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ABSTRACT
This paper discusses the implementation tradeoffs of the
Pentium III processor.  The Pentium III processor
implements a new extension of the IA-32 instruction set
called the Internet Streaming Single-Instruction, Multiple-
Data (SIMD) Extensions (Internet SSE).  The processor is
based on the Pentium Pro processor microarchitecture.

The initial development goals for the Pentium III processor
were to balance performance, cost, and frequency.
Descriptions of some of the key aspects of the SIMD
Floating Point (FP) architecture and of the  memory
streaming architecture are given.  The utilization and
effectiveness of these architectures in decoupling memory
accesses from computation, in the context of balancing the
3D pipe, are discussed.  Implementation choices  in some
of the key areas are described.  We also give some details
of the implementation of Internet SSE execution units,
including the development of new FP units, and discuss
how we have implemented the 128-bit instructions on the
existing 64-bit datapath.  We then discuss the details of
the memory streaming implementation.

The Pentium III processor is now in production on
frequencies of up to 550 MHz.  The new instructions in the
Internet SSE were added at about a 10% die cost and have
enabled the Pentium III processor to offer a richer, more
compelling visual experience.

INTRODUCTION
The goal of the Internet SSE development was to enable a
better visual experience and to enable new applications
such as real-time video encoding and speech recognition
[7].  The Pentium III processor is the first implementation
of ISSE.  It is based on the P6 microarchitecture, which
allows an efficient implementation in terms of die size and
effort.  The key development goals were the
implementation of the Internet SSE while keeping about a
10% larger die size than the Pentium II processor and
achieving a higher frequency by at least one bin.

Two features of these new applications challenge
designers of computer systems.  First, the algorithms that
the applications are based on are inherently parallel in the

sense that the same sequence of operations can be
applied concurrently to multiple data elements.  The
Internet SSE allows us to express this parallelism explicitly,
but the hardware needs to be able to translate the
parallelism into higher performance.  The P6 superscalar
out-of-order microarchitecture is capable of utilizing
explicit as well as extracted implicit parallelism.  However,
hardware that supports higher computation throughput
improves the performance of these algorithms.  The
development of such hardware and increasing its
utilization were key tasks in the development of the
Pentium III processor.  Second, in order to feed the parallel
computations with data, the system needs to supply high
memory bandwidth and hide memory latency.

The implementation section of this paper contains details
of some of the techniques we used to provide enhanced
throughput of computations and memory while meeting
aggressive die-size and frequency goals.  The primary
purpose of this paper, however, is to describe key
implementation techniques used in the processor and the
rationale for their development.

ARCHITECTURE
The Pentium III processor is the first implementation of
the Internet SSE.  The Internet SSE contains 70 new
instructions and a new architectural state.  It is the second
significant extension of the instruction set since the 80386
and the first to add a new architectural state.  MMX was
the first significant instruction extension, but it did not
add any new architectural state.  The new instructions fall
into different categories:

• SIMD FP instructions that operate on four single
precision numbers

• scalar FP instructions

• cacheability instructions including prefetches into
different levels of the cache hierarchy

• control instructions

• data conversion instructions
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• new media extensions that are instructions such as
the PSAD and the PAVG that accelerate encoding and
decoding respectively

Adding the new state reduced implementation complexity,
eased programming model issues, and allowed SIMD-FP
and MMX technology or X87 instructions to be used
concurrently. It also addressed ISV and OSV requests.  All
of the SSE State was separated from the X87-FP State;
there is a dedicated interrupt vector to handle the numeric
exceptions.  There is also a new control/status register,
MXCSR, which is used to mask/unmask numerical
exception handling, to set rounding mode, to set flush to
zero mode, and to view status flags.  Applications often
require both scalar and packed mode of operations.  To
address this issue, explicit scalar instructions (in the new
SIMD-FP mode) were defined, which for the Pentium III

processor execute only a single micro-instruction.
Support is provided for two modes of FP arithmetic: IEEE
compliant mode for applications that need exact single
precision computation and portability and a Flush-to-Zero
(FTZ) mode for high-performance real-time applications.

(Details of the instruction set are given in other papers in
this issue of the Intel Technology Journal.)

IMPLEMENTATION
In this section we discuss some of the key  features that
we developed to increase FP and memory throughput on
the Pentium III processor.  We then discuss a couple of
techniques we developed to help provide an area-efficient
solution.  Figure 1 shows the block diagram of the P6
pipeline.
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Figure 2 shows the Dispatch/Execute units in the
Pentium II processor.  An overview of the P6
architecture and the microarchitecture is given in [5] and

[6] where you will also find a description of the blocks
shown in Figures 1 and 2.
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Figure 2:  Pentium II Dispatch/Execute units

Implementation of Internet SSE Execution
Units
The Internet SSE was implemented in the following way.
The instruction decoder translates 4-wide (128-bit)
Internet SSE instructions into a pair of 2-wide (64-bit)
internal uops.  The execution of the 2-wide uops is
supported by 2-wide execution units.  Some of the FP
execution units were developed by extending the
functionality of existing P6 FP units.  The 2-wide units
boost the performance to that of twice the Pentium II
processor.  Further, implementing the 128-bit instruction

set on the 64-bit datapath limits the changes to the
decoder and the utilization of existing and new execution
units.  We also implemented a few other features to
improve the utilization of the FP hardware:

1. The adder and multiplier were placed on different
ports.  This allows for simultaneous dispatch of 2-
wide addition and 2-wide multiplication operations.
This boosts the peak performance two more times
when compared to the Pentium II, and hence, it allows
2.2 GFLOP/sec peak at 550 MHz.  The new units
developed on the Pentium III and modified P6 units
are shown in color in Figure 3.
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Figure 3: Pentium III Dispatch/Execute units

All the new units have been added on Port 1.  The
new operations executed on Port 0 have been
accomplished by modifying existing units.  The
multiplier resides on Port 0 and is a modification of the
existing FP multiplier.  The new packed SP
multiplication is performed with a throughput of two
SP numbers each cycle with a latency of four cycles.
(The X87 SP processor, on the other hand, had a
throughput of a single SP number every two cycles
and a latency of five cycles.)  A new packed SP adder
is provided on Port 1.  The adder operates on two SP
numbers with a throughput of one cycle and a latency
of three cycles.  The adder also executes all compare,
subtract, min/max, and convert instructions.
Essentially, we have assigned different units (and
therefore different instructions) to Ports 0 and 1 to
ensure that a full 4-wide peak execution can be
achieved.

2. Hardware support is in place for data reorganization.
Effective SIMD computations require adequate SIMD
organization of data.  For instance, the conventional
representation of 3D data has the format of “(x, y, z,
w)”, where x, y, and z are the three coordinates of a
vertex, and w is the perspective correction factor.  In
some cases, SIMD computations are more effective if
the data are represented as vectors of equivalently
named coordinates “(x1, x2, …), (y1, y2,…), (z1, z2,…),
(w1, w2,…”).  In order to support transformations
between these type of data representations, the
Internet SSE includes the set of data manipulation
instructions.  We considered the effective hardware

support of these instructions to be an important
method to improve the utilization of FP units, since it
allows for less time to be spent in data reorganization.
The new shuffle/logical unit serves this purpose.  It
shares Port 1 and executes the unpack high and
unpack low, move, and logical uops.  The 128-bit
shuffle operation is performed through three uops: (1)
copy temporary, (2) shuffle low, and (3) shuffle high.
The shuffle unit also executes packed integer shuffle,
PINSRW and PEXTRW, through sharing of the FP
shuffle unit.

3. Data is copied faster.  IA-32 instructions overwrite
one of the operands of the instruction.  We knew that
this feature would add more MOVE instructions to the
code.  For instance, consider the following fragment:

Load memory operand A to register XMM0

Multiply XMM0 by memory operand B

The second instruction overwrites the content of the
register XMM0.  Hence, if the subsequent code uses
the same memory operand A, then we need to either
load it again from the memory (thus putting additional
pressure on the load port, which is frequently used in
multimedia algorithms), or we need to copy XMM0 to
another register for later re-use.  In order to facilitate
the latter method, we implemented two move ports in
the Pentium III processor.
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Exceptions Handling
The implementation of a 128-bit processor via two 64-bit
micro-ops raises the possibility of an exception occurring
on either of the two independent micro-ops (uops).  For
instance, if the first uop retires while the second uop
causes an exception, the architecturally visible 128-bit
register is updated only partially, and it would cause an
inconsistency in the architectural state of the machine.
Retirement is the act of committing the results of an
operation to architectural state.  In order to provide
“precise exceptions handling” we implemented the Check
Next Micro-Operation (CNU) mechanism that prevents the
retirement of the first uop if the second one causes an
exception.  The mechanism acts as follows.  The first uop
in a pair of two uops, which need to be treated as an
atomic operation and/or data type, is marked with the CNU
flow marker.  The instruction decoder decodes the CNU
marker and sends the CNU bit to the allocator.  The
allocator informs the ROB to set the CNU bit in the ROB
entry allocated for this uop.  The ROB is the reorder buffer
and stores the micro-ops in the original program order.
The ROB will delay retirement of the first  uop until the
second uop is also guaranteed to retire.  Since this
mechanism throttles the retirement, we implemented the
following optimization.  In the case where all exceptions

are masked, each uop may be retired individually.  Since
multimedia software usually masks the exceptions, for all
practical purposes, there is no loss of computational
throughput.

Moreover, to maintain high computational throughput, we
implemented in hardware the fast processing of masked
exceptions, which happen routinely during execution of
multimedia algorithms, such as overflow, divide by zero,
and flush-to-zero underflow.  These exceptions are
handled by hardware through modifications to the
rounder/writeback multiplexers.

CACHEABILITY IMPLEMENTATION
We now discuss the key changes in the memory
implementation.  These include support for the
cacheability control features introduced by the Internet
SSE instruction set.  Support for byte masked writes,
streaming stores, data prefetching, multiple WC buffers,
and store fencing operations have been incorporated.

These are some of the  aspects of the prefetch
implementation on the Pentium III processor.  Figure 4
shows the compulsory effect of two stalls that happen in
the Pentium II if the load instruction misses the cache.

Memory  Access
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ll Memory  Access Sta l ls  P ipe l ineMemory Access Sta l ls  P ipe l ine
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Figure 4: Prefetch implementation
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The pipeline stall shown in the “memory access stalls
pipeline” portion of  Figure 4 is caused by the fact that the
load instruction retires much later than the previous
instruction.  The instructions following the load are
executed, but they cannot retire from the machine until the
load returns the data.  This is illustrated in the “memory
access stalls pipeline” portion of the figure: the
instructions subsequent to the memory access execute
and then wait for the memory access to finish executing
before they retire.  Therefore, these instructions
accumulate inside the machine.  Eventually some of the
key resources of the processor, such as the ROB that
registers non-retired instructions, get saturated.  This
immediately stalls the front end of the processor since no
new instructions can get the resources needed for

execution.  In the Pentium III processor, we removed this
bottleneck for the prefetch instruction.  We moved the
retirement of the prefetch instruction much earlier in the
pipe.  This is illustrated in the “prefetch decouples
memory access” portion of Figure 4.  Here we observe that
instructions after the memory access (in this case,
Prefetch) are allowed to retire even though the memory
access itself has not completed its execution.  The
prefetch is implemented such that even in the case of a
cache miss, it retires almost immediately, and no retirement
and resources saturation stalls occur due to memory
access.  As a result, we get much better concurrency of
computations and memory access.  This concept is called
senior load and is shown in Figure 5.
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FB Request

Bus request
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Mem
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Data Request
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Figure 5: Senior load implementation

Figure 5 shows the differences in how readiness for
retirement is signaled in load instructions and prefetch
instructions.  In the case of a load, the instruction is
dispatched into the memory pipe after dispatch from the
RS.  If it misses the DCU, it is dispatched by the BUS unit.
After the data returns from the L2 or the bus, the load is
signaled as complete (Load WB valid), and the load and
subsequent completed instructions are eligible to retire.  In

the case of the Prefetch, completion is signaled (by the
Pref WB Valid) almost immediately after allocation into the
MOB.  The completion is not delayed until the data is
actually fetched from the memory subsystem.  The
signaling of early completion permits the retirement of the
load, and subsequent instructions occur earlier than in the
case of the load, thus removing the resource stalls
associated with memory access latency.  The prefetch
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instructions can fetch data into different levels of the
cache hierarchy.  Also, streaming store instructions are
supported.  In many instances, applications stream data
from memory and use them once without modifications.
Using regular cache models will result in eviction of useful
data from the cache.  In the Discussion section of this
paper, you will find details on cache management to
increase performance.

We now discuss writes.  The main issue with writes is that
many applications such as video and 3D have a large
working set.  This working set doesn’t fit into the cache.
In such a situation, additional performance may actually
be gained if the application bypasses the cache.  In other
words, the application should keep data in the memory.
Hence it should write directly to the memory.  This is what
streaming stores are for.

The implementation of high write throughput is as
important as high bandwidth memory reads.  What we
have done in the Pentium III processor is mainly two
things: we have improved the write bandwidth and the
write combining allocation and eviction.  The bus write
bandwidth was improved by 20%.  The Pentium III
processor now can saturate a 100 MHz bus with 800 MBs
of writes.  This was done by removing the dead cycle
between back to back write combining writes.

We also improved the write buffers allocation mechanism
in order to support this large write bandwidth.  Since we
re-use Pentium II fill buffers to do this, some further
clarifications on the difference in buffers in the Pentium III
and the Pentium II processors are in order.  The
differences are based on the very nature of SSE.  Before
the Pentium III processor, the architecture was mainly
oriented to scalar applications.  The purpose of fill buffers
was to provide high instantaneous throughput caused by
bursts of misses in scalar applications.  The average
bandwidth requirements were comparatively small, about
100 MB per second, but instantaneous requirements were
high.  SSE applications are streaming applications such as
vector algorithms.  Hence, the purpose of SSE buffers is to
sustain high average throughput.  In terms of overall
(read+write) throughput requirements, the capacity of the
Pentium II processor’s fill buffers is enough for the
Pentium III processor timeframe.  But the allocation policy
had to be improved in order to increase the efficiency with
which this capacity is used.  We therefore allowed a few
write buffers at a time, and we provided fast draining of
the buffers to reduce the occupancy time.  The faster
draining of the buffers and the efficient utilization
techniques for multiple buffers are described below.

The Pentium III processor’s write combining has been
implemented in such a way that its memory cluster allows
all four fill buffers to be utilized as write-combining fill

buffers at the same time, as opposed to the Pentium II
processor which allows just one.  To support this
enhancement, the following WC eviction conditions, as
well as all Pentium™ Pro WC eviction policies, are
implemented in the Pentium III processor:

• A buffer is evicted when all bytes are written (all
dirty) to the fill buffer.  Previously the buffer eviction
policy was “resource Demand” drivem, i.e. a buffer
gets evicted when DCU requests the allocation of
new buffer.

• When all fill buffers are busy a DCU fill buffer
allocation request, such as regular loads, stores, or
prefetches requiring a fill buffer can evict a WC buffer
even if it is not full yet.

Die-Frequency Efficient Implementation
In the Pentium III processor, a number of tradeoffs were
made to remain within tight die-size constraints and to
reach the frequency goals.  Two of these tradeoffs are
mentioned below:

• We merged the x87 multiplier with the packed FP
multiplier.  This helped significantly with die size and
kept the loading on the ports down.  Loading on the
writeback busses was an important factor for us.  The
writeback busses have been significant speed paths
in past implementations, and the addition of new units
and logic for implementation of the Internet SSE
would have made the situation worse.  This was an
area of focus from the very inception of the project.
We also considered merging the x87 adder with the
packed FP adder, but we did not follow through with
this because of schedule tradeoffs.

• We reused the multiplier’s Wallace tree to do the
PSAD.  The PSAD, computing the absolute difference
of packed MMX values, was implemented with three
uops: computation of the difference, computation of
the absolute value, and the sum of the absolutes.  The
sum of the absolutes was computed in the multiplier’s
Wallace tree.  The bytes that needed to be added
were fed into the tree that normally sums the
multiplication partial products.  The reuse of this logic
enabled us to implement the instruction with a very
small die and frequency impact.  Alternatives to
execute the instruction with reasonable performance
were significantly more expensive.

RESULTS
We would like to outline two main results: the method of
implementation of 4-wide ISA via concurrent dispatch of
two 2-wide streams of computations, and decoupled
execution of the streams of computations and memory.
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Implementation of a 4-wide ISA based on a 2-wide data
path provides a good tradeoff between die size and
performance.  From the performance standpoint, this
approach may raise the question of how is 2-wide
implementation of a 4-wide ISA different from a 2-wide
implementation of a 2-wide ISA  The difference comes
from the fact that 4-wide ISA has twice as many registers.
Consider a  loop of instructions  that  uses eight registers.
The loop coded in 4-wide ISA can be viewed as the loop
coded in 2-wide ISA, which is then twice unrolled and
software-pipelined.  In general, the explicit loop unrolling
improves performance.  In particular, it delivers additional
improvement even in the out-of-order architecture, since it
exposes more parallelism to the machine.  The same loop in
a 2-wide ISA cannot be unrolled since the loop uses all the
available registers.  Hence, in the case of a 4-wide ISA, the
performance benefits come from two sources: internal out-
of-order scheduling plus the explicit loop unrolling.  In the
case of 2-wide ISA, the benefits come from the internal
out-of-order execution only.

The main reason behind the streaming architecture is to
meet the requirements of multimedia performance by
providing concurrent processing of data streams.  From
the implementation standpoint, it means that the processor
should provide concurrent execution of the computational
stream and stream of memory accesses.

The P6 microarchitecture extracts concurrency of memory
accesses and computations.  However, the explicit
prefetch instructions allowed us to completely decouple
the data fetch and retirement of subsequent instructions.
Hence, the throughput of each of these streams can reach
almost the theoretical maximum possible for the given task.
As a result, the maximum throughput that can be reached
with the Pentium III processor for the given tasks is equal
to the lowest of maximum memory throughput and
maximum computational throughput of this task.

Since we increased the effective memory throughput, we
had to balance the throughput of the processor buffering
subsystem and bus throughput.  We did not implement
new buffers but rather we implemented a few methods to
improve the utilization of the existing buffers and improve
the write throughput of the external bus.  This allowed us
to pay a negligible die-size price for performance balancing
the memory datapath.

DISCUSSION
In parallel with the development of the Pentium III
processor, we developed programming models that allow
us to utilize the potential gain of this implementation in
real-world applications.  In order to outline the details of
these models, we discuss three types of multimedia
applications:

1. Compute bound applications such as AC3 Audio.
These applications exhibit fairly small memory
bandwidth requirements, but need large
computational throughput.  In the Pentium III
processor these applications are supported by high
throughput FP units.  In order to utilize the
computational power of these units, programmers are
supposed to use SSE optimization tools described in
[2 ].

2. Memory bound applications such as 3D imaging.
The distinct feature of these applications is a fairly
large working set.  Because of this, the data of these
applications usually are in the memory, and the cache
doesn’t work as well as it does for compute-bound
applications.  Moreover, in some cases, it is even
better to bypass the cache.  In these cases, the
software can keep data in the memory and utilize the
high memory throughput and concurrency described
above.  In order to utilize these features, it is
recommended that a software developer identify
incoming and outgoing streams, program these
streams using prefetch and streaming store
instructions in order to ensure that these streams are
fetched/stored directly from/to memory without
excessive internal caching.  The paper in [3] describes
the details of some of these techniques by describing
an on-line driver approach for 3D geometry.

Additional techniques for prefetching include
optimizing the length of the data streams to reduce
the degree of memory access de-pipelining.  This may
happen in the beginning of a data stream due to
unutilized prefetches. Reference [3] describes a
DrawMultiPrimitive technique that demonstrates the
details of this programming model.

The details of these methods are described in [3].  3D
processing is an example.  Software implementation of
this model allowed us to achieve twice the speedup at
the application level.

3. Mixed class such as video encoding.  These
applications usually have few working sets; some of
them fit into cache, some of them do not.  The
strategy of implementation support and programming
model for these applications is based on the
combination of the above methods.  For these types
of applications, it is important to separate frequently
reused working sets from ones that are used less
frequently, and to build a caching strategy based on
the frequency of reuse.

For instance, the MPEG2 Encoder [4] processes the
data shown in Figure.6: color and brightness data of
Intrinsics frames (I-frame), color and brightness data
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of Bi-directional frames (B-frames), and downsampled
data.

Figure 6: Data reuse in MPEG-2 encoder

According to the encoding algorithm, the I-frame
brightness data and downsampled data are processed
a few times more frequently than I-frame color data
and B-frame data.  Hence, the caching strategy for
this application is to keep the former data in the
cache, and the latter in memory.  Figure. 7 shows the
difference between two methods of data placement in
the cache/memory hierarchy: non-controlled caching
in the case of regular IA-32 caching, and software
controlled caching that can be achieved in the
Pentium III using Internet SSE streaming store and
prefetch instructions.  Though the I-frame color data
and B-frame data are in the memory, the high
throughput memory prefetch/store instructions allow
us to hide the latency of the data fetch.
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Figure 7: Software controlled caching vs. non-
controlled caching in the MPEG-2 encoder

The combination of this model with the application of the
PSAD instruction (in the motion estimation algorithm)
allowed us to reach MPEG2 real-time software encoding in
the Pentium III processor.

CONCLUSION
The Pentium III processor is now in production on
frequencies of up to 550 MHz.  The 70 new instructions
that were added were done at a cost of an additional ~10%
in die size.  The features that we have described have
enabled the Pentium III processor to achieve superior
multimedia performance.  One more important feature is
that our fairly straightforward implementation of the 4-
wide Internet SSE and concurrency of the computational
and memory streams allows for further performance
scalability of SSE applications moving toward higher
frequencies.
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