Memory systems

B Memory technology
B Memory hierarchy
B Virtual memory

Memory technology

B DRAM - Dynamic Random Access Memory
* bits are represented by an electric charge in a small capacitor
+ charge leaks away, need to be refreshed at regular intervals
+ reading the memory also discarges the capacitors
B DRAM has better price/performance than SRAM
+ also higher densities, need less power and dissipate less heat
B SRAM - Static Random Access Memory
+ based on gates, a bit is stored in 4—6 transistors
+ no refreshing, retain data as long as they have power
B SRAM provides higher speed
+ used for high-performance memories
+ cache, video memory, ...

Access time and cycle time

B Memory access time is the time it takes read or write a
memory location
B Memory cycle time is the minimum time between two
successive memory references
+ can not do repeated accesses immediately after each other
+ have to refresh the memory after an access
B Example:
+ 50 ns access time
+ 100 ns cycle time

Memory banks and interleaving

B The memory is organized as a number of banks
+ each bank consists of a separate memory device

M Interleaving
+ consecutive memory accesses address different banks
+ when one bank is refreshed, another bank can be accesed
+ can overlap accesses and refreshing

M Gives a continous flow of data from memory

o|a|v|o
~|o ||~

B Example:

©
©

¢ 2-way interleaved memory

12 13

14 15

Dynamic RAM technology

M Fast page mode DRAM

* improves access to memory in sequentially located addresses
(cache lines)

+ the entire address does not have to be transmitted to the memory
for each access, only the least significant bits

® EDO RAM (Extended Data OUT RAM)
+ very similar to fast page mode RAM
B SDRAM (Synchronous DRAM)
+ CPU and memory is synchronized by an external clock
+ consecutive data is output synchronously on a clock pulse
+ memory chips are divided into two independent cell banks,
interleaving
+ PC66, PC100, PC133 SDRAM, etc.
+ 133 MHz * 64 bits / 8 bits = 1064 MB/s peak bandwidth
+ typical efficiency approx. 75 % = 800 MB/s

Dynamic RAM technology (cont.)

m DDR SDRAM (Double Data Rate SDRAM)

+ memory architecture chosen by AMD

+ synchronous DRAM

+ the memory chips perform accesses on both the rising and falling
edges of the clock

+ amemory with a 133 MHz clock operates effectively at 266 MHz

+ 64-bit data bus

+ 133 MHz clock cycle * 2 clocks/cycle * 64 bits / 8 bits = 2128 MB/s
peak bandwidth

+ typical efficiency approx. 65 % = 1380 MB/s

+ 184 pin SIMMs

Dynamic RAM technology (cont.)

M Direct RAMBUS

+ proprietary technology of Rambus Inc., memory architecture
chosen by Intel

+ new, fast DRAM architecture, 400 MHz

+ operates on both rising and falling edge of clock cycle

+ transfers data ovar a narrow 16-bit bus (Direct Rambus Channel)

+ multiple memory banks

+ use pipelining technology to send four 16-bit packets at a time
(64-bit memory accesses)

+ 400 MHz * 2 clocks/cycle * 16 bits / b bits = 1600 MB/s

+ typical efficiency approx. 65 % = 1360 MB/s

® RIMMs
+ similar as DIMMs but different pin count (184 vs. 168)
+ covered by an aluminium heat spreader

Memory hierarchy

M Hierarchical memory organisation
* registers Virtual

memor Cache Registers
+ cache memory ! =i
, <> RAMMle—p| |
. ma|n memory Page Line Element L1 ALU
+ disk memory e e

M From small, fast and expensive to large, slow and cheap

B Example: memory access times on a 500 MHz 21164 Alpha
* register 2ns
+ L1 (on-chip) 4 ns
+ L2 (on-chip) 5 ns
+ L3 (off-chip) 30 ns
¢ memory 220 ns

Registers

M Small, very fast memory storage located close to the ALU

B |mplemented by static RAM
+ operates at the same speed as instruction execution

W |A-32 ISA defines 8 general purpose 32-bit registers
* + special purpose registers: EIP,EFLAGS, 6 segment registers
+ + 8 80 bit floating-point registers and 6 special-purpose registers
+ 8 64-bit MMX registers, aliased to FP registers
M GPR are used by the processor for operand evaluation
+ stores intermediate values in expression evaluation
* Example:
x = G*2.41 + A/M -W*M
B Optimizing compilers make efficient use of registers for
expression evaluation

Caches

M Small, fast memory located between the processor and main
memory
+ implemented by static RAM
+ store a subset of the memory
M Separate caches for instructions and data
+ Harvard memory architecture
+ can simultaneously fetch instructions and operands
M Data in a lower memory level is also stored in the higher level
M Strategies to maintain coherence between cache and
memory:
+ write-through: data is immediately written back to memory when it is
updated
+ write-back: data is written to memory when a modified cache line is
replaced in cache

10

Cache lines

M The unit of data transferred between RAM and cache is
called a cache line
+ consists of N consecutive memory locations
B When we access a memory location, a consecutive memory
block is copied to the cache
+ a cache replacement policy defines how old data in cache is
replaced with new data
+ tries to keep frequently used data in the cache
+ Typical cache line sizes range from 128 bits to 512 bits
M For each memory access, the computer first checks if the
cache line containing this memory location is in cache
+ if not (on a cache miss) the line is brought in

+ has to decide which old cache line to throw out — LRU algorithm
11

Cache organization

B A cache mapping defines how memory locations are placed
into caches Memory
+ mapping of addresses to cache lines

M Each cache line records the memory

Cache

addresses it represents *
+ called a tag
+ used to find out which memory addesses are ~

stored in a cache line

B Cache is much smaller than RAM
+ two memory blocks can be mapped to the same
cache line
M Think of memory as being divided into blocks
of the size of a cache line

12

Direct mapped caches

B A memory block can be placed in exactly one cache line
M The mapping is Memory
+ (block address) MOD (nr. of lines in cache)
M Easy to find out if a memory address is
in cache or not

+ check the tag in the cache line where it is
supposed to be

Cache

[Ry Py

DB OO A WN 2O TEWN 2O TABWN 2O

13

Fully associative cache

B A memory block can be placed in any cache line

B Can not calculate in which cache line a memory block should
be placed

+ have to search through all cache lines to find the location
containing the tag we are looking for

M Associative memory
+ search through all cache lines simultaneously for a matching tag

B Associative caches are small and expensive

14

Set associative cache

B A memory block can be placed in a restricted set of cache
lines Memory
+ the block is first mapped onto a set of cache lines
+ then it is decedied into which of these it is placed
M The mapping is
+ (block address) MOD (nr. of sets)
M If there are N sets, the cache placement
is called N-way associative
M Can compute in which set a block is placed
+ only have to do associative search in a small set

Cache

Set 0

Set 1

SO OO L0020 2O 020 2002020

15

Cache misses

M Assume a L1 cache access time of 5 ns, L2 access time of
10 ns and memory access time of 200 ns
+ if we have a 80% L1 hit rate, 15% L2 hit rate and 5% memory
references the average memory access time is
0.8*5+ 0.15*10 + 0.05*200 = 15.5 ns
M Caches are based on the principle of locality
+ gpatial locality — we access data located near each other
(sequential access)
+ temporal locality — we do repeated accesses to the same data
B Three different reasons for cache misses
+ compulsory
* capacity
+ conflict

16

Compulsory cache misses

MW Cold start misses or first reference misses

+ the first access to a block of memory always causes a cache miss
when the line is brought in to the cache

M Can increase the cache line size

+ increases cache miss penalty

+ increases conflict misses, because the cache contains fewer lines
M Can use prefetching

+ bring in the next contigous cache line at the same time

+ some processors also have a prefetch instruction, which the
compiler can insert into the code

+ works for contiguous memory accesses, not for random access
patterns

Capacity cache misses

M The cache can not hold all of the memory referenced in the
program
+ capacity misses occur when some cache lines are replaced
because the cache is full and later need to be brought in again

M Capacity misses can be overcome by increasing the cache
size
M Can also modify the data structures and algorithm to improve
spatial and temporal locality
+ compiler optimization
+ high-level code optimization techniques

17

18

Conflict cache misses

M |n direct mapped and set associative caches, many memory
blocks can map to the same cache line

+ a cache line may have to be thrown out because some other line
needs its place in the cache

+ the same line may have to be brought in immediately after
m Conflict misses can be overcome by using higher
associativity
+ 4-way associative instead of 2-way
+ can also try to avoid conflict misses in the program design
M 2:1 cache rule of thumb

+ adirect mapped cache of size N has about the same miss rate as a
2-way set-associative cace of size N/2

19

Cache trashing

M Repeatedly throws out a cache line that we need in the next
memory access
+ can occur with direct mapped and 2-way set associative caches
B Assume we have a direct mapped cache
+ cache line size of 32 bytes (= 8 words)
M Two arrays X and Y contiguosly located cache size apart
+ (address of X) MOD (nr. of lines in cache) = b

(address of Y) MOD (nr. of lines in cache) X
M X[0] and Y[0] are mapped to the same cache line I
+ when one is brought in to cache, the other is thrown out
+ causes cache trashing if we access both arrays Y
sequentially e

20

10

Example of cache trashing

M In the first iteration, the reference to X[0] causes a
compulsory cache miss
+ the cache line containing X[0] — X[3] is brought in
+ X[0] is placed in a register
M The cache line containing
Y[0] - Y[3] is brought in
+ maps to the same line,
replaces X[0] — X[3] }
+ X[0] is placed in a register
M X[0] and Y[0] are added and Y[0] is stored
M |n the next iteration the cache line containing X[1] has to be
brought in again
+ conflict cache misses in all iterations

SIZE = 64%*1024; /* 64K */
double X[SIZE], Y[SIZE];

for (i=0; i<SIZE; i++) {
Y[i] = X[I]+Y[i];

21

Cache trashing (cont.)

M Can also get cache trashing in 2-way set associative caches

M Three consecutive arrays of cache size
+ X[K], Y[k] and Z[K] all map to the same set
+ the set size is two
+ one will always be thrown out in each iteration
u Can be aVOIded by SIZE = 64%1024; /* 64K */
paddlng the arrays double X[SIZE], Y[SIZE], ZI[SIZE];
+ insert an array of the

cache line size between
the arrays }

+ X[0], Y[0] and Z[0] map
to different cache lines
M Trashing may be a problem when array size is a power of two

22

for (i=0; i<SIZE; i++) {
Z[i] = X[I1*Y[i]+Z[i];

11

Virtual memory

M Decouples addresses used by the program (virtual
addresses) from physical addresses
+ the program uses a large contigous address space
+ actual memory blocks may be located anywhere in physical

memory 0
+ some memory blocks may also be on secondary C_ |4k
storage fZKK
™ Memory is dividtzdfinto gfzg:st A éEE

¢ page size can pe rom es

o4 B =B o
M Virtual addresses are translated X / o
to physical addresses using a Virual address o
page table Bl

Physical address
23

Page tables

M Stores the mapping of logical to physical addresses

M Indexed by the virtual page number
+ one entry per page in the virtual address space

M Page tables are usually large

+ stored in virtual memory ORI Physical memory
+ need two virtual-to-physical [Page number]_Offset

translations to find a physical

address

B Use a translation lookaside buffer
(TLB) as a cache for addess
translations

Page table

24

12

Translation lookaside buffer

M Cache memory for address translations
+ tag field holds a part of the virtual address
+ data field holds the physical page frame number
+ also status bits: valid, use, dirty
B |mplemented by an associative cache memory
M TLB is limited in size
+ virtual addresses not in the TLB cause a TLB miss
M Repeated TLB misses cause very bad performance
+ same as for repeated cache misses

M Good cache behaviour usually implies good TLB behaviour

25

13

