Compiler Optimization

M The compiler translates programs written in a high-level
language to assembly language code

B Assembly language code is translated to object code by an
assembler

B Object code modules are linked together and relocated by a
linker, producing the executable program

M Code optimization can be done in all three stages
+ what kind of optimization is done depends on the compiler/
assembler/linker that is used
+ there are significant differences in optimization capabilities between
different compilers
+ important to write clear and simple code that the compiler can
analyze

The compilation process

M Preprocessing
+ simple textual manipulations of the source code
+ incude files, macro expansions, conditional compilation
M |exical analysis
+ source code statements are decomposed into tokens
(variables, constants, language constucts, ...)
M Parsing
+ syntax checking
+ source code is translated into an intermediate language form
M Optimization
+ one or more optimization phases performed on the intermediate
language form of the program
M Code generation
+ intermediate language form is translated to assembly language
+ assembler code is optimized

Intermediate language

M Expresses the same computation as the high-level source
code
+ represented in a form that is better suited for analysis

. . IL
+ also includes computations that are not A: t1 = 3
visible in the source code, like address o)
calculations for array expressions jmp (8) €3
. . jmp (C) TRUE
M A high-level language statement is B: t4 - k
t5 = 3
represented by several IL statements t6 - t5*2
. . 0 t7 = t4+teé
+ |L is closer in complexity to assembly k = t7
language than to a high-level language c o,
m = t9
while (j<n) { t1o0 i 3
k = k+j*2; tll = t10+1
m o= §*2; j = ti11
J++ jmp (A) TRUE
} Cs
Basic blocks

M Basic blocks are regions of code with one entry at the top

and one exit at the bottom
+ no branches within a basic block
+ generated from the syntax tree which is
built by the parser
M A flow graph describes the transfer of
control between basic blocks
M Data dependency analysis
+ builds a directed acyclic graph (DAG) of
data dependences
B The compiler both optimizes the code
within basic blocks and across
multiple basic blocks

—

A: tl = 3

t2 = n
t3 = (tl<t2)

jmp (B) t3

jmp (C) TRUE

L

©s

: t4 = k
B3 3
teé E5%2
t7 = t4+t6
k =t7
t8 = J
t9 = t8*2
m = t9
t10 = J

tll = t10+1
j = t11

jmp (A) TRUE

Compiler optimization techiques

M Most compiler optimization techniques optimize code speed
+ sometimes on the expense of code size
+ the user can choose what kind of optimizations to apply by compiler
options (-O1, -02, -03, -0s)
M The basic optimization techniques are typically very simple
+ operate on code within a basic block
+ reduce the number of instructions and memory references
B [oop optimizations operate across basic blocks
+ can move code from one basic block to another
M Peephole optimizations

+ replaces short instruction sequences (1-4 instructions) with more
efficient alternatives

Register allocation

M Register allocation decides which values are stored in
registers
+ starts on the basic block level
+ global register allocation optimizes use of registers across multiple
blocks
M In general, all variables can not be stored in registers
* register spilling — values and memory references have to be stored in
memory locations (on the stack) instead of in registers
+ may slow down the code becuse of frequent memory accesses
+ register allocation is not critical in processors with register renaming
M Register storage class in C
+ advises the compiler that a variable will be heavily used
+ the compiler is free to ignore the advice

Simple register allocation method

M Analyze how temporary variables t1, t2, t3, ... are used in a
basic block

+ avariable is dead when the next reference to it is an assignment
or when there are no further references to it

+ avariable is live if it will be read in subsequent instructions
(used on the right hand side in an expression)
B Simple register allocation method
+ when a variable is seen for the first time it is allocated to a free
register or a register containing a dead variable
+ if no such register exists, select the register whos use is furthest
ahead, spill that register and allocate it to the new variable
M More advanced register allocation method
+ graph colouring

Register allocation via graph colouring

M Build an interference graph of the variables in a basic block
+ nodes represent variables (t1, t2, ...)
+ arc between two nodes if they are both live at the same time
M Two nodes that are alive at the same time can not be
allocated to the same register
M The problem is to find a colouring of the interference graph
using N colours
+ assign each node (variable) a colour (register) so that any two
connected nodes have different colours
M Optimal graph colouring is NP-complete
+ have to use heuristic algorithms
+ can not guarantee that we find an optimal soulution

Compiler optimization techniques

M Different classes of compiler optimization techniques
M Optimizations that improve assembly language code
+ reduces the number of instructions and memory references
+ uses more efficient instructions or assembly language constructs
+ instruction sceduling to improve pipeline utilization
M Optimizations that improve memory access
+ reduces cache misses
+ prefetching of data
M [oop optimizations
+ builds larger basic blocks
+ removes branch instructions

M Function call optimization

Constant folding

B Expressions consisting of multiple constants are reduced to
one constant value at compile time
M Example:
+ two constants Pi and d
¢ tmp = Pi/d isevaluated at
compile time
+ the compiler uses the value tmp in
all subsequent expressions containing | ¢ = vetmp;
Pi/d
M Explicitely declaring constant values as constants helps the
compiler to analyze the code
+ also improves code readability and structure

const double Pi = 3.15149;
d = 180.0;

t = Pi*v/4;

10

Copy propagation

M Assignment to a variable creates multiple copies of the same
value
+ introduces dependencies between statements
+ the assignment must be done before the expression in which the
copy is used can be evaluated
M Example:
+ the second statement depends on the first
+ copy propagation eliminates the dependency
+ if x is not used in the subsequent computation,
the assignment x = y can be removed
(by dead code elimination)
M Reduces register pressure and eliminates redundant register-
to-register move instructions

N X
o

Q<

N X
o

Q<

+Yi

11

Dead code removal

M Remove code that has no effect on the computation
+ often produced as a result of other compiler optimizations
+ may also be introduced by the programmer

M Two types of dead code PP ——
+ instructions that are unreachable Ny —
+ instructions that produce results that J7 delbuggplag o
are never used y

M Can completely change the behaviour of simple synthetic
benchmark programs

M Reduces code size, improves instruction cache usage

12

Strenght reduction

M Replace slow operations by equivalent faster ones
+ replace muliplication by a constant ¢ with ¢ additions

+ replace power function by multiplications

* replace division by a constant ¢ Expression Replaced by
with multiplication by 1/¢ x*2 x4
. T . 5 X*x
+ replace integer multiplication 2.5 x2xx
by 2" with a shift operation x/n x* (1/n)
* replace integer division by 2" E/i B o
with a shift operation, for positive k%2 k&l

values

+ replace integer modulo-2 division by masking out the least

significant bit

B Some transformations may affect the precision of floating-

point calculations

13

Induction variable optimization

B Simplify expressions that change as a linear function of the

(i=0; 1i<N;
k = 4*i+m;

i++)

{

(i=0; 1i<N;
k=k+4;

loop index for
+ the loop index is multiplied with
a constant }
+ replaces a multiplication with a
number of additions o
M Used in array address calculations |}

i++)

{

for iteration over an array

adr = base_address (A)
Ll:

jecc L1

- sizeof datatype (A)

adr = adr + sizeof_datatype(A)

14

Common subexpression elimination

B Replace subexpressions that are evaluated more than once
with a temporary variable

d = c*(a+b);

+ evaluate the subexpression and store it in e = (a+b)/2;
a temporary variable

+ use the temporary variable instead of the gm‘z’:ijf;mp) ;

subexpression e = (tmp)/2;

+ the subexpression is computed once and
used many times
M Associative order may be important
+ is it correct to replace (at+b+c) by (ctb+a)
M Used to simplify address calculations in array indexing or
pointer de-referencing

15

Loop invariant code motion

B Move calculations that do not change between loop iterations
(loop invariant code) out of the loop
+ often used to eliminate load- and store operations from loops
M Hoisting p—
+ move invariant code before the loop X[i
* example:)
load value of y into a register before the loop
M Sinking S
. . for (i=0; 1i<N; i++) {
+ move invariant code after the loop & = s+X[i];
* example: }
load value of s into a register before the loop
store value of register into s after the loop

=0; 1i<N; i++) {
1 = X[il*y;

16

Loop unswitching

B Move loop-invariant conditional constructs out of the loop

+ if- or switch-statements which are independent of the loop index are
moved outside the loop

+ the loop is instead repeated in the different branches of the if-or
case- statement

+ removes branches from within the loop
B Removes branch instructions, increases instruction level
parallelism

if (a>0)
{ for (i=0; i<N; i++)
for (i=0; i<N; i++) X[i] = a;
{ if (a>0) }
X[i] = a; else
else { for (i=0; i<N; i++)
X[i] = 0; X[i] = 0;
1 1

Loop unrolling

M Replicate the body of a loop k times and increase the loop

counter with k /% copy T to X %/
* kis called the unrolling factor foi[,(]iﬂ_”Yi[fl]“{ ie4) |
M Reduces loop overhead)

M Removes branch instructions o0 v o % =
M Produces larger basic blocks | 1imit = (/)%

for (i=0; i<limit; i+=5) {

+ increases instruction level X[i] = Y[i];
: X[i+1] = Y[i+1];
parallelism 3 AT — e o
+ more opportunities for X[i+3] = Y[i+3];
X[i+4] = Y[i+4];

instruction scheduling |
M |ncreases code size /* Last N%5 elements */

for (i=limit; i<N; i++)
X[i] = YI[il;
}

17

18

Procedure inlining

M Also called in-line expansion
M Replace a function call by the body of the function

+ eliminates the overhead of the function call

+ improves possibilities for compiler analysis and optimization
M Increases code size

+ upper limit on the size and

double max(double a, double b)

return ((asb) ? a : b);
complexity of functions that }
can be inlined for (1=0; i<N; is+) {
Z[i] = max(X[1i], YI[i]);
}
for (1=0; 1<N; i++) {
Z[i] = (X[i]>Y[i]) 2 X[i]l : Y[i];
1

Compiler optimization in gcc

M [exical analysis and parsing
+ reads in the source program as a strem of characters
+ statements are read as a syntax tree
+ data type analysis, data types attatched to tree nodes
+ constant folding, arithmetic simplifications

M Intermediate language generation (RTL)
+ syntax tree representation is converted to RTL

+ optimizations for conditional expressions and boolean operators
+ tail recursion detection

+ decisions about loop arrangements
M At the end of RTL generation, decisions about function
inlining is done
+ based on the size of the function, type and number of parameters

19

20

10

Compiler optimization in gcc (cont.)

M Branch optimization
+ simplifies branches to the next instruction and branches to other
branch instructions
+ removes unreferenced labels
* removes unreachable code
* unreachable code that contains branches is not detected in this stage,
they are removed in the basic block analysis
B Register scan
+ finds first and last use of each pseudo-register
B Jump threading analysis
+ detects conditional branches to identical or inverse tests and
simplifies these (only if -fthread-jumps option is given)
B Common subexpression elimination
+ constant propagation

* reruns branch optimization if needed
21

Compiler optimization in gcc (cont.)

M Loop optimization
+ loop invariant code motion and strength reduction
+ loop unrolling
+ if -rerun-cse-after-loop option is given, the common subexpression
elimination phase is performed again
M Stupid register allocation (if compiling without optimization)
+ simple register allocation, includes some data flow analysis
M Data flow analysis
+ divides the program into basic blocks

+ removes unreachable loops and computations whos results are
never used

+ live range analysis of pseudo-registers

+ builds a data flow graph where the first instruction that uses a value
points at the instruction that computes the value

+ combines memory references that adds or subtracts to/from a value
to produce autoincrement/autodecrement addressing 2

11

Compiler optimization in gcc (cont.)

M Instruction combination
+ combines groups of 2-3 instructions that are related by data flow
into a single instruction
+ combines RTL expressions, algebraic simplifications
+ selects expressive instructions from the instruction set

M Instruction scheduling
+ uses information about instruction latency and throughput to reduce
stalls
+ especially memory loads and floating-point calculations
+ re-orders instructions within a basic block to reduce pipeline stalls

M Register class preferencing
+ analyses which register class is best suited for each pseudo
register

23

Compiler optimization in gcc (cont.)

M [ocal register allocation
+ allocates registers defined in the ISA to pseudo registers
+ only within basic blocks
M Global register allocation
+ allocates remaining registers to pseudo registers (pseudo registers
with a life span covering more than one basic block)
M Reloading
+ renumbers pseudo registers with hardware register numbers
+ allocates stack slots to pseudo registers that did not get hard
registers
+ finds instructions that have become invalid because the value it
operates on is not in a register, or is in a register of wrong type
+ reloads these values temporarily into registers, inserts instructions
to copy values between memory and registers

24

12

Compiler optimization in gcc (cont.)

M Realoading reruns the instruction sceduling phase
+ also frame pointer elimination (if -fomit-frame-pointer option is given)
+ inserts instructions around subroutine calls to save and restore
clobbered registers

M Instruction scheduling is rerun
+ tries to avoid pipeline stalls for memory loads generated for spilled
registers
M Jump optimization is rerun
¢ removes cross jumping
* removes no-op move instructions
M Delayed branch scheduling

+ inserts instructions into branch slots
(on architectures with delayed branches)
25

Compiler optimization in gcc (cont.)

W Conversion from hard registers to register stack
+ floating-point registers on x87 FPU
M Final code generation
* outputs assembler code
+ performs machine-specific peephole optimization
+ generates function entry and exit code sequences
M Debugging information output

+ outputs information for use by the debugger
(if debugging switch is on)

26

13

Examining assembly code in gcc

M To examine the assembly language code that the compiler
produces, compile with
gcc -c¢ -g -02 -Wa, -alhd, -L program.c

N J\ J
hd Y
Compiler directives Assembler directives
-c compile, but do not link -alhd produce listing with assembly language,
-g produce debugging information high-level language but no debugging
-02 optimization level information
-Wa pass options to assembler -L retain local labels

M Can also use objdump to examine object code
gcc -g program.c -O program

objdump -d -S -1 program

27

14

