Floating-point computation

M Real values and floating point values
M Floating-point representation
M |EEE 754 standard

+ representation

+ rounding

+ special values

Real values

M Not all values can be represented exactly in a computer with
limited storage capacity
+ rational numbers: 1/3=0,33333 ...
+ irrational numbers: = 3,1415...
M If we know the needed accuracy, fixed-point representation
can be used
+ always use a fixed number of decimals
B Example: two significant decimals
+ 125,01 is scaled by 100
+ 12501 can be exactly stored in binary representation
M When stored in a computer, real values have to be rounded
to some accuracy

Real value representation

M In scientific notion, values are represened by a mantissa,
base and exponent
+ 6.02 x 105=6020000, 3.48 x 10-3=0,00348
M When stored in a computer, we use a fixed number of
positions for the mantissa and exponent
+ the base is implicit and does not have to be stored
M Difference between two successive values is not uniform
over the range of values we can represent
B Example: 3 digit mantissa, exponent between -6 and +6

+ two consecutive small numbers: 1.72 x 10 and 1.73 x 106
the difference is 0.00000001 = 1.0 x 108

* two consecutive large numbers: 6.33 x 108 and 6.34 x 10°
the difference is 10000 = 1.0 x 10*

Normalization

M There are multiple representations of a number in scientific

notion
¢ 200x104=2000 <e=== Normalized form

+ 0.20 x 10°=2000
+ 0.02 x 106 =2000
M In a normalized number the mantissa is shifted (and the
exponent justified) so that there is exactly one nonzero digit
to the left of the decimal point

Precision

B Assume we store normalized numbers with 7 digits of

precision (float)
* X=1.25x10% =125000 000,0
* Y=750x10° =0,0075
+ X+Y =1.250000000075 x 108

125000000.0000
+ 0.0075

125000000.0075

M The result can not be stored with the available presicion

+ will be truncated to 1.25 x 108
M If we repeat this in a loop, the
result may be far off from
the expected

float X;
float Y[100000];

for (i=0;1i<100000;i++)
X += Y[i]
}

Associativity

M For the same reason, the order of caclulation may affect the

result

¢ the small values in the array Y
sum up to a value that is
significant when added to the
large value in X

W Matemathically, associative
transformations are allowed

+ not computationally when using
floating-point values

float X;
float sum=1.0;
float Y[100000];

for (i=0;1i<100000;i++)
sum += Y[i]

}
X += sum;

M Fortran is very strict about the order of evaluation of

expressions
+ Cis not so strict

Guard digits

M To improve the precision of floating-point computations guard
digits are used
+ extra bits of precision used while performing computations
+ no need for additional sigificant bits for stored values
B Assume we use five digits for representing floating-point
numbers

+ 10.001 -9.9993 = 0.0017 1228;3
M If we use only five digits when aligning T
the decimal points in the computation, 0.002

we get truncation

+ if we use 6 digits of accuracy when aligning operands and round
the result before normalization, we get the correct result

|[EEE 754 floating-point standard

M |[EEE 754-1985 Standard for Binary Floating-Point Arithmetic

M Describes the
+ storage formats
+ exact specificiation of the results of operations on floating-point
values
+ special values
+ runtime behaviour on illegal operations (exceptions)

M Does not specify how floating-point operations should be
implemented

+ computer vendors are free to develop efficient solutions, as long as
they behave as specified in the standard

|EEE 754 formats

M Floating-point numbers are 32-bit, 64-bit or 80-bit
+ Fortran REAL*4 is also refered to as REAL
+ Fortran REAL*8 is also refered to as DOUBLE

|IEEE 754 | FORTRAN c Bits | Exponent | Significand
bits bits
Single REAL*4 float 32 8 24
Double REAL*8 | double | 64 1 53
Doudle | praj«qg | long | >80 | =15 64
Extended double
S exp significand
Single [T
> 8« 3 |
s exp significand

—> 11— 52 !

Range and accuracy

B The minimum normalized number is the smallest number that
can be represented at full precision

|IEEE 754 Minimum Largest Base-10

normalized nr finite nr accuracy

Single 12E-38 34E+38 6-9 digits
Double 2.2E-308 1.8 E +308 15-17 digits

Double .
4 E 4932 1.2 E +4932 18-21
Extended 3 93 93 8-21 digits

M Smaller values are represented as subnormal numbers, with
loss of precision
+ smallest 32-bit subnormal number is 2.0 E -45
+ accuracy 1-2 base-10 digits

|EEE format

M The high-order bit (bit 31) is the sign of the number
+ does not use 2's complement

B The base-2 exponent is stored in bits 23-30
* biased by adding 127
+ can represent exponent values from -126 to +127
+ for 64-bit values the bias is 1023

M The mantissa is converted to base-2 and normalized
+ one non-zero digit to the left of the binary point

B All normalized binary numbers have a 1 as the first bit
+ do not have to store the leading 1

B The mantissa stored in this format is called the significand

exp significand

S
NENENEERENENENRERERENENERREREEEE
—>8 | 2 |

11

Converting from base-10 to IEEE format

B Example of converting 172.625 from base-10 to IEEE format
M First convert 172.625 to base-2
* 172=128+32+8+4=27+25+23+22
*0625=05+0125=2"+23
M Normalize the base-2 number
+ shift the binary point 7 steps to the right
+ adjust the exponent by adding 7

172.625 Base 10
10101100.101 * 2° Base 2
1.0101100101 * 27 Base 2 normalized

12

Converting to IEEE format (cont.)

B Add bias 127 to the exponent

¢ 7+127=134=128+4+2=27+22+2!
M Drop the leading 1-bit from the significand
+ extend to 23 bits

M Set sign bitto 0

+ positive number

172.625 Base 10
10101100.101 * 2° Base 2
1.0101100101 * 27 Base 2 normalized

|E| | 10000110 || 01011001010000000000000

Sign Exponent Significand
13

Guard digits

B The IEEE 754 standard requires the use of 2 guard digits and
one sticky bit in floating-point computations

+ used for rounding the result
M The guard digits act as two extra bits of precision
+ as if the significand were 25 bits instead of 23
M The sticky bit is set to 1 if any of the bits beyond the guard
bits would become nonzero, in either operand

+ used for rounding the result when

we can not decide only based g Jo] Can ot be stored
N T v ~ 11.010001/d0000000000

9 9 o ey 0.000001/00000001014

W Example: e T I N
+ 5 bits of precision Ininte precise sum | 1. 01.0012.000000001 010

Sum +guard +sticky | 1 . 0100101
Rounded stored value| 1 . 0101

14

Rounding

B Decide wether to round the last storable bit up or down
W [f both guard digits are zero, the Extendedsum Stored value
result is exactly the extended sum | 1.0100 00x 1.0100 |
M |f the guard digits are 01, the result
is rounded down
+ error is one guard digit unit
M |f both guard digits are one, the

Extended sum Stored value

|1.0100 01x 1.0100|

. Extended sum Stored value

result is rounded up |1.0100 11x 1.0101|
B When guard digits are 10 we have

the |arge St error Extended sum Stored value

|1.0100 101 1.0101|

+ ook at the sticky bit do decide which
way to round the result

15

Special values

M The standard also defines a number of special values

Special value Exponent Significand
+or-0 00000000 0
Denormalized number | 00000000 nonzero
NaN (Nota Number) | 11111111 nonzero
+ or — Infinity 11111111 0

M Denormalized numbers are used to repesent values smaller
than the minimum normalized number
+ exponent is zero
+ significand bits are shifted right (incuding the implicit leading 1-bit)
+ gradual underflow — last nonzero bit is shifted out
M Values that are increased beyond the maxmimum value get
the special value Infinity

+ overflow
16

Special values (cont.)

M NaN indicates a number that is not mathematically defined
+ divide zero by zero
+ divide Infinity by Infinity
+ square root of -1
+ any operation on NaN produces NaN as result
M The standard defines a way of detecting results that are not
mathematically defined
+ cause a trap to a subroutine when results that can not be
represented are produced
+ overflow to infinity, underflow to zero, division by zero, etc.
+ cause a jump to a subroutine that handles the exception
+ can cause significant overhead on the computation

Compiler options

M Some compilers may violate some of the rules in the
standard to produce faster code
+ assumes arguments to square root function is non-negative
+ assumes no results of operations will be NaN

B May produce incorrect numerical results

W Example:
+ gcc -ffast-math

17

18

