Code Optimization

M |ntroduction
+ What is code optimization
+ Processor development
+ Memory development
+ Software design
+ Algorithmic complexity
+ What to optimize
+ How much can we win

What is code optimization?

M To design programs so that they can be efficiently executed
on a processor
+ use the resources of the processor in an efficient way
M In practice it is impossible to achieve optimal performance
+ but we can design computer programs so that they become more
(or less) efficient
+ use programming constructs that can be efficiently executed on the
processor
M Performance should be a concern in all stages of the
development
+ from the choice of solution method to the executable program
+ easiest to improve the performance of a program in the early stages
of design (at the highest level of abstraction)

Theorethical peak performance

M The maximal number of instructions a processor can execute
under ideal conditions

M Example:
+ a processor with different functional units for addition and
multiplication
+ can do one addition and one multiplication in a clock cycle
+ cycle time 5ns = 200 MHz
+ max performance is 400 M operations per second
B Assumptions
+ infinite stream of additions and multiplications
+ operations are independent
+ no other instructions (no branches)
+ data can be accessed immediately without delays

Intel processor development

Processor Year MHz Transistors Addr. space Cache
8086 1978 8 29 K 1MB No
286 1982 12.5 34 K 16 MB No
386 DX 1985 20 275 K 4GB No
486 DX 1989 25 1.2M 4 GB 8 KB L1
Pentium 1993 60 31M 4 GB 16 KB L1
Pentium Pro 1995 200 55M 64 GB 16 KB L1
P6 256 KB / 512 KB L2
Pentium I 1997 266 ™ 64 GB 32 KB L1
256 KB / 512 KB L2
Pentium Il Feb 500 82M 64 GB 32 KB L1
1999 512 KB L2
Pentium Il Oct 700 28 M 64 GB 32KB L1
1999 256 KB L2
Pentium 4 2000 1500 42 M 64 GB 12 K pop
NetBurst 8 KB L1

256 KB L2

Processor development

M Moore’s law
+ number of transistors on a silicon die doubles every 18 months
+ means also that performance doubles every 18 months
B Number of transistors on a die
+ from 29000 to 42 000 000 = 1448 times more
M Clock rate
+ from 8 MHz to 1500 MHz in 22 years = 187 times faster
B Memory size
+ from 640 KB to 256 MB = 409 times more
B But memory access time has only decreased by 10-20 times

Processor development (cont.)

B Microprocessor performance develops much faster than the
clock rate

+ the improved performance comes mainly from development in
microprocessor architecture
+ not so much from higher clock frequencies

B Much more efficient instruction execution

RISC architecture

instruction pipelining

superscalar instruction execution (instruction level parallelism)
out-of-order execution (dynamic instruction execution)
speculative instruction execution

® & ¢ o o

Memory system development

B Memory size has developed about at the same rate as
processor performance
B Memory access time has not developed in the same way
* memory access is slow compared to instruction execution
M Development in processor architecture to improve memory
access time
+ multilevel caches
+ instruction pre-fetching
+ write-combining

Conclusions

M Very fast instruction execution
+ multiple instructions executed each clock cycle
+ instructions do not have to be executed in program order
M Slow memory access
+ processor cycle is normally much faster than the bus cycle
+ only data in registers and cache can be accessed without delay
M Cache memories are small (32 + 32 KB L1, 1 MB L2)
+ for large problems, data will not not fit into cache
B Performance of a program depends strongly on

+ how well the program instructions can use the functional units of
the processor

+ how efficiently the processor can access data in memory

Software design

Compiled and optimized code

uonnog

poyiaw

Algorithms

Buiwwesboid

Source code

3 L
5
m 4 (vebp) , veax
bx
nbody eta usequad dout et
e 1024 00 false 0.2500 2.0000
clszel ;
tnon pa ncavg
- N) 0.000 P 14
0.0000
3 0000
0222
L
1 6(3ebp) , ¥es) tnow pa ncavg
) E]
e { 0.031 a 15
LE 0.0000

Choosing a solution method

M A problem can typically be solved in many different ways
+ we have to choose a correct and efficient solution method
M A solution may include many different stages of computation
using different algorithms
+ Example: sorting, matrix multiplication, ...
M Each stage in the solution may operate on the same data
+ the data representation should be well suited for all the stages of
the computation
+ different stages in the solution may have conflicting reqirements on
how data is represented

Choosing an algorithm

M A specific problem can typically be solved using a number of
different algorithms
M The algorithm has to
* be correct
+ give the required numerical accuracy
+ be efficient, both with respect to execution time and use of memory
+ be possible to implement within the time frame of the project
M We can use algorithm analysis to estimate the running time
and memory requirements of an algorithm

+ tells us how the running time of an algorithm grows when the
problem size increases

11

Algorithmic complexity

M Big-Oh notation
¢ T(N) = O(f(n)) if there are positive constants ¢ and n, such that
T(N) < c f(N) when N = n,
+ Nis the size of the problem to be solved
M Establishes a relative order among the rates of growth of
functions

- - c Constant
u Examp/e' T(N) - O(N2) logN Logarithmic
¢ T(N) is the time to solve a problem of size N N Linear
+ for sufficiently large problems, the computation mzmg N Quadratic
time grows slower than N? multiplied with a N3 Cubic
constant factor ¢ 2 Exponential

M Gives an upper bound on the running time

12

Growth rate

B Examples of growth rate for a few typical functions

Function N=10 N=50 N=100 N=500 N=1000
logN 3.2 56 6.6 89 9.9

N 10 50 100 500 1000
NlogN 32 280 660 4450 9900

N2 100 2500 10000 250000 106

N3 1000 125000 1000000 125000 000 10°

N 1024 1.13*10% 1.27¥10%° 3.27%10'%° 3.07*10%1

B To compute 10" operations on a 100 MFlop/s processor
takes about 130 days
+ to compute 10'® operations would take over 3.5 years

13

Constant factors

M Constant factors and low-order terms are ignored in
algorithm analysis

+ if the running time depends on the problem size as 2\? + 5N the
complexity of the algorithm is O(N?)

M Lower order terms and constant factors are also important
when choosing an algorithm to solve a specific problem
m Example: two algorithms with complexity O(N) and O(N?)
+ the O(N) algorithm has a constant factor ¢ = 1000
+ the O(N?) algorithm has a constant factor ¢ = 1
® For problems of size smaller than 1000, the O(N?) algorithm
performs better

14

Choice of algorithm

M Largest improvements in efficiency come from a good choice
of algorithm
+ make sure that you know the complexity of the algorithm
+ find alternative algorithms to solve the same problem
+ compare the complexity of the alternatives
+ compare the constant factors in the complexity analysis
+ compare the efforts of implementing the algorithms

B Optimizing an inefficient algorithm will only affect the
constant factors of the execution time

15

Programming

B Most often we program in high level languages
¢ C, C++, Fortran, Java, ...
B Assembly language is only used for special purposes
+ may be used for small, often executed parts of the code
(inner loops)
+ may be used to use features of the processor that are not
accessible from a high-level language
B Automatically translated into machine code by a compiler
B Compiler optimization
+ the compiler transforms the program into an equivalent but more
efficient program

16

Compiler optimization

B The compiler analyzes the code and tries to apply
optimizations to improve its performance
+ recognizes code that can be replaced with equivalent, but more
efficient code
B Modern compilers are good at low-level optimization
+ register allocation, instruction reordering, dead code removal, ...
M Avoid using inefficient constructs
M Write simple and well-structured code
+ easier for the compiler to analyze and optimize
M Main issues
+ |ocality of reference
+ instruction level parallelism
+ special-purpose instructions

Program execution

M Modern processors are very complex systems
+ superscalar, superpipelined architecture
multi-level cache with pre-fetching
rotating registers
branch prediction
out of order execution
m Difficult to understand exactly how instruction are executed
by the processor
M Difficult to understand how different alternative program

solutions will affect performance

+ programmers have a weak understanding of what happens when a
program is executed

*® & o o

17

18

What to optimize

M Find out where the program spends its time
+ unnecessary effort to optimize code that is seldom executed

M The 90/10 rule
+ a program spends 90% of its time in 10% of the code
+ ook for optimizations in this 10% of the code

M Tools to find out where a program spends its time
+ the time command - user and system time
+ measuring with timer functions in the code
+ profilers — gprof and tcov
+ performance counters

How much can we improve a program

B Example: matrix multiplication
+ problem size: 1200 x 1200 single-presicion (float)

M Execution times:
* no optimization: 405 s
O(N?) algorithm from school mathematics, no compiler optimization
+ full compiler optimizations: 80 s
same algorithm, but with all compiler optimization turned on
+ manually optimized library code: 14 s
cache blocking, loop unrolling, software pipelining
compiled with all compiler optimization turned on

19

20

10

