High-level code optimization

B Modern compilers are very good at low-level code
optimization
+ fairly simple code transformations
+ limited by the compilers’ ability to analyze the code
M The programmer can help the compiler by using a clear and
simple programming style
B More advanced optimizations have to be done by the
programmer
+ code transformation techniques applied at the source code level

+ need an understanding about the computations of program, how
data is accessed and the dependencies between data

Operation counting

M Estimate how many load, store, floating-point and integer
operations are executed in a loop
+ indicates how well the instruction mix fits the processor architecture
+ we know how many load/store, floating-point and integer operations
can be executed per clock cycle
B Example 1: adding two arrays e (A Eellly f) |
+ one floating-point addition, Ali] = A[i]+B[i];
three memory operations)
+ load AJi], load BJi], add, store A[i]
+ ratio of memory to floating-point operations is 3:1
+ performance will be limited by the time to access memory
B Assume that address calculations, loop counter incrementing
and branching are executed by separate functional units

Operation counting (cont.)

B Example 2: element-wise multiplication of arrays of complex

numbers for (i=0; i<N; i++) {
+ real partin arrays xr, yr g el S E e

. . 1 ! xi[i]l = xr(il*yili] + xi[i]*yr[i];
+ imaginary part in arrays xr[i] = tmp;

Xi, yi }

M Six memory operations, six floating-point operations

+ load xr[i], load yr{i], multiply, load xi[i], load yi[i], multiply, subtact,
store xr[i]

+ operands for the second statement are already loaded in registers
+ multiply, multiply, add, store xii]

M Better balance than in previous example
+ values loaded into registers are reused

+ but if we use a multiply-and-add instruction, the loop is still limited
by memory references

Loop optimization

M Loops are important targets for high-level code optimization
+ heaviest computations in a program are normally in loop nests
(loops within loops)
+ compilers may not be able to analyze complicated loop structures
and do automatic code transformations
M Goals
+ improve memory access patterns
* access data with unit stride
* reuse values that are loaded into registers
+ increase instruction level parallelism
* bigger basic blocks

M Loop unrolling is a very important code optimization method
also on source code level
+ can also unroll outer loops in a nested loop structure

Outer loop unrolling

M If the inner loop can’t be unrolled, outer loops may be unrolled
+ if the inner loop is very short
+ if data dependencies makes it impossible to unroll the inner loop
. Example: for (i=0; 1i<N; i++)
+ unroll outer loop by 4 for (3=0; J<N; j++)
: . Ali,j] += X[i]l*Y[3];
+ loads of Y[j] can be hoisted
B Loop unrolling increases —
0 for (i=0; i<N; i+=4)
register pressure for (320; J<N; J++) {

Afi,]] += X[i1*Y[]];

Ali+1,3] += X[i+11*Y[]];
Ali+2,3] += X[1i+42]1*Y[]];
Ali+3,3] += X[1i+431*Y[]];

}

Loop fusion

M Combine loops that operate on the same data

+ improves cache usage, reuses values that have been loaded into
registers

+ reduces loop overhead
+ increases instruction level parallelism

for (i=0; i<N; i++) {
tmp [i] = X[i]*Y[i]; for[i

}

for (i=0; i<N; i++) { !
Z[1i] = W[i]l+tmp[i];

}

i=0; 1i<N; i++) {
1 = WIil+X[i]*Y[i];

M Opposite technique is loop fission
+ split up big loops into smaller

Loop peeling

B A small number of iterations from the beginning and/or end of
a loop are removed and executed separately

+ for example handling of boundary
conditions
M Removes branches from the loop
+ results in larger basic blocks
+ more instruction level parallelism

for (i=0; 1i<N; i++) {
if (i=0)
X[i] =
else if (i=N)
X[i] =
else
X[1] = X[i]*c;

X[i] = 0

for (i=1; i<N-1; i++) {
X[1i] = X[i]*c

!

X[N] = N

Loop interchange

M Rearrange loops so that memory is accessed with unit stride

M In C and C++, matrixes are stored in row-major order
+ in Fortran, matrixes are stored in column-major order

M Accessing consecutive memory locations uses all data in

cache lines

+ unit stride for (i=0; i<rows; i++)

+ automatic iy 2o
prefetching

B Accessing non-consecutive memory locations generates

large numbers of cache misses

for (j=0; j<cols;
for (i=0; i<rows; i++)
X[1i]1 [3] = 0;

J++)

Blocking

M Optimization for data that does not fit in the cache
M Divide the data into smaller blocks which fit in the cache
+ do the computation on one block of data at a time
M Choose the blocksize so that all the data needed to compute
one block fits into cache
B Example: matrix multiplication Z = X*Y
+ NxN matrixes, N divisible by blocksize
+ do the multiplication one block at a a time
Z X

[] [1]]

for (i=0; 1i<N; i++)
for (j=0; Jj<N; j++)
for (k=0; k<N; k++)
Z[i] [J]1+=X[1i] [k]I*Y[k] []];

Matrix multiplication with cache blocking

W The matrix is divided into blocks of size blocksize x blocksize

for (iblock=0; iblock<N; iblock+=blocksize) {
ilimit = iblock + blocksize;

for (jblock=0; jblock<N; jblock+=blocksize) {
jlimit = jblock + blocksize;

for (kblock=0; kblock<N; kblock+=blocksize) {
klimit = kblock + blocksize;

for (i=iblock; i<ilimit; i++) {
for (j=jblock; j<jlimit; j++)
for (k=kblock; k<klimit; k++) {
Z[1]1 [§] += X[il[k] * Y[k][§];

10

Pointers and aliasing

M Pointers in C may specify the same memory location
+ called aliasing
B When the compiler analyzes a program, it has to assume that
data that is accessed through pointers may overlap

+ the compiler is not allowed to rearrange instructions using loop
unrolling, instruction scheduling, hoisting or sinking

+ has to generate very conservative code for operations on data
accessed through pointers
M Give the compiler as much information about data layout as
pOSSIble . . . #define N 1000
+ use static allocation instead of double A[N][N], BIN] [N], d;
dynamic o . .
. . for (i=0; 1i<N; i++)
® Compilers often have an option for (3=0; j<N; j++)
to assume no aliasing ARTD] = BETDIv

11

Memory alignment

M Data alignment can have a significant impact on peformance
B The compiler by default aligns data on natural boundaries
* 64-bit values are by default aligned on word boundaries
M Aligning 64-bit values on 8 byte boundaries can improve
performance
*+ increases memory usage
+ structures containing 64-bit data types will have a different memory
layout than the default
M Data used in MMX and SSE operations should be aligned on
16 byte boundaries
M Aligning branch targets is more important for architectures
with a traditional L1 data cache
+ not so important in architectures with a trace cache

12

gcc options for alignment

M gcc compiler switches for alignment

+ -malign-double
* aligns double-precision variables on 8 byte boundaries
(defalult is 4 byte boundaries)
+ -malign-jumps=n
e align branch targets on 2" byte boundaries
(defalult is to align branches on 16 byte (=2*) boundaries)
+ -malign-loops=n
* align loops on 2" byte boundaries
(defalult is to align branches on 16 byte (=2*) boundaries)
+ -malign-functions=n
* align the start of functions to 2" byte boundaries
(default is 4 bytes for 386 and 16 bytes for 486 architecture)

+ -mpreferred-stack-boundary=n

* attempt to keep stack aligned to 2" byte boundaries
(default is 16 bytes)

13

Explicite aligning

M Can also explicitely align pointers to dynamically allocated
memory

/* Allocate an array of N 8-byte aligned double */
double *p tmp, *p;

p_tmp = (double *)malloc (sizeof (double)* (N+1)) ;

p = (p_tmp+7) & (-0x7);

M Allocate memory for one more element than needed

+ advance pointer to the memory block with 7 bytes
(to end of the first doubleword)

192
+ mask out the 3 last bits to get o2l -
an 8-byte aligned address 180
pl1] o
ol0] 172
171 168 .I
e 164 Sl

o],

Aligning structures

B Members of structures should be naturally aligned

+ pad the structure to a multiple of the size of the largest member,
if necessary

M Declare variables in a structure in order of size of members
+ largest members first, smallest last

M Arrays of structures will be naturally aligned

M Example:
+ two 8-byte double x, y typedef struct {
. double x,y;
+ one 4-byte int value int value;
har flag;
+ one byte ﬂgg et pazi] ;
+ three padding bytes } Point;

15

Arrays of Structures or Structures of Arrays

M AoS - Array of Structures typedef struct {

+ define a structure describing the data items gouble x/v.2;
we operate on } Vertex;
+ allocate an array of structures

+ structures are contiguous in memory
(in a cache line)

Vertex V[N] ;

typedef struct({
M SoA - Structure of Arrays double x[N];
+ structure containing a number of separate goubre v
. ouble z[N];
arrays for the items we operate on int al[N];
+ allocate a number of arrays of same length int bINI;

) . K . int c[N];
+ items in one array are COﬂtIgUOUS In memory } VerticeList;

(in a cache line)
B SoA is better suited for SIMD operation
+ also better if some elements are accessed more seldom

VerticelList V;

16

Avoiding cache trashing

B Avoid allocating contiguous arrays with a size (in bytes) that
is a power of 2

+ arrays may map to the same .
cache line double X[N], YIN], z[N];

i int a[N], b[N], cI[N];
* L1 cache is 4-way (or 2-way)

const int N=1024

set associative o (U-0p Ldlls iow) |
XIN] = YIN] + Z[X];

+ all accesses may map to the alN] = bIN] + cIN];

same location in cache }
M Pad arrays ywth a multiple of P ————

the cache line size const int N_p=N+16;

+ add 128 bytes to the size double X[N_p], YN pl, Z[N pl;
of arrays int a[N_pl, bIN_pl, c[N_pl;

for (i=0; i<N; i++) {

Branch prediction

M Eliminate branches
+ loop unrolling, unswitching, fusion, function inlining
M Avoid branches that can not be predicted
+ brances that depend on the dynamic execution
+ random behaviour can not be predicted
B Avoid deep nesting of subroutines
+ use iterative functions instead of recursive, if possible
M Order the cases in switch statements according to probability
of occurence
+ most common case first

Floating-point computations

M Ensure that floating-point data is aligned

B Use multiplication instead of division
+ but beware of consequences for accuracy
M Avoid over- and underflow and denormal operands
+ keep floating-point values within range
* overflow and underflow may cause very high overhead
* small floating-point values can be represented with highest precision
+ use float or double as needed by the application
* float operations are faster, especially division and square root
* float also need less memory

B Minimise floating-point to integer conversions

19

Variables and declarations

M Provide the compiler with information about the computation
+ use prototypes for all functions
+ declare local functions as static
+ use the const type qualifier for constants
+ use local variables, minimise use of global variables
+ use arrays instead of pointers
M Use 32-bit data types for integer values
B Avoid the register modifier
+ the compiler can do better register allocation than the programmer
M Declare local variables in order of base type size
M Avoid unnecessary type casting

+ floating-point constants are by default double, unless explicitely
declared as float: x=y+3.1415f;

20

10

