
Pentium® III Processor Serial Number Feature and Applications 1

Pentium® III Processor Serial Number Feature and
Applications

Stephen Fischer, BMD-FM Design, Intel Corp.
James Mi and Albert Teng, Content Group, Intel Corp.

Index words: Pentium® III, Internet, Java*, asset management, information management

ABSTRACT

With the ever-growing importance of the Internet in the
everyday life of an individual or a business user of a
personal computer, the ability to have some form of
unique identifier for that computer has become
increasingly important. Applications ranging from
system management for reducing Total Cost of
Ownership (TCO) and electronic commerce to
information management can expect to benefit from such
a capability.

In response to this need, the Pentium® III processor has
incorporated a serial number capability into the existing
instruction set. The serial number feature makes use of
information programmed onto the die during
manufacturing, designed to create a unique number that
is readable by external software .

Intel concerns about user privacy led to the
incorporation of a user hardware disable feature for the
processor serial number.

INTRODUCTION
The Intel® processor serial number (which for brevity
will be referred to as ps#) refers to a new feature
introduced with the Pentium® III processor, namely a
unique numeric identifier. This serial number can be read
by external software.

With the availability of a processor-based serial number,
new classes of software applications are more easily
enabled. Moreover, electronic transactions via the
Internet can be more easily enabled by using the ps# as
an added level of support for authentication.
Corporations can make use of the ps# to facilitate system
configuration and tracking, thereby improving
manageability. Sensitive data can be closely controlled
by binding the ps# information to the accessibility of the
data.

This paper defines the processor serial number feature
and explains how it is implemented on the Pentium III
processor. We also describe some of the applications
that are enabled with this capability, and give an
overview of an application framework that provides CPU
identification, based on the ps# in an open network
environment, and limits cross-correlation of information
across Web sites.

ARCHITECTURE AND
IMPLEMENTATION
The ps# capability introduced in the Pentium® III
processor is communicated through an extension of the
existing CPUID instruction [1]. The CPUID instruction is
responsible for returning specific parameters of the
processor to external software. The type of parameters
include items such as the product family, model, and
stepping, as well as feature-specific attribute information
such as a feature flags field for indicating what functions
are available for this processor. Including the processor
serial number information in the list of possible
parameters that can be returned was therefore a natural
extension of the CPUID instruction. Since this
instruction can be executed at all privilege levels (PL0 –
PL3), it is available for execution at the application level
as well as the OS level, an important distinction that
enables a much wider range of uses of the ps# feature.

Parameter information such as the stepping number or
feature flag bits are returned in the general purpose
registers EAX, EBX, ECX, and EDX when the CPUID
instruction is executed with a specified input index value
held in EAX.

Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 2

Figure 1: CPUID instruction definition

The ps# information is returned by the addition of a new
index (EAX=3). The presence of the ps# feature is also
indicated by the setting of a new feature flag, bit 18.
This allows external software to determine if the ps#
feature is supported and enabled in the processor.
Figure 1 summarizes the definition of the CPUID
instruction supported by the Pentium III processor.

To address potential concerns about compromising user
privacy through the visibility of the processor serial
number, a capability is incorporated that allows a user to
choose whether to enable or disable this feature. This
capability is intended to be under the user or system
manager’s control. This is implemented through the
addition of a new read/write control register disable bit
with a “sticky” property. During execution of the CPUID
instruction, the internal microcode of the processor polls
this bit to determine if ps# information should be
reflected back to the CPUID instruction-level
functionality. Once the bit is set to a ‘1’ (ps# disable), it
cannot be cleared back to a ‘0’ through software means;
only a hardware reset of the processor can clear the
disable bit, thus preventing subsequent software from
overriding the user preference setting after a potential
software disable action has been performed. It should
also be noted that the ps# disable bit is accessible only
at the highest privilege level (PL0). This level of
accessibility keeps the user or system manager
preference setting decision with supervisory or
initialization software such as the system BIOS.

The ps# information returned by the Pentium III
processor is derived from on-die polysilicon fuse bits

programmed at wafer sort. The underlying microcode
supporting the CPUID instructions reads the logical
programmed values of these internal fuse bits and
concatenates them to form a 64-bit value returned in the
general purpose registers EDX and ECX.

The underlying fuse technology is based on a novel
silicon approach that uses a Ti-silicide layer on top of a
polysilicon line [2]. Programming occurs by a current
stress that is high enough to cause agglomeration of the
Ti-silicide. A current mirror sensing circuit is used to
measure the programmed fuse resistance relative to an
unprogrammed reference fuse and return a logical value.
The technology has yielded near 100% programming
success and maintains this reliability under thermo-
mechanical and bias-temperature stress conditions.
Redundant fuse elements for each logical fuse bit are
incorporated to further increase the reliability for a
successful programmed value, yielding a robust process
for deriving and programming the serialized value for the
ps#, in manufacturing of the Pentium III processor.

APPLICATION USAGE MODELS

Example 1: Improving Manageability,
Reducing TCO
In large enterprise environments, IT managers face daily
challenges to ensure a well-managed and smoothly
running computing infrastructure. The Intel® Pentium®
III processor and its ps# give IT departments a new tool
to improve manageability and lower the total cost of
ownership of PCs.

Case EAX=0;
{

EAX = maximum index supported
EBX:EDX:ECX = “GenuineIntel”

}
Case EAX=1;
{

EAX = Family:Model:Stepping
EBX:ECX = reserved
EDX = feature flags (New ps# feature flag bit 18)

}
Case EAX=2;
{

EAX:EBX:ECX:EDX = cache and TLB parameters
}
Case EAX=3;
{

EAX:EBX = reserved
ECX:EDX = processor serial number data

}

Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 3

In the past, IT departments utilized a variety of methods,
including user name, MAC address, IP address, and
GUID to identify hardware. However, none of these
methods are as consistent and reliable as the ps#, which
cannot be erased or changed. With a ps#, it is easy to
identify a specific PC, even if the system changes users,
network cards are swapped out, or the system software
and BIOS are reloaded. The ps# also makes it possible
to report more reliably on software asset management: IT
managers can know with a higher level of certainty which
software is running on each system and who the users of
the software program are. It can also assist Help Desk
personnel in troubleshooting problems even when a
PC’s hard disk has crashed.

For system configuration and software updates,
companies can use the ps# as a way of reliably
identifying PCs pre-boot and post installation remotely.
If support technicians know the processor serial number
ahead of time, they can enter the number in the database
and pre-program the software to be delivered when the
PC is placed on the network. This reduces on-site
engineering visits and automates the configuration
process, saving time and reducing support expenses.

When a processor fails in a multiprocessor or clustering
environment, it is difficult to determine which specific
processor failed. With the Windows NT* operating
system, the logical processor can be identified but not
mapped to the physical processor. The ps#, however,
allows IT staff to determine the exact point of failure,
thereby enabling them to route work around the problem
processor. This can significantly improve load balancing
and fault tolerance, and it can increase the system’s
availability to the user.

Example 2: Enhancing Management for E-
Business
Internet-based Electronic-Business (E-Business) gives
companies new freedom to push and pull information to
and from one another, but also increases the need to
ensure that the information reaches only its intended
recipients. The ps# can be invaluable in this regard.

Using present technology, individuals and businesses
can authenticate who is accessing the information on
their personal computers and their company network by
combining any two or three variables: the traditional
something you know mechanisms such as login names
and passwords; something you have items such as
hardware keys (dongles) and smartcards, and something
you are aspects such as biometric measures.

With the launch of the Intel Pentium III processor and its
ps# technology, the PC now has another something you

have item. It is an access token that can be used in
conjunction with passwords to help ensure that only the
intended platform receives sensitive corporate
information. For example, an Internet-based travel
agency network can validate a system’s processor serial
number to make sure that sensitive pricing information is
pushed only to authorized travel agents’ machines. The
increased identification offered by the ps# also helps
corporate intranets extend information to employee
desktops, offering employees greater real-time access to
their 401(k) plans, payroll, and other personal data once
their ps# is validated. The ps# also allows businesses to
broadcast sensitive video with synchronized
presentations by adding another layer of authentication
prior to pushing the presentation out to the user.

In business-to-business transactions, corporations can
bind the ps# to their digital certificates and internal or
external certificate authorities. Business partners can
then gain access to private information only if they have
their corporate certificate and are accessing the data from
a validated platform. (For more information on how to
validate system identity, see the section entitled “System
Verification Based on Processor Serial Number” in this
paper.)

Example 3: Information Management
As the flood of information rises and the PC becomes the
primary vehicle for processing, storing, and accessing
information, the management of information poses a
greater challenge. The ps# provides a non-intrusive
identifier that enables information service providers to
customize the data and services that are delivered to the
end user. The ps# also provides a better way to track
and protect important or sensitive information, and it can
improve applications such as data backup and restore
protection, removable storage data protection, managed
access to files, and confirmation of document exchange
between appropriate users.

SYSTEM VERIFICATION
It is a challenging task to design a software system that
can reliably identify a system in an open network
environment, based solely on the serial number of a
processor. Because the client system could be a hostile
system controlled by a potential hacker, it is difficult for
the server to determine whether the returned ps#
information from the client system is valid or spurious.
The Processor Serial Number Verification Reference
Implementation (RI) offers a basis to solve this problem.
The RI was a joint effort by Intel and Independent
Software Vendors (ISV) to provide a way to extract the
ps# from a client system in an open network environment

Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 4

and limit cross-correlation of information across Web
sites.

Tamper Resistance
The RI’s software agents are downloaded over an open
network and are therefore exposed to attacks by hackers.
To protect against these attacks, the software agents are
designed using special tamper resistant techniques,
appropriately called Tamper Resistant Software (TRS)
agents. The TRS agents automatically detect and
protect against potential hacker attacks. Typically non-
processor-based hardware authentication solutions
imply the use of privileged instructions; it is not
available at the application level directly. The additional
software layers such as device drivers are exposed to
more hacker attacks. Processor serial number instruction
can be executed at the application level directly and does
not require special drivers. It makes the tamper resistant
protection stronger. These TRS agents are available
from different ISVs. A common set of API functions has
been defined and made available to these vendors so
that developers can easily use agents from a number of
vendors interchangeably.

To provide safety against impostors, the framework
adopts a protocol whereby the authentication or
verification of the client happens on the server. Agents
are used once for a short time and then are discarded,
thus enhancing protection.

Privacy Protection
Authentication mechanisms play an important role in
Web-based applications. However, some users or
businesses may not honor a consumer’s right to privacy,
and they gather personal information about the
consumer without the consumer’s consent. Intel has
taken several measures to address consumers’ privacy
concerns not only in the design of the processor serial
number feature, but also in providing certain utility tools.
Several RI features work to further enhance the
protection of a user’s data:

• Software agents that gather the ps# are packaged in
a digital container (a cabinet file for Internet
Explorer∗, and a Jar file for Netscape Navigator*)
that is then digitally signed by the Web service
provider and delivered to the client system. When
the Web browser sees the container, it prompts the
user to grant access rights to the software, ensuring

∗Other brands and names are the property of their
respective owners.

that the ps# cannot be collected without the user’s
consent.

• The ps#, once read, is transformed into another
unique identifier by hashing it with a service ID.
The hashed value is then sent by the client agent to
the server to be stored in the user database.

• The service ID is unique to each service provider.
This precludes different Web sites from correlating
user profiles due to the non-communicative
characteristic of the hashing algorithm.

The hashing algorithm is designed to be a one-way,
collision-free algorithm, which means one cannot infer
the processor serial number given the hashed value and
the service ID. Intel also recommends that Web service
providers make their privacy policies available to the
consumer.

Performance Considerations
Another important attribute of the RI design is the short
download time for the agents. If the size of the software
agents is large, the user might have to wait for a long
time before getting access. To reduce download times,
agents used in the RI are limited to about 35 Kbytes.
However, the quality of protection is proportional to the
size of agents: the larger the size, the better the
protection provided. A balance was reached with a small
agent that can protect against attacks for a sufficient
time. Protection is augmented by dynamically renewing
the agents and by using a time-out mechanism on the
server.

REFERENCE IMPLEMENTATION
ARCHITECTURE
The RI framework consists of a client module, a server
module, and a protocol for communication between the
client and the server.

The client module consists of two types of client agents:
a registration agent, which is a non-armored module for
client registration; and a verification agent, which is a
TRS armored module for client verification. Each agent
consists of a Java* applet and native code DLL that are
packaged together in digitally signed containers.

The server module manages client sessions and
authenticates the client system in addition to providing
access to the Web site. The Web server also stores the
registration code with the user name and password in a
backend database.

Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 5

Client

Internet

JavA* Applet or
Cl ient Application

User
Database

TRS Agent
Pool

Agent DLL

Web Server Script
Program (IIS/ASP etc)

Server Veri fication
Program

Server

 Figure 2: Reference implementation architecture

System Verification Flow
When a user first logs on to the Web server, the server
asks for a user ID and password and then downloads a
registration agent to the client system. The registration
agent computes a registration code that is a hash of the
ps# and service ID, and then returns it back to the server
to be stored in the user database with the user’s name
and password. The server then sends a randomly
selected verification agent from a pool of agents. Each
agent is tamper resistant and embeds a unique secret
value. It is only used once during a pre-defined time
duration (usually about ten minutes). The agent is
designed to sustain an attack by a very experienced
hacker during that time period. Once the verification
agent is downloaded to the client system, it calculates
the verification code and sends the verification code to
the server. As a measure of extra protection, the server
times out during these sessions if it does not receive a
valid verification code from the client within a pre-
determined time.

The verification code is computed by first hashing the
ps# and service ID (the same as the one used for
registration). The resulting registration code is again

hashed with additional unique secret values embedded
within the verification agent. This results in a
verification code, which is sent back to the Web server
for verification.

After the server receives a valid verification code from
the client, it first stores the returned value temporarily.
Then the server calculates an authentication code by
hashing the previously stored registration code with the
unique secret value embedded in the particular
verification agent sent to the client. The server then
compares the authentication code with the verification
code. If the two values match, the client system is
authenticated, and the user can access content or obtain
the requested service.

Supported Environment
Client agents support Microsoft ∗ Windows* platforms
(Windows NT*, Windows* 98 and Windows 95*). The
RI supports Microsoft Internet Explorer* 4.0, Netscape
Navigator* 4.x, and AOL* browsers. Both uniprocessor
and multiprocessor client systems are supported. For
multiprocessor systems, the ps# is gathered consistently
from the same processor selected from the set of
available processors. Similar software can be developed
to support other client operating systems, such as
Linux.* For server environments, the Reference
Implementation supports both Windows NT and Unix.*

CONCLUSION
The serial number feature of the Pentium® III processor
is designed to provide a unique identifier for each
processor shipped by Intel with this feature to be visibly
retrieved using application software. The CPUID
instruction enables a natural method for providing this
information with minimal impact to the processor design
or to future implementations.

As mentioned in this paper, several different categories
of applications can greatly benefit from a processor-
based serial number capability. The most obvious areas
are enterprise asset management, information
management, and management for E-Business.

Unlike other means of deriving unique identifiers, the
ps# feature implementation of the Pentium III processor
is not impacted by a change of system hardware or
software configuration (i.e., network card, IP address,
etc.). Embedding this feature in the processor provides
multiple benefits:

∗Other brands and names are the property of their
respective owners.

Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 6

• Consumers and service/content providers have
greater confidence in this feature due to the
increased tamper resistance of the unique identifier.

• Visibility of the ps# to application-level software.
Typical non-processor based solutions imply the
use of privileged instructions (PL0) not available to
application-level code or common across platforms.

As a result, we expect the ps# feature of the Pentium III
processor to be of particular value to groups such as
information providers and IT managers, and also to
consumers as new applications take advantage of this
feature.

ACKNOWLEDGMENTS
We thank those who helped to initiate, define, and refine
the processor serial number feature and application
program. Among the most active were Rob Sullivan,
Ticky Thakkar, Natasha Oza, Vishesh Parikh, Jim
Kolotorous, Susan Wojcicki, and Peter Ruscito.

REFERENCES
[1] Pentium® Pro Family Developer’s Manual, Volume

2: Programmers Reference Manual, Order Number
000900-001, Intel Literature Sales, Mt. Prospect, IL,
1996, pp. 11-73 to 11-79.

[2] Mohsen Alavi, Mark Bohr, Jeff Hicks, Martin
Denham, Allen Cassens, Dave Douglas, Min-Chun
Tsai, “A PROM Element Based on Salicide
Agglomeration of Poly Fuses in a CMOS Logic
Process,” 1997 IEEE International Electron Devices
Tech Digest, December 1997, pp. 855-858.

AUTHORS’ BIOGRAPHIES
Stephen Fischer is a staff design engineer with Intel
Corporation’s Folsom Design Center, which is
responsible for the microcode and microarchitecture
related design of the Pentium® III processor. Prior to
that, Stephen was involved in various programs
including EISA chipset definition, PCI bus and chipset
definition, and the Intel MMX™ technology definition.
He received a B.S. degree in computer engineering from
CSU-Sacramento in 1985 and currently holds six U.S.
patents. His e-mail is sfischer@pcocd2.intel.com.

James Mi is manager of Enabling Technology with
Intel’s Content Group, which is responsible for
application architecture and development. Prior to that,
he worked in marketing, software and hardware
development at Intel’s Content Group, TCAD, and Flash
TD. James received a B.S. degree in physics from Fudan
University, China, in 1989 and an M.S. degree in EE from

Princeton University in 1991. He joined Intel in 1992. He
holds seven U.S. patents. His e-mail is
james.mi@intel.com.

Albert Teng is director of New Technologies with a
focus on client/server applications for enterprise/e-
commerce solutions, security, and knowledge
management. Previously he was the general manager of
Intel China and held an engineering management
position in the Microcomputer Labs. Before joining Intel
in 1985, Albert worked at AT&T Bell Labs and at the
Illinois Institute of Technology. He received his Ph.D.
from Ohio State University in 1979. His e-mail is
albert.y.teng@intel.com.

