l
and Pentiumll processors. This manual informs you about appropriate
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performance counter for measurement. For V Tune Performance Analyzer
order information, see its web home page at
http://devel oper.intel.com/vtune.

About This Manual

Thismanual assumesthat you are familiar with 1A basics, aswell aswith C
or C++ and assembly language programming. The manual consists of the
following parts:

Introduction. Defines the purpose and outlines the contents of this manual.

Chapter 1—Processor Architecture OverviewOverviews the
architectures of the Pentium |1 and Pentium Ill processors.

Chapter 2—General Optimization Guidelines.Describes the code
development techniques to utilize the architecture of Pentium Il and
Pentium 111 processors as well as general strategies of efficient memory
utilization.

Chapter 3—Coding for SIMD Architectures. Describes the following
coding methodol ogies: assembly, inlined-assembly, intrinsics, vector
classes, auto-vectorization, and libraries. Also discusses strategies for
altering data layout and restructuring algorithms for SIMD-style coding.

Chapter 4—Using SIMD Integer Instructions. Describes optimization
rules and techniques for high-performance integer and MMX™ technology
applications.

Chapter 5—Optimizing Floating-Point Applications. Describes rules
and optimization techniques, and provides code examples specific to
floating-point code, including SIMD-floating point code for Streaming
SIMD Extensions.

Chapter 6—Optimizing Cache Utilization for Pentium Il Processors.
Describes the memory hierarchy of Pentium 11 and Pentium 111 processor
architectures, and how to best use it. The pr ef et ch instruction and cache
control management instructions for Streaming SIMD Extensions are also
described.
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Chapter 7— Application Performance Tools.Describes application

performance tools: VTune analyzer, Intel® Compiler plug-ins, and Intel®
Performance Libraries Suite. For each tool, techniques and code optimization
strategies that help you to take advantage of the Intel architecture are described.

Appendix A—Optimization of Some Key Algorithms for the Pentium I
and PentiumlIIl ProcessorsDescribes how to optimize the following common
algorithms using the Streaming SIMD Extensions: 3D lighting and transform,
image compression, audio decomposition, and others.

Appendix B—Performance Monitoring Events and CountersDescribes
performance-monitoring events and counters and their functions.

Appendix C—Instruction to Decoder Specification. Summarizesthe |A
macro instructions with Pentium 11 and Pentium Il processor decoding
information to enable scheduling.

Appendix D—Streaming SIMD Extensions Throughput and Latency.
Summarizes in a table the instructions’ throughput and latency characteristics.

Appendix E—Stack Alignment for Streaming SIMD ExtensionsDetailson
the alignment of the stacks of datafor Streaming SIMD Extensions.

Appendix F—The Mathematics of Prefetch Scheduling Distanc®iscusses
how far away prefetch instructions should be inserted.

Related Documentation

For more information on the Intel architecture, specific techniques and
processor architecture terminology referenced in this manual, see the following
documentation:

Intel Architecture MMX™ Technology Programmer's Reference Maotd,
number 243007

Pentium Processor Family Developer's Manudlumes 1, 2, and 3, order
numbers 241428, 241429, and 241430

Pentium Pro Processor Family Developer’'s Mandlumes 1, 2, and 3, order
numbers 242690, 242691, and 242692

Pentium Il Processor Developer's Manuatder number 243502

Intel C/C++ Compiler for Win32* Systems User’s Guideder number
718195

XiX
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Notational Conventions

This manual uses the following conventions:

This type style

THI S TYPE STYLE

This type style

(ellipses)

XX

Indicates an element of syntax, areserved word, a
keyword, afilename, instruction, computer
output, or part of a program example. The text
appearsin lowercase unless uppercase is
significant.

Indicates avalue, for example, TRUE, CONST1, or
avariable, for example, A, B, or register names
MVDthrough Mvr.

| indicateslowercaseletter L in examples. 1 isthe
number 1 in examples. Oisthe uppercase O in
examples. 0 isthe number Oin examples.

Indicates a placeholder for an identifier, an
expression, a string, asymbol, or avalue.
Substitute one of these items for the placehol der.

Indicate that afew lines of the code are omitted.
Indicates a hypertext link.



Processor Architecture
Overview

This chapter provides an overview of the architectural features of the
Pentium® |1 and Pentium 111 processors and explains the new capabilities of
the Pentium Il processor. The Streaming SIMD Extensions of the Pentium
Il processor introduce new general purpose integer and floating-point

SIMD instructions, which accelerate applications performance over the
Pentium Il processors.

The Processors’ Execution Architecture

The Pentium |1 and Pentium Ill processors are aggressive microarchitectural
implementations of the 32-bit Intel® architecture (I1A). They are designed
with a dynamic execution architecture that provides the following features:
® out-of-order speculative execution to expose parallelism

®  superscalar issueto exploit paralelism

® hardware register renaming to avoid register name space limitations

® pipelined execution to enable high clock speeds

®  branch prediction to avoid pipeline delays

The microarchitecture is designed to execute legacy 32-bit Intel architecture
code as quickly as possible, without additional effort from the programmer.
This optimization manual assists the developer in leveraging the features of
the microarchitecture to attain greater performance by understanding and
working with these features to maximally enhance performance.

1-1
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The Pentium® Il and Pentium lll Processors Pipeline

The Pentium 11 and Pentium Il processors’ pipelines contain three parts:
® thein-order issue front end

® theout-of-order core

® thein-order retirement unit.

Figure 1-1 gives an overview of the Pentium Il and Pentium Il processors
architecture.

Figure 1-1 The Complete Pentium Il and Pentium lll Processors Architecture

Systembus,

Bus Interface Unit

L1 instruction
cache

Fetch

T Store

Fetch & Decode Unit
(In order unit)

«Fetches instructions
«Decodes instructions to pOPs
«Performs branch prediction

Retirement Unit

(In order unit)

*Retires instructions in order
*Writes results to registers/memory

Instruction Pool/reorder buffer
«Buffer of pOPs waiting for execution

The In-order Issue Front End

The front end supplies instructions in program order to the out-of-order

core. It fetches and decodes Intel architecture-based processor

macroinstructions, and breaks them down into simple operations called

micro-ops (Hops). It can issue multiple pops per cycle, in original program
order, to the out-of-order core. Since the core aggressively reorders and
executes instructions out of program order, the most important
consideration in performance tuning is to ensure that enough pops are ready
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for execution. Accurate branch prediction, instruction prefetch, and fast
decoding are essential to getting the most performance out of the in-order
front end.

The Out-of-order Core

The core’s ability to execute instructions out of order is a key factor in
exploiting parallelism. This feature enables the processor to reorder
instructions so that if one pop is delayed while waiting for data or a
contended resource, other pops that are later in program order may proceed
around it. The processor employs several buffers to smooth the flow of
pops. This implies that when one portion of the pipeline experiences a
delay, that delay may be covered by other operations executed in parallel or
by executing pops which were previously queued up in a buffer. The delays
described in this chapter are treated in this manner.

The out-of-order core buffers pops in a Reservation Station (RS) until their
operands are ready and resources are available. Each cycle, the core may
dispatch up to five pops, as explained in more detail later in the chapter.

The core is designed to facilitate parallel execution. Load and store
instructions may be issued simultaneously. Most simple operations, such as
integer operations, floating-point add, and floating-point multiply, can be
pipelined with a throughput of one or two operations per clock cycle. Long
latency operations can proceed in parallel with short latency operations.

In-Order Retirement Unit

For semantically-correct execution, the results of instructions must be
processed in original program order. Likewise, any exceptions that occur
must be processed in program order. When a pop completes and writes its
result, it is retired. Up to three pops may be retired per cycle. The unit in the
processor which buffers completed pops is the reorder buffer (ROB). ROB
updates the architectural state in order, that is, updates the state of
instructions and registers in the program semantics order. ROB also
manages the ordering of exceptions.
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Front-End Pipeline Detail

For better understanding operation of the Pentium Il and Pentium 111
processors, this section explains the main processing units of their front-end
pipelines: instruction prefetcher, decoders, and branch prediction.

Instruction Prefetcher

The instruction prefetcher performs aggressive prefetch of straight line
code. The Pentium |1 and Pentium Il processors read in instructions from
16-byte-aligned boundaries. For example, if the modulo 16 branch target
address (the address of alabel) is equal to 14, only two useful instruction
bytes are fetched in the first cycle. The rest of the instruction bytes are
fetched in subsequent cycles.

NOTE. Instruction fetch is always intended for an aligned 16-byte
block.

Decoders

Pentium 11 and Pentium Il processors have three decoders. In each clock

cycle, the first decoder is capable of decoding one macroinstruction made

up of four or fewer pops. It can handle any number of bytes up to the
maximum of 15, but nine- or more-byte instructions require additional
cycles. In each clock cycle, the other two decoders can each decode an
instruction of one pop, and up to eight bytes. Instructions composed of more
than four pops take multiple cycles to decode.

Simple instructions have one to four pops; complex instructions (for
examplecnpxcg) generally have more than four pops. Complex
instructions require multiple cycles to decode.

During every clock cycle, up to three macroinstructions are decoded.
However, if the instructions are complex or are over seven bytes long, the
decoder is limited to decoding fewer instructions. The decoders can decode:
®  up to three macroinstructions per clock cycle

® upto six pops per clock cycle
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When programming in assembly language, try to schedule your instructions

in a 4-1-1 pop sequence, which means instruction with four pops followed
by two instructions each with one pop. Scheduling the instructions in a
4-1-1 pop sequence increases the number of instructions that can be
decoded during one clock cycle.

Most commonly used instructions have the following pop numbers:

* Simpleinstructions of the register-register form have only one pop.

® Load instructions are only one pop.

® Store instructions have two pops.

® Simple read-modify instructions are two pops.

® Simpleinstructions of the register-memory form have two to three
Hops.

®  Simple read-modify-write instructions have four pops.

See Appendix C,f ‘bfor a table

specifying the number of pops required by each instruction in the Intel
architecture instruction set.

Branch Prediction Overview

Pentium Il and Pentiuriil processors use a branch target buffer (BTB) to
predict the direction and target of branches based on an instruction’s
address. The address of the branch instruction is available before the branch
has been decoded, so a BTB-based prediction can be made as early as
possible to avoid delays caused by going the wrong direction on a branch.
The 512-entry BTB stores the history of previously-seen branches and their
targets. When a branch is prefetched, the BTB feeds the target address
directly into the instruction fetch unit (IFU). Once the branch is executed,
the BTB is updated with the target address. Using the branch target buffer
allows dynamic prediction of previously seen branches.

Once the branch instruction is decoded, the direction of the branch (forward
or backward) is known. If there was not a valid entry in the BTB for the
branch, the static predictor makes a prediction based on the direction of the
branch.
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Dynamic Prediction

The branch target buffer prediction a gorithm includes pattern matching and
can track up to the last four branch directions per branch address. For
example, aloop with four or fewer iterations should have about 100%
correct prediction.

Additionally, Pentium Il and Pentium Il processors have a return stack
buffer (RSB) that can predict return addresses for procedures that are called
from different locations in succession. This increases the benefit of
unrolling loops containing function calls. It also mitigates the need to put
certain procedures in-line since the return penalty portion of the procedure
call overhead is reduced.

Pentium 11 and Pentium Il processors have three levels of branch support
that can be quantified in the number of cycleslost:

1. Branchesthat are not taken suffer no penalty. This applies to those
branches that are correctly predicted as not taken by the BTB, and to
forward branches that are not in the BTB and are predicted as not taken
by default.

2. Branchesthat are correctly predicted as taken by the BTB suffer a
minor penalty of losing one cycle of instruction fetch. Aswith any
taken branch, the decode of the rest of the pops after the branch is
wasted.

3. Mispredicted branches suffer a significant penalty. The penalty for
mispredicted branches is at least nine cycles (the length of the in-order
issue pipeline) of lost instruction fetch, plus additional time spent
waiting for the mispredicted branch instruction to retire. This penalty is
dependent upon execution circumstances. Typically, the average
number of cycles lost because of a mispredicted branch is between 10
and 15 cycles and possibly as many as 26 cycles.

Static Prediction

Branches that are not in the BTB, but are correctly predicted by the static
prediction mechanism, suffer a small penalty of about five or six cycles (the
length of the pipeline to this point). This penalty applies to unconditional
direct branches that have never been seen before.

1-6
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The static prediction mechanism predicts backward conditional branches
(those with negative displacement), such asloop-closing branches, as taken.
They suffer only a small penalty of approximately six cycles the first time
the branch is encountered and a minor penalty of approximately one cycle
on subsequent iterations when the negative branch is correctly predicted by
the BTB. Forward branches are predicted as not taken.

The small penalty for branches that are not in the BTB but are correctly
predicted by the decoder is approximately five cycles of lost instruction
fetch. This comparesto 10-15 cycles for a branch that isincorrectly
predicted or that has no prediction.

In order to take advantage of the forward-not-taken and backward-taken
static predictions, the code should be arranged so that the likely target of the
branch immediately follows forward branches. See examples on branch
predictionin

Execution Core Detail

To successfully implement parallelism, information on execution units’
latency is required. Also important is the information on the execution units
layout in the pipelines and on theps that execute in pipelines. This

section details on the execution core operation including the discussion on
instruction latency and throughput, execution units and ports, caches, and
store buffers.

Instruction Latency and Throughput

The core’s ability to exploit parallelism can be enhanced by ordering
instructions so that their operands are ready and their corresponding
execution units are free when they reach the reservation stations. Knowing
instructions’ latencies helps in scheduling instructions appropriately. Some
execution units are not pipelined, such that pops cannot be dispatched in
consecutive cycles and the throughput is less than one per cycle. Table 1-1
lists Pentium Il and Pentiuttl processors execution units, their latency, and
their issue throughput.
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Table 1-1 Pentium Il and Pentium Il Processors Execution Units
Port Execution Units Latency/Throughput
0 Integer ALU Unit: Latency 1, Throughput 1/cycle
LEA instructions Latency 1, Throughput 1/cycle
Shift instructions Latency 1, Throughput 1/cycle
Integer Multiplication Latency 4, Throughput 1/cycle
instruction
Floating-Point Unit:
FADD instruction Latency 3, Throughput 1/cycle (horizontal align with
FADD)
FMUL instruction Latency 5, Throughput 1/2cycle! (align with FMULL)
FDIV instruction Latency: single-precision 17 cycles, double-precision
36 cycles, extended-precision 56 cycles. Throughput
non-pipelined (align with FDIV)
MMX™ technology ALU Unit Latency 1, Throughput 1/cycle
MMX technology Multiplier Latency 3, Throughput 1/cycle
Unit
Strea_ming _SIMD _Extens_ions See Appendix D, “Streaming SIMD Extensions
Eli(\)/?(;[ggszgg:euggé)t'\,ﬂ uMlgE)/ley Throughput and Latency”
instructions
1 Integer ALU Unit Latency 1, Throughput 1/cycle

MMX technology ALU Unit
MMX technology Shift Unit

Streaming SIMD Extensions:
Adder, Reciprocal and
Reciprocal Square Root,
Shuffle/Move instructions

Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle

See Appendix D, “Streaming SIMD Extensions
Throughput and Latency”

continued
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Table 1-1 Pentium Il and Pentium Ill Processors Execution Units (continued)

Port Execution Units Latency/Throughput

2 Load Unit Latency 3 on a cache hit, Throughput 1/cycle
Streaming SIMD Extensions See Appendix D, “Streaming SIMD Extensions
Load instructions Throughput and Latency”

3 Store Address Unit Latency 0 or 3 (not on critical path), Throughput

1/cycle?

Streaming SIMD Extensions See Appendix D, “Streaming SIMD Extensions
Store instruction Throughput and Latency”

4 Store Data Unit Latency 1, Throughput 1/cycle

Streaming SIMD Extensions
Store instruction

See Appendix D, “Streaming SIMD Extensions
Throughput and Latency”

1. The FMUL unit cannot accept a second FMUL in the cycle after it has accepted the
first. This is NOT the same as only being able to do FMULs on even clock cycles.
FMUL is pipelined once every two clock cycles.

2. Aload that gets its data from a store to the same address can dispatch in the same
cycle as the store, so in that sense the latency of the store is 0. The store itself takes
three cycles to complete, but that latency affects only how soon a store buffer entry is
freed for use by another pop.

Execution Units and Ports

Each cycle, the core may dispatch zero or one popn a port to any of the

five pipelines (shown in Figure 1-2) for a maximum issue bandwidth of five
pops per cycle. Each pipeline contains several execution units. The pops are
dispatched to the pipeline that corresponds to its type of operation. For
example, an integer arithmetic logic unit (ALU) and the floating-point
execution units (adder, multiplier, and divider) share a pipeline. Knowledge
of which pops are executed in the same pipeline can be useful in ordering
instructions to avoid resource conflicts.
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Figure 1-2 Execution Units and Ports in the Out-Of-Order Core

Port 2

Store Address
) Store
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Unit Data Unit
(12-entry buffer) (12-entry buffer)
Port 3 Port 4
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Integer
Unit

MMX™ technology

Pentium(R) Il processor

FP Unit

Caches of the Pentium Il and Pentium lll Processors

The on-chip cache subsystem of Pentium 11 and Pentium 11l processors
consists of two 16-Kbyte four-way set associative caches with a cache line
length of 32 bytes. The caches employ awrite-back mechanism and a
pseudo-LRU (least recently used) replacement algorithm. The data cache

consists of eight banks interleaved on four-byte boundaries.
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Level two (L2) caches have been off chip but in the same package. They are
128K or morein size. L2 latencies arein the range of 4 to 10 cycles. An L2
miss initiates a transaction across the bus to memory chips. Such an access
reguires on the order of at least 11 additional bus cycles, assumingaDRAM
page hit. A DRAM page miss incurs ancther three bus cycles. Each bus
cycle equals several processor cycles, for example, one bus cyclefor a

100 MHz busisequal to four processor cycles on a400 MHz processor. The
speed of the bus and sizes of L2 caches are implementation dependent,
however. Check the specifications of a given system to understand the
precise characteristics of the L2 cache.

Store Buffers

Pentium 11 and Pentium Il processors have twelve store buffers. These
processors temporarily store each write (store) to memory in a store buffer.
The store buffer improves processor performance by allowing the processor
to continue executing instructions without having to wait until awrite to
memory and/or cacheis complete. It also allows writes to be delayed for
more efficient use of memory-access bus cycles.

Writes stored in the store buffer are always written to memory in program
order. Pentium Il and Pentium |1l processors use processor ordering to
maintain consistency in the order in which datais read (loaded) and written
(stored) in a program and the order in which the processor actually carries
out the reads and writes. With this type of ordering, reads can be carried out
speculatively; and in any order, reads can pass buffered writes, while writes
to memory are always carried out in program order.

Write hits cannot pass write misses, so performance of critical loops can be
improved by scheduling the writes to memory. When you expect to see
write misses, schedule the write instructions in groups no larger than
twelve, and schedule other instructions before scheduling further write
instructions.

1-11
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1-12

Streaming SIMD Extensions of the Pentium Il
Processor

The Streaming SIMD Extensions of the Pentium Il processor accelerate
performance of applications over the Pentium |1 processors, for example,

3D graphics. The programming model is similar to the MMX™ technology
model except that instructions now operate on new packed floating-point
data types, which contain four single-precision floating-point numbers.

The Streaming SIMD Extensions of the Pentilipprocessor introduce new
general purpose floating-point instructions, which operate on a new set of
eight 128-bit Streaming SIMD Extensions registers. This gives the
programmer the ability to develop algorithms that can mix packed
single-precision floating-point and integer using both Streaming SIMD
Extensions and MMX instructions respectively. In addition to these
instructions, Streaming SIMD Extensions technology also provide new
instructions to control cacheability of all data types. These include ability to
stream data into the processor while minimizing pollution of the caches and
the ability to prefetch data before it is actually used. Both 64-bit integer and
packed floating point data can be streamed to memory.

The main focus of packed floating-point instruction is the acceleration of
3D geometry. The new definition also contains additional SIMD integer
instructions to accelerate 3D rendering and video encoding and decoding.
Together with the cacheability control instructions, this combination
enables the development of new algorithms that can significantly accelerate
3D graphics and other applications that involve intensive computation.

The new Streaming SIMD Extensions state requires operating system
support for saving and restoring the new state during a context switch. A
new set of extendeidsave/ f rst or (calledf xsave/ f xr st or) permits
saving/restoring new and existing state for applications and operating
systems. To make use of these new instructions, an application must verify
that the processor and operating system support Streaming SIMD
Extensions. If both do, then the software application can use the new
features.



Processor Architecture Overview 1

The Streaming SIMD Extensions are fully compatible with all software
written for Intel architecture microprocessors. All existing software
continues to run correctly, without modification, on microprocessors that
incorporate the Streaming SIMD Extensions, as well as in the presence of
existing and new applications that incorporate this technol ogy.

Single-Instruction, Multiple-Data (SIMD)

The Streaming SIMD Extensions support operations on packed
single-precision floating-point data types, and the additional SIMD integer
instructions support operations on packed quadword data types (byte, word,
or double-word). This approach was chosen because most 3D graphics and
digital signal processing (DSP) applications have the following
characteristics:

® inherently paralle

® wide dynamic range, hence floating-point based

® regular and re-occurring memory access patterns

® |ocalized re-occurring operations performed on the data

® data-independent control flow.

Streaming SIMD Extensions fully support the |[EEE Standard 754 for
Binary Floating-Point Architecture. The Streaming SIMD Extensions are

accessible from al 1A execution modes: protected mode, rea -address
mode, and Virtual 8086 mode.

New Data Types

The principal datatype of the Streaming SIMD Extensions are a packed
single-precision floating-point operand, specifically four 32-bit
single-precision (SP) floating-point numbers shown in Figure 1-3. The
SIMD integer instructions operate on the packed byte, word, or
double-word data types. The prefetch instructions work on a cacheline
granularity regardless of type.
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Figure 1-3 Streaming SIMD Extensions Data Type

127 96 95 64 63 32 31 0

Packed, single-precision FP

Streaming SIMD Extensions Registers

The Streaming SIMD Extensions provide eight 128-bit general-purpose
registers, each of which can be directly addressed. These registers are a new
state, requiring support from the operating system to use them. They can
hold packed, 128-bit data, and are accessed directly by the Streaming SIMD
Extensions using the register names XMMO to XMM?7, see Figure 1-4.

Figure 1-4 Streaming SIMD Extensions Register Set

127 0

XMM7
XMM6
XMM5
XMM4
XMM3
XMM2
XMM1
XMMO
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MMX™ Technology

Figure 1-5

Intel's MMX™ technology is an extension to the Intel architecture (I1A)
instruction set. The technology uses a single instruction, multiple data
(SIMD) technique to speed up multimedia and communications software by
processing data elements in parallel. The MMX instruction set adds 57
opcodes and a 64-bit quadword data type. The 64-bit data type, illustrated in
Figure 1-5, holds packed integer values upon which MMX instructions
operate.

In addition, there are eight 64-bit MMX technology registers, each of which
can be directly addressed using the register names MMO to MM7.
Figure 1-6 shows the layout of the eight MMX technology registers.

MMX Technology 64-bit Data Type

Packed Byte: 8 bytes packed into 64-bits
63 3231 16 15 87 0

Packed Word: Four words packed into 64-bits
63 3231 1615 0

Packed Double-word:  Two doublewords packed into 64-bits
63 3231 0

1-15



1 Intel Architecture Optimization Reference Manual

Figure 1-6 MMX Technology Register Set

Tag
Field
10 63 0
MM7
MMO

The MMX technology is operating-system-transparent and 100%
compatible with all existing Intel architecture software. Therefore all
applications will continue to run on processors with MM X technology.
Additional information and details about the MM X instructions, data types,
and registers can be found in the Intel Architecture MMX™ Technology
Programmer’s Reference Manuyatder number 243007.
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General Optimization
Guidelines

This chapter discusses general optimization techniques that can improve the
performance of applications for the Pentium® |1 and Pentium |1l processor
architectures. It discusses general guidelines as well as specifics of each
guideline and provides examples of how to improve your code.

Integer Coding Guidelines

The following guidelines will help you optimize your code:

* Useacurrent generation of compiler, such asthe Intel® C/C++
Compiler that will produce an optimized application.

® Write code so that Intel compiler can optimizeit for you:

— Minimize use of global variables, pointers, and complex control
flow

— Use theconst modifier, avoidr egi st er modifier
— Avoid indirect calls and use the type system

— Use minimum sizes for integer and floating-point data types to
enable SIMD parallelism

®* Improve branch predictability by using the branch prediction
algorithm. Thisis one of the most important optimizations for Pentium
Il processors. Improving branch predictability allows the code to spend
fewer cycles fetching instructions due to fewer mispredicted branches.

* Take advantage of the SIMD capabilities of MMX™ technology and
Streaming SIMD Extensions.

® Avoid partia register stalls.

®  Ensure proper data alignment.

2-1
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Arrange code to minimize instruction cache misses and optimize
prefetch.

Avoid prefixed opcodes other than OF.

Avoid small |oads after large stores to the same area of memory. Avoid
large loads after small stores to the same area of memory. Load and
store data to the same area of memory using the same data sizes and
address alignments.

Use software pipelining.

Avoid self-modifying code.

Avoid placing datain the code segment.
Calculate store addresses as early as possible.

Avoid instructions that contain four or more pops or instructions that
are more than seven bytes long. If possible, use instructions that require
one pop.

Cleanse partial registers before calling callee-save procedures.

Branch Prediction

Branch optimizations are one of the most important optimizations for
Pentium |1 processors. Understanding the flow of branches and improving
the predictability of branches can increase the speed of your code
significantly.

Dynamic Branch Prediction

Dynamic prediction is always attempted first by checking the branch target
buffer (BTB) for avalid entry. If oneis not there, static prediction is used.
Three elements of dynamic branch prediction are important:

If the instruction addressis not in the BTB, execution is predicted to

continue without branching. This is known as “fall-through” meaning
that the branch is not taken and the subsequent instruction is executed.
Predicted taken branches have a one clock delay.

The Pentium |1 and Pentium Il processors’ BTB pattern matches on the
direction of the last four branches to dynamically predict whether a
branch will be taken.
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During the process of instruction prefetch the address of a conditional
instruction is checked with the entries in the BTB. When the address is not
in the BTB, execution is predicted to fall through to the next instruction.
This suggests that branches should be followed by code that will be
executed. The code following the branch will be fetched, and in the case of
Pentium Pro, Pentium Il processors, and Pentium Il processor the fetched
instructions will be speculatively executed. Therefore, never follow a
branch instruction with data.

Additionally, when an instruction address for a branch instruction isin the
BTB and it is predicted taken, it suffers a one-clock delay on Pentium 11
processors. To avoid the delay of one clock for taken branches, simply insert
additional work between branches that are expected to be taken. This delay
restricts the minimum duration of loops to two clock cycles. If you have a
very small loop that takes less than two clock cycles, unroll it to remove the
one-clock overhead of the branch instruction.

The branch predictor on Pentium Il processors correctly predicts regular

patterns of branches—up to a length of four. For example, it correctly
predicts a branch within a loop that is taken on odd iterations, and not taken
on even iterations.

Static Prediction

On Pentium Il and Pentiufil processors, branches that do not have a
history in the BTB are predicted using a static prediction algorithm as
follows:

*  Predict unconditional branches to be taken.

*  Predict backward conditional branchesto betaken. Thisruleissuitable
for loops.

®  Predict forward conditional branchesto be NOT taken.
A branch that is statically predicted can lose, at most, six cycles of

instruction prefetch. Anincorrect prediction suffersa penalty of greater than
twelve clocks. Example 2-1 provides the static branch prediction algorithm.
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Figure 2-1 Pentium® || Processor Static Branch Prediction Algorithm

Forward conditional branches not taken (fall through)

If <condition> {

i

} Unconditional Branches taken

JMP

.
for <condition> {

}

Backw ard Conditional Branches are taken

loop {

} <condition>

Example 2-1 and Example 2-2 illustrate the basic rules for the static
prediction algorithm.

Example 2-1 Prediction Algorithm

Begi n: nov eax, nmen2
and eax, ebx

i mul eax, edx
shld eax, 7
JC Begin

In the above exampl e, the backward branch ( JC Begi n) isnotinthe BTB
the first time through, therefore, the BTB does not issue a prediction. The
static predictor, however, will predict the branch to be taken, so a
misprediction will not occur.
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Example 2-2 Misprediction Example

nov eax, nmenB2
and eax, ebx
i mul eax, edx
shld eax, 7
JC Begin
nmov eax, O
Begin Call Convert

Thefirst branch instruction (JC Begi n) in Example 2-3 segment isa
conditional forward branch. It isnot in the BTB the first time through, but
the static predictor will predict the branch to fall through.

The Cal | Convert instruction will not be predicted in the BTB the first
timeit is seen by the BTB, but the call will be predicted as taken by the
static prediction algorithm. Thisis correct for an unconditional branch.

In these examples, the conditional branch has only two alternatives: taken
and not taken. Indirect branches, such as switch statements, computed
GOTCs or calls through pointers, can jump to an arbitrary number of
locations. Assuming the branch has a skewed target destination, and most of
the time it branches to the same address, then the BTB will predict
accurately most of the time. If, however, the target destination is not
predictable, performance can degrade quickly. Performance can be
improved by changing theindirect branches to conditional branches that can
be predicted.

Eliminating and Reducing the Number of Branches
Eliminating branches improves performance due to:
®  Reducing the possibility of mispredictions.
®  Reducing the number of required BTB entries.

Using the set cc instruction, or using the Pentium |1 and Pentium Il
processors’ conditional mover(ov orf cnov) instructions can eliminate
branches.
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Following is a C code line with a condition that is dependent upon one of
the constants:

X=(A<B) ?Cl: C
This code conditionally compares two values, A and B. If the conditionis

true, X isset to C1; otherwiseit is set to C2. The assembly equivalent is
shown in the Example 2-3:

Example 2-3 Assembly Equivalent of Conditional C Statement

cnp A B ; condition
j ge L30 ; conditional branch
nov ebx, CONST1 : ebx holds X
jmp L31 ; uncondi ti onal branch
L30:
nov ebx, CONST2
L31:

If you replace the j ge instruction in the previous example with aset cc
instruction, this code can be optimized to eliminate the branches as shown
in the Example 2-4:

Example 2-4 Code Optimization to Eliminate Branches

xor ebx, ebx ;clear ebx (X in the C code)
cnp A B
set ge ebx :\When ebx = 0 or 1

; OR the conpl ement condi tion
dec ebx ; ebx=00...00 or 11...11

and ebx, (CONST1- CONST2); ebx=0 or ( CONST1l- CONST2)
add ebx, CONST2 ; ebx=CONST1 or CONST2

The optimized code sets ebx to zero, then compares A and B. If Aisgreater
than or equal to B, ebx isset to one. Then ebx is decreased andfid-ed”
with the difference of the constant values. This sktsto either zero or the
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difference of the values. By adding CONST2 back to ebx, the correct valueis
written to ebx. When CONST1 is equal to zero, the last instruction can be
deleted.

Another way to remove branches on Pentium 11 and Pentium Il processors
isto usethecnov and f cnov instructions. Example 2-5 shows changing a
test and branch instruction sequence using cnov and eliminating a branch.
If the test sets the equal flag, the valuein ebx will be moved to eax. This

branch is data-dependent, and is representative of an unpredictable branch.

Example 2-5 Eliminating Branch with CMOQOV Instruction

test ecx, ecx

jne 1h

nov eax, ebx
1h:

; To change the code, the jne and the nov instructions
are conbined into one cnovcc instruction that checks
the equal flag. The optim zed code is:

t est ecx, ecx ; test the flags
crmoveq eax, ebx ; if the equal flag is set, nove
ebx to eax
1h:

Thelabel 1h: isnolonger needed unlessit is the target of another branch
instruction.

Thecnov and f cnov instructions are available on the Pentium Pro,
Pentium 11 and Pentium Il processors, but not on Pentium processors and
earlier 32-bit Intel architecture-based processors. Be sure to check whether
aprocessor supports these instructions with the cpui d instruction if an
application needs to run on older processors as well.
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Performance Tuning Tip for Branch Prediction

Intel C/C++ Compiler hasa- Qxi switch which turns on Pentium 11 or
Pentium 111 processor-specific code generation so that the compiler will
generate crnov- / f cov instruction sequences when possible, saving you
the effort of doing it by hand.

For information on branch elimination, see the Pentium || Processor
Computer Based Training (CBT), which is available with the VTune™
Performance Enhancement Environment CD at

In addition to eliminating branches, the following guidelines improve
branch predictability:

® Ensure that each call has amatching return.

®* Don'tintermingle data and instructions.

®  Unroll very short loops.

* Follow static prediction algorithm.

When a misprediction occurs the entire pipeline is flushed up to the branch
instruction and the processor waits for the mispredicted branch to retire.

Branch M sprediction Ratio =BR_M ss_Pred_Ret /
BR_ | nst _Ret

If the branch misprediction ratio is less than about 5% then branch
prediction is within normal range. Otherwise, identify the branches that
cause significant mispredictions and try to remedy the situation using the
techniques described in the “Eliminating and Reducing the Number of
Branches” earlier in this chapter.

Partial Register Stalls

On Pentium Il and Pentiulii processors, when a 32-bit register (for
examplegax) is read immediately after a 16- or 8-bit register (for example,
al , ah, ax) is written, the read is stalled until the write retires, after a
minimum of seven clock cycles. Consider Example 2-6. The first instruction
moves the value 8 into the register. The following instruction accesses
the registerax. This code sequence results in a partial register stall as
shown in Example 2-6.


http://developer.intel.com/vtune
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Example 2-6 Partial Register Stall

MOV ax, 8
ADD ecx, eax ; Partial stall occurs on access
of the EAX register

This appliesto all of the 8- and 16-bit/32-bit register pairs, listed below:

Small Registers Large Registers:
al ah ax eax
bl bh bx ebx
cl ch cx ecx
dl  dh dx edx
sp esp
bp ebp
di edi
Si esi

Pentium processors do not exhibit this penalty.

Because Pentium Il and Pentium 111 processors can execute code out of
order, the instructions need not be immediately adjacent for the stall to
occur. Example 2-7 also contains apartia stall.

Example 2-7 Partial Register Stall with Pentium Il and Pentium Il Processors

MOV al, 8

MOV edx, 0x40

MOV edi, new_ val ue

ADD edx, eax ; Partial stall accessing EAX

In addition, any pops that follow the stalled pop also wait until the clock
cycle after the stalled pop continues through the pipe. In general, to avoid
stalls, do not read a large (32-hit) registerx() after writing a small (8- or
16-bit) registerdl or ax) which is contained in the large register.

Special cases of reading and writing small and large register pairs are
implemented in Pentium Il and Pentidthprocessors in order to simplify

the blending of code across processor generations. The special cases are
implemented foxor andsub when usingzax, ebx, ecx, edx, ebp, esp,
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Example 2-8

edi, and esi asshownintheA. through E. seriesin. Generally, when
implementing this sequence, always zero the large register and then write to
the lower half of the register.

Simplifying the Blending of Code in Pentium Il and Pentium IlI
Processors

A Xor eax, eax
nmovb al, nmenB
add eax, nmenB2 ; no partial stall

B. Xor eax, eax
nmovw ax, neni6
add eax, nmenB2 ; no partial stall

C. sub ax, ax
novb al, nenB
add ax, nenl6 ; no partial stall

D. sub eax, eax
novb al, nmenB
or ax, nmenl6 ; no partial stall

E. xor ah, ah
novb al, nmenB
sub ax, nmeml6 ; no partial stall

Performance Tuning Tip for Partial Stalls

Partial stalls can be measured by selecting the Partial Stall Events or Partial
Stall Cycles eventsin the V Tune Performance Analyzer and running a
sampling on your application. Partial Stall Events show the number of
events and Partial Stall Cycles show the number of cyclesfor partia stalls,
respectively. To select the events, in the VTune anayzer, click on Configure
menu\Options command\Processor Events for EBS for thelist of all
processor events, select one of the above events and double click on it. The
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Events Customization window opens where you can set the Counter Mask
for either of those events. For more details, see

f a particular stall occurs more than about
3% of the execution time, then the code associated with this stall should be
modified to eliminate the stall. Intel C/C++ Compiler at the default
optimization level (switch O2) ensures that partial stalls do not occur in the
generated code.

Alignment Rules and Guidelines

This section discusses guidelines for alignment of both code and data. On
Pentium Il and Pentiuril processors, a misaligned access that crosses a
cache line boundary does incur a penalty. A Data Cache Unit (DCU) split is

a memory access that crosses a 32-byte line boundary. Unaligned accesses
may cause a DCU split and stall Pentium Il and Pentilprocessors. For

best performance, make sure that in data structures and arrays greater than
32 bytes, the structure or array elements are 32-byte-aligned and that access
patterns to data structure and array elements do not break the alignment
rules.

Code

Pentium Il and Pentiuiil processors have a cache line size of 32 bytes.
Since the instruction prefetch buffers fetch on 16-byte boundaries, code
alignment has a direct impact on prefetch buffer efficiency.

For optimal performance across the Intel architecture family, the following

is recommended:

® Loop entry labels should be 16-byte-aligned when less than eight bytes
away from a 16-byte boundary.

® Labelsthat follow aconditional branch need not be aigned.

® Labelsthat follow an unconditional branch or function call should be
16-byte-aligned when less than eight bytes away from a 16-byte
boundary.

® Useacompiler that will assure these rules are met for the generated
code.

2-11
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On Pentium |1 and Pentium Il processors, avoid loops that execute in less
than two cycles. The target of the tight loops should be aligned on a 16-byte
boundary to maximize the use of instructions that will be fetched. On
Pentium 11 and Pentium Il processors, it can limit the number of
instructions available for execution, limiting the number of instructions
retired every cycle. It isrecommended that critical loop entries be located
on acache line boundary. Additionally, loops that execute in less than two
cycles should be unrolled. See section

for more information about decoding on the Pentium Il and Pertium
processors.

Data

A misaligned data access that causes an access request for data already in
the L1 cache can cost six to nine cycles. A misaligned access that causes an
access request from L2 cache or from memory, however, incurs a penalty
that is processor-dependent. Align the data as follows:

® Align 8-bit data at any address.

® Align 16-bit data to be contained within an aligned four byte word.

® Align 32-hit data so that its base address is a multiple of four.

® Align 64-bit data so that its base address is amultiple of eight.

® Align 80-hit data so that its base address is a multiple of sixteen.

A 32-byte or greater data structure or array should be aligned so that the
beginning of each structure or array element is aligned in away that its base
address is a multiple of thirty-two.

Data Cache Unit (DCU) Split

Figure 2-1 shows the type of code that can cause a cache split. The code
loads the addresses of two dwor d arrays. In this example, every four
iterations of the first two dword loads cause a cache split. The data declared
at address 029e70feh is not 32-byte-aligned, therefore each load to this
address and every load that occurs 32 bytes (every four iterations) from this
address will cross the cache line boundary. When the misaligned data
crosses a cache line boundary it causes a six- to twelve-cycle stall.

2-12
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Figure 2-2 DCU Split in the Data Cache
mowv esi, 029e70feh
mov edi, 05be5260h
BlockMove:
mowv eax, DWOED PTR [esi]
mov ebx, DWORED PTR [esi+d]
mowv DWORD PTR [edi], eax
mowv DWORD PTR [edi+4], ebx
add esi, 8
add edi, 8
dec edx
nz BlockMove
lteration 1 lteration 2 lteration 3  7OFEh | lteration 0
| | |
70EOh * * * . DCU Split access
7100h
D Aligned access
7120h

Performance Tuning Tip for Misaligned Accesses

Misaligned data can be detected by using the Misaligned Accesses event
counter on Pentium 11 and Pentium Il processors. Use the VTune analyzer's
dynamic execution functionality to determine the exact location of a
misaligned access. Code and data rearrangements for optimal memory
usage are discussed in Chapter@ptimizing Cache Utilization for

Pentium® |Il Processors
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Instruction Scheduling

Scheduling or pipelining should be done in away that optimizes
performance across all processor generations. The following section
presents scheduling rules that can improve the performance of your code on
Pentium 11 and Pentium Il processors.

Scheduling Rules for Pentium Il and Pentium Il Processors

Pentium 11 and Pentium Il processors have three decoders that translate

Intel architecture (IA) macroinstructions into pops as discussed in
Chapter 1, F &iThe decoder limitations are
as follows:

®* Ineachclock cycle, thefirst decoder is capable of decoding one
macroinstruction made up of four or fewer pops. It can handle any
number of bytes up to the maximum of 15, but nine-or-more-byte
instructions require additional cycles.

® Ineachclock cycle, the other two decoders can each decode an
instruction of one pop, and up to eight bytes. Instructions composed of
more than four pops take multiple cycles to decode.

Appendix C, 1 gicontains a table of all

Intel macroinstructions with the number of pops into which they are
decoded. Use this information to determine the decoder on which they can
be decoded.

The macroinstructions entering the decoder travel through the pipe in order,
therefore if a macroinstruction will not fit in the next available decoder, the
instruction must wait until the next cycle to be decoded. It is possible to
schedule instructions for the decoder so that the instructions in the in-order
pipeline are less likely to be stalled.

Consider the following code series in Example 2-9.
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Example 2-9 Scheduling Instructions for the Decoder

A
add eax, ecx ; 1 pop instruction (decoder 0)
add edx, [ebx] ; 2 pop instruction (stall 1 cycle
; walit till decoder 0O is avai | abl e)

B.
add eax, [ebx] ; 2 pop instruction (decoder 0)
mov [eax], ecx ; 2 pop instruction (stall 1 cycle

; to wait until decoder O is avai | abl e)
C.
add eax, [ebx] ; 2 pop instruction (decoder 0)
mov ecx, [eax] ; 2 pop instruction (stall 1 cycle

; to wait until decoder 0 is avail able)
add ebx, 8 ; 1 pop instruction (decoder 1)
D.

pmaddwd mm6, [ebx]; 2 pops instruction (decoder 0)
paddd mm7, mm6 ;1 pop instruction (decoder 1)
add ebx, 8 ; 1 pop instruction (decoder 2)

The sections of Example 2-9 are explained as follows:

A. If the next available decoder for a multi-pop instruction is not decoder 0,
the multi-op instruction will wait for decoder 0 to be available; this usu-
ally happens in the next clock, leaving the other decoders empty during
the current clock. Hence, the following two instructions will take two
cycles to decode.

B. During the beginning of the decoding cycle, if two consecutive instruc-
tions are more than one pop, decoder 0 will decode one instruction and
the next instruction will not be decoded until the next cycle.

C. Instructions of thep reg, nmemtype require two pops: the load from
memory and the operation pop. Scheduling for the decoder template
(4-1-1) can improve the decoding throughput of your application.

In generalpp reg, menforms of instructions are used to reduce
register pressure in code that is not memory bound, and when the data

is in the cache. Use simple instructions for improved speed on Pentium
Il and Pentiunll processors.
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D. Thefollowing rules should be observed while using theop reg, nmem
instruction with MM X technology: when scheduling, keep in mind the
decoder template (4-1-1) on Pentium Il and Pentium Il processors, as
shown in Example 2-10, D.

Prefixed Opcodes

On the Pentium |1 and Pentium IIl processors, avoid the following prefixes:
* lock

®  segment override

® addresssize

® operandsize

On Pentium |1 and Pentium IlI processors, instructions longer than seven

bytes limit the number of instructions decoded in each cycle. Prefixes add
one to two bytes to the length of instruction, possibly limiting the decoder.

Whenever possible, avoid prefixing instructions. Schedule them behind
instructions that themselves stall the pipe for some other reason.

Pentium 11 and Pentium Il processors can only decode one instruction at a
time when an instruction is longer than seven bytes. So for best
performance, use simpleinstructions that are less than eight bytesin length.

Performance Tuning Tip for Instruction Scheduling

Intel C/C++ Compiler generates highly optimized code specifically for the
Intel architecture-based processors. For assembly code applications, you
can use the assembly coach of the VTune analyzer to get a scheduling
advice, see Chapter 74} K

Instruction Selection

The following sections explain which instruction sequences to avoid or use
when generating optimal assembly code.

2-16
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In many casesal ea instruction or asequence of | ea, add, sub, and
shi f t instructions can be used to replace constant multiply instructions.
Use the integer multiply instruction to optimize code designed for
Pentium 11 and Pentium IIl processors. Thel ea instruction can be used
sometimes as a three/four operand addition instruction, for example,

The Use of | ea Instruction

| ea ecx, [eax+ebx+4+a]

Using the | ea instruction in this way can avoid some unnecessary register
usage by not tying up registers for the operands of some arithmetic
instructions.

On the Pentium |1 and Pentium Il processors, both | ea and shi f t

instructions are single pop instructions that execute in one cycle. However,
that short latency may not persist in future implementations. The Intel
C/C++ Compiler checks to ensure that these instructions are used correctly
whenever possible.

For the best blended code, replacesthief t instruction with two or more
add instructions, since the short latency of this instruction may not be
maintained across all implementations.

Complex Instructions

Avoid using complex instructions (for exampdeyt er, | eave, orl oop)
that generally have more than four pops and require multiple cycles to
decode. Use sequences of simple instructions instead.

Short Opcodes

Use one-byte instructions as much as possible. This reduces code size and
increases instruction density in the instruction cache. For example, use the
push andpop instructions instead ofov instructions to save registers to

the stack.

2-17
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8/16-bit Operands

With eight-bit operands, try to use the byte opcodes, rather than using 32-hit
operations on sign and zero-extended bytes. Prefixes for operand size
override apply to 16-bit operands, not to eight-bit operands.

Sign extension is usually quite expensive. Often, the semantics can be
maintained by zero-extending 16-bit operands. For example, the C codein
the following statements does not need sign extension, nor does it need
prefixes for operand size overrides:

static short int a, b;
if (a==b) {

}
Code for comparing these 16-hit operands might be:

Xor eax, eax
xor ebx, ebx
movw  ax, [ a]
movw  bx, [ Db]
cnp eax, ebx

Of course, this can only be done under certain circumstances, but the
circumstances tend to be quite common. This would not work if the
compare was for greater than, less than, greater than or equal, and so on, or
if thevaluesin eax or ebx wereto be used in another operation where sign
extension was required.

nmovsw eax, a ;1 prefix + 3
movsw ebx, b . 5
cnp ebx, eax ;9

Pentium 11 and Pentium Il processors provide specia support to XOR a
register with itself, recognizing that clearing a register does not depend on
the old value of the register. Additionally, special support is provided for the
above specific code sequence to avoid the partial stall. See

section for more information.

The performance of theovzx instructions has been improved in order to
reduce the prevalence of partial stalls on Pentium Il and Pettium
processors. Use thvzx instructions when coding for these processors.
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Uset est when comparing avaluein aregister with zero. Test essentially
andsthe operands together without writing to adestination register. Test is
preferred over and because and writes the result register, which may
subsequently cause an artificial output dependence on the processor. Test
isbetter thancnp .., 0 becausetheinstruction sizeissmaller.

Comparing Register Values

Uset est when comparing the result of alogical and with an immediate
constant for equality or inequality if the register iseax for cases such as:

if (avar & 8) { }

Address Calculations
Pull address calculations into load and store instructions. Internally,
memory reference instructions can have four operands:
® relocatable load-time constant
®* immediate constant
® baseregister
® scaled index register.

In the segmented model, a segment register may constitute an additional
operand in the linear address calculation. In many cases, severa integer
instructions can be eliminated by fully using the operands of memory
references.

Clearing a Register
The preferred sequence to move zero to aregister is:
Xor reg, reg

This saves code space but sets the condition codes. In contexts where the
condition codes must be preserved, move 0 into the register:

nmov reg, O
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Integer Divide

Typically, an integer divideis preceded by a cdq instruction. Divide
instructions use EDX: EAX asthe dividend and cdq sets up EDX. It isbetter to
copy EAX into EDX, then right-shift EDX 31 places to sign-extend. If you
know that the value is positive, use sequence

xor edx, edx

On Pentium Il and Pentium Il processors, the cdq instruction isfaster since
cdq is a single pop instruction as opposed to two instructions for the
copy/ shift sequence.

Comparing with Immediate Zero

Often when a value is compared with zero, the operation produces the value
sets condition codes, which can be tested directlyjlycanstruction. The
most notable exceptions arev andl ea. In these cases, usest .

Prolog Sequences

In routines that do not call other routines (leaf routines)Ea8eas the base
register to free ugBP. If you are not using the 32-bit flat model, remember
thatEBP cannot be used as a general purpose base register because it
references the stack segment.

Epilog Sequences

If only four bytes were allocated in the stack frame for the current function,
usepop instructions instead of incrementing the stack pointer by four.

Improving the Performance of Floating-point
Applications
When programming floating-point applications, it is best to start at the C,
C++, or FORTRAN language level. Many compilers perform floating-point

scheduling and optimization when it is possible. However in order to
produce optimal code, the compiler may need some assistance.
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Guidelines for Optimizing Floating-point Code

Follow these rules to improve the speed of your floating-point applications:
®  Understand how the compiler handles floating-point code.

® Look at the assembly dump and see what transforms are already
performed on the program.

®  Study the loop nests in the application that dominate the execution
time.

* Determine why the compiler is not creating the fastest code.

®* Seeif thereis a dependence that can be resolved.

® Consider large memory bandwidth requirements.

®  Think of poor cache locality improvement.

* Seeif thereisalot of long-latency floating-point arithmetic operations.

® Do not use high precision unless necessary. Single precision (32-hits) is
faster on some operations and consumes only half the memory space as
double precision (64-bits) or double extended (80-bits).

®* Make sure you have fast float-to-int routines. Many libraries do more
work than is necessary; make sure your float-to-int is a fast routine.

* Makesureyour application staysin range. Out of range numbers cause
very high overhead.

®  FXCH can be helpful by increasing the effective name space. Thisin
turn alows instructions to be reordered to make instructions available
to be executed in parallel. Out of order execution precludes the need for
using FXCH to move instructions for very short distances.

®  Unroll loops and pipeline your code.

®  Perform transformations to improve memory access patterns. Use loop
fusion or compression to keep as much of the computation in the cache
aspossible.

® Break dependency chains.

Improving Parallelism

The Pentium |1 and Pentium Il processors have a pipelined floating-point
unit. To achieve maximum throughput from the Pentium |1 and Pentium IlI
processors floating-point unit, schedule properly the floating-point
instructions to improve pipelining. Consider the example in Figure 2-2.
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To exploit the parallel capability of the Pentium Il and Pentium 11|
processors, determine which instructions can be executed in parallel. The
two high-level code statementsin the example are independent, therefore
their assembly instructions can be scheduled to execute in parallel, thereby
improving the execution speed, see source code in Example 2-10.

Example 2-10 Scheduling Floating-Point Instructions

A=B+C+D
E=F+G+H

fld B fld F
fadd C fadd G
fadd D fadd H
fstp A fstp E

M ost floating-point operations require that one operand and the result use
the top of stack. This makes each instruction dependent on the previous
instruction and inhibits overlapping the instructions.

One obvious way to get around thisis to imagine that we have aflat
floating-point register file available, rather than a stack. The code is shown
in Example 2-11.

Example 2-11 Coding for a Floating-Point Register File

fld B ?F1
fadd F1, C ?F1
fld F ?F2
fadd F2,G ?F2
fadd F1,D ?F1
fadd F2,H ?F2
fstp F1 ?A
fstp F2 ?E
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In order to implement these imaginary registers we need to use the FXCH
instruction to change the value on the top of stack. This provides away to
avoid the top of stack dependency. The FXCH instruction uses no extra
execution cycles on Pentium 11 and Pentium |1l processors. Example 2-12
shows its use.

Example 2-12 Using the FXCH Instruction

STO ST1
fld B OF1 fld BB
fadd C OF1 fadd C B+C
fld F OF2 fld F B+C
fadd G OF2 fadd G F+G B+C
fxch ST(1) B+C F+G
fadd D OF1 fadd D B+C+D F+G
fxch ST(1) F+G B+C+D
fadd H OF2 fadd H F+G+H B+C+D
fxch ST(1) B+C+D F+G+H
fstp D OA fstp A F+G+H
fstp E UE fstp E

The FXCH instructions move an operand into position for the next
floating-point instruction.

Rules and Regulations of the fxch Instruction

Thef xch instruction costs no extra cycles on Pentium Il and Pentium 111
processors. The instruction is almost “free” and can be used to access
elements in the deeper levels of the floating-point stack instead of storing
them and then loading them again.
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Memory Operands

Floating-point operands that are 64-bit operands need to be
eight-byte-aligned. Performing a floating-point operation on a memory
operand instead of on a stack register on Pentium Il or Pentium IlI
processor, produces two pops, which can limit decoding. Additionally,
memory operands may cause a data cache miss, causing a penalty.

Memory Access Stall Information

Floating-point registers allow loading of 64-bit values as doubles. Instead of
loading single array values that are 8-, 16-, or 32-bits long, consider loading
the values in a single quadword, then incrementing the structure or array
pointer accordingly.

First, the loading and storing of quadword data is more efficient using the
larger quadword data block sizes. Second, this helps to avoid the mixing of
8-, 16-, or 32-bit load and store operations with a 64-bit load and store
operation to the memory address. This avoids the possibility of a memory
access stall on Pentium Il and Pentillhprocessors. Memory access stalls
occur when

* gsmall loadsfollow large stores to the same area of memory
® largeloadsfollow small storesto the same area of memory.

Consider the following cases in Example 2-13. In thefirst case (A), thereis
alarge load after a series of small stores to the same area of memory
(beginning at memory address nen), and the large load will stall.

Thefl d must wait for the storesto write to memory beforeit can access al
the datait requires. This stall can also occur with other data types (for
example, when bytes or words are stored and then words or doublewords are
read from the same area of memory).
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Example 2-13 Large and Small Load Stalls

;A. Large |l oad stall
nov nmem eax ; store dword to address “mem"
mov mem + 4, ebx; store dword to address “mem + 4"

fid mem ; load qword at address “mem", stalls
:B. Small Load stall

fstp mem ;store qword to address “mem"

mov bx,mem+2 ;load word at address “mem + 2", stalls
mov cx,mem+4 ;load word at address “mem + 4", stalls

In the second case (B), thereis a series of small loads after alarge storeto
the same area of memory (beginning at memory address nen), and the small
loads will stall.

Theword loads must wait for the quadword store to write to memory before
they can access the data they require. This stall can also occur with other
data types (for example, when doublewords or words are stored and then
words or bytes are read from the same area of memory). This can be
avoided by moving the store as far from the loads as possible. In general, the
loads and stores should be separated by at least 10 instructions to avoid the
stall condition.

Floating-point to Integer Conversion

Many libraries provide the float to integer library routines that convert
floating-point values to integer. Many of these libraries conform to ANSI C
coding standards which state that the rounding mode should be truncation.
The default of thef i st instruction isround to nearest, therefore many
compiler writers implement a change in the rounding mode in the processor
in order to conform to the C and FORTRAN standards. This
implementation requires changing the control word on the processor using
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thef | dcwinstruction. Thisinstruction is a synchronizing instruction and
will cause asignificant slowdown in the performance of your application on
al |A-based processors.

When implementing an application, consider if the rounding mode is
important to the results. If not, use the algorithm in Example to avoid the
synchronization and overhead of thef | dcw instruction and changing the

rounding mode.

Example 2-14 Algorithm to Avoid Changing the Rounding Mode

_ftol32proc

| ea ecx, [ esp- 8]
sub esp, 16 ; allocate frane
and ecx,-8 ; align pointer on boundary of 8
fld st(0) ; duplicate FPU stack top
fistp gword ptr[ecx]
fild gword ptr[ecx]
nov edx, [ ecx+4]; high dword of integer
nov eax,[ecx] ; low dword of integer
t est eax, eax
je i nteger_QnaN_or_zero
continued
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Example 2-14 Algorithm to Avoid Changing the Rounding Mode (continued)

arg i s not integer QnaN

f subp st (1), st ; TOS=d-round(d),
i { st(l)=st(1l)-st & pop ST)
t est edx, edx ; what's sign of integer
ins positive ; number is negative
; dead cycle
; dead cycle

fstp dword ptr[ecx]; result of subtraction
mov ecx,[ecx] ; dword of diff(single-

; precision)
add esp,16
xor ecx,80000000hn
add ecx, rfffffffh ; if diff<0 then decrement

; integer
adc eax,0 ; Inc eax (add CARRY flag)
ret

positive:
fstp dword ptr[ecx]; 17-18 result of
subtraction

mov ecx,[ecx] ; dword of diff(single-

; precision)
add esp,16
add ecx, 7fffffffh ; if diff<0 then decrement

; integer
sbb eax,0 ;dec eax (subtract CARRY flag)
ret

integer_QnaN_or_zero:
test  edx,7ffffffth
jnz arg_is_not_integer_QnaN
add esp,16
ret
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Loop Unrolling

The benefits of unrolling loops are:

® Unrolling amortizes the branch overhead. The BTB is good at
predicting loops on Pentium Il and Pentium Il processors and the
instructions to increment the loop index and jump are inexpensive.

® Unrolling allows you to aggressively schedule (or pipeline) the loop to
hide latencies. Thisis useful if you have enough free registers to keep
variables live as you stretch out the dependency chain to expose the
critical path.

®*  You can aggressively schedule the loop to better set up I-fetch and
decode constraints.

®  The backwards branch (predicted as taken) has only a 1 clock penalty
on Pentium 11 and Pentium Il processors, so you can unroll very tiny
loop bodies for free.

You can use a- Qunr ol | option of the Intel C/C++ Compiler, see Intel
C/C++ Compiler User’s Guide for Win32* Systerosder number 718195.

Unrolling can expose other optimizations, as shown in Example 2-15. This
exampleillustrates aloop executes 100 times assigning x to every
even-numbered element and y to every odd-numbered element.

Example 2-15 Loop Unrolling

Before unrolling
do i=1, 100
if (i mod 2 == 0) then a(i) = x
else a(i) =y
enddo
After unrolling
do i=1,100,2
a(i) =y
a(i+1) = x
enddo

By unrolling the loop you can make both assignments each iteration,
removing one branch in the loop body.
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Floating-Point Stalls

Many of the floating-point instructions have alatency greater than one cycle

but, because of the out-of-order nature of Pentium 11 and Pentium 111
processors, stalls will not necessarily occur on an instruction or pop basis.
However, if an instruction has a very long latency such d@slan, then
scheduling can improve the throughput of the overall application. The
following sections discuss scheduling issues and offer good tips for any
IA-based processor.

Hiding the One-Clock Latency of a Floating-Point Store

A floating-point store must wait an extra cycle for its floating-point
operand. After anl d, anf st must wait one clock. After the common
arithmetic operations,nul andf add, which normally have a latency of
three,f st waits an extra cycle for a total of four. This set also includes
other instructions, for examplieaddp andf subr p, see Example 2-16.

Example 2-16 Hiding One-Clock Latency

Store is dependent on the previous | oad.

fld men 1 fld takes 1 cl ock

; 2 fst waits, schedul e sonet hing here
fst men2 ; 3,4 fst takes 2 cl ocks
fadd mem ; 1 add takes 3 cl ocks

; 2 add, schedul e sonething here

; 3 add, schedul e sonething here

; 4 fst waits, schedul e somet hing here
fst men ; 5,2 fst takes 2 cl ocks

; Store is not dependent on the previous |oad:

fld men 1

fld neng ;2

fxch st(l) ;2

f st ment : 3 stores values | oaded from nmenl

; Aregister may be used imediately after it has
; been | oaded (with FLD):

fld meml o
fadd meng ; 2,3,4
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Use of aregister by afloating-point operation immediately after it has been
written by another f add, f sub, or f nul causes atwo-cycle delay. If
instructions areinserted between these two, then latency and apotential stall
can be hidden.

Additionally, while the multi-cycle floating-point instructions, f di v and

f sqrt, execute in the floating-point unit pipe, integer instructions can be
executed in parallel. Emitting a number of integer instructions after such an
instruction asf di v or f sqrt will keep the integer execution units busy.
The exact number of instructions depends on the fl oating-point instruction’s
cycle count.

Integer and Floating-point Multiply

The integer multiply operations, nul andi nul , are executed in the
floati ng-point unit so these instructions cannot be executed in parallel with a
floating-point instruction.

A floating-point multiply instruction (f nul ) delays for one cycleif the
immediately preceding cycle executedanf mul oranf nul /f xch pair. The
multiplier can only accept a new pair of operands every other cycle.

For the best blended code, replace the integer multiply instruction with two
or more add instructions, since the short latency of thisinstruction may not
be maintained across all implementations

Floating-point Operations with Integer Operands

Floating-point operations that take integer operands (f i add or fi sub ..)
should be avoided. These instructions should be split into two instructions:
fi | d and afloating-point operation. The number of cycles before another
instruction can beissued (throughput) for f i add isfour, whileforfi | d and
simple floating-point operationsit is one, as shown in the comparison
below.

Complex Instructions Use These for Potential Overlap
fiadd [ebp] ; 4 fild [ebp] ; 1

faddp st(l) ; 2

Usingthefild - faddp instructionsyieldstwo free cycles for executing
other instructions.
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FSTSW Instructions

Thef st swinstruction that usually appears after a floating-point
comparison instruction (f com f conp, f conpp) delays for three cycles.
Other instructions may be inserted after the comparison instruction in order
to hide the latency. On Pentium 11 and Pentium Il processors the f cnov
instruction can be used instead.

Transcendental Functions

If an application needs to emulate these math functions in software, it may
be worthwhile to inline some of these math library calls because the cal |
and the prol ogue/epilogue invol ved with the calls can significantly affect the
latency of the operations. Emulating these operations in software will not be
faster than the hardware unless accuracy is sacrificed.
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Coding
for SMD Architectures

The capabilities of the Pentium® |1 and Pentium 111 processors enable the
development of advanced multimedia applications. The Streaming SIMD
Extensionsand MM X™ technologyprovide coding extensions to make use

of the processors’ multimedia features, specifically, the single-instruction,
multiple-data (SIMD) characteristics of the instruction set architecture
(ISA). To take advantage of the performance opportunities presented by
these new capabilities, take into consideration the following:

®  Ensure that your processor supports MM X technology and Streaming
SIMD Extensions.

*  Employ al of the optimization and scheduling strategies described in
this book.

® Use stack and data alignment techniques to keep data properly aligned
for efficient memory use.

®  Utilize the cacheahility instructions offered by Streaming SIMD
Extensions.

This chapter gives an overview of the capabilities that allow you to better
understand SIMD features and devel op applications utilizing SIMD features
of MM X technology and Streaming SIMD Extensions.
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Checking for Processor Support of Streaming SIMD
Extensions and MMX™ Technology

This section shows how to check whether a system supports MMX™
technology and Streaming SIMD Extensions.

Checking for MMX Technology Support

Before you start coding with MMX technology check if MMX technology
is available on your system. Use thaui d instruction to check the feature
flags in the=dx register. Ifcpui d returns bit 23 set to 1 in the feature flags,
the processor supports MMX technology. Use the code segment in
Example 3-1 to load the feature flagseiix and test the result for the
existence of MMX technology.

Example 3-1 Identification of MMX Technology with cpuid

...identify existence of cpuid instruction
; identify Intel processor

mov eax, 1 ; request for feature flags
cpuid ; OFh, OA2h cpuid instruction

test edx, 00800000h; is MMX technology bit (bit
; 23)in feature flags equal to 1

inz Found

For more information onpui d see ntel Processor Identification with

CPUID Instruction, order number 241618. Once this check has been made,

MMX technology can be included in your application in two ways:

1. Check for MMX technology during installation. If MMX technology is
available, the appropriate DLLs can be installed.

2. Check for MMX technology during program execution and install the
proper DLLs at runtime. This is effective for programs that may be
executed on different machines.
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Checking for support of Streaming SIMD Extensions on your processor is
similar to doing the same for MM X technology, but you must also check
whether your operating system (OS) supports Streaming SIMD Extensions.
This is because the OS needs to manage saving and restoring the new state
introduced by Streaming SIMD Extensions for your application to properly
function.

Checking for Streaming SIMD Extensions Support

To check whether your system supports Streaming SIMD Extensions,
follow these steps:

1. Check that your processor hasthe cpui d instruction and isin the Intel
Pentium 11 and Pentium IIl processors.

2. Check the feature bits of cpui d for Streaming SIMD Extensions
existence.

3. Check for OS support for Streaming SIMD Extensions.

Example 3-2 shows how to find the Streaming SIMD Extensions feature bit
(bit 25) in the cpui d feature flags.

Example 3-2 Identification of Streaming SIMD Extensions with cpuid

...Identify existence of cpuid instruction
; identify Intel Processor

mov eax, 1 ; request for feature flags

cpuid ; OFh, OA2h cpuid instruction
test EDX, 002000000h; bit 25 in feature flags equal to 1
jnz Found

To find out whether the operating system supports Streaming SIMD
Extensions, simply execute a Streaming SIMD Extension and trap for the
exception if one occurs. An invalid opcode will be raised by the operating
system and processor if either is not enabled for Streaming SIMD
Extensions. Catching the exception in asimple try/except clause (using
structured exception handling in C++) and checking whether the exception
code isan invalid opcode will give you the answer. See Example 3-3.

33



3 Intel Architecture Optimization Reference Manual

Example 3-3 Identification of Streaming SIMD Extensions by the OS

bool OSSupport Check() {

_try |
__asm xorps xmD, xm0 ; Stream ng S| MD Ext ensi on

}
_except (EXCEPTI ON_EXECUTE_HANDLER) {

i f (_exception_code()==STATUS | LLEGAL_I| NSTRUCTI ON)
return (false); Stream ng SIMD Extensions not supported

Stream ng SI MD Extensions are supported by OS
return (true);

}

Considerations for Code Conversion to SIMD
Programming

The VTune™ Performance Enhancement Environment CD provides tools
to aid in the evaluation and tuning. But before you start implementing them,
you need to know the answers to the following questions:

1. Will the current code benefit by using MMX technology or Streaming
SIMD Extensions?

Is this code integer or floating-point?

What coding techniques should | use?

What guidelines do | need to follow?

How should | arrange and align the datatypes?

a ks wnn

Figure 3-1 provides a flowchart for the process of converting code to MMX
technology or the Streaming SIMD Extensions.
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Figure 3-1 Converting to Streaming SIMD Extensions Chart
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To use MM X technology or Streaming SIMD Extensions optimally, you
must evaluate the following segments of your code:

®  segmentsthat are computationally intensive

segmentsthat require integer implementations that support efficient use
of the cache architecture

segments that require floating-point computations.
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Identifying Hotspots

To optimize performance, you can use the V Tune Performance Analyzer to
isolate the computation-intensive sections of code. For details on the VTune
analyzer, see :rVTune
analyzer provides a hotspots view of a specific module to help you identify
sections in your code that take the most CPU time and that have potential
performance problems. For more explanation, see settien

, Which includes an example of a
hotspots report. The hotspots view helps you identify sections in your code
that take the most CPU time and that have potential performance problems.

The VTune analyzer enables you to change the view to show hotspots by
memory location, functions, classes, or source files. You can double-click
on a hotspot and open the source or assembly view for the hotspot and see
more detailed information about the performance of each instruction in the
hotspot.

The VTune analyzer offers focused analysis and performance data at all
levels of your source code and can also provide advice at the assembly
language level. The code coach analyzes and identifies opportunities for
better performance of C/C++, FORTRAN and Java* programs, and
suggests specific optimizations. Where appropriate, the coach displays
pseudo-code to suggest the use of Intel’s highly optimized intrinsics and
functions of the MMX technology and Streaming SIMD Extensions from
Intel® Performance Library Suite. Because V Tune analyzer is designed
specifically for all of the Intel architecture (1A)-based processors,
Pentium 11 and Pentium Il processorsin particular, it can offer these
detailed approaches to working with |A. See

/for more details and example of a code coach advice.
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Determine If Code Benefits by Conversion to Streaming SIMD
Extensions

Identifying code that benefits by using MM X technology and/or Streaming
SIMD Extensions can be time-consuming and difficult. Likely candidates
for conversion are applications that are highly computation- intensive such
asthe following:

®  gpeech compression algorithms and filters

® video display routines

® rendering routines

® 3D graphics (geometry)

® image and video processing agorithms

® gpatial (3D) audio

Generally, these characteristics can be identified by the use of small-sized
repetitive loops that operate on integers of 8 or 16 bitsfor MM X
technology, or single-precision, 32-bit floating-point data for Streaming
SIMD Extensions technology (integer and floating-point data items should
be sequentia in memory). The repetitiveness of these loops incurs costly
application processing time. However, these routines have potential for
increased performance when you convert them to use MM X technology or
Streaming SIMD Extensions.

Once you identify your opportunities for using MM X technology or
Streaming SIMD Extensions, you must evaluate what should be done to
determine whether the current algorithm or a modified one will ensure the
best performance.

Coding Techniques

The SIMD features of Streaming SIMD Extensions and MM X technology
reguire new methods of coding algorithms. One of them is vectorization.
Vectorization is the process of transforming sequentially executing, or
scalar, code into code that can execute in parallel, taking advantage of the
SIMD architecture parallelism. Using this feature is critical for Streaming
SIMD Extensions and MM X technology. This section discusses the coding
techniques available for an application to make use of the SIMD
architecture.
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To vectorize your code and thus take advantage of the SIMD architecture,

do the following:

* Determineif the memory accesses have dependencies that would
prevent parallel execution

® “Strip-mine” the loop to reduce the iteration count by the length of the
SIMD operations (four for Streaming SIMD Extensions and MMX
technology)

®  Recode the loop with the SIMD instructions

Each of these actionsis discussed in detail in the subsegquent sections of this
chapter.

Coding Methodologies

Software devel opers need to compare the performance improvement that
can be obtained from assembly code versus the cost of those improvements.
Programming directly in assembly language for a target platform may
produce the required performance gain, however, assembly code is not
portable between processor architectures and is expensive to write and
maintain.

Performance objectives can be met by taking advantage of the Streaming
SIMD Extensions or MM X technology |SA using high-level languages as
well as assembly. The new C/C++ language extensions designed
specifically for the Streaming SIMD Extensions and MM X technology help
make this possible.

Figure 3-2 illustrates the tradeoffs involved in the performance of hand-
coded assembly versus the ease of programming and portability.
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Figure 3-2 Hand-Coded Assembly and High-Level Compiler Performance
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The examples that follow illustrate the use of assembly coding adjustments
for this new I1SA to benefit from the Streaming SIMD Extensions and
C/C++ language extensions. Floating-point data may be used with the
Streaming SIMD Extensions as well asthe intrinsics and vector classeswith
MMX technology.

As abasisfor the usage model discussed in this section, consider asimple
loop shown in Example 3-4.

Example 3-4 Simple Four-Iteration Loop

void add(float *a, float *b, float *c)
{
int i;
for (i
cli]
}
}

0; i < 4; i++) {
afi] + b[i];
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Example 3-5

Note that the loop runs for only four iterations. This allowsasimple
replacement of the code with Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data
alignment on the 16-byte boundary, this example assumes that the arrays
passed to the routine, a, b, c, are aligned to 16-byte boundaries by acalling
routine. See Intel application note AP-833, Data Alignment and
Programming Considerations for Sreaming SSMD Extensionswith the Intel
C/C++ Compiler, order number 243872, for the methods to ensure this
alignment.

The sections that follow detail on the following coding methodol ogies:
inlined assembly, intrinsics, C++ vector classes, and automatic
vectorization.

Assembly

Key loops can be coded directly in assembly language using an assembler
or by using inlined assembly (C-asm) in C/C++ code. The Intel compiler or
assembler recognizes the new instructions and registers, then directly
generates the corresponding code. This model offers the greatest
performance, but this performance is not portable across the different
processor architectures.

Example 3-5 shows the Streaming SIMD Extensions inlined-asm encoding.

Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)

{
__asm{
nov eax, a
mv edx, b
nov ecx,
nmovaps xmmD, XMMAORD PTR [ eax]
addps xm0, XMMACRD PTR [ edx]
nmovaps XMWWORD PTR [ecx], xmD
}
}
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Intrinsics

Intrinsics provide the access to the | SA functionality using C/C++ style
coding instead of assembly language. Intel has defined two sets of intrinsic
functions that are implemented in the Intel C/C++ Compiler to support the
MMX technology and the Streaming SIMD Extensions. Two new C data
types, representing 64-bit and 128-bit objects (__n64 and __n1.28,
respectively) are used as the operands of these intrinsic functions. This
enables to choose the implementation of an algorithm directly, while aso
performing optimal register allocation and instruction scheduling where
possible. These intrinsics are portable among all Intel architecture-based
processors supported by a compiler. The use of intrinsics allows you to
obtain performance closeto the level s achievable with assembly. The cost of
writing and maintaining programs with intrinsicsis considerably less. For a
detailed description of theintrinsics and their use, refer to the Intel C/C++
Compiler User's Guide

Example 3-6 shows the loop from Example 3-4 using intrinsics.

Example 3-6 Simple Four-Iteration Loop Coded with Intrinsics

#i ncl ude <xnmntrin. h>
void add(float *a, float *b, float *c)

{
_ m28 t0, t1;
t0 = _mmload_ps(a);
tl1 = mmload_ps(b);
t0 = _mmadd_ps(t0, t1);
_mmstore_ps(c, t0);
}

The intrinsics map one-to-one with actual Streaming SIMD Extensions
assembly code. Thexmmi nt ri n. h header file in which the prototypes for
the intrinsics are defined is part of the Intel C/C++ Compiler for Win32*
Systems included with the V Tune Performance Enhancement Environment
CD.
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Intrinsics are also defined for the MM X technology | SA. These are based on
the __ n64 datatype to represent the contents of an nmregister. You can
specify valuesin bytes, short integers, 32-bit values, or as a 64-bit object.

The __n64 and __nil 28 datatypes, however, are not abasic ANSI C data
type, and therefore you must observe the following usage restrictions:

® Use n64and__ni28 dataonly on the left-hand side of an
assignment as a return value or as a parameter. You cannot use it with
other arithmetic expressions+(; “>>", and so on).

® Use _nb4 and__nl28 objectsin aggregates, such as unionsto
access the byte elements and structures; the address of an___n64 object
may be also used.

® Use_ nb64and__ni28 dataonly with the MMX intrinsics described
in this guide.

For complete details of the hardware instructions, see the Intel Architecture

MMX™ Technology Programmer’s Reference Mankal descriptions of

datatypes, see the Intel Architecture Software Developer's Manual, Volume

2: Instruction Set Reference Manual.

Classes

Intel has also defined a set of C++ classes to provide both a higher-level
abstraction and more flexibility for programming with MM X technology
and the Streaming SIMD Extensions. These classes provide an easy-to-use
and flexible interface to the intrinsic functions, allowing developersto write
more natural C++ code without worrying about which intrinsic or assembly
language instruction to use for a given operation. Since the intrinsic
functions underlie the implementation of these C++ classes, the
performance of applications using this methodology can approach that of
one using the intrinsics. Further details on the use of these classes can be
found in the Intel C++ Class Libraries for SIMD Operations User's Gujde
order number 693500.

Example 3-7 shows the C++ code using a vector class library. The example
assumes the arrays passed to the routine are already aligned to 16-byte
boundaries.
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Example 3-7 C++ Code Using the Vector Classes

#i ncl ude <fvec. h>
void add(float *a, float *b, float *c)

{
F32vec4 *av=(F32vec4 *) a;
F32vec4 *bv=(F32vec4 *) b;
F32vec4 *cv=(F32vec4 *) c;
*cv=*av + *bv

}

Here, f vec. h isthe class definition file and F32vec4 isthe class

representing an array of four floats. The “+” and “=" operators are
overloaded so that the actual Streaming SIMD Extensions implementation
in the previous example is abstracted out, or hidden, from the developer.
Note how much more this resembles the original code, allowing for simpler
and faster programming.

Again, the example is assuming the arrays passed to the routine are already
aligned to 16-byte boundary.

Automatic Vectorization

The Intel C/C++ Compiler provides an optimization mechanism by which

simple loops, such as in Example 3-4 can be automatically vectorized, or

converted into Streaming SIMD Extensions code. The compiler uses similar

techniques to those used by a programmer to identify whether a loop is

suitable for conversion to SIMD. This involves determining whether the

following might prevent vectorization:

* thelayout of the loop and the data structures used

® dependencies amongst the data accesses in each iteration and across
iterations

Once the compiler has made such a determination, it can generate
vectorized code for the loop, allowing the application to use the SIMD
instructions.
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Example 3-8

The caveat to thisisthat only certain types of loops can be automatically
vectorized, and in most cases user interaction with the compiler is needed to
fully enable this.

Example 3-8 shows the code for automatic vectorization for the simple
four-iteration loop (from Example 3-4).

Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)

int i;
for (i =0; i < 100; i++) {
c[i] = a[i] + b[i];

Compile this code using the - Qvec and - Or est ri ct switches of the Intel
C/C++ Compiler, version 4.0 or later.

Therestrict quaifier inthe argument list is necessary to let the compiler
know that there are no other aliases to the memory to which the pointers
point. In other words, the pointer for which it is used, provides the only
means of accessing the memory in question in the scope in which the
pointers live. Without this qualifier, the compiler will not vectorize the loop
because it cannot ascertain whether the array referencesin the loop overlap,
and without this information, generating vectorized code is unsafe.

Refer to the Intel C/C++ Compiler User’s Guide for Win32 Systemrsler
number 718195, for more details on the use of automatic vectorization.
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Stack and Data Alignment

To get the most performance out of code written for MM X technology and
Streaming SIMD Extensions, data should be formatted in memory
according to the guidelines described in this section. A misaligned accessin
assembly codeis alot more costly than an aligned access.

Alignment of Data Access Patterns

The new 64-bit packed data types defined by MM X technology, and the
128-hit packed data types for Streaming SIMD Extensions create more
potential for misaligned data accesses. The data access patterns of many
algorithms are inherently misaligned when using MM X technology and
Streaming SIMD Extensions.

However, when accessing SIMD data using SIMD operations, accessto data
can beimproved simply by a change in the declaration. For example,
consider a declaration of a structure, which represents apoint in space. The
structure consists of three 16-bit values plus one 16-hit value for padding.
The sample declaration follows:

typedef struct { short x,y,z; short junk; } Point;

Point pt[N;
In the following code,
for (i=0; i<N, i++) pt[i].y *= scale;

the second dimension y needs to be multiplied by a scaling value. Here the
f or loop accesseseachy dimensioninthearray pt thusavoiding the access
to contiguous data, which can cause a serious number of cache misses and
degrade the performance of the application.

The following declaration allows you to vectorize the scaling operation and
further improve the alignment of the data access patterns:

short ptx[ N, pty[N, ptz[N;
for (i=0; i<N, i++) pty *= scale;
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With the SIMD technology, choice of data organization becomes more
important and should be made carefully based on the operations that will be
performed on the data. In some applications, traditional data arrangements
may not lead to the maximum performance.

A simpleexample of thisisan FIR filter. An FIR filter is effectively a vector
dot product in the length of the number of coefficient taps.

Consider the following code:

(data [ j ] *coeff [0] + data []j+1]*coeff [1]+...+data
[j +num of taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element i is the vector dot
product that begins at data element j , then the filter operation of data
element i +1 begins at dataelement j +1.

Assuming you have a 64-bit aligned data vector and a 64-hit aligned
coefficients vector, the filter operation on the first data element will be fully
aligned. For the second data element, however, accessto the data vector will
be misaligned. The Intel application note AP-559, MMX Instructionsto
Compute a 16-Bit Real FIR Filter, order number 243044, shows an example
of how to avoid the misalignment problem in the FIR filter.

Duplication and padding of data structures can be used to avoid the problem
of data accesses in algorithms which are inherently misaligned.

CAUTION. The duplication and padding technique overcomes the
misalignment problem, thus avoiding the expensive penalty for
misaligned data access, at the price of increasing the data size. When
developing your code, you should consider this tradeoff and use the
option which gives the best performance.

Stack Alignment For Streaming SIMD Extensions

For best performance, the Streaming SIMD Extensions require their
memory operands to be aligned to 16-byte (16B) boundaries. Unaligned
data can cause significant performance penalties compared to aligned data.
However, the existing software conventions for IA-32 (st dcal | , cdecl! ,

f ast cal | ) asimplemented in most compilers, do not provide any
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mechanism for ensuring that certain local data and certain parameters are
16-byte aligned. Therefore, Intel has defined a new set of 1A-32 software
conventions for alignment to support the new __ n1.28 datatype that meets
the following conditions:

®* Functions that use Streaming SIMD Extensions data need to provide a
16-byte aligned stack frame.

® The__ nl28 parameters need to be aligned to 16-byte boundaries,
possibly creating “holes” (due to padding) in the argument block

These new conventions presented in this section as implemented by the
Intel C/C++ Compiler can be used as a guideline for an assembly language
code as well. In many cases, this section assumes the use _ofittes

data type, as defined by the Intel C/C++ compiler, which represents an array
of four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions,
see Appendix E,S i

Data Alignment for MMX Technology

Many compilers enable alignment of variables using controls. This aligns
the variables’ bit lengths to the appropriate boundaries. If some of the
variables are not appropriately aligned as specified, you can align them
using the C algorithm shown in Example 3-9.

Example 3-9 C Algorithm for 64-bit Data Alignment

#i ncl ude <stdio. h>
#i ncl ude<stdl i b. h>
#i ncl ude<nmal | oc. h>
voi d mai n(voi d)
{

doubl e a[ 5]

doubl e *p, *newp;

double i, res;

continued
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Example 3-9 C Algorithm for 64-bit Data Alignment (continued)

p = (double*)malloc (((sizeof a[0])*5)+4);
newp = ((unsigned int)(&p)+4) & (~0x7);
/*
res =0,
for(i =0; i<4; i++)
{
res += al[i];
}
printf("res = %d\n",res);
*/

The algorithm in Example 3-9 aligns a 64-bit variable on a 64-bit boundary.
Once aligned, every access to this variable saves six to nine cycles on the
Pentium 11 and Pentium Il processors when the misaligned data previously
crossed a cache line boundary.

Another way to improve data alignment is to copy the datainto locations
that are aligned on 64-bit boundaries. When the data is accessed frequently,
this can provide a significant performance improvement.

Data Alignment for Streaming SIMD Extensions

Data must be 16-byte-aligned when using the Streaming SIMD Extensions
to avoid severe performance penalties at best, and at worst, execution faults.
Although there are move instructions (and intrinsics) to alow unaligned
datato be copied into and out of Streaming SIMD Extension registers when
not using aligned data, such operations are much slower than aligned
accesses. If, however, the datais not 16-byte-aligned and the programmer or
the compiler does not detect this and uses the aligned instructions, a fault
will occur. So, therule is: keep the data 16-byte-aligned. Such alignment
will also work for MM X technology code, even though MM X technol ogy
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only requires 8-byte alignment. The following discussion and examples
describe alignment techniques for Pentium Il processor as implemented
with the Intel C/C++ Compiler.

Compiler-Supported Alignment

The Intel C/C++ Compiler provides the following methods to ensure that
the datais aligned.

Alignment by F32vec4 or __nl28 Data Types. When compiler detects
F32vec4 or __nil28 datadeclarations or parameters, it will force alignment
of the object to a 16-byte boundary for both global and local data, aswell as
parameters. If the declaration is within a function, the compiler will also
align the function’s stack frame to ensure that local data and parameters are
16-byte-aligned. Please refer to the Intel application note AP-589, Software
Conventions for Sreaming SMD Extensions, order number 243873, for
details on the stack frame layout that the compiler generates for both debug
and optimized (“release”-mode) compilations.

The__decl spec(al i gn(16)) specifications can be placed before data
declarations to force 16-byte alignment. This is particularly useful for local
or global data declarations that are assigned to Streaming SIMD Extensions
data types. The syntax for it is

__decl spec(align(integer-constant))

where the nt eger - const ant is an integral power of two but no greater
than 32. For example, the following increases the alignment to 16-bytes:

__decl spec(align(16)) float buffer[400];

The variableébuf f er could then be used as if it contained 100 objects of
type__nil28 or F32vec4. In the code below, the construction of the
F32vec4 object,x, will occur with aligned data.

void foo() {
F32vec4 x = *(__ml28 *) buffer;

}
Without the declaration of decl spec(al i gn(16)), a fault may occur.
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Alignment by Using a uni on Structure. Preferably, when feasible, a

uni on can be used with Streaming SIMD Extensions data types to allow
the compiler to align the data structure by default. Doing so is preferred to
forcing alignment with __decl spec(al i gn(16)) becauseit exposesthe
true program intent to the compiler inthat __ 28 datais being used. For
example:

uni on {
float f[400];
__nml28 n{100];
} buffer;

The 16-byte alignment is used by default duetothe _ n1.28 typeinthe
uni on; itisnot necessary touse __decl spec(al i gn(16)) toforceit.

In C++ (but not in C) it is also possible to force the alignment of a
cl ass/struct /uni on type, asin the code that follows:

struct __decl spec(align(16)) ny_nil28
{

I

float f[4];

But, if the datain such acl ass isgoing to be used with the Streaming
SIMD Extensions, it is preferable to use auni on to make this explicit. In
C++, an anonymous uni on can be used to make this more convenient:

class ny_nil28 {
uni on {
_ m28 m
float f[4];

I

In this example, because the uni on is anonymous, the names, mand f , can
be used as immediate member names of my __ n.28. Note that

__decl spec(align) hasno effect when appliedtoacl ass, struct, or

uni on member in either C or C++.
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Alignment by Using __n64 or doubl e Data. In some cases, for better
performance, the compiler will align routineswith __n64 or doubl e data
to 16-bytes by default. The command-line switch, - Qsf al i gn16, can be
used to limit the compiler to only align in routines that contain Streaming
SIMD Extensions data. The default behavior isto use - Qsf al i gn8, which
instructs to align routines with 8- or 16-byte data types to 16-bytes.

For more detail s, see the Intel application note AP-833, Data Alignment and
Programming Issues with the Intel C/C++ Compiler, order number 243872,
and Intel C/C++ Compiler for Windows32 Systems User's Guddeer
number 718195.

Improving Memory Utilization

Memory performance can be improved by rearranging data and algorithms
for Streaming SIMD Extensions and MM X technology intrinsics. The
methods for improving memory performance involve working with the
following:

® Datastructure layout
®  Strip-mining for vectorization and memory utilization
® Loop-blocking

Using the cacheability instructions, prefetch and streaming store, also
greatly enhance memory utilization. For these instructions, see Chapter 6,

Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are two
basic ways of arranging the vertices data. The traditional method is the
array of structures (AoS) arrangement, with a structure for each vertex.
However this method does not take full advantage of the Streaming SIMD
Extensions SIMD capabilities. The best processing method for code using
Streaming SIMD Extensions is to arrange the data in an array for each
coordinate. This data arrangement is called structure of arrays (SoA). This
arrangement allows more efficient use of the parallelism of Streaming
SIMD Extensions because the data is ready for transformation. Another
advantage of this arrangement is reduced memory traffic, because only the
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relevant datais|oaded into the cache. Datathat is not relevant for the
transformation (such as: texture coordinates, color, and specular) is not
loaded into the cache.

There are two options for transforming datain AoS format. Oneisto
perform SIMD operations on the original AoS format. However, this option
requires more calculations. In addition, some of the operations do not take
advantage of the four SIMD elements in the Streaming SIMD Extensions.
Therefore, this option isless efficient. The recommended way for
transforming datain AoS format is to temporarily transpose each set of four
vertices to SoA format before processing it with Streaming SIMD
Extensions.

The following is a simplified transposition example:

Original format:

x1,y1,z21 x2)y2,72 x3y3,z3 x4,y4,74

Transposed format:

x1,x2,x3,x4 yly2y3y4 z1,22,z3,74

The data structures for the methods are presented, respectively, in

Example 3-10 and Example 3-11.

Example 3-10 AoS data structure

typedef struct{
float x,vy, z;

int color;
} Vertex;
Vertex Vertices[ NunmOf Vertices];

Example 3-11 SoA data structure

typedef struct{
float x[NumOf\Vertices];
float y[NumOf Vertices];
float z[NumOfVertices];
int color[NunC Vertices];

} VerticesList;
VerticesLi st Vertices;
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The transposition methods also apply to MM X technology. Consider a
simple example of adding a 16-bit biasto all the 16-bit elements of a vector.
In regular scalar code, you would load the bias into aregister at the
beginning of the loop, access the vector elementsin another register, and do
the addition of one element at atime.

Converting this routine to MM X technology code, you would expect a four
times speedup since MM X instructions can process four elements of the
vector at atime using the novq instruction, and can perform four additions
at atime using the paddw instruction. However, to achieve the expected
speedup, you would need four contiguous copies of the biasin an MM X
technology register when adding.

Inthe original scalar code, only one copy of the biasisin memory. To use
MMX instructions, you could use various manipulations to get four copies
of the biasin an MM X technology register. Or you could format your
memory in advance to hold four contiguous copies of the bias. Then, you
need only load these copies using one MOVQinstruction before the loop, and
the four times speedup is achieved.

Additionally, when accessing SIMD data with SIMD operations, accessto
data can be improved simply by a change in the declaration. For example,
consider a declaration of a structure that represents a point in space. The

structure consists of three 16-bit values plus one 16-bit value for padding:

typedef struct { short x,y,z; short junk; } Point;
Point pt[N;
In the following code the second dimensiony needs to be multiplied by a
scaling value. Herethef or loop accesses eachy dimension inthept array:

for (i=0; i<N, i++) pt[i].y *= scale;
The access is not to contiguous data, which can cause a significant number
of cache misses and degrade the application performance.

However, if the datais declared as

short ptx[ N, pty[N, ptz[N;
for (i=0; i<N, i++) pty[i] *= scale;

the scaling operation can be vectorized.
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With the advent of MM X technology intrinsics and Streaming SIMD
Extensions, choice of data organi zation becomes more important and should
be carefully based on the operations to be performed on the data. In some
applications, traditional data arrangements may not lead to the maximum
performance.

Strip Mining
Strip mining, also known as loop sectioning, is aloop transformation
technique for enabling SIMD-encodings of loops, as well as providing a
means of improving memory performance. This technique, first introduced
for vectorizors, isthe generation of code when each vector operation isdone
for asize less than or equal to the maximum vector length on a given vector
machine. By fragmenting alarge loop into smaller segments or strips, this
technique transforms the loop structure twofold:

® |tincreasesthetemporal and spatial locality in the data cache if the
data are reusable in different passes of an agorithm.

® It reduces the number of iterations of the loop by the length of each
“vector,” or number of operations being performed per SIMD
operation. In the case of Streaming SIMD Extensions, this vector or
strip-length is reduced by 4 times: four floating-point data items per
single Streaming SIMD Extensions operation are processed. Consider
Example 3-12.

Example 3-12 Pseudo-code Before Strip Mining

typedef struct _VERTEX {
float x, y, z, nx, ny, nz, u, V;
} Vertex_rec;

mai n()
{

Vertex_rec v[Nuni;

1-‘.o.r-(i:0; i <Num i++) {
Transform(v[i]);
Lighting(v[i]);

}
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The main loop consists of two functions: transformation and lighting. For
each object, the main loop calls a transformation routine to update some
data, then callsthe lighting routine to further work on the data. If the
transformation loop uses only part of the data, say X, y, z, u, v, and the
lighting routine accesses only the other pieces of the structure (nx, ny, nz,
for example), the same cache line is accessed twice in the main loop. This
situation is called false sharing.

However, by applying strip-mining or loop-sectioning techniques, the
number of cache misses dueto false sharing can be minimized. Asshownin
Example 3-3, the original object loop is strip-mined into a two-level nested
loop with respect to a selected strip length (st ri p_si ze) . The strip-length
should be chosen so that the total size of the strip is smaller than the cache
size. Asaresult of this transformation, the data brought in by the
transformation loop will not be evicted from the cache before it can be
reused in the lighting routine. See Example 3-13.

Example 3-13 A Strip Mining Code

mai n()
{

Vertex_rec v[Nunj;

epi l ogue_num = Num % stri p_si ze;
for (i=0; i < Num i+=strip_size) {
for (j=i; j <mn(Num i+strip_size); j++) {
Transform(v[j]);
Lighting(v[j]);
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Loop Blocking

Loop blocking is another useful technique for memory performance
optimization. The main purpose of loop blocking is also to eliminate as
many cache misses as possible. This technique transforms the memory
domain of agiven problem into smaller chunks rather than sequentially
traversing through the entire memory domain. Each chunk should be small
enough to fit al the data for a given computation into the cache, thereby
maximizing datareuse. In fact, one can treat loop blocking as strip mining
in two dimensions. Consider the code in Example 3-16 and access patternin
Figure 3-3. The two-dimensional array A isreferenced in thej (column)
direction and then referenced inthei (row) direction; whereas array Bis
referenced in the opposite manner. Assume the memory layout isin
column-major order; therefore, the access strides of array A and B for the
code in Example 3-14 would be 1 and N, respectively.

Example 3-14 Loop Blocking

A. Original loop
float Al MAX, MAX], B[MAX, NAX]
for (i=0; i< MAX; i++) {
for (j=0; j< MAX j++) {
AliLjl = ALl + Blj, i
}
}

B. Transformed Loop after Blocking

float Al MAX, MAX], B[MAX, MAX];

for (i=0; i< MAX; i+=block_size) {
for (j=0; j< N, j+=block_size) {

for (ii=i; ii<i+block_size; ii++) {
for (jj=i; jj<j +block_size; jj++) {
Aliijjl = AL jjl + Bljj, ii];
}
}




Coding for SMD Architectures 3

For thefirst iteration of theinner loop, each accessto array B will generate a
cache miss. If the size of onerow of array A, that is, A[ 2, 0: MAX- 1], is
large enough, by the time the second iteration starts, each accessto array B
will always generate a cache miss. For instance, on the first iteration, the
cacheline containing B[ 0, 0: 7] will be brought in when B[ 0, 0] is
referenced because the f | oat type variable isfour bytes and each cache
lineis 32 bytes. Due to the limitation of cache capacity, thisline will be
evicted due to conflict misses before the inner loop reaches the end. For the
next iteration of the outer loop, another cache miss will be generated while
referencing B[ 0, 1] . In this manner, a cache miss occurs when each
element of array B isreferenced, that is, thereis no datareuse in the cache at
all for array B.

This situation can be avoided if the loop is blocked with respect to the cache
size. InFigure 3-3, abl ock_si ze isselected as the loop blocking factor.
Suppose that bl ock_si ze is8, then the blocked chunk of each array will
be eight cache lines (32 bytes each). In the first iteration of the inner loop,
A0, 0:7] and B[O, 0:7] will be brought into the cache. B[O, 0:7] will be
completely consumed by the first iteration of the outer loop. Consequently,
B[O, 0:7] will only experience one cache miss after applying loop blocking
optimizationin lieu of eight missesfor the original algorithm. Asillustrated
in Figure 3-3, arrays A and B are blocked into smaller rectangular chunks so
that the total size of two blocked A and B chunksis smaller than the cache
size. This allows maximum data reuse.
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Figure 3-3 Loop Blocking Access Pattern
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Asone can see, al the redundant cache misses can be eliminated by
applying this loop blocking technique. If MAX is huge, loop blocking can
also help reduce the penalty from DTLB (data translation look-ahead
buffer) misses. In addition to improving the cache/memory performance,
this optimization technique also saves external bus bandwidth.

Tuning the Final Application

The best way to tune your application once it is functioning correctly isto

use a profiler that measures the application while it is running on a system.
Intel's VTune analyzer can help you determine where to make changes in
your application to improve performance. Using the VTune analyzer can
help you with various phases required for optimized performance. See
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for more details on using
the VTune analyzer. After every effort to optimize, you should check the
performance gains to see where you are making your major optimization
gains.
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Using
SMD Integer Instructions

The SIMD integer instructions provide performance improvementsin
applications that are integer-intensive and can take advantage of the SIMD
architecture of Pentium® |1 and Pentium IIl processors.

The guidelines for using these instructions in addition to the guidelines
described in Chapter 2t twill help

develop fast and efficient code that scales well across all processors with
MMX™ technology, as well as the Pentium Il and Pentilimprocessors

that use Streaming SIMD Extensions (SSE) with the new SIMD integer
instructions.

General Rules on SIMD Integer Code

The overall rules and suggestions are as follows:

®* Donotintermix MMX instructions, new SIMD integer instructions,
and floating-point instructions. See
section.
®  All optimization rules and guidelines described in Chapters 2 and 3 that
apply to both Pentium 11 and Pentium 111 processors using the new
SIMD integer instructions.

4-1



I Intel Architecture Optimization Reference Manual

Planning Considerations

The planning considerations discussed in

in Chapter 3, apply when considering
using the new SIMD integer instructions available with the Streaming
SIMD Extensions.

Applications that benefit from these new instructions include video
encoding and decoding, as well as speech processing. Many existing
applications may also benefit from some of these new instructions,
particularly if they use MMX technology.

Review the planning considerations in the cited above section in Chapter 3
to determine if an application is computationally integer-intensive and can
take advantage of the SIMD architecture. If any of the considerations
discussed in Chapter 3 apply, the application is a candidate for performance
improvements using the new Pentillirprocessor SIMD integer

instructions, or MMX technology.

CPUID Usage for Detection of Pentium® Il Processor
SIMD Integer Instructions

Applications must be able to determine if Streaming SIMD Extensions are
available. Follow the guidelines outlined in section

in Chapter 3 to identify whether a system (processor and
operating system) supports the Streaming SIMD Extensions.

Using SIMD Integer, Floating-Point, and MMX™
Technology Instructions

The same rules and considerations for mixing MM X technology and
floating-point instructions apply for Pentium 11l processor SIMD integer
instructions. The Pentium 111 processor SIMD integer instructions use the
MMX technology registers, which are mapped onto the floating-point
registers. Thus, mixing Pentium Il processor SIMD integer or MM X
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instructions with floating-point instructions is not recommended.
Pentium 111 processor SIMD integer and MM X instructions, however, can
be intermixed with no transition required.

Using the EMMS Instruction

When generating MM X technology code, keep in mind that the eight MM X
technology registers are aliased on the floating-point registers. Switching
from MMX instructions to floating-point instructions can take up to fifty
clock cycles, so it isthe best to minimize switching between these
instruction types. But when you need to switch, you need to use a special
instruction known as the enrms instruction.

Using emms is like emptying a container to accommodate new content. For
example, MMX instructions automatically enable atag word in the register
to validate the use of the __n64 datatype. This validation resets the FP
register to enableits alias asan MM X technology register. To enable an FP
instruction again, reset the register state with the enms instruction

_m enpty() asillustrated in Figure 4-1.
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Figure 4-1 Using EMMS to Reset the Tag after an MMX Instruction

MMX Instruction Registers Need M54 Data types
1 FP Tag 0 63 MK Registers 0

T 1 (T-T T T Jwmo
C ] (T 11 -1 Juwr

FP Tag Word Aliases FP Registers to Act Like MTX Registers to Accept M54 Data Types

!

Clear Tag Word
with EMMS
_nm_enpty()

FP Instruction Registers Need to be Reset to Accept
FP Data Types of 32, 64, and 80 bits

1FPTag 0 79 FP Registers 0

[T ] I I N I
T ] [(T-TT =T eer

_mm enpty() Clearsthe FP Tag Word and Allows FP Data Types in Registers Again

@ CAUTION. Failureto reset the tag word for FP instructions after using
an MMX instruction can result in faulty execution or poor performance.
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Guidelines for Using EMMS Instruction

When writing an application that uses both floating-point and MM X
instructions, use the following guidelines to help you determine when to use
enms.

* |fnextinstructionisFP—Use mm enpty() after an MMX
instruction if the next instruction is an FP instruction; for example,
before doing calculations on floats, doubles or long doubles.

* Dontempty when already emptff the next instruction uses an MMX
register, nm enpt y() incurs an operation with no benefit (no-op).

®  Group Instructions-Yse different functions for regions that use FP
instructions and those that use MM X instructions. This eliminates
needing an EMM S instruction within the body of acritical 1oop.

®* Runtime initialization-dse _nmm enpt y() during runtime
initialization of __m64 and FP data types. This ensures resetting the
register between data type transitions. See Example 4-1 for coding
usage.

Example 4-1 Resetting the Register between __m64 and FP Data Types

Incorrect Usage Correct Usage
__nmb4 x = _m paddd(y, z); __nmb4 x = _m paddd(y, z);
float f =init(); float f = (_mmenpty(), init());

Further, you must be aware of the following situations when your code
generates an MM X instruction which uses the MM X technology registers
with the Intel C/C++ Compiler:

* whenusing an MMX technology intrinsic

®* whenusing a Streaming SIMD Extension (for those intrinsics that use
MMX technology data)

* whenusing an MMX instruction through inline assembly
®* whenreferencing an __n64 datatype variable
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When devel oping code with both floating-point and MM X instructions,
follow these steps:

1. Alwayscall the enms instruction at the end of MM X technology code
when the code transitions to x87 floating-point code.

2. Insert thisinstruction at the end of all MM X technology code segments
to avoid an overflow exception in the floating-point stack when a
floating-point instruction is executed.

3. Usetheenmnms instruction to clear the MM X technology registers and
set the value of the floating-point tag word to empty (that is, al ones).
Since the Pentium 11l processor SIMD integer instructions use the
MMX technology registers, which are aliased on the floating-point
registers, it iscritical to clear the MM X technology registers before
issuing a floating-point instruction.

The emms instruction does not need to be executed when transitioning

between SIMD floating-point and MM X technology or Streaming SIMD

Extensions SIMD integer instructions or x87 floating-point instructions.

Additional information on the floating-point programming model can be
found in the Pentium Processor Family Developer’'s Manuslume 3,
Architecture and Programming, order number 241430. For more
documentation on enmrs, visittheht t p: / / devel oper.intel.com
web site.

Data Alignment

Make sure your datais 16-byte aligned. Refer to section

for information on both Pentium Il and Pentiliin
processors. Review this information to evaluate your data. If the data is
known to be unaligned, usevups (move unaligned packed single
precision) to avoid a general protection exceptiomifaps is used.

SIMD Integer and SIMD Floating-point Instructions

SIMD integer instructions and SIMD gloating-point instructions can be
intermixed with some restrictions. These restrictions result from their
respective port assignments. Port assignments are shown in Appendix C.
The port assignments for the relevant instructions are shown in Table 4-1.
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Table 4-1 Port Assighments

Port O Port 1

prul huw pshuf w

pmin pextrw

pmax pi nsrw

psadw pm n

pavgw pmax
prmovnskb
psadw
pavgw

SIMD Instruction Port Assignments

All the aboveinstructionsincur one pop with the exception pfadw which
incurs three pops, amd nsr w, which incurs two pops. Note that some
instructions, such gsvi n andpnmax, can execute on both ports.

These instructions can be intermixed with the SIMD floating-point
instructions. Since the SIMD floating-point instructions are two pops,
intermix those with different port assignments from the current instruction
(see Appendix C,lfistruction to Decoder Specificatifn

Coding Techniques for MMX Technology SIMD Integer
Instructions

This section contains several simple examples that will help you to get
started with coding your application. The goal is to provide simple,

low-level operations that are frequently used. The examples use a minimum
number of instructions necessary to achieve best performance on the
Pentium, Pentium Pro, Pentium Il, and Pentliirprocessors.

Each example includes a short description, sample code, and notes if
necessary. These examples do not address scheduling as it is assumed the
examples will be incorporated in longer code sequences.
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Unsigned Unpack

The MMX technology provides several instructions that are used to pack
and unpack datain the MM X technology registers. The unpack instructions
can be used to zero-extend an unsigned number. Example 4-2 assumes the
source is a packed-word (16-bit) data type.

Example 4-2 Unsigned Unpack Instructions

; Input: MWD source val ue
: MW 0O a |l ocal variable can be used
: instead of the register MW if
: desi red.
; Qutput: MWD two zero-extended 32-bit
: doubl ewords fromtwo | ow end
: wor ds
MVIL two zero-extended 32-bit
: doubl ewords fromtwo hi gh-end
: wor ds

novq M7, MMD ; copy source
punpckl wd MVD, MW ; unpack the 2 | ow end words
cinto two 32-bit doubl eword

punpckhwd MML, MW ; unpack the 2 high-end words
cinto two 32-bit doubl ewords

Signed Unpack

Signed numbers should be sign-extended when unpacking the values. This
is done differently than the zero-extend shown above. Example 4-3 assumes
the source is a packed-word (16-bit) data type.
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Example 4-3 Signed Unpack Instructions

[ nput: MWD sour ce val ue

Qut put : MVD two sign-extended 32-bit
doubl ewords fromthe two | ow end
wor ds

VML two sign-extended 32-bit
doubl ewords fromthe two high-end
; wor ds
novq MML, MVD ; copy source
punpckhwdMML, MMD ; unpack the 2 high-end words of the
: source into the second and fourth
. words of the destination
punpckl wdMMD, MMD ; unpack the 2 | ow end words of the
: source into the second and fourth
. words of the destination
psrad MVD, 16 ; sign-extend the 2 | owend words of
; the source into two 32-bit signed
: doubl ewor ds
psrad MML, 16 ; sign-extend the 2 high-end words
. of the source into two 32-bit
; signed doubl ewords

Interleaved Pack with Saturation

The pack instructions pack two values into the destination register in a
predetermined order. Specifically, the packssdwinstruction packs two
signed doublewords from the source operand and two signed doublewords
from the destination operand into four signed words in the destination
register as shown in Figure 4-2.
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Figure 4-2 PACKSSDWmm, mm/mm64 Instruction Example

Figure 4-3 illustrates two values interleaved in the destination register. The
two signed doublewords are used as source operands and the result is
interleaved signed words. The pack instructions can be performed with or

without saturation as needed.

Figure 4-3 Interleaved Pack with Saturation

MM/M64 mm

. b_[¢ LB [ A

-l

[ D ] B,m[mc,[ A

Example 4-4 uses signed doublewords as source operands and the result is
interleaved signed words. The pack instructions can be performed with or

without saturation as needed.
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Example 4-4 Interleaved Pack with Saturation

[ nput: MMD signed sourcel val ue
MML  si gned source2 val ue
Qutput: MWD the first and third words contain the
si gned- sat urat ed doubl ewords from MWD,
the second and fourth words contain
si gned- sat urat ed doubl ewords from MVL

packssdw MWD, MWD ; pack and sign saturate
packssdw MML, MML ; pack and sign saturate

punpcklwd MWD, MML ; interleave the |owend 16-bit
; val ues of the operands

The pack instructions always assume that the source operands are sighed
numbers. The result in the destination register is always defined by the pack
instruction that performs the operation. For example, the packssdw
instruction packs each of the two signed 32-bit values of the two sources
into four saturated 16-bit signed values in the destination register. The
packuswb instruction, on the other hand, packs each of the four signed
16-bit values of the two sourcesinto four saturated eight-bit unsigned values
in the destination. A complete specification of the MM X instruction set can
be found in the Intel Architecture MMX Technology Programmer’s
Reference Manuabrder number 243007.

Interleaved Pack without Saturation

Example 4-5 is similar to the last except that the resulting words are not
saturated. In addition, in order to protect against overflow, only the low
order 16 bits of each doubleword are used in this operation.
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Example 4-5

Interleaved Pack without Saturation
[ nput: MWD si gned source val ue
MVL si gned source val ue

; Qut put: MMD the first and third words contain the

: | ow 16-bits of the doublewords in MWD,

; the second and fourth words contain the
| ow 16-bits of the doublewords in ML

pslld MML, 16 ; shift the 16 LSB fromeach of the
: doubl eword values to the 16 NMSB

; position
pand M, {0,ffff,0,ffff} ; mask to zero the 16 NMSB
of each doubl eword val ue
por MVD, NMML ; merge the two operands

Non-Interleaved Unpack

Figure 4-4

The unpack instructions perform an interleave merge of the data elements of
the destination and source operands into the destination register. The
following example merges the two operands into the destination registers
without interleaving. For example, take two adjacent elements of a
packed-word datatypein sour cel and placethisvaluein thelow 32 bits of
the results. Then take two adjacent elements of a packed-word data typein
sour ce2 and place this value in the high 32 bits of the results. One of the
destination registers will have the combination illustrated in Figure 4-4.

Result of Non-Interleaved Unpack in MMO

mm/m64 mm
[ Zs] 2] Zi ] 2o ] [LT LT LT L
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The other destination register will contain the opposite combination
illustrated in Figure 4-5.

Figure 4-5 Result of Non-Interleaved Unpack in MM1

mm/m64 mm
(L[ 2] 2] 2] [LIL[L] L

Code in the Example 4-6 unpacks two packed-word sourcesin a
non-interleaved way. The goal is to use the instruction which unpacks
doublewords to a quadword, instead of using the instruction which unpacks
words to doublewords.

Example 4-6 Unpacking Two Packed-word Sources in a Non-interleaved Way

[ nput: MWD packed-word source val ue
MML packed-word source val ue

; Qutput: MMD contains the two | owend words of the
original sources, non-interleaved
MW contains the two high end words of the
original sources, non-interleaved.
nmovq M, MWD ; copy sourcel
punpckl dg MM, MML ; replace the two high-end words
; of MOwith two | owend words of
. MML; | eave the two | ow end words
; of MMD in place
punpckhdg MV, MML ; nove two high-end words of MW
; to the two | ow-end words of MW;
pl ace the two hi gh-end words of
MML in two high-end words of MWR
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Complex Multiply by a Constant

Example 4-7

Complex multiplication is an operation which requires four multiplications
and two additions. Thisis exactly how the pnraddwd instruction operates. In
order to use thisinstruction, you need to format the data into four 16-bit
values. The real and imaginary components should be 16-hits each.
Consider Example 4-7:

® Lettheinput databe Dr and Di where Dr isreal component of the data
and Di isimaginary component of the data.

®* Format the constant complex coefficients in memory as four 16-bit
values[Cr -G Cr]. Remember to load the values into the MM X
technology register using a nov q instruction.

® Therea component of the complex product is
Pr = D*Cr - D*C
and the imaginary component of the complex product is
Pi =Dr*Ci + D *Cr.

Complex Multiply by a Constant

; Input: MWD conplex value, Dr, D
: MML constant conplex coefficient in the form

; [C -C O]

Qutput: MMD two 32-bit dwords containing [Pr Pi]
punpckl dq MWD, MVMD ; mekes [Dr Di Dr Di]
prmaddwd MVD, MML ;: done, the result is

[(Dr*Cr-Di *Gi ) (Dr*Gi+Di *Cr)]

Note that the output is a packed doubleword. If needed, a pack instruction
can be used to convert the result to 16-bit (thereby matching the format of
the input).

Absolute Difference of Unsigned Numbers

Example 4-8 computes the absol ute difference of two unsigned numbers. It
assumes an unsigned packed-byte data type. Here, we make use of the
subtract instruction with unsigned saturation. This instruction receives
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UNSI GNED operands and subtracts them with UNSI GNED saturation. This
support exists only for packed bytes and packed words, not for packed
dwords.

Example 4-8 Absolute Difference of Two Unsigned Numbers

; Input: MWD source operand
: MML source operand

Qut put: MMD absolute difference of the unsigned

oper ands
novq MR, MVD ; nmake a copy of MWD
psubusb MWD, MML ; conpute difference one way
psubusb MML, MR ; conpute difference the other way
por MVD, MML ; OR them t oget her

This example will not work if the operands are signed.

Absolute Difference of Signed Numbers
Example 4-9 computes the absolute difference of two signed numbers.

E NOTE. Thereisno MMX technology subtract instruction that receives
SI GNED operands and subtracts them with UNSI GNED saturation.

The technique used hereisto first sort the corresponding elements of the
input operands into packed-words of the maximum values, and
packed-words of the minimum values. Then the minimum values are
subtracted from the maximum values to generate the required absolute
difference. The key is afast sorting technique that uses the fact that

B = xor(A, xor(A B)) and A = xor (A 0).Thusinapacked data
type, having some elements being xor ( A, B) and some being O, you could
xor such an operand with A and receive in some places values of Aand in
some values of B. The following examples assume a packed-word data type,
each element being a signed value.

4-15



I Intel Architecture Optimization Reference Manual

4-16

Example 4-9 Absolute Difference of Signed Numbers

[ nput :

; Qut put :

novq
pcnpgt w

nmovq
pxor

pand

pxor
pxor
psubw

MWD signed source operand
MML si gned source operand

MWD absolute difference of the unsigned

oper ands
MR, MVD ; make a copy of sourcel (A)
MVD, NMML ; create mask of sourcel>source?2
(A>B)
M4, MR ; make anot her copy of A

MW, MML : create the internedi ate val ue of
; the swap operation - xor (A B)
M2, MMD ; create a nmask of 0Os and xor (A B)
: elenents. Where A>B there will
; be a val ue xor (A B) and where
; A<=B there will be O
M4, MW ; mni ma-xor (A swap nmask)

MML, MVB ; maxi ma- xor (B, swap mask)

ML, M4 ; absolute difference =
;maxi ma-n ni ma
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Use Example 4-10 to compute | x| , where x is signed. This example
assumes signed words to be the operands.

Absolute Value

Example 4-10 Computing Absolute Value

I nput: MWD signed source operand
Qut put: MML  ABS( MMVD)

novq VML, MWD ; make a copy of x
psraw MWD, 15 ; replicate sign bit (use 31 if doing
DWORDS)

pxor MWD, MML ; take 1's conpl enent of just the
negative fields

psubs MML, MMD ; add 1 to just the negative fields

@ CAUTION. The absolute value of the most negative number (that is,
8000 hex for 16-bit) does not fit, but this code suggests what is possible
to do for this case: it givesOx7f f f which is off by one.

Clipping to an Arbitrary Signed Range [high, low]

This section explains how to clip asigned value to the signed range [hi gh,

I ow]. Specifically, if thevalueislessthan | ow or greater than hi gh then
clipto | ow or hi gh, respectively. Thistechnique uses the packed-add and
packed-subtract instructions with unsigned saturation, which means that
this technique can only be used on packed-byte and packed-word data types.
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Example 4-11 and Example 4-12 in this section use the constants
packed_nax and packed_mni n and show operations on word values. For
simplicity we use the following constants (corresponding constants are used
in case the operation is done on byte values):

® packed_nax equals Ox7fff7fff7fff 7f f f

® packed_ni n equals 0x8000800080008000

® packedD | ow containsthevalue! ow in all four words of the
packed-words data type

® packed_hi gh containsthevaue hi gh inall four words of the
packed-words data type

® packed_usnmax al valuesequal 1

® high_us addsthe hi gh valueto al data elements (4 words) of
packed_m n

® | ow_us addsthe | ow valueto al data elements (4 words) of
packed_mn

Example 4-11 Clipping to an Arbitrary Signed Range [high, low]

; Input: MWD signed source operands

Qut put: MML signed operands clipped to the unsigned
range [high, |ow

padd MWD, packed_mn ; add with no saturation
; 0x8000 to convert to unsigned

paddusw MWD, (packed_usmax - high_us)
in effect this clips to high
psubusw MWD, (packed_usmax - high_us + | ow_us)
; in effect this clips to low
paddw MWD, packed_| ow ; undo the previous two offsets

The code above converts values to unsigned numbers first and then clips
them to an unsigned range. The last instruction converts the data back to
signed data and places the data within the signed range. Conversion to
unsigned datais required for correct results when (hi gh -1 ow) < 0x8000.
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If (hi gh -1 0ow) >= 0x8000, the algorithm can be simplified as shown in
Example 4-12:

Example 4-12 Simplified Clipping to an Arbitrary Signed Range

; Input: MWD signed source operands

Qut put: MML signed operands clipped to the unsigned
range [high, |ow

paddssw MWD, (packed_max - packed_hi gh)
; in effect this clips to high
psubssw MWD, (packed_usnax - packed_high +

packed_ow) ;
; clips to low
paddw MWD, | ow ; undo the previous two offsets

This algorithm saves a cycle when it isknown that (hi gh -1 ow) >=
0x8000. The three-instruction algorithm does not work when (hi gh - | ow)
< 0x8000, because 0xf f f f minus any number < 0x8000 will yield a
number greater in magnitude than 0x8000, which is a negative number.
When the second instruction,

psubssw MMD, (Oxffff - high + [ow),
in the three-step algorithm (Example 4-12) is executed, a negative number is
subtracted. The result of this subtraction causes the valuesin M\VD to be
increased instead of decreased, as should be the case, and an incorrect
answer is generated.

Clipping to an Arbitrary Unsigned Range [high, low]

The code in Example 4-13 clips an unsigned value to the unsigned range
[hi gh, 1ow].If thevalueislessthan| ow or greater than hi gh, then clip
tol owor hi gh, respectively. This technique uses the packed-add and
packed-subtract instructions with unsigned saturation, thus this technique
can only be used on packed-bytes and packed-words data types.

The exampleillustrates the operation on word values.
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Example 4-13 Clipping to an Arbitrary Unsigned Range [high, low]

[ nput: MWD
; Qut put:  MML
,paddusw
psubusw
paddw

unsi gned sour ce operands

unsi gned operands clipped to the unsigned
range [H GH, LOW //
MWD, Oxffff - high

; in effect this clips to high
MWD, (Oxffff - high + | ow)

in effect this clips to | ow

MVD, | ow

; undo the previous two offsets

Generating Constants

The MMX instruction set does not have an instruction that will load
immediate constants to MM X technology registers. The following code
segments generate frequently used constantsin an MM X technology
register. Of course, you can also put constants as local variablesin memory,
but when doing so be sure to duplicate the values in memory and load the
values with anovq instruction, see Example 4-14.

Example 4-14 Generating Constants

pxor MMD,
pcnpeq MMVL,

pxor VMMD,
pcnpeq MVL,
psubb MWD,

MVD
VML

MVD
MVLL
MVLL

; generate a zero register inMD

; Cenerate all 1's in register MWL,
; whichis -1 in each of the packed
; data type fields

[ psubb MWD, MML] (psubd MVD, MWL)

continued
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Example 4-14 Generating Constants (continued)

three instructions above generate
the constant 1 in every

; packed-byte [or packed-word]

; (or packed-dword) field

pcnpeq MML, MVL
psrlw MML, 16-n (psrld MM, 32-n)

two instructions above generate
the signed constant 21 in every
; packed-word (or packed-dword) field

pcnpeq VML, MWL
psllw MM, n (psl I dvvL, n)

; two instructions above generate
; the signed constant -2Min every
; packed-word (or packed-dword) field

E NOTE. Because the MMX instruction set does not support shift
instructions for bytes, 2n-1 and - 2" are relevant only for packed words
and packed dwords.

Coding Techniques for Integer Streaming SIMD
Extensions

This section contains examples of the new SIMD integer instructions. Each
example includes a short description, sample code, and notes where
necessary.

These short examples, which usually are incorporated in longer code
sequences, do not address scheduling.
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Extract Word

The pext r winstruction takes the word in the designated MM X technology
register selected by the two least significant bits of the immediate value and
moves it to the lower half of a 32-bit integer register, see Figure 4-6 and

Example 4-15.

Figure 4-6 pextrw Instruction

63

MM

X4 X3

X2 X1

31

0.0

X1

Example 4-15 pextrw Instruction Code

I nput: eax source value inmedi ate val ue: “0”

; Output: edx 32-bit integer register containing the
extracted word in the low-order bits & the
high-order bits zero-extended

movg  mmoO, [eax]
pextrw edx, mmO, O

Insert Word

The pinsrw  instruction loads aword from the lower half of a 32-bit integer
register or from memory and insertsit in the MM X technology destination
register at a position defined by the two least significant bits of the
immediate constant. Insertion is done in such away that the three other
words from the destination register are left untouched, see Figure 4-7 and

Example 4-16.
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Figure 4-7 pinsrw Instruction

63 MM 0

X4 X3 Y1 X1

3L R32 K 0

Y2 Y1l

Example 4-16 pinsrw Instruction Code

;I nput: 32-bit integer register: source val ue
immediate value: “1".

; Output: MMX technology register with new 16-bit
value inserted

movg  mmoO, [edx]

pinsrw  mmo, eax, 1

Packed Signed Integer Word Maximum

The pmaxsw instruction returns the maximum between the four signed
words in either two MM X technology registers, or one MM X technology
register and a 64-bit memory location.

Packed Unsigned Integer Byte Maximum

The pmaxub instruction returns the maximum between the eight unsigned
bytes in either two MM X technology registers, or one MM X technology
register and a 64-bit memory location.

Packed Signed Integer Word Minimum

The pminsw instruction returns the minimum between the four signed
wordsin either two MM X technology registers, or one MM X technology
register and a 64-bit memory location.
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Packed Unsigned Integer Byte Minimum

The pni nub instruction returns the minimum between the eight unsigned
bytesin either two MM X technology registers, or one MMX technology
register and a 64-bit memory location.

Move Byte Mask to Integer

The pnovnskb instruction returns an 8-bit mask formed from the most
significant bits of each byte of its source operand, see Figure 4-8 and
Example 4-17.

Figure 4-8 pmovmskb Instruction Example

MM
63 55 47 39 31 23 15 7 0
31
0.0 0.0
7 0
R32
Example 4-17 pmovmskb Instruction Code
; Input: source val ue
; Qutput: 32-bit register containing the byte mask
in the lower eight bits

novq m0, [edi]
prmovnskb eax, mD
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The prrul huw instruction multiplies the four unsigned wordsin the
destination operand with the four unsigned words in the source operand.
The high-order 16 bits of the 32-bit immediate results are written to the
destination operand.

Packed Multiply High Unsigned

Packed Shuffle Word

The pshuf instruction (see Figure 4-9, Example 4-18) uses the immediate
(i mB) operand to select between the four wordsin either two MM X
technology registers or one MM X technology register and a 64-bit memory
location. Bits 1 and O of the immediate value encode the source for
destination word 0 (MvX[ 15- 0] ), and so on as shown in the table:

Bits Word
1-0 0
3-2 1
5-4 2
7-6 3

Bits 7 and 6 encode for word 3 (MVX[ 63- 48] ). Similarly, the 2-bit
encoding represents which source word is used, for example, binary
encoding of 10 indicates that source word 2 (MVR/ men{ 47- 32] ) is used,
see Example 4-18 and Example 4-18.

Figure 4-9 pshuf Instruction Example

63 MM/m64 0

X4 X3 X2 X1

MM

X1 X2 X3 X4

63
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Example 4-18 pshuf Instruction Code

I nput: edi source value
; Qutput: MML MMregister containing the byte mask in
the I ower eight bits
nmovg mMD, [edi]
pshufw mml, mm0, Ox1b

Packed Sum of Absolute Differences

The PSADBWinstruction (see Figure 4-10) computes the absol ute val ue of
the difference of unsigned bytes for either two MM X technology registers,
or one MMX technology register and a 64-bit memory location. These
differences are then summed to produce aword result in the lower 16-bit
field, and the upper three words are set to zero.

Figure 4-10 PSADBW Instruction Example

MM/m64
63 0

X8| X7 | X6 | X5 | X4 | X3 | X2 | X1

63 MM 0
Y8 Y7 | Y6 | Y5 |Y4 | Y3 | Y2 VY1l

63 Temp 0
T8 | T7 | T6 T5 | T4 | T3 | T2 T1

\\_,_/’_\/\_J

15 MM 0

63 47 31
0.0/ 0.0/ 0..0| TL+T2+T3+T4+T5+TE+HT7+T8
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The subtraction operation presented above is an absolute difference, that is,
t = abs(x-y) . Thebytevalues are stored in temporary space, al values
are summed together, and the result is written into the lower word of the
destination register.

Packed Average (Byte/Word)

The pavgb and pavgw instructions add the unsigned data elements of the
source operand to the unsigned data elements of the destination register,
along with a carry-in. The results of the addition are then each
independently shifted to the right by one bit position. The high order bits of
each element are filled with the carry bits of the corresponding sum.

The destination operand is an MM X technology register. The source
operand can either be an MM X technology register or a 64-bit memory
operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW
instruction operates on packed unsigned words.

Memory Optimizations

You can improve memory accesses using the following techniques:
®  Partial Memory Accesses
® Instruction Selection
® Increasing Bandwidth of Memory Fills and Video Fills
* Prefetching data with Streaming SIMD Extensions (see Chapter 6,
« .
The MMX technology registers allow you to move large quantities of data
without stalling the processor. Instead of loading single array values that are

8, 16, or 32 bits long, consider loading the values in a single quadword, then
incrementing the structure or array pointer accordingly.

Any data that will be manipulated by MMX instructions should be loaded

using either:
* the MMX instruction that |oads a 64-bit operand (for example, movq
MVD, n64)
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® theregister-memory form of any MMX instruction that operates on a
guadword memory operand (for example, pnaddw M, nb64)
¢ al SIMD datashould be stored using the MM X instruction that stores a
64-bit operand (for example, movg n64, MWD)
The goal of these recommendationsistwofold. First, theloading and storing
of SIMD datais more efficient using the larger quadword block sizes.
Second, this helps to avoid the mixing of 8-, 16-, or 32-bit load and store
operations with 64-bit MM X technology load and store operations to the
same SIMD data. This, in turn, prevents situations in which small loads
follow large stores to the same area of memory, or large loads follow small
stores to the same area of memory. Pentium 11 and Pentium Il processors
stall in these situations.

Partial Memory Accesses

Let’s consider a case with large load after a series of small stores to the
same area of memory (beginning at memory addresks The large load
will stall in this case as shown in Example 4-19.

Example 4-19 A Large Load after a Series of Small Stalls

nov mem, eax ; store dword to address “mem"
mov mem + 4, ebx ; store dword to address “mem + 4"

movg mmoO, mem ;load qword at address “mem", stalls

The movg must wait for the stores to write memory before it can access all
the datait requires. This stall can also occur with other data types (for

example, when bytes or words are stored and then words or doublewords are
read from the same area of memory). When you change the code sequence
as shown in Example 4-20, the processor can access the data without delay.
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nmovd i, ebx ; build data into a gword first
before storing it to nenory

Example 4-20 Accessing Data without Delay

nmovd m2, eax

psllg mml, 32

por mil, mP

novg mem, mml ; store SIMD variable to “mem" as
; a qword

movq mmO, mem ; load gword SIMD “mem", no stall

Let us now consider a case with a series of small loads after alarge store to
the same area of memory (beginning at memory address men). The small
loads will stall in this case as shown in Example 4-21.

Example 4-21 A Series of Small Loads after a Large Store

movq mem, mmO ; store qword to address “mem"

mov bx, mem + 2 ; load word at “mem + 2" stalls
mov cX, mem + 4; load word at “mem + 4" stalls

Theword loads must wait for the quadword store to write to memory before
they can access the data they require. This stall can al'so occur with other
data types (for example, when doublewords or words are stored and then
words or bytes are read from the same area of memory). When you change
the code sequence as shown in Example 4-22, the processor can access the
datawithout delay.
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Example 4-22 Eliminating Delay for a Series of Small Loads after a Large Store

nmovg mem D ; store gqword to address “mem"
movq mm1l, mem ; load gword at address “mem"
movd eax, mml ; transfer “mem + 2" to eax from

; MMX technology register, not

; memory
psrlg mml, 32
shr eax, 16
movd ebx, mml ; transfer “mem + 4" to bx from

; MMX technology register, not

; memory

and ebx, Offffh

These transformations, in general, increase the number of instructions
required to perform the desired operation. For Pentium Il and Pentium Il
processors, the performance penalty due to the increased number of
instructions is more than offset by the benefit.

Instruction Selection to Reduce Memory Access Hits

An MM X instruction may have two register operands (OP reg, reg ) or
oneregister and one memory operand (OP reg, mem ), where OPrepresents
the instruction opcode, reg represents the register, and menrepresents
memory. OP reg, mem instructions are useful in some cases to reduce
register pressure, increase the number of operations per cycle, and reduce
code size.

Thefollowing discussion assumes that the memory operand is present in the
data cache. If it is not, then the resulting penalty is usualy large enough to
obviate the scheduling effects discussed in this section.

In Pentium processors, OP reg, mem MMX instructions do not have
longer latency than OP reg, reg instructions (assuming a cache hit).
They do have more limited pairing opportunities, however. In Pentium |1
and Pentium Il processors, OP reg, memMMX instructionstrandateinto
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two pops, as opposed to one pop for@hRer eg, reg instructions. Thus,
they tend to limit decoding bandwidth and occupy more resources than
OP reg, reg instructions.

Recommended usage@? r eg, neminstructions depends on whether the

MMX technology code is memory bound (that is, execution speed is limited

by memory accesses). Generally, an MMX technology code section is

considered to be memory-bound if the following inequality is true:
Instructions/2 < Memory Accesses + nhon-MMX Instructions/2

For memory-bound MMX technology code, the recommendation is to
merge loads whenever the same memory address is used more than once.
This reduces the number of memory accesses.

For example,

OP MWD, [address A]
OP MML, [address A]

becomes
nmovg MMVR, [address A]
o° MWD, MW

oP MML, MWR

For MMX technology code that is not memory-bound, load merging is
recommended only if the same memory address is used more than twice.
Where load merging is not possible, usagedsfr eg, neminstructions is
recommended to minimize instruction count and code size.

For example,
nmovg MWD, [address A
oP ML, MM
becomes
oP MML, [address A]

In many cases, @vqg reg, reg andoP reg, nemcan be replaced by a
novqg reg, memandOP reg, reg. This should be done where possible,
since it saves one pop on Pentium Il and Pentiuprocessors.
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The code below, where OP is a commutative operation,

nmovg MML, MVD (1 pop)

OP MM1, [address A] (2 pops)
becomes:

movq MM1, [address A] (1 pop)

OP MM1, MMO (1 pop)

Increasing Bandwidth of Memory Fills and Video Fills

It is beneficial to understand how memory is accessed and filled. A
memory-to-memory fill (for example amemory-to-video fill) isdefined asa
32-byte (cacheline) load from memory which isimmediately stored back to
memory (such as avideo frame buffer). The following are guidelines for
obtaining higher bandwidth and shorter latencies for sequential memory
fills (video fills). These recommendations are relevant for all Intel®
architecture processors with MM X technology and refer to cases in which
the loads and stores do not hit in the second level cache.

Increasing Memory Bandwidth Using the MOVQ Instruction

Loading any value will cause an entire cache line to be loaded into the
on-chip cache. But using novq to store the data back to memory instead of
using 32-hit stores (for example, novd) will reduce by half the number of
stores per memory fill cycle. As aresult, the bandwidth of the memory fill
cycle increases significantly. On some Pentium processor-based systems,
30% higher bandwidth was measured when 64-bit stores were used instead
of 32-bit stores. Additionally, on Pentium Il and Pentium Il processors, this
avoids a partial memory access when both the loads and stores are done
with the MOVQinstruction.

Also, intermixing reads and writes is slower than doing a series of reads
then writing out the data. For example when moving memory, it is faster to
read severa linesinto the cache from memory then write them out again to
the new memory location, instead of issuing one read and one write.

Increasing Memory Bandwidth by Loading and Storing to
and from the Same DRAM Page

DRAM isdivided into pages, which are not the same as operating system
(OS) pages. The size of a DRAM pageis afunction of the total size of the
DRAM and the organization of the DRAM. Page sizes of several Kbytesare
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common. Like OS pages, DRAM pages are constructed of sequential
addresses. Sequential memory accesses to the same DRAM page have
shorter latencies than sequential accesses to different DRAM pages. In
many systems the latency for a page miss (that is, an access to adifferent
page instead of the page previously accessed) can be twice as large as the
latency of amemory page hit (access to the same page as the previous
access). Therefore, if the loads and stores of the memory fill cycle areto the
same DRAM page, a significant increase in the bandwidth of the memory
fill cycles can be achieved.

Increasing the Memory Fill Bandwidth by Using Aligned
STORES

Unaligned stores will double the number of storesto memory. Intel strongly
recommends that quadword stores be 8-byte aligned. Four aligned
quadword stores are required to write a cache line to memory. If the
quadword store is not 8-byte aligned, then two 32-bit writes result from
each MOvVQstore instruction. On some systems, a 20% lower bandwidth was
measured when 64-bit misaligned stores were used instead of aigned
stores.

Use 64-Bit Stores to Increase the Bandwidth to Video

Although the PCI bus between the processor and the frame buffer is 32 bits
wide, using novq to store to video is faster on most Pentium
processor-based systems than using twice as many 32-bit storesto video.
This occurs because the bandwidth to PCI write buffers (which are located
between the processor and the PCI bus) is higher when quadword stores are
used.

Increase the Bandwidth to Video Using Aligned Stores

When a nonaligned store is encountered, there is a dramatic decrease in the
bandwidth to video. Misalignment causes twice as many stores and the
latency of stores on the PCI bus (to the frame buffer) is much longer. On the
PCI bus, it is not possible to burst sequential misaligned stores. On Pentium
processor-based systems, a decrease of 80% in the video fill bandwidthis
typical when misaligned stores are used instead of aligned stores.
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Scheduling for the SIMD Integer Instructions

Scheduling instructions affects performance because the latency of
instructions affects other instructions acting on them.

Scheduling Rules

All MMX instructions can be pipelined, including the multiply instructions
on Pentium 11 and Pentium IIl processors. All instructions take asingle
clock to execute except MM X technology multiply instructions which take
three clocks.

Since multiply instructions take three clocks to execute, the result of a
multiply instruction can be used only by other instructions issued three
clocks later. For this reason, avoid scheduling a dependent instruction in the
two-instruction sequences following the multiply.

The store of aregister after writing the register must wait for two clock
cycles after the update of the register. Scheduling the store of at least two
clock cycles after the update avoids a pipeline stall.



Optimizing
Floating-point Applications

This chapter discusses general rules for optimizing single-instruction,
multiple-data (SIMD) floating-point code and provides examples that
illustrate the optimization techniques for SIMD floating-point applications.

Rules and Suggestions

The rules and suggestions listed in this section help optimize fl oating-point

code containing SIMD floating-point instructions. Generally, it isimportant

to understand and balance port utilization to create efficient SIMD

floating-point code. The basic rules and suggestions include the following:

® Balancethe limitations of the architecture.

® Scheduleinstructions to resolve dependencies.

®  Schedule usage of the triple/quadruple rule (port O, port 1, port 2, 3,
and 4).

®  Group instructions that use the same registers as closely as possible.
Take into consideration the resolution of true dependencies.

® Intermix SIMD floating-point operations that use port 0 and port 1.

® Do not issue consecutive instructions that use the same port.

®  Exceptions: mask exceptions to achieve higher performance.
Unmasked exceptions may cause a reduction in the retirement rate.

®  Utilize the flush-to-zero mode for higher performance to avoid the
penalty of dealing with denormals and underflows.

® Incorporate the prefetch instruction whenever possible (for details,
refer to Chapter 6,C

).
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Try to emulate conditional moves by using masked compares and
logicalsinstead of using conditional jumps.

Use MMX™ technology instructions if the computations can be done
in SIMD integer, for shuffling data, or for copying data that is not used
later in SIMD floating-point computations.

If the algorithm requires extended precision, then conversion to SIMD
floating-point code is not advised because the Streaming SIMD

Extensions for floating-point instructions are single-precision.

Use the reciprocal instructions followed by iteration for increased
accuracy. These instructions yield reduced accuracy but execute much
faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration.
— If near full accuracy is needed, use a Newton-Raphson iteration.

— If full accuracy is needed, then use divide and square root which
provide more accuracy, but slow down performance.

Planning Considerations

Whether adapting an existing application or creating a new one, using
SIMD floating-point instructions to optimal advantage requires
consideration of several issues. In general, when choosing candidates for
optimization, look for code segments that are computationally intensive and
floating-point intensive. Also consider efficient use of the cache
architecture. Intel provides tools for evaluation and tuning.

The sections that follow answer the questions that should be raised before
implementation:

Which part of the code benefits from SIMD floating-point instructions?
Is the current algorithm the most appropriate for SIMD floating-point
instructions?

Is the code floating-point intensive?

Is the data arranged for efficient utilization of the SIMD floating-point
registers?

Isthis application targeted for processors without SIMD floating-point
instructions?
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Which Part of the Code Benefits from SIMD Floating-point
Instructions?

Determine which code will benefit from SIMD floating-point instructions.
Floating-point intensive applications that repeatedly execute similar
operations where operations are repeated for multiple data sets, such as
loops, might benefit from using SIMD floating-point instructions. Other
factors that need to be considered include data organization if the kernel
operation can use paralelism.

If the algorithm employed requires performance, range, and precision, then
floating-point computation is the best choice. If performance is the primary
reason for floating-point implementation, then the algorithm could increase
its performance if converted to SIMD floating-point code.

MMX Technology and Streaming SIMD Extensions Floating-point
Code

When generating SIMD floating-point code, the rules for mixing MMX
technology code and floating-point code do not apply. Since the SIMD
floating-point registers are separate registers and are not mapped onto
existing registers, SIMD floating-point code can be mixed with
floating-point and MM X technology code. The SIMD floating-point
instructions map to the same ports as the MM X technology and
floating-point code. To avoid instruction stalls, consult Appendix C,

“ giwhen writing an application that
mixes these various codes.

Scalar Code Optimization

In terms of performance, the Streaming SIMD Extensions scalar code can
do as well as x87 but has the following advantages:

® Using aflat register model rather than a stack model.

*  Mixing with MMX technology code without penalty.

® Using scalar instructions on packed SIMD floating-point data when
needed, since they bypass the upper fields of the packed data. This
bypassing mechanism allows scalar code to have extra register storage
by using the upper fields for temporary storage.

53



5 Intel Architecture Optimization Reference Manual

The following are some additional points to take into consideration when
writing scalar code:

® Thescalar code can run on two execution ports in addition to the load
and store ports, an advantage over x87 code where it had only one
floating-point execution port.

® Thescaar codeisdecoded as 1 per cycle.

®* Toincrease performance while avoiding this decoder limitation, use
implicit loads with arithmetic instructions that increase the number of
pops decoded.

EMMS Instruction Usage Guidelines

The EMMS instruction sets the values of all the tags in the floating-point
unit (FPU) tag word to empty (all ones).

There are no requirements for using ¢hes instruction when mixing

SIMD floating-point code with either MMX technology code or
floating-point code. Themms instruction need only be used in the context
of the existing rules for MMX technology intrinsics and floating-point code.
It is only required when transitioning from MMX technology code to
floating-point code. See Table 5-1 for details.

Table 5-1 EMMS Instruction Usage Guidelines

EMMS
Flow 1 Flow 2 Required
x87 MMX technology No; ensure that
stack is empty
x87 Streaming SIMD Extensions No; ensure that
stack is empty
x87 Streaming SIMD Extensions- No
SIMD floating-point
MMX technology x87 Yes
MMX technology Streaming SIMD Extensions- No
SIMD integer
MMX technology Streaming SIMD Extensions- No

SIMD floating-point

continued
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Table 5-1 EMMS Instruction Usage Guidelines (continued)

EMMS
Flow 1 Flow 2 Required
Streaming SIMD x87 Yes
Extensions-
SIMD integer
Streaming SIMD MMX technology No
Extensions-
SIMD integer
Streaming SIMD Streaming SIMD Extensions- No
Extensions- SIMD floating-point
SIMD integer
Streaming SIMD x87 No
Extensions-
SIMD floating-point
Streaming SIMD MMX technology No
Extensions-
SIMD floating-point
Streaming SIMD Streaming SIMD Extensions- No

Extensions- SIMD integer
SIMD floating-point

CPUID Usage for Detection of SIMD Floating-point Support

Applications must be able to determine if Streaming SIMD Extensions are
available. Please refer the section “Checking for Processor Support of
Streaming SIMD Extensions and MMX™ Technology” in Chaptfar3he
techniques to determine whether the processor and operating system
support Streaming SIMD Extensions.

Data Alignment

The data must be 16-byte-aligned for packed floating-point operations (that
is, no alignment constraint for scalar floating-point). If the data is not
16-byte-aligned, a general protection exception will be generated. If you
know that the data is not aligned, usertheups (nov unaligned)

instruction to avoid the protection error exception. freups instruction

is the only one that can access unaligned data.
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Accessing data that is properly aigned can save six to nine cycles on the
Pentium® 111 processor. If the datais properly aligned on a 16-byte
boundary, frequent access can provide a significant performance
improvement.

Data Arrangement

Since the Streaming SIMD Extensions incorporate a SIMD architecture,
arranging the data to fully use the SIMD registers produces optimum
performance. This implies contiguous data for processing, which leads to
fewer cache misses and potentially quadruples the speed. These
performance gains occur because the four-element SIMD registers can be
loaded with 128-hit load instructions (movaps — move aligned packed
single precision).

Refer to the far data arrangement
recommendations. Duplicating and padding techniques overcome the
misalignment problem that can occur in some data structures and
arrangements. This increases the data space but avoids the expensive
penalty for misaligned data access.

The traditional data arrangement does not lend itself to SIMD parallel
techniques in some applications. Traditional 3D data structures, for
example, do not lead to full utilization of the SIMD registers. This data
layout has traditionally been an array of structures (AoS). To fully utilize
the SIMD registers, a new data layout has been proposed—a structure of
arrays (SoA). The SoA structure allows the application to fully utilize the
SIMD registers. With full utilization comes more optimized performance.

Vertical versus Horizontal Computation

Traditional 3D data structures do not lend themselves to vertical
computation. The data can still be operated on and computation can
proceed, but without optimally utilizing the SIMD registers. To optimally
utilize the SIMD registers the data can be organized in the SoA format as
mentioned above.
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Consider 3D geometry data organization. One way to apply SIMD
technology to atypical 3D geometry isto use horizontal execution. This
means to parallelize the computation on the x, y, z, and w components of a
single vertex (that is, of asingle vector simultaneously referred to asan xyz
data representation, see the diagram below).

L x | Yy | z | w |

Vertical computation, SoA, is recommended over horizontal, for several
reasons:

*  When computing on asingle vector (xyz), itiscommon to use only a
subset of the vector components; for example, in 3D graphics the W
component is sometimes ignored. This means that for single-vector
operations, 1 of 4 computation slotsisnot being utilized. Thisresultsin
a 25% reduction of peak efficiency, and only 75% peak performance
can be attained.

* It may become difficult to hide long latency operations. For instance,
another common function in 3D graphics is normalization, which
reguires the computation of areciprocal square root (that is, 1/sqrt);
both the division and square root are long latency operations. With
vertical computation (SoA), each of the 4 computation slotsinaSIMD
operation is producing a unique result, so the net latency per slot isL/4
where L isthe overall latency of the operation. However, for horizontal
computation, the 4 computation slots each produce the same result,
hence to produce 4 separate results requires anet latency per slot of L.

How can the data be organized to utilize all 4 computation slots? The vertex
data can be reorganized to allow computation on each component of 4
separate vertices, that is, processing multiple vectors simultaneously. This
will also be referred to as an SoA form of representing vertices data shown
in Table 5-2.

Table 5-2 SoA Form of Representing Vertices Data

VX array X1 X2 X3 X4 Xn
Vy array Y1l Y2 Y3 Y4 ... Yn
Vz array Z1 Z2 Z3 Y4 .. Zn
Vw array w1l w2 W3 w4 Wn
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Figure 5-1

Organizing data in this manner yields a unique result for each

computational slot for each arithmetic operation. Vertical computation takes
advantage of theinherent parallelism in 3D geometry processing of vertices.
It assigns the computation of four vertices to the four compute slots of the
Pentium Il processor, thereby eliminating the disadvantages of the
horizontal approach described earlier. The dot product operation
implements the SoA representation of vertices data. A schematic

representation of dot product operation is shown in Figure 5-1.

Dot Product Operation

X1 X2 X3 X4
X Fx Fx Fx Fx
+ Y1l Y2 Y3 Y4
X Fy Fy Fy Fy
+ Z1 Z2 Z3 Z4
X Fz Fz Fz Fz
+ W1 W2 W3 W4
X Fw Fw Fw Fw
= R1 R2 R3 R4

Example 5-1 shows how 1 result would be computed for 7 instructionsiif the
datawere organized as A0S. Hence 4 results would require 28 instructions.
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Example 5-1 Pseudocode for Horizontal (xyz, AoS) Computation

nmul ps ;oOX*X, yry, z*z’

novaps ; reg->reg nove, since next steps overwite
shuf ps ; get b,a,d,c froma,b,c,d

addps ; get a+tb, a+b, c+d, c+d

novaps ; reg->reg nove

shuf ps ; get c+d, c+d, atb,atb from prior addps
addps ; get atb+c+d, atb+c+d, a+b+c+d, atb+c+d

Now consider the case when the data is organized as SoA. Example 5-2
demonstrates how 4 results are computed for 5 instructions.

Example 5-2 Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

nmul ps x*x' for all 4 x-conponents of 4 vertices
mul ps y*y' for all 4 y-conponents of 4 vertices
mulps ; z*z' for all 4 z-conponents of 4 vertices
addps ; x*x' + y*y’

addps ; X*XxX’ +y*y’ +z*z’

For the most efficient use of the four component-wide registers,
reorganizing the datainto the SoA format yields increased throughput and
hence much better performance for the instructions used.

As can be seen from this simple example, vertical computation yiel ded

100% use of the available SIMD registers and produced 4 results. If the data
structures are restricted to a format that is not “friendly to vertical
computation,” it can be rearranged “on the fly” to achieve full utilization of
the SIMD registers. This operation referred to as “swizzling” and the
“deswizzling” operation are discussed in the following sections.
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Example 5-3

Data Swizzling

In many agorithms, swizzling datafrom one format to another is required.

An example of thisis AoS format, where the vertices come asxyz adjacent
coordinates. Rearranging them into SoA format, xxxx, yyyy, zzzz, alows
more efficient SIMD computations. The following instructions can be used
for efficient data shuffling and swizzling:

®* novl ps, novhps load/store and move data on half sections of the
registers

® shuffps, unpackhps, and unpackl ps unpack data

To gather data from 4 different memory locations on the fly, follow steps:

1. identify thefirst half of the 128-bit memory location.

2. group the different halves together using the nov| ps and novhps to
form an xyxy layout in two registers

3. fromthe 4 attached halves, get thexxxx by using one shuffle, theyyyy
by using another shuffle.

Thezzzz isderived the same way but only requires one shuffle.
Example 5-3 illustrates the swizzle function.

Swizzling Data

typedef struct _VERTEX ACS {

float x, y, z, color;
} Vertex_aos; /'l AoS structure declaration
typedef struct _VERTEX SQA {

float x[4], float y[4], float z[4];

float color[4];

} Vertex_soa; /'l SoA structure declaration
void swizzle_ asm (Vertex_aos *in, Vertex_soa *out)
{

[l in mem x1lylzlwl-x2y2z2w2-x3y3z3w3-x4y4z4wd-
Il SW ZZLE XYZW - -> XXXX
asm {
nov  ecx, in /'l get structure addresses
nmov edx, out

continued
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Example 5-3 Swizzling Data (continued)

nmovl ps xmi/, [ecx] [l xmv7 = -- -- yl x1
nmovhps xmv, [ecx+16] [/ xmm¥ = y2 x2 yl x1
nmovl ps xm®O, [ecx+32] [/ xmmD = -- -- y3 x3
nmovhps xmO, [ecx+48] [/ xmmD = y4 x4 y3 x3
novaps xmb, Xxmv [l xm6 =yl x1 yl x1

shuf ps xmm¥, xnmD, 0x88// xmmV = x1 x2 x3 x4 => X
shuf ps xmm6, xnm0D, OxDD// xmmb6 = yl y2 y3 y4 =>Y
nmovl ps xm®2, [ecx+8] [ xmR = -- -- wl z1
novhps xm®, [ecx+24] [/ xmR = w2 z2 ul z1

nmovl ps xml, [ecx+40] // xnmml = -- -- s3 z3
nmovhps xml, [ecx+56] // xnml = w4 z4 w3 z3
novaps xmmo0, xmR [l xmD = wl z1 wl z1

shuf ps xnm®2, xnml, 0x88// xmR = z1 z2 z3 z4 => Z
shuf ps xmm©0, xnml, OxDD// xmm6 = wl w2 w3 w4 => W
novaps [edx], xnmv /] store X

novaps [edx+16], xnmb /] store Y

novaps [edx+32], xnmR /'l store Z

novaps [edx+48], xnmD /'l store W

Il SWZZLE XYZ -> XXX

}

Example 5-4 shows the same data swizzling algorithm encoded using the
Intel® C/C++ Compiler’s intrinsics for Streaming SIMD Extensions.
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Example 5-4 Swizzling Data Using Intrinsics

/l1ntrinsics version of data sw zzle
void swizzle_intrin (Vertex_aos *in, Vertex_soa *out,
int stride)

{
_ m28 x, vy, z, W
_ ml28 tnp;

x = _mmloadl _pi(x,(__nmB4 *)(in));

x = _mm.loadh_pi(x,(__nbB4 *)(stride + (char *)(in)));
y = _mmloadl _pi(y,(__nb4 *)(2*stride+char *)(in)));

y = _mmloadh_pi(y,(__nb4 *)(3*stride+(char *)(in)));
tnp = _mmshuffle_ps( x, y, _MM SHUFFLE( 2, 0, 2, 0));
y = _mmshuffle_ps( x, y, _MMSHUFFLE( 3, 1, 3, 1));

X = tnp;

z = _mmloadl pi(z,(__nm64 *)(8 + (char *)(in)));
z = _mm.loadh_pi(z,(__nm64 *)(stride+8+(char *)(in)));
w = _mm | oadl _pi(w, (__nmb64 *)(2*stride+8+(char*)(in)));
w = _mm | oadh_pi( w, (__nb64
*)(3*stride+8+(char*)(in)));
w = _mmshuffle_ps( z, w, _MM SHUFFLE( 3, 1, 3, 1));
z = tnp;
tnp = _mmshuffle_ps( z, w, _MM SHUFFLE( 2, 0, 2, 0));
_mm st ore_ps(&out->x[0], x);
_mm store_ps(&out->y[0], Vy);
_mm store_ps(&out->z[0], 2z);
_nmm store_ps(&out->w 0], w);
}
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CAUTION. Avoid creating a dependency chain from previous
computations because the novhps/nov| ps instructions bypass one part
of the register. The same issue can occur with the use of an exclusive-OR
function within an inner loop in order to clear aregister:

XORPS %xmmO0, %xmm0O; All 0’s written to xmmO

Although the generated result of al zeros does not depend on the specific
data contained in the source operand (that is, XOR of aregister with itself
always produces all zeros), the instruction cannot execute until the
instruction that generates xnm0 has completed. In the worst case, this
creates a dependency chain that links successive iterations of the loop, even
if those iterations are otherwise independent; the resulting performance
impact can be significant depending on how much other independent
intra-loop computation is being performed.

The same situation can occur for the above novhps/novl ps/shuf ps
sequence. Since each novhps/novl ps instruction bypasses part of the
destination register, the instruction cannot execute until the prior instruction
to generate this register has completed. Aswith the xor ps example, in the
worst case this dependency can prevent successive loop iterations from
executing in parallel.

A solutionistoinclude a 128-bit load (that is, from adummy local variable,
such ast np in Example 5-4) to each register to be used with a
movhps/movl ps instruction; this action effectively breaks the dependency
by performing an independent load from a memory or cached location.

Data Deswizzling

In the deswizzle operation, we want to arrange the SoA format back into
AoSformat so the xxxx, yyyy, zzzz arerearranged and stored in memory
asxyz. To do thiswe can use the unpckl ps/unpckhps instructions to
regenerate the xy xy layout and then store each half (xy) into its
corresponding memory location using novl ps/movhps followed by
another novl ps/movhps to store the z component.
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Example 5-5 illustrates the deswizzle function:

Example 5-5 Deswizzling Data

voi d deswi zzl e_asn(Vertex_soa *in,

{
__asm{

nov ecx, in

nov edx, out
novaps xm, [ecx]
novaps xmb, [ecx+16]
novaps xmb, [ecx+32]
novaps xmmd, [ecx+48]

Vertex_aos *out)

/'l load structure addresses
/1l load x1 x2 x3 x4 => xmmv
/1 load yl y2 y3 y4 => xmmb
/'l load z1 z2 z3 z4 => xmmb
/[l load wi w2 w3 w4 => xmm#

/'l START THE DESW ZZLI NG HERE

novaps xmm0, xmmv/ /1 xmmD= x1 x2 x3 x4
unpckl ps xnmmi7, xnmm6 [ xmv7= x1 y1 x2 y2
novl ps [edx], xmmV /1 vl = x1yl -- --
novhps [edx+16], xmV // v2 = x2 y2 -- --
unpckhps xnmm0, xnmb6 /1 xmmD= x3 y3 x4 ydnovl ps
[edx+32], xmD // v3 = x3 y3 -- --
nmovhps [edx+48], xmOD // v4 = x4 y4 -- --
novaps xmmO, xmmb /'l xm0= z1 z2 z3 z4
unpckl ps xmmb, xmmi /1 xmb= z1 wl z2 w2
unpckhps xmm0, xmmi /1 xmD= z3 W3 z4 w4
novl ps [edx+8], xmmb // vl = x1 yl z1 w1
nmovhps [edx+24], xmb // v2 = x2 y2 z2 W2
novl ps [edx+40], xmD // v3 = x3 y3 z3 W3
novhps [edx+56], xmD // v4 = x4 y4 z4 w4
/| DESW ZZLI NG ENDS HERE
}
}

5-14
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You may have to swizzle datain the registers, but not in memory. This
occurs when two different functions want to process the data in different
layout. In lighting, for example, datacomesasr rrr gggg bbbb aaaa, and
you must deswizzle them into r gba before converting into integers. In this
case you use the novl hps/ novhl ps instructions to do the first part of the
deswizzle, followed by shuf f | e instructions, Example 5-6 and Example
5-7.

Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions

voi d deswi zzl e_rgb(Vertex_soa *in, Vertex_aos *out)

{

e deswi zzle rgh---------------

[l xmml = rrrr, xm®2 = gggg, xmB = bbbb, xm¥ = aaaa

(assuned)

__asm{

nov ecx, in /1 1 oad structure addresses
nov edx, out
novaps xnmmil, [ecx] /1 load r1 r2 r3 r4 => xmil

novaps xme, [ecx+16] /'l load gl g2 g3 g4 => xmm®R

novaps xmmB, [ecx+32] /'l 1oad bl b2 b3 b4 => xmmB

novaps xmmd, [ecx+48] /'l load al a2 a3 a4 => xmmi
/] Start deswi zzling here

novaps xmv, xmm# /[l xmv7= al a2 a3 a4
nmovhl ps xmv, xmB /1 xmV= b3 b4 a3 a4
novaps xmb, xmi /'l xmm6= gl g2 g3 g4

novl hps xmB, xm /] xmmB= bl b2 al a2
novhl ps xmm2, xmil /'l xmm@=r3 r4 g3 g4
movl hps xmmil, xmb [l xmil=rl r2 gl g2
novaps xmb, xmi /'l xm6=r3 r4 g3 g4
novaps xmb, xmil /1 xmb=rl r2 gl g2

shuf ps xmm®2, xmmi7, OxDD // xmmR= r4 g4 b4 a4
shufps xml, xmmB, 0x88 // xmmi=rl gl bl al
shuf ps xmmb, xmmB, 0x88 // xmb= r2 g2 b2 a2
shuf ps xmm6, xmm7, OxDD // xmrb6= r3 g3 b3 a3

continued
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Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions

(continued)

novaps [edx], xmm

novaps [edx+16], xnmb
novaps [edx+32],
novaps [edx+48],

/1 vl =r1 gl bl al

/[l v2 =712 g2 b2 a2
X6 /1 v3 =r3 g3 b3 a3
xR /'l v4 = r4 g4 b4 a4

/| DESW ZZLI NG ENDS HERE

}

Example 5-7 Deswizzling Data Using Intrinsics with the movlhps and shuffle

Instructions

voi d mmx_deswi zzl e( | Vertex_soa *in,

{
_asm{
nmov ebx, in
nmov edx, out
nmovg nmmD, [ebx]
novq nmi,
movg 2, mo
punpckhdg m®D, mml
punpckldg m2, mml
novq [edx], mmR
novqg [ edx+8], mmD
nmovg My, [ ebx+8]
nmovg mb, [ ebx+24]
novgq M6, M
punpckhdg nmm4, nmb
punpckl dg nmm6, nmb
novq [edx+16], nmb
novq [edx+24], nmd
}
}

| Vertex_aos *out)

[/ nmD= ul u2

[ebx+16] // nml= v1 v2

/1 mR2= ul u2
/[l mD= ul vl
[l mD= u2 v2

/'l store ul vl
/'l store u2 v2
/1 mO0= u3 u4

/'l mmil= v3 v4
[l mR2= u3 u4
/1 mD= u3 v3
[l mO0= ud v4
/'l store u3v3

/'l store u4v4
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Using MMX Technology Code for Copy or Shuffling
Functions

If there are some parts in the code that are mainly copying, shuffling, or
doing logical manipulations that do not require use of Streaming SIMD
Extensions code, consider performing these actions with MM X technology
code. For example, if texture datais stored in memory as SoA (uuuu, vvvv)
and they need only to be deswizzled into AoS layout (uv) for the graphic
cards to process, you can use either the Streaming SIMD Extensions or
MMX technology code, but MM X technology code has these two
advantages:
® The MMX instructions can decode on 3 decoders while Streaming
SIMD Extensions code uses only one decoder.

®* TheMMX instructionsalow you to avoid consuming Streaming SIMD
Extension registers for just rearranging data from memory back to
memory.

Example 5-8 illustrates how to use MM X technology code for copying or
shuffling.

5-17
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Example 5-8 Using MMX Technology Code for Copying or Shuffling

asn("novg TRI COUNT*12( %ebx, %si, 4),%m0"); // mD= ul
u2

asn("novg TRI COUNT*16( %ebx, %si, 4),%ml"); // nmml= vl
v2

asn("novg %m0, %mR2") ; [l mR2= ul u2

asn( " punpckhdq %, %mD");// mD= ul vl

asn( " punpckl dg %, %mR");// mD= u2 v2

asn( " novq %m0, 24+0*32(%edx)");// store ulvl
asn( " novq %wm2, 24+1*32(%edx)");// store u2v2
asn( " novq TRI COUNT* 12( %ebx, %esi, 4), %mi"); [/
m0= u3 u4

shoul d be address+8
asn( " novq TRI COUNT* 16( %ebx, %esi, 4), %mb"); //
mil= v3 v4

shoul d be address+8
asn( " novq %, %mb" ) ; // mR= u3 ud
asn( " punpckhdq %mb, %m%");// mD= u3 v3
asn( " punpckl dg %mb, %mb");// mD= ud v4
asn( " novq %md, 24+0*32(%edx)");// store u3v3
asn( " novq %mb, 24+1*32(%edx)");// store udv4

Horizontal ADD

Although vertical computations use the SIMD performance better than
horizontal computations do, in some cases, the code must use a horizontal
operation. The novl hps/ novhl ps and shuffle can be used to sum data
horizontally. For example, starting with four 128-bit registers, to sum up
each register horizontally while having the final results in one register, use
the novl hps/ novhl ps instructions to align the upper and lower parts of
each register. Thisallowsyouto use avertical add. With the resulting partial
horizontal summation, full summation follows easily. Figure 5-2
schematically presents horizontal add using movhlps/movlhps, while
Example 5-9 and Example 5-10 provide the code for this operation.



Optimizing Floating-point Applications 5

Figure 5-2 Horizontal Add Using movhlps/movlhps

xmmO xmm1 xmm2 xmm3
movlhps movhlps movlhps movhlps

shufps shufps

addps
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Example 5-9 Horizontal Add Using movhlps/movlhps

voi d horiz_add(Vertex_soa *in, float *out) {

_asm{
nmov ecx, in /] 1oad structure addresses
nmov edx, out
novaps xmO, [ecx] /1 load Al A2 A3 A4 => xmD

novaps xmml, [ecx+16] // load Bl B2 B3 B4 => xmrl
novaps xm®, [ecx+32] // load C1L C2 C3 &4 => xmR
novaps xmB, [ecx+48] // load D1 D2 D3 D4 => xmB

/1 START HORI ZONTAL ADD
nmovaps xmmb, xnmD // xmmb= Al, A2, A3, A4
nmovl hps xmmb, xmml // xmb= Al, A2, B1, B2
nmovhl ps xnml, xnmD // xmil= A3, A4, B3, B4
addps xmb, xmml // xmmb= A1+A3, A2+A4, B1+B3, B2+B4
novaps xm#, xmmP
nmovl hps xmm2, xmB // xmR= C1, C2, D1, D2
nmovhl ps xmmB, xnmd // xmB= C3, C4, D3, D4
addps xmB, xmmR // xmB= C1+C3, C2+C4, D1+D3, D2+D4
novaps xmmb, xmmb // xmmb= Al+A3, A2+A4, B1+B3, B2+B4
shuf ps  xmB, xmB, 0x31

[ | xnb6=A1+A3, B1+B3, C1+C3, D1+D3
shuf ps xmmb, xnmmB, OxAA
Il xnmb= A2+A4, B2+B4, C2+C4, D2+D4

addps xmm6, xmmb // xmmb= D, C B, A

/1 END HORI ZONTAL ADD
novaps [edx], xnmb
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Example 5-10 Horizontal Add Using Intrinsics with movhlps/movlhps

void horiz_add_intrin(Vertex_soa *in, float *out)

{
_ m28 vl1, v2, v3, v4,
28 tnmD, t rml, t 2, t mB, t M, t b, t mB;
/| Tenporary vari abl es

tm0 = _mmload_ps(in->x);//tmmD = Al A2 A3 A4
trml = _nmload_ps(in->y);//tmil = Bl B2 B3 B4
tmm2 = _mmload_ps(in->z);//tm2 = CL C2 C3 4
trmB = mmload_ps(in->w);//tmB8 = D1 D2 D3 D4
tmb = t moD; [1tmD = Al A2 A3 A4
tmb = _mm novel h_ps(tmb, tnml);//tmb = AL A2 Bl B2
tnmml = _mm novehl _ps(tnml, tnmD);//tml = A3 A4 B3 B4
tnmb = _mm add_ps(tnmb, tnml);

/1tmb = AL+A3 A2+A4 B1+B3 B2+B4
tmd = tme;
tmm®2 = _mm novel h_ps(tm®, tmm8);//tm2 = C1L C2 D1 D2
tnmmB = _mm novehl _ps(tmB, tn);//tmB = C3 C4 D3 D4
tnmB = _mm add_ps(tmmB, tmmR);

/1tmB = CL+C3 C2+C4 D1+D3 D2+D4
tmé = t mb; [1tmé = AL+A3 A2+A4 B1+B3 B2+B4
tmé = _mm shuffle_ps(tm®b, tmB, 0x88);

/1tmb = AL+A3 B1+B3 Cl1+C3 D1+D3
tmmb = _mm shuffle_ps(tmmb, tmmB, 0xDD);

[1tmb = A2+A4 B2+B4 C2+C4 D2+D4
tnm6é = _nmm add_ps(tnm6, tnmmb);

[1tmb = AL+A2+A3+A4 Bl+B2+B3+B4

/| C1+C2+C3+C4 D1+D2+D3+D4
_mm store_ps(out, tnmb);

}
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Scheduling

Instructions using the same registers should be scheduled close to each
other. There are two read ports for registers. You can obtain the most
efficient code if you schedule those instructions that read from the same
registers together without severely affecting the resolution of true
dependencies. As an exercise, first examine the non-optimal codein thefirst
block of Example 5-11, then examine the second block of optimized code.
The reads from the registers can only read two physical registers per clock.

Example 5-11 Scheduling Instructions that Use the Same Register

int toy(unsigned char *sptrl

unsi gned char

__asm{
push

novq
pxor
pxor
pxor
pxor
nov
top_of _| oop:
novq
novq
paddw
prul Iw i,
novq
novq
paddw

ecx,

nmm,
mb,

mb,
mv,

*sptr2)
[ebp+8] /1
[ ebp+12] //
[ eax]

[ ebx]

mmD /1
mmb /1
b /1
mv/ 11
256 // initi

[ ebx+ecx+8]
[ eax+ecx+8]
mb

[ ebx+ecx+16]
[ eax+ecx+16]
mb

sptrl
sptr2
initialize
initialize
initialize
initialize

alize | oop

moD to O
mb to 0
mb to O
mv to O
count er

continued
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Example 5-11 Scheduling Instructions that Use the Same Register (continued)

prul lw m2, m#
novq i, [ ebx+ecx+24]
novq nm6, [eax+ecx+24]
paddw mO, mv

prmul lw m8B, mb
novq mb, [ebx+ecx+32]
novq mv, [eax+ecx+32]
paddw mil, D

prul lw m4, mb
novq nm6, [ebx+ecx+40]
novq m0, [eax+ecx+40]
paddw m2, mrl

prmul lw mb, mv
novq mv, [ebx+ecx+48]
novq nl, [eax+ecx+48]
paddw mB, m2

pmul lw m6, moD
novq m0, [ebx+ecx+56]
novq 2, [eax+ecx+56]
paddw m%, mB

prul lw  mv, il
novq nml, [ebx+ecx+64]
novq mB, [eax+ecx+64]
paddw b, i

pmul lw m0O, m®
novq 2, [ebx+ecx+72]
novq i, [eax+ecx+72]
paddw 6, nmb

continued
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Example 5-11 Scheduling Instructions that Use the Same Register (continued)

prmul lw nml, mmB
sub ecx, 64
ig top_of _| oop
/1 no horizontal reduction needed at the end
nmovd [eax], mmB
pop ecx

Try to group instructions using the same registers as closely as possible.
Also try to schedule instructions so that datais still in the reservation station
when new instructions that use the same registers are issued to them. The
source remains in the reservation station until the instruction is dispatched.
Now you can bypass directly to the functional unit because dependent
instructions have spaced far enough away to resolve dependencies.

Scheduling with the Triple-Quadruple Rule

Schedule instructions using the triple/quadruple rule, add/mul t /I oad, and
combine triplets from independent chains of instructions. Split
register-memory instructions into aload followed by the actual
computation. As an example, split addps xmm0, [edi] intonovaps
xml, [edi] andaddps xmm®, xmmil. Increase the distance between the
load and the actual computation and try to insert independent instructions
between them. This technique works well unless you have register pressure
or you are limited by decoder throughput, see Example 5-12.
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Example 5-12 Scheduling with the Triple/Quadruple Rule

int toy(sptrl, sptr2)
_ b4 *sptrl, *sptr2;

{
b4 srcl; /* source 1 */
__nb4 srcz; /* source 2 */
__nb4 m [* mul */
__nb4 result; /* result */
i nt i
resul t =0;
for(i=0; i<n; i++, sptrl += stride,sptr2 += stride) {
srcl = *sptrl,;
src2 = *sptr2,;
m = _mprmul w(srcl, src2);
result = _mpaddwresult, n;
srcl = *(sptrl+l);
src2 = *(sptr2+1);
m = _m pmul w(srcl, src2);
result = _mpaddw(result, m;
}
return( _mto_int(result) );
}

Modulo Scheduling (or Software Pipelining)

This particular approach to scheduling known as modulo scheduling
achieves high throughput by overlapping the execution of several iterations
and thus helps to reduce register pressure. The technique uses the same
schedule for each iteration of aloop and initiates successive iterations at a
constant rate, that is, one initiation interval (11) clocks apart. To effectively
code your algorithm using this technique, you need to know the following:
® instruction latencies

® thenumber of available resources

* availability of adequate registers
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Figure 5-3

Consider asimple loop that fetchessr c1 and sr c2 (likein Example 5-12),
multiplies them, and accumul ates the multiplication result. The assumptions
are:

Instruction Latency Throughput
Load 3 clocks 1 clock
Multiply 4 clocks 2 clocks
Add 1clock 1 clock

Now examine this simple kernel’s dependency graph in Figure 5-3, and the
schedule, in Table 5-3.

Modulo Scheduling Dependency Graph
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Table 5-3 EMMS Modulo Scheduling

clk load mul add
0 lds1

1 Idt1

2 Idt2

3 lds2

4 mull

5

6 mul2

7

8 add1l
9

10 add2

Now starting from the schedule for one iteration (above), overlap the
schedule for several iterationsin a spreadsheet or in atable as shownin
Table 5-4

Table 5-4 EMMS Schedule — Overlapping Iterations

clk load mul add

lds1 prolog
Idt1

lds2

Idt2

lds3 mull

1dt3

lds4 mul2

Idt4

~N o o0~ WN P O

continued
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Table 5-4 EMMS Schedule — Overlapping lterations  (continued)

clk load mul add

8 lds5 mul3 addl steady state

9 1dt5

10 lds6 mul4 add2

11 Idt6

12 mul5 add3 epilog

13

14 mul6 add4

15

16 add5

17

18 add6
Careful examination of this schedule shows that steady state execution for
this kernel occurs after two iterations. Aswith any pipelined loop, thereisa
prolog and epilog. Thisis also referred to as loop setup and loop shutdown,
or filling the pipes and flushing the pipes.
Now assumetheinitiation interval MRT (Il = 4) and examine the schedulein
Table 5-5.

Table 5-5 Modulo Scheduling with Interval MRT (11=4)

MRT(l1=4)
clk load mul add
0 Id mul add
1 Id
2 Id mul add
3 Id

How do we schedule this particular scenario and allocate registers? The
Pentium 11 and Pentium Il processors can execute instructions out of order.
Example 5-13 shows an improved version of the code, with proper
scheduling resulting in 20% performance increase.
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Example 5-13 Proper Scheduling for Performance Increase

int toy(sptrl,
unsi gned char *sptri,

{
asn( " pushl

asn( " novl
asn( " novl
asn( " novq
asn( " novq
asn( " pxor
asn( " pxor
asn{ " pxor
asn{ " pxor

asn( " novl
counter

sptr2)

*sptr2,;
%ecx");
12(%bp), %bx"); // sptrl
8(%bp), Yeax"); /| sptr2
(%eax, %ecx), %mi");
(%ebx, %ecx), %mB");
%mO, %m0"); // initialize mD to O
%mb, %mb"); // initialize mb to O
%Mo, %me"); // initialize mb to O
oM/, %mv"); // initialize mv to O
16*stride, %cx"); // initialize |oop

asn("top_of _| oop:");

asn( " novq
asn( " novq
asn( " paddw
asn( " pmul w
asn( " novq
asn( " novq
asn( " paddw
asn( " pmul w
asn( " novq
asn( " novq
asn( " paddw
asn( " pmul w
asn( " novq
asn( " novq
asn( " paddw
asn( " pmul w
asn( " novq
asn( " novq

8( %ebx, %ecx), %mR");

8( %eax, %ecx), %mi");

%mb, %me") ;

%ms, %miL")

stride(%bx, %ecx), %mB");
stride(%ax, %ecx), %mb");
%mb, %mv") ;

%, %me") ;
stride+8( % bx, %ecx), %myd");
stride+8( % ax, %ecx), %mb");
%mv/, %mo") ;

%mb, %mB") ;

2*stri de(%bx, %ecx), %mb");
2*stri de(%ax, %ecx), %mv");
%m0, %" ) ;

%mb, %" ) ;
2*stri de+8( % bx, %ecx), %mb");
2*stri de+8(%ax, ¥ecx), %mo");

continued
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Example 5-13 Proper Scheduling for Performance Increase (continued)

asn( " paddw %L, %mR") ;

asn("pmul w %m7, %mb") ;

asn( " novq 3*stride(%bx, %ecx), %mv");
asn( " novq 3*stride(%ax, %ecx), %mi");
asn( " paddw %mi2, %mB") ;

asn("pmul w %mO0, %mb") ;

asn( " novq 3*stri de+8( % bx, ¥%ecx), %m0");
asn( " novq 3*stri de+8(%ax, ¥ecx), %mR");
asn( " paddw %mB, %méd") ;

asn("pmul w %L, %mv") ;

asn( " novq 4*stride(%bx, %ecx), %mil");
asn( " novq 4*stride(%ax, %ecx), %mB");
asn( " paddw %md, %mb") ;

asn("pmul w %m2, %mo0") ;

asn( " novq 4*stri de+8( %ebx, %ecx), %mR");
asn( " novq 4*stri de+8( %ax, ¥ecx), %m#");
asn( " paddw %mb, %mb") ;

asn("pmul w %mB, %mi") ;

asn( " subl 4*stride, %ecx");

asn("jg top_of _| oop");

/1 no horizontal reduction needed at the end
asn( " novd %Mo, Y%eax");

asn( " popl %ecx");

}

Example 5-13 also shows that to achieve better performance, it is necessary
to expose the instruction level parallelism to the processor. In exposing the
paralelism keep in mind these considerations:

® Usethe availableissue ports.

® Expose independent instructions such that the processor can schedule
them efficiently.
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Scheduling to Avoid Register Allocation Stalls

After the pops are decoded, they are allocated into a buffer with the
corresponding data sources to be dispatched to the execution units. If the
sources are already in the dispatch buffer from previous producers of those
sources, then no stalls will happen. However, if producers and consumers
are separated further than needed to resolve dependency, then the producer
results will no longer be in the dispatch buffer when they are needed for the
consuming pops. The general rule of thumb is to try to balance the distance
between the producers and consumers so that dependency will have some
time to resolve, but not so much time that results are not lost from the buffer.

Forwarding from Stores to Loads

Be careful when performing loads from a memory location that was
previously and recently stored, since certain types of store forwarding may
incur a longer latency than others. In particular, storing a result that has a
smaller data size than that of the following load, may result in a longer
latency than if a 64-bit load is used. An example of this is two 64-bit MMX
technology storesrpvq) followed by a 128-bit Streaming SIMD

Extensions loadnfovaps).

Conditional Moves and Port Balancing

Conditional moves emulation and port balancing can greatly contribute to
your application’s performance gains using the techniques explained in the
following sections.

Conditional Moves

If possible, emulate conditional moves by using masked compares and
logical instructions instead of conditional branches. Mispredicted branches
impede the Pentiurl processor’s performance. In the Pentium Il and
Pentiumlll processors prior to processors with Streaming SIMD
Extensions, execution Port 1 is solely dedicated to 1-cycle latency pops (for
examplecj np). In the Pentiunill processor, additional execution units

were added to Port 1, to execute new 3-cycle latency pdpsg, subps,
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maxps...), in addition to the 1-cycle latency pops. Thus, single-cycle pops,
includingcj np pop, can be delayed more than in previous Pentium
processors.

Throttling cj np pops delays resolution of mispredictédp pops.
Potentially, this can increase the length of the speculation and possibly
execute on an incorrect path. Usev instead ot np instruction. In the
Streaming SIMD Extensions, tle¢ np instruction can be emulated using a
combination ofcMPPS instruction and logical instructions.

Example 5-14 shows two loops: the first implements conditional branch
instruction, the second omits this instruction.

Example 5-14 Scheduling with Emulated Conditional Branch

/] Condi tional branch included

| oopMax:

crpnl eps xnmil, xnmD
novnskps eax, xmml
cnp eax, O
j € noMax

maxFound
maxps xmD, [esi+ecx]
andps xmil, xmB
maxps xmme,  xmrl

noMax:
add ecx, 16
addps xmB, xmd
novaps xml, [esi+ecx]
jnz | oopMax

/'l Use this structure for better scheduling

| oopMax:
crpnl eps xmb, xnmD
maxps xmm0, xnmil
andps xmb, xmB
maxps xmm®, xmb

continued
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Example 5-14 Scheduling with Emulated Conditional Branch (continued)

add ecx, 16

addps xmmB, xmmd
novaps xmi, [esi+ecx]
novaps xmb,  xmmil

jnz | oopMax

The original code’s performance depends on the number of mispredicted
branches which in turn depends on the data being sorted, which contributes
to a large value for clocks per instruction (CPI = 1.78). The second loop
omits the conditional branch instruction, but does not balance the port
loading. A further advantage of the new code is that the latency is
independent of the data values being sorted.

Port Balancing

To further reduce the CPI in the above example, balance the number of pops
issued on ports 0, 1, and 2. You can do so by replacing sections of the
Streaming SIMD Extensions code with MMX technology code. In

particular, calculation of the indices can be done with MMX instructions as

follows:
® Create amask with Streaming SIMD Extensions and store into
memory.

®  Convert thismask into MM X technology format using novg and
packssdwinstructions.

®  Extract max indices using the MM X technology pmaxsw, pand, and
paddw instructions.

The code in Example 5-15 demonstrates these steps.
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Example 5-15 Replacing the Streaming SIMD Extensions Code with the MMX
Technology Code

| oopMax:
crpnl eps xml, xnmmD ;create mask in Stream ng SIMD
: Ext ensi ons f or mat
maxps xmmO, [esi+ecx];get nax val ues

novaps [esi +ecx], xnmml;store mask i nto nenory
novq ml, [esi+ecx];put lower part of mask into mml
add ecx, 16 ;increnment pointer
novaps xmi, [esi+ecx];load next four aligned floats
packssdw mml, [esi+ecx-8]; pack | ower and upper parts
:of the mask
mask:
pand mrl, mmB ; get indices mask of nax val ues
paddw mB, m¥ ;increnent indices
pmexsw m2, il ; get indices corresponding to max
; val ues
jnz | oopMax

Example 5-15 is the most optimal version of code for the Pentium Il
pracessor and has a CPl of 0.94. This example illustrates the importance of
instruction usage to maximize port utilization. See Appendix C,
“Instruction to Decoder Specificatifor a table that details port
assignments of the instructions in the Pentilimprocessor architecture.

Another example where replacing the Streaming SIMD Extensions code
with the MMX technology code can give good results is the dot product
operation. This operation is the primary operation in matrix multiplication
that is used frequently in 3D applications and other floating-point
applications.

The dot product kernel and optimization issues and considerations are
presented in the following discussion. The code in Example 5-16 represents
a typical dot product implementation.
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Example 5-16 Typical Dot Product Implementation

i nner _| oop:

novaps
novaps
mul ps
addps
novaps
novaps
mul ps
addps
novaps
novaps
mul ps
addps
novaps
novaps
mul ps
addps
subl
jnz

(%eax, %ecx, 4),
(%ebx, %ecx, 4),
%,

%m0,

16( %eax, %ecx, 4),
16( %ebx, %ecx, 4),
%N,

9xmmi,

32( %ax, Yecx, 4),
32( %bx, %ecx, 4),
% nmb,

94,

48( %eax, %ecx, 4) ,
48( %ebx, %ecx, 4) ,
9% mob,

%m0,

$16,

i nner_| oop

%m0
% mmil
%m0
% M/
%M
%% mB
%P
% M/
%X ¥
L2 411145)
% mmi
% M/
9% mMmb
%m0
%m0
% M/
%ecx

I

I

I

I

I

1st

2nd

3rd

4t h

| oop count

Theinner loop in the above example consists of eight loads, four multiplies
and four additions. Thistranslatesinto 16 | oad pops, &ul pops and &dd
pops for Streaming SIMD Extensions andd&d pops, 4nul pops and 4
add pops for MMX technology.

What are the characteristics of the dot product operation?
* Ratioof | oad/mul t /add pops is 2:1:1.
® Hardwarel oad/nul t /add portsis 1:1:1.
®  Optimum balance of portsfor | oad/mul t /add is1:1:1.

® Inner loop performanceis limited by asingle! oad port.

This kernel's performance can be improved by using optimization
techniques to avoid performance loss due to hardware resource constraints.
Since the optimum latency for the inner loop is 16 clocks, experimenting
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with alarge number of iterations can reduce branch penalties. Properly
scheduled code achieves 16 clocks/iteration with alarge number of
iterations. But, only four iterations are present in the original code. The
increaseis caused by a BTB (branch target buffer) warm-up penalty that
occurs in the beginning of the loop. A mispredicted branch occurs on the
last iteration. The warm-up penalty and mispredicted branch combine to
cause about 5 additional clockd/iteration. The cause of the performance loss
isashort loop and alarge number of loads.

Streaming SIMD Extension Numeric Exceptions

This section discusses various aspects of the Streaming SIMD Extension
numeric exceptions: conditions, priority, automatic masked exception
handling, software exception handling with unmasked exceptions,
interaction with x87 numeric exceptions, and the flush-to-zero mode.

Exception Conditions

The numeric exception conditions that can occur when executing Streaming
SIMD Extension instructions can be referred to as the following six classes:
® invalid operation (#l)

® divide-by-zero (#2)

® denormalized operand (#D)

®* numeric overflow (#O)

®  numeric underflow (#U)

® inexact result (precision) (#P)

Invalid, divide-by-zero and denormal exceptions are precomputation
exceptions; they are detected before any arithmetic operation occurs.

Underflow, overflow and precision exceptions are post-computation
exceptions.

When numeric exceptions occur, a processor supporting Streaming SIMD
Extensions take one of two possible courses of action:

® The processor can handle the exception by itself, producing the most
reasonable result and allowing numeric program execution to continue
undisturbed (that is, masked exception response).

* A software exception handler can be invoked to handle the exception
(that is, unmasked exception response).
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Each of the six exception conditions described above has corresponding flag
and mask bits in the MXCSR. Depending on the flag and mask bit values the
following operations take place:

® |If an exception is masked (mask bit in MXCSR = 1), the processor takes
an appropriate default action and continues with the computation.

* If theexception is unmasked (mask bit in MXCSR = 0) and the operating
system (OS) supports Streaming SIMD Extension exceptions (that is,
CR4. OSXMVEXCEPT = 1), a software exception handler isinvoked
immediately through Streaming SIMD Extensions exception interrupt
vector 19.

* If the exception is unmasked (mask bit in MXCSR = 0) and the OS does
not support Streaming SIMD Extension exceptions (that is,

CR4. OSXMVEXCEPT = 0), an invalid opcode exception is signalled
instead of a Streaming SIMD Extensions exception.

E NOTE. Notethat Sreaming SSMD Extension exceptions exclude a

situation when, for example, an x87 floating-point instruction, f nai t , or
a Streaming SSMD Extensions instruction catch a pending unmasked
Sreaming SSIMD Extensions exception.

Exception Priority

The processor handles exceptions according to a predetermined precedence.

The precedence for Streaming SIMD Extension numeric exceptionsis as

follows:

® Invalid-operation exception

®  Q\aN operand. Though thisis not an exception, the handling of aQNaN
operand has precedence over lower-priority exceptions. For example, a
QNaN divided by zero resultsin a Q\NaN, not a zero-divide exception.

® Any other invalid-operation exception not mentioned above or a
divide-by-zero exception

* Denormal-operand exception. If masked, then instruction execution
continues, and a lower-priority exception can occur as well
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®*  Numeric overflow and underflow exceptions in conjunction with the
inexact-result exception

® Inexact-result exception

When a suboperand of a packed instruction generates two or more
exception conditions, the exception precedence sometimes resultsin the
higher-priority exception being handled and the lower-priority exceptions
being ignored. For example, dividing an SNaN by zero can potentialy signal
an invalid-arithmetic-operand exception (due to the SNaN operand) and a
divide-by-zero exception. Here, if both exceptions are masked, the
processor handles the higher-priority exception only (the invalid-arithmetic-
operand exception), returning areal indefinite to the destination.

Alternately, a denormal-operand or inexact-result exception can accompany
a numeric underflow or overflow exception, with both exceptions being
handled. Prioritizing of exceptionsis performed only on aindividual
sub-operand basis, and not between suboperands. For example, an invalid
exception generated by one sub-operand will not prevent the reporting of a
divide-by-zero exception generated by another sub-operand.

Automatic Masked Exception Handling

If the processor detects an exception condition for a masked exception, it
delivers a predefined default response and continues executing instructions.
The masked (default) responses to exceptions deliver areasonable result for
each exception condition and are generally satisfactory for most application
code. By masking or unmasking specific floating-point exceptions in the
MXCSR, programmers can delegate responsibility for most exceptions to
the processor and reserve the most severe exception conditions for software
exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record
of the exceptions that have occurred since they were last cleared. A
programmer can thus mask all exceptions, run a calculation, and then
inspect the exception flags to see if any exceptions were detected during the
calculation.
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Note that when exceptions are masked, the processor may detect multiple

exceptionsin asingle instruction, because:

®  Execution continues after performing its masked response; for
example, the processor could detect a denormalized operand, perform
its masked response to this exception, and then detect an underflow.

®  Some exceptions occur naturally in pairs, such as numeric underflow
and inexact result (precision).

®  Packed instructions can produce independent exceptions on each pair
of operands.

Software Exception Handling - Unmasked Exceptions

Most of the masked exceptionsin Streaming SIMD Extensions are handled
by hardware without penalty except denormals and underflow. But these can
also be handled without penalty if flush-to-zero mode is used.

Your application must ensure that the operating system supports unmasked
exceptions before unmasking any of the exceptions in the MXCSR (see

)&
If the processor detects a condition for an unmasked Streaming SIMD
Extensions application exception, a software handler is invoked
immediately at the end of the excepting instruction. The handler is invoked
through the Streaming SIMD Extensions exception interrupt (vector 19),
irrespective of the state of tli@0. NE flag. If an exception is unmasked, but
Streaming SIMD Extension unmasked exceptions are not enabled
(CR4. GSXMVEXCPT = 0), an invalid opcode fault is generated. However,
the corresponding exception bit will still be set in the MXCSR, as it would
be if CR4. OSXMVEXCPT = 1, since the invalid opcode handler/user needs
to determine the cause of the exception.

A typical action of the exception handler is to store x87 floating-point and
Streaming SIMD Extensions state information in memory (with the

f xsave/ f xr st or instructions) so that it can evaluate the exception and
formulate an appropriate response. Other typical exception handler actions
can include:

® Examining stored x87 floating-point and Streaming SIMD Extensions
state information (control/status) to determine the nature of the error.
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Taking action to correct the condition that caused the error.

Clearing the exception hitsin the x87 floating-point status word (FSW
or the Streaming SIMD Extensions control register (MXCSR).

Returning to the interrupted program and resuming normal execution.

In lieu of writing recovery procedures, the exception handler can do the
following:

Increment in software an exception counter for later display or printing.

Print or display diagnostic information (such as the Streaming SIMD
Extensions register state).

Halt further program execution.

When an unmasked exception occurs, the processor will not alter the
contents of the source register operands prior to invoking the unmasked
handler. Similarly, the integer EFLAGS will aso not be modified if an
unmasked exception occurs while executing the coni ss or uconi ss
instructions. Exception flags will be updated according to the following
rules:

Exception flag updates are generated by alogical-OR of exception
conditions for all sub-operand computations, where the OR is done
independently for each type of exception. For packed computations,
this means four suboperands; for scalar computations this means 1
sub-operand (the lowest one).

In the case of only masked exception conditions, al flags will be
updated.

In the case of an unmasked precomputation type of exception condition
(that is, denormal input), all flags relating to all precomputation
conditions (masked or unmasked) will be updated, and no subsequent
computation is performed (that is, no post-computation condition can
occur if there is an unmasked pre-computation condition).

In the case of an unmasked post-computation exception condition, all
flagsrelating to al post-computation conditions (masked or unmasked)
will be updated; all precomputation conditions, which must be masked,
will also be reported.
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E NOTE. In certain cases, if any numerical exception is unmasked, the

retirement rate might be affected and reduced. This might happen when
Sreaming SSIMD Extensions code is scheduled without large impact of
the dependency and with the intention to have maximum execution rate.
Usually such code consists of balanced operations such as packed
floating-point multiply, add and load or store (or a mix that includes
balanced 2 arithmetic operation/load or store with MMX technology or
integer instructions).

Interaction with x87 Numeric Exceptions

The Streaming SIMD Extensions control/status register was separated from
its x87 floating-point counterparts to allow for maximum flexibility.
Consequently, the Streaming SIMD Extensions architecture is independent
of the x87 floating-point architecture, but has the following implications for
x87 floating-point applications that call Streaming SIMD
Extensions-enabled libraries:

®*  The x87 floating-point rounding mode specified in FCWwill not apply
to callsin a Streaming SIMD Extensions library, unless the rounding
control in MXCSRis explicitly set to the same mode.

*  x87 floating-point exception observability may not apply to a
Streaming SIMD Extensions library.

®* Anapplication that expects to catch x87 floating-point exceptions that
occur in an x87 floating-point library will not be notified if an
exception occurs in a corresponding Streaming SIMD Extensions
library, unless the exception masks, enabled in FCW have also been
enabled in MXCSR.

* Anapplication will not be able to unmask exceptions after returning
from a Streaming SIMD Extensions library call to detect if an error
occurred. A Streaming SIMD Extensions exception flag that was set
when the corresponding exception was unmasked will not generate a
fault; only the next occurrence of that exception will generate an
unmasked fault.
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®  Anapplication which checks FSWto determine if any masked exception
flags were set during an x87 floating-point library call will also need to
check MXCSRin order to observe a similar occurrence of a masked
exception within a Streaming SIMD Extensions library.

Use of CVTTPS2PI /CVTTSS2SI Instructions

Thecvttps2pi andcvttss2si instructions encode the truncate/chop
rounding mode implicitly in the instruction, thereby taking precedence over
the rounding mode specified in the MXCSR register. This behavior can
eliminate the need to change the rounding mode from round-nearest, to
truncate/chop, and then back to round-nearest to resume computation.
Frequent changes to the MXCSR register should be avoided since thereisa
penalty associated with writing thisregister; typically, through the use of the
cvttps2pi andcvttss2si instructions, the rounding control in MXCSR
can be always be set to round-nearest.

Flush-to-Zero Mode

Activating the flush-to-zero mode has the following effects during
underflow situations:

® Zeroresult is returned when the result is true.
®  Precision and underflow exception flags are set to 1.

The |IEEE mandated response to underflow is to deliver the denormalized
result (that is, gradua underflow); consequently, the flush-to-zero modeis
not compatible with |EEE Standard 754. It is provided for applications
where underflow is common. Underflow for flush-to-zero mode occurs
when the exponent for a computed result falls in the denormal range,
regardless of whether aloss of accuracy has occurred.

Unmasking the underflow exception takes precedence over flush-to-zero
mode. For a Streaming SIMD Extensions instruction that generates an
underflow condition an exception handler isinvoked. Unmasking the
underflow exception occurs, regardless of whether flush-to-zero mode is
enabled.



Optimizing
Cache Utilization
for Pentium® /// Processors

Over the past decade, processor speed has increased more than ten times,
while memory access speed has increased only slightly. Many applications
can considerably improve their performance if data residesin caches so the
processor does not have to wait for the data from memory.

Until now, techniques to bring datainto the processor before it was needed
involved additional programming. These techniques were not easy to
implement, or required special steps to prevent from degrading
performance. The Streaming SIMD Extensions address these issues by
providing the prefetch instruction and its variations. Prefetching is amuch
better mechanism to ensure that data are in the cache when requested.

The prefetch instruction, controlled by the programs or compilers, retrieves
aminimum of 32 bytes of data prior to the data actually being needed. This
hides the latency for data access in the time required to process data already
resident in the cache. Many algorithms can provide information in advance
about the datathat is to be required soon. The new instruction set also
features non-temporal store instructions to minimize the performanceissues
caused by cache pollution.

This chapter focuses on two major subjects:

* Prefetch and Cacheability Instructions—describes instructions that
allow you to implement a data caching strategy.

®* Memory Optimization Using Prefetch—describes and provides
examples of various techniques for implementing prefetch instructions.

Note that in a number of cases presented in this chapter, the prefetching and

cache utilization are platform-specific and may change for future

processors.
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Prefetch and Cacheability Instructions

The new cacheability control instructions allow you to control data caching
strategy in order to increase cache efficiency and minimize cache pollution.

Data can be viewed by time and address space characteristics as follows:
Temporal datawill be used again soon

Spatial datawill be used in adjacent locations, for example, the
same cacheline

Non-tempora datawhich are referenced once and not reused in the
immediate future; for example, some multimedia data
types, such as the vertex buffer in a3D graphics
application

These data characteristics are used in the discussion that follows.

The Prefetching Concept

The pr ef et ch instruction can hide the latency of data accessesin
performance-critical sections of application code by allowing datato be
fetched in advance of its actual usage. The pr ef et ch instructions do not
change the user-visible semantics of a program, although they may affect

the program’s performance. Theef et ch instructions merely provide
hints to the hardware and generally do not generate exceptions or faults.

Thepr ef et ch (load 32 or greater number of bytes) instructions load either
non-temporal data or temporal data in the specified cache level. This data
access type and the cache level are specified as hints. Depending on the
implementation, the instruction fetches 32 or more aligned bytes, including
the specified address byte, into the instruction-specified cache levels.

E NOTE. Usingthepr ef et ch instructions is recommended only if data
does not fit in cache.
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Generally the pr ef et ch instructions only provide hintsto the hardware

and do not generate exceptions or faults except for a special case described
inthe séction. However, excessive use of
prefetch instructions may waste memory bandwidth and result in a
performance penalty due to resource constraints.

Nevertheless, the prefetch instructions can lessen the overhead of memory

transactions by preventing cache pollution, and by using the cache and

memory efficiently. This is particularly important for the applications that

share critical system resources, such as memory bus. See an example in
section.

The Prefetch Instructions

The Streaming SIMD Extensions include four typepraff et ch

instructions corresponding to four prefetching hints to the processor: one
non-temporal, and three temporal. They correspond to two types of
operations, temporal and non-temporal.

E NOTE. If thedata are already found in a cache level that is closer to the
processor at the time of pr ef et ch, no data movement occurs.

The non-temporal instruction is

prefetchnta fetch data into location closest to the processor,
minimizing cache pollution. On the Penti@rl
processor, thisisthe L1 cache.

The temporal instructions are

prefetchtO fetch datainto all cachelevels, thatistoL1 and L2 for
Pentium Il processors

prefetcht1 fetch datainto all cache levels except the Oth level, that is
to L2 only on Pentium Il processors

pref et cht 2 fetch datainto all cache levels except the Oth and 1st
levels, that is, to L2 only on Pentium Il processors
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In the description above, cache level 0 is closest to the processor. For
Streaming SIMD Extensions implementation, there are only two cache
levels, L1 and L2. L1isthe 0t cache level by the architectural definition, as
aresult, pref et cht 1 and pr ef et cht 2 are designed to behave the samein
Pentium® 111 processor. For future processors, this may change.

Pr ef et chnt a with Streaming SIMD Extensions implementation fetches
datainto L1 only, therefore minimizing L2 cache pollution.

Pr ef et ch instructions are mainly designed to improve application
performance by hiding memory latency in the background. If segments of
an application access data in a predictable manner, for example, using
arrays with known strides, then they are good candidates for using prefetch
to improve performance. However, if a program is memory throughput
bound, that is, memory access time is much larger than execution time, then
there may be not much benefit from utilizing prefetch.

Basically, use pr ef et ch in:
® predictable memory access patterns
® time-consuming innermost loops

® |ocations where execution pipeline stalls for data from memory dueto
flow dependency

Prefetch and Load Instructions

The Pentium 11 and Pentium III processors have a decoupled execution and
memory architecture that allows instructions to be executed independently
with memory accesses if there is no data and resource dependency.
Programs or compilers can use dummy load instructions to imitate prefetch
functionality, but preloading is not equivalent to prefetching. Prefetch
instructions provide a greater performance than prel oading.

Currently, the pr ef et ch instruction provides a greater performance gain
than preloading becauseit:

® hasno register destination, it only updates cache lines;

® doesnot stall the normal instruction retirement;

® does not affect the functional behavior of the program;

® hasno cacheline split accesses;
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® does not cause exceptions except when the LOCK prefix is used; for
Pentium Il processors, an invalid opcode exception is generated when
the LOCK prefix is used with prefetch instructions;

® does not complete its own execution if that would cause afault;

® isignoredif the pr ef et ch targets an uncacheable memory region, for
example, USWC and UC;

®  does not perform a page table walk if it results in a page miss.

The current advantages of the prefetch over preloading instructions are
processor-specific. The nature and extent of the advantages may changein
the future.

The Non-temporal Store Instructions

The non-temporal store instructions (nmovnt ps, novnt g, and masknovq)
minimize cache pollution while writing data. The main difference between a
non-temporal store and aregular cacheable storeisin the write-allocation
behavior: the processor will fetch the corresponding cache lineinto the
cache hierarchy prior to performing the store and the memory type can take
precedence over the non-temporal hint.

Currently, if you specify a non-temporal store to cacheable memory, they
must maintain coherency. Two cases may occur:

* If the dataare present in the cache hierarchy, the data are updated in-
place and the existing memory type attributes are retained. For
example, in Streaming SIMD Extensions implementation, if thereisa
data hit in L1, then non-temporal stores behave like regular stores.
Otherwise, write to memory without cache line allocation. If the data
arefoundin L2, datain L2 will beinvalidated.

* If the dataare not present in the cache hierarchy, the memory type
visible on the bus will remain unchanged, and the transaction will be
weakly-ordered; consequently, you are responsible for maintaining
coherency. Non-temporal stores will not write allocate. Different
implementations may choose to collapse and combine these stores
inside the processor.

The behavior described above is platform-specific and may changein the
future.
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The sfence Instruction

Thesf ence (st ore fence) instruction makesit possible for every st or e
instruction that precedes the sf ence instruction in program order to be
globally visible before any st or e instruction that followsthe f ence. The
sf ence instruction provides an efficient way of ensuring ordering between
routines that produce weakly-ordered results.

The use of weakly-ordered memory types can be important under certain
data sharing relationships, such as a producer-consumer relationship. Using
weakly-ordered memory can make assembling the data more efficient, but
care must be taken to ensure that the consumer obtains the data that the
producer intended to see. Some common usage models may be affected in
thisway by weakly-ordered stores. Examples are:

library functions, which use weakly-ordered memory to write results
compiler-generated code, which also benefits from writing

weakly-ordered results

hand-crafted code

The degree to which a consumer of data knows that the dataiis
weakly-ordered can vary for these cases. Asaresult, thesf ence instruction
should be used to ensure ordering between routines that produce
weakly-ordered data and routines that consume this data. The sf ence
instruction provides a performance-efficient way by ensuring the ordering
when every st or e instruction that precedes the st or e f ence instruction
in program order is globally visible before any st or e instruction which
followsthef ence.

Streaming Non-temporal Stores

In Streaming SIMD Extensions, the novnt ¢, novnt s and masknovq
instructions are streaming, non-tempora stores. With regard to memory
characteristics and ordering, they are similar mostly to the
Write-Combining (\WC) memory type:

Write combining — successive writes to the same cache line are
combined

Write collapsing — successive writes to the same byte(s) result in only
the last write being visible



Optimizing Cache Utilization for Pentium 111 Processors 6

®* Weakly ordered — no ordering is preserved betwigestores, or
betweenAC stores and other loads or stores

® Uncacheable and not write-allocating — stored data is written around
the cache and will not generate a read-for-ownership bus request for the
corresponding cache line.

Because streaming stores are weakly ordered, a fencing operation is
required to ensure that the stored data is flushed from the processor to
memory. Failure to use an appropriate fence may result in data being
“trapped” within the processor and will prevent visibility of this data by
other processors or system agents. WC stores require software to ensure
coherence of data by performing the fencing operation.

Streaming SIMD Extensions introduce #fesnce instruction, which now
is solely used to flusiiC data from the processor. Thience instruction
replaces all other store fencing instructions suctcas.

Streaming stores can improve performance in the following ways:

® Increase store bandwidth since they do not require read-for-ownership
bus requests

®  Reduce disturbance of frequently used cached (temporal) data, since
they write around the processor caches

Streaming stores allow cross-aliasing of memory types for a given memory
region; for instance, aregion may be mapped as write-back (\B) viathe
page tables (PAT) or memory type range registers (MTRRs) and yet iswritten
using a streaming store.

If a streaming store finds the corresponding line already present in the
processor’s caches, several actions may be taken depending on the specific
processor implementation:

Approach A The streaming store may be combined with the existing
cached data, and is thus treated @B store (that is, it is
not written to system memory).

Approach B The corresponding line may be flushed from the
processor’s caches, along with data from the streaming
store.

6-7
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Pentium Il processor implements a combination of both approaches. If the
streaming store hitsaline that is present in the L1 cache, the store data will
be combined in place within the L 1. If the streaming store hits aline present
in the L2, the line and stored data will be flushed from the L2 to system
memory. Note that the approaches, separate or combined, can be different
for future processors.

The two primary usage domains for streaming store are coherent requests
and non-coherent requests.

Coherent Requests

Coherent requests are normal loads and stores to system memory, which
may also hit cache lines present in another processor in a multi-processor
environment. With coherent requests, a streaming store can be used in the
same way as aregular store that has been mapped with a \WC memory type
(PAT or MTRR). An sf ence instruction must be used within a
producer-consumer usage model, in order to ensure coherency and visibility
of data between processors. Within a single-processor system, the CPU can
also re-read the same memory location and be assured of coherence (that is,
asingle, consistent view of this memory location): the same istrue for a
multi-processor (MP) system, assuming an accepted MP software
producer-consumer synchronization policy is employed.

Non-coherent Requests

Non-coherent requests arise from an 1/O device, such as an AGP graphics

card, that reads or writes system memory using non-coherent requests,

which are not reflected on the processor bus and thus will not query the
processor’s caches. Ari ence instruction must be used within a
producer-consumer usage model, in order to ensure coherency and visibility
of data between processors. In this case, if the processor is writing data to
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the I/O device, a streaming store can be used with a processor with any
behavior of approach A, above, only if the region has a so been mapped
with a\\C memory type (PAT, MIRR).

@ CAUTION. Failureto map the region as \WC may allow the line to be
speculatively read into the processor caches, that is, via the wrong path
of a mispredicted branch.

In case the region is not mapped as \WC, the streaming might update in-place

in the cache and a subsequent sf ence would not result in the data being

written to system memory. Explicitly mapping the region as WC in this case
ensures that any data read from this region will not be placed in the

processor’s caches. A read of this memory location by a non-coherent I/O
device would return incorrect/out-of-date results. For a processor which
solely implements approach B, above, a streaming store can be used in this
non-coherent domain without requiring the memory region to also be
mapped asB, since any cached data will be flushed to memory by the
streaming store.

Other Cacheability Control Instructions

Themasknovqg (non-temporal byte mask store of packed integer in an
MMX™ technology register) instruction stores data from an MMX
technology register to the location specified byete register. The most
significant bit in each byte of the second MMX technology mask register is
used to selectively write the data of the first register on a per-byte basis. The
instruction is implicitly weakly-ordered (that is, successive stores may not
write memory in original program-order), does not write-allocate, and thus
minimizes cache pollution.

Thenovnt g (non-temporal store of packed integer in an MMX technology
register) instruction stores data from an MMX technology register to
memory. The instruction is implicitly weakly-ordered, does no
write-allocate, and so minimizes cache pollution.
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Thenovnt ps (non-temporal store of packed single precision floating point)
instruction is similar to novnt q. It stores data from a Streaming SIMD
Extensions register to memory in 16 byte granularity. Unlike novnt g, the
memory address must be aligned to a 16-byte boundary; or a general
protection exception will occur. The instruction isimplicitly
weakly-ordered, does not write-allocate, and thus minimizes cache
pollution.

Memory Optimization Using Prefetch

Achieving the highest level of memory optimization using prefetch
instructions requires an understanding of the micro-architecture and system
architecture of agiven machine. This section translates the key architectural
implications into several simple guidelines for programmersto use.

Figure 6-1 and Figure 6-2 show two scenarios of asimplified 3D geometry
pipeline as an example. A 3D-geometry pipeline typically fetches one

vertex record at atime and then performs transformation and lighting

functions on it. Both figures show two separate pipelines, an execution

pipeline, and a memory pipeline (front-side bus). Since the Pentium |11 and
Pentium Il processors completely decouple the functionality of execution

and memory access, these two pipelines can function concurrently. Figure

6-1 shows “bubbles” in both the execution and memory pipelines. When
loads are issued for accessing vertex data, the execution units sit idle and
wait until data is returned. On the other hand, the memory bus sits idle while
the execution units are processing vertices. This scenario severely decreases
the advantage of having a decoupled architecture.
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Figure 6-1 Memory Access Latency and Execution Without Prefetch
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Figure 6-2 Memory Access Latency and Execution With Prefetch
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The performance loss caused by poor utilization of the resource can be
completely eliminated by applying prefetch instructions appropriately. As
shown in Figure 6-2, prefetch instructions are issued two vertex iterations
ahead. Thisassumesthat only one vertex gets processed in one iteration and
anew data cachelineisneeded for each iteration. Asaresult, when iteration
n, vertex V,, is being processed, the requested data is already brought into
cache. In the meantime, the front-side bus is transferring the data needed for
n+1iteration, vertex V.. Because there is no dependency between V.1
data and the execution of V,,, the latency for data access of V.1 can be
entirely hidden behind the execution of V,,. Under such circumstances, no
“bubbles” are present in the pipelines and thus the best possible
performance can be achieved.
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The software-controlled prefetch instructions provided in Streaming SIMD
Extensions not only hide the latency of memory accesses if properly
scheduled, but also allow you to specify where in the cache hierarchy the

data should be placed. Prefetching is useful for inner loops that have heavy
computations, or are close to the boundary between being compute-bound

and memory-bandwidth-bound. The prefetch is probably not very useful for
loops which are predominately memory bandwidth-bound. When data are
already located in the Oth level cache, prefetching can be useless and could
even slow down the performance because the extra pops either back up
waiting for outstanding memory accesses or may be dropped altogether.
This behavior is platform-specific and may change in the future.

Prefetching Usage Checklist

To use the prefetch instruction properly, check whether the following issues
are addressed and/or resolved:

® prefetch scheduling distance

® prefetch concatenation

®*  minimize the number of prefetches

®*  mixing prefetch with computation instructions

®  cache blocking techniques (for example, strip mining)

®  single-pass versus multi-pass execution

®*  memory bank conflict issues

® cache management issues

The subsequent sections discuss al the above items.

Prefetch Scheduling Distance

Determining the ideal prefetch placement in the code depends on many
architectural parameters, including the amount of memory to be prefetched,
cache lookup latency, system memory latency, and estimate of computation
cycle. Theideal distance for prefetching data is processor- and platform-
dependent. If the distance is too short, the prefetch will not effectively hide
the latency of the fetch behind computation. If the prefetch istoo far ahead,
the start-up cost for data not prefetched for initial iterations diminishes the
benefits of prefetching the data. Also, the prefetched data may wrap around
and dislodge previously prefetched data prior to its actual use.
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Since prefetch distance is not a well-defined metric, for this discussion, we

define a new term, “prefetch scheduling distance (PSD),” which is
represented in the number of iterations. For large loops, prefetch scheduling
distance can be set to 1, that is, schedule prefetch instructions one iteration
ahead. For small loops, that is, loop iterations with little computation, the
prefetch scheduling distance must be more than one.

A simplified equation to compute PSD is deduced from the mathematical
model. For a simplified equation, complete mathematical model, and
detailed methodology of prefetch distance determination, refer to
Appendix F, The Mathematics of Prefetch Scheduling Distghce

In Example 6-1, the prefetch scheduling distance is set to 3.

Example 6-1 Prefetch Scheduling Distance

top_I oop:
prefetchnta [edx + esi + 32*3]
prefetchnta [edx*4 + esi + 32*3]

novaps xml, [edx + esi]

novaps xmR2, [edx*4 + esi]
novaps xmB, [edx + esi + 16]
novaps xmmd, [edx*4 + esi + 16]
add esi, 32

cnp esi, ecx

il top_Il oop

Prefetch Concatenation

De-pipelining memory generates bubbles in the execution pipeline. To
explain this performance issue, a 3D geometry pipeline processing 3D
vertices in strip format is used. A strip contains a list of vertices whose
predefined vertex order forms contiguous triangles.
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Example 6-2

It can be easily observed that the memory pipe is de-pipelined on the strip
boundary due to ineffective prefetch arrangement. The execution pipelineis
stalled for the beginning 2 iterations for each strip. As aresult, the average
latency for completing an iteration will be 165 clocks. (See Appendix F,

“ Jhfor detailed memory
pipeline description.)

This memory de-pipelining creates inefficiency in both the memory pipeline
and execution pipeline. This de-pipelining effect can be removed by
applying a technique called prefetch concatenation. With this technique, the
memory access and execution can be fully pipelined and fully utilized.

For nested loops, memory de-pipelining could occur during the interval
between the last iteration of an inner loop and the next iteration of its
associated outer loop. Without paying special attention to prefetch insertion,
the loads from the first iteration of an inner loop can miss the cache and stall
the execution pipeline waiting for data returned, thus degrading the
performance.

In the code of Example 6-2, the cache line contaiajrig ] [ 0] is not
prefetched at all and always misses the cache. This assumes that no array
a[ ][] footprint resides in the cache. The penalty of memory de-pipelining
stalls can be amortized across the inner loop iterations. However, it may
become very harmful when the inner loop is short. In addition, the last
prefetch of the inner loop is wasted and consumes machine resources.
Prefetch concatenation is introduced here in order to eliminate the
performance issue of memory de-pipelining.

Using Prefetch Concatenation

for (ii =0; ii < 100; ii++) {
for (jj =0; jj <327 jj+=8) {

prefetch a[ii][]j]+8]

conputation af[ii][j]]
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Prefetch concatenation can bridge the execution pipeline bubbles between
the boundary of an inner loop and its associated outer loop. Simply by
unrolling the last iteration out of the inner loop and specifying the effective
prefetch address for data used in the following iteration, the performance
loss of memory de-pipelining can be completely removed. The re-written
code is demonstrated in Example 6-3.

Example 6-3 Concatenation and Unrolling the Last Iteration of Inner Loop
for (ii = 0; ii < 100; ii++) {
for (jj =0; jj <24, jj+=8) {
prefetch a[ii][]j]+8]
conputation afii][jj]

}
prefetch a[ii+1][0]
conputation afii][jj]

This code segment for data prefetching isimproved, and only the first
iteration of the outer loop suffers any memory access latency penalty,
assuming the computation time is larger than the memory latency. Inserting
aprefetch of the first data element needed prior to entering the nested loop
computation would eliminate or reduce the start-up penalty for the very first
iteration of the outer loop. Thisuncomplicated high-level code optimization
can improve memory performance significantly.

Minimize Number of Prefetches

Prefetch instructions are not completely freein terms of bus cycles, machine
cycles and resources, even though they require minimal clocks and memory
bandwidth.

Excessive prefetching may lead to the following situations:

e If thefill buffer isfull, prefetches accumulate inside the load buffer
waiting for the next fill buffer entry to be deallocated.
* |f theload buffer isfull, instruction allocation stalls.

* If thetarget loops are small, excessive prefetching may impose extra
overhead.
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A fill buffer isatemporary space allocated for cache line read from or write
to memory. A load buffer is a scratch pad buffer used by the memory
subsystem to impose access ordering on memory loads.

One approach to solve the excessive prefetching issue is to unroll and/or
software-pipeline the loops to reduce the number of prefetches required.
Example 6-4 shows a code exampl e that implements prefetch and unrolls
the loop to remove the redundant prefetch instructions whose prefetch
addresses hit the previously issued prefetch instructions. In this particular
example, unrolling the original loop once saves two prefetch instructions
and three instructions for each conditional jump in every other iteration.

Example 6-4 Prefetch and Loop Unrolling

top_l oop: top_l oop
prefetchnta [edx+esi +32] prefetchnta [edx+esi +32]
prefetchnta [edx*4+esi +32] prefetchnta [edx*4+esi +32]
nmovaps xmmil, [edx+esi] nmovaps xnml, [edx+esi]
nmovaps xmm2, [edx*4+esi ] nmovaps xnmmR, [edx*4+esi ]
add esi, 16 T
cnp esi, ecx . movaps xmil, [ edx+esi +16]
j1 top_loop nmovaps xmm2, [edx*4+esi +16]
add esi, 32
cnp esi, ecx
jl1 top_l oop

Mix Prefetch with Computation Instructions

It may seem convenient to insert al the prefetch instructions at the
beginning of aloop, but this can lead to severe performance degradation. In
order to achieve best possible performance, prefetch instructions must be
interspersed with other computational instructionsin the instruction
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sequence rather than clustered together. Thisimproves the instruction level
paralelism and reduces the potentia instruction allocation stalls due to the
load-buffer-full problem mentioned earlier. It also allows potential dirty
writebacks (additional bus traffic caused by evicting modified cache lines
from the cache) to proceed concurrently with other instructions.

Example 6-5 illustrates mixing prefetch instructions. A simple and useful
heuristic of prefetch spreading for a 500 MHz Pentium Il processor isto
insert a prefetch instruction every 20 to 25 cycles. Rearranging prefetch
instructions could yield a noticeable speedup for the code which is limited
in cache resource.

Example 6-5 Spread Prefetch Instructions

top _|l oop:
prefetchnta [ebx+128]
prefetchnta [ebx+1128]
prefetchnta [ ebx+2128]
prefetchnta [ebx+3128]

prefetchnta [ ebx+17128]
prefetchnta [ ebx+18128]
prefetchnta [ ebx+19128]
prefetchnta [ebx+20128]

mul ps xmB, [ ebx+4000]
addps xmmil, [ebx+1000]
addps xm®2, [ebx+3016]
mul ps xnmml, [ebx+2000]
nmul ps xnmml, xnm2

add ebx, 32
cnp ebx, ecx
jI top_l oop

~

~

top _| oop:

prefetchnta [ebx+128]
movps xmml, [ ebx]
addps xmm®, [ebx+3000]
mul ps xm8, [ebx+4000]

"3 prefetchnta [ebx+1128]
addps xmrl, [ebx+1000]
addps xm2, [ebx+3016]

N prefetchnta [ ebx+2128]
nul ps xmi, [ebx+2000]

. mul ps xmi, xm®

\ prefetchnta [ ebx+3128]

a prefetchnta [ ebx+18128]

‘ prefetchnta [ ebx+20128]
add ebx, 32
cnp ebx, ecx
jl top_l oop
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If al fill buffer entries are full, the next transaction waits inside the load

buffer or store buffer. A prefetch operation cannot complete until afill

buffer entry is allocated. The load buffers are shared by normal load pops
and outstanding prefetches.

NOTE. To avoid instruction allocation stalls due to a load buffer full
condition when mixing prefetch instructions, prefetch instructions must
be interspersed with computational instructions.

Prefetch and Cache Blocking Techniques

Cache blocking techniques, such as strip-mining, are used to improve
temporal locality, and thereby, cache hit rate. Strip-mining is a
one-dimensional temporal locality optimization for memory. When
two-dimensional arrays are used in programs, loop blocking techniques
(similar to strip-mining but in two dimensions) can be applied for better
memory performance.

If an application uses a large data set that can be reused across multiple
passes of a loop, it will benefit from strip mining: data sets larger than the
cache will be processed in groups small enough to fit into cache. This
allows temporal data to reside in the cache longer, reducing bus traffic.

Data set size and temporal locality (data characteristics) fundamentally
affect how prefetch instructions are applied to strip-mined code. shows two
simplified scenarios for temporally adjacent data and temporally
non-adjacent data.
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Figure 6-3 Cache Blocking - Temporally Adjacent and Non-adjacent Passes
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In the temporally adjacent scenario, subsequent passes use the same data
and find it ready in L1 cache. Prefetch issues aside, thisis the preferred
situation. In the temporally non-adjacent scenario, data used in passmis
displayed by pass (m+ 1), requiring data re-fetch if alater pass reuses the
data. Both data sets could still fit into L2 cache, so load operationsin passes
3 and 4 become less expensive.

Figure 6-4 shows how prefetch instructions and strip-mining can be applied
to increase performance in both of these scenarios.
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Figure 6-4
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For Pentium |1l processors, the left scenario shows a graphical
implementation of using pr ef et chnt a to prefetch datainto the L1 cache
only (SM1 - strip mine L1), minimizing L2 cache pollution. Use

pref et chnt a if thedata set fitsinto L1 cache or if the datais only touched
once during the entire execution pass in order to minimize cache pollution
in the higher level caches. This provides instant availability when the read
access isissued and minimizes L2 cache pollution.

In the right scenario, keeping the datain L1 cache does not improve cache
locality. Therefore, use pr ef et cht 0 to prefetch the data. This hides the
latency of the memory referencesin passes 1 and 2, and keeps a copy of the
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datain L2 cache, which reduces memory traffic and latencies for passes 3
and 4. To further reduce the latency, it might be worth considering extra
pr ef et chnt a instructions prior to the memory referencesin passes 3
and 4.

In Example 6-6, consider the data access patterns of a 3D geometry engine
first without strip-mining and then incorporating strip-mining. Note that
4-wide SIMD instructions of Pentium Il processors can process 4 vertices
per every iteration.

Example 6-6 Data Access of a 3D Geometry Engine without Strip-mining

while (nvtx < MAX_NUM VTX) {
prefetchnta vertex; data // v =[x,y, z, nx, ny, nz, tu,tv]
prefetchnta vertex;,; data
prefetchnta vertex;,, data
prefetchnta vertex;,3 data

TRANSFORMATI ON code // use only X,y,z,tu,tv of a
vertex

nvt x+=4

}
while (nvtx < MAX_NUM VTX) {
prefetchnta vertex; data // v =[x,y, z, nx, ny, nz, tu,tv]
prefetchnta vertex;,; data
prefetchnta vertex;,, data
prefetchnta vertex;,z data
conmpute the light vectors // use only Xx,y,z
PO NT LI GHTI NG code // use only nx, ny, nz
nvt x+=4

Without strip-mining, al four vertices of the lighting loop must be
re-fetched from memory in the second pass. This causes under-utilization of
cache lines fetched during the transformation loop as well as extra
bandwidth wasted in the lighting loop. Now consider the code in Example
6-7 where strip-mining has been incorporated into the loops.
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Example 6-7 Data Access of a 3D Geometry Engine with Strip-mining

while (nstrip < NUM STRIP) {
/[* Strip-mine the loop to fit data into L1 */
while (nvtx < MAX NUM VTX PER STRIP) {
prefetchnta vertex; data // v=[x,y,z,nx,ny,nz, tu,tv]
prefetchnta vertex;,; data
prefetchnta vertex;,, data
prefetchnta vertex;,; data
TRANSFORMATI ON code
nvt x+=4
}
while (nvtx < MAX NUM VTX PER STRIP) {
/* x y z coordinates are in L1, no prefetch is
required */
conpute the light vectors
PO NT LI GHTI NG code
nvt x+=4

With strip-mining, all the vertex data can be kept in the cache (for example,
L1) during the strip-mined transformation loop and reused in the lighting
loop. Keeping data in the cache reduces both bus traffic and the number of
prefetches used.

Figure 6-5 summarizes the steps of the basic usage model incorporating
prefetch with strip-mining which are:

® Do strip-mining: partition loops so that the data set fitsinto L1 cache
(preferred) or L2 cache.

® Useprefetchntaif thedataisonly used once or the data set fitsinto
L1 cache. Usepr ef et cht 0 if the data set fitsinto L2 cache.

The above steps are platform-specific and provide an implementation
example.
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Figure 6-5

Benefits of Incorporating Prefetch into Code
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Single-pass versus Multi-pass Execution

An agorithm can use single- or multi-pass execution defined as follows:

®* Single-pass, or unlayered execution passes a single data element through

an entire computation pipeline.
®  Multi-pass, or layered execution performs a single stage of the pipeline

on a batch of data elements, before passing the batch on to the next

stage.
A characteristic of both single-pass and multi-pass execution is that a specific
tradeoff exists depending on an algorithm’s implementation and use of a
single- or multiple-pass execution, see Figure 6-6.

Multi-pass execution is often easier to use when implementing a general
purpose API, which has lots of different code paths that can be taken,
depending on the specific combination of features selected by the application
(for example, for 3D graphics, this might include the type of vertex

primitives used, the number and type of light sources).

With such a broad range of permutations possible, a single-pass approach
would be complicated, in terms of code size and validation. In such cases,
each possible permutation would require a separate code sequence. For
example, data object of type N, with features A, C, E enabled, would be one
code path. It makes more sense to perform each pipeline stage as a separate
pass, with conditional clauses to select different features that are
implemented within each stage. By using strip-mining, the amount of

vertices processed by each stage (for example, the batch size) can be selected
to ensure that the batch stays within the processor caches through all passes.
An intermediate cached buffer is used to pass the batch of vertices from one
stage/pass to the next one.
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Single-pass execution can be better suited to some applications, which limit
the number of features that may be used at agiven time. A single-pass
approach can reduce the amount of data copying that can occur with a
multi-pass engine, see Figure 6-6.

Figure 6-6 Single-Pass vs. Multi-Pass 3D Geometry Engines
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The choice of single-pass or multi-pass can have a number of performance
implications. For instance, in a multi-pass pipeline, stages that are limited
by bandwidth (either input or output) will reflect more of this performance
limitation in overall execution time. In contrast, for a single-pass approach,
bandwidth-limitations can be distributed/amortized across other
computation-intensive stages. Also, the choice of which prefetch hintsto
use are also impacted by whether a single-pass or multi-pass approach is
used (see séction earlier in this
chapter).

Memory Bank Conflicts

Memory bank conflicts occur when independent memory references go to
the same DRAM bank but access different pages. Conflicting memory bank
accesses will introduce longer memory leadoff latency due to DRAM page
opening, closing, and opening. To alleviate such problems, arrange the
memory layout of data arrays such that simultaneous prefetch of different
pages will hit distinct memory banks. The operating system handles
physical address allocation at run-time, so compilers/programmers have
little control over this. Potential solutions are:

* Apply array grouping to group contiguously used data together to
reduce excessive memory page accesses

® Allocate datawithin 4KB memory pages

Non-temporal Stores and Software Write-Combining

Use non-temporal storesin the cases when the data are

®* write-once (non-temporal)

®  toolarge and thus cause cache thrashing.

Non-temporal stores do not invoke a cache line allocation, which means
they are not write-allocate. As aresult, caches are not polluted and no dirty
writeback is generated to compete with useful data bandwidth. Without

using non-temporal stores, bus bandwidth will suffer from lots of dirty
writebacks after the point when caches start to be thrashed.
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In the Streaming SIMD Extensions implementation, when non-temporal

stores are written into writeback or write-combining memory regions, these

stores are weakly-ordered, then combined internally inside the processor’s
write-combining buffer, and written out to memory as a line burst
transaction. To achieve the best possible performance, it is recommended
that data be aligned on a the cache line boundary and written consecutively
in a cache line size while using non-temporal stores. If the consecutive
writes are prohibitive due to programming constraints, then software
write-combining (SWW(C) buffers can be used to enable line burst
transactions.

You can declare small SWW(C buffers (a cache line for each buffer) in your
application to enable explicit write-combining operations. Instead of writing
to non-temporal memory space immediately, the program writes data into
SWWC buffers and combines them inside these buffers. The program only
writes a SWWC buffer out using non-temporal stores when the buffer is
filled up, that is, a cache line (32 bytes for Pentlirrocessor). Although

the SWWC method imposes extra explicit instructions for performing
temporary writes and reads, this ensures that the transaction on the
front-side bus causes line transactions rather than several partial
transactions. Application performance gains considerably from
implementing this technique. These SWWC buffers can be maintained in
the L1 and re-used throughout the program.

Cache Management

The streaming instructiongr(ef et ch andst or es) can be used to manage
data and minimize disturbance of temporal data held within the processor’s
caches.

In addition, Pentiuntll processors take advantage of the Intel C/C++
Compiler that supports C/C++ language-level features for the Streaming
SIMD Extensions. The Streaming SIMD Extensions and MMX technology
instructions provide intrinsics that allow you to optimize cache utilization.
The examples of such Intel compiler intrinsics aren pr ef et ch,

_mm stream _nm | oad, nm sfence. For more details on these
intrinsics, refer to théntel C/C++ Compiler User’s Guide for Win32
Systemgsorder number 718195.
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Thefollowing examples of using prefetching instructionsin the operation of
video encoder and decoder as well asin simple 8-byte memory copy,
illustrate performance gain from using the prefetching instructions for
efficient cache management.

Video Encoder

In avideo encoder example, some of the data used during the encoding

process is kept in the processor’s L2 cache, to minimize the number of
reference streams that must be re-read from system memory. To ensure that
other writes do not disturb the data in the L2 cache, streaming stores

(movnt g) are used to write around all processor caches.

The prefetching cache management implemented for video encoder reduces
the memory traffic. The L2 pollution reduction is ensured by preventing
single-use video frame data from entering the L2. Implementing a
non-temporal prefetcip( ef et chnt a) instruction brings data directly to

the L1 cache without polluting the L2 cache. If the data brought directly to
L1 is not re-used, then there is a performance gain from the non-temporal
prefetch over a temporal prefetch. The encoder uses non-temporal
prefetches to avoid pollution of the L2 cache, increasing the number of L2
hits and decreasing the number of polluting write-backs to memory. The
performance gain results from the more efficient use of the L2, not only
from the prefetch itself.

Video Decoder

In a video decoder example, completed frame data is writte®io, the

local memory of the graphics card. A copy of reference data is stored to the
VB memory at a later time by the processor in order to generate future data.
The assumption is that the size of the data is too large to fit in the
processor’s caches. A streaming store is used to write the data around the
cache, to avoid displacing other temporal data held in the caches. Later, the
processor re-reads the data usingf et chnt a, which ensures maximum
bandwidth, yet minimizes disturbance of other cached temporal data by
using the non-temporal (NTA) version of prefetch.
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Example 6-8

Conclusions from Video Encoder and Decoder
Implementation

The example of video encoder and decoder suggests the conclusion that by
using an appropriate combination of non-temporal prefetches and
non-temporal stores, an application can be designed to lessen the overhead

of memory transactions by preventing L2 cache pollution, keeping useful
datain the L2 cache and reducing costly write-back transactions. Even if an
application does not gain performance significantly from having data ready
from prefetches, it can improve from more efficient use of the L2 cache and
memory. Such design reduces the encoder’s demand for such critical
resources as the memory bus. This makes the system more balanced,
resulting in higher performance.

Using Prefetch and Streaming-store for a Simple Memory
Copy

A simple memory copy is the case when 8-byte data elements are to be
transferred from one memory location to another. The copy can be sped up
greatly using prefetch and streaming store. Example 6-8 presents the basic
algorithm of the simple memory copy.

Basic Algorithm of a Simple Memory Copy

#define N 512000

double a[N, b[N;

for (i =0; i <N i++) {
b[i] =a[i];

}

This algorithm can be optimized using the Streaming SIMD Extensions and
taking into consideration the following:

® proper layout of pagesin memory

® cachesize

® interaction of the transaction lookaside buffer (TLB) with memory
accesses

® combining prefetch and streaming-store instructions.
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The guidelines discussed in this chapter comeinto play in thissimple
example. TLB priming, however, isintroduced here as it does affect an
optimal implementation with prefetching.

TLB Priming

The TLB isafast memory buffer that is used to improve performance of the
tranglation of avirtual memory address to a physical memory address by
providing fast access to page table entries. If memory pages are accessed
and the page table entry is not resident in the TLB, a TLB miss results and
the page table must be read from memory. The TLB missresultsin a
performance degradation since a memory accessis slower thana TLB
access. The TLB can be preloaded with the page table entry for the next
desired page by accessing (or touching) an address in that page. Thisis
similar to prefetch, but instead of a data cache line the page table entry is
being loaded in advance of its use. This helps to ensure that the page table
entry isresident in the TLB and that the prefetch happens as requested
subsequently.

Optimizing the 8-byte Memory Copy
Example 6-9 presents the copy algorithm that performs the following steps:
1. transfers 8-byte data from memory into L1 cache using the

_mm pr ef et ch intrinsic to completely fill the L1 cache, 32 bytes at a
time.

2. transfersthe 8-byte data to a different memory location viathe
_nm st r eamintrinsics, bypassing the cache. For this operation, it is
important to ensure that the page table entry prefetched for the memory
ispreloaded in the TLB.

3. loadsthe datainto an xmmregister using the _nm | oad_ps intrinsic.
4. streaming-stores the data to the location corresponding to array b.
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Example 6-9 An Optimized 8-byte Memory Copy

#defi ne CACHESI ZE 4096;
for (kk=0; kk<N; kk+=CACHESI ZE) {
tenp = a[ kk+CACHESI ZE] ;
for (j=kk+4; j<kk+CACHESIZE; j+=4) {
_mm prefetch((char*)&a[j], _MM HI NT_NTA);
}
for (j=kk; j<kk+CACHESIZE; j+=4) {
_mmstream ps((float*)&b[j],
_mm | oad_ps((float*)&a[j]));

_mm stream ps((float*)&b[j +2],
_mm | oad_ps((float*)&a[j+2]));

}

_mm sfence();

In Example 6-9, two _nm | oad_ps and _nm st r eam ps intrinsics are
used so that all of the data prefetched (a 32-byte cache line) is written back.
The prefetch and streaming-stores are executed in separate loops to
minimize the number of transitions between reading and writing data. This
significantly improves the bandwidth of the memory accesses.

Theinstruction, t enp = a[ kk+CACHESI ZE] , is used to ensure the page
table entry for array a isentered in the TLB prior to prefetching. Thisis
essentially a prefetch itself, as acache lineisfilled from that memory
location with this instruction. Hence, the prefetching starts from kk+4 in
thisloop.



Application Performance
Tools

Intel offers an array of application performance tools that are optimized to
take the best advantage of the Intel® architecture (1A)-based processors.
This chapter introduces these tools and explains their capabilitieswhich you
can employ for developing the most efficient programs.

The following performance tools are available:

®*  VTune™ Performance Analyzer

This tool is the cornerstone of the application performance tools that
make up the VTune Performance Enhancement Environment CD. The
VTune analyzer collects, analyzes, and provides Intel architecture-
specific software performance data from the system-wide view down to
a specific module, function, and instruction in your code.

® Intel C/C++ Compiler and Intel Fortran Compiler plug-ins.

Both compilers are available as plug-ins to the Microsoft Devel oper
Studio* IDE. The compilers generate highly optimized floating-point
code, and provide unique features such as profile-guided optimizations
and MMX™ technology intrinsics.

* Intel® Performance Library Suite

The library suite consists of a set of software libraries optimized for
Intel architecture processors. The suite currently includes:

— The Intel Signal Processing Library (SPL)

— The Intel Recognition Primitives Library (RPL)
— The Intel Image processing Library (IPL)

— The Intel Math Kernel Library (MKL)

— The Intel Image Processing Primitives (IPP)
— The Intel JPEG library (1JP)
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®* TheRegister Viewing Tool (RVT) for Windows* 95 and Windows NT*
enables you to view the contents of the Streaming single-instruction,
multiple-data (SIMD) Extensions registers. The RVT replaces the
register window normally found in a debugger.
The RVT also provides disassembly information during debug for
Streaming SIMD Extensions.

VTune™ Performance Analyzer

V Tune Performance Analyzer isinstrumental in helping you understand
where to begin tuning your application. VTune analyzer hel ps you identify
and analyze performance trends at all levels: the system, micro-architecture,
and application.

The sections that follow discuss the magjor features of the VTune analyzer
that help you improve performance and briefly explain how to use them. For
more details on how to sample events, run V Tune analyzer and see online
help.

Using Sampling Analysis for Optimization

The sampling feature of the V Tune analyzer provides analysis of the
performance of your applications using time- or event-based sampling and
hotspot analysis. The time- or event-based sampling analysis provides the
capability to non-intrusively monitor all active software on the system,
including the application.

Each sampling session contains summary information about the session,
such as the number of samples collected at each privilege level and the type
of interrupt used. Each session is associated with a database. The session
database allows you to reproduce the results of a session any number of
times without having to sample or profile.

Time-based Sampling

Time-based sampling (TBS) allows you to monitor al active software on
your system, including the operating system, device drivers, and application
software. TBS collects information at a regular time interval. The VTune
analyzer then processes this data to provide a detailed view of the system’s
activity.



Application Performance Tools ;

Figure 7-1

The time-based sampling (TBS) periodically interrupts the processor at the
specified sampling interval and collects samples of the instruction
addresses, matches these addresses with an application or an operating
system routine, and creates a database with the resulting samples data.
VTune analyzer can then graphically display the amount of CPU time spent
in each active module, process, and processor (on a multiprocessor system).
The TBS—

®* samplesand display a system-wide view of the CPU time distribution
of all the software activity during the sampling session

® determines which sectionsin your code are taking the most CPU time

® analyzes hotspots, displays the source code, and determines
performance issues at the source and assembly code levels.

Figure 7-1 provides an example of a hotspots report by location.

Sampling Analysis of Hotspots by Location

Usage (percent)
&

=
o

LR R I R T N L L i ' JI P DR Y [ PR R L JER N e Wl e [T N




; Intel Architecture Optimization Reference Manual

7-4

Event-based Sampling

You can use event-based sampling (EBS) to monitor all active software on
your system, including the operating system, device drivers, and application
software based on the occurrence of processor events.

The VTune analyzer collects, analyzes, and displays the performance event
counters data of your code provided by the Pentium® |1 and Pentium Il1
processors. These processors can generate numerous events per clock cycle.
The VTune analyzer supports the events associated with counter O only.

For event-based sampling, you can select one or more events, in each event
group. However, the VTune analyzer runs a separate session to monitor
each event you have selected. It interrupts the processor after a specified
number of events and collects a sample containing the current instruction
address. The frequency at which the samples are collected is determined by
how often the event is caused by the software running in the system during
the sampling session.

The data collected allows you to determine the number of events that
occurred and the impact they had on performance. Sampling results are
displayed in the Modules report and Hotspots report. Event datais aso
available as a performance counter in the Chronologies window. The event
sampled per session islisted under the Chronologies entry in the Navigation
tree of the V Tune analyzer.

Sampling Performance Counter Events

Event-based sampling can be used together with the hardware performance
counters available in the Intel architecture to provide detailed information
on the behavior of specific events in the microprocessor. Some of the
microprocessor events that can be sampled include L2 cache misses, branch
mispredictions, misaligned data access, processor stalls, and instructions
executed.

VTune analyzer provides access to the performance counterslisted in
Appendix B, EThe
processors' performance counters can be configured to monitor any of

several different types of events. All the events are listed in the Configure
menu/Options command/Processor Events for EBS page of the VTune

analyzer, see Figure 7-2.
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Figure 7-2 Processor Events List

ne[TM] Performance Analyzer Hi=] E
"I Processor Events for EBS
" Select Event Group for Event-Bazed Sampling
I.ﬁ.ll events j
Event Mame Sample After | &
W BACLEARS Azserted B.000
[J Bogus Branches 5,000
i [ Branch Instructions Decoded 5,000
' [J Branch Instuctions Retired 5.000
[ Branch Mizpredictions Retired 5000
[ BTE Mizzes E.000
[J Clocks while interrupts masked 5,000
[J Clocks while interrupts masked and an interrupt i pending R.000
[ Cpcles Divider Busy 5,000
[ Cpcles Instruction Fetch Stalled 5.000
[0 Cpcles Instruction Fetch stalled - pipe 5,000
[J Cpcles L2 Data Bus Busy 5,000
[ Cpcles L2 Data Bus Busy transfering data to CPU 5000
B Clockticks 200,000
[ Data Memary References [all] 5,000
O Divides B.000
[J External Bus Burst Instruction Fetches 5.000
[ External Bus Burst Read Operations 5.000
[ External Bus Burst Tranzactions 5,000
[J Extemnal Buz Cycles - DRDY Asszerted [busy) R.000
[ External Bus Cycles - LOCE. signal asserted 5000 ;I
| Reset | | Check 4
Cloze I Help

At first glance, it is difficult to know which counters are relevant for
understanding the performance effects. For example, to better understand
performance effects on the cache and bus behavior with the Pentium 111
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processor, the VTune analyzer collected the performance data with and
without the prefetch and streaming store instructions. The main counters
that relate to the activity of the system bus, as well as the cache hierarchy
include:

L 1 cache misses—this event indicates the number of outstanding L1
cache misses at any particular time.

L 2 cache misses—this event indicates all data memory traffic that
misses the L2 cache. This includes loads, stores, locked reads, and
ItoM requests.

L 2 cache requests—this event indicates all L2 cache data memory
traffic. This includes loads, stores, locked reads, and ItoM requests.

Data memory refer ences—this event indicates all data memory
references to the L1 data and instruction caches and to the L2 cache,
including all loads from and to any memory types.

External bus memory transactions—this event indicates all memory
transactions.

External bus cycles processor busy receiving data—VTune analyzer
counts the number of bus clock cycles during which the processor is
busy receiving data.

External buscyclesDRDY asserted—this event indicates the number

of clocks during which DRDY is asserted. This, essentially, indicates
the utilization of the data bus.

Other counters of interest are:

Instructions retired—this event indicates the number of instructions
that retired or executed completely. This does not include partially
processed instructions executed due to branch mispredictions.
Floating point operationsretired—this event indicates the number of
floating point computational operations that have retired.
Clockticks—this event initiates time-based sampling by setting the
counters to count the processor's clock ticks.

Resour ce-related stalls—this event counts the number of clock cycles
executed while a resource-related stall occurs. This includes stalls due
to register renaming buffer entries, memory buffer entries, branch
misprediction recovery, and delay in retiring mispredicted branches.
Prefetch NTA—this event counts the number of Streaming SIMD
Extensionsr ef et chnt a instructions.
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The raw data collected by the VTune analyzer can be used to compute
variousindicators. For example, ratios of the clockticks, instructionsretired,
and floating-point instructions retired can give you a good indication as to
which parts of applications are best suited for a potential re-coding with the
Streaming SIMD Extensions.

Call Graph Profiling

The call graph profiles your applications and displays a call graph of active
functions. The call graph analyzes the data and displays a graphical view of
the threads created during the execution of the application, acomplete list of
the functions called, and the relationship between the parent and child
functions. Use VTune analyzer to profile your Win32* executable files or
Java* applications and generate a call graph of active functions.

Call graph profiling includes collecting and analyzing call-site information
and displaying the results in the Call List of the Call Graph and Source
views. The call graph profiling provides information on how many times a
function (caller) called some other function (callee) and the amount of time
each call took. In many cases the caller may call the callee from severa
places (sites), so call graph also provides call information per site. (Call site
information is not collected for Java call graphs.)

The View by Call Sites displays the information about callers and callees of
the function in question (also referred to as current function) by call sites.
This view alows you to locate the most expensive calls.

Call Graph Window

The call graph window comprisesthree views. Spreadsheet, Call Graph, and

Call List, see Figure 7-3. The Call Graph view, displayed on the lower

section of the window, corresponds to the function (method) selected in the
Spreadsheet. It displays the function, the function’s parents, and function’s
child functions.
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Figure 7-3
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Each node (box) in the call graph represents a function. Each edge (line
with an arrow) connecting two nodes represents the call from the parent
(caller) to the child function (calleg). The number next to the edge (line)
indicates the number of calls to that function.

The window has aCall List tab in the bottom of the Call Graph view. The
Call List view lists all the callers and the callees of the function selected in
the spreadsheet and displayed in the Call Graph view. In addition, the Call
List hasaView by Call Sitesin which you can see call information
represented by call sites.

Static Code Analysis

This feature analyzes performance through

® performing static code analysis of the functions or blocks of codein
your application without executing your application

® getting alist of functions with their respective addresses for quick
access to your code

® getting summary information about the percentage of pairing and
penalties incurred by the instructions in each function.

The static code analyzer provides analysis of the instructionsin your
application and their relationship with each other, without executing or
sampling them. It provides an estimation of the performance of your
application, not actual performance. The static code analyzer analyzes the
module you specified in the Executable field and displays the results. By
default, the static code analyzer analyzes only those functionsin the module
that have source code available.

During the static code analysis, the static code analyzer does the following
tasks:

® searches your program for the debug symbols or prompts you to
specify the symbol files

® searchesthe source directories for the source files

® analyzes each basic block and function in your program

® creates a database with the results



; Intel Architecture Optimization Reference Manual

7-10

® displays summary information about the performance of each function,
including its name, address, the number of instructions executed, the
percentage of pairing, the total clock cyclesincurred, and the number
of clock cyclesincurred due to penalties.

Static Assembly Analysis

Thisfeature of the VTune analyzer determines performance issues at the
processor level, including the following:

®* how many clocks each instruction takes to execute and how many of
them were incurred due to penalties

* how your code is executing in the three decode units of the Pentium |1
and Pentium 11l processors

® regardless of the processor your system is using, the static assembly
analyzer anayzes your application’s performance as it would run on
Intel processors, from Intel486™ to Pentilliprocessors.

The VTune analyzer’s static assembly analyzer analyzes basic blocks of
code. It assumes that the code and data are already in the cache and ignores
loops and jumps. It disassembles your code and displays assembly
instructions, annotated with performance information.

The static assembly analyzer disassembles hotspots or static functions in
your Windows 95, 98 and NT binary files and analyzes architectural issues
that effect their performance. You can invoke Static Assembly Analysis
view either by performing a static code analysis or by time or event-based
sampling of your binary file. Click on the View Static Assembly Analysis
icon in the VTune analyzer’s toolbar to view a static analysis of your code
and display the assembly view.

Dynamic Assembly Analysis

Dynamic assembly analysis fine-tunes sections of your code and identifies
the exact instructions that cause critical performance problems. It simulates
a block of code and discovers such events as missed cache accesses,
renaming stalls, branch target buffer (BTB) misses, and misaligned data that
can degrade performance on Intel architecture-based processors.

Dynamic analysis gives you precise data about the behavior of the cache
and BTB by simulating the inner-workings of Intel's super-scalar,
out-of-order micro-architecture. The dynamic assembly analyzer executes
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the application, traces its execution, simulates, and monitors the
performance of the code you specify. You can perform dynamic analysis
using three different simulation methods:

®* Selected code
®  Uniform sampling
® Start and stop API

These methods provide alternate ways of filtering data and focusing on
critical sections of code. They differ in the way they invoke dynamic
analysis, simulate and analyze specific instructions, and in the amount of
output they display. For example, in the selected code method, the dynamic
assembly analyzer analyzes and displays output for every instruction within
a selected range, while in the uniform sampling and start/stop AP
simulation methods, only the critical sections of code are simulated and
analyzed.

Code Coach Optimizations
The code coach performs the following:

®* AnayzesC, FORTRAN, C++, and Java* source code and produces
high-level source code optimization advice.

®* Analyzes assembly code or disassembled assembly code and produces
assembly instruction optimization advice.

Once the VTune analyzer identifies, analyzes, and displays the source code
for hotspots or static functionsin your application, you can invoke the coach
for advice on how to rewrite the code to optimize its performance.

Typically, acompiler is restricted by language pointer semantics when
optimizing code. Coach suggests source-level modifications to overcome
these and other restrictions. It recognizes commonly used code patternsin
your application and suggests how they can be modified to improve
performance. The coach window is shown in Figure 7-4.

You can invoke the coach from the Source View window by double-
clicking on aline of code, or selecting a block of code and then clicking on
the code coach icon on the Source View toolbar.

7-11
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Figure 7-4 Code Coach Optimization Advice

hlyzer - [Advice for Line 128 in vtundemo_c]

LConfigure  findow  Help
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Sdvice # 1

112 for [i = 0: < 100; i++] {

113 iafi] = i+

114 ib[i] = ii:

115 icfi] = i*2;

116 I

117 while[iterations--]

118

119 Farli = 0; 1« 100; 1++]

120 i

121 Global_Test_if_putp = iZ2; /7 zet global walue

122 test_if [ia, ib, ic. 90);

Poszt-increment [or post-decrement] of the loop-control wariable *[iterations] on line 117 in file
viundemo. ¢ should be replaced by test and increment [or decrement] for better performance.
Advice # 2

130 I

131 b

132 A Larger

133 forfi = 0; 1< 200 ; 1++]

134 i

135 1 = test_oror1[f2, 3, 40]:

136 b

137

138 A Smaller significants

139 fori = 0;1 < 00 ;i++]

140 i

The argurent lizt for the function call to _test_oror1 on line 135 in file vtundemo.c appears to be loop-

ireariant. If there are no conflicts with ather variablesz in the loop, and if the function has no side

effects and no external dependencies, move the call out of the loop.

i the advice.
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The coach examines the entire block of code or function you selected and
searches for optimization opportunitiesin the code. Asit analyzes your
code, it issues error and warning messages much like a compiler parser.
Once the coach completes analyzing your code, if it finds suitable
optimization advice, it displays the advice in a separate window.

The coach may have more than one advice for aloop or function. If no
adviceis available, it displays an appropriate message. You can double-
click on any advice in the coach window to display context-sensitive help
with examples of the original and optimized code.

Where performance can be improved using MM X technology or Streaming
SIMD Extensions intrinsics, the coach provides advice in the form of
C-style pseudocode, leaving the data definitions, loop control, and
subscripts to the programmer.

For the code using the intrinsics, you can double-click the left mouse button
on an argument used in the code to display the description of that argument.
Click your right mouse button on anintrinsic to invoke a brief description of
that intrinsic.

Assembly Coach Optimization Techniques

Assembly coach uses many optimization techniques to produce its
recommended optimized code, for example:

® Instruction Selection—assembly coach analyzes each instruction in
your code and suggests alternate, equivalent replacements that are
faster or more efficient.

® Instruction Scheduling—assembly coach uses its in-depth knowledge
of processor behavior to suggest an optimal instruction sequence that
preserves your code's semantics.

®* Peephole Optimization—assembly coach identifies particular
instruction sequences in your code and replaces them with a single,
equivalent instruction.

* Partial Register Stall Elimination—assembly coach identifies
instruction sequences that can produce partial register stalls and
replaces them with alternative sequences that do not cause partial stalls.

7-13
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In Automatic Optimization and Single Step Optimization modes, you can
select or deselect these optimization types in the Assembly Coach Options
tab.

Intel Compiler Plug-in

The Intel C/C++ compiler is compatible with Microsoft Visual C++* and is
available as a plug-in to the Microsoft Devel oper Studio IDE.

Intel C/C++ compiler alows you to optimize your code by using special
optimization command-line options described in this section.

The optimization command-line options generally are- 01 and - 02. Each of
them enables a number of specific optimization options. In most cases, - O2
isrecommended over - O1 because the - O2 option enablesinline
expansion, which helps programs that have many function calls. The 2
option ison by default.

The- 01 and - 02 options enable the options as follows:

-0l Enablesoptions- g, -G -, -Os, -Oy, - b1, -G,
- Gs,and - Gy. However, - OL disables afew options
that increase code size.

-2 Enablesoptions- g, -G, -O, -0y, - Obl, -G,
- Gs, and - Gy. Confines optimizationsto the
procedural level.

All the command-line options are described in the Intel C/C++ Compiler
User’s Guide for Win32 Systenosder number 718195.

The - 0d option disables optimization. You can specify optimization option
as ‘any” instead of- 01 or- 02. This is the only optimization not disabled
by - Od.

Code Optimization Options

This section describes the options used to optimize your code and improve
the performance of your application.

7-14
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Targeting a Processor (- Gn)

Use - Gn to target an application to run on a specific processor for maximum
performance. Any of the - Gn suboptions you choose results in your binary
running on a corresponding Intel architecture 32-bit processors. - G5 isthe
default, and targets optimization for the Pentium |1 and Pentium 11
processors.

Automatic Processor Dispatch Support (- Q<[ ext ensi ons] and

- Qax[ extensi ons])

The- Qx[ ext ensi ons] and- Qax[ ext ensi ons] options provide
support to generate code that is specific to processor-instruction extensions.

- X[ ext ensi ons] generates specialized code to run exclusively on the
processors indicated by the extension.

- Qax[ extensi ons] generates code specialized to the specified
extensions, but also generates generic |A-32 code.
The generic code is usually slower. A runtime check
for the processor type is made to determine which
code executes.

You can specify the same extensions for either option as follows:

i Pentium 11 and Pentium III processors, which use the
CMOV and FCMOV instructions

Pentium 11 and Pentium Il processors

K Streaming SIMD Extensions, which includethei and M
extensions.

CAUTION. When you use - Qax[ ext ensi ons] in conjunction with

- X[ extensions], the extensions specified by - Qx[ ext ensi ons]
can be used unconditionally by the compiler, and the resulting program
will require the processor extensions to execute properly.

7-15
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Vectorizer Switch Options

The Intel C/C++ Compiler can vectorize your code using the vectorizer
switch options. The option that enables the vectorizer is- Qvec. The
compiler provides a number of other vectorizer switch options that allow
you to control vectorizations. All vectorization switches require the - Qvec
switch to be on. The default is off.

The vectorizer switch options can be activated from the command line. In
addition to the - Qvec switch, the compiler provides the following
vectorization control switch options:

-Quec_al i gnnment Controls the default alignment of vectorizable
data.

-Quec_ver bose Controls the vectorizer’s diagnostic levels.

-Qrestrict Enables pointer disambiguation with the

restrict qualifier

- Qkscal ar Performs all 32-bit floating point arithmetic using
the Streaming SIMD Extensions instead of the
default x87 instructions.

-Quec_emrs| -] Controls the automation of EMMS instruction
insertions to empty the MMX instruction
registers.

-Quec_no_arg_alias[-]
Assumes on entry that procedure arguments are
not aliased.

-Quec_no_alias[-] Assumes that no aliasing can occur between
objects with different names.

Prefetching (- Qof [ opt i ons])

Use - Qpf to automatically insert prefetching on a Pentium I1l processor.
This option enables three suboptions (- Qof _| oop, - Qf _cal |, and

- Qof _sst or e) each of which improves cache behavior. The following
example invokes - Qpf asone option with all its functionality:

pronpt> icl -Qpf prog.cpp
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Loop Unrolling (- Qunr ol I n)

Use- Qunr ol | nto specify the maximum number of times you want to
unroll aloop. For example, to unroll aloop at most four times, use this
command:

pronpt>icl -Qunroll4 a.cpp

To disable loop unralling, specify n aso.

Inline Expansion of Library Functions(- G ,-Q -)

The compiler inlines a number of standard C, C++, and math library
functions by default. This usually resultsin faster execution of your
program. Sometimes, however, inline expansion of library functions can
cause unexpected results. For explanation, see Intel C/C++ Compiler
User’s Guide for Win32 Systenesder number 718195.

Floating-point Arithmetic Precision (- Op, - Op-, - Qorec, - Qorec_di v,
- Qoc, - Q ong_doubl e)

These options provide optimizations with varying degrees of precision in
floating-point arithmetic.

Rounding Control Option (- @ cd)

The compiler usesthe - Qr cd option to improve the performance of code
that requires floating point calculations. The optimization is obtained by
controlling the change of the rounding mode.

The- Q cd option disables the change to truncation of the rounding mode
in floating point-to-integer conversions.

For complete details on all of the code optimization options, refer to the
Intel C/C++ Compiler User’s Guide for Win32 Systeimrsler number
718195.

Interprocedural and Profile-Guided Optimizations

The following are two methods to improve the performance of your code
based on its unique profile and procedural dependencies:

I nter procedural Optimization (IPO)—Use the- Q p option to analyze

your code and apply optimizations between procedures within each source
file. Use multifile IPO with- Q po to enable the optimizations between
procedures in separate source files.
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Usethe - Qopt i on suboption with the applicable keywords to select
particular in-line expansions and loop optimizations. If you specify - Q p
without the - Qopt i on qualification, the compiler expandsfunctionsinline,
propagates constant arguments, passes arguments in registers, and monitors
module-level static variables.

Profile-Guided Optimization (PGO)—Creates an instrumented program
from your source code and special code from the compiler. Each time this
instrumented code is executed, the compiler generates a dynamic
information file. When you compile a second time, the dynamic information
files are merged into a summary file. Using the profile information in this
file, the compiler attempts to optimize the execution of the most heavily
travelled paths in the program.

When you use PGO, consider the following guidelines:

®*  Minimize the changes to your program after instrumented execution
and before feedback compilation. During feedback compilation, the
compiler ignores dynamic information for functions modified after that
information was generated.

& NOTE. The compiler issues a warning that the dynamic information
corresponds to a modified function.

®  Repeat the instrumentation compilation if you make many changes to
your source files after execution and before feedback compilation.

For complete details on the interprocedural and profile-guided
optimizations, refer to the Intel C/C++ Compiler User’s Guide for Win32
Systemgsorder number 718195,

Intel Performance Library Suite

The Intel Performance Library Suite (PLS) includes the following libraries:

®* Thelntel Signal Processing Library: set of signal processing functions
similar to those available for most Digital Signal Processors (DSPs)

®* Thelntel Recognition Primitives Library, a set of 32-hit recognition
primitives for devel opers of speech- and character-recognition software
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®* Thelntel Image Processing Library, a set of low-level image
mani pul ation functions particularly effective at taking advantage of
MMX technology

® Thelntel Math Kernel Library, a set of linear algebra and fast Fourier
transform functions for developers of scientific programs.

®* Thelntel Image Processing Primitives: a collection of low-overhead
versions of common functions on 2D arrays intended as a supplement
or adternative to the Intel Image Processing Library.

Benefits Summary

The overall benefitsthe libraries provide to the application developers are as
follows:

* Low-level functions for multimedia applications

® Highly-optimized routines with a C interface, “no assembly required”
®  Processor-specific optimization

®  Processor detection and DLL dispatching

® PureC versionfor any |A processor

®  Custom DLL builder for reduced memory footprint

®  Built-in error handling facility

The libraries are optimized for all Intel architecture-based processors. The

custom DLL builder allows your application to include only the functions
required by the application.

Libraries Architecture

Each library in the Intel Performance Library Suite implements specific
architecture that ensures high performance. The Signal Processing Library
(SPL), the Recognition Primitives Library (RPL), and the Math Kernel
Library (MKL) use the data types such as signed and unsigned short
integers, output scale or saturation mode, and single and double-precision
floats. The bulk of the functions support real and complex functions. All
these features ensure fast internal computations at higher precision.

The Image Processing Library (1PL) implements specific image processing
techniques such as bit depths, multiple channels, data alignment, color
conversion, region of interest and tiling. Theregion of interest (ROI) defines
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aparticular area within entire image and enables you to perform operations
onit. Tiling isatechnique that handles large images by diving an image into
sub-blocks.

The Image Processing Primitives (1PP) library is a collection of
high-performance operations performed on 1D and 2D arrays of pixels. The
IPP provides lower-overhead versions of common functions on 2D arrays
and isintended as a supplement or alternative to the Intel Image Processing
Library.

The Math Kernel Library (MKL) is most helpful for scientific and
engineering applications. Its high-performance math functions include
Basic Linear Algebra Subprograms (BLAS) and fast Fourier transforms
(FFTs) that run on multiprocessor systems. No change of the code is
required for multiprocessor support. The library is threadsafe and shows the
best results when compiled by the Intel compiler.

All libraries employ complicated memory management schemes and
processor detection.

Optimizations with Performance Library Suite

The PL S implements a number of optimizations discussed throughout this
manual, including architecture-specific tuning such as loop unrolling,
instructions pairing and instructions scheduling; memory managing such as
prefetching and cache tuning.

The library suite focuses on taking advantage of the parallelism of the

SIMD instructions that comprise the MM X technology and Streaming
SIMD Extensions. This technique improves the performance of
computationally intensive image processing functions. Thusthe PLS
includes a set of functions whose performance significantly improves when
used with the Intel architecture processors. In addition, the libraries use
table look-up techniques and fast Fourier transforms (FFTSs).

The PL S frees the application devel opers from assembly programming for
the variety of frequently used functions and prepares the programs for the
new processor sincethe libraries are capable of detecting the processor type,
including the future processors, and adjusting the code accordingly.
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Register Viewing Tool (RVT)

The Register Viewing Tool (RVT) for Windows 95, 98, and Windows NT
allowsyou to directly view the contents of the Streaming SIMD Extensions
registers without using a debugger. In addition, the RVT provides
disassembly information during debug for Streaming SIMD Extensions.
This capability of viewing the contents of registers without using debugger
isthe contribution of the RV T to optimizing your application. For complete
details, refer to the Register Viewing Tool, version 4.0 online help.

Register Data

The RVT displaysthe contents of the Streaming SIMD Extensions registers
inan RVT Display window. The contents of the eight Streaming SIMD
Extensions registers, XMMO through XMM?7 fields are displayed in one of
four formats: byte (16 bytes), word (8 words), dword (4 doublewords) or
single (4 single words in floating-point format). The RVT alows you to set
the format as you need. The new value appearsin red.

The window displays the trapped code segment register and the trapped
extended instruction pointer. The window has a First Byte Field which
allows you to enter the first byte value of the break-point command when a
break point is reached. From the RV T display window, you can call the
Disassembly window.

Disassembly Data

In adebug mode, the disassembly window displays the full disassembly of
the current EIP address plus 40 bytes of disassembly information before and
after the current EIP. Thisinformation is shown after every debug
breakpoint or single-step depending on how you set your debug
environment, see Figure 7-5.
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Figure 7-5 The RVT: Registers and Disassembly Window

Intel Reqister Yiewing Tool - Drver: 2.07 - Build: Moy 30 1998

ES:IEIIIIl}:I EIP 00401211 fptions) lrite |Eefre5h| ]

#MHM0  [+6.00000e-00Z +4.00000e-00Z +Z.00000e-00Z +0.00000&+(

AMM1  [+1.40000e-001 +1.Z0000e-001 +1.00000e-001 +5.00000e-(

#AME  |+2.50000e-001 +2_50000e-001 +2_50000e-001 +Z2.50000&-(

Mz |+0.00000=2+000 +0.00000e+000 +0.00000e+000 +0.00000=+(

$M4  (+0.00000e+000 +0.000002+000 +0.000002+000 +0.00000e+(

XMMS  |(+0.00000e+000 +0.00000e+000 +0.00000e+000 +0.00000e+(

#Me  |[+0.00000=2+000 +0.00000e+000 +0.00000e+000 +0.00000&+(

MY |+0.000002+000 +0.00000e+000 +0.00000e+000 +0.00000&+(

N=g
Dizazsemhly Window
HIrES aoo0401203: WOvAps xmwm, HIMPMTOED PTR [eax+0c07
BieE ooo40l1z0a: Wovaps rmwml , XMMWTORD PTR [eax+0c07
* 000401z211: i
I Q00401214 nulps= xmml , xmm?
Qo0401217: addp= xmml, XPROPORD PTR [eax+07fh.
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To ensure accurate disassembly information at a breakpoint, you need to
enter the correct first byte value of the break-point command from the RVT
display window. The RV T uses information from memory which
remembers the value that you enter within aloop from one iteration to the
next, up to 20 LRU first bytes. Synchronization of the RVT and the
instructions occurs at the current EIP.
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Optimization of Some Key
Algorithms for the
Pentium® //] Processors

The MMX™ technology and Streaming SIMD Extensions for the $htel
architecture (1A) instruction set provides single-instruction, multiple-data
(SIMD) floating-point instructions and SIMD integer instructions. These
instructions, in their turn, provide ameans to accelerate operations typical
of 3D graphics, real-time physics, spatial (3D) audio, and others.

This appendix describes several key algorithms and their optimization for
the Pentium® I11 processors. The algorithms discussed are:

® Using Newton-Raphson Method with the reciprocal (r cpps) and
reciprocal square root (r sqrt ps) instructions.

® Usingpr ef et ch instruction for transformation and lighting operations
to reduce memory load latencies.

® Using the packed sum of absolute differences instruction (psadbw) to
implement a fast motion-estimation error function.

® Using MMX technology and Streaming SIMD Extensions intrinsics
and vector classes for any sequential sample stream either to increase
or reduce the number of samples.

® Using Streaming SIMD Extensions technology intrinsics and vector
classes for both real and complex 16-tap finite duration impulse
response (FIR) filter.
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Newton-Raphson Method with the Reciprocal
Instructions

The Newton-Raphson formula for finding the root of an equation is

_ _ f(x;)
Xiv1 = K==~
f[b(i)
where
X is the estimated root
f(x;) isthe function evaluated at the root estimate
f*(x;) isthe first derivative of the function evaluated at the root
estimate.

The Newton-Raphson method is the preferred method for finding the root of
functions for which the derivative can be easily evaluated and for which the
derivative is continuous and non-zero in the neighborhood of the root. The

Newton-Raphson method approximately doubles the number of significant

digits for each iteration if theinitial guessis close to the root.

The Newton-Raphson method is used to increase the accuracy of the results
for thereciprocal (r cpps) and the reciprocal square root (r sgrt ps)
instructions. Ther cpps andr sqgrt ps instructions return aresult, which is
accurate in the 12 most significant bits of the mantissa. These two
instructions have a 3-cycle latency opposed to 26 cycles required to use the
divide instruction.

In some agorithms, it may be desirable to have full accuracy whilerealizing
the performance benefit of using the approximation instructions. The
method illustrated in the examples yields near full accuracy, and provides a
sizable performance gain compared to using the divide or square root
functions. One iteration of the Newton-Raphson method is sufficient to
produce a result which is accurate to 23 of 24 bitsfor single precision
numbers (24 bits includes the implied “1” before the binary point).

For complete details, see tlnereasing the Accuracy of the Results fromthe
Reciprocal and Reciprocal Square Root Instructions using the
Newton-Raphson Method, Intel application note, order number 243637.
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Performance Improvements

For the ASM versions, the approximation instruction (r cpps) and the
reciprocal square root instruction (r sqr t ps) by themselves are 1.8 and 1.6
times, respectively, faster than implementing the Newton-Raphson method.
It isimportant to investigate whether the extra accuracy is required before
using the Newton-Raphson method to insure that the maximum
performance is obtained. If full accuracy is required, then the
Newton-Raphson method provides a 12 times increase for the reciprocal
approximation and 35 times for the reciprocal sguare root approximation
over C code, and over a 3.3 times and 9.6 times increase above the SIMD
divide instruction, respectively for each operation.

Unrolling the loops further enhances performance. After unrolling, the code
was scheduled to hide the latency of the multiplies by interleaving any
non-dependent operations. The gain in performance for unrolling the
reciprocal code was due to reduced instructions (55%) and scheduling
(45%). The gain in performance for unrolling the reciprocal square root
code was due to reduced instructions (30%) and scheduling (70%).

Newton-Raphson Method for Reciprocal Square Root

Example A-1 demonstrates a Newton-Raphson approximation for
reciprocal square root operation implemented with inlined assembly for the
Streaming SIMD Extensions, the intrinsics, and the F32vec4 class. The
complete sample program, including the code for the accurate
Newton-Raphson Methods can be found in the

VTuneEnv\ Sanpl es\ NRReci procal directory of the VTune
Performance Enhancement Environment CD, version 4.0.
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Example A-1 Newton-Raphson Method for Reciprocal Square Root
Approximation

voi d Reci pSqRoot Appr oxi mati onASM fl oat * | pflnput, float *
| pf Reci pQut put, int i NumloDo)

{
__asm
{
nov esi, | pflnput
nov edi, | pfRecipCQutput
nmov ecx, i NuniToDo
shr ecx, 2 ; divide by 4, do 4 at a tinme
I nvert:
novaps xmoO, [esi]
add edi, 16
rsgrtps xmi, xm0O
add esi, 16
novaps [-16][edi], xmmil
dec ecx
jnz Invert
}
}

voi d Reci pSgRoot Approxi mati onlntrinsics(float * |pflnput, float *
| pf Reci pQut put, int i NumlroDo)

{
int i
_ ml28 *In, *Qut;
In = (__m28 *) | pflnput;
Qut = (__m28 *) | pfRecipCQutput;
i NumroDo /= 4; ; divide # to do by 4 since we are
; doing 4 with each intrinsic
for(i = 0; i < iNunfToDo; i ++)
{
*Qut++ = _mmorsqrt_ps(*ln++);
}
}

continued
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Example A-1 Newton-Raphson Method for Reciprocal Square Root
Approximation (continued)

voi d Reci pSqRoot Appr oxi mati onF32vec4(float * | pflnput, float *
| pf Reci pQut put, int i NumloDo)

{
int i;
F32vec4 *In, *Cut;
In = (F32vec4 *) | pflnput;
Qut = (F32vec4 *) | pfReci pQutput;
for(i = 0; i < iNunmfoDo; i += 4)
{
*Qut++ = rsqrt(*ln++);
}
}

Newton-Raphson Inverse Reciprocal Approximation

Example A-2 demonstrates Newton-Raphson method for inverse reciprocal
approximation using inlined assembly for the Streaming SIMD Extensions,
the intrinsics, and the F32vec4 class. The complete sample program,
including the code for the accurate Newton-Raphson M ethods can be found
in the VTuneEnv\ Sanpl es\ NRReci procal directory of the VTune™
Performance Enhancement Environment CD, version 4.0.

Example A-2 Newton-Raphson Inverse Reciprocal Approximation

voi d Reci pApproxi mati onASM fl oat * | pflnput, float * | pfRecipCutput,
i nt i NumroDo)

{

__asm

—~

nov  esi, |pflnput

continued
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Example A-2 Newton-Raphson Inverse Reciprocal Approximation (continued)

nmov  edi, | pfRecipQutput
nmov  ecx, i NumTloDo
shr ecx, 4

I nvert:
novaps mD, [esi]
add edi, 64
novaps xme, [16][esi]
novaps xmmd, [32][esi]
novaps xmb, [48][esi]
add esi, 64
rcpps xmi, xmm0D
rcpps xmB, xm
rcpps xmb, xm4
rcpps xmiv, xmmb

novaps [-64][edi],
novaps [-48][edi],
novaps [-32][edi],
dec ecx

novaps [-16][edi],
jnz Invert

voi d Reci pApproxi mationlntrinsics(fl oat

| pf Reci pQut put,
{

int i;

i nt

_ ml28 *In, *Qut;

NumToDo)

; divide by 16, do 16 at a tinme

xmB
xnmb

xnm/

* | pfl nput,

fl oat

*

continued
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Example A-2 Newton-Raphson Inverse Reciprocal Approximation (continued)

In = (__m28 *) |pflnput;
Qut = (__m28 *) | pfRecipCut put;

i NunifoDo = i NumToDo >> 2; ; divide # to do by 4 since we
are doing 4 with each intrinsic

for(i = 0; i < iNunfToDo; i ++)
{

*Qut++ = _mmorcp_ps(*I n++);

*

voi d Reci pApproxi mati onF32vec4(fl oat * |pflnput, float
| pf Reci pQut put, int i NumroDo)

{
int i;
F32vec4 *1n, *CQut;
In = (F32vec4 *) |pflnput;
Qut = (F32vec4 *) | pfReci pQutput;
i NunifoDo = i NumToDo >> 2;; divide by 4, do 4 at a tinme
for(i = 0; i < iNunfToDo; i ++)
{
*Qut ++ = rcep(*l n++);
}
}

3D Transformation Algorithms

The examples of 3D transformation operations algorithms in this section
demonstrate how to write efficient code with Streaming SIMD Extensions.
The purpose of these algorithms is to make the transformation and lighting
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operations work together efficiently and to use new pr ef et ch instructions
to reduce memory load latencies. The performance of code using the
Streaming SIMD Extensionsis around three times better than the original C
code.

For complete details, refer to the Sreaming SMD Extensions -- 3D
Transformation, Intel application note, order number 243831.

Aos and SoA Data Structures

There are two kinds of data structures: the traditional Array of Structures
(A0S), with data organized according to vertices - Xg Yq Zg, and the
Structure of Arrays (SoA), with data organized according to coordinates -
Xg X1 X2 X3. The SoA data structure is a more natural structure for SIMD
instructions.

The best performance is achieved by performing the transformation with
datain SoA format. However some applications require the datain AoS
format. In these casesit is still possible to use Streaming SIMD Extensions,
by transposing the data to SoA format before the transformation and
lighting operations. After these operations are complete, de-transpose the
data back to AoS format.

Performance Improvements

The performance improvements for the 3D transform algorithms can be
achieved by

® using SoA structures
* prefetching data
® avoiding dependency chains

SoA

The Streaming SIMD Extensions enable increased performance over scalar
floating-point code, through utilizing the SIMD feature of these
instructions. When the data is arranged in SoA format, one instruction
handles four data elements. This arrangement also eliminates loading data
that is not relevant for the transformation, such as texture coordinates, color,
and spectral information.
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Prefetching

Additional performance gainis achieved by prefetching the data from main
memory, and by replacing the long latency divpsinstruction with alow
latency r cpps instruction, or its Newton-Raphson approximation for better
precision. For more information, see the “Newton-Raphson Method with
the Reciprocal Instructionsection earlier in this appendix. For complete
details, refer to théncreasing the Accuracy of the Results from the

Reciprocal and Reciprocal Square Root Instructions using the
Newton-Raphson Method, Intel application note, order number 243637.

Avoiding Dependency Chains

Yet another performance increase can be obtained by avoiding writing code
that contains chains of dependent calculations. The dependency problem
can occur with theovhps/ novl ps/ shuf ps sequence, since each

novhps/ novl ps instruction bypasses part of the destination register. These
instructions cannot execute until prior instructions that generate the
corresponding register are completed. This dependency can prevent
successive loop iterations from executing in parallel.

One solution to this problem is to include a 128-bit load from a dummy
local variable to each register used witlbahps/nov| ps instruction. This
effectively breaks dependency by performing an independent load from a
memory or cached location. In some cases, such as loading a section of a
transform matrix, the code that uses the swizzled results already includes
128-bit loads. In these cases, an additional explicit 128-bit dummy load is
not required.

Implementation

The code examples, including a sample program using the techniques
described above can be found in'th&uneEnv\ Sanpl es\ 3DTr ans\ aos

and\ VTuneEnv\ Sanpl es\ 3DTr ans\ soa directories of the VTune
Performance Enhancement Environment, version 4.0. Example A-3 shows
the code for the transformation algorithm for the SoA version implemented
in scalar C, and the intrinsics and vector class for the Streaming SIMD
Extensions.
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Example A-3 Transform SoA Functions, C Code

voi d TransfornProj ect SOA(VerticesList *inp, VerticesList *out, int
count, canmera *can

{
int i;
float x,y, z;
float orw
for (i=0; i<count; i++){
X = inp->x[i], y = inp->y[i], z = inp->z[i];
orw=Xx * mat-> 30 +y * mat-> 31 + z * mat->_32 +
mat - >_33;
out->x[i] = (x*mat->_00 + y*mat-> 01 + z*mat->_02 +
mat - >_03) *(cam >sx/orw) + cam >t x;
out->y[i] = (x*mat->_10 + y*mat->_11 + z*mat->_12 +
mat - >_13) *(cam >sy/orw) + cam >ty;
out->z[i] = (x*mat->_20 + y*mat->_21 + z*mat->_22 +
mat - >_23) *(cam >sz/orw) + cam >tz;
out->wi] = orw,
}
}

/'l This version uses the intrinsics for the Stream ng SI M

Ext ensi ons.

/'l Note that the F32vec4 can be used in place of _ ml28 variabl es as
/] operands to the intrinsics.

voi d Transf ornProj ect SOAXMM ntrin(VerticesListV *inp, VerticesListV
*out, int count, canera *cam

{
int i;
F32vec4 x, vy, z;
F32vec4 orw;
F32vec4 SX=cam >sx, SY=cam >sy, SZ=cam >Sz;
F32vec4 TX=cam >tx, TY=cam >ty, TZ=cam >t z;

continued

A-10
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Example A-3 Transform SoA Functions, C Code (continued)

for (i=0; i<count/VECTOR SIZE; i++){
X =inp->x[i], y =inp->y[i], z = inp->z[i];

/[l orw=x* mt30 +y * mat31 + z * mat32 + nmmat 33;

orw = (_nm add_ps(
_mm add_ps(
_mm mul _ps(x, mat30),
_mmmul _ps(y, mat31)),
_mm add_ps(
_mm mul _ps(z, mt32),
nmat 33)) ) ;

[l out->x[i] = (x*mat->_00 + y*mat-> 01 + z*mat->_02 +
mat - >_03) *(cam >sx/orw) + cam >t x;
out->x[i] = (_nm.add_ps(
_mm_mul _ps(
_mm add_ps(
_mm add_ps(
_mm mul _ps(x, mat00),

_mmmul _ps(y, nmat01)),

_mm add_ps(
_mmmul _ps(z, mat02),
mat 03) ),
_mmdiv_ps(SX, orw)),
™));

[l out->y[i] = (x*mat->_10 + y*mat->_11 + z*mat->_12 +
mat - >_13) *(cam >sy/orw) + cam >ty;
out->y[i] = (_nm.add_ps(
_mm mul _ps(
_mm add_ps(
_mm add_ps(
_mm mul _ps(x, mat10),

continued
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Example A-3 Transform SoA Functions, C Code (continued)

_mmmul _ps(y, matll)),

_mm add_ps(
_mmmul _ps(z, matl12),
mat 13) ),
_mmdiv_ps(SY, orw)),
™);

/1 out->z[i] = (x*mat-> 20 + y*mat-> 21 + z*mat-> 22 +
mat - >_23) *(cam >sz/orw) + cam >tz;
out->z[i] = (_nm.add_ps(
_mm mul _ps(
_mm add_ps(
_mm add_ps(
_mm mul _ps(x, mat?20),
_mmmul _ps(y, mat2l)),

_mm add_ps(
_mmmul _ps(z, mat?22),
mat 23) ),
_mmdiv_ps(SZ, orw)),
T2));

out->wi] = orw

/'l This version uses the F32vec4 cl ass abstraction for the Stream ng
/] SIMD Extensions intrinsics

voi d TransfornProj ect SOAXMMFvec(VerticesLi stV *inp, VerticesListV
*out, int count, canera *cam

{

continued

A-12



Optimization for Some Key Algorithms for the Pentium I11 Processors l \

Example A-3 Transform SoA Functions, C Code (continued)

int i;

F32vec4 x, vy, z;

F32vec4 orw;

F32vec4 SX=cam >sx, SY=cam >sy, SZ=cam >sz;
F32vec4 TX=cam >tx, TY=cam >ty, TZ=cam >t z;
for (i=0; i<count/VECTOR SIZE; i++){

X = inp->x[i], y =inp->y[i], z = inp->z[i];
orw=Xx* mat30 + y * mat31 + z * mat 32 + nmat 33;
out->x[i] =

((((x * mat00) + (y * mat0l) + (z * mat02) +
mat 03) * (SX/orw)) + TX);
out->y[i] =
((((x * mat10) + (y * matll) + (z * mat12) +
mat 13) * (SY/orw)) + TY);
out->z[i] =
((((x * mt20) + (y * mat21l) + (z * mat22) +
mat 23) * (SZ/orw)) + TZ);
out->wWi] = (orw;

Assembly Code for SoA Transformation

The sample assembly code is an optimized example of transformation of
datain SoA format. You can find the code in

\ VTuneEnv\ Sanpl es\ 3dTr ans\ soa\ soa. asmfile of the VTune
Performance Enhancement Environment CD, version 4.0.

In the optimized code the instructions are rescheduled to expose more
parallelism to the processor. The basic code is composed of four
independent blocks, inhibiting parallel execution. The instructions in each
block are data-dependent. In the following optimized code the instructions
of each two adjacent blocks are interleaved, enabling much more paralel
execution.
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This optimization assumes that the vertices datais already in the cache. If
the dataiis not in the cache, this code becomes memory-bound. In this case,
try to add more computations within the loop, for example, lighting
calculations. Another option isto prefetch the data, using the Streaming
SIMD Extensions prefetch instruction.

Motion Estimation

This section explains how to use the Streaming SIMD Extensions and

MMX™ technology instructions to perform motion estimation (ME) for the
MPEG Encoder. Motion estimation (ME) is a video compression technique
performed during video stream encoding. ME benefits situations in which —

®* most of the object’s characteristics, such as shape and orientation, stay
the same from frame to frame

* only the object’s position within the frame changes.

The ME module in most encodersis very computation-intensive, so it is
desirable to optimize it as much as possible.

For complete detail s, see the Using Streaming SIMD Extensionsin a Motion
Estimation Algorithm for MPEG Encoding, Intel application note, order
number 243652.

This section includes code examples that implement the new instructions. In
particular, they illustrate the use of the packed sum of absolute differences
(psadbw) instruction to implement a fast motion-estimation error function.

Performance Improvements

The Streaming SIMD Extensions code improves ME performance using the
following techniques:

®* Implementing psadbw instruction to calculate a sum of absolute
differencesfor 16 pixels. With MM X technology, the code requires
about 20 MM X instructions, including packed subtract, packed
addition, logical, and unpack instructions. The same cal culation with
Streaming SIMD Extensions requires only two psadbw instructions.

®  Reducing potential delays due to branch mispredictions by using
absolute difference calculation which does not contain any branch
instructions.
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® Using search algorithm with block-by-block comparisons for error
calculation.

® Unrolling the loop saves four times on loop overhead, that is, fewer
instructions are executed.

Sum of Absolute Differences

The motion estimation module in most encoders is very computation-
intensive, due to the large number of block-by-block comparisons.
Streaming SIMD Extensions provide afast way of performing the
fundamental motion-error calculation using the psadbw instruction to
compute the absolute difference of unsigned, packed bytes. Overal, the
Streaming SIMD Extensions implementation of this error function yields a
1.7 performance improvement over the MM X technology implementation.

Prefetching

The pr ef et ch instruction aso improves performance by prefetching the
data of the estimated block. Since precise block position in the estimated
frameisknown, pr ef et ch can be used once every two blocks to prefetch
sixteen 32-byte cache lines for the two next blocks. To avoid prefetching
more than once, the pr ef et ch instruction must be placed outside of the
loop of motion vector search.

Implementation

The complete sample program for the scalar C, SIMD integer, and SIMD
floating-point assembly versions of the Motion Estimation algorithm can be
found in the\ VTuneEnv\ Sanpl es\ Mot i onEst directory of the VTune
Performance Enhancement Environment CD, version 4.0.

Upsample

This section presents an algorithm called “smoothed upsample” which is a
subset of a more general class called a “resample” algorithm. Smoothed
upsampling attempts to make a better “guess” at the original signal shape by
fitting a smooth curve through four adjacent sample points and taking new
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samples only between the center two samples. Thisisintended to minimize
the introduction of false higher-frequency components and better match the
original signal shape.

This algorithm could be applied to any sequential sample stream either to
increase the number of samples, or it can be used asthefirst stepin
reducing the number of samples. In the latter case, the smoothed upsample
algorithm would be followed by application of afilter to produce a smaller
number of samples.

The Streaming SIMD Extensions can provide performance improvements
for smoothed upsampling, and in general, for any type of “resampling”
algorithm.

For complete details, see tAeSmoothed Upsample Algorithm using
Sreaming SSIMD Extensions, Intel application note, order number 243656.

Performance Improvements

The performance gain of the smoothed upsample algorithm with the
Streaming SIMD Extensions for the assembly code is from 3.9 to 5.9 times
faster than the C code, while the intrinsic code is from 3.4 to 5.2 times faster
than the C code.

While a hand-coded x87 version of the algorithm was not implemented,
typical performance improvement of x87 over a version coded in C is 25%—
and hence approximately half as fast as the Streaming SIMD Extensions
implementation.

To convert one second of 22 kHz audio samples to one second of 44 kHz
audio samples, the Streaming SIMD Extensions version would require only
about 1.3 to 1.9 million clocks — a trivial fraction of one second’s processing
on a Pentiunill processor.

Streaming SIMD Extensions Implementation of the Upsampling

Algorithm

The complete sample program for the scalar C, and SIMD-floating point
(intrinsics and vector class) versions of the Upsample algorithm can be
found in the. VTuneEnv\ Sanpl es\ Upsanpl e directory of the VTune
Performance Enhancement Environment CD, version 4.0.
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The performance of optimized assembly version of the smoothed upsample
algorithm with the Streaming SIMD Extensions can be compared to the C
version of the same algorithm, intrinsics version in C++, or to the FVEC
classlibrary version also in C++. The assembly version is substantially
faster than the C version.

FIR Filter Algorithm Using Streaming SIMD
Extensions

This section discusses the algorithm for both real and complex 16-tap finite
duration impulse response (FIR) filter using Streaming SIMD Extensions
technology and includes code examples that illustrate the implementation of
the Streaming SIMD Extensions SIMD instruction set.

For complete details refer to the 32-bit Floating Point Real & Complex
16-Tap FIR Filter Implemented Using Streaming SSMD Extensions, Intel
application note, order number 243643.

Performance Improvements for Real FIR Filter

The following sections discuss considerations and techniques used to
optimize the performance of the Streaming SIMD Extensions code for the
real 16-tap FIR filter algorithm. These techniques are generally applicable
to optimizing Streaming SIMD Extensions code on the Pentium 111
architecture.

Parallel Multiplication and Interleaved Additions

Use parallel multiplications and the CPU-bound interleaved additions to
increase the number of memory accessesfor FIR filter. All Streaming SIMD
Extensions tranglate to at |east two micro-ops. When alarge number of
Streaming SIMD Extensions are used consecutively, the resulting micro-ops
retire quickly which slows down the performance of the decoder.

Reducing Data Dependency and Register Pressure

In the optimized version of the Streaming SIMD Extensions technology,
registers were reallocated, at several points, to reduce register pressure and
increase opportunities for rescheduling instructions. The primary example
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of thisisthe use of xnm0 to perform parallel multiplications. In the
unoptimized version, xnmD is used exclusively to access data from the input
array and perform the multiplication against the coefficient array. In the
optimized version, xnm% and xmmv are implemented to alleviate pressure
from xmm0. While xnm# is used to compute values for both y( n+1) and
y(n+3) , theonly other connection between the parallel multipliesisthe use
of xmi to hold a copy of the input values used by the other registers. This
resultsin afew very precise dependencies on the parallel portion of the
algorithm, and increases the opportunities for rescheduling instructions.

Scheduling for the Reorder Buffer and the Reservation
Station

Keeping track of the number of micro-opsin the reorder buffer (ROB) and
the Reservation Station is another optimizing technique used for the
Streaming SIMD Extensions code. |deally neither the ROB nor the
Reservation Station should become saturated with micro-ops (limit is40 for
the ROB, 20 for the Reservation Station). Usually, the saturation can be
eliminated through careful scheduling of instructions targeted to different
CPU ports, and by taking into account instruction latencies when
scheduling.

Wrapping the Loop Around (Software Pipelining)

The interleaved additions at the end of the loop are completely CPU-bound
and very dependent upon one another. The result of thisisthat the ROB and
the Reservation Station quickly saturate, preventing new micro-ops from
entering the ROB. Due to data dependencies, the instructions could not be
rescheduled very far back into the main loop body. To aleviate this
condition, thefirst set of multiplies (against the first column of coefficients)
and the loop control instructions were pulled out of the top of theloop and a
copy placed at the bottom. While this increased the size of the code, the
resulting opportunitiesfor instruction scheduling prevented the saturation of
the ROB and Reservation Station while improving the overall throughput of
the loop. A second copy of theinstructions must be placed outside the top of
the loop to “prime” the loop for its first iteration.
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Advancing Memory Loads

Memory accesses require a minimum of three clock cycles to completeif
thereis a cache hit on the L1 cache. These potentially long latencies should
be addressed by scheduling memory accesses as early and as far away as
possible from the use of the accessed data. It is aso helpful to retain data
accessed from memory within the CPU for aslong as possible to reduce the
need to re-read the data from memory. You can observethisin the FIR filter
performance when using the xmnil as a storage area to hold four input
values while they are multiplied by four different sets of coefficients.

Separating Memory Accesses from Operations

Separating memory accesses from operations that use the accessed data
allows the micro-ops generated to access memory to retire before the
micro-ops which actualy perform the operation. If amemory accessis
combined with an operation, all the micro-ops generated by the instruction
wait to retire until the last micro-op isfinished. This can leave micro-ops
used to access memory waiting to retire in the ROB for multiple clocks,
taking up valuable buffer space. Compare the unoptimized code to the
optimized code for performing multiplications against the coefficient datain
the example that follows.

Unoptimized code:

nmovaps xmmo0, xmi; ; Reload [n-13:n-16] for new product

mul ps xm®D, [eax + 160]; ; xqm0 = input [n-13:n-16] * c2_ 4
Optimized code:

nmovaps xnmd, [eax + 160 - 32]; ; Load c2_2 for new product

mul ps xm+, xnmi; ;o xmmd = input [n-5:n-8] * c2_2

Unrolling the Loop

The C code of the FIR filter has two loops: an outer |oop to move upward
through the input values, and an inner loop to perform the dot product
between the input and taps arrays for each output value. With Streaming
SIMD Extensions technology, the inner loop can be unrolled and only a
single loop can control the function.
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Loop unrolling benefits performance in two ways: it lessens the incidence

of branch misprediction by removing a conditional jump and it increases the
“pool” of instructions available for re-ordering and scheduling of the
processor. Keep in mind though that loop unrolling makes the code larger.
Consider whether you need to gain in performance or in code size.

Minimizing Pointer Arithmetic/Eliminating Unnecessary
Micro-ops

In the unoptimized version, the pointer arithmetic is explicit to allow for a
detailed explanation of the accesses into the taps arrays. In the optimized
version, the explicit arithmetic is converted to implicit address calculations
contained in memory accesses. This conversion reduces the number of
non-essential micro-ops generated by the core of the loop and the goal of
optimization is to eliminate unnecessary micro-ops whenever possible.

Prefetch Hints

Because the FIR filter input data is likely to be in cache, due to the fact that
the data was recently accessed to build the input vector, a prefetch hint was
included to pre-load the next cache line worth of data from the input array.
Accesses to the taps arrays and to the historical input data occur every
iteration of the loop to maintain good temporal locality after their initial
access. Keep in mind though that the processor will not follow all of the
hints and therefore the performance benefits of the prefetch hint can be
guestionable.

Minimizing Cache Pollution on Write

The way the output vector is used influences the method of data storage.
Basically, either the output vector (in the calling program) is used soon after
it is populated, or it will not be accessed for some time. In the first case, the
novaps instruction should be used to write out the data. In the second case,
if the output vector is not used for some time, it may be wise to minimize
cache pollution by using theovnt ps instruction.
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Performance Improvements for the Complex FIR Filter

The techniques described for real FIR filter above apply to the complex
16-tap FIR filter as well. The following sections discuss a few particular
techniques applicable to the complex FIR filters.

Unrolling the Loop

The change to the taps array increases the number of iterations of the inner
loop of the basic FIR algorithm. This, combined with an increased number
of instructions due to the complex multiply, resultsin many more
instructions when the loop is unrolled, and the code size increases.
However, if the loop is not unrolled, the algorithm produces a branch
misprediction and pipeline stall for every iteration of the outer loop.

To reduce branch mispredictions and minimize code size, the inner loop
may be unrolled only enough times to reduce the number of iterationsto
four because the architecture only supports four bits of branch history (a
four-branch history) in its branch prediction mechanism.

Reducing Non-Value-Added Instructions

To limit the use of shuffle, unpack, and move instructionsin an algorithm is
desirable because these instructions do not perform any arithmetic function

on the data and are basically “non-value added.” An alternative data storage
format, geared towards parallel (or SIMD) processing, eliminates the need
to shuffle the complex numbers to enable complex multiplies. However,
sometimes the SIMD structures do not fit well with the object-orientated
programming. The tradeoff of eliminating “non-value added” instructions is

a speed-up resulting from this elimination versus how much overhead is
necessary to use the SIMD data structures before executing the function.

Complex FIR Filter Using a SIMD Data Structure

The definition of SIMD techniques is that a single instruction operates upon
multiple data elements of the same type. A more efficient version of the
complex multiply can be implemented if the real and imaginary components
of the complex numbers are stored separately, in their own arrays.
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Code Samples

The complete sample program code for the scalar C, and SIMD floating-
point (intrinsics and vector class) versions of the Upsample agorithm can
be found in the 32-bit Floating Point Real & Complex 16-Tap FIR Filter
Implemented Using Sreaming SSMD Extensions, Intel application note,
order number 243643, the\ VTuneEnv\ Trai ni ng\rc_fir. pdf fileof the
V Tune Performance Enhancement Environment CD, version 4.0.
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Performance-Monitoring
Events and Counters

This appendix describes the performance-affecting events counted by the
counters on Pentium® 11 and Pentium 11 processors.

The most effective way to improve the performance of applicationisto
determine the areas of performance losses in the code and remedy the stall
conditions. In order to identify stall conditions, Pentium 11 and Pentium Il|
processors include two counters that allow you to gather information about
the performance of applications by keeping track of events during your code
execution. The counters provide information that allows you to determine if
and where an application has stalls.

The counters can be accessed by using Intel's VTune™ Performance
Analyzeror by using the performance counter instructions within the
application code.

Performance-affecting Events

This section presents Table B-1 that lists those events which can be counted
with the performance-monitoring counters and read withrIir/C

instruction.

The columns in the table are as follows:

®  TheUnit column gives the micro-architecture or bus unit that produces
the event.

®  The Event Number column gives the hexadecimal number identifying
the event.

®  The Mnemonic Event Name column gives the name of the event.
®  The Unit Mask column gives the unit mask required (if any).
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®  The Description column.
®  The Comments column gives additional information about the event.

These performance-monitoring events are intended as guides for
performance tuning. The counter values reported are not always absolutely
accurate and should be used as arelative guide for tuning. Known
discrepancies are documented where applicable. All performance events are
model-specific to the Pentium |1 and Pentium |1l processors and are not
architecturally guaranteed in future versions of the processors. All
performance event encodings not listed in the table are reserved and their
use will result in undefined counter results.

Table B-1 Performance Monitoring Events
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
DataCache  43H DATA_MEM_R  0OOH All loads from any memory
Unit (DCU) EFS type. All stores to any memory

type. Each part of a split is
counted separately.

NOTE: 80-bit floating-point
accesses are double counted,
since they are decomposed
into a 16-bit exponent load and
a 64-bit mantissa load.
Memory accesses are only
counted when they are actually
performed, e.g., a load that
gets squashed because a pre-
vious cache miss is outstand-
ing to the same address, and
which finally gets performed, is
only counted once.

Does notinclude I/O accesses,
or other non-memory
accesses.

45H DCU_ OOH Total number of lines that have
LINES_IN been allocated in the DCU.
46H DCU_M_ OOH Number of Modified state lines
LINES_IN that have been allocated in the
DCuU.

continued
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Table B-1 Performance Monitoring Events (continued)
Event  Mnemonic Unit
Unit No. Event Name Mask Description Comments
DataCache  47H DCU_M_ OOH Number of Modified state lines
Unit (DCU) LINES_OUT that have been evicted from
(cont’d) the DCU. This includes evic-
tions as a result of external
snoops, internal intervention,
or the natural replacement
algorithm.
48H DCU_MISS_O O0OOH Weighted number of cycles An access that also
UTSTANDING while a DCU miss is outstand- ~ Misses the L2 s
. short-changed by two
ing. Incremented by the num- N -

’ cycles. (i.e. if countis N
bgr of outstandlng'cacheA cycles, should be N+2
misses at any particular time. cycles.) Subsequent
Cacheable read requests only loads to the same
are considered. Uncacheable _cache Iine_v_viII not result
requests are excluded. Read- in any additional counts.
for-ownerships are counted as Count value not
well as line fills, invalidates, precise, but still useful.
and stores.

Instruction 80H IFU_FETCH OOH Number of instruction fetches, Will be incremented by
Fetch Unit both cacheable and 1 for each cacheable
(IFU) non-cacheable. Including UC line fetched and by 1 for
fetches. each uncached instruc-
tion fetched.
81H IFU_FETCH_ 00H Number of instruction fetch
MISS misses. All instruction fetches
that do not hit the IFU i.e. that
produce memory requests.
Includes UC accesses.
85H ITLB_MISS OOH Number of ITLB misses.
86H IFU_MEM_ OOH Number of cycles instruction
STALL fetch is stalled, for any reason.
Includes IFU cache misses,
ITLB misses, ITLB faults, and
other minor stalls.
87H ILD_STALL 0O0H Number of cycles that the

instruction length decoder
stage of the processors pipe-
line is stalled.

continued
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Table B-1

Performance Monitoring Events (continued)

Unit

Event
No.

Mnemonic
Event Name

Unit
Mask

Description

Comments

L2 Cache

28H

2AH

24H

26H

25H

27H

2EH

21H
22H

L2_IFETCH

L2_ST

L2_LINES_IN

L2_LINES_
ouT

L2_LINES_
INM

L2_LINES_
OUTM

L2_RQSTS

L2_ADS

L2_DBUS_
BUSY

MESI
OFH

MESI
OFH

O00H

O0OH

O0OH

O0OH

MESI
OFH

OO0H
O0OH

Number of L2 instruction
fetches. This event indicates
that a normal instruction fetch
was received by the L2. The
count includes only L2 cache-
able instruction fetches; it does
not include UC instruction
fetches. It does not include
ITLB miss accesses.

Number of L2 data stores. This
event indicates that a normal,
unlocked, store memory
access was received by the L2.
Specifically, it indicates that
the DCU sent a read-for- own-
ership request to the L2. It also
includes Invalid to Modified
requests sent by the DCU to
the L2. It includes only L2
cacheable store memory
accesses; it does not include
1/0 accesses, other non-mem-
ory accesses, or memory
accesses like UC/WT stores. It
includes TLB miss memory
accesses.

Number of lines allocated in
the L2.

Number of lines removed from
the L2 for any reason.

Number of Modified state lines
allocated in the L2.

Number of Modified state lines
removed from the L2 for any
reason.

Total number of all L2
requests.

Number of L2 address strobes.

Number of cycles during which
the L2 cache data bus was
busy.

continued
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Table B-1 Performance Monitoring Events (continued)
Event  Mnemonic Unit
Unit No. Event Name Mask Description Comments
L2 Cache 23H L2_DBUS_ 00H Number of cycles during which
) BUSY RD the data bus was busy
(contd) - transferring read data from L2
to the processor.
External 62H BUS_DRDY_ OOH Number of clocks during which  Unit Mask = 00H counts
Bus Logic CLOCKS (self) DRDY# is asserted. Essen- bus clocks when the
(EBL) 20H tially, utilization of the external processor is driving
system data bus. DRDY Unit Mask = 20H
(@ny) counts in processor
clocks when any agent
is driving DRDY.
63H BUS_LOCK OOH Number of clocks during which Always counts in
CLOCKS (self) LOCK# is asserted on the processor clocks.
external system bus.
20H
(any)
60H BUS _REQ_O 00H Number of bus requests out- Counts only DCU
UTSTANDING (self) standing. This counter is incre-  full-line cacheable
mented by the number of reads, not Reads for
cacheable read bus requests ownership, writes,
outstanding in any given cycle. instruction fetches, or
anything else. Counts
“waiting for bus to com-
plete” (last data chunk
received).
65H BUS_TRAN_ 0O0H Number of bus burst read
BRD (self) transactions.
20H
(any)
66H BUS_TRAN_ 0O0H Number of completed bus read
REO (self) for ownership transactions.
20H
(any)
67H BUS_TRAN_ 00H Number of completed bus write
WB (self) back transactions.
20H
(any)
68H BUS_TRAN_ OOH Number of completed bus
IFETCH (self) unstruction fetch transactions.
20H
(any)
continued
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Table B-1 Performance Monitoring Events (continued)
Event  Mnemonic Unit
Unit No. Event Name Mask Description Comments
External 69H BUS_TRAN_ OO0OH Number of completed bus
Bus Logic INVAL (self) invalidate transactions.
(EBL) 20H
(cont'd) (any)
6AH BUS_TRAN_ 0O0H Number of completed bus
PWR (self) partial write transactions.
20H
(any)
6BH BUS_TRAN_P  OOH Number of completed bus
(self) partial transactions.
20H
(any)
6CH BUS_TRAN_ 0O0H Number of completed bus I/O
10 (self) transactions.
20H
(any)
6DH BUS_TRAN_ 0O0H Number of completed bus
DEF (self) deferred transactions.
20H
(any)
6EH BUS_TRAN_ 0O0H Number of completed bus
BURST (self) burst transactions.
20H
(any)
70H BUS_TRAN_ OOH Number of all completed bus
ANY (self) transactions. Address bus utili-
20H zation can be calculated know-
(an ing the minimum address bus
y) occupancy. Includes special
cycles etc.
6FH BUS_TRAN_ O0H Number of completed memory
MEM (self) transactions.
20H
(any)
64H BUS_DATA O0H Number of bus clock cycles
RCV during which this processor is
(self) receiving data.
continued
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Table B-1

Performance Monitoring Events (continued)

Mnemonic
Event Name

Event
Unit No.

Unit
Mask

Description

Comments

EBL 61H
(contd)

BUS_BNR_
DRV

7AH BUS_HIT_
DRV

7BH BUS_HITM_
DRV

7EH BUS_SNOOP
STALL

00H
(self)

00H
(self)

00H
(self)

OOH
(self)

Number of bus clock cycles
during which this processor is
driving the BNR pin.

Number of bus clock cycles
during which this processor is
driving the HIT pin.

Number of bus clock cycles
during which this processor is
driving the HITM pin.

Number of bus clock cycles
during which the bus is snoop
stalled.

Includes cycles due to
snoop stalls.

Includes cycles due to
snoop stalls.

Floating- C1H FLOPS

point Unit

10H FP_COMP
OPS_EXE

11H FP_ASSIST

O00H

OOH

00H

Number of computational
floating-point operations
retired. Excludes floating-point
computational operations that
cause traps or assists.
Includes floating-point compu-
tational operations executed by
the assist handler.

Includes internal sub-opera-
tions of complex floating-point
instructions such as a tran-
scendental instruction.
Excludes floating-point loads
and stores.

Number of computational float-
ing-point operations executed
including FADD, FSUB, FCOM,
FMULSs, integer MULs and
IMULs, FDIVs, FPREMS,
FSQRTS, integer DIVs and
IDIVs.

NOTE: counts the number of
operations not number of
cycles. This event does not
distinguish an FADD used in
the middle of a transcendental
flow from a separate FADD
instruction.

Number of floating-point
exception cases handled by
microcode.

Counter 0 only.

Counter 0 only.

Counter 1 only. This
event includes counts
due to speculative exe-
cution.

continued
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Table B-1 Performance Monitoring Events (continued)
Event  Mnemonic Unit
Unit No. Event Name Mask Description Comments
Floating- 12H MUL OOH Number of multiplies. Counter 1 only. This
point Unit NOTE: includes integer and event
! FP multiplies. includes counts due to
(Com d) speculative execution.
13H DIV OOH Number of divides. Counter 1 only. This
NOTE: includes integer and event includes counts
FP multiplies. due to speculative exe-
cution.
14H CYCLES DIV OOH Number of cycles that the Counter 0 only. This
BUSY divider is busy, and cannot event includes counts
accept new divides. due to speculative exe-
NOTE: includes integer and cution.
FP divides, FPREM, FPSQRT,
etc. Counter 0 only. This event
includes counts due to specu-
lative execution.
Memory 03H LD_BLOCKS OOH Number of store buffer blocks.
Ordering Includes counts caused by pre-
ceding stores whose
addresses are unknown, pre-
ceding stores whose
addresses are known to con-
flict, but whose data is
unknown and preceding stores
that conflict with the load, but
which incompletely overlap the
load.
04H SB_DRAINS OOH Number of store buffer drain

cycles. Incremented during
every cycle the store buffer is
draining. Draining is caused by
serializing operations like
CPUID, synchronizing opera-
tions like XCHG, Interrupt
acknowledgment, as well as
other conditions such as cache
flushing.

continued
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Table B-1 Performance Monitoring Events (continued)
Event  Mnemonic Unit
Unit No. Event Name Mask Description Comments
Memory 05H MISALIGN_ OOH Number of misaligned data It should be noted that
Ordering MEM_REF memory references. Incre- MISALIGN_MEM_REF
(cont’d) mented by 1 every cycle during is only an approxima-
which either the processor load tion, to the true number
or store pipeline dispatches a of misaligned memory
isaligned pop. Counting is per- references. The value
formed if its the first half or returned is roughly pro-
second half, or if it is blocked, portional to the number
squashed or misses. of misaligned memory
NOTE: in this context accesses, i.e., the size
misaligned means crossing a of the problem.
64-bit boundary.
Instruction COH INST_ OOH Total number of instructions
Decoding RETIRED retired.
and
Retirement
C2H HOPS_ OOH Total number of HOPS retired.
RETIRED
DOH INST OOH Total number of instructions
DECODER decoded..
Interrupts C8H HW_INT_RX 0O0H Total number of hardware
interrupts received.
C6H CYCLES_INT O0OH Total number of processor
MASKED cycles for which interrupts are
- disabled.
C7H CYCLES_INT O0OH Total number of processor
PENDING cycles for which interrupts are
- - disabled and interrupts are
AND_ pending.
MASKED
Branches C4H BR_INST_ OOH Total number of branch instruc-
RETIRED tions retired.
CSH BR_INST_ OOH Total number of branch
PRED_ mispredictions that get to the
RETIRED point of retirement. Includes
not taken conditional branches.
C9H BR_TAKEN_ OOH Total number of taken
RETIRED branches retired.

continued
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Table B-1 Performance Monitoring Events (continued)

Event Mnemonic
Unit No. Event Name

Unit
Mask

Description

Comments

Branches CAH BR_MISS_
(cont'd) PRED_TAKEN
_RET

EOH BR_INST_
DECODED

E2H BTB_MISSES

E4H BR_BOGUS

E6H BACLEARS

O00H

O00H

O00H

O00H

OOH

Total number of taken but
mispredicted branches that get
to the point of retirement.
Includes conditional branches
only when taken.

Total number of branch instruc-
tions decoded.

Total number of branches that
the BTB did not produce a pre-
diction for.

Total number of branch predic-
tions that are generated but
are not actually branches.

Total number of time
BACLEAR is asserted. This is
the number of times that a
static branch prediction was
made by the decoder.

Stalls A2H RESOURCE_
STALLS

D2H PARTIAL_RAT
_STALLS

OOH

O00H

Incremented by one during
every cycle that there is
aresource related stall.
Includes register renaming
buffer entries, memory buffer
entries. Does not include stalls
due to bus queue full, too
many cache misses, etc. In
addition to resource related
stalls, this event counts some
other events.

Includes stalls arising during
branch misprediction recovery
e.g. if retirement of the mispre-
dicted branch is delayed and
stalls arising while store buffer
is draining from synchronizing
operations.

Number of cycles or events for
partial stalls.

NOTE: Includes flag partial
stalls.
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Performance-Monitoring Events and Counters

Table B-1 Performance Monitoring Events (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
Segment 06H SEGMENT_ O0H Number of segment register
Register REG_LOADS loads.
Loads
Clcocks 79H CPU_CLK_ O0OH Number of cycles during which
UNHALTED the processor is not halted.
MMX BOH MMX_INSTR_ OOH Number of MMX instructions
Instructions EXEC executed.
Executed
B3H MMX_INSTR_  O1H MMX Packed multiply
TYPE EXEC instructions executed.
02H MMX Packed shift instructions
executed.
04H MMX Packed operations
instructions executed.
08H MMX Unpack operations
instructions executed.
B3H MMX_INSTR_  10H MMX Packed logicall
(contd) TYPE EXEC instructions executed.
(contd)
20H MMX Packed arithmetic
instructions executed.
MMX B1H MMX_SAT_ O00OH
Saturated INSTR_EXEC
Instructions
Executed
MMX pops B2H MMX_uOPS_ OFH Number of MMX pOpS
executed EXEC executed.
MMX CCH FP_MMX_ 00H Transitions from MMX instruc-
Transitions TRANS tion to FP instructions.
0 Transitions from FP instruc-
1H tions to MMX instructions.
MMX CDH MMX_ASSIST  00H Number of MMX Assists. MMX Assists is the
Assists number of EMMS
instructions executed.
MMX CEH MMX_INSTR_  OOH Number of MMX instructions
Instructions RET retired.
Retired

continued
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Table B-1 Performance Monitoring Events (continued)
Event  Mnemonic Unit
Unit No. Event Name Mask Description Comments
Segment D4H SEG_RENAM 01H Segment register ES
Register E_STALLS 02H Segment register DS
Renaming s { reqister FS
Stalls 04H egment register
08H Segment register FS
OFH Segment registers ES + DS +
FS + GS
Segment D5H SEG_REG_ 01H Segment register ES
Registers RENAMES 02H Segment register DS
Renamed .
04H Segment register FS
08H Segment register FS
OFH Segment registers ES + DS
+FS +GS
Segment D6H RET_SEG_ 00H Number of segment register
Registers RENAMES rename events retired.
Renamed &
Retired
Execution D8H EMON_SSE_  ooH 0: packed and scalar Number of Streaming
Cluster INST_ O1H 1 | SIMD Extensions
RETIRED - scaiar retired
D9H EMON_SSE_ 00H 0: packed and scalar Number of Streaming
COMP INST ) SIMD Extensions
RET — O01H 1: scalar computation
instructions retired.
Memory 07H EMON_SSE_  ooH 0: prefetchNTA Number of
Cluster PRE_ 01H 1: prefetchT0 prefetch/lweaklyj _
DISPATCHED ] ordered instructions dis-
02H 2: prefetchT1, prefetchT2 patched (speculative
03H 3: weakly ordered stores prefetches are included
in counting)
4BH EMON_SSE_  ooH 0: prefetchNTA Number of
PRE_MISS 01H 1: prefetchTO prefetch{weaklyj
] ordered instructions
02H 2: prefetchT1, prefetchT2 that miss all caches.
03H 3: weakly ordered stores
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Performance-Monitoring Events and Counters B

Programming Notes

Please take into consideration the following notes when using the
information provided in Table B-1:

®* Severa L2 cache events, where noted, can be further qualified using
the Unit Mask (UVBK) field in the Per f Evt Sel 0 and Per f Evt Sel 1
registers. The lower four bits of the Unit Mask field are used in
conjunction with L2 events to indicate the cache state or cache states
involved. The Pentium Il and Pentium 11l processors identify cache
states using theVES| ” protocol, and consequently each bit in the Unit
Mask field represents one of the four staté&K[ 3] = M (8h) state,
UVBK[ 2] = E (4h) stateuMBK[ 1] = S (2h) state, and
UVBK[ 0] = | (1h) stateUVBK[ 3: 0] = MESI (Fh) should be used
to collect data for all stateslvBK = 0h, for the applicable events, will
result in nothing being counted.

* All of the external buslogic (EBL) events, except where noted, can be
further qualified using the Unit Mask (UVBK) field in the
Per f Evt Sel 0 and Per f Evt Sel 1 registers. Bit 5 of the UVSK field is
used in conjunction with the EBL events to indicate whether the
processor should count transactions that are self generated (UVBK] 5]
= 0) or transactions that result from any processor on the bus
(UMBK[ 5] = 1).

RDPMC Instruction

The RDPMC (Read Processor Monitor Counter) instruction is used to read
the performance-monitoring countersin CPL=3 if bit 8 is set in the CR4
register (CR4. PCE). Thisis similar to the RDTSC (Read Time Stamp
Counter) instruction, which is enabled in CPL=3 if the Time Stamp Disable
bitin CR4 (CR4. TSD) is not disabled. Note that access to the
performance-monitoring Control and Event Select Register (CESR) is not
possiblein CPL=3.

Instruction Specification

Opcode OF 33

Description Read event monitor countersindicated by ECX into
EDX: EAX

Operation EDX: EAX « Event Counter [ECX]

B-13



B Intel Architecture Optimization Reference Manual
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The value in ECX (either 0 or 1) specifies one of the two 40-bit event
counters of the processor. EDX isloaded with the high-order 32 bits, and
EAX with the low-order 32 bits.

IF CR4A.PCE = 0 AND CPL <> 0 THEN # GP(0)

IF ECX = 0 THEN EDX: EAX := PerfCntrO

IF ECX = 1 THEN EDX: EAX := PerfCntril

ELSE #GP( 0)

END | F
Protected and Real Address M ode Exceptions
#GP( 0) if ECX does not specify avalid counter (either O or 1).
#GP(0) if RDPMC isusedin CPL<> 0 and CR4. PCE = 0
16-bit code

RDPMC will executein 16-bit code and VM mode but will give a 32-bit
result. It will use the full ECX index.



| nstruction to Decoder

Soecification

Table C-1

This appendix contains two tables presenting intstruction to decoder

specifications for the general instructions of the Pentium® |1 and Pentium 11|
processors (Table C-1) and MMX™ technology instructions (Table C-2).

Pentium Il and Pentium Il Processors Instruction to Decoder

Specification

# of # of
Instruction pops Instruction pops
AAA 1 ADC rm8,r8 2
AAD 3 ADD AL,imm8 1
AAM 4 ADD eAX,imm16/32 1
AAS 1 ADD m16/32,imm16/32 4
ADC AL,imm8 2 ADD m16/32,r16/32 4
ADC eAX,imm16/32 2 ADD m8,imm8 4
ADC m16/32,imm16/32 4 ADD m8,r8 4
ADC m16/32,r16/32 4 ADD r16/32,imm16/32 1
ADC m8,imm8 4 ADD r16/32,imm8 1
ADC m8,r8 4 ADD r16/32,m16/32 2
ADC r16/32,imm16/32 2 ADD r16/32,rm16/32 1
ADC r16/32,m16/32 3 ADD r8,imm8 1
ADC r16/32,rm16/32 2 ADD r8,m8 2
ADC r8,imm8 2 ADD r8,rm8 1
ADC r8,m8 3 ADD rm16/32,r16/32 1
continued
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Table C-1

Pentium Il and Pentium Ill Processors Instruction to Decoder

Specification (continued)

# of # of
Instruction pops Instruction pops
ADC r8,rm8 2 ADD rm8,r8 1
ADC rm16/32,r16/32 2 AND AL,imm8 1
AND eAX,imm16/32 1 BTC rm16/32, r16/32 1
AND m16/32,imm16/32 4 BTR m16/32, imm8 4
AND m16/32,r16/32 4 BTR m16/32, r16/32 complex
AND m8,imm8 4 BTR rm16/32, imm8 1
AND m8,r8 4 BTR rm16/32, r16/32 1
AND r16/32,imm16/32 1 BTS m16/32, imm8 4
AND r16/32,imm8 1 BTS m16/32, r16/32 complex
AND r16/32,m16/32 2 BTS rm16/32, imm8 1
AND r16/32,rm16/32 1 BTS rm16/32, r16/32 1
AND r8,imm8 1 CALL m16/32 near complex
AND r8,m8 2 CALL m16 complex
AND r8,rm8 1 CALL ptr16 complex
AND rm16/32,r16/32 1 CALL r16/32 near complex
AND rm8,r8 1 CALL rel16/32 near 4
ARPL m16 complex CBW 1
ARPL rm16, r16 complex CLC 1
BOUND r16,m16/32&16/32 complex CLD 4
BSF r16/32,m16/32 3 CLI complex
BSF r16/32,rm16/32 2 CLTS complex
BSR r16/32,m16/32 3 CMC 1
BSR r16/32,rm16/32 2 CMOVB/NAE/C 3
r16/32,m16/32
BSWAP r32 2 CMOVB/NAE/C 2
r16/32,r16/32
BT m16/32, imm8 2 CMOVBE/NA 3
r16/32,m16/32
BT m16/32, r16/32 complex CMOVBE/NAT16/32,r16/32 2
continued



Instruction to Decoder Specification

Table C-1 Pentium Il and Pentium Il Processors Instruction to Decoder
Specification (continued)
# of # of
Instruction pops Instruction pops
BT rm16/32, imm8 1 CMOVE/Z r16/32,m16/32 3
BT rm16/32, r16/32 1 CMOVE/Z r16/32,r16/32 2
BTC m16/32, imm8 4 CMOVNS r16/32,r16/32 3
BTC m16/32, r16/32 complex  CcMOVOr16/32,m16/32
BTC rm16/32, imm8 1 CMOVOr16/32,r16/32
CMOVL/NGE 3 CMOVP/PE r16/32,m16/32 3
r16/32,m16/32
CMOVL/NGE r16/32,r16/32 CMOVP/PE r16/32,r16/32
CMOVLE/NG 3 CMOVS r16/32,m16/32 3
r16/32,m16/32
CMOVLE/NG r16/32,r16/32 CMOVS r16/32,r16/32 2
CMOVNB/AE/NC CMP AL, imm8
r16/32,m16/32
CMOVNB/AE/NC 2 CMP eAX,imm16/32 1
r16/32,r16/32
CMOVNBE/A 3 CMP m16/32, imm16/32 2
r16/32,m16/32
CMOVNBE/A r16/32,r16/32 CMP m16/32, imm8
CMOVNE/NZ 3 CMP m16/32,r16/32
r16/32,m16/32
CMOVNE/NZ r16/32,r16/32 CMP m8, imm8
CMOVNL/GE 3 CMP m8, imm8
r16/32,m16/32
CMOVNL/GE r16/32,r16/32 2 CMP m8.r8
CMOVNLE/G 3 CMP r16/32,m16/32 2
r16/32,m16/32
CMOVNLE/G r16/32,r16/32 2 CMP r16/32,rm16/32 1
CMOVNO r16/32,m16/32 3 CMP r8,m8 2
CMOVNO r16/32,r16/32 2 CMP 8,rm8 1
CMOVNP/PO 3 CMP rm16/32,imm16/32 1
r16/32,m16/32
continued
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Table C-1 Pentium Il and Pentium Il Processors Instruction to Decoder
Specification (continued)
# of # of
Instruction pops Instruction pops
CMOVNP/PO r16/32,r16/32 2 CMP rm16/32,imm8 1
CMOVNS r16/32,m16/32 3 CMP rm16/32,r16/32 1
CMP rm8,imm8 1 FADDm32real 2
CMP rm8,imm8 1 FADD m64real 2
CMP rm8,r8 1 FADDP ST(i),ST 1
CMPSB/W/D complex FBLD m80dec complex
m8/16/32,m8/16/32
CMPXCHG m16/32,r16/32 complex FBSTP m80dec complex
CMPXCHG m8,r8 complex FCHS 3
CMPXCHG rm16/32,r16/32 complex FCMOVB STi 2
CMPXCHG rm8,r8 complex FCMOVBE STi 2
CMPXCHGS8B rm64 complex FCMOVE STi 2
CPUID complex FCMOVNB STi 2
CwWD/CDQ 1 FCMOVNBE STi 2
CWDE 1 FCMOVNE STi 2
DAA 1 FCMOVNU STi 2
DAS 1 FCMOVU STi 2
DECm16/32 4 FCOM STi 1
DECm8 4 FCOM m32real 2
DECr16/32 1 FCOM mé64real 2
DECrm16/32 1 FCOM2 STi 1
DECm3 4 FCOMI STi 1
DIV AL,rm8 3 FCOMIP STi 1
DIV AX,m16/32 4 FCOMP STi 1
DIV AX,m8 4 FCOMP m32real 2
DIV AX,rm16/32 4 FCOMP mé64real 2

ENTER complex FCOMP3 STi 1

continued



Instruction to Decoder Specification

Table C-1

Pentium Il and Pentium Il Processors Instruction to Decoder
Specification (continued)

# of # of
Instruction pops Instruction pops
F2XM1 complex FCOMP5 STi 1
FABS 1 FCOMPP 2
FADD ST(i),ST 1 FCOS
FADD ST,ST(i) 1 FDECSTP 1
FDISI 1 FINCSTP 1
FDIV ST(i),ST 1 FIST m16int 4
FDIV ST,ST(i) 1 FIST m32int 4
FDIV m32real 2 FISTP m16int 4
FDIV m64real 2 FISTP m32int 4
FDIVP ST(i),ST 1 FISTP m64int 4
FDIVR ST(i),ST 1 FISUB m16int complex
FDIVR ST,ST(i) 1 FISUB m32int complex
FDIVR m32real 2 FISUBR m16int complex
FDIVR m64real 2 FISUBR m32int complex
FDIVRP ST(i),ST 1 FLD STi 1
FENI 1 FLD m32real 1
FFREE ST(i) 1 FLD m64real 1
FFREEP ST(i) 2 FLD m80real 4
FIADD m16int complex FLD1 2
FIADD m32int complex FLDCW m2byte 3
FICOM m16int complex FLDENV m14/28byte complex
FICOM m32int complex FLDL2E 2
FICOMP m16int complex FLDL2T 2
FICOMP m32int complex FLDLG2 2
FIDIV m16int complex FLDLN2 2
FIDIV m32int complex FLDPI 2
FIDIVR m16int complex FLDZ 1

continued
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Table C-1

Pentium Il and Pentium Ill Processors Instruction to Decoder

Specification (continued)

# of # of
Instruction pops Instruction pops
FIDIVR m32int complex FMUL ST(i),ST 1
FILD m16int 4 FMUL ST,ST(i) 1
FILD m32int 4 FMUL m32real 2
FILD m64int 4 FMUL mé64real 2
FIMUL m16int complex FMULP ST(i),ST 1
FIMUL m32int complex FNCLEX 3
FNINIT complex ~ FSUB ST,ST(i)
FNOP 1 FSUB m32real 2
FNSAVE m94/108byte complex FSUB m64real 2
FNSTCW m2byte 3 FSUBP ST(i),ST 1
FNSTENV m14/28byte complex FSUBR ST(i),ST 1
FNSTSW AX 3 FSUBR ST,ST(i) 1
FNSTSW m2byte 3 FSUBR m32real 2
FPATAN complex FSUBR m64real 2
FPREM complex FSUBRP ST(i),ST 1
FPREM1 complex FTST 1
FPTAN complex FUCOM STi 1
FRNDINT complex FUCOMI STi 1
FRSTOR m94/108byte complex FUCOMIP STi 1
FSCALE complex FUCOMP STi 1
FSETPM 1 FUCOMPP 2
FSIN complex FWAIT 2
FSINCOS complex FXAM 1
FSQRT 1 FXCH STi 1
FST STi 1 FXCH4 STi 1
FST m32real 2 FXCH7 STi 1
FST m64real 2 FXTRACT complex

continued
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Table C-1 Pentium Il and Pentium Ill Processors Instruction to Decoder
Specification (continued)
# of # of

Instruction pops Instruction pops
FSTP STi 1 FYL2X complex
FSTP m32real 2 FYL2XP1 complex
FSTP m64real 2 HALT complex
FSTP m80real complex IDIV AL,rm8 3
FSTP1 STi 1 IDIV AX,m16/32 4
FSTP8 STi 1 IDIV AX,m8 4
FSTP9 STi 1 IDIV eAX,rm16/32 4
FSUB ST(i),ST 1 IMUL m16 4
IMUL m32 4 JBE/NA rel8 1
IMUL m8 2 JCXZ/JECXZ rel8 2
IMUL r16/32,m16/32 2 JE/Z rel16/32 1
IMUL r16/32,rm16/32 1 JE/Z rel8 1
IMUL 2 JL/NGE rell16/32 1

r16/32,rm16/32,imm8/16/32
IMUL 1 JL/NGE rel8 1
r16/32,rm16/32,imm8/16/32

IMUL rm16 3 JLE/NG rel16/32 1
IMUL rm32 3 JLE/NG rel8 1
IMUL rm8 1 JMP m16 complex
IN eAX, DX complex JMP near m16/32 2
IN eAX, imm8 complex JMP near reg16/32 1
INCm16/32 4 JMP ptrl6 complex
INCm8 4 JMP rel16/32 1
INCr16/32 1 JMP rel8 1
INCrm16/32 1 JNB/AE/NC rel16/32 1
INCrm8 1 JNB/AE/NC rel8 1
INSB/W/D m8/16/32,DX complex JNBE/A rel16/32 1
continued
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Table C-1

Pentium Il and Pentium Ill Processors Instruction to Decoder

Specification (continued)

# of # of

Instruction pops Instruction pops
INT1 complex JNBE/A rel8 1

INT3 complex JNE/NZ rel16/32 1

INTN 3 JNE/NZ rel8 1

INTO complex JINL/GE rel16/32 1

INVD complex JINL/GE rel8 1
INVLPG m complex JINLE/G rel16/32 1

IRET complex JINLE/G rel8 1
JB/NAE/C rel16/32 1 JNO rel16/32 1
JB/NAE/C rel8 1 JNO rel8 1
JBE/NA rel16/32 1 JNP/PO rell16/32 1
JNP/PO rel8 1 LOCK ADC m16/32,r16/32 complex
JINS rel16/32 1 LOCK ADC m8,imm8 complex
JINS rel8 1 LOCK ADC m8,r8 complex
JOrell16/32 1 LOCK ADD complex

m16/32,imm16/32
JOrel8 1 LOCK ADD m16/32,r16/32 complex
JP/PE rell6/32 1 LOCK ADD m8,imm8 complex
JP/PE rel8 1 LOCK ADD m8,r8 complex
JS rell6/32 1 LOCK AND complex
m16/32,imm16/32
JS rel8 1 LOCK AND m16/32,r16/32 complex
LAHF 1 LOCK AND m8,imm8 complex
LAR m16 complex LOCK AND m8,r8 complex
LAR rm16 complex LOCK BTC m16/32, imm8 complex
LDS r16/32,m16 complex LOCK BTC m16/32, r16/32 complex
LEA r16/32,m 1 LOCK BTR m16/32, imm8 complex
LEAVE 3 LOCK BTR m16/32, r16/32 complex
continued



Instruction to Decoder Specification

Table C-1

Pentium Il and Pentium Il Processors Instruction to Decoder

Specification (continued)

# of # of
Instruction pops Instruction pops
LES r16/32,m16 complex LOCK BTS m16/32, imm8 complex
LFS r16/32,m16 complex LOCK BTS m16/32, r16/32 complex
LGDT m16&32 complex LOCK CMPXCHG complex
m16/32,r16/32
LGS r16/32,m16 complex LOCK CMPXCHG m8,r8 complex
LIDT m16&32 complex LOCK CMPXCHG8B rm64 complex
LLDT m16 complex LOCK DECm16/32 complex
LLDT rm16 complex LOCK DECm8 complex
LMSW m16 complex LOCK INCm16/32 complex
LMSW r16 complex LOCK INCm8 complex
LOCK ADC complex LOCK NEGm16/32 complex
m16/32,imm16/32
LOCK NEGm8 complex LODSB/W/D
m8/16/32,m8/16/32
LOCK NOTm16/32 complex LOORP rel8 4
LOCK NOTm8 complex LOOPE rel8 4
LOCK complex LOOPNE rel8 4
ORmM16/32,imm16/32
LOCK ORmM16/32,r16/32 complex LSL m16 complex
LOCK ORm8,imm8 complex LSL rm16 complex
LOCK ORm8,r8 complex LSS r16/32,m16 complex
LOCK SBB complex LTR m16 complex
m16/32,imm16/32
LOCK SBB m16/32,r16/32 complex LTR rm16 complex
LOCK SBB m8,imm8 complex MOV AL,moffs8 1
LOCK SBB m8,r8 complex MOV CRO, r32 complex
continued



Intel Architecture Optimization Reference Manual

C-10

Table C-1

Pentium Il and Pentium Ill Processors Instruction to Decoder

Specification (continued)

# of # of
Instruction pops Instruction pops
LOCK SUB complex MOV CR2, r32 complex
m16/32,imm16/32
LOCK SUB m16/32,r16/32 complex MOQV CR3, r32 complex
LOCK SUB m8,imm8 complex MOV CR4, r32 complex
LOCK SUB m8,r8 complex MOV DRXx, r32 complex
LOCK XADD m16/32,r16/32 complex MOV DS,m16 4
LOCK XADD m8,r8 complex MOV DS,rm16 4
LOCK XCHG complex MOV ES,m16 4
m16/32,r16/32
LOCK XCHG m8,r8 complex MOV ES,rm16 4
LOCK XOR complex MOV FS,m16 4
m16/32,imm16/32
LOCK XOR m16/32,r16/32 complex MOV FS,rm16 4
LOCK XOR m8,imm8 complex MOV GS,m16 4
LOCK XOR m8,r8 complex MOV GS,rm16 4
MOV SS,m16 4 MOV rm16,ES 1
MOV SS,rm16 4 MOV rm16,FS 1
MOV eAX,moffs16/32 1 MOV rm16,GS 1
MOV m16,CS 3 MOV rm16,SS 1
MOV m16,DS 3 MOV rm16/32,imm16/32 1
MOV m16,ES 3 MOV rm16/32,r16/32 1
MOV m16,FS 3 MOV rm8,imm8 1
MOV m16,GS 3 MOV rm8,r8 1
MOV m16,SS 3 MOVSB/W/D complex
m8/16/32,m8/16/32
MOV m16/32,imm16/32 2 MOVSX r16,m8 1
MOV m16/32,r16/32 2 MOVSX r16,rm8 1
continued
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Table C-1

Pentium Il and Pentium Il Processors Instruction to Decoder
Specification (continued)

# of # of

Instruction pops Instruction pops
MOV m8,imm8 2 MOVSX r16/32,m16 1

MOV m8,r8 2 MOVSX r32,m8 1

MOV moffs16/32,eAX 2 MOVSX r32,rm16 1

MOV moffs8,AL 2 MOVSX r32,rm8 1

MOV r16/32,imm16/32 1 MOVZX r16,m8 1

MOV r16/32,m16/32 1 MOVZX r16,rm8 1

MOV r16/32,rm16/32 1 MOVZX r32,m16 1

MOV r32, CRO complex MOVZX r32,m8 1

MOV r32, CR2 complex MOVZX r32,rm16 1

MOV r32, CR3 complex MOVZX r32,rm8 1

MOV r32, CR4 complex MUL AL,m8 2

MQV r32, DRx complex MUL AL,rm8 1

MOV r8,imm8 1 MUL AX,m16 4

MOV r8,m8 1 MUL AX,rm16 3

MOV r8,rm8 1 MUL EAX,m32 4

MOV rm16,CS 1 MUL EAX,rm32 3

MOV rm16,DS 1 NEGmM16/32 4
NEGm8 4 POP GS complex
NEGrm16/32 1 POP SS complex
NEGrm8 1 POP eSP 3

NOP 1 POP m16/32 complex
NOTm16/32 4 POP r16/32 2
NOTm8 4 POP r16/32 2
NOTrm16/32 1 POPA/POPAD complex
NOTrm8 1 POPF complex
ORAL,imm8 1 POPFD complex
OReAX,imm16/32 1 PUSH CS 4

continued
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Table C-1

Pentium Il and Pentium Ill Processors Instruction to Decoder

Specification (continued)

# of # of

Instruction pops Instruction pops
ORmM16/32,imm16/32 4 PUSH DS 4
ORmM16/32,r16/32 4 PUSH ES 4
ORmM8,imm8 4 PUSH FS 4
ORmM8,r8 4 PUSH GS 4
ORr16/32,imm16/32 1 PUSH SS 4
ORr16/32,imm8 1 PUSH imm16/32 3
ORr16/32,m16/32 2 PUSH imm8 3
ORr16/32,rm16/32 1 PUSH m16/32 4
ORr8,imm8 1 PUSH r16/32 3
ORr8,m8 2 PUSH r16/32 3
ORr8,rm8 1 PUSHA/PUSHAD complex
ORrm16/32,r16/32 1 PUSHF/PUSHFD complex
ORrm8,r8 1 RCL m16/32,1 4
OUT DX, eAX complex RCL m16/32,CL complex
OUT imm8, eAX complex RCL m16/32,imm8 complex
OUTSB/W/D DX,m8/16/32 complex RCL m8,1 4
POP DS complex RCL m8,CL complex
POP ES complex RCL m8,imm8 complex
POP FS complex RCL rm16/32,1 2
RCL rm16/32,CL complex REP LODSB/W/D complex

m8/16/32,m8/16/32
RCL rm16/32,imm8 complex REP MOVSB/W/D complex

m8/16/32,m8/16/32
RCL rm8,1 2 REP OUTSB/W/D complex

DX,m8/16/32

continued
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Table C-1

Pentium Il and Pentium Il Processors Instruction to Decoder

Specification (continued)

# of # of
Instruction pops Instruction pops
RCL rm8,CL complex REP SCASB/W/D complex
m8/16/32,m8/16/32
RCL rm8,imm8 complex REP STOSB/W/D complex
m8/16/32,m8/16/32
RCR m16/32,1 4 RET 4
RCR m16/32,CL complex RET complex
RCR m16/32,imm8 complex RET near 4
RCR m8,1 4 RET near iw complex
RCR m8,CL complex ROL m16/32,1 4
RCR m8,imm8 complex ROL m16/32,CL 4
RCR rm16/32,1 2 ROL m16/32,imm8 4
RCR rm16/32,CL complex ROL m8,1 4
RCR rm16/32,imm8 complex ROL m8,CL 4
RCR rm8,1 2 ROL m8,imm8 4
RCR rm8,CL complex ROL rm16/32,1 1
RCR rm8,imm8 complex ROL rm16/32,CL 1
RDMSR complex ROL rm16/32,imm8 1
RDPMC complex ROL rm8,1 1
RDTSC complex ROL rm8,CL 1
REP CMPSB/W/D complex ROL rm8,imm8 1
m8/16/32,m8/16/32
REP INSB/W/D complex ROR m16/32,1 4
m8/16/32,DX
ROR m16/32,CL 4 SBB m16/32,r16/32 4
ROR m16/32,imm8 4 SBB m8,imm8 4
ROR m8,1 4 SBB m8,r8 4
ROR m8,CL 4 SBB r16/32,imm16/32 2
continued
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Table C-1

Pentium Il and Pentium Ill Processors Instruction to Decoder

Specification (continued)

# of # of
Instruction pops Instruction pops
ROR m8,imm8 4 SBB r16/32,m16/32 3
ROR rm16/32,1 1 SBB r16/32,rm16/32 2
ROR rm16/32,CL 1 SBB r8,imm8 2
ROR rm16/32,imm8 1 SBB r8,m8 3
ROR rm8,1 1 SBB r8,rm8 2
ROR rm8,CL 1 SBB rm16/32,r16/32 2
ROR rm8,imm8 1 SBB rm8,r8 2
RSM complex SCASB/W/D 3
m8/16/32,m8/16/32
SAHF 1 SETB/NAE/C m8 3
SAR m16/32,1 4 SETB/NAE/C rm8 1
SAR m16/32,CL 4 SETBE/NA m8 3
SAR m16/32,imm8 4 SETBE/NA rm8 1
SAR m8,1 4 SETE/Z m8 3
SAR m8,CL 4 SETE/Z rm8 1
SAR m8,imm8 4 SETL/NGE m8 3
SAR rm16/32,1 1 SETL/NGE rm8 1
SAR rm16/32,CL 1 SETLE/NG m8 3
SAR rm16/32,imm8 1 SETLE/NG rm8 1
SAR rm8,1 1 SETNB/AE/NC m8 3
SAR rm8,CL 1 SETNB/AE/NC rm8 1
SAR rm8,imm8 1 SETNBE/A m8 3
SBB AL,imm8 2 SETNBE/A rm8 1
SBB eAX,imm16/32 2 SETNE/NZ m8 3
SBB m16/32,imm16/32 4 SETNE/NZ rm8 1
SETNL/GE m8 3 SHL/SAL rm16/32,1 1
SETNL/GE rm8 1 SHL/SAL rm16/32,1 1
continued
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Table C-1

Pentium Il and Pentium Il Processors Instruction to Decoder

Specification (continued)

Instruction

# of
pops

Instruction

# of
pops

SETNLE/G m8
SETNLE/G rm8
SETNO m8

SETNO rm8
SETNP/PO m8
SETNP/PO rm8
SETNS m8

SETNS rm8
SETOm8

SETOrm8

SETP/PE m8
SETP/PE rm8

SETS m8

SETS rm8

SGDT m16&32
SHL/SAL m16/32,1
SHL/SAL m16/32,1
SHL/SAL m16/32,CL
SHL/SAL m16/32,CL
SHL/SAL m16/32,imm8
SHL/SAL m16/32,imm8
SHL/SAL m8,1
SHL/SAL m8,1

A A A M NN DND DN DD DD PR ®OWRPRP P ®PRP ®PRP®P ®PF, W

SHL/SAL rm16/32,CL
SHL/SAL rm16/32,CL
SHL/SAL rm16/32,imm8
SHL/SAL rm16/32,imm8
SHL/SAL rm8,1
SHL/SAL rm8,1
SHL/SAL rm8,CL
SHL/SAL rm8,CL
SHL/SAL rm8,imm8
SHL/SAL rm8,imm8
SHLD m16/32,r16/32,CL

SHLD m16/32,r16/32,imm8

SHLD rm16/32,r16/32,CL

SHLD rm16/32,r16/32,imm8

SHR m16/32,1
SHR m16/32,CL
SHR m16/32,imm8
SHR m8,1

SHR m8,CL

SHR m8,imm8
SHR rm16/32,1
SHR rm16/32,CL
SHR rm16/32,imm8

B P R P R P DM DN DN DN DD NNDADPR R R R R R R R R R

SHL/SAL m8,CL SHR rm8,1

SHL/SAL m8,CL SHR rm8,CL

SHL/SAL m8,imm8 SHR rm8,imm8

SHL/SAL m8,imm8 SHRD m16/32,r16/32,CL 4
continued
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Table C-1

Pentium Il and Pentium Ill Processors Instruction to Decoder
Specification (continued)

# of # of

Instruction pops Instruction pops

SHRD m16/32,r16/32,imm8 4 SUB rm16/32,r16/32 1

SHRD rm16/32,r16/32,CL 2 SUB rm8,r8 1

SHRD 2 TEST AL,imm8 1

rm16/32,r16/32,imm8

SIDT m16&32 complex TEST eAX,imm16/32 1

SLDT m16 complex TEST m16/32,imm16/32 2

SLDT rm16 4 TEST m16/32,imm16/32 2

SMSW m16 complex TEST m16/32,r16/32 2

SMSW rm16 4 TEST m8,imm8 2

STC 1 TEST m8,imm8 2

STD 4 TEST m8,r8 2

STI complex TEST rm16/32,imm16/32 1

STOSB/W/D 3 TEST rm16/32,r16/32 1

m8/16/32,m8/16/32

STR m16 complex TEST rm8,imm8 1

STR rm16 4 TEST rm8,r8 1

SUB AL,imm8 1 VERR m16 complex

SUB eAX,imm16/32 1 VERR rm16 complex

SUB m16/32,imm16/32 4 VERW m16 complex

SUB m16/32,r16/32 4 VERW rm16 complex

SUB m8,imm8 4 WBINVD complex

SUB m8,r8 4 WRMSR complex

SUB r16/32,imm16/32 1 XADD m16/32,r16/32 complex

SUB r16/32,imm8 1 XADD m8,r8 complex

SUB r16/32,m16/32 2 XADD rm16/32,r16/32 4

SUB r16/32,rm16/32 1 XADD rm8,r8 4

SUB r8,imm8 1 XCHG eAX,r16/32 3
continued
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Table C-1 Pentium Il and Pentium Ill Processors Instruction to Decoder
Specification (continued)
# of # of

Instruction pops Instruction pops

SUB r8,m8 2 XCHG m16/32,r16/32 complex

SUB r8,rm8 1 XCHG m8,r8 complex

XCHG rm16/32,r16/32 3 XOR r16/32,imm16/32

XCHG rm8,r8 3 XOR r16/32,imm8

XLAT/B 2 XOR r16/32,m16/32

XOR AL,imm8 1 XOR r16/32,rm16/32

XOR eAX,imm16/32 1 XOR r8,imm8

XOR m16/32,imm16/32 4 XOR r8,m8

XOR m16/32,r16/32 4 XOR r8,rm8

XOR m8,imm8 4 XOR rm16/32,r16/32

XOR m8,r8 4 XOR rm8,r8

MMX Technology Instruction to Decoder Specification

Instruction # of pops Instruction # of pops

EMMS complex PADDB mm,mé4 2

MOVD m32,mm 2 PADDB mm,mm 1

MOVD mm,ireg 1 PADDD mm,m64 2

MOVD mm,m32 1 PADDD mm,mm 1

MOVQ mm,m64 1 PADDSB mm,m64 2

MOVQ mm,mm 1 PADDSB mm,mm 1

MOVQ m64,mm 2 PADDSW mm,m64 2

MOVQ mm,mm 1 PADDSW mm,mm 1

PACKSSDW mm,m64 2 PADDUSB mm,m64 2

PACKSSDW mm,mm 1 PADDUSB mm,mm 1

PACKSSWB mm,m64 2 PADDUSW mm,m64 2

PACKSSWB mm,mm 1 PADDUSW mm,mm 1
continued
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Table C-2

MMX Technology Instruction to Decoder Specification (continued)

Instruction

# of pops

Instruction

# of pops

PACKUSWB mm,m64
PACKUSWB mm,mm
PAND mm,m64
PAND mm,mm
PANDN mm,m64
PANDN mm,mm
PCMPEQB mm,m64
PCMPEQB mm,mm
PCMPEQD mm,m64
PCMPEQD mm,mm
PCMPEQW mm,m64
PCMPEQW mm,mm
PCMPGTB mm,m64
PCMPGTB mm,mm
PCMPGTD mm,m64
PCMPGTD mm,mm
PCMPGTW mm,m64
PCMPGTW mm,mm
PMADDWD mm,m64
PMADDWD mm,mm
PMULHW mm,m64
PMULHW mm,mm
PMULLW mm,m64
PMULLW mm,mm
POR mm,m64

POR mm,mm
PSLLD mm,m64
PSLLD mm,mm

PSLLIimmD mm,imm8

2

P P N R NEPNEPNRPNMNRPEPENRNMNENRNENRNENERNLERE

PADDW mm,m64
PADDW mm,mm
PSLLQ mm,mm
PSLLW mm,m64
PSLLW mm,mm
PSRAD mm,m64
PSRAD mm,mm
PSRAImmMD mm,imm8
PSRAImmMW mm,imm8
PSRAW mm,m64
PSRAW mm,mm
PSRLD mm,m64
PSRLD mm,mm
PSRLIimmD mm,imm8
PSRLImmMQ mm,imm8
PSRLImmW mm,imm8
PSRLQ mm,m64
PSRLQ mm,mm
PSRLW mm,m64
PSRLW mm,mm
PSUBB mm,m64
PSUBB mm,mm
PSUBD mm,m64
PSUBD mm,mm
PSUBSB mm,m64
PSUBSB mm,mm
PSUBSW mm,m64
PSUBSW mm,mm
PSUBUSB mm,m64

2

N P N R NRPNMNEPNRPRPNMNRENRRPRRREPRNREPNRREREDNERERNIERPR

continued
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Table C-2

MMX Technology Instruction to Decoder Specification (continued)

Instruction # of pops Instruction # of pops
PSLLImMQ mm,imm8 1 PSUBUSB mm,mm 1
PSLLIimmW mm,imm8 1 PSUBUSW mm,m64 2
PSLLQ mm,m64 2 PSUBUSW mm,mm 1
PSUBW mm,m64 2 PUNPCKLBW mm,m32 2
PSUBW mm,mm 1 PUNPCKLBW mm,mm 1
PUNPCKHBW mm,m64 2 PUNPCKLDQ mm,m32 2
PUNPCKHBW mm,mm 1 PUNPCKLDQ mm,mm 1
PUNPCKHDQ mm,m64 2 PUNPCKLWD mm,m32 2
PUNPCKHDQ mm,mm 1 PUNPCKLWD mm,mm 1
PUNPCKHWD mm,mé64 2 PXOR mm,m64 2
PUNPCKHWD mm,mm 1 PXOR mm,mm 1
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Sreaming SMD Extensions
Throughput and Latency

Table D-1

This appendix presents Table D-1 which lists for each Streaming SIMD
Extension the execution port(s), execution unit(s), the latency number of
cycles and the throughput.

Streaming SIMD Extensions Throughput and Latency

Instruction Ports Units Latency Throughput

ADDPS/ Port 1 PFADDER 4 cycles 1 every 2 cycles

SUBPS/

CVTSI2SS Port 1,2 PFADDER/ 4 cycles 1 every 2 cycles

PSHUF,MIU/

CVTPI2PS/ Port 1 PFADDER 3 cycles 1 every cycle

CVTPS2PI

MAXPS/MINPS Port 1 PFADDER 4 cycles 1 every 2 cycles

CMPPS Port 1 PFADDER 4 cycles 1 every 2 cycles

ADDSS/SUBSS/  Port1 PFADDER 3 cycles 1 every cycle

CVTSS2sl/ Port 1,2 PFADDER, MIU 3 cycles 1 every cycle

CVTTSS2SI

MAXSS/MINSS Port 1 PFADDER 3 cycles 1 every cycle

CMPSS Port 1 PFADDER 3 cycles 1 every cycle

COMISS/ Port 1 PFADDER 1 cycle 1 every cycle

UCOMISS

MULPS Port 0 PFMULT 5 cycles 1 every 2 cycles

DIVPS/SQRTPS  Port0 PFMULT 36/58 1 every 36/58

cycles cycles

MULSS Port 0 PFMULT 4 cycles 1 every cycle

continued
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Streaming SIMD Extensions Throughput and Latency (continued)

Instruction Ports Units Latency Throughput
DIVSS/SQRTSS  Port0 PFMULT 18/30 1 every 18/29
cycles cycles

RCPPS/ Port 1 PFROM 2 cycles 1 every 2 cycles

RCQRTPS

SHUPPS/ Port 1 PFSHUF 2 cycles 1 every 2 cycles

UNPCKHPS/ Port 1 PFSHUF 3 cycles 1 every 2 cycles

UNPCKLPS

MOVAPS load: 2 MIU load: 4 1 every 2 cycles
mov: 0 or 1l FWU,PFSHUF mov: 1 1 every 1 cycle
store:3and4 MIU store: 4 1 every 2 cycles

MOVUPS load: 2 MIU 4 cycles 1 every 2 cycles
store: 3 and 4 5 cycles 1 every 3 cycles

MOVHPS/ load: 2 MIU 3 cycles 1 every cycle

MOVLPS store: 3 and 4

MOVMSKPS Port 0 WIRE 1 cycle 1 every cycle

MOVSS Port 0,1 FP, PFSHF 1 cycle 1 every cycle

ANDPS/ORPS/ Port 1 PFSHUFF 2 cycles 1 every 2 cycles

XORPS

PMOVMSKB Port 1 WIRE 1 cycle 1 every cycle

PSHUFW/ Port 1 PFSHUFF 1 cycle 1 every cycle

PEXTRW 2 cycles 1 every 2 cycles

PINSRW/(reg, Port 1 PFSHUFF 4 cycles 1 every cycle

mem)

PSADW Port 0,1 SIMD 5 cycles 1 every 2 cycles

PMINUB Port 0,1 SIMD 1 cycle 1 every 1/2 cycle

PMINSW

PMAXUB

PMAXSW

PMULHUW Port 0 SIMD 3 cycles 1 every cycle

MOVNTPS Port 3,4 MIU, DCU 4 cycles 1 every 2 cycles

MOVNTQ Port 3,4 MIU, DCU 3 cycles 1 every cycle

PREFETCH?*/ Port 2 AGU/memory 2 cycles 1 every cycle

cluster
FXRESTOR/ MICORCODE
FXSAVE

continued
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Table D-1 Streaming SIMD Extensions Throughput and Latency (continued)

Instruction Ports Units Latency Throughput
LDMXCSR/ MICORCODE

STMXCSR

MASKMOVQ/ Port 0,1,3,4 AGU, MIU, FWU 4 cycles 1 every cycle
SFENCE Port 3,4 AGU, MIU 3 cycles 1 every cycle
PAVGB Port 0,1 SIMD 1 cycle 1 every 1/2 cycle
PAVGW
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Sack Alignment for
Sreaming SMD Extensions

This appendix details on the alignment of the stacks of data for Streaming
SIMD Extensions.

Stack Frames

This section describes the stack alignment conventions for both es p-based
(normal), and ebp-based (debug) stack frames. A stack frameisa

contiguous block of memory allocated to afunction for its local memory

needs. It contains space for the function’s parameters, return address, local
variables, register spills, parameters needing to be passed to other functions
that a stack frame may call, and possibly others. It is typically delineated in
memory by a stack frame pointersp) that points to the base of the frame

for the function and from which all data are referenced via appropriate
offsets. The convention on 1A-32 is to use ¢s@ register as the stack

frame pointer for normal optimized code, and to eise in place ofesp

when debug information must be kept. Debuggers usebtheegister to

find the information about the function via the stack frame.

It is important to ensure that the stack frame is aligned to a 16-byte
boundary upon function entry to keep locahi.28 data, parameters, and
xnmregister spill locations aligned throughout a function invocation.The
Intel C/C++ Compiler for Win32* Systems supports conventions presented
here help to prevent memory references from incurring penalties due to
misaligned data by keeping them aligned to 16-byte boundaries. In addition,
this scheme supports improved alignment fom64 anddoubl e type

data by enforcing that these 64-bit data items are at least eight-byte aligned
(they will now be 16-byte aligned).
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For variables allocated in the stack frame, the compiler cannot guarantee the
base of the variable is aligned unless it also ensures that the stack frame
itself is 16-byte aligned. Previous 1A-32 software conventions, as
implemented in most compilers, only ensure that individual stack framesare
4-byte aligned. Therefore, afunction called from a Microsoft*-compiled
function, for example, can only assume that the frame pointer it used is
4-byte aligned.

Earlier versions of the Intel C/C++ Compiler for Win32 Systems have
attempted to provide 8-byte aligned stack frames by dynamically adjusting
the stack frame pointer in the prologue of mai n and preserving 8-byte
alignment of the functionsit compiles. Thistechniqueislimitedinits
applicability for the following reasons:

® Thenai n function must be compiled by the Intel C/C++ Compiler.

®  There may be no functionsin the call tree compiled by some other
compiler (as might be the case for routines registered as callbacks).

® Support is not provided for proper alignment of parameters.

The solution to this problem is to have the function’s entry point assume
only 4-byte alignment. If the function has a need for 8-byte or 16-byte
alignment, then code can be inserted to dynamically align the stack
appropriately, resulting in one of the stack frames shown in Figure E-1.
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Figure E-1 Stack Frames Based on Alignment Type

ESP-based Aligned Frame EBP-based Aligned Frame
Parameters Parameters
Return Address Return Address
Parameter Parameter
Padding Pointer Padding Pointer
Register Save Area Return Address 1
Local Variables and Previous EBP
Spill Slots «— EBP
SEH/CEH Record
_F():dec_l Pagameter Local Variables and
assing space Spill Slots
ESP
__stdcall Parameter EBP-frame Saved
Passing Space Register Area
«— ESP

Parameter Passing
Space

Asan optimization, an alternate entry point can be created that can be called

when proper stack alignment is provided by the caller. Using call graph

profiling of the VTune™ analyzer, calls to the normal (unaligned) entry
point can be optimized into calls to the (alternate) aligned entry point when
the stack can be proven to be properly aligned. Furthermore, a function
alignment requirement attribute can be modified throughout the call graph
S0 as to cause the least number of calls to unaligned entry points. As an
example of this, suppose function F has only a stack alignment requirement
of 4, but it calls function G at many call sites, and in a loop. If G’s alignment
requirement is 16, then by promoting F's alignment requirement to 16, and
making all calls to G go to its aligned entry point, the compiler can
minimize the number of times that control passes through the unaligned
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E-4

entry points. Example E-1 and Example E-2 in the following sections
illustrate this technique. Note the entry pointsf oo and f oo. al i gned, the
latter is the alternate aligned entry point.

Aligned esp-Based Stack Frames

This section discusses data and parameter alignment and the

decl spec(al i gn) extended attribute, which can be used to request
alignment in C and C++ code. In creating esp-based stack frames, the
compiler adds padding between the return address and the register save area
as shown in Example 3-9. This frame can be used only when debug
information is not requested, there is no need for exception handling
support, inlined assembly is not used, and thereareno callsto al | oca
within the function.

If the above conditions are not met, an aligned ebp-based frame must be
used. When using this type of frame, the sum of the sizes of the return
address, saved registers, local variables, register spill slots, and parameter
space must be amultiple of 16 bytes. This causes the base of the parameter
space to be 16-byte aligned. In addition, any space reserved for passing
parametersfor st dcal | functions also must be amultiple of 16 bytes. This
means that the caller needs to clean up some of the stack space when the
size of the parameters pushed for acall toast dcal | functionisnot a
multiple of 16. If the caller does not do this, the stack pointer is not restored
toits pre-call value.

In Example E-1, we have 12 bytes on the stack after the point of alignment
from the caller: the return pointer, ebx and edx. Thus, we need to add four
more to the stack pointer to achieve alignment. Assuming 16 bytes of stack
space are needed for local variables, the compiler adds 16 + 4 = 20 bytesto
esp, making esp aligned to a0 mod 16 address.
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Example E-1 Aligned esp-Based Stack Frames

void _cdecl foo (int k)

{
int j;
f oo: /1l See Note A
push ebx
nov ebx, esp
sub esp, 0x00000008
and esp, Oxfffffffo
add esp, 0x00000008
jnmp conmon
foo. al i gned:
push ebx
nov ebx, esp
common: /1l See Note B
push edx
sub esp, 20
i =k
nov edx, [ebx + 8]
nov [esp + 16], edx
foo(5);
nov [esp], 5
cal | foo. al i gned
return j;
nov eax, [esp + 16]
add esp, 20
pop edx
nov esp, ebx
pop ebx
ret
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L)

NOTE. A.Aligned entry points assume that parameter block beginnings
are aligned. This places the stack pointer at a 12 mod 16 boundary, as
the return pointer has been pushed. Thus, the unaligned entry point must
force the stack pointer to this boundary.

B. The code at the common label assumes the stack isat an 8 mod
16 boundary, and adds sufficient space to the stack so that the stack
pointer is aligned to a 0 mod 16 boundary.

Aligned ebp-Based Stack Frames

Example E-2

In ebp-based frames, padding is also inserted immediately before the return
address. However, thisframe is dightly unusual in that the return address
may actually reside in two different places in the stack. This occurs
whenever padding must be added and exception handling isin effect for the
function. Example E-2 shows the code generated for thistype of frame. The
stack location of the return address is aligned 12 mod 16. This means that
the value of ebp always satisfies the condition (ebp & 0x0f) == 0x08.
In this case, the sum of the sizes of the return address, the previous ebp, the
exception handling record, the local variables, and the spill area must be a
multiple of 16 bytes. In addition, the parameter passing space must be a
multiple of 16 bytes. For acall toast dcal | function, it isnecessary for the
caller to reserve some stack spaceif the size of the parameter block being
pushed is not a multiple of 16.

Aligned ebp-based Stack Frames

void _stdcall foo (int k)

{
int j;
f oo:
push ebx
nov ebx, esp
sub esp, 0x00000008
and esp, Oxfffffffo

continued
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Example E-2 Aligned ebp-based Stack Frames (continued)

add

jm
f oo. al i gned
push

nov
conmmon:

push

push ebp

nov
and store

esp, 0x00000008 // esp is (8 nod 16)
/1 after add

conmon
ebx /'l esp is (8 nod 16)
/1 after push
ebx, esp
ebp /1 this slot will be
/'l used for duplicate
/'l return pt
/1l esp is (0 nod 16)
/1 after push
/'l (rtn, ebx, ebp, ebp)
ebp, [ebx + 4] /] fetch return pointer

[esp + 4], ebp /'l relative to ebp
/1 (rtn, ebx,rtn, ebp)

ebp, esp /1l ebp is (0 nod 16)
esp, 28 /'l esp is (4 nod 16)
/'l see Note A
edx /'l espis (0 nod 16)
/1 after push
/1l the goal is to nake
/'l esp and ebp (0 nod
/'l 16) here
edx, [ebx + 8] /1 kis (0 nod 16) if
/'l caller aligned
/'l his stack
[ebp - 16], edx /1 Jis (0 nod 16)
esp, -4 /'l normal call sequence
/1 to unaligned entry
[esp], 5

continued
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Example E-2 Aligned ebp-based Stack Frames (continued)

cal l f oo [/l for stdcall, callee
/'l cleans up stack
foo. aligned(5);

add esp, -16 /1l aligned entry, this
/'l shoul d be a
/1 multiple of 16

nov [esp].,5

cal l foo. aligned
add esp, 12 /'l see Note B

return j;
nov eax, [ ebp- 16]
pop edx
nov esp, ebp
pop ebp
nov esp, ebx
pop ebx
ret 4

}

E NOTE. A.Hereweallow for local variables. However, thisvalue should

be adjusted so that, after pushing the saved registers, esp is 0 mod 16.

B. Just prior to the call, esp is 0 mod 16. To maintain alignment,
esp should be adjusted by 16. When a callee uses the stdcall calling
sequence, the stack pointer isrestored by the callee. The final addition of
12 compensatesfor the fact that only 4 bytes were passed, rather than 16,
and thus the caller must account for the remaining adjustment.
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Stack Frame Optimizations

The Intel C/C++ Compiler provides certain optimizations that may improve
the way aligned frames are set up and used. These optimizations are as
follows:

® |f aprocedureisdefined to leave the stack frame 16-byte-aligned and it
calls another procedure that requires 16-byte alignment, then the
callee’s aligned entry point is called, bypassing all of the unnecessary
aligning code.
* |If astatic function requires 16-byte alignment, and it can be proven to
be called only by other functions that require 16-byte alignment, then
that function will not have any alignment code init. That is, the
compiler will not use ebx to point to the argument block and it will not
have alternate entry points, because this function will never be entered
with an unaligned frame.

Inlined Assembly and ebx

When using aligned frames, the ebx register generally should not be
modified in inlined assembly blocks since ebx is used to keep track of the
argument block. Programmers may modify ebx only if they do not need to
access the arguments and provided they save ebx and restore it before the
end of the function (since esp is restored relative to ebx in the function’s
epilog).

For additional information on the useedfx in inline assembly code and
other related issues, see the Intel application note APE&88 Alignment
and Programming Issues with the Intel C/C++ Compiler, order number
243872, and AP-58%oftware Conventions for the Streaming SMD
Extensions, order number 243873.

@ CAUTION. Do not use the ebx register in inline assembly functions

that use dynamic stack alignment for double,  m64, and _ m128 local
variables unless you save and restore ebx each time you useit. The Intel
C/C++ Compiler usesthe ebx register to control alignment of variables
of these types, so the use of ebx, without preserving it, will cause
unexpected program execution.







he Mathematics
of Prefetch Scheduling
Distance

This appendix discusses how far away to insert prefetch instructions. It
presents a mathematical model allowing you to deduce a simplified
equation which you can use for determining the prefetch scheduling
distance (PSD) for your application.

For your convenience, the first section presents this simplified equation; the
second section provides the background for this equation: the mathematical
model of the calculation.

Simplified Equation

A simplified equation to compute PSD is as follows:

psd = Nlookup + Nxfer C(N, ¢ + Ng)
CPI [N;

where

psd is prefetch scheduling distance.

N ookup is the number of clocks for lookup latency. This
parameter is system-dependent. The type of memory
used and the chipset implementation affect its value.

Nxf er isthe number of clocksto transfer a cache-line. This
parameter is implementation-dependent.

Nor e @nd Ny are the numbers of cache lines to be prefetched and

stored.

F-1
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CPI is the number of clocks per instruction. This parameter
is implementation-dependent.

N st is the number of instructions in the scope of one loop
iteration.

Consider the following example of a heuristic equation assuming that
parameters have the values as indicated:

60 + 25 [N ¢
15N,

Inst

* Ngt)

psd:‘

where 60 corresponds to N ookup, 25to Nxf er, and 1.5to CPI .

The values of the parametersin the equation can be derived from the
documentation for memory components and chipsets aswell asfrom vendor
datasheets.

CAUTION. Thevaluesin this example are for illustration only and do

not represent the actual values for these parameters. The exampleis
provided as a “starting point approximation” of calculating the prefetch
scheduling distance using the above formula. Experimenting with the
instruction around the “starting point approximation” may be required
to achieve the best possible performance

Mathematical Model for PSD

The parameters used in the mathematics discussed are as follows:

psd prefetch scheduling distance (measured in number of
iterations)

il iteration latency

Te computation latency per iteration with prefetch caches

T memory leadoff latency including cache miss latency,

chip set latency, bus arbitration, etc.
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Ty datatransfer latency which is equal to number of lines
per iteration * line burst latency

Note that the potential effects of pop reordering are not factored into the
estimations discussed.

Examine Example F-1 that uses thef et chnt a instruction with a

prefetch scheduling distance of 3, that is, psd = 3. The data prefetched in
iterationi, will actually be used in iteratiar 3. T, represents the cycles
needed to executeop_| oop - assuming all the memory accesses hit L1
while il (iteration latency) represents the cycles needed to execute this loop
with actually run-time memory footprint; can be determined by

computing the critical path latency of the code dependency graph. This
work is quite arduous without help from special performance
characterization tools or compilers. A simple heuristic for estimatingjthe
value is to count the number of instructions in the critical path and multiply
the number with an artificial CPI. A reasonable CPI value would be
somewhere between 1.0 and 1.5 depending on the quality of code
scheduling.

Example F-1 Calculating Insertion for Scheduling Distance of 3

top_l oop:
prefetchnta [ edx+esi +32* 3]
prefetchnta [ edx*4+esi +32*3]

novaps xmmil, [edx+esi]
nmovaps xmR, [edx*4+esi]

nmovaps xmB, [edx+esi +16]
novaps xmi, [edx*4+esi +16]

add esi, 32

cnp esi, ecx
j1 top_loop
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Memory access plays a pivotal role in prefetch scheduling. For more
understanding of a memory subsystem, consider a Streaming SIMD
Extensions memory pipeline depicted in Figure F-1.

Figure F-1 Pentium® |1 and Pentium Il Processors Memory Pipeline Sketch

T, T,

. Hpp
I ] <
L [12E14

. L2 lookup miss latency

. Memory page access leadoff latency

1284 : Latency for 4 chunks returned per line

Assume that three cache lines are accessed per iteration and four chunks of

data are returned per iteration for each cache line. Also assume these 3

accesses are pipelined in memory subsystem. Based on these assumptions,
Tp=3* 4=12FSB cycles.

F-4
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T, varies dynamically and is also system hardware-dependent. The static
variantsinclude the core-to-front-side-bus ratio, memory manufacturer and
memory controller (chipset). The dynamic variants include the memory
page open/miss aoccasions, memory accesses sequence, different memory
types, and so on.

To determine the proper prefetch scheduling distance, follow these steps
and formulae:
®  Optimize T, as much as possible

® Usethefollowing set of formulae to calculate the proper prefetch
scheduling distance:

Tez2Ti+ Ty il = | =T
T+ T
T+ Te=T-=T Ir_|_-,,|-||' = " | ”1 — T
T
T
Te2T. pad =14 [T—l =1

®  Schedulethe prefetch instructions according to the computed prefetch
scheduling distance.

*  For optimized memory performance, apply techniques described in

The following sections explain and illustrate the architectural considerations
involved in the prefetch scheduling distance formulae above.

No Preloading or Prefetch

The traditional programming approach does not perform data preloading or
prefetch. It is sequential in nature and will experience stalls because the
memory is unable to provide the data immediately when the execution
pipeline requires it. Examine Figure F-2.
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Figure F-2 Execution Pipeline, No Preloading or Prefetch

Execution cycles

\

Execution Execution unitsidle JEz
pipeline [ . A s A
5f
Front-Side B
Bus
4 .............................................................. » < ............................................................. >

ith iteration (i+1)t iteration

Asyou can see from Figure F-2, the execution pipelineis stalled while
waiting for data to be returned from memory. On the other hand, the front
side busisidle during the computation portion of the loop. The memory
access latencies could be hidden behind execution if data could be fetched
earlier during the busidle time.

Further analyzing Figure 6-10,

®  assume execution cannot continue till last chunk returned and

* % indicates flow data dependency that stalls the execution pipelines

With these two things in mind the iteration latency (il) is computed as
follows:

iaT,+ TI +Ty
Theiteration latency is approximately equal to the computation latency plus

the memory leadoff latency (includes cache miss latency, chipset latency,
bus arbitration, and so on.) plus the data transfer latency where

transfer latency= number of lines per iteration * line burst latency.
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This means that the decoupled memory and execution are ineffective to
explore the parallelism because of flow dependency. That is the case where
prefetch can be useful by removing the bubbles in either the execution
pipeline or the memory pipeline.

With an ideal placement of the data prefetching, the iteration latency should
be either bound by execution latency or memory latency, that is

il = maximum(T, T).

Compute Bound (Case:Tc >= T, + T})

Figure F-3 represents the case when the compute latency is greater than or
equal to the memory leadoff |atency plus the data transfer latency. In this
case, the prefetch scheduling distance is exactly 1, i.e. prefetch data one
iteration ahead is good enough. The data for loop iteration i can be
prefetched during loop iteration i-1, the & symbol between front-side bus
and execution pipeline indicates the data flow dependency.

Figure F-3 Compute Bound Execution Pipeline

Execution cycles

Iteration i Iteration i+1

» o »
3 » >

61‘

The following formula shows the relationship among the parameters:

1]
I
=

[ﬂ+ﬂ1
sl = ———
r
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It can be seen from this relationship that the iteration latency is equal to the
computation latency, which means the memory accesses are executed in
background and their latencies are completely hidden.

Compute Bound (Case: T\ + T, > T, > Ty)
Now consider the next case by first examining Figure F-4.

Figure F-4 Compute Bound Execution Pipeline

Execution cycles

Front-Side Bus

For this particular example the prefetch scheduling distance is greater than
1. Data being prefetched for iteration i will be consumed in iteration i+2.
Figure 6-12 represents the case when the |eadoff latency plus data transfer
latency is greater than the compute latency, which is greater than the data
transfer latency. The following relationship can be used to compute the
prefetch scheduling distance.
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;}.u‘d:F-':Tﬁi:-l il=T

In consequence, the iteration latency is also equal to the computation
latency, that is, compute bound program.

Memory Throughput Bound (Case: T,, >=T)

When the application or loop is memory throughput bound, the memory
latency is no way to be hidden. Under such circumstances, the burst latency
is aways greater than the compute latency. Examine Figure F-5.

Figure F-5 Memory Throughput Bound Pipeline

Execution cycles

I
T e

T

\

E 5 K K
P 0 .0 . .

i+pid i+pid+1 i+pid+2 i+pid+3

The following relationship cal culates the prefetch scheduling distance (or
prefetch iteration distance) for the case when memory throughput latency is
greater than the compute latency.
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F-10

Example

i+ T 1
s = ~‘= 1+ [—w =1 =1
T T

Apparently, theiteration latency is dominant by the memory throughput and
you cannot do much about it. Typically, data copy from one space to another
space, for example, graphics driver moving data from writeback memory to
you cannot do much about it. Typically, data copy from one space to ancther
space, for example, graphics driver moving data from writeback memory to
write-combining memory, belongs to this category, where performance
advantage from prefetch instructions will be marginal .

As an exampl e of the previous cases consider the following conditions for
computation latency and the memory throughput latencies. Assume T, = 18
and T, = 8 (in front side bus cycles).

i RERE:
il -2 26 = psd =| T -‘:

- I8+8
26T =8=2= pud =[ = ~‘*_~1

b
il T, S'ﬁ::-,rn‘;.":l+’r|— =4
Wl

Now for the case T) =18, T,, =8 (2 cache lines are needed per iteration)
examine the following graph. Consider the graph of accesses per iterationin
example 1, Figure F-6.
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Figure F-6 Accesses per lteration, Example 1
2 cache lines accessed per iteration
CT e T4 T ' Ti+Ta>Te» T T.:2Th
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The prefetch scheduling distance is a step function of T, the computation
latency. The steady state iteration latency (il) is either memory-bound or
compute-bound depending on T, if prefetches are scheduled effectively.

The graph in example 2 of accesses per iteration in Figure F-7 shows the
results for prefetching multiple cache lines per iteration. The cases shown
arefor 2, 4, and 6 cache lines per iteration, resulting in differing burst
latencies. (T\=18, Ty, =8, 16, 24).

F-11
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Figure F-7 Accesses per lteration, Example 2

psd for different number of cache lines prefetched per iteration

—e—2lines|
m  4lines|
A 6 lines

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Tc (in FSB clocks)

In redlity, the front-side bus (FSB) pipelining depth is limited, that is, only
four transactions are allowed at atime in the Pentium® Il processor. Hence
atransaction bubble or gap, T, (gap dueto idle bus of imperfect front side
bus pipelining) will be observed on FSB activities. Thisleadsto
consideration of the transaction gap in computing the prefetch scheduling
distance. The transaction gap, Tg, must be factored into the burst cycles, T,
for the calculation of prefetch scheduling distance.

The following relationship shows computation of the transaction gap.

Ny=maxiTi—e={n—110)

where T, is the memory leadoff latency, c is the number of chunks per cache
line and n is the FSB pipelining depth.

F-12
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3D transformation agorithms, A-7
4-1-1 order, 1-5

A

absolute difference, A-15
of signed numbers, 4-15
of unsigned numbers, 4-14

absolute value, 4-17
accesses per iteration, F-11, F-12
address alignment, 2-2
address calculations, 2-19
advancing memory loads, A-19
aligned ebp-based frame, E-4, E-6
aligned esp-based stack frames, E-4
alignment, 2-11

coe, 2-11

data, 2-12

rules, 2-11
AoS format, 3-21, A-8
A0S. See array of structures
application performance tools, 7-1
arithmetic logic unit, 1-9
array of structures, A-8
assembly coach, 7-13
assembly coach techniques, 7-13
assembly code for SoA transformation, A-13

automatic masked exception handling, 5-38
automatic processor dispatch support, 7-15
automatic vectorization, 3-13, 3-14

B

blending of code, 2-10

branch misprediction ratio, 2-8
Branch Prediction, 1-5, 2-1, 2-2
branch target buffer, 1-5

BTB misses, 7-10

BTB. See branch target buffer

C

cache blocking techniques, 6-18
cache hierarchy, 7-6
cache level, 6-2

cache management
simple memory copy, 6-28
video decoder, 6-27
video encoder, 6-27

cache misses, 2-2
cache performance, 7-5
cacheability control instructions, 6-9

calculating insertion for scheduling distance, F-3

call graph profiling, 7-7
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Call Graph view, 7-7
call information, 7-9
changing the rounding mode, 2-26
checking for MM X technology support, 3-2
checking for Streaming SIMD Extensions
support, 3-3
child function, 7-9
classes (C/C++), 3-12
clearing registers, 2-19
clipping to an arbitrary signed range, 4-17
clipping to an arbitrary unsigned range, 4-19
code coach, 7-11, 7-13
code optimization advice, 7-11, 7-13
code optimization options, 7-14
coding methodologies, 3-8
coding techniques, 3-7
absol ute difference of signed numbers, 4-15
absolute difference of unsigned numbers,
4-14
absolute value, 4-17
clipping to an arbitrary signed range, 4-17
clipping to an arbitrary unsigned range, 4-19
generating constants, 4-20
interleaved pack with saturation, 4-9
interleaved pack without saturation, 4-11
non-interleaved unpack, 4-12
signed unpack, 4-8
simplified clipping to an arbitrary signed
range, 4-19
unsigned unpack, 4-8
coherent requests, 6-8
command-line options, 7-14
automatic processor dispatch support, 7-15
floating-point arithmetic precision, 7-17
inline expansion of library functions, 7-17
loop unrolling, 7-17
prefetching, 7-16
rounding control, 7-17
targeting a processor, 7-15
vectorizer switch, 7-16
comparing register values, 2-19

compiler intrinsics
_mm_load, 6-26
_mm_prefetch, 6-26
_mm_stream, 6-26
compiler plug-in, 7-14
compiler-supported alignment, 3-18
complex FIR filter, A-21

complex FIR filter algorithm
reducing non-value-added instructions, A-21
unrolling the loop, A-21
using a SIMD data structure, A-21

complex instructions, 1-4, 2-17
computation latency, F-8
computation-intensive code, 3-7

compute bound, F-7, F-8

conditional branches, 1-7, 2-5
conditional moves emulation, 5-31
converting code to MMX technology, 3-4
counters, 7-6

CPUID instruction, 3-2

CPUID usage, 4-2, 5-5

D

data alignment, 3-15, 5-5
data arrangement, 5-6

data cache unit, 2-12

data copy, F-10

data deswizzling, 5-13, 5-15
data swizzling, 5-10

data swizzling using intrinsics, 5-11
DCU. See data cache unit
debug symbols, 7-9
decoder, 2-15

decoder specifications, C-1
decoders, 1-4

decoupled memory, F-7
dependency chains, A-9
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divide instructions, 2-20

dynamic assembly analysis, 7-10
dynamic branch prediction, 2-2, 2-3
dynamic prediction, 1-6

E

EBS. See event-based sampling
eight-bit operands, 2-18

eliminating branches, 2-5, 2-7, 2-8
eliminating unnecessary micro-ops, A-20
EMMS instruction, 4-3, 4-5, 4-6, 5-4
EMMS schedule, 5-27

epilog sequences, 2-20

event-based sampling, 7-4

executing instructions out-of-order, 5-28
execution unit, D-1

extract word instruction, 4-22

F

FIR filter algorithm, A-17
advancing memory loads, A-19
minimizing cache pollution on write, A-20
minimizing pointer arithmetic, A-20
parallel multiplications, A-17
prefetch hints, A-20
reducing data dependency, A-17
reducing register pressure, A-17
scheduling for the reoder buffer, A-18
separating memory accesses from

operations, A-19

unrolling the loop, A-19
wrapping the loop around, A-18

fist instruction, 2-25

fldew instruction, 2-26

floating-point applications, 2-20

floating-point arithmetic precision options, 7-17

floating-point code
improving parallelism, 2-21
loop unralling, 2-28
memory access stall information, 2-24
operations with integer operands, 2-30
optimizing, 2-21
transcendental functions, 2-31
floating-point execution unit, 1-9
floating-point operations with integer operands,
2-30
floating-point stalls, 2-29
flow dependency, 6-4, F-7
flush to zero, 5-42
forwarding from storesto loads, 5-31
front-end pipeline, 1-4
fstsw instruction, 2-31
FXCH instruction, 2-23

G

general optimization techniques, 2-1
branch prediction, 2-2
dynamic branch prediction, 2-2
eliminate branches, 2-6
eiminating branches, 2-5
static prediction, 2-3

generating constants, 4-20

H

hiding one-clock latency, 2-29
horizontal computations, 5-18
hotspots, 3-6, 7-10, 7-11

incorporating prefetch into code, 6-23
increasing bandwidth of memory fills, 4-32
increasing bandwidth of video fills, 4-32
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indirect branch, 2-5

inline assembly, 4-5

inline expansion of library functions option, 7-17
inlined assembly blocks, E-9
inlined-asm, 3-10

in-order issue front end, 1-2

in-order retirement, 1-3

insert word instruction, 4-22

instruction fetch unit, 1-5

instruction prefetch, 2-3

instruction prefetcher, 1-4

instruction scheduling, 4-34

instruction selection, 2-16

integer and floating-point multiply, 2-30
integer divide, 2-20

integer-intensive application, 4-1, 4-2
Intel Performance Library Suite, 7-1
interaction with x87 numeric exceptions, 5-41
interleaved pack with saturation, 4-9
interleaved pack without saturation, 4-11
interprocedural optimization, 7-17

IPO. Seeinterprocedural optimization

L

large load stalls, 2-25

latency, 1-3, 2-29, 6-1

latency number of cycles, D-1

leainstruction, 2-17

loading and storing to and from the same DRAM
page, 4-32

loop blocking, 3-25

loop unrolling, 2-28

loop unrolling option, 7-17

loop unrolling. See unrolling the loop.

M
macro-instruction, 2-14
memory access stall information, 2-24
memory bank conflicts, 6-25
memory O=optimization U=using P=prefetch,
6-10
memory optimization, 4-27
memory optimizations
loading and storing to and from the same
DRAM page, 4-32
partial memory accesses, 4-28
using aligned stores, 4-33
memory performance, 3-20
memory reference instructions, 2-19
memory throughput bound, F-9
micro-ops, 1-2
minimize cache pollution on write, A-20
minimizing cache pollution, 6-5
minimizing pointer arithmetic, A-20
minimizing prefetches number, 6-15
misaligned accesses event, 2-13
misaligned data, 2-12
misaligned data access, 3-15
misalignment in the FIR filter, 3-16
mispredicted branches, 1-6
missed cache access, 7-10
mixing MM X technology code and
floating-point code, 5-3
mixing SIMD-integer and SIMD-fpinstructions,
4-6
modulo 16 branch, 1-4
modulo scheduling, 5-25
motion estimation algorithm, A-14
motion-error caculation, A-15
move byte mask to integer, 4-24
movntps instruction, A-20
MOVQ Ingtruction, 4-32
multiply instruction, 2-17
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N

new SIMD-integer instructions, 4-21
extract word, 4-22
insert word, 4-22
move byte mask to integer, 4-24
packed average byte or word), 4-27
packed multiply high unsigned, 4-25
packed shuffle word, 4-25
packed signed integer word maximum, 4-23
packed signed integer word minimum, 4-23
packed sum of absolute differences, 4-26
packed unsigned integer byte maximum,
4-23
packed unsigned integer byte minimum, 4-24
Newton-Raphson
approximation, A-9
formula, A-2
iterations, 5-2, A-2
Newton-Raphson method, A-2, A-3
inverse reciprocal approximation, A-5
reciprocal instructions, A-2
reciprocal square root operation, A-3
non-coherent requests, 6-8
non-interleaved unpack, 4-12
non-temporal store instructions, 6-5
non-temporal stores, 6-25
numeric exceptions, 5-36
automatic masked exception handling, 5-38
conditions, 5-36
flush to zero, 5-42
interaction with x87, 5-41
priority, 5-37
unmasked exceptions, 5-39

O

optimization of upsampling algorithm, A-16
optimized agorithms, A-1
3D Transformation, A-7

FIR filter, A-17
motion estimation, A-14

Newton-Raphson method with thereciprocal
instructions, A-2
upsampling signals, A-15
optimizing cache utilization
cache management, 6-26
examples, 6-6
non-temporal store instructions, 6-5
prefetch and load, 6-4
prefetch Instructions, 6-3
prefetching, 6-3
SFENCE instruction, 6-6
streaming, non-temporal stores, 6-6
optimizing floating-point applications
benefits from SIMD-fp instructions, 5-3
conditional moves, 5-31
copying, shuffling, 5-17
CPUID usage, 5-5
data alignment, 5-5
data arrangement, 5-6
data deswizzling, 5-13
data swizzling, 5-10
data swizzling using intrinsics, 5-11
EMMS instruction, 5-4
horizontal ADD, 5-18
modulo scheduling, 5-25
overlapping iterations, 5-27
planning considerations, 5-2
port balancing, 5-33
rules and suggestions, 5-1
scalar code, 5-3
schedule with the triple/quadruple rule, 5-24
scheduling avoid RAT stalls, 5-31
scheduling instructions, 5-22
scheduling instructions out-of-order, 5-28
vertical versus horizontal computation, 5-6

optimizing floating-point code, 2-21
out-of-order core, 1-2, 1-3
overlapping iterations, 5-27

P

pack instruction, 4-11
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pack instructions, 4-9 port balancing, 5-31, 5-33

packed average byte or word), 4-27 predictable memory access patterns, 6-4
packed multiply high unsigned, 4-25 prefetch, 1-4

packed shuffle word, 4-25 prefetch and cacheability Instructions, 6-2
packed signed integer word maximum, 4-23 prefetch and loadiInstructions, 6-4
packed signed integer word minimum, 4-23 prefetch concatenation, 6-13, 6-14
packed sum of absolute differences, 4-26 prefetch hints, A-20

packed unsigned integer byte maximum, 4-23 prefetch instruction, 6-1, A-8, A-15
packed unsigned integer byte minimum, 4-24 prefetch instruction considerations, 6-12
pairing, 7-9 cache blocking techniques, 6-18

concatenation, 6-13
memory bank conflicts, 6-25
minimizing prefetches number, 6-15

parallel multiplications, A-17
parallelism, 1-7, 3-7, F-7

parameter alignment, E-4 no preloading or prefetch, F-5
parent function, 7-9 prefetch scheduling distance, F-5
partial memory accesses, 4-28 scheduling distance, 6-12

partial register stalls, 2-1, 2-8 single-pass execution, 6-23

single-pass vs. multi-pass, 6-24
spread prefetch with computatin
ingtructions, 6-16

PAVGB instruction, 4-27
PAVGW instruction, 4-27

penalties, 7-9 strip-mining, 6-21
performance counter events, 7-4 prefetch instructions, 6-4
Performance Library Suite, 7-18 prefetch scheduling distance, 6-12, F-5, F-7, F-9

architecture, 7-19

Image Processing Library, 7-19
Image Processing Primitives, 7-19
Math Kernel Library, 7-19
optimizations, 7-20

Recognition Primitives Library, 7-18

prefetch use
flow dependency, 6-4
predictable memory access patterns, 6-4
time-consuming innermost loops, 6-4

prefetching, 7-16, A-9, A-15

Signal Processing Library, 7-18 prefetching concept, 6-2
performance-monitoring counters, B-1 prefetchnta instruction, 6-20
performance-monitoring events, B-2 prefixed opcodes, 2-2, 2-16
PEXTRW instruction, 4-22 profile-guided optimization, 7-18
PGO. See profile-guided optimization prolog sequences, 2-20
PINSRW instruction, 4-22 PSADBW instruction, 4-26
PLS. See Performance Library Stite psadbw instruction, A-14
PMINSW ingtruction, 4-23 PSHUF instruction, 4-25
PMINUB instruction, 4-24

PMOVMSKB instruction, 4-24 R

PMULHUW instruction, 4-25
reciprocal instructions, 5-2
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reducing data dependency, A-17
reducing non-value-added instructions, A-21
reducing register pressure, A-17
register viewing tool, 7-2, 7-21
register data, 7-21
return stack buffer, 1-6
rounding control option, 7-17
RVT. See register viewing tool

S

sampling, 7-2

event-based, 7-4

time-based, 7-3
scheduling for the reorder buffer, A-18
scheduling for the reservation station, A-18
scheduling instructions, 5-22
scheduling to avoid RAT stalls, 5-31
scheduling with the triple-quadruple rule, 5-24
separating memory accesses from operations,

A-19
SFENCE Instruction, 6-6
short opcodes, 2-17
signed unpack, 4-8
SIMD instruction port assignments, 4-7
SIMD integer code, 4-1
SIMD. See single-instruction, multiple data.
SIMD-floating-point code, 5-1
simpleinstructions, 1-4
simple memory copy, 6-28
simplified 3D geometry pipeline, 6-10
simplified clipping to an arbitrary signed range,
4-19

single-instruction, multiple-data, 3-1
single-pass versus multi-pass execution, 6-23
smoothed upsample algorithm, A-15
SoA format, 3-21, A-8
SoA. See straucture of arrays.

software pipelining, A-18
software write-combining, 6-25
spread prefetch, 6-17
Spreadsheet, 7-7
stack dignment, 3-16
stack frame, E-2
stack frame optimization, E-9
stall condition, B-1
static assembly analyzer, 7-10
static branch prediction algorithm, 2-4
static code anaysis, 7-9
static prediction, 1-6, 2-3
static prediction algorithm, 2-3
streaming non-temporal stores, 6-6
streaming stores, 6-28
approach A, 6-7
approach B, 6-7
coherent requests, 6-8
non-coherent requests, 6-8

strip-mining, 3-23, 3-25, 6-21, 6-22
structure of arrays, A-8

sum of absolute differences, A-15
swizzling data. See data swizzling.

T
targeting a processor option, 7-15
TBS. See time-based sampling
throughput, 1-3, D-1

time-based sampling, 7-2, 7-3
time-consuming innermost loops, 6-4
TLB. See transaction lookaside buffer
transaction lookaside buffer, 6-28
transcendental functions, 2-31
transfer latency, F-7, F-8

transposed format, 3-21

transposing, 3-21
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triple-quadruple rule, 5-24 vectorized code, 3-13
tuning application, 7-2 vectorizer switch options, 7-16
vertical versus horizonta computation, 5-6

U View by Cal Sites, 7-7, 7-9
_ VTune analyzer, 2-10, 3-6, 7-1
unconditional branch, 2-5 VTune Performance Analyzer, 3-6
unmasked exceptions, 5-39
unpack instructions, 4-12 W
unrolling the loop, A-19, A-21 —_—
unsigned unpack, 4-8 wrapping the loop around, A-18
upsampling, A-15 write-combining buffer, 6-26
using aligned stores, 4-33 write-combining memory, 6-26
using MM X codefor copy or shuffling functions,

5-17

Vv

vector classlibrary, 3-12
vectorization, 3-7
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