MMX and SSE

M Extensions to the instruction set for parallel SIMD operations
on packed data
¢ SIMD - Single Instruction stream Multiple Data stream

B MMX - Multimedia Extensions
B SSE - Streaming SIMD Extension
M SSE2 - Streaming SIMD Extension 2
M Designed to speed up multimedia and communication
applications
+ graphics and image processing
+ video and audio processing
+ speech compression and recognition

MMX data types

B MMX instructions operate on 8, 16, 32 or 64-bit integer
values, packed into a 64-bit field

W 4 MMX data types

+ packed byte |63b7 [b6 [b5 [b4 [63 [b2 | b1 | b00|
8 bytes packed into a 64-bit quantity

+ packed word
4 16-bit words packed into a |63 T T °|
64-bit quantity

+ packed doubleword
2 32-bit doublewords packed into a |
64-bit quantity

+ quadword
one 64-bit quantity 5 - 1

M Operates on integer values only

dw1 [dw0 |

M 8 64-bit MMX registers

+ aliased to the x87 floating-point
registers
* no stack-organization
M The 32-bit general-purouse
registers (EAX, EBX; ...) can also

MMX registers

Floating-point registers

MM7

MM6

MM5

MM4

MM3

be used for operands and adresses
+ MMX registers can not hold memory addresses *

B MMX registers have two access modes

+ 64-bit access

* 64-bit memory access, transfer between MMX registers, most MMX

operations
+ 32-bit access

* 32-bit memory access, transfer between MMX and general-purpose

registers, some unpack operations

W SIMD execution

MM2

MM1

MMO

MMX operation

+ performs the same operation in parallel on 2, 4 or 8 values

B MMX instructions perform arithmetic and logical operations in
parallel on the bytes, words or doublewords packed in a 64-

bit MMX register

B Most MMX instructions have
two operands
+ op dest source
+ destination is a MMX register

+ source is a MMX register or
a memory location

Source 1 |

x3 | x2

[x1

X0

Source 2 |

3 [[¥

[Ty

Y0

P95 %

Destination | X3 op Y3 [X2 op Y2 [X1 op Y1 [X0 0p YO |

MMX instructions

B MMX instructions have names composed of four fields

+ a prefix P — stands for packed

+ the operation, for example ADD, SUB or MUL

+ 1-2 characters specifying unsigned or signed saturated ari
e US - Unsigned Saturation
* S - Signed Saturation

+ a suffix describing the data type
* B - Packed Byte, 8 bytes
e W - Packed Word, 4 16-bit words
e D -Packed Doubleword, 2 32-bit double words
* Q- Quadword, one single 64-bit quadword

B Example:
+ PADDB - Add Packed Byte
+ PADDSB - Add Packed Signed Byte Integers with Signed
Saturation

thmetic

Saturation and wraparound arithmetic

M Operations may produce results that are out of range
+ the result can not be represented in the format of the desti

B Example:

nation

+ add two packed unsigned byte integers 154+205=359
+ the result can not be represented in 8 bits

B Wraparound arithmetic

10011010
+11001101

101100111

+ the result is truncated to the N least significant bits
+ carry or overflow bits are ignored

B Saturation arithmetic

+ out of range results are limited to the smallest/largest value that can

be represented
+ can have both signed and unsigned saturation

Data ranges for saturation

M Results smaller than the lower limit is saturated to the lower

limit
M Results larger than the upper limit is saturated to the upper
limit
M Natural Way of Data type Bits Lower limit ~ Upper limit
\ Signed byte 8 -128 127
handling under/over- | unsignedbyte 8 0 255
: Signed word 16 -32768 32767
ﬂOW_m many Unsigned word 16 0 65535
applications
+ Example: color calculations, if a pixel becomes black, it remains
black

B MMX instructions do not generate over/underflow exceptions
or set over/underflow bits in the EFLAGS status register

MMX instructions

B MMX instructions can be grouped into the following
categories:
+ data transfer
+ arithmetic
* comparison
¢ conversion
+ unpacking
+ |ogical
+ shift

+ empty MMX state instruction (EMMS)

Data transfer instructions

B MOVD - Move Doubleword
+ copies 32 bits of packed data
* from memory to a MMX register (and vice versa), or
« from a general-purpose register to a MMX register (and vice versa)
+ operates on the lower doubleword of a MMX register (bits 0-31)

® MOVQ - Move Quadword
+ copies 64 bits of packed data
* from meory to a MMX register (and vice versa), or
* between two MMX registers
B MOVD/MOVQ implements
+ register-to-register transfer
+ load from memory
+ store to memory

Arithmetic instructions

M Addition
+ PADDB, PADDW, PADDD - Add Packed Integers with Wraparound
Arithmetic
+ PADDSB, PADDSW - Add Packed Signed Integers with Signed
Saturation
+ PADDUSB, PADDUSW - Add Packed Unsigned Integers with
Unsigned Saturation
M Subtraction
+ PSUBB, PSUBW, PSUBD - Wraparound arithmetic
+ PSUBSB, PSUBSW - Signed saturation
+ PSUBUSB, PSUBUSW - Unsigned saturation
B Multiplication
+ PMULHW - Multiply Packed Signed Integers and Store High Result
¢ PMULLW - Multiply Packed Signed Integers and Store Low Result

10

Arithmetic instructions (cont.)

B Multiply and add
+ PMADDWD - Multiply And Add Packed Integers
+ multiplies the signed word operands (16 bits)
+ produces 4 intermediate 32-bit products

+ the intermediate products are summed pairwise and produce two
32-bit doubleword results

[xs [x [xt [x]
[y | /Y/z I \\ vi_ [vo |
— /I
[X3*Y3 [X2+Y2 [X14Y1 [X0*Y0 |
T~ | _—
[xevaexary2 | xtviexoyo |

11

Comparison instructions

B Compare Packed Data for Equal
+ PCMPEQB, PCMPEQW, PCMPEQD

B Compare Packed Signed Integers for Greater Than
+ PCMPGTPB, PCMPGTPW, PCMPGTPD

M Compare the corresponding packed values

+ sets corresponding destination element to a mask of all ones (if
comparison matches) or zeroes (if comparison does not match)

M Does not affect EFLAGS register

12

Conversion instruction

B PACKSSWB, PACKSSDW - Pack with Signed Saturation

B PACKUSWB - Pack with Unsigned Saturation
+ converts words (16 bits) to bytes (8 bits) with saturation
+ converts doublewords (32 bits) to words (16 bits) with saturation

Destination Source
I D I c | | B I A

Lo [¢ [8 [~ |
Destination

13

Unpacking instructions

B PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ - Unpack and
Interleave High Order Data

B PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ - Unpack and
Interleave Low Order Data

Source Destination
[yrTve[vs[va[va[vo[vi[vo] [x[x6e[xs[x4[x3[x2]x1]xo]

Y3 | X3 [Y2 | X2]Y1]|X1]Y0]|X0
Destination

14

Logical instructions

m PAND - Bitwise AND
M PANDN - AND NOT
B POR-OR

B PXOR - Exclusive OR
+ operate on a 64-bit quadword

15

Shift instructions

M PSLLW, PSLLD, PSLLQ - Shift Packed Data Left Logical
B PSRLW, PSRLD, PSRLQ - Shift Packed Data Right Logical

W PSRAW, PSRAD - Shift Packed Data Right Arithmetic

+ shifts the destination elements the number of bits specified in the
count operand

16

EMMS instruction

B Empty MMX State
+ sets all tags in the x87 FPU tag word to indicate empty registers
M Must be executed at the end of a MMX computation before
floating-point operations
B Not needed when mixing MMX and SSE/SSEZ2 instructions

17

SSE

M Streaming SIMD Extension
+ introduced with the Pentium Il processor
+ designed to speed up performance of advanced 2D and 3D
graphics, motion video, videoconferencing, image processing,
speech recognition, ...
M Parallel operations on packed single precision floating-point
values
+ 128-bit packed single precision floating point data type
+ four IEEE 32-bit floating point values packed into a 128-bit field
+ must be aligned in memory on 16-byte boundaries

127 0

18

XMM registers

B The MMX technology introduces 8 new 128-bit registers

XMMO — XMM7 —

+ not aliased to other registers XMM8

+ independent of general purpose and o
FPU/MMX registers XNIM3

+ can mix MMX and SSE instructions oy

W XMM registers can be accessed in 32-bit, 0D

127 0

64-bit or 128-bit mode
+ only for operations on data, not addresses
B MXCSR control and status register, 32 bit
+ flag and mask bits for floating-point exceptions
+ rounding control bits
+ flush-to-zero bit

+ denormals-are-zero bit
19

SSE instructions

B Adds 70 new instructions to the instruction set
+ 50 for SIMD floating-point operations
+ 12 for SIMD integer operations
+ 8 for cache control
M Packed and scalar single precision floating-point instructions
+ operations on packed 32-bit floating-point values
* packed instructions have the suffix PS
+ operations on a scalar 32-bit floating-point value (the 32 LSB)
e scalar instructions have the suffix SS
M 64-bit SIMD integer instructions
+ extension to MMX
+ operations on packed integer values stored in MMX registers

20

10

SSE instructions (cont)

B State manegement intructions
+ |load and save state of the MXCSR control register
M Cache control, prefetch and memory ordering instructions
+ instructions to control stores to / loads from memory
+ support for streaming data to/from memory without storing it in cache
M Temporal data
+ will be reused in the program execution
+ should be accessed through the cache
B Non-temporal data
+ will not be reused in the program execution
* evicts temporal data if accessed through the cache (cache pollution)

+ can be accessed directly from memory using prefetching and write-
combining

21

SSE2

M Streaming SIMD Extension 2
+ introduced in the Pentium 4 processor

+ designed to speed up performance of advanced 3D graphics, video
encoding/decodeing, speech recognition, E-commerce and Internet,
scientific and engineering applications

M Extends MMX and SSE with support for
+ packed double precision floating point-values
* packed integer values
+ adds over 70 new instructions to the instruction set

M Operates on 128-bit entities
+ must be aligned on 16-bit boundaries when stored in memory

22

11

SSE?2 data types

M 128-bit packed double precision floating point
+ 2 IEEE double precision floating-point values

M 128-bit packed byte integer
+ 16 byte integers (8 bits)

W 128-bit packed word integer
+ 8 word integers (16 bits)

W 128-bit packed doubleword integer
+ 4 doubleword integers (32 bits)

M 128-bit packed quadword integer
+ 2 quadword integers (64 bits)

M Same registers for SIMD operations as in SSE
+ eight 128-bit registers, XMM0 — XMM7

Compatibility with SSE and MMX operation

M The SSE2 extension is an enhancement of the SSE
extension
* N0 new registers or processor state
+ new instructions which operate on a wider variety of packed
floating-point and integer data
M SSE2 instructions can be intermixed with SSE and
MMX/FPU instructions
+ same registers for SSE and SSE2 execution
+ separate set of registers for FPU/MMX instructions

23

24

12

SSE2 instructions

M QOperations on packed double-precision data has the suffix PD
+ examples: MOVAPD, ADDPD, MULPD, MAXPD, ANDPD, CPPPD

M QOperations on scalar double-precision data has the suffix SD
+ examples: MOVSD, ADDSD, MULSD, MINSD

M Conversion instructions
+ between double precision and single precision floating-point
+ between double precision floating-point and doubleword integer
+ between single precision floating-point and doubleword integer

M Integer SIMD operations
+ both 64-bit and 128-bit packed integer data
* 64-bit packed data uses the MMX register
+ 128-bit data uses the XMM registers

+ instructions to move data between MMX and XMM registers
25

Programming with MMX and SSE

B Assembly language
+ inline assembly language code
+ very good possibilities to arrange instructions for efficient execution
+ difficult to program, requires detailed knowledge of MMX/SSE
operation
B Compiler intrisincs or MMX/SSE macro library
+ functions that provide access to the MMX/SSE instructions from a
high-level language
+ also requires a detailed knowledge of MMX/SSE operation
M Classes
+ C++ classes that define an abstraction for the MMX/SSE datatypes
+ easy to program, does not require in-depth konwledge of MMX/SSE
M Automatic vectorization

+ easy to program, but requires a vectorizing compiler
26

13

M Use inline assembly code
+ forinstance in a C program
B Example:
+ multiply two arrays A and B

of 400 single precision
floating-point values

M Can arrange instructions

to avoid stalls
+ MOVAPS
latency 6, throughput 1
* MULPS
latency 6, throughput 2
+ ADD/SUB
latency 0.5, throughput 0.5

Assembly

language

asm {

Ll:

}

push esi
push edi

; Set up for loop
; Address
; Address
; Address
; Counter

edi, A
esi, B
edx, C
ecx, #100

mov
mov
mov
mov

movaps xmmO, [edil
movaps xmml, [esi]
mulps xmmO, xmml
add edi, #16
add esi, #16
movaps [edx],
add edx, #16

xmmO

sub ecx, #1
jnz L1

pop edi
pop esi

; Load from A

; Load from B

; Multiply

; Incr. ptr to A

; Incr. ptr to B

; Store into C

; Incr. ptr to C

; Decr. counter

; Loop if not done

of A
of B
of C

+ the branch will be correctly predicted, except the last time

27

C compiler intrisincs or MMX/SSE macro library

B Macros containing inline assembly code for MMX/SSE

operations

+ allows the programmer to use C function calls and variables

M Defines a C function for each MMX/SSE instruction
+ there are also intrisinc functions composed of several MMX/SSE

instructions

B New data types to represent packed integer and floating-point

values

+ _m64 represents the contents of a 64-bit MMX register
(8, 16 or 32 bit packed integers)

* _ m128 represents 4 packed single precision floating-point values

+ _ m128d represents 2 packed double precision floating-point values

+ _ m128i represents packed integer values (8, 16, 32 or 64-bit)

28

C intrisincs

B Example:

#define SIZE 400

+ multiply two arrays A float A[SIZE], BI[SIZE], C[SIZE];
and B of 400 single precision | ™28 mi, m2, m3;
ﬂoahng-p0|ntvah1es for (int i=0; i<SIZE; i+=4)

M Register allocation and i o= _mo_joad ps (B
. . . . m2 = mm_load_ps (B+i);
instruction scheduling is left m3 = _mm_mul_ps (ml,m2);

_mm_store_ps (C+i,m3);

to the compiler

M Varialbles of intrisinc data types have to be aligned to 16-bit

boundaries

+ may also need to access the individual

values in the packed data

+ can be done by using a union structure

B C++ class defining abstractions
for MMX and SSE data types
M Oveloads the arithmetic
operations +, -, *, /
+ implemented using the intrisincs

M Also possible to use automatic
vectorization

union mmdata {
_ mml28 m;
float £[4];

C++ classes

29

#include fvec.h
#define SIZE 400
F32Vec4 f1,

£2, £3;

for (int i=0;
loadu(f1l, A+i);
loadu(f2, B+i);
f3 = f£f1 * f2;

storeu (C+i, £3);

1<SIZE; i+=4)

}

{

+ the compiler analyzes the code and concerts simple loops to SSE

instructions

+ the user can assist the compiler by inserting directives in the code

30

15

