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CHAPTER 1
INTRODUCTION TO THE INTEL ARCHITECTURE

OPTIMIZATION MANUAL

In general, developing fast applications for Intel Architecture (IA) processors is not difficult.
An understanding of the architecture and good development practices make the difference
between a fast application and one that runs significantly slower than its full potential. Of
course, applications developed for the 8086/8088, 80286, Intel386™ (DX or SX), and
Intel486™ processors will execute on the Pentium®, Pentium Pro and Pentium II processors
without any modification or recompilation. However, the following code optimization
techniques and architectural information will help you tune your application to its greatest
potential.

1.1 TUNING YOUR APPLICATION
Tuning an application to execute fast across the Intel Architecture (IA) is relatively simple
when the programmer has the appropriate tools. To begin the tuning process, you need the
following:

• Knowledge of the Intel Architecture. See Chapter 2.

• Knowledge of critical stall situations that may impact the performance of your
application. See Chapters 3, 4 and 5.

• Knowledge of how good your compiler is at optimization and an understanding of how
to help the compiler produce good code.

• Knowledge of the performance bottlenecks within your application. Use the VTune
performance monitoring tool described in this document.

• Ability to monitor the performance of the application. Use VTune.

VTune, Intel’s Visual Tuning Environment Release 2.0 is a useful tool to help you
understand your application and where to begin tuning. The Pentium and Pentium Pro
processors provide the ability to monitor your code with performance event counters. These
performance event counters can be accessed using VTune. Within each section of this
document the appropriate performance counter for measurement will be noted with
additional tuning information. Additional information on the performance counter events and
programming the counters can be found in Chapter 7. Section 1.4 contains order information
for VTune.
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1.2 ABOUT THIS MANUAL
It is assumed that the reader is familiar with the Intel Architecture software model and
assembly language programming.

This manual describes the software programming optimizations and considerations for IA
processors with and without MMX technology. Additionally, this document describes the
implementation differences of the processor members and the optimization strategy that
gives the best performance for all members of the family.

This manual is organized into seven chapters, including this chapter (Chapter 1), and four
appendices.

Chapter 1 — Introduction to the Intel Architecture Optimization Manual

Chapter 2 — Overview of Processor Architecture and Pipelines:  This chapter provides
an overview of IA processor architectures and an overview of IA MMX technology.

Chapter 3 — Optimization Techniques for Integer Blended Code:  This chapter lists the
integer optimization rules and provides explanations of the optimization techniques for
developing fast integer applications.

Chapter 4 — Guidelines for Developing MMX™ Technology Code:  This chapter lists the
MMX technology optimization rules, with an explanation of the optimization techniques and
coding examples specific to MMX technology.

Chapter 5 — Optimization Techniques for Floating-Point Applications:  This chapter
contains a list of rules, optimization techniques, and code examples specific to floating-point
code.

Chapter 6 — Suggestions for Choosing a Compiler:  This section includes an overview of
the architectural differences and a recommendation for blended code.

Chapter 7 — Intel Architecture Performance Monitoring Extensions:  This chapter
details the performance monitoring counters and their functions.

Appendix A — Integer Pairing Tables:  This appendix lists the IA integer instructions with
pairing information for the Pentium processor.

Appendix B — Floating-Point Pairing Tables:  This appendix lists the IA floating-point
instructions with pairing information for the Pentium processor.

Appendix C — Instruction to Micro-op Breakdown

Appendix D — Pentium® Pro Processor Instruction to Decoder Specification:  This
appendix summarizes the IA macro instructions with Pentium Pro processor decoding
information to enable scheduling for the decoder.
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1.3 RELATED DOCUMENTATION
Refer to the following documentation for more information on the Intel Architecture and
specific techniques referred to in this manual:

• Intel Architecture MMX™ Technology Programmer's Reference Manual, Order Number
243007.

• Pentium® Processor Family Developer’s Manual, Volumes 1, 2 and 3, Order Numbers
241428, 241429 and 241430.

• Pentium® Pro Processor Family Developer’s Manual, Volumes 1, 2 and 3, Order
Numbers 242690, 242691 and 242692.

1.4 VTune ORDER INFORMATION
Refer to the VTune home page on the World Wide Web for current order information:

http://www.intel.com/ial/vtune

To place an order in the USA and Canada call 1-800-253-3696 or call Programmer’s Paradise
at 1-800-445-7899.

International Orders can be placed by calling 503-264-2203.
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CHAPTER 2
OVERVIEW OF PROCESSOR ARCHITECTURE

AND PIPELINES

This section provides an overview of the pipelines and architectural features of Pentium and
P6-family processors with and without MMX technology. By understanding how the code
flows through the pipeline of the processor, you can better understand why a specific
optimization will improve the speed of your code. This information will help you best utilize
the suggested optimizations.

2.1 THE PENTIUM PROCESSOR
The Pentium processor is an advanced superscalar processor. It is built around two general
purpose integer pipelines and a pipelined floating-point unit. The Pentium processor can
execute two integer instructions simultaneously. A software-transparent dynamic branch-
prediction mechanism minimizes pipeline stalls due to branches.

2.1.1 Integer Pipelines

The Pentium processor has two parallel integer pipelines as shown in Figure 2-1. The main
pipe (U) has five stages: prefetch (PF), Decode stage 1(D1), Decode stage 2 (D2), Execute
(E), and Writeback (WB).  The secondary pipe (V) is similar to the main one but has some
limitations on the instructions it can execute. The limitations will be described in more detail
in later sections.

The Pentium processor can issue up to two instructions every cycle. During execution, the
next two instructions are checked and, if possible, they are issued such that the first one
executes in the U-pipe, and the second in the V-pipe. If it is not possible to issue two
instructions, then the next instruction is issued to the U-pipe and no instruction is issued to
the V-pipe.
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Figure 2-1.  Pentium® Processor Integer Pipelines

When instructions execute in the two pipes, the functional behavior of the instructions is
exactly the same as if they were executed sequentially. When a stall occurs successive
instructions are not allowed to pass the stalled instruction in either pipe. In the Pentium
processor's pipelines, the D2 stage, in which addresses of memory operands are calculated,
can perform a multiway add, so there is not a one-clock index penalty as with the Intel486
processor pipeline.

With the superscalar implementation, it is important to schedule the instruction stream to
maximize the usage of the two integer pipelines.

2.1.2 Caches

The on-chip cache subsystem consists of two 8-Kbyte two-way set associative caches (one
instruction and one data) with a cache line length of 32 bytes. There is a 64-bit wide external
data bus interface. The caches employ a write back mechanism and an LRU replacement
algorithm. The data cache consists of eight banks interleaved on four byte boundaries. The
data cache can be accessed simultaneously from both pipes, as long as the references are to
different banks. The minimum delay for a cache miss is four clocks.

2.1.3 Instruction Prefetcher

The instruction prefetcher has four 32-byte buffers. In the prefetch (PF) stage, the two
independent pairs of line-size prefetch buffers operate in conjunction with the branch target
buffer. Only one prefetch buffer actively requests prefetches at any given time. Prefetches are
requested sequentially until a branch instruction is fetched. When a branch instruction is
fetched, the Branch Target Buffer (BTB) predicts whether the branch will be taken or not. If
the branch is predicted not to be taken, prefetch requests continue linearly. On a branch that
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is predicted to be taken, the other prefetch buffer is enabled and begins to prefetch as though
the branch were taken. If a branch is discovered to be mispredicted, the instruction pipelines
are flushed and prefetching activity starts over. The prefetcher can fetch an instruction which
is split among two cache lines with no penalty. Because the instruction and data caches are
separate, instruction prefetches do not conflict with data references for access to the cache.

2.1.4 Branch Target Buffer

The Pentium processor employs a dynamic branch prediction scheme with a 256-entry BTB.
If the prediction is correct, there is no penalty when executing a branch instruction. If the
branch is mispredicted, there is a three-cycle penalty if the conditional branch was executed
in the U-pipe or a four-cycle penalty if it was executed in the V-pipe. Mispredicted calls and
unconditional jump instructions have a three-clock penalty in either pipe.

NOTE

Branches that are not taken are not inserted in the BTB until they are
mispredicted.

2.1.5 Write Buffers

The Pentium processor has two write buffers, one corresponding to each of the integer
pipelines, to enhance the performance of consecutive writes to memory. These write buffers
are one quad-word wide (64-bits) and can be filled simultaneously in one clock, for example
by two simultaneous write misses in the two instruction pipelines. Writes in these buffers are
sent out to the external bus in the order they were generated by the processor core. No reads
(as a result of cache miss) are reordered around previously generated writes sitting in the
write buffers. The Pentium processor supports strong write ordering, which means that writes
happen in the order that they occur.

2.1.6 Pipelined Floating-Point Unit

The Pentium processor provides a high performance floating-point unit that appends a three-
stage floating-point pipe to the integer pipeline. floating-point instructions proceed through
the pipeline until the E stage. Instructions then spend at least one clock at each of the
floating-point stages:  X1 stage, X2 stage and WF stage. Most floating-point instructions
have execution latencies of more than one clock, however most are pipelined which allows
the latency to be hidden by the execution of other instructions in different stages of the
pipeline. Additionally, integer instructions can be issued during long latency floating-point
instructions, such as FDIV. Figure 2-2 illustrates the integer and floating-point pipelines.
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Floating-point pipeline integrated in integer pipeline

Decoupled stages of the floating-point pipe

Integer pipeline only

D1 WBEXD2

X2X1 WF

PF

Figure 2-2.  Integration of Integer and Floating-Point Pipeline

The majority of the frequently used instructions are pipelined so that the pipelines can accept
a new pair of instructions every cycle. Therefore a good code generator can achieve a
throughput of almost two instruction per cycle (this assumes a program with a modest
amount of natural parallelism). The FXCH instruction can be executed in parallel with the
commonly used floating-point instructions, which lets the code generator or programmer
treat the floating-point stack as a regular register set with a minimum of performance
degradation.

2.2 THE PENTIUM® PRO PROCESSOR
The Pentium Pro processor family uses a dynamic execution architecture that blends out-of-
order and speculative execution with hardware register renaming and branch prediction.
These processors feature an in-order issue pipeline, which breaks IA processor
macroinstructions into simple, micro-operations called micro-ops or µops, and an out-of-
order, superscalar processor core, which executes the micro-ops. The out-of-order core of the
processor contains several pipelines to which integer, branch, floating-point and memory
execution units are attached. Several different execution units may be clustered on the same
pipeline. For example, an integer arithmetic logic unit and the floating-point execution units
(adder, multiplier and divider) share a pipeline. The data cache is pseudo-dual ported via
interleaving, with one port dedicated to loads and the other to stores. Most simple operations
(such as integer ALU, floating-point add and floating-point multiply) can be pipelined with a
throughput of one or two operations per clock cycle. The floating-point divider is not
pipelined. Long latency operations can proceed in parallel with short latency operations.

The Pentium Pro processor pipeline contains three parts:  (1) the in-order issue front-end,
(2) the out-of-order core, and (3) the in-order retirement unit. Figure 2-3 details the entire
Pentium Pro processor pipeline.



E OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-5

5/4/97 4:36 PM    CH02.DOC

INTEL CONFIDENTIAL
(until publication date)
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Figure 2-3.  Pentium® Pro Processor Pipeline

Details about the in-order issue front-end are illustrated in Figure 2-4.

BTB0

BTB1

IFU0

IFU1

IFU2

ID0

ID1

ROB
Rd

RAT

IFU0: Instruction Fetch Unit

IFU1: In this stage 16-byte instruction packets are fetched.
          The packets are aligned on 16-byte boundaries.

IFU2: Instruction Predecode, double buffered: 16-byte
          packets aligned on any boundary.

ID0: Instruction Decode.

ID1: Decoder limits
      = At most 3 macro-instructions per cycle
      = At most 6 uops (4-1-1) per cycle
      = At most 3 uops per cycle exit the queue
      = Instructions <= 8 bytes in length

Register Allocation: RAT
Decode IP relative branches
     = At most one per cycle
     = Branch information sent to BTB0 pipe stage
Rename = partial and flag stalls
Allocate resources = The pipeline stalls if the ROB
is full.

Re-order Buffer Read
     = At most 2 completed physical register reads per cycle

Figure 2-4.  In-Order Issue Front-End

Since the Pentium Pro processor executes instructions out of program order, the most
important consideration in performance tuning is making sure enough micro-ops are ready
for execution. Correct branch prediction and fast decoding are essential to getting the most
performance out of the in-order front-end. Branch prediction and the branch target buffer are
detailed in Section 3.2. Decoding is discussed below.
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During every clock cycle, up to three macro-instructions can be decoded in the ID1
pipestage. However, if the instructions are complex or are over seven bytes long, the decoder
is limited to decoding fewer instructions.

The decoders can decode:

• Up to three macro-instructions per clock cycle.

• Up to six micro-ops per clock cycle.

• Macro-instructions up to seven bytes in length.

Pentium Pro processors have three decoders in the D1 pipestage. The first decoder is capable
of decoding one macro-instruction of four or fewer micro-ops in each clock cycle. The other
two decoders can each decode an instruction of one micro-op in each clock cycle.
Instructions composed of more than four micro-ops take multiple cycles to decode. When
programming in assembly language, scheduling the instructions in a 4-1-1 micro-op sequence
increases the number of instructions that can be decoded each clock cycle. In general:

• Simple instructions of the register-register form are only one micro-op.

• Load instructions are only one micro-op.

• Store instructions have two micro-ops.

• Simple read-modify instructions are two micro-ops.

• Simple instructions of the register-memory form have two to three micro-ops.

• Simple read-modify write instructions are four micro-ops.

• Complex instructions generally have more than four micro-ops, therefore they take
multiple cycles to decode.

See Appendix C for a table that specifies the number of micro-ops for each instruction in the
Intel Architecture instruction set.

Once the micro-ops are decoded, they are issued from the in-order front-end into the
Reservation Station (RS), which is the beginning pipestage of the out-of-order core. In the
RS, the micro-ops wait until their data operands are available. Once a micro-op has all data
operands available, it is dispatched from the RS to an execution unit. If a micro-op enters the
RS in a data-ready state (that is, all data is available) and an appropriate execution unit is
available, then the micro-op is immediately dispatched to the execution unit. In this case, the
micro-op will spend no extra clock cycles in the RS. All of the execution units are clustered
on ports coming out of the RS.

Once the micro-op has been executed it is stored in the Re-Order Buffer (ROB) and waits for
retirement. In this pipestage, all data values are written back to memory and all micro-ops
are retired in order, three at a time. Figure 2-5 provides details about the Out-of-Order core
and the In-Order retirement pipestages.
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Reservation Station (RS): A µop can remain in the RS for
many cycles or simply move past to an execution unit.
On the average, a micro-op will remain in the RS for 3

cycles.

Execution pipelines

Coming out of the RS are multiple pipelines grouped

into five clusters.
RS

Port 2

Port 3

Port 4

Port 1

Port

ROB
rd

Additional information regarding each
pipeline is in the following table.

ROB
wb

RRF

Re-Order Buffer writeback  (ROB wb)

Register Retirement File (RRF): At most  3 micro-ops are retired per cycle.
Taken branches must retire in the first slot.

Figure 2-5.  Out-Of-Order Core and Retirement Pipeline
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Table 2-1.  Pentium® Pro Processor Execution Units

Port Execution Units Latency/Thruput

0 Integer ALU Unit:
LEA instructions
Shift instructions

Integer Multiplication instruction

Floating-Point Unit:
FADD instruction
FMUL instruction
FDIV instruction

Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle

Latency 4, Throughput 1/cycle

Latency 3, Throughput 1/cycle
Latency 5, Throughput 1/2cycle1,2

Latency:  single precision 17 cycles, double precision 36 cycles,
extended precision 56 cycles, Throughput non-pipelined

1 Integer ALU Unit Latency 1, Throughput 1/cycle

2 Load Unit Latency 3 on a cache hit, Throughput 1/cycle3

3 Store Address Unit Latency 3 (not applicable), Throughput 1/cycle3

4 Store Data Unit Latency 1 (not applicable), Throughput 1/cycle

NOTES:

1. The FMUL unit cannot accept a second FMUL in the cycle after it has accepted the first. This is NOT the
same as only being able to do FMULs on even clock cycles. FMUL is pipelined one every two clock
cycles.

2. Store latency is not all that important from a dataflow  perspective. The latency that matters is with
respect to determining when a specific uop can retire and be completed. Store µops also have a different
latency with respect to load forwarding. For example, if the store address and store data of a particular
address, for example 100, dispatch in clock cycle 10, a load (of the same size and shape) to the same
address 100 can dispatch in the same clock cycle 10 and not be stalled.

3. A load and store to the same address can dispatch in the same clock cycle.

2.2.1 Caches

The on-chip level one (L1) caches consist of one 8-Kbyte four-way set associative instruction
cache unit with a cache line length of 32 bytes and one 8-Kbyte two-way set associative data
cache unit. Not all misses in the L1 cache expose the full memory latency. The level two
(L2) cache masks the full latency caused by an L1 cache miss. The minimum delay for a L1
and L2 cache miss is between 11 and 14 cycles based on DRAM page hit or miss. The data
cache can be accessed simultaneously by a load instruction and a store instruction, as long as
the references are to different cache banks.

2.2.2 Instruction Prefetcher

The Instruction Prefetcher performs aggressive prefetch of straight line code. Arrange code
so that non-loop branches that tend to fall through take advantage of this prefetch.
Additionally, arrange code so that infrequently executed code is segregated to the bottom of
the procedure or end of the program where it is not prefetched unnecessarily.

Note that instruction fetch is always for an aligned 16-byte block. The Pentium Pro processor
reads in instructions from 16-byte aligned boundaries. Therefore for example, if a branch
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target address (the address of a label) is equal to 14 modulo 16, only two useful instruction
bytes are fetched in the first cycle. The rest of the instruction bytes are fetched in subsequent
cycles.

2.2.3 Branch Target Buffer

The 512-entry BTB stores the history of the previously seen branches and their targets. When
a branch is prefetched, the BTB feeds the target address directly into the Instruction Fetch
Unit (IFU). Once the branch is executed, the BTB is updated with the target address. Using
the branch target buffer, branches that have been seen previously are dynamically predicted.
The branch target buffer prediction algorithm includes pattern matching and up to four
prediction history bits per target address. For example, a loop which is four iterations long
should have close to 100% correct prediction. Adhering to the following guideline will
improve branch prediction performance:

Program conditional branches (except for loops) so that the most executed branch
immediately follows the branch instruction (that is, fall through).

Additionally, Pentium Pro  processors have a Return Stack Buffer (RSB), which can
correctly predict return addresses for procedures that are called from different locations in
succession. This increases the benefit of unrolling loops which contain function calls and
removes the need to put certain procedures in-line.

Pentium Pro processors have three levels of branch support which can be quantified in the
number of cycles lost:

1. Branches that are not taken suffer no penalty. This applies to those branches that are
correctly predicted as not taken by the BTB, and to forward branches that are not in the
BTB, which are predicted as not taken by default.

2. Branches which are correctly predicted as taken by the BTB suffer a minor penalty
(approximately 1 cycle). Instruction fetch is suspended for one cycle. The processor
decodes no further instructions in that period, possibly resulting in the issue of less than
four µops. This minor penalty applies to unconditional branches which have been seen
before (i.e., are in the BTB). The minor penalty for correctly predicted taken branches is
one lost cycle of instruction fetch, plus the issue of no instructions after the branch.

3. Mispredicted branches suffer a significant penalty. The penalty for mispredicted
branches is at least nine cycles (the length of the In-order Issue Pipeline) of lost
instruction fetch, plus additional time spent waiting for the mispredicted branch
instruction to retire. This penalty is dependent upon execution circumstances. Typically,
the average number of cycles lost because of a mispredicted branch is between 10 and 15
cycles and possibly as many as 26 cycles.

2.2.3.1 STATIC PREDICTION

Branches that are not in the BTB, which are correctly predicted by the static prediction
mechanism, suffer a small penalty of about five or six cycles (the length of the pipeline to
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this point). This penalty applies to unconditional direct branches which have never been seen
before.

Conditional branches with negative displacement, such as loop-closing branches, are
predicted taken by the static prediction mechanism. They suffer only a small penalty
(approximately six  cycles) the first time the branch is encountered and a minor penalty
(approximately one cycle) on subsequent iterations when the negative branch is correctly
predicted by the BTB.

The small penalty for branches that are not in the BTB but which are correctly predicted by
the decoder is approximately five cycles of lost instruction fetch as opposed to 10 – 15 cycles
for a branch that is incorrectly predicted or that has no prediction.

2.2.4 Write Buffers

Pentium Pro  processors temporarily stores each write (store) to memory in a write buffer.
The write buffer improves processor performance by allowing the processor to continue
executing instructions without having to wait until a write to memory and/or to a cache is
complete. It also allows writes to be delayed for more efficient use of memory-access bus
cycles. Writes stored in the write buffer are always written to memory in program order.
Pentium Pro  processors use processor ordering to maintain consistency in the order that data
is read (loaded) and written (stored) in a program and the order in which the processor
actually carries out the reads and writes. With this type of ordering, reads can be carried out
speculatively and in any order, reads can pass buffered writes, and writes to memory are
always carried out in program order.

2.3 IA PROCESSORS WITH MMX™ TECHNOLOGY
Intel’s MMX technology is an extension to the Intel Architecture (IA) instruction set. The
technology uses a Single Instruction, Multiple Data (SIMD) technique to speed up
multimedia and communications software by processing data elements in parallel. The MMX
instruction set adds 57 new opcodes and a new 64-bit quadword data type. The new 64-bit
data type, illustrated in Figure 2-6, holds packed integer values upon which MMX
instructions operate.

In addition, there are eight new 64-bit MMX registers, each of which can be directly
addressed using the register names MM0 to MM7. Figure 2-7 shows the layout of the eight
new MMX registers.
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07863

Packed Byte: 8 bytes packed into 64-bits

3132

063

Packed Word: Four words packed into 64-bits

063

Packed Double-word: Two doublewords packed into 64-bits

1516

3132 1516

3132

Figure 2-6.  New Data Types

063

MM7
10

Tag
Field

MM0

Figure 2-7.  MMX™ Register Set

The MMX technology is operating-system transparent and 100% compatible with all existing
Intel Architecture software; all applications will continue to run on processors with MMX
technology. Additional information and details about the MMX instructions, data types and
registers can be found in the Intel Architecture MMX™ Technology Programmers Reference
Manual (Order Number 243007).
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2.3.1 Superscalar (Pentium® Processor Family) Pipeline

Pentium processors with MMX technology add additional stages to the pipeline. The
integration of the MMX pipeline with the integer pipeline is very similar to that of the
floating-point pipe.

Figure 2-8 shows the pipelining structure for this scheme.

D1 WBF EPF D2

E2E1

E2E1 E3

WM/M 2Mex M 3 WMul

MMX pipeline integrated in integer pipeline

Decoupled stages of MMX™ pipe

Integer pipeline only

MR/W

Figure 2-8.  MMX™ Pipeline Structure

Pentium processors with MMX technology add an additional stage to the integer pipeline.

The instruction bytes are prefetched from the code cache in the prefetch (PF) stage, and they
are parsed into instructions in the fetch (F) stage. Additionally, any prefixes are decoded in
the F stage.

Instruction parsing is decoupled from the instruction decoding by means of an instruction
First In, First Out (FIFO) buffer, which is situated between the F and Decode 1 (D1) stages.
The FIFO has slots for up to four instructions. This FIFO is transparent; it does not add
additional latency when it is empty.

During every clock cycle, two instructions can be pushed into the instruction FIFO
(depending on availability of the code bytes, and on other factors such as prefixes).
Instruction pairs are pulled out of the FIFO into the D1 stage. Since the average rate of
instruction execution is less than two per clock, the FIFO is normally full. As long as the
FIFO is full, it can buffer any stalls that may occur during instruction fetch and parsing. If
such a stall occurs, the FIFO prevents the stall from causing a stall in the execution stage of
the pipe. If the FIFO is empty, then an execution stall may result from the pipeline being
“starved” for instructions to execute. Stalls at the FIFO entrance may result from long
instructions or prefixes (see Sections 3.7 and 3.4.2).

Figure 2-9 details the MMX pipeline on superscalar processors and the conditions in which a
stall may occur in the pipeline.
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First clock of multiply instructions.  No stall conditions.

PF

F

D1

D2

Mex

Wm/M2

M3

Wmul

PF Stage: Prefetches Instructions A stall will occur if the
prefetched code is not present in the code cache.

Fetch Stage: The prefetched instructions bytes are parsed
into instructions.  The prefixes are decoded and up to two

TM

can be pushed if each of the instructions is less than 7 bytes
in length.

are decoded in the D1 pipe stage.

D2 Stage:  Source values are read, and when an AGI is detected
a 1-clock delay is inserted into the V-Pipe pipeline.

E/MR Stage: The instruction is committed for execution.  MMX memory reads
occur in this stage

WM/M2 Stage: Single clock operations are written
Second stage of  multiplier pipe. No stall conditions.

M3 Stage: Third stage of multiplier pipe. No stall conditions.

Wmul Stage: Write of multiplier result. No stall conditions.

E

Figure 2-9.  MMX™ Instruction Flow in the Pentium® Processor with MMX Technology
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Table 2-2 details the functional units, latency, throughput and execution pipes for each type
of MMX instruction.

Table 2-2.  MMX™ Instructions and Execution Units

Operation
Number of

Functional Units Latency Throughput
Execution

Pipes

ALU 2 1 1 U and V

Multiplier 1 3 1 U or V

Shift/pack/unpack 1 1 1 U or V

Memory access 1 1 1 U only

Integer register access 1 1 1 U only

• The Arithmetic Logic Unit (ALU) executes arithmetic and logic operations (that is, add,
subtract, XOR, AND).

• The Multiplier unit performs all multiplication operations. Multiplication requires three
cycles but can be pipelined, resulting in one multiplication operation every clock cycle.
The processor has only one multiplier unit which means that multiplication instructions
cannot pair with other multiplication instructions. However, the multiplication
instructions can pair with other types of instructions. They can execute in either the U-
or V-pipes.

• The Shift unit performs all shift, pack and unpack operations. Only one shifter is
available so shift, pack and unpack instructions cannot pair with other shift unit
instructions. However, the shift unit instructions can pair with other types of instructions.
They can execute in either the U- or V-pipes.

• MMX instructions that access memory or integer registers can only execute in the U-
pipe and cannot be paired with any instructions that are not MMX instructions.

• After updating an MMX register, one additional clock cycle must pass before that MMX
register can be moved to either memory or to an integer register.

Information on pairing requirements can be found in Section 3.3.

Additional information on instruction format can be found in the Intel Architecture MMX™
Technology Programmer’s Reference Manual (Order Number 243007).
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2.3.2 Pentium® II Processors

The Pentium II processor uses the same pipeline as discussed in Section 2.3. The addition of
MMX technology is the major functional difference. Table 2-3 details the addition of MMX
technology to the Pentium Pro processor execution units.

Table 2-3.  Pentium® II Processor Execution Units

Port Execution Units Latency/Throughput

0 Integer ALU Unit
LEA instructions
Shift instructions

Integer Multiplication instruction

Floating-Point Unit
FADD instruction
FMUL
FDIV Unit

MMX ALU Unit

MMX Multiplier Unit

Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle

Latency 4, Throughput 1/cycle2

Latency 3, Throughput 1/cycle
Latency 5, Throughput 1/2 cycle1,2
Latency:  single precision 17 cycles, double precision 36 cycles,
extended precision 56 cycles, Throughput non-pipelined

Latency 1, Throughput 1/cycle

Latency 3, Throughput 1/cycle

1 Integer ALU Unit

MMX ALU Unit

MMX Shift Unit

Latency 1, Throughput 1/cycle

Latency 1, Throughput 1/cycle

Latency 1, Throughput 1/cycle

2 Load Unit Latency 3 on a cache hit, Throughput 1/cycle3

3 Store Address Unit Latency 3 (not applicable), Throughput 1/cycle3

4 Store Data Unit Latency 1 (not applicable), Throughput 1/cycle

NOTES:

See notes following Table 2-1.

2.3.3 Caches

The on-chip cache subsystem of Pentium processors with MMX technology and Pentium II
processors consists of two 16 Kbyte four-way set associative caches with a cache line length
of 32 bytes. The caches employ a write-back mechanism and a pseudo-LRU replacement
algorithm. The data cache consists of eight banks interleaved on four-byte boundaries.

On Pentium processors with MMX technology, the data cache can be accessed
simultaneously from both pipes, as long as the references are to different cache banks. On the
P6-family processors, the data cache can be accessed simultaneously by a load instruction
and a store instruction, as long as the references are to different cache banks. If the references
are to the same address they bypass the cache and are executed in the same cycle. The delay
for a cache miss on the Pentium processor with MMX technology is eight internal clock
cycles. On Pentium II processors the minimum delay is ten internal clock cycles.
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2.3.4 Branch Target Buffer

Branch prediction for Pentium processor with MMX technology and the Pentium II processor
is functionally identical to the Pentium Pro processor except for one minor exception which
is discussed in Section 2.3.4.1.

2.3.4.1 CONSECUTIVE BRANCHES

On the Pentium processor with MMX technology, branches may be mispredicted when the
last byte of two branch instructions occurs in the same aligned four-byte section of memory,
as shown in the figure below.

Byte 2 Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Branch A

Last byte of
Branch A

Last byte of
Branch B

Branch B

Byte 1Byte 0

Figure 2-10.  Consecutive Branch Example

This may occur when there are two consecutive branches with no intervening instructions
and the second instruction is only two bytes long (such as a jump relative ±128).

To avoid a misprediction in these cases, make the second branch longer by using a 16-bit
relative displacement on the branch instruction instead of an 8-bit relative displacement.

2.3.5 Write Buffers

Pentium Processors with MMX technology have four write buffers (versus two in Pentium
processors without MMX technology). Additionally, the write buffers can be used by either
the U-pipe or the V-pipe (versus one corresponding to each pipe in Pentium processors
without MMX technology). Write hits cannot pass write misses, therefore performance of
critical loops can be improved by scheduling the writes to memory. When you expect to see
write misses, you should schedule the write instructions in groups no larger than four, then
schedule other instructions before scheduling further write instructions.
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CHAPTER 3
OPTIMIZATION TECHNIQUES FOR INTEGER-

BLENDED CODE

The following section discusses the optimization techniques which can improve the
performance of applications across the Intel Architecture. The first section discusses general
guidelines; the second section presents a deeper discussion about each guideline and
examples of how to improve your code.

3.1 INTEGER BLENDED CODING GUIDELINES
The following guidelines will help you optimize your code to run well on Intel Architecture.

• Use a current generation compiler that will produce an optimized application. This will
help you generate good code from the start. See Chapter 6.

• Work with your compiler by writing code that can be optimized. Minimize use of global
variables, pointers and complex control flow. Don’t use the ‘register’ modifier, do use
the ‘const’ modifier. Don’t defeat the type system and don’t make indirect calls.

• Pay attention to the branch prediction algorithm (See Section 3.2). This is the most
important optimization for Pentium Pro and Pentium II processors. By improving branch
predictability, your code will spend fewer cycles fetching instructions.

• Avoid partial register stalls. See Section 3.3.

• Make sure all data are aligned. See Section 3.4.

• Arrange code to minimize instruction cache misses and optimize prefetch. See
Section 3.5.

• Schedule your code to maximize pairing on Pentium processors. See Section 3.6.

• Avoid prefixed opcodes other than 0F. See Section 3.7.

• Avoid small loads after large stores to the same area of memory. Avoid large loads after
small stores to the same area of memory. Load and store data to the same area of
memory using the same data sizes and address alignments. See Section 3.8.

• Use software pipelining.

• Always pair CALL and RET (return) instructions.

• Avoid self-modifying code.

• Do not place data in the code segment.

• Calculate store addresses as soon as possible.
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• Avoid instructions that contain four or more micro-ops or instructions that are more than
seven bytes long. If possible, use instructions that require one micro-op.

• Cleanse partial registers before calling callee-save procedures.

3.2 BRANCH PREDICTION
Branch optimizations are the most important optimizations for Pentium Pro and Pentium II
processors. These optimizations also benefit the Pentium processor family. Understanding the
flow of branches and improving the predictability of branches can increase the speed of your
code significantly.

3.2.1 Dynamic Branch Prediction

Three elements of dynamic branch prediction are important:

1. If the instruction address is not in the BTB, execution is predicted to continue without
branching (fall through).

2. Predicted taken branches have a one clock delay.

3. The BTB stores a 4-bit history of branch predictions on Pentium Pro processors,
Pentium II processors and Pentium processors with MMX technology. The Pentium
Processor stores a two-bit history of branch prediction.

During the process of instruction prefetch the instruction address of a conditional instruction
is checked with the entries in the BTB. When the address is not in the BTB, execution is
predicted to fall through to the next instruction. This suggests that branches should be
followed by code that will be executed. The code following the branch will be fetched and,
in the case of Pentium Pro and Pentium II processors, the fetched instructions will be
speculatively executed. Therefore, never follow a branch instruction with data.

Additionally, when an instruction address for a branch instruction is in the BTB and it is
predicted to be taken, it suffers a one-clock delay on Pentium Pro and Pentium II processors.
To avoid the delay of one clock for taken branches, simply insert additional work between
branches that are expected to be taken. This delay restricts the minimum size of loops to two
clock cycles. If you have a very small loop that takes less than two clock cycles, unroll it to
remove the one-clock overhead of the branch instruction.

The branch predictor on Pentium Pro processors, Pentium II processors and Pentium
processors with MMX technology correctly predicts regular patterns of branches (up to a
length of four). For example, it correctly predicts a branch within a loop that is taken on
every odd iteration, and not taken on every even iteration.
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3.2.2 Static Prediction on Pentium® Pro and Pentium II Processors

On Pentium Pro and Pentium II processors, branches that do not have a history in the BTB
are predicted using a static prediction algorithm, as follows:

• Predict unconditional branches to be taken.

• Predict backward conditional branches to be taken. This rule is suitable for loops.

• Predict forward conditional branches to be NOT taken.

A branch that is statically predicted can lose, at most, the six cycles of prefetch. An incorrect
prediction suffers a penalty of greater than twelve clocks. The following chart illustrates the
static branch prediction algorithm:

forward conditional branches not taken (fall through)

If <condition> {
...

} Unconditional Branches taken
JMP

for <condition> {
...

}

Backward Conditional Branches are taken

loop {

} <condition>

Figure 3-1.  Pentium® Pro and Pentium II Processor’s Static Branch
Prediction Algorithm
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The following examples illustrate the basic rules for the static prediction algorithm.

Begin: MOV EAX, mem32
AND EAX, EBX
IMUL EAX, EDX
SHLD EAX, 7
JC Begin

In this example, the backwards branch (JC Begin) is not in the BTB the first time through,
therefore, the BTB will not issue a prediction. The static predictor, however, will predict the
branch to be taken, so a misprediction will not occur.

MOV EAX, mem32
AND EAX, EBX
IMUL EAX, EDX
SHLD EAX, 7
JC Begin
MOV EAX, 0

Begin: CALL Convert

The first branch instruction (JC Begin) in this code segment is a conditional forward
branch. It is not in the BTB the first time through, but the static predictor will predict the
branch to fall through.

The CALL Convert instruction will not be predicted in the BTB the first time it is seen by
the BTB, but the call will be predicted as taken by the static prediction algorithm. This is
correct for an unconditional branch.

In these examples, the conditional branch has only two alternatives:  taken and not taken.
Indirect branches, such as switch statements, computed GOTOs or calls through pointers, can
jump to an arbitrary number of locations. If the branch has a skewed target destination (that
is, 90% of the time it branches to the same address), then the BTB will predict accurately
most of the time. If, however, the target destination is not predictable, performance can
degrade quickly. Performance can be improved by changing the indirect branches to
conditional branches that can be predicted.

3.2.3 Eliminating and Reducing the Number of Branches

Eliminating branches improves performance by:

• Removing the possibility of mispredictions.

• Reducing the number of BTB entries required.

Branches can be eliminated by using the setcc instruction, or by using the Pentium Pro
processor conditional move (CMOV or FCMOVE) instructions.
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Following is an example of C code with a condition that is dependent upon on of the
constants:

ebx = (A<B) ? C1 : C2;

This code conditionally compares two values, A and B. If the condition is true, EBX is set to
C1; otherwise it is set to C2. The assembly equivalent is shown in the example below:

cmp A, B ; condition
jge   L30  ; conditional branch
mov   ebx, CONST1
jmp   L31 ; unconditional branch

L30:
mov   ebx, CONST2

L31:

If you replace the jge instruction in the previous example with a setcc instruction, the
EBX register is set to either C1 or C2. This code can be optimized to eliminate the branches
as shown in this example:

xor  ebx, ebx  ;clear ebx
cmp   A, B
setge bl ;When ebx = 0 or 1

;OR the complement condition
dec   ebx ;ebx=00...00 or 11...11
and   ebx, (CONST2-CONST1) ;ebx=0 or(CONST2-CONST1)
add   ebx, min(CONST1,CONST2) ;ebx=CONST1 or CONST2

The optimized code sets EBX to zero, then compares A and B. If A is greater than or equal to
B, EBX is set to one. EBX is then decremented and ANDed with the difference of the
constant values. This sets EBX to either zero or the difference of the values. By adding the
minimum of the two constants the correct value is written to EBX. When CONST1 or
CONST2 is equal to zero, the last instruction can be deleted, since the correct value already
has been written to EBX.

When abs(CONST1-CONST2) is one of {2,3,5,9}, the following example applies:

xor   ebx, ebx
cmp     A, B
setge bl       ; or the complement condition
lea   ebx, [ebx*D+ebx+CONST1-CONST2]

where D stands for abs(CONST1-CONST2)-1.
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A second way to remove branches on Pentium Pro or Pentium II processors is to use the new
CMOV and FCMOV instructions. Following is an example of changing a test and branch
instruction sequence using CMOV and eliminating a branch. If the test sets the equal flag, the
value in EBX will be moved to EAX. This branch is data dependent, and is representative of
a unpredictable branch.

test ecx, ecx
jne  1h
mov  eax, ebx
1h:

To change the code, the jne and the mov instructions are combined into one CMOVcc
instruction which checks the equal flag. The optimized code is shown below:

test ecx, ecx ; test the flags
cmoveq eax, ebx ; if the equal flag is set, move ebx to eax
1h:

The label 1h: is no longer needed unless it is the target of another branch instruction. These
instructions will generate invalid opcodes when used on previous generation processors.
Therefore, be sure to use the CPUID instruction to determine that the application is running
on a Pentium Pro or Pentium II processor.

Additional information on branch elimination can be found on the Pentium Pro Processor
Computer Based Training (CBT) which is available with VTune.

In addition to eliminating branches, the following guidelines improve branch predictability:

• Ensure that each call has a matching return.

• Don’t intermingle data and instructions.

• Unroll very short loops.

• Follow static prediction algorithm.

3.2.4 Performance Tuning Tip for Branch Prediction

3.2.4.1 PENTIUM® PROCESSOR FAMILY

On Pentium processors with and without MMX technology, the most common reason for
pipeline flushes are BTB misses on taken branches or BTB mispredictions. If pipeline flushes
are high, behavior of the branches in the application should be examined. Using VTune you
can evaluate your program using the performance counters set to the following events.

1. Check total overhead because of pipeline flushes.

Total overhead of pipeline flushes because of BTB misses is found by:

Pipeline flushed due to wrong branch prediction * 4 / Pipeline flushes due to wrong branch
prediction in the WB stage
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NOTE

Because of the additional stage in the pipeline, the branch misprediction
penalty for Pentium processors with MMX technology is one cycle more
than the Pentium processor.

2. Check the BTB prediction rate.

BTB hit rate is found by:

BTB Predictions / Branches

If the BTB hit rate is low, the number of active branches is greater than the number of BTB
entries. Chapter 7 details monitoring of the above events.

3.2.4.2 PENTIUM® PRO AND PENTIUM II PROCESSORS

When a misprediction occurs the entire pipeline is flushed up to the branch instruction and
the processor waits for the mispredicted branch to retire.

Branch Misprediction Ratio = BR_Miss_Pred_Ret / Br_Inst_Ret

If the branch misprediction ratio is less than about 5% then branch prediction is within
normal range. Otherwise, identify which branches are causing significant mispredictions and
try to remedy the situation using the techniques in Section 3.2.3.

3.3 PARTIAL REGISTER STALLS ON PENTIUM® PRO AND
PENTIUM II PROCESSORS

On Pentium Pro and Pentium II processors, when a 32-bit register (for example, EAX) is read
immediately after a 16- or 8-bit register (for example, AL, AH, AX) is written, the read is
stalled until the write retires (a minimum of seven clock cycles). Consider the example
below. The first instruction moves the value 8 into the AX register. The following instruction
accesses the register EAX. This code sequence results in a partial register stall:

MOV AX, 8
ADD  ECX, EAX Partial stall occurs on access of
the EAX register

This applies to all of the 8- and 16-bit/32-bit register pairs, listed below:

Small Registers: Large Registers:

AL AH AX EAX

BL BH BX EBX

CL CH CX ECX

DL DH DX EDX
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SP ESP

BP EBP

DI EDI

SI ESI

Pentium processors do not exhibit this penalty.

Because Pentium Pro and Pentium II processors can execute code out of order, the
instructions need not be immediately adjacent for the stall to occur. The following example
also contains a partial stall:

MOV AL, 8
MOV EDX, 0x40
MOV EDI, new_value
ADD EDX, EAX Partial stall occurs on access of
the EAX register

In addition, any micro-ops that follow the stalled micro-op also wait until the clock cycle
after the stalled micro-op continues through the pipe. In general, to avoid stalls, do not read a
large (32-bit) register (EAX) after writing a small (16- or 18-bit) register (AL) which is
contained in the large register.

Special cases of reading and writing small and large register pairs are implemented in
Pentium Pro and Pentium II processors in order to simplify the blending of code across
processor generations. The special cases are implemented for XOR and SUB when using
EAX, EBX, ECX, EDX, EBP, ESP, EDI and ESI as shown in the following examples:

xor  eax, eax
movb  al, mem8
add  eax, mem32 no partial stall

xor  eax, eax
movw  ax, mem16
add  eax, mem32 no partial stall

sub  ax,  ax
movb al,  mem8
add  ax, mem16 no partial stall

sub  eax, eax
movb  al, mem8
or   ax, mem16 no partial stall

xor   ah, ah
movb  al, mem8
sub   ax, mem16 no partial stall

In general, when implementing this sequence, always zero the large register and then write to
the lower half of the register.



E OPTIMIZATION TECHNIQUES FOR INTEGER-BLENDED CODE

3-9

5/4/97 4:38 PM    CH03.DOC

INTEL CONFIDENTIAL
(until publication date)

3.3.1 Performance Tuning Tip for Partial Stalls

3.3.1.1 PENTIUM® PROCESSORS

Partial stalls do not occur on the Pentium processor.

3.3.1.2 PENTIUM® PRO AND PENTIUM II PROCESSORS

Partial stalls are measured by the Renaming Stalls event in VTune. This event can be
programmed as a duration event or a count event. Duration events count the total cycles the
processor stalls for each event, where Count events count the total number of events. On
VTune, you can set the cmsk for the Renaming Stalls event to be either count or duration in
the Custom Events Window. The default is duration. By using the duration you can
determine the percentage of time stalled by partial stalls with the following formula:

Renaming Stalls

Total Cycles

If a particular stall occurs more than about 3% of the execution time, then this stall should be
re-coded to eliminate the stall.

3.4 ALIGNMENT RULES AND GUIDELINES
• The following section discusses guidelines for alignment of both code and data.

A misaligned access costs three cycles on the Pentium processor family. On Pentium Pro and
Pentium II processors a misaligned access that crosses a cache line boundary costs six to nine
cycles. A Data Cache Unit (DCU) split is a memory access which crosses a 32-byte line
boundary. Unaligned accesses which cause a DCU split stall Pentium Pro and Pentium II
processors. For best performance, make sure that in data structures and arrays greater than
32 bytes that the structure or array elements are 32-byte aligned, and that access patterns to
data structure and array elements do not break the alignment rules.

3.4.1 Code

Pentium, Pentium Pro and Pentium II processors have a cache line size of 32 bytes. Since the
prefetch buffers fetch on 16-byte boundaries, code alignment has a direct impact on prefetch
buffer efficiency.

For optimal performance across the Intel Architecture family, it is recommended that:

• Loop entry labels should be 16-byte aligned when less than eight bytes away from a
16-byte boundary.

• Labels that follow a conditional branch should not be aligned.

• Labels that follow an unconditional branch or function call should be 16-byte aligned
when less than eight bytes away from a 16-byte boundary.
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On the Pentium processor with MMX technology, the Pentium Pro and Pentium II processors,
avoid loops which execute in less than two cycles. Very tight loops have a high probability
that one of the instructions will be split across a 16-byte boundary which causes extra cycles
in the decoding of the instructions. On the Pentium processor this causes an extra cycle every
other iteration. On the Pentium Pro and Pentium II processors it can limit the number of
instructions available for execution which limits the number of instructions retired every
cycle. It is recommended that critical loop entries be located on a cache line boundary.
Additionally, loops that execute in less than two cycles should be unrolled. See Section 2.2 for
more information about decoding on the Pentium Pro and Pentium II processors.

3.4.2 Data

A misaligned access in the data cache or on the bus costs at least three extra clock cycles on
the Pentium processor. A misaligned access in the data cache, which crosses a cache line
boundary, costs nine to twelve clock cycles on Pentium Pro and Pentium II processors. Intel
recommends that data be aligned on the following boundaries for the best execution
performance on all processors:

• Align 8-bit data on any boundary.

• Align 16-bit data to be contained within an aligned 4-byte word.

• Align 32-bit data on any boundary which is a multiple of four.

• Align 64-bit data on any boundary which is a multiple of eight.

• Align 80-bit data on a 128-bit boundary (that is, any boundary which is a multiple of
16 bytes).

3.4.2.1 DATA STRUCTURES AND ARRAYS GREATER THAN 32 BYTES

A 32-byte or greater data structure or array should be aligned so that the beginning of each
structure or array element is aligned on a 32-byte boundary and so that each structure or
array element does not cross a 32-byte cache line boundary.

3.4.3 Data Cache Unit (DCU) Split

The following example shows the type of code that can cause a DCU split. The code loads
the addresses of two dword arrays. In this example, every four iterations of the first two
dword loads causes a DCU split. The data declared at address 029e70feh is not 32-byte
aligned, therefore each load to this address and every load that occurs 32 bytes (every four
iterations) from this address will cross the cache line boundary, as illustrated in Figure 3-2
below.
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mov     esi, 029e70feh

mov     edi, 05be5260h

BlockMove:

mov     eax, DWORD PTR [esi]

mov     ebx, DWORD PTR [esi+4]

mov     DWORD PTR [edi], eax

mov     DWORD PTR [edi+4], ebx

add     esi, 8

add     edi, 8

dec     edx

jnz     BlockMove

70E0h

Iteration 0
Iteration 1 Iteration 2 Iteration 3

7100h

7120h

70FEh

DCU Split access

Aligned access

Figure 3-2.  DCU Split in the Data Cache

3.4.4 Performance Tuning Tip for Misaligned Accesses

3.4.4.1 PENTIUM® PROCESSORS

Misaligned data causes a three-cycle stall on the Pentium processor. Use VTune dynamic
execution functionality to determine the exact location of a misaligned access.

3.4.4.2 PENTIUM® PRO AND PENTIUM II PROCESSORS

Misaligned data can be detected by using the Misaligned Accesses event counter on Pentium
Pro processors. When the misaligned data crosses a cache line boundary it causes a six to
twelve-cycle stall.
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3.5 DATA ARRANGEMENT FOR IMPROVED CACHE
PERFORMANCE

Cache behavior can dramatically affect the performance of your application. By having a
good understanding of how the cache works, you can structure your code and data to take
best advantage of cache capabilities. Cache structure information for each of the processors
is discussed in Chapter 2.

3.5.1 C-Language Level Optimizations

The following sections discuss how you can improve the arrangement of data at the
C-language level. These optimizations can benefit all processors.

3.5.1.1 DECLARATION OF DATA TO IMPROVE CACHE PERFORMANCE

Compilers generally control allocation of variables, and the developer cannot control how
variables are arranged in memory after optimization. Specifically, compilers allocate
structure and array values in memory in the order the values are declared as required by
language standards. However, when in-line assembly is inserted in a function, many
compilers turn off optimization, and the way you declare data in this function becomes
important. Additionally, order of data declaration is important when declaring your data at
the assembly level. Sometimes a DCU split or unaligned data can be avoided by changing the
data layout in the high level or assembly code, consider the following example:

Unoptimized data layout:

short a[15];         /* 2 bytes data */
int   b[15], c[15];  /* 4 bytes data */

for (i=0; i<15, i++) {
     a[i] = b[i] + c[i]
}
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In some compilers the memory is allocated as the variables are declared, therefore the cache
layout of the variables in the example above is as follows:

ab

b b b b

b b b b b b b

bc bc

aaaaaaaa aaaa aa

bb

b

cc c c c

cc c c c

c c c

c

c

032

Figure 3-3.  Cache Layout of Structures a, b and c

This example assumes that a[0] is aligned at a cache line boundary. Each box represents
two bytes. Accessing elements b[0], b[8], c[1], c[9] will cause DCU splits on the
Pentium Pro processor.

Rearrange the data so that the larger elements are declared first, thereby avoiding the
misalignment.

Optimized data layout:

int   b[15], c[15]; /* 4 bytes data */
short a[15];        /* 2 bytes data */

for (i=0; i<15, i++) {
     a[i] = b[i] + c[i]
}

a

b b b b

b b b b b b b

bbc

aaaaaaa

a aaaa a

a

c c c c

cc c c

c c c c

032

b

b

c

Figure 3-4.  Optimized Data Layout of Structures a, b and c

Accessing the above data will not cause a DCU split on Pentium Pro and Pentium II
processors.
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3.5.1.2 DATA STRUCTURE DECLARATION

Data structure declaration can be very important to the speed of accessing data in structures.
The following section discusses easy ways to improve access in your C code.

It is best to have your data structure use as little space as possible. This can be accomplished
by always using the following guidelines when declaring arrays and structures:

• Make sure the data structure begins 32-byte aligned.

• Arrange data so an individual structure element does not cross a cache line boundary.

• Declare elements largest to smallest.

• Place together data elements that are accessed at the same time.

• Place together data elements that are used frequently.

How you declare large arrays within a structure is dependent upon how the arrays are
accessed in the code. The array could be declared as a structure of two separate arrays, or as
a compound array of structures, as shown in the following code segments:

Separate Array: Compound Array:
struct { struct {

int a[500]; int a;
int b[500]; int b;
} s; } s[500];

Using separate arrays the elements of array a are located sequentially in memory followed by
the elements of array b. In the compound array, the elements of each array are alternated so
that for every iteration, b[i] is located after a[i], as shown in Figure 3-5 below:

a[0] b[0] a[1] b[1] ….. a[500] b[500]

Figure 3-5.  Compound Array as Stored in Memory

If your code accesses arrays a and b sequentially, declare the arrays separately. This way, a
cache line fill that brings in element a[i] into the cache also brings in the adjacent elements
of the array into the cache. If your code accesses arrays a and b in parallel, use the
compound array structure declaration. Then a cache line fill that brings in element a[i] into
the cache also brings in element b[i].

3.5.1.4 PADDING AND ALIGNMENT OF ARRAYS AND STRUCTURES

Padding and aligning of arrays and structures can help avoid cache misses when structures or
arrays are randomly accessed. Structures or arrays that are sequentially accessed should be
sequential in memory.
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Use the following guidelines to reduce cache misses:

• Pad each structure to make its size equal to an integer multiple of the cache line size.

• Align each structure so it starts at the beginning of a cache line (a multiple of 32 for the
Pentium and Pentium Pro processors.

• Make array dimensions be powers of two.

For more information and examples of these techniques see the Pentium processor computer
based training.

3.5.1.5 LOOP TRANSFORMATIONS FOR MEMORY PERFORMANCE

In addition to the way data is structured in memory, you can also improve cache performance
by improving the way the code accesses the data. Following are a few principal
transformations for improving memory access patterns. The goal is to make the references in
the inner loop have unit strides and to keep as much as possible of the computation executing
from within the caches.

“Loop fusion” is a transformation that combines two loops that access the same data so that
more work can be completed on the data while it is in the cache.

Before: After:
for (i = 1; i < n){ for (i = 1; i < n{
  ... A(i) ... ... A(i) ...
} ... A(i) ...
for ( i = 1; i < n){ }
  ... A(i) ...
}

“Loop fission” is a transformation that splits a loop into two loops so that the data brought
into the cache is not flushed from the cache before the work is completed.

Before: After:
for (i = 1; i < n){ for (i = 1; i < n){
      ... A(i) ... ... A(i) ...
      ... B(i) ... }
} for (i = 1; i < n){

... B(i) ...
}
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Loop interchanging changes the way the data is accessed. C compilers store matrices in
memory, in row order, where FORTRAN compilers store matrices in column order. By
accessing the data as it is stored in memory, you can avoid many cache misses and improve
performance.

Before: After:
for (i = 1; i < n){ for (j = 1; j < n){
 for (j = 1; j < n){ for (i = 1; i < n){
          ... A(i,j) ... ... A(i,j) ...
 }   }
} }

Blocking is the process of restructuring your program so data is accessed with a few cache
misses as possible. Blocking is useful for multiplying very large matrixes.

Before: After:
for (j = 1; j < n){ for (jj = 1; i < n jj+= k){

for (i = 1; i < n){ for (ii = 1; ii < n; ii+=k){

       ... A(i,j) ... for (j = jj; i < jj+k){

}   
for ( i = ii; i < ii+k) {

}
... A(i,j) ...

 
}

}
  }

}

NOTE

Some of these transformations may not be legal for some programs. Some
algorithms may produce different results when these transformations are
applied. Additional information on these optimization techniques can be
found in High Performance Computing, Kevin Dowd, O’Reilly and
Associates, Inc., 1993 and High Performance Compilers for Parallel
Computing, Michael Wolfe, Addison Wesley Publishing Company, Inc.,
1996, ISBN 0-8053-2730-4.
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3.5.1.6 ALIGNING DATA IN MEMORY AND ON THE STACK

Accessing 64-bit variables that are not 8-byte aligned costs an extra three cycles on the
Pentium processor. When such a variable crosses a 32-byte cache line boundary it can cause
a DCU split in Pentium Pro and Pentium II processors. Some commercial compilers do not
align doubles on 8-byte boundaries. If, by using the Misaligned Accesses performance
counter, you discover your data is not aligned, the following methods may be used to align
your data:

• Use static variables.

• Use assembly code that explicitly aligns data.

• In C code, use malloc to explicitly allocate variables.

Static Variables

When variables are allocated on the stack they may not be aligned. Compilers do not allocate
static variables on the stack, but in memory. In most cases when the compiler allocates static
variables, they are aligned.

static float a;                   float b;
static float c;

Alignment using Assembly Language

Use assembly code to explicitly align variables. The following example aligns the stack to
64-bits:

Procedure Prologue:

push  ebp
mov  esp, ebp
and  ebp, -8
sub  esp, 12

Procedure Epilogue:

add esp, 12
pop ebp
ret
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Dynamic Allocation Using Malloc

If you use dynamic allocation, check if your compiler aligns double or quadword values on
8-byte boundaries. If the compiler does not align doubles to 8 bytes, then

• Allocate memory equal to the size of the array or structure plus an extra 4 bytes.

• Use bitwise AND to make sure that the array is aligned.

Example:
double a[5];
double *p, *newp;

p = (double*)malloc ((sizeof(double)*5)+4)
newp = (p+4) & (-7)

3.5.2 Moving Large Blocks of Memory

When copying large blocks of data on the Pentium Pro and Pentium II processors, you can
improve the speed of the copy by enabling the advanced features of the processor. In order to
use the special mode your data copy must meet the following criteria:

• The source and destination must be 8 byte aligned

• The copy direction must be ascending

• The length of the data must require greater than 64 repetitions

When all three of these criteria are true, programming a function using the rep movs and rep
stos instructions instead of a library function will allow the processor to perform a fast string
copy. Additionally, when your application spends a large amount of time copying you can
improve overall speed of your application by setting up your data to match these criteria.

Following is an example for copying a page:

MOV ECX, 4096 ; instruction sequence for copying a page
MOV EDI, destpageptr ; 8-byte aligned page pointer
MOV ESI, srcpageptr ; 8-byte aligned page pointer
REP MOVSB



E OPTIMIZATION TECHNIQUES FOR INTEGER-BLENDED CODE

3-19

5/4/97 4:38 PM    CH03.DOC

INTEL CONFIDENTIAL
(until publication date)

3.5.3 Line Fill Order

When a data access to a cacheable address misses the data cache, the entire cache line is
brought into the cache from external memory. This is called a line fill. On Pentium, Pentium
Pro and Pentium II processors, these data arrive in a burst composed of four 8-byte sections
in the following burst order:

1st Address 2nd Address 3rd Address 4th Address

0h 8h 10h 18h

8h 0h 18h 10h

10h 18h 0h 8h

18h 10h 8h 0h

For Pentium processors with MMX technology, Pentium Pro and Pentium II processors, data
is available for use in the order that it arrives from memory. If an array of data is being read
serially, it is preferable to access it in sequential order so that each data item will be used as
it arrives from memory. On Pentium processors the first 8-byte section is available
immediately, but the rest of the cache line is not available until the entire line is read from
memory.

Arrays with a size that is a multiple of 32 bytes should start at the beginning of a cache line.
By aligning on a 32-byte boundary, you take advantage of the line fill ordering and match the
cache line size. Arrays with sizes that are not multiples of 32 bytes should begin at 32- or
16-byte boundaries (the beginning or middle of a cache line). In order to align on a 16- or
32-byte boundary, you may need to pad the data. If this is necessary, try to locate data
(variables or constants) in the padded space.

3.5.4 Increasing Bandwidth of Memory Fills

It is beneficial to understand how memory is accessed and filled. A memory-to-memory fill
(for example a memory-to-video fill) is defined as a 32-byte (cache line) load from memory
which is immediately stored back to memory (such as a video frame buffer). The following
are guidelines for obtaining higher bandwidth and shorter latencies for sequential memory
fills (video fills). These recommendations are relevant for all Intel Architecture processors
and refer to cases in which the loads and stores do not hit in the second level cache. See
Chapter 4 for more information on memory bandwidth.

3.5.5 Write Allocation Effects

Pentium Pro and Pentium II processors have a “write allocate by read-for-ownership” cache,
whereas the Pentium processor has a “no-write-allocate; write through on write miss” cache.

On Pentium Pro and Pentium II processors, when a write occurs and the write misses the
cache, the entire 32-byte cache line is fetched. On the Pentium processor, when the same
write miss occurs, the write is simply sent out to memory.
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Write allocate is generally advantageous, since sequential stores are merged into burst writes
and the data remains in the cache for use by later loads. This is why P6- family processors
adopted this write strategy, and why some Pentium processor system designs implement it for
the L2 cache, even though the Pentium processor uses write-through on a write miss.

Write allocate can be a disadvantage in code where:

• Just one piece of a cache line is written.

• The entire cache line is not read.

• Strides are larger than the 32-byte cache line.

• Writes are made to a large number of addresses (>8000).

When a large number of writes occur within an application, as in the example program
below, and both the stride is longer than the 32-byte cache line and the array is large, every
store on a Pentium Pro or Pentium II processor will cause an entire cache line to be fetched.
In addition, this fetch will probably replace one (sometimes two) dirty cache line.

The result is that every store causes an additional cache line fetch and slows down the
execution of the program. When many writes occur in a program, the performance decrease
can be significant. The Sieve of Erastothenes program demonstrates these cache effects. In
this example, a large array is stepped through in increasing strides while writing a single
value of the array with zero.

NOTE

This is a very simplistic example used only to demonstrate cache effects;
many other optimizations are possible in this code.

Sieve of Erastothenes example:

boolean array[max];
for(i=2;i<max;i++) {
     array = 1;
    }

for(i=2;i<max;i++) {
     if( array[i] ) {
         for(j=2;j<max;j+=i) {

          array[j] = 0;  /*here we assign memory to 0
causing the
cache line fetch within the j 

loop */
         }
     }
}

Two optimizations are available for this specific example. One is to pack the array into bits,
thereby reducing the size of the array, which in turn reduces the number of cache line
fetches. The second is to check the value prior to writing, thereby reducing the number of
writes to memory (dirty cache lines).
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3.5.5.1 OPTIMIZATION 1:  BOOLEAN

In the program above, boolean is a char array. It may well be better, in some programs, to
make the boolean array into an array of bits, packed so that read-modify-writes are done
(since the cache protocol makes every read into a read-modify-write). But in this example,
the vast majority of strides are greater than 256 bits (one cache line of bits), so the
performance increase is not significant.

3.5.5.2 OPTIMIZATION 2:  CHECK BEFORE WRITING

Another optimization is to check if the value is already zero before writing.

boolean array[max];
for(i=2;i<max;i++) {
     array = 1;
    }

    for(i=2;i<max;i++) {
     if( array[i] ) {
         for(j=2;j<max;j+=i) {
          if( array[j] != 0 ) {  /* check to see if value is 

already 0 */
              array[j] = 0;
          }
         }
     }
    }

The external bus activity is reduced by half because most of the time in the Sieve program
the data is already zero. By checking first, you need only one burst bus cycle for the read and
you save the burst bus cycle for every line you do not write. The actual write back of the
modified line is no longer needed, therefore saving the extra cycles.

NOTE

This operation benefits Pentium Pro and Pentium II processors but may not
enhance the performance of Pentium processors. As such, it should not be
considered generic. Write allocate is generally a performance advantage in
most systems, since sequential stores are merged into burst writes and the
data remain in the cache for use by later loads. This is why Pentium Pro and
Pentium II processors use this strategy, and why some Pentium processor-
based systems implement it for the L2 cache.
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3.6 INTEGER INSTRUCTION SCHEDULING
Scheduling or pipelining should be done in a way that optimizes performance across all
processor generations. The following is a list of pairing and scheduling rules that can
improve the speed of your code on Pentium, Pentium Pro and Pentium II processors. In some
cases, there are tradeoffs involved in reaching optimal performance on a specific processor;
these tradeoffs vary based on the specific characteristics of the application.

On superscalar Pentium processors, the order of instructions is very important to achieving
maximum performance. Reordering instructions increases the possibility of issuing two
instructions simultaneously. Instructions that have data dependencies should be separated by
at least one other instruction.

3.6.1 Pairing

This section describes the rules you need to follow to pair integer instructions. Pairing rules
for MMX instructions and floating-point instructions are in Chapters 4 and 5 respectively.

• Several types of rules must be observed to allow pairing:

• Integer pairing rules:  Rules for pairing integer instructions.

• General pairing rules:  Rules which depend on the machine status and do not depend on
the specific opcodes. They are also valid for integer and FP. For example, single-step
should be disabled to allow instruction pairing

• MMX instruction pairing rules for a pair of MMX instructions:  Rules that allow two
MMX instructions to pair. Example:  the processor cannot issue two MMX instructions
simultaneously because only one multiplier unit exists. See Section 4.3.

• MMX and integer instruction pairing rules:  Rules that allow pairing of one integer and
one MMX instruction. See Section 4.3.

• Floating-point and integer pairing rules:  See Section 5.3.

NOTE

Floating-point instructions are not pairable with MMX instructions.

3.6.2 Integer Pairing Rules

Pairing cannot be performed when the following conditions occur:

• The next two instructions are not pairable instructions (see Appendix A for pairing
characteristics of individual instructions). In general, most simple ALU instructions are
pairable.

• The next two instructions have some type of register contention (implicit or explicit).
There are some special exceptions to this rule where register contention can occur with
pairing. These are described later.
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• The instructions are not both in the instruction cache. An exception to this which permits
pairing is if the first instruction is a one-byte instruction.

Table 3-1.  Integer Instruction Pairing

Integer Instruction Pairable in U-Pipe Integer Instruction Pairable in V-Pipe

mov r, r alu r, i push r mov r, r alu r, i push r

mov r, m alu m, i push i mov r, m alu m, i push I

mov m, r alu eax, i pop r mov m, r alu eax, i pop r

mov r, i alu m, r nop mov r, i alu m, r jmp near

mov m, i alu r, m shift/rot by 1 mov m, i alu r, m jcc near

mov eax, m inc/dec r shift by imm mov eax, m inc/dec r 0F jcc

mov m, eax inc/dec m test reg, r/m mov m, eax inc/dec m call near

alu r, r lea r, m test acc, imm alu r, r lea r, m nop

test reg, r/m test acc, imm

3.6.2.1 INSTRUCTION SET PAIRABILITY

Unpairable Instructions (NP)

1. Shift or rotate instructions with the shift count in the CL register.

2. Long arithmetic instructions, for example:  MUL, DIV.

3. Extended instructions, for example:  RET, ENTER, PUSHA, MOVS, STOS, LOOPNZ.

4. Some floating-point instructions, for example:  FSCALE, FLDCW, FST.

5. Inter-segment instructions, for example:  PUSH, sreg, CALL far.

Pairable Instructions Issued to U or V Pipes (UV)

1. Most 8/32 bit ALU operations, for example:  ADD, INC, XOR.

2. All 8/32 bit compare instructions, for example:  CMP, TEST.

3. All 8/32 bit stack operations using registers, for example:  PUSH reg, POP reg.

Pairable Instructions Issued to U Pipe (PU)

These instructions must be issued to the U-pipe and can pair with a suitable instruction in the
V-Pipe. These instructions never execute in the V-pipe.

1. Carry and borrow instructions, for example:  ADC, SBB.

2. Prefixed instructions (see next section).
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3. Shift with immediate.

4. Some floating-point operations, for example:  FADD, FMUL, FLD.

Pairable Instructions Issued to V Pipe (PV)

These instructions can execute in either the U-pipe or the V-pipe but they are only paired
when they are in the V-pipe. Since these instructions change the instruction pointer (eip),
they cannot pair in the U-pipe since the next instruction may not be adjacent. Even when a
branch in the U-pipe is predicted to be not taken, it will not pair with the following
instruction.

1. Simple control transfer instructions, for example:  call near, jmp near, jcc. This
includes both the jcc short and the jcc near (which has a 0f prefix) versions of the
conditional jump instructions.

2. The fxch instruction.

3.6.2.2 UNPAIRABILITY DUE TO REGISTER DEPENDENCIES

Instruction pairing is also affected by instruction operands. The following combinations
cannot be paired because of register contention. Exceptions to these rules are given in the
next section.

1. The first instruction writes to a register that the second one reads from (flow dependence).
An example follows:

mov  eax, 8
mov  [ebp], eax

2. Both instructions write to the same register (output dependence), as shown below:

mov  eax, 8
mov  eax, [ebp]

This limitation does not apply to a pair of instructions that write to the EFLAGS register (for
example, two ALU operations that change the condition codes). The condition code after the
paired instructions execute will have the condition from the V-pipe instruction.

Note that a pair of instructions in which the first reads a register and the second writes to the
same register (anti-dependence), may be paired. See the following example:

mov  eax, ebx
mov  ebx, [ebp]

For purposes of determining register contention, a reference to a byte or word register is
treated as a reference to the containing 32-bit register. Therefore:

mov  al, 1
mov  ah, 0

Do not pair because of output dependencies on the contents of the EAX register.
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3.6.2.3 SPECIAL PAIRS

There are some instructions that can be paired in spite of our general rules above. These
special pairs overcome register dependencies, and most involve implicit reads/writes to the
esp register or implicit writes to the condition codes:

Stack Pointer:

• push reg/imm; push reg/imm

• push reg/imm; call

• pop reg     ; pop reg

Condition Codes:

• cmp         ; jcc

• add         ; jne

Note that the special pairs that consist of PUSH/POP instructions can have only immediate
or register operands, not memory operands.

3.6.2.4 RESTRICTIONS ON PAIR EXECUTION

There are some pairs that may be issued simultaneously but will not execute in parallel:

1. If both instructions access the same data-cache memory bank then the second request (V-
pipe) must wait for the first request to complete. A bank conflict occurs when bits 2
through 4 are the same in the two physical addresses. A bank conflict incurs a one clock
penalty on the V-pipe instruction.

2. Inter-pipe concurrency in execution preserves memory-access ordering. A multi-cycle
instruction in the U-pipe will execute alone until its last memory access.

add  eax, meml
add  ebx, mem2 ; 1
(add)   (add) ; 2  2-cycle

The instructions above add the contents of the register and the value at the memory location,
then put the result in the register. An add with a memory operand takes two clocks to
execute. The first clock loads the value from cache, and the second clock performs the
addition. Since there is only one memory access in the U-pipe instruction, the add in the
V-pipe can start in the same cycle.

add  meml, eax ; 1
(add) ; 2
(add)add  mem2, ebx ; 3
(add) ; 4
(add) ; 5

The instructions above add the contents of the register to the memory location and store the
result at the memory location. An add with a memory result takes three clocks to execute.
The first clock loads the value, the second performs the addition, and the third stores the
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result. When paired, the last cycle of the U-pipe instruction overlaps with the first cycle of
the V-pipe instruction execution.

No other instructions can begin execution until the instructions already executing have
completed.

To expose the opportunities for scheduling and pairing, it is better to issue a sequence of
simple instructions rather than a complex instruction that takes the same number of cycles.
The simple instruction sequence can take advantage of more issue slots. The load/store style
of code generation requires more registers and increases code size. This impacts Intel486
processor performance, although only as a second-order effect. To compensate for the extra
registers needed, extra effort should be put into register allocation and instruction scheduling
so that extra registers are used only when parallelism increases.

3.6.3 General Pairing Rules

Pentium processors with MMX technology have relaxed some of the general pairing rules:

• Pentium processors do not pair two instructions if either of them is longer than seven
bytes. Pentium processors with MMX technology do not pair two instructions if the first
instruction is longer than eleven bytes or the second instruction is longer than seven
bytes. Prefixes are not counted.

• On Pentium processors, prefixed instructions are pairable only in the U-pipe. On
Pentium processors with MMX technology, instructions with 0Fh, 66H or 67H prefixes
are also pairable in the V-pipe.

In both of the above cases, stalls at the entrance to the FIFO, on Pentium processors with
MMX technology, will prevent pairing.

3.6.4 Scheduling Rules for Pentium® Pro and Pentium II Processors

Pentium Pro and Pentium II processors have three decoders that translate Intel Architecture
(IA) macro-instructions into micro-operations (µops) as discussed in Section 2.2. The decoder
limitations are as follows:

• The first decoder (0) can decode instructions with

 Up to 4 micro-ops.

 Up to seven bytes in length.

• The other two decoders decode instructions that are 1 µop.

Appendix C contains a table of all Intel macro-instructions with a the number of µops into
which they are decoded. Use this information to determine the decoder on which they can be
decoded.

The macro-instructions entering the decoder travel through the pipe in order, therefore if a
macro-instruction will not fit in the next available decoder, the instruction must wait until the
next cycle to be decoded. It is possible to schedule instructions for the decoder so that the
instructions in the in-order pipeline are less likely to be stalled.
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Consider the following examples:

• If the next available decoder for a multi-µop instruction is not decoder 0, the multi-op
instruction will wait for decoder 0 to be available, usually in the next clock, leaving the
other decoders empty during the current clock. Hence, the following two instructions
will take two cycles to decode.

add  eax, ecx ; 1 uop instruction  (decoder 0)
add  edx, [ebx] ; 2 uop instruction (stall 1 cycle wait

;   till decoder 0 is available)

• During the beginning of the decoding cycle, if two consecutive instructions are more
than 1 µop, decoder 0 will decode one instruction and the next instruction will not be
decoded until the next cycle.

add  eax, [ebx] ; 2 uop instruction (decoder 0)
mov  ecx, [eax] ; 2 uop instruction  (stall 1 cycle to wait

;   until decoder 0 is available)
add  ebx, 8 ; 1 uop instruction  (decoder 1)

Instructions of the op reg, mem form require two µops:  the load from memory and the
operation µop. Scheduling for the decoder template (4-1-1) can improve the decoding
throughput of your application.

In general, op reg, mem forms of instructions are used to reduce register pressure in code
that is not memory bound, and when the data is in the cache. Use simple instructions for
improved speed on both Pentium and Pentium Pro and Pentium II processors.

The following rules should be observed while using the op reg, mem instruction on
Pentium processors with MMX technology:

• Schedule for minimal stalls in the Pentium processor pipe. Use as many simple
instructions as possible. Generally, 32-bit assembly code that is well optimized for the
Pentium processor pipeline will execute well on Pentium Pro and Pentium II processors.

• When scheduling for Pentium processors, keep in mind the primary stall conditions and
decoder template (4-1-1) on Pentium Pro and Pentium II processors, as shown in the
example below:

pmaddwd  mm6, [ebx] ; 2 uops instruction (decoder 0)
paddd    mm7, mm6 ; 1 uop instruction  (decoder 1)
add      ebx, 8 ; 1 uop instruction  (decoder 2)
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3.7 PREFIXED OPCODES
On the Pentium processor, an instruction with a prefix is pairable in the U-pipe (PU) if the
instruction without the prefix is pairable in both pipes (UV) or in the U-pipe (PU). The
prefixes are issued to the U-pipe and get decoded in one cycle for each prefix, then the
instruction is issued to the U-pipe and may be paired.

For Pentium, Pentium Pro and Pentium II processors, prefixes that should be avoided are:

• lock ument is pro

• segment override ith Intel pro

• address size e, express o

• operand size e,6express o

• two-byte opcode map (0f) prefix

On Pentium processors with MMX technology, a prefix on an instruction can delay the
parsing and inhibit pairing of instructions.

The following list highlights the effects of instruction prefixes on the FIFO:

• There is no penalty on 0F-prefix instructions.

• An instruction with a 66h or 67h prefix takes one clock for prefix detection, another
clock for length calculation, and another clock to enter the FIFO (three clock cycles
total). It must be the first instruction to enter the FIFO, and a second instruction can be
pushed with it.

• Instructions with other prefixes (not 0Fh, 66h or 67h) take one additional clock cycle to
detect each prefix. These instructions are pushed into the FIFO only as the first
instruction. An instruction with two prefixes takes three clock cycles to be pushed into
the FIFO (two clock cycles for the prefixes and one clock cycle for the instruction). A
second instruction can be pushed with the first into the FIFO in the same clock cycle.

Performance is impacted only when the FIFO does not hold at least two entries. As long as
the decoder (D1 stage) has two instructions to decode there is no penalty. The FIFO will
quickly become empty if the instructions are pulled from the FIFO at the rate of two per
clock cycle. So if the instructions just before the prefixed instruction suffer from a
performance loss (for example, no pairing, stalls due to cache misses, misalignments, etc.),
the performance penalty of the prefixed instruction may be masked.

On Pentium Pro and Pentium II processors, instructions longer than seven bytes limit the
number of instructions decoded in each cycle (see Section 2.2). Prefixes add one to two bytes
to the length of an instruction, possibly limiting the decoder.

It is recommended that, whenever possible, prefixed instructions not be used or that they be
scheduled behind instructions which themselves stall the pipe for some other reason.
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3.8 ADDRESSING MODES
On the Pentium processor, when a register is used as the base component, an additional clock
cycle is used if that register is the destination of the immediately preceding instruction
(assuming all instructions are already in the prefetch queue). For example:

add  esi, eax    ; esi is destination register
mov  eax, [esi]  ; esi is base, 1 clock penalty

1. Since the Pentium processor has two integer pipelines, a register used as the base or
index component of an effective address calculation (in either pipe) causes an additional
clock cycle if that register is the destination of either instruction from the immediately
preceding clock cycle. This effect is known as Address Generation Interlock (AGI). To avoid
AGI, such instructions should be separated by at least one cycle by placing other instructions
between them. The MMX registers cannot be used as base or index registers, so the AGI does
not apply for MMX register destinations.

2. Pentium Pro and Pentium II processors incur no penalty for the AGI condition.

AGI

AGI Penalty

Figure 3-6.  Pipeline Example of AGI Stall

Note that some instructions have implicit reads/writes to registers. Instructions that generate
addresses implicitly through ESP (PUSH, POP, RET, CALL) also suffer from the AGI
penalty. Examples follow:

sub  esp, 24
;  1 clock cycle stall

push ebx
mov  esp, ebp

;1  clock cycle stall
pop  ebp
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PUSH and POP also implicitly write to ESP. This, however, does not cause an AGI when the
next instruction addresses through ESP. Pentium processors “rename” ESP from PUSH and
POP instructions to avoid the AGI penalty. An example follows:

push edi   ; no stall
mov  ebx, [esp]

On Pentium processors, instructions which include both an immediate and displacement
fields are pairable in the U-pipe. When it is necessary to use constants, it is usually more
efficient to use immediate data instead of loading the constant into a register first. If the same
immediate data is used more than once, however, it is faster to load the constant in a register
and then use the register multiple times. Following is an example:

mov result, 555   ; 555 is immediate, result is
displacement
mov word ptr [esp+4], 1 ; 1 is immediate,4 is
displacement

Since MMX instructions have two-byte opcodes (0x0F opcode map), any MMX instruction
that uses base or index addressing with a 4-byte displacement to access memory will have a
length of eight bytes. Instructions over seven bytes can limit decoding and should be avoided
where possible (see Section 3.6.4). It is often possible to reduce the size of such instructions
by adding the immediate value to the value in the base or index register, thus removing the
immediate field.

Pentium Pro and Pentium II processors incur a stall when using a full register immediately
after a partial register was written. This is called a partial stall condition. The Pentium
processor is neutral in this respect. The following example relates to the Pentium processor:

mov  al, 0 ; 1
mov  [ebp], eax ; 2 - No delay on the Pentium processor

The following example relates to the Pentium Pro and Pentium II processor:

mov  al, 0 ; 1
mov  [ebp], eax ; 3  PARTIAL REGISTER STALL

The read is stalled until the partial write retires, which is estimated to be a minimum of seven
clock cycles.

For best performance, avoid using a large register (for example, EAX) after writing a partial
register (for example, AL, AH, AX) which is contained in the large register. This guideline
prevents partial stall conditions on Pentium Pro and Pentium II processors and applies to all
of the small and large register pairs, as shown below:

AL AH AX EAX
BL BH BX EBX
CL CH CX ECX
DL DH DX EDX

SP ESP
EP EBP
SI ESI
DI EDI
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Additional information on partial register stalls is in Section 3.3.

3.8.1 Performance Tuning Tip for AGI

3.8.1.1 PENTIUM® PROCESSOR

Monitor for the event Pipeline stalled because of Address Generation Interlock. This is the
number of pipe stalls because of an address being not yet available, which can be decreased
by keeping at least a clock between the computation of an address and the use of the address.

3.8.1.2 PENTIUM® PRO AND PENTIUM II PROCESSORS

These processors incur no penalty for the AGI condition.

3.9 INSTRUCTION LENGTH
On Pentium processors, instructions greater than seven bytes in length cannot be executed in
the V-pipe. In addition, two instructions cannot be pushed into the instruction FIFO on
Pentium Processors with MMX technology (see Section 2.3.1) unless both are seven bytes or
less in length. If only one instruction is pushed into the FIFO, pairing does not occur unless
the FIFO already contains at least one instruction. In code where pairing is very high (this
often happens in MMX code) or after a mispredicted branch, the FIFO may be empty,
leading to a loss of pairing whenever the instruction length is over seven bytes.

In addition, Pentium Pro and Pentium II processors can only decode one instruction at a time
when an instruction is longer than seven bytes.

So for best performance on all Intel processors, use simple instructions that are less than
eight bytes in length.

3.10 INTEGER INSTRUCTION SELECTION
The following list highlights some instruction sequences to avoid and some sequences to use
when generating optimal assembly code. These apply to Pentium, Pentium Pro and Pentium
II processors.

1. The lea instruction can be used sometimes as a three/four operand addition instruction
(e.g., lea ecx, [eax+ebx+4+a])

2. In many cases an lea instruction or a sequence of lea, add, sub and shift
instructions can be used to replace constant multiply instructions. For Pentium Pro and
Pentium II processors the constant multiply is faster relative to other instructions than on
the Pentium processor, therefore the tradeoff between the two options occurs sooner. It is
recommended that the integer multiply instruction be used in code designed for Pentium
Pro and Pentium II processors..
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3. This technique can also be used to avoid copying a register when both operands to an
add are still needed after the add, since lea need not overwrite its operands.

The disadvantage of the lea instruction is that it increases the possibility of an AGI stall
with previous instructions. Lea is useful for shifts of 2,4,8 because on the Pentium processor,
lea can execute in either U or V-pipes, but shift can only execute in the U-pipe. On the
Pentium Pro processor, both lea and shift instructions are single µop instructions that
execute in one cycle.

Complex Instructions

Avoid using complex instructions (for example, enter, leave, loop). Use sequences of
simple instructions instead.

Zero-Extension of Short

On the Pentium processor, the movzx instruction has a prefix and takes three cycles to
execute, totaling 4 cycles. It is recommended that the following sequence be used instead:

xor  eax, eax
mov  al, mem

If this occurs within a loop, it may be possible to pull the xor out of the loop if the only
assignment to eax is the mov al, mem. This has greater importance for the Pentium
processor since the movzx is not pairable and the new sequence can be paired with adjacent
instructions.

In order to avoid a partial register stall on Pentium Pro and Pentium II processors, special
hardware has been implemented that allows this code sequence to execute without a stall.
Even so, the movzx instructions is better on Pentium Pro and Pentium II processors than the
alternative sequences. (See Section 3.3 for additional partial stall information.)

Push mem

The push mem instruction takes four cycles for the Intel486 processor. It is recommended
to use the following sequence because it takes only two cycles for the Intel486 processor and
increases pairing opportunity for the Pentium processor.

mov  reg, mem
push reg

Short Opcodes

Use one-byte instructions as much as possible. This will reduce code size and help increase
instruction density in the instruction cache. The most common example is using inc and
dec rather than adding or subtracting the constant 1 with add or sub. Another common
example is using the push and pop instructions instead of the equivalent sequence.
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8/16 bit Operands

With 8-bit operands, try to use the byte opcodes, rather than using 32-bit operations on sign
and zero extended bytes. Prefixes for operand size override apply to 16-bit operands, not to
8-bit operands.

Sign extension is usually quite expensive. Often, the semantics can be maintained by zero
extending 16-bit operands. Specifically, the C code in the following example does not need
sign extension nor does it need prefixes for operand size overrides.

static short int a, b;
if (a==b) {
   . . .
}

Code for comparing these 16-bit operands might be:

U-pipe: V-pipe:
xor  eax, eax xor  ebx, ebx      ; 1
movw ax, [a] ; 2
(prefix) + 1
movw bx, [b] ; 4
(prefix) + 1

cmp  eax, ebx ; 6

Of course, this can only be done under certain circumstances, but the circumstances tend to
be quite common. This would not work if the compare was for greater than, less than, greater
than or equal, and so on, or if the values in eax or ebx were to be used in another operation
where sign extension was required.

Pentium Pro and Pentium II processors provide special support to XOR a register with itself,
recognizing that clearing a register does not depend on the old value of the register.
Additionally, special support is provided for the above specific code sequence to avoid the
partial stall. (See Section 3.9 for more information.)

The straightforward method may be slower on Pentium processors.

movsw eax, a     ; 1  prefix + 3
movsw ebx, b     ; 5
cmp    ebx, eax   ; 9

The performance of the movzx instructions has been improved in order to reduce the
prevalence of partial stalls on Pentium Pro and Pentium II processors. When coding for
Pentium Pro and Pentium II processors use the movzx instructions.

Compares

Use test when comparing a value in a register with zero. Test essentially ANDS the
operands together without writing to a destination register. If a value is ANDed with itself
and the result sets the zero condition flag, the value was zero. Test is preferred over and
because the and writes the result register, which may subsequently cause an AGI or an
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artificial output dependence on the Pentium Pro or Pentium II processor. Test is better than
cmp .., 0 because the instruction size is smaller.

Use test when comparing the result of a Boolean AND with an immediate constant for
equality or inequality if the register is EAX (if (avar & 8) { }).

On the Pentium processor, test is a one-cycle pairable instruction when the form is eax,
imm or reg, reg. Other forms of test take two cycles and do not pair.

Address Calculations

Pull address calculations into load and store instructions. Internally, memory reference
instructions can have four operands:  a relocatable load-time constant, an immediate
constant, a base register, and a scaled index register. (In the segmented model, a segment
register may constitute an additional operand in the linear address calculation.) In many
cases, several integer instructions can be eliminated by fully using the operands of memory
references.

Clearing a Register

The preferred sequence to move zero to a register is xor reg, reg. This saves code space
but sets the condition codes. In contexts where the condition codes must be preserved, use
mov reg, 0.

Integer Divide

Typically, an integer divide is preceded by a cdq instruction (divide instructions use
EDX:EAX as the dividend and cdq sets up EDX). It is better to copy EAX into EDX, then
right shift EDX 31 places to sign-extend. The copy/shift takes the same number of clocks as
cdq on Pentium processors, but the copy/shift scheme allows two other instructions to
execute at the same time on the Pentium processor. If you know that the value is positive, use
xor edx, edx.

On Pentium Pro and Pentium II processors the cdq instruction is faster since cdq is a single
µop instruction as opposed to two instructions for the copy/shift sequence.

Prolog Sequences

Be careful to avoid AGIs in the procedure and function prolog sequences due to register esp.
Since push can pair with other push instructions, saving callee-saved registers on entry to
functions should use these instructions. If possible, load parameters before decrementing
ESP.

In routines that do not call other routines (leaf routines), use ESP as the base register to free
up EBP. If you are not using the 32-bit flat model, remember that EBP cannot be used as a
general purpose base register because it references the stack segment.
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Avoid Compares with Immediate Zero

Often when a value is compared with zero, the operation producing the value sets condition
codes which can be tested directly by a jcc instruction. The most notable exceptions are
mov and lea. In these cases, use test.

Epilog Sequence

If only four bytes were allocated in the stack frame for the current function, instead of
incrementing the stack pointer by four, use pop instructions. This avoids AGIs. For the
Pentium processor use two pops for eight bytes.
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CHAPTER 4
GUIDELINES FOR DEVELOPING MMX™

TECHNOLOGY CODE

The following guidelines should be observed in addition to the guidelines in Chapter 3.
These and the previous guidelines will help you develop fast and efficient MMX technology
code that scales well across all processors with MMX technology.

4.1 LIST OF RULES AND SUGGESTIONS
The following section provides a list of rules and suggestions.

4.1.1 Rules

• Do not intermix MMX instructions and floating-point instructions. See Section 4.2.3.

• Avoid small loads after large stores to the same area of memory. Avoid large loads after
small stores to the same area of memory. Load and store data to the same area of
memory using the same data sizes and address alignments. See Section 4.5.1.

• Use the OP reg,mem format to reduce instruction count or reduce register pressure,
but be careful not to hurt performance by introducing excessive loads. See Section 4.4.1.

• Put an EMMS at the end of all sections of MMX instructions that you know will
transition to floating-point code. See Section 4.2.4.

• Optimize cache data bandwidth to MMX technology registers. See Section 4.5.2.

4.2 PLANNING CONSIDERATIONS
Whether adapting an existing application or creating a new one, using MMX instructions to
optimal advantage requires consideration of several issues. Generally, you should look for
code segments that are computationally intensive, that are adaptable to integer
implementations, and that support efficient use of the cache architecture. Several tools are
provided in the Intel Performance Tool Set to aid in this evaluation and tuning.

Several questions should be answered before beginning your implementation:

• Which part of the code will benefit from MMX technology?

• Is the current algorithm the best for MMX technology?

• Is this code integer or floating-point?
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• How should I arrange my data?

• Is my data 8-, 16- or 32-bit?

• Does the application need to run on processors both with and without MMX technology?
Can I use CPUID to create a scaleable implementation?

4.2.1 Which Part of the Code will Benefit from MMX™ Technology?

Determine which code to convert.

Many applications have sections of code that are highly compute-intensive. Examples
include speech compression algorithms and filters, video display routines and rendering
routines. These routines are generally small, repetitive loops, operating on 8- or 16-bit
integers and take a sizable portion of the application processing time. It is these routines that
will yield the greatest performance increase when converted to MMX technology-optimized
code. Encapsulating these loops into MMX technology-optimized libraries will allow greater
flexibility in supporting platforms with and without MMX technology.

A performance optimization tool such as Intel’s VTune visual tuning tool can be used to
isolate the compute-intensive sections of code. Once these sections of code are identified, an
evaluation should be done to determine whether the current algorithm or a modified one will
give the best performance. In some cases, it is possible to improve performance by changing
the types of operations in the algorithm. Matching the algorithms to MMX instruction
capabilities is key to extracting the best performance.

4.2.2 Floating-Point or Integer?

Determine whether the algorithm contains floating-point or integer data.

If the current algorithm is implemented with integer data, then simply identify the portions of
the algorithm that use the most microprocessor clock cycles. Once identified, reimplement
these sections of code using MMX instructions.

If the algorithm contains floating-point data, then determine why floating-point was used.
Several reasons exist for using floating-point operations:  performance, range and precision.
If performance was the reason for implementing the algorithm in floating-point, then the
algorithm is a candidate for conversion to MMX integer code to increase performance.

If range or precision was an issue when implementing the algorithm in floating-point then
further investigation needs to be made. Can the data values be converted to integer with the
required range and precision? If not, this code is best left as floating-point code.

4.2.3 Applications with Both Floating-Point and MMX™ Technology Code

When generating MMX technology code, it is important to keep in mind that the eight MMX
registers are aliased on the floating-point registers. Switching from MMX instructions to
floating-point instructions can take up to fifty clock cycles, so it is best to minimize
switching between these instruction types. Do not intermix MMX code and floating-point
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code at the instruction level. If an application does perform frequent switches between
floating-point and MMX instructions, then consider extending the period that the application
stays in the MMX instruction stream or floating-point instruction stream to minimize the
penalty of the switch.

When writing an application that uses both floating-point and MMX instructions, use the
following guidelines for isolating instruction execution:

• Partition the MMX instruction stream and the floating-point instruction stream into
separate instruction streams that contain instructions of one type.

• Do not rely on register contents across transitions.

• Leave an MMX code section with the floating-point tag word empty by using the EMMS
instruction when you are sure the code transitions to floating-point code.

• Leave the floating-point code section with an empty stack.

For example:

FP_code:
...
... /* leave the floating-point stack empty */

MMX_code:
...
EMMS /* empty the MMX registers */

FP_code1:
...
... /* leave the floating-point stack empty */

Additional information on the floating-point programming model can be found in the
Pentium® Processor Family Developer’s Manual, Volume 3, Architecture and Programming
(Order Number 241430).

4.2.4 EMMS Guidelines

Always call the EMMS instruction at the end of your MMX code when you are sure the code
transitions to floating-point code.

Since the MMX registers are aliased on the floating-point registers, it is very important to
clear the MMX registers before issuing a floating-point instruction. Use the EMMS
instruction to clear the MMX registers and set the value of the floating-point tag word to
empty (that is, all ones). This instruction should be inserted at the end of all MMX code
segments to avoid an overflow exception in the floating-point stack when a floating-point
instruction is executed.
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4.2.5 CPUID Usage for Detection of MMX™ Technology

Determine if MMX technology is available.

MMX technology can be included in your application in two ways:  Using the first method,
have the application check for MMX technology during installation. If MMX technology is
available, the appropriate DLLs can be installed. The second method is to check during
program execution and install the proper DLLs at runtime. This is effective for programs that
may be executed on different machines.

To determine whether you are executing on a processor with MMX technology, your
application should check the Intel Architecture feature flags. The CPUID instruction returns
the feature flags in the EDX register. Based on the results, the program can decide which
version of code is appropriate for the system.

Existence of MMX technology support is denoted by bit 23 of the feature flags. When this bit
is set to 1 the processor has MMX technology support. The following code segment loads the
feature flags in EDX and tests the result for MMX technology. Additional information on
CPUID usage can be found in application note AP-485, Intel Processor Identification with
CPUID Instruction (Order Number 241618).

… identify existence of CPUID instruction
… ;
… ; identify Intel Processor
… ;
mov EAX, 1 ; request for feature flags
CPUID ; 0Fh, 0A2h   CPUID Instruction
test EDX, 00800000h ; is MMX technology bit(bit 23)in feature

; flags equal to 1
jnz Found

4.2.6 Alignment of Data

Make sure your data is aligned.

Many compilers allow you to specify the alignment of your variables using controls. In
general this guarantees that your variables will be on the appropriate boundaries. However, if
you discover that some of the variables are not appropriately aligned as specified, then align
the variable using the following C algorithm. This aligns a 64-bit variable on a 64-bit
boundary. Once aligned, every access to this variable will save three clock cycles on the
Pentium Processor and six to nine cycles on Pentium Pro and Pentium II processors when the
misaligned data crosses a cache line boundary.

double a[5];
double *p, *newp;

p = (double*)malloc ((sizeof(double)*5)+4)
newp = (p+4) & (-7)
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Another way to improve data alignment is to copy the data into locations that are aligned on
64-bit boundaries. When the data is accessed frequently this can provide a significant
performance improvement.

4.2.6.1 STACK ALIGNMENT

As a matter of convention, compilers allocate anything that is not static on the stack and it
may be convenient to make use of the 64-bit data quantities that are stored on the stack.
When this is necessary, it is important to make sure the stack is aligned. The following code
in the function prologue and epilogue will make sure the stack is aligned.

Prologue:
push ebp ; save old frame ptr
mov ebp, esp ; make new frame ptr
sub ebp, 4 ; make room of stack ptr
and ebp, 0FFFFFFF8 ; align to 64 bits
mov [ebp],esp ; save old stack ptr
mov esp, ebp ; copy aligned ptr
sub esp, FRAMESIZE ; allocate space
… callee saves, etc

epilogue:
… callee restores, etc
mov esp, [ebp]
pop ebp
ret

In cases where misalignment is unavoidable for some frequently accessed data, it may be
useful to copy the data to an aligned temporary storage location.

4.2.7 Data Arrangement

MMX technology uses an SIMD technique to exploit the inherent parallelism of many
multimedia algorithms. To get the most performance out of MMX code, data should be
formatted in memory according to the guidelines below.

Consider a simple example of adding a 16-bit bias to all the 16-bit elements of a vector. In
regular scalar code, you would load the bias into a register at the beginning of the loop,
access the vector elements in another register, and do the addition one element at a time.

Converting this routine to MMX code, you would expect a four times speedup since MMX
instructions can process four elements of the vector at a time using the MOVQ instruction,
and can perform four additions at a time using the PADDW instruction. However, to achieve
the expected speedup, you would need four contiguous copies of the bias in the MMX
register when doing the addition.

In the original scalar code, only one copy of the bias is in memory. To use MMX
instructions, you could use various manipulations to get four copies of the bias in an MMX
register. Or you could format your memory in advance to hold four contiguous copies of the
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bias. Then, you need only load these copies using one MOVQ instruction before the loop,
and the four times speedup is achieved. For another interesting example of this type of data
arrangement see Section 4.6.

Additionally, when accessing SIMD data with SIMD operations access to data can be
improved simply by a change in the declaration. For example, consider a declaration of a
structure which represents a point in space. The structure consists of three 16-bit values plus
one 16-bit value for padding. The sample declaration follows:

typedef struct { short x,y,z; short junk; } Point;
Point pt[N];

In the following code the second dimension y needs to be multiplied by a scaling value. Here
the for loop accesses each y dimension in the array pt:

for (i=0; i<N; i++) pt[i].y *= scale;

The access is not to contiguous data, which can cause a serious number of cache misses,
degrading the performance of the application.

However, if the data is declared as follows, the scaling operation can be vectorized:

short ptx[N], pty[N], ptz[N];
for (i=0; i<N; i++) pty *= scale;

With the advent of MMX technology, choice of data organization becomes more important
and should be made carefully based on the operations that will be performed on the data. In
some applications, traditional data arrangements may not lead to the maximum performance.

The new 64-bit packed data types defined by MMX technology create more potential for
misaligned data accesses. The data access patterns of many algorithms are inherently
misaligned when using MMX instructions and other packed data types. A simple example of
this is an FIR filter. An FIR filter is effectively a vector dot product in the length of the
number of coefficient taps. If the filter operation of data element i is the vector dot product
that begins at data element j (data [ j ] *coeff [0] + data
[j+1]*coeff [1]+...+data [j+num of taps-1]*coeff [num of
taps-1]), then the filter operation of data element i+1 begins at data element j+1.

Section 4.2.6 covers aligning 64-bit data in memory. Assuming you have a 64-bit aligned
data vector and a 64-bit aligned coefficients vector, the filter operation on the first data
element will be fully aligned. For the filter operation on the second data element, however,
each access to the data vector will be misaligned. Duplication and padding of data structures
can be used to avoid the problem of data accesses in algorithms which are inherently
misaligned. The application note AP-559, MMX Instructions to Compute a 16-Bit Real FIR
Filter (Order Number 243044) shows an example of how to avoid the misalignment problem
in the FIR filter.
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NOTE

The duplication and padding technique overcomes the misalignment
problem, thus avoiding the expensive penalty for misaligned data access, at
the price of increasing the data size. When developing your code, you
should consider this tradeoff and use the option which gives the best
performance.

4.2.8 Tuning the Final Application

The best way to tune your application once it is functioning correctly is to use a profiler that
measures the application while it is running on a system. Intel’s VTune visual tuning tool is
such a tool and can help you to determine where to make changes in your application to
improve performance. Additionally, Intel’s processors provide performance counters on-chip.
Section 7.1 documents these counters and provides an explanation of how to use them.

4.3 SCHEDULING
The following section discusses instruction scheduling.

4.3.1 MMX™ Instruction Pairing Guidelines

This section specifies guidelines for pairing MMX instructions with each other and with
integer instructions. Pairing of instructions improves Pentium processor performance
significantly, it does not harm and sometimes help Pentium Pro and Pentium II processor
performance.

4.3.1.1 PAIRING TWO MMX™ INSTRUCTIONS

Following are rules for pairing two MMX instructions:

• Two MMX instructions which both use the MMX shifter unit (pack, unpack and shift
instructions) cannot pair since there is only one MMX shifter unit. Shift operations may
be issued in either the U-pipe or the V-pipe but not in both in the same clock cycle.

• Two MMX instructions which both use the MMX multiplier unit (pmull, pmulh, pmadd
type instructions) cannot pair since there is only one MMX multiplier unit. Multiply
operations may be issued in either the U-pipe or the V-pipe but not in both in the same
clock cycle.

• MMX instructions which access either memory or the integer register file can be issued
in the U-pipe only. Do not schedule these instructions to the V-pipe as they will wait and
be issued in the next pair of instructions (and to the U-pipe).

• The MMX destination register of the U-pipe instruction should not match the source or
destination register of the V-pipe instruction (dependency check).

• The EMMS instruction is not pairable.
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• If either the CR0.TS or the CR0.EM bits are set, MMX instructions cannot go into the
V-pipe.

4.3.1.2 PAIRING AN INTEGER INSTRUCTION IN THE U-PIPE WITH AN MMX™
INSTRUCTION IN THE V-PIPE

Following are rules for pairing an integer instruction in the U-pipe and an MMX instruction
in the V-pipe:

• The MMX instruction is not the first MMX instruction following a floating-point
instruction.

• The V-pipe MMX instruction does not access either memory or the integer register file.

• The U-pipe integer instruction is a pairable U-pipe integer instruction (see Table 3-1).

4.3.1.3 PAIRING AN MMX™ INSTRUCTION IN THE U-PIPE WITH AN INTEGER
INSTRUCTION IN THE V-PIPE

The following rules apply to pairing an MMX instruction in the U-pipe and an integer
instruction in the V-pipe:

• The V-pipe instruction is a pairable integer V-pipe instruction (see Table 3-1).

• The U-pipe MMX instruction does not access either memory or the integer register file.

4.3.1.4 SCHEDULING RULES

All MMX instructions can be pipelined, including the multiply instructions on Pentium,
Pentium Pro and Pentium II processors. All instructions take a single clock to execute except
MMX multiply instructions which take three clocks.

Since multiply instructions take three clocks to execute, the result of a multiply instruction
can be used only by other instructions issued three clocks later. For this reason, avoid
scheduling a dependent instruction in the two instruction pairs following the multiply.

As mentioned in Section 2.3.1, the store of a register after writing the register must wait for
two clocks after the update of the register. Scheduling the store two clock cycles after the
update avoids a pipeline stall.

4.4 INSTRUCTION SELECTION

The following section describes instruction selection optimizations.

4.4.1 Using Instructions That Access Memory

An MMX instruction may have two register operands (OP reg, reg) or one register and
one memory operand (OP reg, mem), where OP represents the instruction operand, reg
represents the register, and mem represents memory. OP reg, mem instructions are
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useful in some cases to reduce register pressure, increase the number of operations per cycle,
and reduce code size.

The following discussion assumes that the memory operand is present in the data cache. If it
is not, then the resulting penalty is usually large enough to obviate the scheduling effects
discussed in this section.

In Pentium processors, OP reg, mem MMX instructions do not have longer latency than
OP reg, reg instructions (assuming a cache hit). They do have more limited pairing
opportunities, however (see Section 4.3.1). In Pentium Pro and Pentium II processors, OP
reg, mem MMX instructions translate into two micro-ops, as opposed to one µop for the
OP reg, reg instructions. Thus, they tend to limit decoding bandwidth (see Section 2.2)
and occupy more resources than OP reg, reg instructions.

Recommended usage of “OP reg, mem” instructions depends on whether the MMX code
is memory-bound (that is, execution speed is limited by memory accesses). As a rule of
thumb, an MMX code section is considered to be memory-bound if the following inequality
holds:

I n s t r u c t i o n s
M e m o r y A c c e s s e s

N o n M M X I n s t r u c t i o n s

2 2
< +

-

For memory-bound MMX code, Intel recommends merging loads whenever the same
memory address is used more than once. This reduces the number of memory accesses.

Example:

OP MM0, [address A]
OP MM1, [address A]

becomes:

MOVQ MM2, [address A]
OP MM0, MM2
OP MM1, MM2

For MMX code that is not memory-bound, load merging is recommended only if the same
memory address is used more than twice. Where load merging is not possible, usage of “OP
reg, mem” instructions is recommended to minimize instruction count and code size.

Example:

MOVQ MM0, [address A]
OP MM1, MM0

becomes:

OP MM1, [address A]

In many cases, a MOVQ reg, reg and OP reg, mem can be replaced by a MOVQ
reg, mem and OP reg, reg. This should be done where possible, since it saves one
µop on Pentium Pro and Pentium II processors.
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Example (where OP is a symmetric operation):

MOVQ MM1, MM0 (1 micro-op)
OP MM1, [address A] (2 micro-ops)

becomes:

MOVQ MM1, [address A] (1 micro-op)
OP MM1, MM0 (1 micro-op)

4.5 MEMORY OPTIMIZATION
This section provides information on improving memory accesses.

4.5.1 Partial Memory Accesses

The MMX registers allow you to move large quantities of data without stalling the processor.
Instead of loading single array values that are 8-, 16- or 32-bits long, consider loading the
values in a single quadword, then incrementing the structure or array pointer accordingly.

Any data that will be manipulated by MMX instructions should be loaded using either:

• The MMX instruction that loads a 64-bit operand (for example, MOVQ MM0, m64),
or

• The register-memory form of any MMX instruction that operates on a quadword
memory operand (for example, PMADDW MM0, m64).

All SIMD data should be stored using the MMX instruction that stores a 64-bit operand (for
example, MOVQ m64, MM0).

The goal of these recommendations is twofold. First, the loading and storing of SIMD data is
more efficient using the larger quadword data block sizes. Second, this helps to avoid the
mixing of 8-, 16- or 32-bit load and store operations with 64-bit MMX load and store
operations to the same SIMD data. This, in turn, prevents situations in which small loads
follow large stores to the same area of memory, or large loads follow small stores to the same
area of memory. Pentium Pro and Pentium II processors will stall in these situations.

Consider the following examples. In the first case, there is a large load after a series of small
stores to the same area of memory (beginning at memory address mem). The large load will
stall in this case:

MOV mem, eax ; store dword to address “mem"
MOV mem + 4, ebx ; store dword to address “mem + 4"
       :
       :
MOVQ    mm0, mem ; load qword at address “mem", stalls

The MOVQ must wait for the stores to write memory before it can access all the data it
requires. This stall can also occur with other data types (for example, when bytes or words
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are stored and then words or doublewords are read from the same area of memory). When
you change the code sequence as follows, the processor can access the data without delay:

MOVD mm1, ebx ; build data into a qword first before
; storing it to memory

MOVD mm2, eax
PSLLQmm1, 32
POR mm1, mm2
MOVQ mem, mm1 ; store SIMD variable to “mem" as a qword
        :
        :
MOVQ mm0, mem ; load qword SIMD variable “mem", no stall

In the second case, there is a series of small loads after a large store to the same area of
memory (beginning at memory address mem). The small loads will stall in this case:

MOVQ mem, mm0 ; store qword to address “mem"
        :
        :
MOV bx, mem + 2  ; load word at address “mem + 2" stalls
MOV cx, mem + 4  ; load word at address “mem + 4" stalls

The word loads must wait for the quadword store to write to memory before they can access
the data they require. This stall can also occur with other data types (for example, when
doublewords or words are stored and then words or bytes are read from the same area of
memory). When you change the code sequence as follows, the processor can access the data
without delay:

MOVQ mem, mm0      ; store qword to address “mem"
        :
        :
MOVQ mm1, mem      ; load qword at address “mem"
MOVD eax, mm1 ; transfer “mem + 2" to ax from

; MMX register not memory
PSRLQmm1, 32
SHR eax, 16
MOVD ebx, mm1 ; transfer “mem + 4" to bx from

; MMX register, not memory
AND ebx, 0ffffh

These transformations, in general, increase the number the instructions required to perform
the desired operation. For Pentium Pro and Pentium II processors, the performance penalty
due to the increased number of instructions is more than offset by the benefit. For Pentium
processors, however, the increased number of instructions can negatively impact
performance, since these processors do not benefit from the code transformations above. For
this reason, careful and efficient coding of these transformations is necessary to minimize
any potential negative impact to Pentium processor performance.
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4.5.2 Increasing Bandwidth of Memory Fills and Video Fills

It is beneficial to understand how memory is accessed and filled. A memory-to-memory fill
(for example a memory-to-video fill) is defined as a 32-byte (cache line) load from memory
which is immediately stored back to memory (such as a video frame buffer). The following
are guidelines for obtaining higher bandwidth and shorter latencies for sequential memory
fills (video fills). These recommendations are relevant for all Intel Architecture processors
with MMX technology and refer to cases in which the loads and stores do not hit in the
second level cache.

4.5.2.1 INCREASING MEMORY BANDWIDTH USING THE MOVQ
INSTRUCTION

Loading any value will cause an entire cache line to be loaded into the on-chip cache. But
using MOVQ to store the data back to memory instead of using 32-bit stores (for example,
MOVD) will reduce by half the number of stores per memory fill cycle. As a result, the
bandwidth of the memory fill cycle increases significantly. On some Pentium processor-
based systems, 30% higher bandwidth was measured when 64-bit stores were used instead of
32-bit stores. Additionally, on Pentium Pro and Pentium II processors, this avoids a partial
memory access when both the loads and stores are done with the MOVQ instruction.

Also, intermixing reads and writes is slower than doing a series of reads then writing out the
data. For example if moving memory, it is faster to read several lines into the cache from
memory then write them out again to the new memory location, instead of issuing one read
and one write.

4.5.2.2 INCREASING MEMORY BANDWIDTH BY LOADING AND
STORING TO AND FROM THE SAME DRAM PAGE

DRAM is divided into pages, which are not the same as operating system (OS) pages. The
size of a DRAM page is a function of the total size of the DRAM and the organization of the
DRAM. Page sizes of several Kbytes are common. Like OS pages, DRAM pages are
constructed of sequential addresses. Sequential memory accesses to the same DRAM page
have shorter latencies than sequential accesses to different DRAM pages. In many systems
the latency for a page miss (that is, an access to a different page instead of the page
previously accessed) can be twice as large as the latency of a memory page hit (access to the
same page as the previous access). Therefore, if the loads and stores of the memory fill cycle
are to the same DRAM page, a significant increase in the bandwidth of the memory fill
cycles can be achieved.

4.5.2.3 INCREASING THE MEMORY FILL BANDWIDTH BY USING
ALIGNED STORES

Unaligned stores will double the number of stores to memory. Intel strongly recommends
that quadword stores be 8-byte aligned. Four aligned quadword stores are required to write a
cache line to memory. If the quadword store is not 8-byte aligned, then two 32-bit writes
result from each MOVQ store instruction. On some systems, a 20% lower bandwidth was
measured when 64-bit misaligned stores were used instead of aligned stores.
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4.5.2.4 USE 64-BIT STORES TO INCREASE THE BANDWIDTH TO VIDEO

Although the PCI bus between the processor and the frame buffer is 32 bits wide, using
MOVQ to store to video is faster on most Pentium processor-based systems than using twice
as many 32-bit stores to video. This occurs because the bandwidth to PCI write buffers
(which are located between the processor and the PCI bus) is higher when quadword stores
are used.

4.5.2.5 INCREASE THE BANDWIDTH TO VIDEO USING ALIGNED
STORES

When a nonaligned store is encountered, there is a dramatic decrease in the bandwidth to
video. Misalignment causes twice as many stores and the latency of stores on the PCI bus (to
the frame buffer) is much longer. On the PCI bus, it is not possible to burst sequential
misaligned stores. On Pentium processor-based systems, a decrease of 80% in the video fill
bandwidth is typical when misaligned stores are used instead of aligned stores.

4.6 Coding Techniques
This section contains several simple examples that will help you to get started in coding your
application. The goal is to provide simple, low-level operations that are frequently used.
Each example uses the minimum number of instructions necessary to achieve best
performance on Pentium, Pentium Pro and Pentium II processors.

Each example includes:

• A short description.

• Sample code.

• Any necessary notes.

These examples do not address scheduling as it is assumed the examples will be incorporated
in longer code sequences.
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4.6.1 Unsigned Unpack

The MMX technology provides several instructions that are used to pack and unpack data in
the MMX registers. The unpack instructions can be used to zero-extend an unsigned number.
The following example assumes the source is a packed-word (16-bit) data type.

Input: MM0:  Source value
MM7:  0 (A local variable can be used instead of the register MM7, if desired.)

Output: MM0:  two zero-extended 32-bit doublewords from 2 LOW end words
MM1:  two zero-extended 32-bit doublewords from 2 HIGH end words

MOVQ MM1, MM0 ; copy source
PUNPCKLWD MM0, MM7 ; unpack the 2 low end words

; into two 32-bit double word
PUNPCKHWD MM1, MM7 ; unpack the 2 high end words into two

; 32-bit double word

4.6.2 Signed Unpack

Signed numbers should be sign-extended when unpacking the values. This is done differently
than the zero-extend shown above. The following example assumes the source is a packed-
word (16-bit) data type.

Input: MM0:  source value

Output: MM0:  two sign-extended 32-bit doublewords from the two LOW end words
MM1:  two sign-extended 32-bit doublewords from the two HIGH end words

PUNPCKHWD MM1, MM0 ; unpack the 2 high end words of the
; source into the second and fourth
; words of the destination

PUNPCKLWD MM0, MM0 ; unpack the 2 low end words of the
; source into the second and fourth
; words of the destination

PSRAD MM0, 16 ; Sign-extend the 2 low end words of
; the source into two 32-bit signed
; doublewords

PSRAD MM1, 16 ; Sign-extend the 2 high end words of
; the source into two 32-bit signed
; doublewords
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4.6.3 Interleaved Pack with Saturation

The pack instructions pack two values into the destination register in a predetermined order.
Specifically, the PACKSSDW instruction packs two signed doublewords from the source
operand and two signed doublewords from the destination operand into four signed words in
the destination register as shown in the figure below.

mm/m64 mm

mm

ABCD

A1B1C1D1

Figure 4-1.  PACKSSDW mm, mm/mm64 Instruction Example

The following example interleaves the two values in the destination register, as shown in the
figure below.

MM/M64 mm

mm

ABCD

A1B1 C1D1

Figure 4-2.  Interleaved Pack with Saturation Example

This example uses signed doublewords as source operands and the result is interleaved signed
words. The pack instructions can be performed with or without saturation as needed.

Input: MM0:  Signed source1 value
MM1:  Signed source2 value

Output: MM0:  The first and third words contain the signed-saturated doublewords from MM0
MM0:  The second and fourth words contain signed-saturated doublewords from MM1

PACKSSDW MM0, MM0 ; pack and sign saturate
PACKSSDW MM1, MM1 ; pack and sign saturate
PUNPKLWD MM0, MM1 ; interleave the low end 16-bit values of the

; operands
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The pack instructions always assume the source operands are signed numbers. The result in
the destination register is always defined by the pack instruction that performs the operation.
For example, the PACKSSDW instruction, packs each of the two signed 32-bit values of the
two sources into four saturated 16-bit signed values in the destination register. The
PACKUSWB instruction, on the other hand, packs each of the four signed 16-bit values of the
two sources into four saturated 8-bit unsigned values in the destination. A complete
specification of the MMX instruction set can be found in the Intel Architecture MMX™
Technology Programmer’s Reference Manual (Order Number 243007).

4.6.4 Interleaved Pack without Saturation

This example is similar to the last except that the resulting words are not saturated. In
addition, in order to protect against overflow, only the low order 16-bits of each doubleword
are used in this operation.

Input: MM0:  signed source value
MM1:  signed source value

Output: MM0:  The first and third words contain the low 16-bits of the doublewords in MM0
MM0:  The second and fourth words contain the low 16-bits of the doublewords in

MM1

PSLLD MM1, 16 ; shift the 16 LSB from each of the doubleword
; values to the 16 MSB position

PAND MM0, {0,ffff,0,ffff}
; mask to zero the 16 MSB of each
; doubleword value

POR MM0, MM1 ; merge the two operands

4.6.5 Non-Interleaved Unpack

The unpack instructions perform an interleave merge of the data elements of the destination
and source operands into the destination register. The following example merges the two
operands into the destination registers without interleaving. For example, take two adjacent
elements of a packed-word data type in source1 and place this value in the low 32-bits of the
results. Then take two adjacent elements of a packed-word data type in source2 and place
this value in the high 32-bits of the results. One of the destination registers will have the
combination shown in Figure 4-3.
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mm/m64 mm
13 1012 1123 2022 21

21 1020 11

mm
Figure 4-3.  Result of Non-Interleaved Unpack in MM0

The other destination register will contain the opposite combination as in Figure 4-4.

mm/m64 mm
13 1012 1123 2022 21

23 1222 13

mm
Figure 4-4.  Result of Non-Interleaved Unpack in MM1

The following example unpacks two packed-word sources in a non-interleaved way. The
trick is to use the instruction which unpacks doublewords to a quadword, instead of using the
instruction which unpacks words to doublewords.

Input: MM0:  packed-word source value
MM1:  packed-word source value

Output: MM0:  contains the two low end words of the original sources, non-interleaved
MM2:  contains the two high end words of the original sources, non-interleaved.

MOVQ MM2, MM0 ; copy source1
PUNPCKLDQ MM0, MM1 ; replace the two high end words of MM0

; with the two low end words of MM1; leave
; the two low end words of MM0 in place

PUNPCKHDQ MM2, MM1 ; move the two high end words of MM2 to the
; two low end words of MM2; place the two
; high end words of MM1 in the two high end
; words of MM2
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4.6.6 Complex Multiply by a Constant

Complex multiplication is an operation which requires four multiplications and two
additions. This is exactly how the PMADDWD instruction operates. In order to use this
instruction you need only to format the data into four 16-bit values. The real and imaginary
components should be 16-bits each.

Let the input data be Dr and Di

Where:

Dr = real component of the data

Di = imaginary component of the data

Format the constant complex coefficients in memory as four 16-bit values [Cr -Ci Ci Cr].
Remember to load the values into the MMX register using a MOVQ instruction.

Input: MM0:  a complex number Dr, Di
MM1:  constant complex coefficient in the form[Cr -Ci Ci Cr]

Output: MM0:  two 32-bit dwords containing [ Pr Pi ]

The real component of the complex product is Pr = Dr*Cr - Di*Ci, and the imaginary
component of the complex product is Pi = Dr*Ci + Di*Cr

PUNPCKLDQ MM0, MM0 ; This makes [Dr Di Dr Di]
PMADDWD MM0, MM1 ; and you're done, the result is

; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]

Note that the output is a packed word. If needed, a pack instruction can be used to convert
the result to 16-bit (thereby matching the format of the input).

4.6.7 Absolute Difference of Unsigned Numbers

This example computes the absolute difference of two unsigned numbers. It assumes an
unsigned packed-byte data type. Here, we make use of the subtract instruction with unsigned
saturation. This instruction receives UNSIGNED operands and subtracts them with
UNSIGNED saturation. This support exists only for packed bytes and packed words, NOT
for packed dwords.

Input: MM0:  source operand
MM1:  source operand

Output: MM0:  The absolute difference of the unsigned operands

MOVQ MM2, MM0 ; make a copy of MM0
PSUBUSB MM0, MM1 ; compute difference one way
PSUBUSB MM1, MM2 ; compute difference the other way
POR MM0, MM1 ; OR them together

This example will not work if the operands are signed. See the next example for signed
absolute differences.
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4.6.8 Absolute Difference of Signed Numbers

This example computes the absolute difference of two signed numbers. There is no MMX
subtract instruction which receives SIGNED operands and subtracts them with UNSIGNED
saturation. The technique used here is to first sort the corresponding elements of the input
operands into packed-words of the maxima values, and packed-words of the minima values.
Then the minima values are subtracted from the maxima values to generate the required
absolute difference. The key is a fast sorting technique which uses the fact that B = XOR(A,
XOR(A,B)) and A = XOR(A,0). Thus in a packed data type, having some elements being
XOR(A,B) and some being 0, you could XOR such an operand with A and receive in some
places values of A and in some values of B. The following examples assume a packed-word
data type, each element being a signed value.

Input: MM0:  signed source operand
MM1:  signed source operand

Output: MM0:  The absolute difference of the signed operands

MOVQ MM2, MM0 ; make a copy of source1 (A)
PCMPGTW MM0, MM1 ; create mask of source1>source2 (A>B)
MOVQ MM4, MM2 ; make another copy of A
PXOR MM2, MM1 ; Create the intermediate value of the swap

; operation - XOR(A,B)
PAND MM2, MM0 ; create a mask of  0s and XOR(A,B)

; elements. Where A>B there
will be a value

; XOR(A,B) and where A<=B
there will be 0.
MOVQ MM3, MM2 ; make a copy of the swap mask
PXOR MM4, MM2 ; This is the minima - XOR(A, swap mask)
PXOR MM1, MM3 ; This is the maxima - XOR(B, swap mask)
PSUBW MM1, MM4 ; absolute difference = maxima-minima

4.6.9 Absolute Value

Use the following example to compute |x|, where x is signed. This example assumes
signed words to be the operands.

Input: MM0:  signed source operand

Output: MM1:  ABS(MM0)

MOVQ MM1, MM0 ; make a copy of x
PSRAW MM0,15 ; replicate sign bit (use 31 if doing DWORDS)
PXOR MM0, MM1 ; take 1's complement of just the

; negative fields
PSUBS MM1, MM0 ; add 1 to just the negative fields

Note that the absolute value of the most negative number (that is, 8000 hex for 16-bit) does
not fit, but this code does something reasonable for this case; it gives 7fff which is off by
one.



GUIDELINES FOR DEVELOPING MMX™ TECHNOLOGY CODE E

4-20

5/4/97 4:39 PM    CH04.DOC

INTEL CONFIDENTIAL
(until publication date)

4.6.10 Clipping Signed Numbers to an Arbitrary Signed Range [HIGH,
LOW]

This example shows how to clip a signed value to the signed range [HIGH, LOW].
Specifically, if the value is less than LOW or greater than HIGH then clip to LOW or HIGH,
respectively. This technique uses the packed-add and packed-subtract instructions with
unsigned saturation, which means that this technique can only be used on packed-bytes and
packed-words data types.

The following examples use the constants packed_max and packed_min. The
examples show operations on word values. For simplicity we use the following constants
(corresponding constants are used in case the operation is done on byte values):

• PACKED_MAX equals 0x7FFF7FFF7FFF7FFF

• PACKED_MIN equals 0x8000800080008000

• PACKED_LOW contains the value LOW in all 4 words of the packed-words data type

• PACKED_HIGH contains the value HIGH in all 4 words of the packed-words data type

• PACKED_USMAX is all 1’s

• HIGH_US adds the HIGH value to all data elements (4 words) of PACKED_MIN

• LOW_US adds the LOW value to all data elements (4 words) of PACKED_MIN

Input: MM0:  Signed source operands

Output: MM0:  Signed operands clipped to the unsigned range [HIGH, LOW]

PADD MM0, PACKED_MIN ; add with no saturation
; 0x8000 to convert to
; unsigned

PADDUSW MM0, (PACKED_USMAX - HIGH_US) ; in effect this clips
; to HIGH

PSUBUSW MM0, (PACKED_USMAX - HIGH_US + LOW_US) ;
; in effect this clips
; to LOW

PADDW MM0, PACKED_LOW ; undo the previous
; two offsets

The code above converts values to unsigned numbers first and then clips them to an unsigned
range. The last instruction converts the data back to signed data and places the data within
the signed range. Conversion to unsigned data is required for correct results when the
quantity (HIGH - LOW) < 0x8000.



E GUIDELINES FOR DEVELOPING MMX™ TECHNOLOGY CODE

4-21

5/4/97 4:39 PM    CH04.DOC

INTEL CONFIDENTIAL
(until publication date)

IF (HIGH - LOW) >= 0x8000, the algorithm can be simplified to the following:

Input: MM0:  Signed source operands

Output: MM0:  Signed operands clipped to the unsigned range [HIGH, LOW]

PADDSSW MM0, (PACKED_MAX - PACKED_HIGH) ; in effect this
clips

; to HIGH
PSUBSSW MM0, (PACKED_USMAX - PACKED_HIGH + PACKED_LOW)

;clips to LOW
PADDW MM0, LOW ; undo the previous

; two offsets

This algorithm saves a cycle when it is known that (HIGH - LOW) >= 0x8000. To see why
the three-instruction algorithm does not work when (HIGH - LOW) < 0x8000, realize that
0xffff minus any number less than 0x8000 will yield a number greater in magnitude than
0x8000, which is a negative number. When:

PSUBSSW MM0, (0xFFFF - HIGH + LOW)

(the second instruction in the three-step algorithm) is executed, a negative number is
subtracted causing the values in MM0 to be increased instead of decreased, as should be the
case, and causing an incorrect answer to be generated.

4.6.11 Clipping Unsigned Numbers to an Arbitrary Unsigned Range
[HIGH, LOW]

This example clips an unsigned value to the unsigned range [HIGH, LOW]. If the value is
less than LOW or greater than HIGH, then clip to LOW or HIGH, respectively. This
technique uses the packed-add and packed-subtract instructions with unsigned saturation,
thus this technique can only be used on packed-bytes and packed-words data types.

The example illustrates the operation on word values.

Input: MM0:  Unsigned source operands

Output: MM0:  Unsigned operands clipped to the unsigned range [HIGH, LOW]

PADDUSW MM0, 0xFFFF - HIGH ; in effect this clips to
HIGH
PSUBUSW MM0, (0xFFFF - HIGH + LOW) ; in effect this clips
to LOW
PADDW MM0, LOW ; undo the previous two
offsets

4.6.12 Generating Constants

The MMX instruction set does not have an instruction that will load immediate constants to
MMX registers. The following code segments will generate frequently used constants in an
MMX register. Of course, you can also put constants as local variables in memory, but when
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doing so be sure to duplicate the values in memory and load the values with a MOVQ
instruction.

Generate a zero register in MM0:

PXOR MM0, MM0

Generate all 1's in register MM1, which is -1 in each of the packed data type fields:

PCMPEQ MM1, MM1

Generate the constant 1 in every packed-byte [or packed-word] (or packed-dword) field:

PXOR MM0, MM0
PCMPEQ MM1, MM1
PSUBBMM0, MM1 [PSUBW MM0, MM1] (PSUBD MM0, MM1)

Generate the signed constant 2n–1 in every packed-word (or packed-dword) field:

PCMPEQ MM1, MM1
PSRLWMM1, 16-n (PSRLD MM1, 32-n)

Generate the signed constant -2n in every packed-word (or packed-dword) field:

PCMPEQ MM1, MM1
PSLLWMM1, n (PSLLD MM1, n)

Because the MMX instruction set does not support shift instructions for bytes, 2n–1 and –2n

are relevant only for packed-words and packed-dwords.
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CHAPTER 5
OPTIMIZATION TECHNIQUES FOR FLOATING-

POINT APPLICATIONS

This chapter details the optimizations for floating-point applications. This chapter contains:

• General rules for optimizing floating-point code.

• Examples that illustrate the optimization techniques.

5.1 IMPROVING THE PERFORMANCE OF FLOATING-POINT
APPLICATIONS

When programming floating-point applications it is best to start at the C or FORTRAN
language level. Many compilers perform floating-point scheduling and optimization when it
is possible. However in order to produce optimal code the compiler may need some
assistance.

5.1.1 Guidelines for Optimizing Floating-Point Code

 Follow these rules to improve the speed of your floating-point applications:

• Understand how the compiler handles floating-point code. Look at the assembly dump
and see what transforms are already performed on the program. Study the loop nests in
the application that dominate the execution time. Determine why the compiler is not
creating the fastest code.

• Is there a dependence that can be resolved?

— large memory bandwidth requirements.

— poor cache locality.

— long-latency floating-point arithmetic operations.

• Do not use too much precision when it is not necessary. Single precision (32-bits) is
faster on some operations and consumes only half the memory space as double precision
(64-bits) or double extended (80-bits).

• Make sure you have fast floating-point to integer routines. Many libraries do more work
than is necessary; make sure your float-to-int is a fast routine. See Section 5.4.

• Make sure your application stays in range. Out of range numbers cause very high
overhead.
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• Schedule your code in assembly language using FXCH. Unroll loops and pipeline your
code. See Section 5.1.2.

• Perform transformations to improve memory access patterns. Use loop fusion or
compression to keep as much of the computation in the cache as possible. See
Section 5.5

• Break dependency chains.

5.1.2 Improving Parallelism

Pentium, Pentium Pro and Pentium II processors have a pipelined floating-point unit. By
scheduling the floating-point instructions maximum throughput from the Pentium processor
floating-point unit can be achieved. Additionally, these optimizations can also help Pentium
Pro and Pentium II processors when it improves the pipelining of the floating-point unit.
Consider the example in Figure 5-1 below:

Source code:
A = B + C + D;
E = F + G + E;

Assembly code:

fld B

fadd C
fadd D
fstp A
fld F
fadd G
fadd H
fstp E

Total: 20 Cycles

fld B
fadd C
fadd D
fstp A
fld F
fadd G
fadd H
fstp E

Figure 5-1.  Floating-Point Example

To exploit the parallel capability of the Pentium, Pentium Pro and Pentium II processors,
determine which instructions can be executed in parallel. The two high level code statements
in the example are independent, therefore their assembly instructions can be scheduled to
execute in parallel, thereby improving the execution speed.

Source code:

A = B + C + D;
E = F + G + E;

fld   B fld   F
fadd  C fadd  G
fadd  D fadd  H
fstp  A fstp  E
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Most floating-point operations require that one operand and the result use the top of stack.
This makes each instruction dependent on the previous instruction and inhibits overlapping
the instructions.

One obvious way to get around this is to imagine that we have a flat floating-point register
file available, rather than a stack. The code would look like this:

fld   B ➞F1
fadd  F1, C ➞F1
fld   F ➞F2
fadd  F2,G ➞F2
fadd  F1,D ➞F1
fadd  F2,H ➞F2
fstp  F1 ➞A
fstp  F2 ➞E

In order to implement these imaginary registers we need to use the fxch instruction to
change the value on the top of stack. This provides a way to avoid the top of stack
dependency. The fxch instructions can be paired with the common floating-point
operations, so there is no penalty on the Pentium processor. Additionally, the fxch uses no
extra execution cycles on Pentium Pro and Pentium II processors.

STO ST1
fld   B ➞F1 fld B B
fadd  F1, C ➞F1 fadd C B+C
fld   F ➞F2 fld F F B+C
fadd  F2,G ➞F2 fadd G F+G B+C

fxch ST(1) B+C F+G
fadd  F1,D ➞F1 fadd D B+C+D F+G

fxch ST(1) F+G B+C+D
fadd  F2,H ➞F2 fadd H F+G+H B+C+D

fxch ST(1) B+C+D F+G+H
fstp  F1 ➞A fstp A F+G+H
fstp  F2 ➞E fstp E

On the Pentium processor, the fxch instructions pair with preceding fadd instructions and
execute in parallel with them. The fxch instructions move an operand into position for the
next floating-point instruction. The result is an improvement in execution speed on the
Pentium processor as shown in Figure 5-2.
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FLD B
FADD C
FADD D
FSTP A
FLD F
FADD G
FADD H
FSTP E

FLD B
FADD C
FLD F
FADD G
FXCH ST (1)
FADD D
FXCH ST (1)
FADD H
FXCH ST (1)
FSTP A
FSTP E

Figure 5-2.  Floating-Point Example Before and After Optimization

5.1.2.1 FXCH RULES AND REGULATIONS

The fxch instruction costs no extra cycles on the Pentium processor, since it executes in the
V-pipe along with other floating-point instructions when all of the following conditions
occur:

• An FP instruction follows the fxch instruction.

• An FP instruction from the following list immediately precedes the fxch instruction:
fadd, fsub, fmul, fld, fcom, fucom, fchs, ftst, fabs, fdiv.

• The fxch instruction has already been executed. This is because the instruction
boundaries in the cache are marked the first time the instruction is executed, so pairing
only happens the second time this instruction is executed from the cache.

When the above conditions are true, the instruction is almost “free” and can be used to access
elements in the deeper levels of the FP stack instead of storing them and then loading them
again.
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5.2 MEMORY OPERANDS
Performing a floating-point operation on a memory operand instead of on a stack register
costs no cycles on the Pentium processor when the memory operand is in the cache. On
Pentium Pro and Pentium II processors, instructions with memory operands produce two
micro-ops, which can limit decoding. Additionally, memory operands may cause a data
cache miss, causing a penalty. Floating-point operands that are 64-bit operands need to be
8-byte aligned. For more information on decoding see Section 3.6.4.

5.3 MEMORY ACCESS STALL INFORMATION
Floating-point registers allow loading of 64-bit values as doubles. Instead of loading single
array values that are 8-, 16- or 32-bits long, consider loading the values in a single quadword,
then incrementing the structure or array pointer accordingly.

First, the loading and storing of quadword data is more efficient using the larger quadword
data block sizes. Second, this helps to avoid the mixing of 8-, 16- or 32-bit load and store
operations with a 64-bit load and store operation to the memory address. This avoids the
possibility of a memory access stall on Pentium Pro or Pentium II processors. Memory access
stalls occur when:

• Small loads follow large stores to the same area of memory.

• Large loads follow small stores to the same area of memory. Pentium Pro and Pentium II
processors will stall in these situations.

Consider the following examples. In the first case, there is a large load after a series of small
stores to the same area of memory (beginning at memory address mem). The large load will
stall in this case:

mov mem, eax ; store dword to address “mem"
mov mem + 4, ebx ; store dword to address “mem + 4"

     :
     :

fld mem ; load qword at address “mem", stalls

The fld must wait for the stores to write memory before it can access all the data it
requires. This stall can also occur with other data types (for example, when bytes or words
are stored and then words or doublewords are read from the same area of memory).

In the second case, there is a series of small loads after a large store to the same area of
memory (beginning at memory address mem). The small loads will stall in this case:

fstp mem ; store qword to address “mem"
     :
     :

mov bx, mem + 2  ; load word at address “mem + 2", stalls
mov cx, mem + 4  ; load word at address “mem + 4", stalls

The word loads must wait for the quadword store to write to memory before they can access
the data they require. This stall can also occur with other data types (for example, when
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doublewords or words are stored and then words or bytes are read from the same area of
memory). This can be avoided by moving the store as far from the loads as possible. In
general, the loads and stores should be separated by at least 10 instructions to avoid the stall
condition.

5.4 FLOATING-POINT TO INTEGER CONVERSION
Many libraries provide the float to integer library routines that convert floating-point values
to integer. Many of these libraries conform to ANSI C coding standards which state that the
rounding mode should be truncation. The default of the FIST instruction is round to nearest,
therefore many compiler writers implement a change in the rounding mode in the processor
in order to conform to the C and FORTRAN standards. This implementation requires
changing the control word on the processor using the fldcw instruction. This instruction is a
synchronizing instruction and will cause a significant slowdown in the performance of your
application on Pentium, Pentium Pro and Pentium II processors.

When implementing an application, consider if the rounding mode is important to the results.
If not, use the following function to avoid the synchronization and overhead of the fldcw
instruction.

To avoid changing the rounding mode use the following algorithm:
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arg_is_not_integer_QNaN:
fsubp    st(1),st ; TOS=d-round(d),

{ st(1)=st(1)-st & pop ST }
test edx,edx ; what's sign of integer
jns positive

; number is negative
; dead cycle
; dead cycle

fstp dword ptr[ecx]; result of subtraction
mov ecx,[ecx] ; dword of difference(single precision)
add esp,16
xor ecx,80000000h
add ecx,7fffffffh; if difference>0 then increment integer

adc eax,0 ; inc eax (add CARRY flag)
ret

positive:
fstp dword ptr[ecx];17-18  ; result of subtraction
mov ecx,[ecx] ; dword of difference (single precision)

add esp,16
add ecx,7fffffffh; if difference<0 then decrement integer
sbb eax,0 ; dec eax (subtract CARRY flag)
ret

integer_QNaN_or_zero:
test edx,7fffffffh
jnz arg_is_not_integer_QNaN
add esp,16
ret

_ftol32proc
lea ecx,[esp-8]
sub esp,16 ; allocate frame
and ecx,-8 ; align pointer on boundary of 8
fld st(0) ; duplicate FPU stack top
fistp qword ptr[ecx]
fild qword ptr[ecx]
mov edx,[ecx+4] ; high dword of integer
mov eax,[ecx] ; low dword of integer
test eax,eax
je integer_QNaN_or_zero
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5.5 LOOP UNROLLING
There are many benefits to unrolling loops; however, these benefits need to be balanced with
I-Cache constraints and other machine resources. The benefits are:

• Unrolling amortizes the branch overhead. The BTB is good at predicting loops on
Pentium, Pentium Pro and Pentium II processors and the instructions to increment the
loop index and jump are inexpensive.

• Unrolling allows you to aggressively schedule (or pipeline) the loop to hide latencies.
This is useful if you have enough free registers to keep variables live as you stretch out
the dependency chain to expose the critical path

• You can aggressively schedule the loop to better set up I-fetch and decode constraints.

• The backwards branch (predicted taken) has only a 1 clock penalty on Pentium Pro and
Pentium II processors, so you can unroll very tiny loop bodies for free

• Unrolling can expose other optimizations, as shown in the examples below.

This loop executes 100 times assigning x to every even-numbered element and y to every
odd-numbered element.

do i=1,100
  if (i mod 2 == 0) then a(i) = x
  else a(i) = y
enddo

By unrolling the loop you can make both assignments each iteration, removing one branch in
the loop body.

do i=1,100,2
  a(i) = y
  a(i+1) = x
enddo

5.6 FLOATING-POINT STALLS
Many of the floating-point instructions have a latency greater than one cycle, therefore on the
Pentium processor family the next floating-point instruction cannot access the result until the
first operation has finished execution. To hide this latency, instructions should be inserted
between the pair that cause the pipe stall. These instructions can be integer instructions or
floating-point instructions that will not cause a new stall themselves. The number of
instructions that should be inserted depends on the length of the latency. Because of the out-
of-order nature of Pentium Pro and Pentium II processors, stalls will not necessarily occur on
an instruction or µop basis. However, if an instruction has a very long latency such as an
FDIV, then scheduling can improve the throughput of the overall application. The following
sections list considerations for floating-point pipelining on the Pentium processor family.
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5.6.1 Using Integer Instructions to Hide Latencies of Floating-Point
Instructions

When a floating-point instruction depends on the result of the immediately preceding
instruction, and it is also a floating-point instruction, it is advantageous to move integer
instructions between the two FP instructions, even if the integer instructions perform loop
control. The following example restructures a loop in this manner:

for (i=0; i<Size; i++)
array1 [i] += array2 [i];

; assume eax=Size-1, esi=array1, edi=array2

Pentium Processor
CLOCKS

LoopEntryPoint:
fld real4 ptr [esi+eax*4] ; 2 - AGI
fadd real4 ptr [edi+eax*4] ; 1
fstp real4 ptr [esi+eax*4] ; 5 - waits for fadd
dec eax ; 1
jnz LoopEntryPoint

; assume eax=Size-1, esi=array1, edi=array2

jmp LoopEntryPoint
Align 16

TopOfLoop:
fstp real4 ptr [esi+eax*4+4] ; 4 - waits for fadd + AGI

LoopEntryPoint:
fld real4 ptr [esi+eax*4] ;1
fadd real4 ptr [edi+eax*4] ;1
dec eax ;1
jnz TopOfLoop
;

fstp real4 ptr [esi+eax*4+4]

By moving the integer instructions between the fadds and fstps, the integer instructions
can be executed while the fadds is completing in the floating-point unit and before the
fstps begins execution. Note that this new loop structure requires a separate entry point
for the first iteration because the loop needs to begin with the flds. Also, there needs to be
an additional fstps after the conditional jump to finish the final loop iteration.
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5.6.2 Hiding the One-Clock Latency of a Floating-Point Store

A floating-point store must wait an extra cycle for its floating-point operand. After an fld,
an fst must wait one clock. After the common arithmetic operations, fmul and fadd,
which normally have a latency of three, fst waits an extra cycle for a total of four1.

fld meml ; 1 fld takes 1 clock
; 2 fst waits, schedule something here

fst mem2 ; 3,4 fst takes 2 clocks

fadd meml ; 1 add takes 3 clocks
; 2 add, schedule something here
; 3 add, schedule something here
; 4 fst waits, schedule something here

fst mem2 ; 5,2 fst takes 2 clocks

In the next example, the store is not dependent on the previous load:

fld meml ; 1
fld mem2 ; 2
fxch st(l) ; 2
fst mem3 ; 3 stores values loaded from meml

A register may be used immediately after it has been loaded (with fld):

fld mem1 ; l
fadd mem2 ; 2,3,4

Use of a register by a floating-point operation immediately after it has been written by
another fadd, fsub or fmul causes a two-cycle delay. If instructions are inserted between
these two, then latency and a potential stall can be hidden.

Additionally, there are multi-cycle floating-point instructions (fdiv and fsqrt) that
execute in the floating-point unit pipe. While executing these instructions in the floating-
point unit pipe, integer instructions can be executed in parallel. Emitting a number of integer
instructions after such an instruction will keep the integer execution units busy (the exact
number of instructions depends on the floating-point instruction's cycle count).

Integer instructions generally overlap with the floating-point operations except when the last
floating-point operation was fxch. In this case there is a one-cycle delay:

U-pipe: V-pipe:

fadd fxch ; 1
; 2 fxch delay

mov eax, 1 inc edx ;

                                                       
1 This set also includes the faddp, fsubrp, ... instructions.
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5.6.3 Integer and Floating-Point Multiply

The integer multiply operations, mul and imul, are executed in the floating-point unit so
these instructions cannot be executed in parallel with a floating-point instruction.

A floating-point multiply instruction (fmul) delays for one cycle if the immediately
preceding cycle executed an fmul or an fmul / fxch pair. The multiplier can only accept a
new pair of operands every other cycle.

5.6.4 Floating-Point Operations with Integer Operands

Floating-point operations that take integer operands (fiadd or fisub ..) should be avoided.
These instructions should be split into two instructions:  fild and a floating-point operation.
The number of cycles before another instruction can be issued (throughput) for fiadd is
four, while for fild and simple floating-point operations it is one, as shown in the example
below.

Complex Instructions: Better for Potential Overlap:

fiadd  [ebp] ; 4                  fild   [ebp]  ; 1
                                  faddp  st(l)  ; 2

Using the fild - faddp instructions yields two free cycles for executing other instructions.

5.6.5 FSTSW Instructions

The fstsw instruction that usually appears after a floating-point comparison instruction
(fcom, fcomp, fcompp) delays for three cycles. Other instructions may be inserted after
the comparison instruction in order to hide the latency. On Pentium Pro and Pentium II
processors the fcmov instruction can be used instead.

5.6.6 Transcendental Functions

Transcendental operations execute in the U-pipe and nothing can be overlapped with them,
so an integer instruction following such an instruction will wait until that instruction
completes.

Transcendental operations execute on Pentium Pro and Pentium II processors much faster. It
may be worthwhile in-lining some of these math library calls because of the fact that the
call and prologue/epilogue overhead involved with the library calls is no longer negligible.
Emulating these operations in software will not be faster than the hardware unless accuracy is
sacrificed.



OPTIMIZATION TECHNIQUES FOR FLOATING-POINT APPLICATIONS E

5-12

5/4/97 4:41 PM    CH05.DOC

INTEL CONFIDENTIAL
(until publication date)

5.6.7 Back-to-Back Floating-Point Instructions

The Pentium processor with MMX technology will stall when computing back to back
floating-point multiply or division instructions when the operand exponents are in the ranges
[-1FFE, -0FFF] and [1000,1FFE], in other words, for very big and very small extended
precision numbers. The Pentium processor does not exhibit this stall.

For example executing:

FMUL ST0,ST1
FLD fld1

If the exponents added together produce a value in the above range, the FLD operation will
wait to see if the FMUL operation produces an exception as a result of overflow (overflow is
generated if ST0*ST1 > MAX).
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CHAPTER 6
SUGGESTIONS FOR CHOOSING A COMPILER

Many compilers are available on the market today. The difficult question is which is the right
compiler to use for the most optimized code. This chapter gives a list of suggestions on what
to look for in a compiler; it also gives an overview the different optimization switches for
compilation and summarizes the differences on the Intel Architecture. Finally, Section 6.2.4
recommends a blended strategy for code optimization.

6.1 IMPORTANT FEATURES FOR A COMPILER
Following is a list of features for consideration when choosing a compiler for application
development. These are primarily performance-oriented features, and the order is not
prioritized; an ISV/developer should weigh each element equally.

• The compiler should have switches that target specific processors (as described in
Section 6.2) as well as a switch to generate “blended code”.

• The compiler should align all data sizes appropriately. It should also have the ability to
align target branches to 16 bytes.

• The compiler should be able to perform interprocedural (whole program) analysis and
optimization.

• The compiler should be able to perform profile-guided optimizations.

• The compiler should be able to provide a listing of the generated assembly code with
line numbers and other annotations.

• The compiler should have good in-line assembly support. An added benefit exists when
the compiler can optimize high level language code in the presence of in-line assembly.

• The compiler should perform “advanced optimizations” that target memory hierarchy,
such as loop transforms as described in Section 3.5.1.5.

• The tools should provide the ability to debug optimized code. Generation of debug
information is very important with respect to the VTune tuning environment.

• The compiler should provide support for MMX technology. Minimum support is with in-
line assembly and a 64-bit data type. Best support is with intrinsic functions.

• The compiler should be reliable. It should produce correct code under all levels of
optimization.

There are many other important issues to consider when purchasing a compiler that are
related to usability. At a minimum, order an evaluation copy of the compilers that you are
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considering, then benchmark the compiler on your application. This is the best information
for your decision on which compiler to purchase.

6.2 COMPILER SWITCHES RECOMMENDATION
The following section summarizes the compiler switch recommendations for Intel
Architecture compilers. The default for compilers should be a blended switch that optimizes
for the family of processors. Switches specific to each processor should be offered as an
alternative for application programmers.

6.2.1 Default (Blended Code)

Generates blended code. Code compiled with this switch will execute on all Intel
Architecture processors (Intel386, Intel486, Pentium, Pentium Pro and Pentium II). This
switch is intended for code which will possibly run on more than one processor. There should
be no partial register stalls generated by the code generator when this switch is set.

6.2.2 Processor-Specific Switches

6.2.2.1 TARGET PROCESSOR — PENTIUM® PROCESSOR
Generates the best Pentium processor code. Code will run on all 32-bit Intel Architecture
processors. This is intended for code which will run only on the Pentium processor.

6.2.2.2 TARGET PROCESSOR — PENTIUM® PRO PROCESSOR
Generates the best Pentium Pro processor code. Code will run on all 32-bit Intel Architecture
processors. This is intended for code which will run only on Pentium Pro and Pentium II
processors. There should be no partial stalls generated.

6.2.3 Other Switches

6.2.3.1 PENTIUM® PRO PROCESSOR NEW INSTRUCTIONS
This will use the new Pentium Pro processor specific instructions:  cmov, fcmov and
fcomi. This is independent of the Pentium Pro processor specific switch. If a target
processor switch is also specified, the 'if to cmov' optimization will be done depending
on Pentium Pro processor style cost analysis.

6.2.3.2 OPTIMIZE FOR SMALL CODE SIZE
This switch optimizes for small code size. Execution speed will be sacrificed when
necessary. An example is to use pushes rather than stores. This is intended for programs with
high instruction cache miss rates. This switch also turns off code alignment, regardless of
target processor.
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6.2.4 Summary

The following tables summarize the micro architecture differences among the Pentium and
Pentium Pro processors. The table lists the corresponding code generation considerations.

Table 6.1.  Intel Microprocessor Architecture Differences

Pentium®

Processor
Pentium® Pro

Processor

Pentium Processor
with MMX™
Technology

Pentium II
Processor

Cache 8K Code, 8K Data 8K Code, 8K Data 16K Code, 16K Data 16K Code, 16K Data

Prefetch 4x32b private bus to
cache

4x32b private bus to
cache

4x32b private bus to
cache

4x32b private bus to
cache

Decoder 2 decoders 3 decoders 2 decoders 3 decoders

Core 5 stages pipeline &
superscalar

12 stages pipeline &
Dynamic Execution

6 stages pipeline &
superscalar

12 stages pipeline &
Dynamic Execution

Math On-Chip & pipelined On-Chip and pipelined On-Chip & pipelined On-Chip and pipelined

Following are the recommendations for blended code across the Intel Architecture family:

• Important code entry points, such as a mispredicted label or an interrupt function, should
be aligned on 16-byte boundaries.

• Avoid partial stalls.

• Schedule to remove address generation interlock and other pipeline stalls.

• Use simple instructions.

• Follow the branch prediction algorithm.

Schedule floating-point code to improve throughput.
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CHAPTER 7
INTEL ARCHITECTURE PERFORMANCE

MONITORING EXTENSIONS

The most effective way to improve the performance of application code is to find the
performance bottlenecks in the code and remedy the stall conditions. In order to identify stall
conditions, Intel Architecture processors include two counters on the processors that allow
you to gather information about the performance of applications. The counters keep track of
events that occur while your code is executing. The counters can be read during program
execution. Using the counters, it is easier to determine if and where an application has stalls.
The counters can be accessed by using Intel’s VTune or by using the performance counter
instructions within the application code.

The section describes the performance monitoring features on Pentium, Pentium Pro and
Pentium II processors.

The RDPMC instruction is described in Section 7.3.

7.1 SUPERSCALAR (PENTIUM® PROCESSOR FAMILY)
PERFORMANCE MONITORING EVENTS

All Pentium processors feature performance counters and several new events have been
added to support MMX technology. All new events are assigned to one of the two event
counters (CTR0, CTR1), with the exception of “twin events” (such as “D1 starvation” and
“FIFO is empty”) which are assigned to different counters to allow their concurrent
measurement. The events must be assigned to their specified counter. Table 7-1 lists the
performance monitoring events. New events are shaded.
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Table 7-1.  Performance Monitoring Events

Serial Encoding Counter 0 Counter 1
Performance

Monitoring Event
Occurrence or

Duration

0 000000 Yes Yes Data Read OCCURRENCE

1 000001 Yes Yes Data Write OCCURRENCE

2 000010 Yes Yes Data TLB Miss OCCURRENCE

3 000011 Yes Yes Data Read Miss OCCURRENCE

4 000100 Yes Yes Data Write Miss OCCURRENCE

5 000101 Yes Yes Write (hit) to M or E
state lines

OCCURRENCE

6 000110 Yes Yes Data Cache Lines
Written Back

OCCURRENCE

7 000111 Yes Yes External Data Cache
Snoops

OCCURRENCE

8 001000 Yes Yes External Data Cache
Snoop Hits

OCCURRENCE

9 001001 Yes Yes Memory Accesses in
Both Pipes

OCCURRENCE

10 001010 Yes Yes Bank Conflicts OCCURRENCE

11 001011 Yes Yes Misaligned Data
Memory or I/O
References

OCCURRENCE

12 001100 Yes Yes Code Read OCCURRENCE

13 001101 Yes Yes Code TLB Miss OCCURRENCE

14 001110 Yes Yes Code Cache Miss OCCURRENCE

15 001111 Yes Yes Any Segment Register
Loaded

OCCURRENCE

16 010000 Yes Yes Reserved

17 010001 Yes Yes Reserved

18 010010 Yes Yes Branches OCCURRENCE

19 010011 Yes Yes BTB Predictions OCCURRENCE

20 010100 Yes Yes Taken Branch or BTB
hit.

OCCURRENCE

21 010101 Yes Yes Pipeline Flushes OCCURRENCE

22 010110 Yes Yes Instructions Executed OCCURRENCE
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Table 7-1.  Performance Monitoring Events (Cont’d)

Serial Encoding Counter 0 Counter 1
Performance

Monitoring Event
Occurrence or

Duration

23 010111 Yes Yes Instructions Executed
in the V-pipe e.g.
parallelism/pairing

OCCURRENCE

24 011000 Yes Yes Clocks while a bus
cycle is in progress
(bus utilization)

DURATION

25 011001 Yes Yes Number of clocks
stalled due to full write
buffers

DURATION

26 011010 Yes Yes Pipeline stalled waiting
for data memory read

DURATION

27 011011 Yes Yes Stall on write to an E or
M state line

DURATION

29 011101 Yes Yes I/O Read or Write
Cycle

OCCURRENCE

30 011110 Yes Yes Non-cacheable
memory reads

OCCURRENCE

31 011111 Yes Yes Pipeline stalled
because of an address
generation interlock

DURATION

32 100000 Yes Yes Reserved

33 100001 Yes Yes Reserved

34 100010 Yes Yes FLOPs OCCURRENCE

35 100011 Yes Yes Breakpoint match on
DR0 Register

OCCURRENCE

36 100100 Yes Yes Breakpoint match on
DR1 Register

OCCURRENCE

37 100101 Yes Yes Breakpoint match on
DR2 Register

OCCURRENCE

38 100110 Yes Yes Breakpoint match on
DR3 Register

OCCURRENCE

39 100111 Yes Yes Hardware Interrupts OCCURRENCE

40 101000 Yes Yes Data Read or Data
Write

OCCURRENCE

41 101001 Yes Yes Data Read Miss or
Data Write Miss

OCCURRENCE
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Table 7-1.  Performance Monitoring Events (Cont’d)

43 101011 Yes No MMX™ instructions
executed in U-pipe

OCCURRENCE

43 101011 No Yes MMX instructions
executed in V-pipe

OCCURRENCE

45 101101 Yes No EMMS instructions
executed

OCCURRENCE

45 101101 No Yes Transition between
MMX instructions and
FP instructions

OCCURRENCE

46 101110 No Yes Writes to Non-
Cacheable Memory

OCCURRENCE

47 101111 Yes No Saturating MMX
instructions executed

OCCURRENCE

47 101111 No Yes Saturations
performed

OCCURRENCE

48 110000 Yes No Number of Cycles Not
in HLT State

DURATION

49 110001 Yes No MMX instruction data
reads

OCCURRENCE

50 110010 Yes No Floating-Point Stalls DURATION

50 110010 No Yes Taken Branches OCCURRENCE

51 110011 No Yes D1 Starvation and
one instruction in
FIFO

OCCURRENCE

52 110100 Yes No MMX instruction data
writes

OCCURRENCE

52 110100 No Yes MMX instruction data
write misses

OCCURRENCE

53 110101 Yes No Pipeline flushes due
to wrong branch
prediction

OCCURRENCE

53 110101 No Yes Pipeline flushes due
to wrong branch
predictions resolved
in WB-stage

OCCURRENCE

54 110110 Yes No Misaligned data
memory reference on
MMX instruction

OCCURRENCE
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Table 7-1.  Performance Monitoring Events (Cont’d)

54 110110 No Yes Pipeline stalled
waiting for MMX
instruction data
memory read

DURATION

55 110111 Yes No Returns Predicted
Incorrectly

OCCURRENCE

55 110111 No Yes Returns Predicted
(Correctly and
Incorrectly)

OCCURRENCE

56 111000 Yes No MMX instruction
multiply unit interlock

DURATION

56 111000 No Yes MOVD/MOVQ store
stall due to previous
operation

DURATION

57 111001 Yes No Returns OCCURRENCE

57 111001 No Yes RSB Overflows OCCURRENCE

58 111010 Yes No BTB false entries OCCURRENCE

58 111010 No Yes BTB miss prediction
on a Not-Taken
Branch

OCCURRENCE

59 111011 Yes No Number of clocks
stalled due to full
write buffers while
executing MMX
instructions

DURATION

59 111011 No Yes Stall on MMX
instruction write to E
or M line

DURATION

7.1.1 Description of MMX™ Instruction Events

The event codes/counter are provided in parentheses.

• • MMX instructions executed in U-pipe (101011/0):
Total number of MMX instructions executed in the U-pipe.

• • MMX instructions executed in V-pipe (101011/1):
Total number of MMX instructions executed in the V-pipe.

• EMMS instructions executed (101101/0):
Counts number of EMMS instructions executed.
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• Transition between MMX instructions and FP instructions (101101/1):
Counts first floating-point instruction following any MMX instruction or first MMX
instruction following a floating-point instruction. This count can be used to estimate the
penalty in transitions between FP state and MMX state. An even count indicates the
processor is in the MMX state. An odd count indicates it is in the FP state.

• Writes to non-cacheable memory (101110/1):
Counts the number of write accesses to non-cacheable memory. It includes write cycles
caused by TLB misses and I/O write cycles. Cycles restarted due to BOFF# are not re-
counted.

• • Saturating MMX instructions executed (101111/0):
Counts saturating MMX instructions executed, independently of whether or not they
actually saturated. Saturating MMX instructions may perform add, subtract or pack
operations .

• • Saturations performed (101111/1):
Counts the number of MMX instructions that used saturating arithmetic where at least
one of the results actually saturated (that is, if an MMX instruction operating on four
dwords saturated in three out of the four results, the counter will be incremented by only
one).

• Number of cycles not in HALT (HLT) state (110000/0):
Counts the number of cycles the processor is not idle due to a HALT (HLT) instruction.
Use this event to calculate “net CPI.” Note that during the time the processor is
executing the HLT instruction, the Time Stamp Counter (TSC) is not disabled. Since this
event is controlled by the Counter Controls CC0, CC1 it can be used to calculate the CPI
at CPL=3, which the TSC cannot provide.

• MMX instruction data reads (110001/0):
Analogous to “Data reads”, counting only MMX instruction accesses.

• MMX instruction data read misses (110001/1):
Analogous to “Data read misses”, counting only MMX instruction accesses.

• • Floating-Point stalls (110010/0):
Counts the number of clocks while pipe is stalled due to a floating-point freeze.

• • Number of Taken Branches (110010/1):
Counts the number of Taken Branches.

• • D1 starvation and FIFO is empty (110011/0), D1 starvation and only one instruction
in FIFO (110011/1):
The D1 stage can issue 0, 1 or 2 instructions per clock if instructions are available in the
FIFO buffer. The first event counts how many times D1 cannot issue ANY instructions
because the FIFO buffer is empty. The second event counts how many times the D1
stage issues just a single instruction because the FIFO buffer had just one instruction
ready. Combined with two other events, Instruction Executed (010110) and Instruction
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Executed in the V-pipe (010110), the second event lets you calculate the number of
times pairing rules prevented issue of two instructions.

• • MMX instruction data writes (110001/1):
Analogous to “Data writes”, counting only MMX instruction accesses.

• • MMX instruction data write misses (110100/1):
Analogous to “Data write misses”, counting only MMX instruction accesses.

• • Pipeline flushes due to wrong branch prediction (110101/0); Pipeline flushes due to
wrong branch prediction resolved in WB-stage(110101/1):
Counts any pipeline flush due to a branch which the pipeline did not follow correctly. It
includes cases where a branch was not in the BTB, cases where a branch was in the BTB
but was mispredicted, and cases where a branch was correctly predicted but to the wrong
address. Branches are resolved in either the Execute (E) stage or the Writeback (WB)
stage. In the latter case, the misprediction penalty is larger by one clock. The first event
listed above counts the number of incorrectly predicted branches resolved in either the E
stage or the WB stage. The second event counts the number of incorrectly predicted
branches resolved in the WB stage. The difference between these two counts is the
number of E stage-resolved branches.

• • Misaligned data memory reference on MMX instruction (110110/0):
Analogous to “Misaligned data memory reference,” counting only MMX instruction
accesses.

• • Pipeline stalled waiting for data memory read ( 110110/1):
Analogous to “Pipeline stalled waiting for data memory read,” counting only MMX
accesses.

• • Returns predicted incorrectly or not predicted at all (110111/0):
The actual number of Returns that were either incorrectly predicted or were not predicted
at all. It is the difference between the total number of executed returns and the number of
returns that were correctly predicted. Only RET instructions are counted (that is, IRET
instructions are not counted).

• • Returns predicted (correctly and incorrectly) (110111/1):
The actual number of Returns for which a prediction was made. Only RET instructions
are counted (that is, IRET instructions are not counted).

• • MMX multiply unit interlock (111000/0):
Counts the number of clocks the pipe is stalled because the destination of a previous
MMX multiply instruction is not yet ready. The counter will not be incremented if there
is another cause for a stall. For each occurrence of a multiply interlock, this event may
be counted twice (if the stalled instruction comes on the next clock after the multiply) or
only once (if the stalled instruction comes two clocks after the multiply).

• • MOVD/MOVQ store stall due to previous operation (111000/1):
Number of clocks a MOVD/MOVQ store is stalled in the D2 stage due to a previous
MMX operation with a destination to be used in the store instruction.
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• • Returns (111001/0):
The actual number of Returns executed. Only RET instructions are counted (that is,
IRET instructions are not counted). Any exception taken on a RET instruction also
updates this counter.

• • RSB overflows (111001/1):
Counts the number of times the Return Stack Buffer (RSB) cannot accommodate a call
address.

• • BTB false entries (111010/0):
Counts the number of false entries in the Branch Target Buffer. False entries are causes
for misprediction other than a wrong prediction.

• • BTB miss-prediction on a Not-Taken Branch (111010/1):
Counts the number of times the BTB predicted a Not-Taken Branch as Taken.

• • Number of clocks stalled due to full write buffers while executing MMX instructions
(111011/0):
Analogous to “Number of clocks stalled due to full write buffers,” counting only MMX
instruction accesses.

• • Stall on MMX instruction write to an E or M state line (111011/1):
Analogous to “Stall on write to an E or M state line,” counting only MMX instruction
accesses.

7.2 PENTIUM® PRO AND PENTIUM II PERFORMANCE
MONITORING EVENTS

This section describes the counters on Pentium Pro and Pentium II processors. Table 7-2 lists
the events that can be counted with the performance-monitoring counters and read with the
RDPMC instruction.

In the table:

• The Unit column gives the microarchitecture or bus unit that produces the event.

• The Event Number column gives the hexadecimal number identifying the event.

• The Mnemonic Event Name column gives the name of the event.

• The Unit Mask column gives the unit mask required (if any).

• The Description column describes the event.

• The Comments column gives additional information about the event.

These performance monitoring events are intended to be used as guides for performance
tuning. The counter values reported are not guaranteed to be absolutely accurate and should
be used as a relative guide for tuning. Known discrepancies are documented where
applicable. All performance events are model-specific to the Pentium Pro processor family
and are not architecturally guaranteed in future versions of the processor. All performance
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event encodings not listed in the table are reserved and their use will result in undefined
counter results.

See the end of the table for notes related to certain entries in the table.

Table 7-2.  Performance Monitoring Counters

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)

43H DATA_MEM_
REFS

00H All loads from any memory
type. All stores to any memory
type. Each part of a split is
counted separately.

NOTE:  80-bit floating-point
accesses are double counted,
since they are decomposed
into a 16 bit exponent load
and a 64 bit mantissa load.

Memory accesses are only
counted when they are
actually performed, e.g., a
load that gets squashed
because a previous cache
miss is outstanding to the
same address, and which
finally gets performed, is only
counted once.

Does not include I/O
accesses, or other non-
memory accesses.

45H DCU_LINES_IN 00H Total number of lines that
have been allocated in the
DCU.

46H DCU_M_LINES_
IN

00H Number of Modified state lines
that have been allocated in the
DCU.

47H DCU_M_LINES_
OUT

00H Number of Modified state lines
that have been evicted from
the DCU. This includes
evictions as a result of
external snoops, internal
intervention or the natural
replacement algorithm.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)
(Cont’d)

48H DCU_MISS_OUT
STANDING

00H Weighted number of cycles
while a DCU miss is
outstanding. Incremented by
the number of outstanding
cache misses at any particular
time. Cacheable read
requests only are considered.
Uncacheable requests are
excluded. Read-for-
ownerships are counted as
well as line fills, invalidates
and stores.

An access that also misses
the L2 is short-changed by
two cycles. (i.e. if count is N
cycles, should be N+2
cycles.) Subsequent loads to
the same cache line will not
result in any additional counts.
Count value not precise, but
still useful.

Instruction
Fetch Unit
(IFU)

80H IFU_IFETCH 00H Number of instruction fetches,
both cacheable and non-
cacheable. Including UC
fetches.

Will be incremented by 1 for
each cacheable line fetched
and by 1 for each uncached
instruction fetched.

81H IFU_IFETCH_
MISS

00H Number of instruction fetch
misses. All instruction fetches
that do not hit the IFU i.e. that
produce memory requests.
Includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_
STALL

00H Number of cycles instruction
fetch is stalled, for any
reason.  Includes IFU cache
misses, ITLB misses, ITLB
faults and other minor stalls.

87H ILD_STALL 00H Number of cycles that the
instruction length decoder
stage of the processors
pipeline is stalled.

L2 Cache 28H L2_IFETCH MESI
0FH

Number of L2 instruction
fetches. This event indicates
that a normal instruction fetch
was received by the L2. The
count includes only L2
cacheable instruction fetches;
it does not include UC
instruction fetches. It does not
include ITLB miss accesses.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

L2 Cache
(Cont’d)

29H L2_LD MESI
0FH

Number of L2 data loads. This
event indicates that a normal,
unlocked, load memory
access was received by the
L2. It includes only L2
cacheable memory accesses;
it does not include I/O
accesses, other non-memory
accesses, or memory
accesses such as UC/WT
memory accesses. It does
include L2 cacheable TLB
miss memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data stores.
This event indicates that a
normal, unlocked, store
memory access was received
by the L2. Specifically, it
indicates that the DCU sent a
read-for-ownership request to
the L2. It also includes Invalid
to Modified requests sent by
the DCU to the L2. It includes
only L2 cacheable store
memory accesses; it does not
include I/O accesses, other
non-memory accesses, or
memory accesses like UC/WT
stores. It includes TLB miss
memory accesses.

24H L2_LINES_IN 00H Number of lines allocated in
the L2.

26H L2_LINES_OUT 00H Number of lines removed from
the L2 for any reason.

25H L2_M_LINES_IN
M

00H Number of Modified state lines
allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of Modified state lines
removed from the L2 for any
reason.

2EH L2_RQSTS MESI
0FH

Total number of all L2
requests.

21H L2_ADS 00H Number of L2 address
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during
which the L2 cache data bus
was busy.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

L2 Cache
(Cont’d)

23H L2_DBUS_BUSY
_RD

00H Number of cycles during
which the data bus was busy
transferring read data from L2
to the processor.

External Bus
Logic (EBL)
(2)

62H BUS_DRDY_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks during
which DRDY# is asserted.
Essentially, utilization of the
external system data bus.

Unit Mask = 00H counts bus
clocks when the processor is
driving DRDY Unit Mask =
20H counts in processor
clocks when any agent is
driving DRDY.

63H BUS_LOCK_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks during
which LOCK# is asserted on
the external system bus.

Always counts in processor
clocks

60H BUS_REQ_
OUTSTANDING

00H
(Self)

Number of bus requests
outstanding. This counter is
incremented by the number of
cacheable read bus requests
outstanding in any given
cycle.

Counts only DCU full-line
cacheable reads, not Reads
for ownership, writes,
instruction fetches, or
anything else. Counts “waiting
for bus to complete” (last data
chunk received).

65H BUS_TRAN_
BRD

00H
(Self)
20H
(Any)

Number of bus burst read
transactions.

66H BUS_TRAN_
RFO

00H
(Self)
20H
(Any)

Number of completed bus
read for ownership
transactions.

67H BUS_TRANS_
WB

00H
(Self)
20H
(Any)

Number of completed bus
write back transactions.

68H BUS_TRAN_
IFETCH

00H
(Self)
20H
(Any)

Number of completed bus
instruction fetch transactions.

69H BUS_TRAN_
INVAL

00H
(Self)
20H
(Any)

Number of completed bus
invalidate transactions.

6AH BUS_TRAN_
PWR

00H
(Self)
20H
(Any)

Number of completed bus
partial write transactions.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

External Bus
Logic (EBL)
(2)
(Cont’d)

6BH BUS_TRANS_P 00H
(Self)
20H
(Any)

Number of completed bus
partial transactions.

6CH BUS_TRANS_IO 00H
(Self)
20H
(Any)

Number of completed bus I/O
transactions.

6DH BUS_TRAN_DEF 00H
(Self)
20H
(Any)

Number of completed bus
deferred transactions.

6EH BUS_TRAN_
BURST

00H
(Self)
20H
(Any)

Number of completed bus
burst transactions.

70H BUS_TRAN_ANY 00H
(Self)
20H
(Any)

Number of all completed bus
transactions. Address bus
utilization can be calculated
knowing the minimum address
bus occupancy. Includes
special cycles etc.

6FH BUS_TRAN_ME
M

00H
(Self)
20H
(Any)

Number of completed memory
transactions.

64H BUS_DATA_RCV 00H
(Self)

Number of bus clock cycles
during which this processor is
receiving data.

61H BUS_BNR_DRV 00H
(Self)

Number of bus clock cycles
during which this processor is
driving the BNR pin.

7AH BUS_HIT_DRV 00H
(Self)

Number of bus clock cycles
during which this processor is
driving the HIT pin.

Includes cycles due to snoop
stalls.

7BH BUS_HITM_DRV 00H
(Self)

Number of bus clock cycles
during which this processor is
driving the HITM pin.

Includes cycles due to snoop
stalls.

7EH BUS_SNOOP_
STALL

00H
(Self)

Number of clock cycles during
which the bus is snoop stalled.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

Floating-
Point Unit

C1H FLOPS 00H Number of computational
floating-point operations
retired. Excludes floating-point
computational operations that
cause traps or assists.
Includes floating-point
computational operations
executed by the assist
handler.

Includes internal sub-
operations of complex
floating-point instructions such
as a transcendental
instruction. Excludes floating-
point loads and stores.

Counter 0 only.

10H FP_COMP_OPS
_EXE

00H Number of computational
floating-point operations
executed. The number of
FADD, FSUB, FCOM, FMULs,
integer MULs and IMULs,
FDIVs, FPREMs, FSQRTS,
integer DIVs and IDIVs. Note
counts the number of
operations not number of
cycles. This event does not
distinguish an FADD used in
the middle of a transcendental
flow from a separate FADD
instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point
exception cases handled by
microcode.

Counter 1 only. This event
includes counts due to
speculative execution.

12H MUL 00H Number of multiplies.

NOTE: includes integer and
FP multiplies.

Counter 1 only. This event
includes counts due to
speculative execution.

13H DIV 00H Number of divides.

NOTE: includes integer and
FP multiplies.

Counter 1 only. This event
includes counts due to
speculative execution.

14H CYCLES_DIV_
BUSY

00H Number of cycles that the
divider is busy, and cannot
accept new divides.

NOTE: includes integer and
FP divides, FPREM,
FPSQRT, etc.

Counter 0 only. This event
includes counts due to
speculative execution.



E INTEL ARCHITECTURE PERFORMANCE MONITORING EXTENSIONS

7-15

5/4/97 4:42 PM    CH07.DOC

INTEL CONFIDENTIAL
(until publication date)

Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

Memory
Ordering

03H LD_BLOCKS 00H Number of store buffer blocks.
Includes counts caused by
preceding stores whose
addresses are unknown,
preceding stores whose
addresses are known to
conflict, but whose data is
unknown and preceding
stores that conflicts with the
load, but which incompletely
overlap the load.

04H SB_DRAINS 00H Number of store buffer drain
cycles. Incremented during
every cycle the store buffer is
draining. Draining is caused
by serializing operations like
CPUID, synchronizing
operations like XCHG,
Interrupt acknowledgment, as
well as other conditions such
as cache flushing.

05H MISALIGN_MEM
_REF

00H Number of misaligned data
memory references.
Incremented by 1 every cycle
during which either the
Pentium® Pro load or store
pipeline dispatches a
misaligned micro-op. Counting
is performed if its the first half
or second half, or if it is
blocked, squashed or misses.

Note in this context misaligned
means crossing a 64-bit
boundary.

It should be noted that
MISALIGN_MEM_REF is only
an approximation, to the true
number of misaligned memory
references. The value
returned is roughly
proportional to the number of
misaligned memory accesses,
i.e., the size of the problem.

Instruction
Decoding
and
Retirement

C0H INST_RETIRED OOH Total number of instructions
retired.

C2H UOPS_RETIRED 00H Total umber of micro-ops
retired.

D0H INST_DECODER 00H Total number of instructions
decoded.

Interrupts C8H HW_INT_RX 00H Total number of hardware
interrupts received.

C6H CYCLES_INT_
MASKED

00H Total number of processor
cycles for which interrupts are
disabled.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

Interrupts
(Cont’d)

C7H CYCLES_INT_P
ENDING_AND_M
ASKED

00H Total number of processor
cycles for which interrupts are
disabled and interrupts are
pending.

Branches C4H BR_INST_
RETIRED

00H Total number of branch
instructions retired.

C5H BR_MISS_PRED
_RETIRED

00H Total number of branch
mispredictions that get to the
point of retirement. Includes
not taken conditional
branches.

C9H BR_TAKEN_
RETIRED

00H Total number of taken
branches retired.

CAH BR_MISS_PRED
_TAKEN_RET

00H Total number of taken but
mispredicted branches that
get to the point of retirement.
Includes conditional branches
only when taken.

E0H BR_INST_
DECODED

00H Total number of branch
instructions decoded.

E2H BTB_MISSES 00H Total number of branches that
the BTB did not produce a
prediction

E4H BR_BOGUS 00H Total number of branch
predictions that are generated
but are not actually branches.

E6H BACLEARS 00H Total number of time
BACLEAR is asserted. This is
the number of times that a
static branch prediction was
made by the decoder.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

Stalls A2H RESOURCE_
STALLS

00H Incremented by one during
every cycle that there is a
resource related stall.
Includes register renaming
buffer entries, memory buffer
entries. Does not include stalls
due to bus queue full, too
many cache misses, etc. In
addition to resource related
stalls, this event counts some
other events.

Includes stalls arising during
branch misprediction recovery
e.g. if retirement of the
mispredicted branch is
delayed and stalls arising
while store buffer is draining
from synchronizing
operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or events
for partial stalls.

NOTE: Includes flag partial
stalls.

Segment
Register
Loads

06H SEGMENT_REG
_LOADS

00H Number of segment register
loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during
which the processor is not
halted.

MMX Technology Instruction Events

MMX
Instructions
Executed

B0H MMX_INSTR_
EXEC

00H Number of MMX instructions
executed.

MMX
Saturating
Instructions
Executed

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX saturating
instructions executed.

MMX µops
Executed

B2H MMX_UOPS_
EXEC

0FH Number of MMX µops
executed.
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Table 7-2.  Performance Monitoring Counters (Cont’d)

Unit
Event
No.

Mnemonic
Event Name

Unit
Mask Description Comments

MMX
Instructions
Executed

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

08H

10H

20H

MMX Packed multiply
instructions executed

MMX Packed shift instructions
executed

MMX Pack operations
instructions executed

MMX Unpack operations
instructions executed

MMX Packed logical
instructions executed

MMX Packed arithmetic
instructions executed

MMX
Transitions

CCH FP_MMX_
TRANS

00H

01H

Transitions from MMX
instruction to FP instructions.

Transitions from FP
instructions to MMX
instructions.

MMX
Assists

CDH MMX_ASSIST 00H Number of MMX Assists. MMX Assists is the number of
EMMS instructions executed.

MMX
Instructions
Retired

CEH MMX_INSTR_
RET

00H Number of MMX instructions
retired.

Segment
Register
Renaming
Stalls

D4H SEG_RENAME_
STALLS

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers ES + DS +
FS + GS

Segment
Registers
Renamed

D5H SEG_REG_
RENAMES

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers ES + DS +
FS + GS

Segment
Registers
Renamed &
Retired

D6H RET_SEG_
RENAMES

00H Number of segment register
rename events retired.
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NOTES:

1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the
PerfEvtSel0 and PerfEvtSel1 registers. The lower four bits of the Unit Mask field are used in conjunction
with L2 events to indicate the cache state or cache states involved. The Pentium® Pro processor family
identifies cache states using the “MESI” protocol, and consequently each bit in the Unit Mask field
represents one of the four states: UMSK[3] = M (8h) state, UMSK[2] = E (4h) state, UMSK[1] = S (2h)
state, and UMSK[0] = I (1h) state. UMSK[3:0] = MESI (Fh) should be used to collect data for all states;
UMSK = 0h, for the applicable events, will result in nothing being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit
Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers. Bit 5 of the UMSK field is used in
conjunction with the EBL events to indicate whether the processor should count transactions that are self
generated (UMSK[5] = 0) or transactions that result from any processor on the bus (UMSK[5] = 1).

7.3 RDPMC INSTRUCTION
The RDPMC (Read Processor Monitor Counter) instruction lets you read the performance
monitoring counters in CPL=3 if bit #8 is set in the CR4 register (CR4.PCE). This is similar
to the RDTSC (Read Time Stamp Counter) instruction, which is enabled in CPL=3 if the
Time Stamp Disable bit in CR4 (CR4.TSD) is not disabled. Note that access to the
performance monitoring Control and Event Select Register (CESR) is not possible in CPL=3.

7.3.1 Instruction Specification

Opcode:  0F 33

Description:  Read event monitor counters indicated by ECX into EDX:EAX

Operation:  EDX:EAX ← Event Counter [ECX]

The value in ECX (either 0 or 1) specifies one of the two 40-bit event counters of the
processor. EDX is loaded with the high-order 32 bits, and EAX with the low-order 32 bits.

IF CR4.PCE = 0 AND CPL <> 0 THEN # GP(0)
IF ECX = 0 THEN EDX:EAX := PerfCntr0
IF ECX = 1 THEN EDX:EAX := PerfCntr1
ELSE #GP(0)
END IF

Protected & Real Address Mode Exceptions:

#GP(0) if ECX does not specify a valid counter (either 0 or 1).

#GP(0) if RDPMC is used in CPL<> 0 and CR4.PCE = 0

Remarks:

16-bit code: RDPMC will execute in 16-bit code and VM mode but will give a 32-bit
result. It will use the full ECX index.
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APPENDIX A
INTEGER PAIRING TABLES

The following abbreviations are used in the Pairing column of the integer table in this
appendix:

NP — Not pairable, executes in U-pipe

PU — Pairable if issued to U-pipe

PV — Pairable if issued to V-pipe

UV — Pairable in either pipe

The I/O instructions are not pairable.

A.1 INTEGER INSTRUCTION PAIRING TABLES

Table A-1.  Integer Instruction Pairing

Instruction Format Pairing

AAA — ASCII Adjust after Addition NP

AAD — ASCII Adjust AX before Division NP

AAM — ASCII Adjust AX after Multiply NP

AAS — ASCII Adjust AL after Subtraction NP

ADC — ADD with Carry PU

ADD — Add UV

AND — Logical AND UV

ARPL — Adjust RPL Field of Selector NP

BOUND — Check Array Against Bounds NP

BSF — Bit Scan Forward NP

BSR — Bit Scan Reverse NP

BSWAP — Byte Swap NP

BT — Bit Test NP

BTC — Bit Test and Complement NP

BTR — Bit Test and Reset NP

BTS — Bit Test and Set NP
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Table A-1.  Integer Instruction Pairing (Cont’d)

Instruction Format Pairing

CALL — Call Procedure (in same segment)

   direct 1110 1000 : full displacement PV

   register indirect 1111 1111 : 11 010 reg NP

   memory indirect 1111 1111 : mod 010 r/m NP

CALL — Call Procedure (in other segment) NP

CBW — Convert Byte to Word
CWDE — Convert Word to Doubleword

NP

CLC — Clear Carry Flag NP

CLD — Clear Direction Flag NP

CLI — Clear Interrupt Flag NP

CLTS — Clear Task-Switched Flag in CR0 NP

CMC — Complement Carry Flag NP

CMP — Compare Two Operands UV

CMPS/CMPSB/CMPSW/CMPSD — Compare String
Operands

NP

CMPXCHG — Compare and Exchange NP

CMPXCHG8B — Compare and Exchange 8 Bytes NP

CWD — Convert Word to Dword
CDQ — Convert Dword to Qword

NP

DAA — Decimal Adjust AL after Addition NP

DAS — Decimal Adjust AL after Subtraction NP

DEC — Decrement by 1 UV

DIV — Unsigned Divide NP

ENTER — Make Stack Frame for Procedure Parameters NP

HLT — Halt

IDIV — Signed Divide NP

IMUL — Signed Multiply NP

INC — Increment by 1 UV

INT n — Interrupt Type n NP

INT — Single-Step Interrupt 3 NP

INTO — Interrupt 4 on Overflow NP
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Table A-1.  Integer Instruction Pairing (Cont’d)

Instruction Format Pairing

INVD — Invalidate Cache NP

INVLPG — Invalidate TLB Entry NP

IRET/IRETD — Interrupt Return NP

Jcc — Jump if Condition is Met PV

JCXZ/JECXZ — Jump on CX/ECX Zero NP

JMP — Unconditional Jump (to same segment)

   short 1110 1011 : 8-bit displacement PV

   direct 1110 1001 : full displacement PV

   register indirect 1111 1111 : 11 100 reg NP

   memory indirect 1111 1111 : mod 100 r/m NP

JMP — Unconditional Jump (to other segment) NP

LAHF — Load Flags into AH Register NP

LAR — Load Access Rights Byte NP

LDS — Load Pointer to DS NP

LEA — Load Effective Address UV

LEAVE — High Level Procedure Exit NP

LES — Load Pointer to ES NP

LFS — Load Pointer to FS NP

LGDT — Load Global Descriptor Table Register NP

LGS — Load Pointer to GS NP

LIDT — Load Interrupt Descriptor Table Register NP

LLDT — Load Local Descriptor Table Register NP

LMSW — Load Machine Status Word NP

LOCK — Assert LOCK# Signal Prefix

LODS/LODSB/LODSW/LODSD — Load String Operand NP

LOOP — Loop Count NP

LOOPZ/LOOPE — Loop Count while Zero/Equal NP

LOOPNZ/LOOPNE — Loop Count while not Zero/Equal NP

LSL — Load Segment Limit NP

LSS — Load Pointer to SS 0000 1111 : 1011 0010 : mod reg r/m NP
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Table A-1.  Integer Instruction Pairing (Cont’d)

Instruction Format Pairing

LTR — Load Task Register NP

MOV — Move Data UV

MOV — Move to/from Control Registers NP

MOV — Move to/from Debug Registers NP

MOV — Move to/from Segment Registers NP

MOVS/MOVSB/MOVSW/MOVSD — Move Data from String
to String

NP

MOVSX — Move with Sign-Extend NP

MOVZX — Move with Zero-Extend NP

MUL — Unsigned Multiplication of AL, AX or EAX NP

NEG — Two's Complement Negation NP

NOP — No Operation 1001 0000 UV

NOT — One's Complement Negation NP

OR — Logical Inclusive OR UV

POP — Pop a Word from the Stack

   reg 1000 1111 : 11 000 reg UV

      or 0101 1 reg UV

   memory 1000 1111 : mod 000 r/m NP

POP — Pop a Segment Register from the Stack NP

POPA/POPAD — Pop All General Registers NP

POPF/POPFD — Pop Stack into FLAGS or EFLAGS
Register

NP

PUSH — Push Operand onto the Stack

   reg 1111 1111 : 11 110 reg UV

      or 0101 0 reg UV

   memory 1111 1111 : mod 110 r/m NP

   immediate 0110 10s0 : immediate data UV

PUSH — Push Segment Register onto the Stack NP

PUSHA/PUSHAD — Push All General Registers NP

PUSHF/PUSHFD — Push Flags Register onto the Stack NP

RCL — Rotate thru Carry Left
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Table A-1.  Integer Instruction Pairing (Cont’d)

Instruction Format Pairing

   reg by 1 1101 000w : 11 010 reg PU

   memory by 1 1101 000w : mod 010 r/m PU

   reg by CL 1101 001w : 11 010 reg NP

   memory by CL 1101 001w : mod 010 r/m NP

   reg by immediate count 1100 000w : 11 010 reg : imm8 data PU

   memory by immediate count 1100 000w : mod 010 r/m : imm8
data

PU

RCR — Rotate thru Carry Right

   reg by 1 1101 000w : 11 011 reg PU

   memory by 1 1101 000w : mod 011 r/m PU

   reg by CL 1101 001w : 11 011 reg NP

   memory by CL 1101 001w : mod 011 r/m NP

   reg by immediate count 1100 000w : 11 011 reg : imm8 data PU

   memory by immediate count 1100 000w : mod 011 r/m : imm8
data

PU

RDMSR — Read from Model-Specific Register NP

REP LODS — Load String NP

REP MOVS — Move String NP

REP STOS — Store String NP

REPE CMPS — Compare String (Find Non-Match) NP

REPE SCAS — Scan String (Find Non-AL/AX/EAX) NP

REPNE CMPS — Compare String (Find Match) NP

REPNE SCAS — Scan String (Find AL/AX/EAX) NP

RET — Return from Procedure (to same segment) NP

RET — Return from Procedure (to other segment) NP

ROL — Rotate (not thru Carry) Left

   reg by 1 1101 000w : 11 000 reg PU

   memory by 1 1101 000w : mod 000 r/m PU

   reg by CL 1101 001w : 11 000 reg NP

   memory by CL 1101 001w : mod 000 r/m NP

   reg by immediate count 1100 000w : 11 000 reg : imm8 data PU
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Table A-1.  Integer Instruction Pairing (Cont’d)

Instruction Format Pairing

   memory by immediate count 1100 000w : mod 000 r/m : imm8
data

PU

ROR — Rotate (not thru Carry) Right

   reg by 1 1101 000w : 11 001 reg PU

   memory by 1 1101 000w : mod 001 r/m PU

   reg by CL 1101 001w : 11 001 reg NP

   memory by CL 1101 001w : mod 001 r/m NP

   reg by immediate count 1100 000w : 11 001 reg : imm8 data PU

   memory by immediate count 1100 000w : mod 001 r/m : imm8
data

PU

RSM — Resume from System  Management Mode NP

SAHF — Store AH into Flags NP

SAL — Shift Arithmetic Left same instruction as SHL

SAR — Shift Arithmetic Right

   reg by 1 1101 000w : 11 111 reg PU

   memory by 1 1101 000w : mod 111 r/m PU

   reg by CL 1101 001w : 11 111 reg NP

   memory by CL 1101 001w : mod 111 r/m NP

   reg by immediate count 1100 000w : 11 111 reg : imm8 data PU

   memory by immediate count 1100 000w : mod 111 r/m : imm8
data

PU

SBB — Integer Subtraction with Borrow PU

SCAS/SCASB/SCASW/SCASD — Scan String NP

SETcc — Byte Set on Condition NP

SGDT — Store Global Descriptor Table Register NP

SHL — Shift Left

   reg by 1 1101 000w : 11 100 reg PU

   memory by 1 1101 000w : mod 100 r/m PU

   reg by CL 1101 001w : 11 100 reg NP

   memory by CL 1101 001w : mod 100 r/m NP

   reg by immediate count 1100 000w : 11 100 reg : imm8 data PU
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Table A-1.  Integer Instruction Pairing (Cont’d)

Instruction Format Pairing

   memory by immediate count 1100 000w : mod 100 r/m : imm8
data

PU

SHLD — Double Precision Shift Left

   register by immediate count 0000 1111 : 1010 0100 : 11 reg2
reg1 : imm8

NP

   memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m
: imm8

NP

   register by CL 0000 1111 : 1010 0101 : 11 reg2
reg1

NP

   memory by CL 0000 1111 : 1010 0101 : mod reg r/m NP

SHR — Shift Right

   reg by 1 1101 000w : 11 101 reg PU

   memory by 1 1101 000w : mod 101 r/m PU

   reg by CL 1101 001w : 11 101 reg NP

   memory by CL 1101 001w : mod 101 r/m NP

   reg by immediate count 1100 000w : 11 101 reg : imm8 data PU

   memory by immediate count 1100 000w : mod 101 r/m : imm8
data

PU

SHRD — Double Precision Shift Right

   register by immediate count 0000 1111 : 1010 1100 : 11 reg2
reg1 : imm8

NP

   memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m
: imm8

NP

   register by CL 0000 1111 : 1010 1101 : 11 reg2
reg1

NP

   memory by CL 0000 1111 : 1010 1101 : mod reg r/m NP

SIDT — Store Interrupt Descriptor Table Register NP

SLDT — Store Local Descriptor Table Register NP

SMSW — Store Machine Status Word NP

STC — Set Carry Flag NP

STD — Set Direction Flag NP

STI — Set Interrupt Flag

STOS/STOSB/STOSW/STOSD — Store String Data NP
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Table A-1.  Integer Instruction Pairing (Cont’d)

Instruction Format Pairing

STR — Store Task Register NP

SUB — Integer Subtraction UV

TEST — Logical Compare

   reg1 and reg2 1000 010w : 11 reg1 reg2 UV

   memory and register 1000 010w : mod reg r/m UV

   immediate and register 1111 011w : 11 000 reg : immediate
data

NP

   immediate and accumulator 1010 100w : immediate data UV

   immediate and memory 1111 011w : mod 000 r/m :
immediate data

NP

VERR — Verify a Segment for Reading NP

VERW — Verify a Segment for Writing NP

WAIT — Wait 1001 1011 NP

WBINVD — Write-Back and Invalidate Data Cache NP

WRMSR — Write to Model-Specific Register NP

XADD — Exchange and Add NP

XCHG — Exchange Register/Memory with Register NP

XLAT/XLATB — Table Look-up Translation NP

XOR — Logical Exclusive OR UV
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APPENDIX B
FLOATING-POINT PAIRING TABLES

In the floating-point table in this appendix, the following abbreviations are used:

FX — Pairs with FXCH

NP — No pairing.

Table B-1.  Floating-Point Instruction Pairing

Instruction Format Pairing

F2XM1 — Compute 2ST(0) — 1 NP

FABS — Absolute Value FX

FADD — Add FX

FADDP — Add and Pop FX

FBLD — Load Binary Coded Decimal NP

FBSTP — Store Binary Coded Decimal and Pop NP

FCHS — Change Sign FX

FCLEX — Clear Exceptions NP

FCOM — Compare Real FX

FCOMP — Compare Real and Pop FX

FCOMPP — Compare Real and Pop Twice

FCOS — Cosine of ST(0) NP

FDECSTP — Decrement Stack-Top Pointer NP

FDIV — Divide FX

FDIVP — Divide and Pop FX

FDIVR — Reverse Divide FX

FDIVRP — Reverse Divide and Pop FX

FFREE — Free ST(i) Register NP

FIADD — Add Integer NP

FICOM — Compare Integer NP

FICOMP — Compare Integer and Pop NP
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Table B-1.  Floating-Point Instruction Pairing (Cont’d)

Instruction Format Pairing

FIDIV NP

FIDIVR NP

FILD — Load Integer NP

FIMUL NP

FINCSTP — Increment Stack Pointer NP

FINIT — Initialize Floating-Point Unit NP

FIST — Store Integer NP

FISTP — Store Integer and Pop NP

FISUB NP

FISUBR NP

FLD — Load Real

   32-bit memory 11011 001 : mod 000 r/m FX

   64-bit memory 11011 101 : mod 000 r/m FX

   80-bit memory 11011 011 : mod 101 r/m NP

   ST(i) 11011 001 : 11 000 ST(i) FX

FLD1 — Load +1.0 into ST(0) NP

FLDCW — Load Control Word NP

FLDENV — Load FPU Environment NP

FLDL2E — Load log2(e) into ST(0) NP

FLDL2T — Load log2(10) into ST(0) NP

FLDLG2 — Load log10(2) into ST(0) NP

FLDLN2 — Load loge(2) into ST(0) NP

FLDPI — Load p into ST(0) NP

FLDZ — Load +0.0 into ST(0) NP

FMUL — Multiply FX

FMULP — Multiply FX

FNOP — No Operation NP

FPATAN — Partial Arctangent NP

FPREM — Partial Remainder NP

FPREM1 — Partial Remainder (IEEE) NP
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Table B-1.  Floating-Point Instruction Pairing (Cont’d)

Instruction Format Pairing

FPTAN — Partial Tangent NP

FRNDINT — Round to Integer

FRSTOR — Restore FPU State NP

FSAVE — Store FPU State NP

FSCALE — Scale NP

FSIN — Sine NP

FSINCOS — Sine and Cosine NP

FSQRT — Square Root NP

FST — Store Real NP

FSTCW — Store Control Word NP

FSTENV — Store FPU Environment NP

FSTP — Store Real and Pop NP

FSTSW — Store Status Word into AX NP

FSTSW — Store Status Word into Memory NP

FSUB — Subtract FX

FSUBP — Subtract and Pop FX

FSUBR — Reverse Subtract FX

FSUBRP — Reverse Subtract and Pop FX

FTST — Test FX

FUCOM — Unordered Compare Real) FX

FUCOMP — Unordered Compare and Pop FX

FUCOMPP — Unordered Compare and Pop Twice FX

FXAM — Examine NP

FXCH — Exchange ST(0) and ST(i)

FXTRACT — Extract Exponent and Significant NP

FYL2X — ST(1) ´ log2(ST(0)) NP

FYL2XP1 — ST(1) ´ log2(ST(0) + 1.0) NP

FWAIT — Wait until FPU Ready
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APPENDIX C
PENTIUM® PRO PROCESSOR INSTRUCTION TO

DECODER SPECIFICATION

Following is the table of macro-instructions and the number of µops decoded from each
instruction.

AAA 1

AAD 3

AAM 4

AAS 1

ADC AL,imm8 2

ADC eAX,imm16/32 2

ADC m16/32,imm16/32 4

ADC m16/32,r16/32 4

ADC m8,imm8 4

ADC m8,r8 4

ADC r16/32,imm16/32 2

ADC r16/32,m16/32 3

ADC r16/32,rm16/32 2

ADC r8,imm8 2

ADC r8,m8 3

ADC r8,rm8 2

ADC rm16/32,r16/32 2

ADC rm8,r8 2

ADD AL,imm8 1

ADD eAX,imm16/32 1

ADD m16/32,imm16/32 4

ADD m16/32,r16/32 4

ADD m8,imm8 4

ADD m8,r8 4

ADD r16/32,imm16/32 1

ADD r16/32,imm8 1

ADD r16/32,m16/32 2

ADD r16/32,rm16/32 1

ADD r8,imm8 1

ADD r8,m8 2

ADD r8,rm8 1

ADD rm16/32,r16/32 1

ADD rm8,r8 1

AND AL,imm8 1

AND eAX,imm16/32 1

AND m16/32,imm16/32 4

AND m16/32,r16/32 4

AND m8,imm8 4

AND m8,r8 4

AND r16/32,imm16/32 1

AND r16/32,imm8 1

AND r16/32,m16/32 2

AND r16/32,rm16/32 1

AND r8,imm8 1

AND r8,m8 2

AND r8,rm8 1

AND rm16/32,r16/32 1

AND rm8,r8 1
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ARPL m16 complex

ARPL rm16, r16 complex

BOUND r16,m16/32&16/32 complex

BSF r16/32,m16/32 3

BSF r16/32,rm16/32 2

BSR r16/32,m16/32 3

BSR r16/32,rm16/32 2

BSWAP r32 2

BT m16/32, imm8 2

BT m16/32, r16/32 complex

BT rm16/32, imm8 1

BT rm16/32, r16/32 1

BTC m16/32, imm8 4

BTC m16/32, r16/32 complex

BTC rm16/32, imm8 1

BTC rm16/32, r16/32 1

BTR m16/32, imm8 4

BTR m16/32, r16/32 complex

BTR rm16/32, imm8 1

BTR rm16/32, r16/32 1

BTS m16/32, imm8 4

BTS m16/32, r16/32 complex

BTS rm16/32, imm8 1

BTS rm16/32, r16/32 1

CALL m16/32 near complex

CALL m16 complex

CALL ptr16 complex

CALL r16/32 near complex

CALL rel16/32 near 4

CBW 1

CLC 1

CLD 4

CLI complex

CLTS complex

CMC 1

CMOVB/NAE/C r16/32,m16/32 3

CMOVB/NAE/C r16/32,r16/32 2

CMOVBE/NA r16/32,m16/32 3

CMOVBE/NA r16/32,r16/32 2

CMOVE/Z r16/32,m16/32 3

CMOVE/Z r16/32,r16/32 2

CMOVL/NGE r16/32,m16/32 3

CMOVL/NGE r16/32,r16/32 2

CMOVLE/NG r16/32,m16/32 3

CMOVLE/NG r16/32,r16/32 2

CMOVNB/AE/NC r16/32,m16/32 3

CMOVNB/AE/NC r16/32,r16/32 2

CMOVNBE/A r16/32,m16/32 3

CMOVNBE/A r16/32,r16/32 2

CMOVNE/NZ r16/32,m16/32 3

CMOVNE/NZ r16/32,r16/32 2

CMOVNL/GE r16/32,m16/32 3

CMOVNL/GE r16/32,r16/32 2

CMOVNLE/G r16/32,m16/32 3

CMOVNLE/G r16/32,r16/32 2

CMOVNO r16/32,m16/32 3

CMOVNO r16/32,r16/32 2

CMOVNP/PO r16/32,m16/32 3

CMOVNP/PO r16/32,r16/32 2

CMOVNS r16/32,m16/32 3

CMOVNS r16/32,r16/32 2

CMOVOr16/32,m16/32 3
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CMOVOr16/32,r16/32 2

CMOVP/PE r16/32,m16/32 3

CMOVP/PE r16/32,r16/32 2

CMOVS r16/32,m16/32 3

CMOVS r16/32,r16/32 2

CMP AL, imm8 1

CMP eAX,imm16/32 1

CMP m16/32, imm16/32 2

CMP m16/32, imm8 2

CMP m16/32,r16/32 2

CMP m8, imm8 2

CMP m8, imm8 2

CMP m8,r8 2

CMP r16/32,m16/32 2

CMP r16/32,rm16/32 1

CMP r8,m8 2

CMP r8,rm8 1

CMP rm16/32,imm16/32 1

CMP rm16/32,imm8 1

CMP rm16/32,r16/32 1

CMP rm8,imm8 1

CMP rm8,imm8 1

CMP rm8,r8 1

CMPSB/W/D m8/16/32,m8/16/32 complex

CMPXCHG m16/32,r16/32 complex

CMPXCHG m8,r8 complex

CMPXCHG rm16/32,r16/32 complex

CMPXCHG rm8,r8 complex

CMPXCHG8B rm64 complex

CPUID complex

CWD/CDQ 1

CWDE 1

DAA 1

DAS 1

DECm16/32 4

DECm8 4

DECr16/32 1

DECrm16/32 1

DECrm8 1

DIV AL,rm8 3

DIV AX,m16/32 4

DIV AX,m8 4

DIV AX,rm16/32 4

ENTER complex

F2XM1 complex

FABS 1

FADD ST(i),ST 1

FADD ST,ST(i) 1

FADD m32real 2

FADD m64real 2

FADDP ST(i),ST 1

FBLD m80dec complex

FBSTP m80dec complex

FCHS 3

FCMOVB STi 2

FCMOVBE STi 2

FCMOVE STi 2

FCMOVNB STi 2

FCMOVNBE STi 2

FCMOVNE STi 2

FCMOVNU STi 2

FCMOVU STi 2
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FCOM STi 1

FCOM m32real 2

FCOM m64real 2

FCOM2 STi 1

FCOMI STi 1

FCOMIP STi 1

FCOMP STi 1

FCOMP m32real 2

FCOMP m64real 2

FCOMP3 STi 1

FCOMP5 STi 1

FCOMPP 2

FCOS complex

FDECSTP 1

FDISI 1

FDIV ST(i),ST 1

FDIV ST,ST(i) 1

FDIV m32real 2

FDIV m64real 2

FDIVP ST(i),ST 1

FDIVR ST(i),ST 1

FDIVR ST,ST(i) 1

FDIVR m32real 2

FDIVR m64real 2

FDIVRP ST(i),ST 1

FENI 1

FFREE ST(i) 1

FFREEP ST(i) 2

FIADD m16int complex

FIADD m32int complex

FICOM m16int complex

FICOM m32int complex

FICOMP m16int complex

FICOMP m32int complex

FIDIV m16int complex

FIDIV m32int complex

FIDIVR m16int complex

FIDIVR m32int complex

FILD m16int 4

FILD m32int 4

FILD m64int 4

FIMUL m16int complex

FIMUL m32int complex

FINCSTP 1

FIST m16int 4

FIST m32int 4

FISTP m16int 4

FISTP m32int 4

FISTP m64int 4

FISUB m16int complex

FISUB m32int complex

FISUBR m16int complex

FISUBR m32int complex

FLD STi 1

FLD m32real 1

FLD m64real 1

FLD m80real 4

FLD1 2

FLDCW m2byte 3

FLDENV m14/28byte complex

FLDL2E 2

FLDL2T 2



EPENTIUM® PRO PROCESSOR INSTRUCTION TO DECODER

SPECIFICATION

C-5

5/4/97 4:45 PM    APPC.DOC

INTEL CONFIDENTIAL
(until publication date)

FLDLG2 2

FLDLN2 2

FLDPI 2

FLDZ 1

FMUL ST(i),ST 1

FMUL ST,ST(i) 1

FMUL m32real 2

FMUL m64real 2

FMULP ST(i),ST 1

FNCLEX 3

FNINIT complex

FNOP 1

FNSAVE m94/108byte complex

FNSTCW m2byte 3

FNSTENV m14/28byte complex

FNSTSW AX 3

FNSTSW m2byte 3

FPATAN complex

FPREM complex

FPREM1 complex

FPTAN complex

FRNDINT complex

FRSTOR m94/108byte complex

FSCALE complex

FSETPM 1

FSIN complex

FSINCOS complex

FSQRT 1

FST STi 1

FST m32real 2

FST m64real 2

FSTP STi 1

FSTP m32real 2

FSTP m64real 2

FSTP m80real complex

FSTP1 STi 1

FSTP8 STi 1

FSTP9 STi 1

FSUB ST(i),ST 1

FSUB ST,ST(i) 1

FSUB m32real 2

FSUB m64real 2

FSUBP ST(i),ST 1

FSUBR ST(i),ST 1

FSUBR ST,ST(i) 1

FSUBR m32real 2

FSUBR m64real 2

FSUBRP ST(i),ST 1

FTST 1

FUCOM STi 1

FUCOMI STi 1

FUCOMIP STi 1

FUCOMP STi 1

FUCOMPP 2

FWAIT 2

FXAM 1

FXCH STi 1

FXCH4 STi 1

FXCH7 STi 1

FXTRACT complex

FYL2X complex

FYL2XP1 complex
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HALT complex

IDIV AL,rm8 3

IDIV AX,m16/32 4

IDIV AX,m8 4

IDIV eAX,rm16/32 4

IMUL m16 4

IMUL m32 4

IMUL m8 2

IMUL r16/32,m16/32 2

IMUL r16/32,rm16/32 1

IMUL r16/32,rm16/32,imm8/16/32 2

IMUL r16/32,rm16/32,imm8/16/32 1

IMUL rm16 3

IMUL rm32 3

IMUL rm8 1

IN eAX, DX complex

IN eAX, imm8 complex

INCm16/32 4

INCm8 4

INCr16/32 1

INCrm16/32 1

INCrm8 1

INSB/W/D m8/16/32,DX complex

INT1 complex

INT3 complex

INTN 3

INTO complex

INVD complex

INVLPG m complex

IRET complex

JB/NAE/C rel16/32 1

JB/NAE/C rel8 1

JBE/NA rel16/32 1

JBE/NA rel8 1

JCXZ/JECXZ rel8 2

JE/Z rel16/32 1

JE/Z rel8 1

JL/NGE rel16/32 1

JL/NGE rel8 1

JLE/NG rel16/32 1

JLE/NG rel8 1

JMP m16 complex

JMP near m16/32 2

JMP near reg16/32 1

JMP ptr16 complex

JMP rel16/32 1

JMP rel8 1

JNB/AE/NC rel16/32 1

JNB/AE/NC rel8 1

JNBE/A rel16/32 1

JNBE/A rel8 1

JNE/NZ rel16/32 1

JNE/NZ rel8 1

JNL/GE rel16/32 1

JNL/GE rel8 1

JNLE/G rel16/32 1

JNLE/G rel8 1

JNO rel16/32 1

JNO rel8 1

JNP/PO rel16/32 1

JNP/PO rel8 1

JNS rel16/32 1
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JNS rel8 1

JOrel16/32 1

JOrel8 1

JP/PE rel16/32 1

JP/PE rel8 1

JS rel16/32 1

JS rel8 1

LAHF 1

LAR m16 complex

LAR rm16 complex

LDS r16/32,m16 complex

LEA r16/32,m 1

LEAVE 3

LES r16/32,m16 complex

LFS r16/32,m16 complex

LGDT m16&32 complex

LGS r16/32,m16 complex

LIDT m16&32 complex

LLDT m16 complex

LLDT rm16 complex

LMSW m16 complex

LMSW r16 complex

LOCK ADC m16/32,imm16/32 complex

LOCK ADC m16/32,r16/32 complex

LOCK ADC m8,imm8 complex

LOCK ADC m8,r8 complex

LOCK ADD m16/32,imm16/32 complex

LOCK ADD m16/32,r16/32 complex

LOCK ADD m8,imm8 complex

LOCK ADD m8,r8 complex

LOCK AND m16/32,imm16/32 complex

LOCK AND m16/32,r16/32 complex

LOCK AND m8,imm8 complex

LOCK AND m8,r8 complex

LOCK BTC m16/32, imm8 complex

LOCK BTC m16/32, r16/32 complex

LOCK BTR m16/32, imm8 complex

LOCK BTR m16/32, r16/32 complex

LOCK BTS m16/32, imm8 complex

LOCK BTS m16/32, r16/32 complex

LOCK CMPXCHG m16/32,r16/32 complex

LOCK CMPXCHG m8,r8 complex

LOCK CMPXCHG8B rm64 complex

LOCK DECm16/32 complex

LOCK DECm8 complex

LOCK INCm16/32 complex

LOCK INCm8 complex

LOCK NEGm16/32 complex

LOCK NEGm8 complex

LOCK NOTm16/32 complex

LOCK NOTm8 complex

LOCK ORm16/32,imm16/32 complex

LOCK ORm16/32,r16/32 complex

LOCK ORm8,imm8 complex

LOCK ORm8,r8 complex

LOCK SBB m16/32,imm16/32 complex

LOCK SBB m16/32,r16/32 complex

LOCK SBB m8,imm8 complex

LOCK SBB m8,r8 complex

LOCK SUB m16/32,imm16/32 complex

LOCK SUB m16/32,r16/32 complex

LOCK SUB m8,imm8 complex
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LOCK SUB m8,r8 complex

LOCK XADD m16/32,r16/32 complex

LOCK XADD m8,r8 complex

LOCK XCHG m16/32,r16/32 complex

LOCK XCHG m8,r8 complex

LOCK XOR m16/32,imm16/32 complex

LOCK XOR m16/32,r16/32 complex

LOCK XOR m8,imm8 complex

LOCK XOR m8,r8 complex

LODSB/W/D m8/16/32,m8/16/32 2

LOOP rel8 4

LOOPE rel8 4

LOOPNE rel8 4

LSL m16 complex

LSL rm16 complex

LSS r16/32,m16 complex

LTR m16 complex

LTR rm16 complex

MOV AL,moffs8 1

MOV CR0, r32 complex

MOV CR2, r32 complex

MOV CR3, r32 complex

MOV CR4, r32 complex

MOV DRx, r32 complex

MOV DS,m16 4

MOV DS,rm16 4

MOV ES,m16 4

MOV ES,rm16 4

MOV FS,m16 4

MOV FS,rm16 4

MOV GS,m16 4

MOV GS,rm16 4

MOV SS,m16 4

MOV SS,rm16 4

MOV eAX,moffs16/32 1

MOV m16,CS 3

MOV m16,DS 3

MOV m16,ES 3

MOV m16,FS 3

MOV m16,GS 3

MOV m16,SS 3

MOV m16/32,imm16/32 2

MOV m16/32,r16/32 2

MOV m8,imm8 2

MOV m8,r8 2

MOV moffs16/32,eAX 2

MOV moffs8,AL 2

MOV r16/32,imm16/32 1

MOV r16/32,m16/32 1

MOV r16/32,rm16/32 1

MOV r32, CR0 complex

MOV r32, CR2 complex

MOV r32, CR3 complex

MOV r32, CR4 complex

MOV r32, DRx complex

MOV r8,imm8 1

MOV r8,m8 1

MOV r8,rm8 1

MOV rm16,CS 1

MOV rm16,DS 1

MOV rm16,ES 1

MOV rm16,FS 1
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MOV rm16,GS 1

MOV rm16,SS 1

MOV rm16/32,imm16/32 1

MOV rm16/32,r16/32 1

MOV rm8,imm8 1

MOV rm8,r8 1

MOVSB/W/D m8/16/32,m8/16/32 complex

MOVSX r16,m8 1

MOVSX r16,rm8 1

MOVSX r16/32,m16 1

MOVSX r32,m8 1

MOVSX r32,rm16 1

MOVSX r32,rm8 1

MOVZX r16,m8 1

MOVZX r16,rm8 1

MOVZX r32,m16 1

MOVZX r32,m8 1

MOVZX r32,rm16 1

MOVZX r32,rm8 1

MUL AL,m8 2

MUL AL,rm8 1

MUL AX,m16 4

MUL AX,rm16 3

MUL EAX,m32 4

MUL EAX,rm32 3

NEGm16/32 4

NEGm8 4

NEGrm16/32 1

NEGrm8 1

NOP 1

NOTm16/32 4

NOTm8 4

NOTrm16/32 1

NOTrm8 1

ORAL,imm8 1

OReAX,imm16/32 1

ORm16/32,imm16/32 4

ORm16/32,r16/32 4

ORm8,imm8 4

ORm8,r8 4

ORr16/32,imm16/32 1

ORr16/32,imm8 1

ORr16/32,m16/32 2

ORr16/32,rm16/32 1

ORr8,imm8 1

ORr8,m8 2

ORr8,rm8 1

ORrm16/32,r16/32 1

ORrm8,r8 1

OUT DX, eAX complex

OUT imm8, eAX complex

OUTSB/W/D DX,m8/16/32 complex

POP DS complex

POP ES complex

POP FS complex

POP GS complex

POP SS complex

POP eSP 3

POP m16/32 complex

POP r16/32 2

POP r16/32 2

POPA/POPAD complex
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POPF complex

POPFD complex

PUSH CS 4

PUSH DS 4

PUSH ES 4

PUSH FS 4

PUSH GS 4

PUSH SS 4

PUSH imm16/32 3

PUSH imm8 3

PUSH m16/32 4

PUSH r16/32 3

PUSH r16/32 3

PUSHA/PUSHAD complex

PUSHF/PUSHFD complex

RCL m16/32,1 4

RCL m16/32,CL complex

RCL m16/32,imm8 complex

RCL m8,1 4

RCL m8,CL complex

RCL m8,imm8 complex

RCL rm16/32,1 2

RCL rm16/32,CL complex

RCL rm16/32,imm8 complex

RCL rm8,1 2

RCL rm8,CL complex

RCL rm8,imm8 complex

RCR m16/32,1 4

RCR m16/32,CL complex

RCR m16/32,imm8 complex

RCR m8,1 4

RCR m8,CL complex

RCR m8,imm8 complex

RCR rm16/32,1 2

RCR rm16/32,CL complex

RCR rm16/32,imm8 complex

RCR rm8,1 2

RCR rm8,CL complex

RCR rm8,imm8 complex

RDMSR complex

RDPMC complex

RDTSC complex

REP CMPSB/W/D m8/16/32,m8/16/32 complex

REP INSB/W/D m8/16/32,DX complex

REP LODSB/W/D m8/16/32,m8/16/32 complex

REP MOVSB/W/D m8/16/32,m8/16/32 complex

REP OUTSB/W/D DX,m8/16/32 complex

REP SCASB/W/D m8/16/32,m8/16/32 complex

REP STOSB/W/D m8/16/32,m8/16/32 complex

RET 4

RET complex

RET near 4

RET near iw complex

ROL m16/32,1 4

ROL m16/32,CL 4

ROL m16/32,imm8 4

ROL m8,1 4

ROL m8,CL 4

ROL m8,imm8 4

ROL rm16/32,1 1

ROL rm16/32,CL 1

ROL rm16/32,imm8 1
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ROL rm8,1 1

ROL rm8,CL 1

ROL rm8,imm8 1

ROR m16/32,1 4

ROR m16/32,CL 4

ROR m16/32,imm8 4

ROR m8,1 4

ROR m8,CL 4

ROR m8,imm8 4

ROR rm16/32,1 1

ROR rm16/32,CL 1

ROR rm16/32,imm8 1

ROR rm8,1 1

ROR rm8,CL 1

ROR rm8,imm8 1

RSM complex

SAHF 1

SAR m16/32,1 4

SAR m16/32,CL 4

SAR m16/32,imm8 4

SAR m8,1 4

SAR m8,CL 4

SAR m8,imm8 4

SAR rm16/32,1 1

SAR rm16/32,CL 1

SAR rm16/32,imm8 1

SAR rm8,1 1

SAR rm8,CL 1

SAR rm8,imm8 1

SBB AL,imm8 2

SBB eAX,imm16/32 2

SBB m16/32,imm16/32 4

SBB m16/32,r16/32 4

SBB m8,imm8 4

SBB m8,r8 4

SBB r16/32,imm16/32 2

SBB r16/32,m16/32 3

SBB r16/32,rm16/32 2

SBB r8,imm8 2

SBB r8,m8 3

SBB r8,rm8 2

SBB rm16/32,r16/32 2

SBB rm8,r8 2

SCASB/W/D m8/16/32,m8/16/32 3

SETB/NAE/C m8 3

SETB/NAE/C rm8 1

SETBE/NA m8 3

SETBE/NA rm8 1

SETE/Z m8 3

SETE/Z rm8 1

SETL/NGE m8 3

SETL/NGE rm8 1

SETLE/NG m8 3

SETLE/NG rm8 1

SETNB/AE/NC m8 3

SETNB/AE/NC rm8 1

SETNBE/A m8 3

SETNBE/A rm8 1

SETNE/NZ m8 3

SETNE/NZ rm8 1

SETNL/GE m8 3

SETNL/GE rm8 1
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SETNLE/G m8 3

SETNLE/G rm8 1

SETNO m8 3

SETNO rm8 1

SETNP/PO m8 3

SETNP/PO rm8 1

SETNS m8 3

SETNS rm8 1

SETOm8 3

SETOrm8 1

SETP/PE m8 3

SETP/PE rm8 1

SETS m8 3

SETS rm8 1

SGDT m16&32 4

SHL/SAL m16/32,1 4

SHL/SAL m16/32,1 4

SHL/SAL m16/32,CL 4

SHL/SAL m16/32,CL 4

SHL/SAL m16/32,imm8 4

SHL/SAL m16/32,imm8 4

SHL/SAL m8,1 4

SHL/SAL m8,1 4

SHL/SAL m8,CL 4

SHL/SAL m8,CL 4

SHL/SAL m8,imm8 4

SHL/SAL m8,imm8 4

SHL/SAL rm16/32,1 1

SHL/SAL rm16/32,1 1

SHL/SAL rm16/32,CL 1

SHL/SAL rm16/32,CL 1

SHL/SAL rm16/32,imm8 1

SHL/SAL rm16/32,imm8 1

SHL/SAL rm8,1 1

SHL/SAL rm8,1 1

SHL/SAL rm8,CL 1

SHL/SAL rm8,CL 1

SHL/SAL rm8,imm8 1

SHL/SAL rm8,imm8 1

SHLD m16/32,r16/32,CL 4

SHLD m16/32,r16/32,imm8 4

SHLD rm16/32,r16/32,CL 2

SHLD rm16/32,r16/32,imm8 2

SHR m16/32,1 4

SHR m16/32,CL 4

SHR m16/32,imm8 4

SHR m8,1 4

SHR m8,CL 4

SHR m8,imm8 4

SHR rm16/32,1 1

SHR rm16/32,CL 1

SHR rm16/32,imm8 1

SHR rm8,1 1

SHR rm8,CL 1

SHR rm8,imm8 1

SHRD m16/32,r16/32,CL 4

SHRD m16/32,r16/32,imm8 4

SHRD rm16/32,r16/32,CL 2

SHRD rm16/32,r16/32,imm8 2

SIDT m16&32  complex

SLDT m16  complex

SLDT rm16 4
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SMSW m16  complex

SMSW rm16 4

STC 1

STD 4

STI  complex

STOSB/W/D m8/16/32,m8/16/32 3

STR m16  complex

STR rm16 4

SUB AL,imm8 1

SUB eAX,imm16/32 1

SUB m16/32,imm16/32 4

SUB m16/32,r16/32 4

SUB m8,imm8 4

SUB m8,r8 4

SUB r16/32,imm16/32 1

SUB r16/32,imm8 1

SUB r16/32,m16/32 2

SUB r16/32,rm16/32 1

SUB r8,imm8 1

SUB r8,m8 2

SUB r8,rm8 1

SUB rm16/32,r16/32 1

SUB rm8,r8 1

TEST AL,imm8 1

TEST eAX,imm16/32 1

TEST m16/32,imm16/32 2

TEST m16/32,imm16/32 2

TEST m16/32,r16/32 2

TEST m8,imm8 2

TEST m8,imm8 2

TEST m8,r8 2

TEST rm16/32,imm16/32 1

TEST rm16/32,r16/32 1

TEST rm8,imm8 1

TEST rm8,r8 1

VERR m16  complex

VERR rm16  complex

VERW m16  complex

VERW rm16  complex

WBINVD  complex

WRMSR  complex

XADD m16/32,r16/32  complex

XADD m8,r8  complex

XADD rm16/32,r16/32 4

XADD rm8,r8 4

XCHG eAX,r16/32 3

XCHG m16/32,r16/32  complex

XCHG m8,r8  complex

XCHG rm16/32,r16/32 3

XCHG rm8,r8 3

XLAT/B 2

XOR AL,imm8 1

XOR eAX,imm16/32 1

XOR m16/32,imm16/32 4

XOR m16/32,r16/32 4

XOR m8,imm8 4

XOR m8,r8 4

XOR r16/32,imm16/32 1

XOR r16/32,imm8 1

XOR r16/32,m16/32 2

XOR r16/32,rm16/32 1

XOR r8,imm8 1
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XOR r8,m8 2

XOR r8,rm8 1

XOR rm16/32,r16/32 1

XOR rm8,r8 1



5/4/97 4:46 PM    APPD.DOC

INTEL CONFIDENTIAL
(until publication date)

E
D

Pentium® Pro
Processor MMX™
Instructions to
Decoder Specification



E

D-1

5/4/97 4:46 PM    APPD.DOC

INTEL CONFIDENTIAL
(until publication date)

APPENDIX D
PENTIUM® PRO PROCESSOR MMX™

INSTRUCTIONS TO DECODER SPECIFICATION

EMMS complex

MOVD    m32,mm 2

MOVD    mm,ireg 1

MOVD    mm,m32 1

MOVQ    mm,m64 1

MOVQ    mm,mm 1

MOVQ   m64,mm 2

MOVQ   mm,mm 1

PACKSSDW mm,m64 2

PACKSSDW mm,mm 1

PACKSSWB mm,m64 2

PACKSSWB mm,mm 1

PACKUSWB mm,m64 2

PACKUSWB mm,mm 1

PADDB   mm,m64 2

PADDB   mm,mm 1

PADDD   mm,m64 2

PADDD   mm,mm 1

PADDSB  mm,m64 2

PADDSB  mm,mm 1

PADDSW  mm,m64 2

PADDSW  mm,mm 1

PADDUSB mm,m64 2

PADDUSB mm,mm 1

PADDUSW mm,m64 2

PADDUSW mm,mm 1

PADDW   mm,m64 2

PADDW   mm,mm 1

PAND    mm,m64 2

PAND    mm,mm 1

PANDN   mm,m64 2

PANDN   mm,mm 1

PCMPEQB mm,m64 2

PCMPEQB mm,mm 1

PCMPEQD mm,m64 2

PCMPEQD mm,mm 1

PCMPEQW mm,m64 2

PCMPEQW mm,mm 1

PCMPGTB mm,m64 2

PCMPGTB mm,mm 1

PCMPGTD mm,m64 2

PCMPGTD mm,mm 1

PCMPGTW mm,m64 2

PCMPGTW mm,mm 1

PMADDWD mm,m64 2

PMADDWD mm,mm 1

PMULHW   mm,m64 2

PMULHW  mm,mm 1

PMULLW   mm,m64 2

PMULLW  mm,mm 1

POR     mm,m64 2

POR     mm,mm 1

PSLLD    mm,m64 2

PSLLD    mm,mm 1
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PSLLimmD mm,imm8 1

PSLLimmQ mm,imm8 1

PSLLimmW mm,imm8 1

PSLLQ    mm,m64 2

PSLLQ    mm,mm 1

PSLLW    mm,m64 2

PSLLW    mm,mm 1

PSRAD    mm,m64 2

PSRAD    mm,mm 1

PSRAimmD mm,imm8 1

PSRAimmW mm,imm8 1

PSRAW    mm,m64 2

PSRAW    mm,mm 1

PSRLD    mm,m64 2

PSRLD    mm,mm 1

PSRLimmD mm,imm8 1

PSRLimmQ mm,imm8 1

PSRLimmW mm,imm8 1

PSRLQ    mm,m64 2

PSRLQ    mm,mm 1

PSRLW    mm,m64 2

PSRLW    mm,mm 1

PSUBB   mm,m64 2

PSUBB   mm,mm 1

PSUBD   mm,m64 2

PSUBD   mm,mm 1

PSUBSB  mm,m64 2

PSUBSB  mm,mm 1

PSUBSW  mm,m64 2

PSUBSW  mm,mm 1

PSUBUSB mm,m64 2

PSUBUSB mm,mm 1

PSUBUSW mm,m64 2

PSUBUSW mm,mm 1

PSUBW   mm,m64 2

PSUBW   mm,mm 1

PUNPCKHBW mm,m64 2

PUNPCKHBW mm,mm 1

PUNPCKHDQ mm,m64 2

PUNPCKHDQ mm,mm 1

PUNPCKHWD mm,m64 2

PUNPCKHWD mm,mm 1

PUNPCKLBW mm,m32 2

PUNPCKLBW mm,mm 1

PUNPCKLDQ mm,m32 2

PUNPCKLDQ mm,mm 1

PUNPCKLWD mm,m32 2

PUNPCKLWD mm,mm 1

PXOR    mm,m64 2

PXOR    mm,mm 1
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