
1

1

Compiler Optimization

The compiler translates programs written in a high-level
language to assembly language code
Assembly language code is translated to object code by an
assembler
Object code modules are linked together and relocated by a
linker, producing the executable program
Code optimization can be done in all three stages

what kind of optimization is done depends on the compiler/
assembler/linker that is used
there are significant differences in optimization capabilities between
different compilers
important to write clear and simple code that the compiler can
analyze

2

The compilation process

Preprocessing
simple textual manipulations of the source code
incude files, macro expansions, conditional compilation

Lexical analysis
source code statements are decomposed into tokens
(variables, constants, language constucts, ...)

Parsing
syntax checking
source code is translated into an intermediate language form

Optimization
one or more optimization phases performed on the intermediate
language form of the program

Code generation
intermediate language form is translated to assembly language
assembler code is optimized

2

3

Intermediate language

Expresses the same computation as the high-level source
code

represented in a form that is better suited for analysis
also includes computations that are not
visible in the source code, like address
calculations for array expressions

A high-level language statement is
represented by several IL statements

IL is closer in complexity to assembly
language than to a high-level language

while (j<n) {
 k = k+j*2;
 m = j*2;
 j++
}

C

A: t1 = j
 t2 = n
 t3 = (t1<t2)
 jmp (B) t3
 jmp (C) TRUE
B: t4 = k
 t5 = j
 t6 = t5*2
 t7 = t4+t6
 k = t7
 t8 = j
 t9 = t8*2
 m = t9
 t10 = j
 t11 = t10+1
 j = t11
 jmp (A) TRUE
C:

IL

4

Basic blocks

Basic blocks are regions of code with one entry at the top
and one exit at the bottom

no branches within a basic block
generated from the syntax tree which is
built by the parser

A flow graph describes the transfer of
control between basic blocks
Data dependency analysis

builds a directed acyclic graph (DAG) of
data dependences

The compiler both optimizes the code
within basic blocks and across
multiple basic blocks

B: t4 = k
 t5 = j
 t6 = t5*2
 t7 = t4+t6
 k = t7
 t8 = j
 t9 = t8*2
 m = t9
 t10 = j
 t11 = t10+1
 j = t11
 jmp (A) TRUE
C:

A: t1 = j
 t2 = n
 t3 = (t1<t2)
 jmp (B) t3

 jmp (C) TRUE

3

5

Compiler optimization techiques

Most compiler optimization techniques optimize code speed
sometimes on the expense of code size
the user can choose what kind of optimizations to apply by compiler
options (-O1, -O2, -O3, -Os)

The basic optimization techniques are typically very simple
operate on code within a basic block
reduce the number of instructions and memory references

Loop optimizations operate across basic blocks
can move code from one basic block to another

Peephole optimizations
replaces short instruction sequences (1-4 instructions) with more
efficient alternatives

6

Register allocation

Register allocation decides which values are stored in
registers

starts on the basic block level
global register allocation optimizes use of registers across multiple
blocks

In general, all variables can not be stored in registers
register spilling – values and memory references have to be stored in
memory locations (on the stack) instead of in registers
may slow down the code becuse of frequent memory accesses
register allocation is not critical in processors with register renaming

Register storage class in C
advises the compiler that a variable will be heavily used
the compiler is free to ignore the advice

4

7

Simple register allocation method

Analyze how temporary variables t1, t2, t3, ... are used in a
basic block

a variable is dead when the next reference to it is an assignment
or when there are no further references to it
a variable is live if it will be read in subsequent instructions
(used on the right hand side in an expression)

Simple register allocation method
when a variable is seen for the first time it is allocated to a free
register or a register containing a dead variable
if no such register exists, select the register whos use is furthest
ahead, spill that register and allocate it to the new variable

More advanced register allocation method
graph colouring

8

Register allocation via graph colouring

Build an interference graph of the variables in a basic block
nodes represent variables (t1, t2, ...)
arc between two nodes if they are both live at the same time

Two nodes that are alive at the same time can not be
allocated to the same register
The problem is to find a colouring of the interference graph
using N colours

assign each node (variable) a colour (register) so that any two
connected nodes have different colours

Optimal graph colouring is NP-complete
have to use heuristic algorithms
can not guarantee that we find an optimal soulution

5

9

Compiler optimization techniques

Different classes of compiler optimization techniques
Optimizations that improve assembly language code

reduces the number of instructions and memory references
uses more efficient instructions or assembly language constructs
instruction sceduling to improve pipeline utilization

Optimizations that improve memory access
reduces cache misses
prefetching of data

Loop optimizations
builds larger basic blocks
removes branch instructions

Function call optimization

10

Constant folding

Expressions consisting of multiple constants are reduced to
one constant value at compile time
Example:

two constants Pi and d
tmp = Pi/d is evaluated at
compile time
the compiler uses the value tmp in
all subsequent expressions containing
Pi/d

Explicitely declaring constant values as constants helps the
compiler to analyze the code

also improves code readability and structure

const double Pi = 3.15149;
 ...
d = 180.0;
 ...
t = Pi*v/d;

 ...
t = v*tmp;

6

11

Copy propagation

Assignment to a variable creates multiple copies of the same
value

introduces dependencies between statements
the assignment must be done before the expression in which the
copy is used can be evaluated

Example:
the second statement depends on the first
copy propagation eliminates the dependency
if x is not used in the subsequent computation,
the assignment x = y can be removed
(by dead code elimination)

Reduces register pressure and eliminates redundant register-
to-register move instructions

x = y;
z = c+x;

x = y;
z = c+y;

12

Dead code removal

Remove code that has no effect on the computation
often produced as a result of other compiler optimizations
may also be introduced by the programmer

Two types of dead code
instructions that are unreachable
instructions that produce results that
are never used

Can completely change the behaviour of simple synthetic
benchmark programs
Reduces code size, improves instruction cache usage

#define DEBUG 0
 ...
if (DEBUG) {
 /* debugging code */
 ...
}
 ...

7

13

Strenght reduction

Replace slow operations by equivalent faster ones
replace muliplication by a constant c with c additions
replace power function by multiplications
replace division by a constant c
with multiplication by 1/c
replace integer multiplication
by 2n with a shift operation
replace integer division by 2n

with a shift operation, for positive
values
replace integer modulo-2 division by masking out the least
significant bit

Some transformations may affect the precision of floating-
point calculations

Expression Replaced by
 x*2 x+x
 x2 x*x
 x2.5 x2*√x
 x/n x*(1/n)
 k*2n k<<n
 k/2n k>>n (k>0)
 k%2 k&1

14

Induction variable optimization

Simplify expressions that change as a linear function of the
loop index

the loop index is multiplied with
a constant
replaces a multiplication with a
number of additions

Used in array address calculations
for iteration over an array

for (i=0; i<N; i++) {
 k = 4*i+m;
 ...
}

k=m;
for (i=0; i<N; i++) {
 k=k+4;
 ...
}

 adr = base_address(A) - sizeof_datatype(A)
L1:
 ...
 adr = adr + sizeof_datatype(A)
 ...
 jcc L1

8

15

Common subexpression elimination

Replace subexpressions that are evaluated more than once
with a temporary variable

evaluate the subexpression and store it in
a temporary variable
use the temporary variable instead of the
subexpression
the subexpression is computed once and
used many times

Associative order may be important
is it correct to replace (a+b+c) by (c+b+a)

Used to simplify address calculations in array indexing or
pointer de-referencing

d = c*(a+b);
e = (a+b)/2;

tmp=a+b;
d = c*(tmp);
e = (tmp)/2;

16

Loop invariant code motion

Move calculations that do not change between loop iterations
(loop invariant code) out of the loop

often used to eliminate load- and store operations from loops

Hoisting
move invariant code before the loop
example:
load value of y into a register before the loop

Sinking
move invariant code after the loop
example:
load value of s into a register before the loop
store value of register into s after the loop

for (i=0; i<N; i++) {
 X[i] = X[i]*y;
}

for (i=0; i<N; i++) {
 s = s+X[i];
}

9

17

Loop unswitching

Move loop-invariant conditional constructs out of the loop
if- or switch-statements which are independent of the loop index are
moved outside the loop
the loop is instead repeated in the different branches of the if-or
case- statement
removes branches from within the loop

Removes branch instructions, increases instruction level
parallelism

for (i=0; i<N; i++)
{ if (a>0)
 X[i] = a;
 else
 X[i] = 0;
}

if (a>0)
{ for (i=0; i<N; i++)
 X[i] = a;
}
else
{ for (i=0; i<N; i++)
 X[i] = 0;
}

18

Loop unrolling

Replicate the body of a loop k times and increase the loop
counter with k

k is called the unrolling factor

Reduces loop overhead
Removes branch instructions
Produces larger basic blocks

increases instruction level
parallelism
more opportunities for
instruction scheduling

Increases code size

/* Copy Y to X */
for (i=0; i<N; i++) {
 X[i] = Y[i];
}

/* Copy Y to X */
limit = (N/5)*5;
for (i=0; i<limit; i+=5) {
 X[i] = Y[i];
 X[i+1] = Y[i+1];
 X[i+2] = Y[i+2];
 X[i+3] = Y[i+3];
 X[i+4] = Y[i+4];
}
/* Last N%5 elements */
for (i=limit; i<N; i++) {
 X[i] = Y[i];
}

10

19

Procedure inlining

Also called in-line expansion
Replace a function call by the body of the function

eliminates the overhead of the function call
improves possibilities for compiler analysis and optimization

Increases code size
upper limit on the size and
complexity of functions that
can be inlined

double max(double a, double b) {
 return ((a>b) ? a : b);
}
...
for (i=0; i<N; i++) {
 Z[i] = max(X[i], Y[i]);
}

...
for (i=0; i<N; i++) {
 Z[i] = (X[i]>Y[i]) ? X[i] : Y[i];
}

20

Compiler optimization in gcc

Lexical analysis and parsing
reads in the source program as a strem of characters
statements are read as a syntax tree
data type analysis, data types attatched to tree nodes
constant folding, arithmetic simplifications

Intermediate language generation (RTL)
syntax tree representation is converted to RTL
optimizations for conditional expressions and boolean operators
tail recursion detection
decisions about loop arrangements

At the end of RTL generation, decisions about function
inlining is done

based on the size of the function, type and number of parameters

11

21

Compiler optimization in gcc (cont.)

Branch optimization
simplifies branches to the next instruction and branches to other
branch instructions
removes unreferenced labels
removes unreachable code

unreachable code that contains branches is not detected in this stage,
they are removed in the basic block analysis

Register scan
finds first and last use of each pseudo-register

Jump threading analysis
detects conditional branches to identical or inverse tests and
simplifies these (only if -fthread-jumps option is given)

Common subexpression elimination
constant propagation
reruns branch optimization if needed

22

Compiler optimization in gcc (cont.)
Loop optimization

loop invariant code motion and strength reduction
loop unrolling
if -rerun-cse-after-loop option is given, the common subexpression
elimination phase is performed again

Stupid register allocation (if compiling without optimization)
simple register allocation, includes some data flow analysis

Data flow analysis
divides the program into basic blocks
removes unreachable loops and computations whos results are
never used
live range analysis of pseudo-registers
builds a data flow graph where the first instruction that uses a value
points at the instruction that computes the value
combines memory references that adds or subtracts to/from a value
to produce autoincrement/autodecrement addressing

12

23

Compiler optimization in gcc (cont.)

Instruction combination
combines groups of 2-3 instructions that are related by data flow
into a single instruction
combines RTL expressions, algebraic simplifications
selects expressive instructions from the instruction set

Instruction scheduling
uses information about instruction latency and throughput to reduce
stalls
especially memory loads and floating-point calculations
re-orders instructions within a basic block to reduce pipeline stalls

Register class preferencing
analyses which register class is best suited for each pseudo
register

24

Compiler optimization in gcc (cont.)
Local register allocation

allocates registers defined in the ISA to pseudo registers
only within basic blocks

Global register allocation
allocates remaining registers to pseudo registers (pseudo registers
with a life span covering more than one basic block)

Reloading
renumbers pseudo registers with hardware register numbers
allocates stack slots to pseudo registers that did not get hard
registers
finds instructions that have become invalid because the value it
operates on is not in a register, or is in a register of wrong type
reloads these values temporarily into registers, inserts instructions
to copy values between memory and registers

13

25

Compiler optimization in gcc (cont.)

Realoading reruns the instruction sceduling phase
also frame pointer elimination (if -fomit-frame-pointer option is given)
inserts instructions around subroutine calls to save and restore
clobbered registers

Instruction scheduling is rerun
tries to avoid pipeline stalls for memory loads generated for spilled
registers

Jump optimization is rerun
removes cross jumping
removes no-op move instructions

Delayed branch scheduling
inserts instructions into branch slots
(on architectures with delayed branches)

26

Compiler optimization in gcc (cont.)

Conversion from hard registers to register stack
floating-point registers on x87 FPU

Final code generation
outputs assembler code
performs machine-specific peephole optimization
generates function entry and exit code sequences

Debugging information output
outputs information for use by the debugger
(if debugging switch is on)

14

27

Examining assembly code in gcc

To examine the assembly language code that the compiler
produces, compile with
 gcc -c -g -O2 -Wa,-alhd,-L program.c

Can also use objdump to examine object code
 gcc -g program.c -o program
 objdump -d -S -l program

Compiler directives
-c compile, but do not link
-g produce debugging information
-O2 optimization level
-Wa pass options to assembler

Assembler directives
-alhd produce listing with assembly language,
 high-level language but no debugging
 information
-L retain local labels

