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PRELIMINARY

The Cyrix M II™  processor is an enhanced processor 
with high speed performance. This processor has a 
64K unified write-back cache, a two- level TLB and a 
512-entry BTB.  The M II CPU contains a scratchpad 
RAM feature, supports performance monitoring, and 
allows caching of both SMI code and SMI data. It 
delivers high 16- and 32-bit performance while 
running Windows 95, Windows NT, OS/2, DOS, 
UNIX, and other operating systems.

The M II processor achieves top performance through 
the use of two optimized superpipelined integer 
units, an on-chip floating point unit, and a 64 KByte 
unified write-back cache.  The superpipelined archi-
tecture reduces timing constraints and increase 
frequency scalability. Advanced architectural 
techniques include register renaming, out-of-order 
completion, data dependency removal, branch 
prediction and speculative execution.

♦ Enhanced Sixth-Generation
Architecture

- M II-300 and higher  

- 64K 4-Way Unified Write-Back Cache
- 2 Level TLB (16 Entry L1, 384 Entry L2)

- Branch Prediction with a 512-entry BTB

- Enhanced Memory Management Unit

- Scratchpad RAM in Unified Cache

- Optimized for both 16- and 32-Bit Code

- High Performance 80-Bit FPU

♦ X86 Instruction Set Includes
MMX™ Instructions

- Compatible with MMX™ Technology
- Runs Windows® 95, Windows 3.x, Windows NT, 
   DOS, UNIX®, OS/2®, Solaris®, and others

♦ Other Features
- Socket 7 Pinout Compatible

- 2.9 V Core, 3.3 V I/O
- Flexible Core/Bus Clock Ratios (2x, 2.5x, 3x, 3.5x)

- Leverages Existing Socket Infrastructure

April 1998
Order Number: 94xxx-xx
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Within the M II processor there are two TLBs, 
the main L1 TLB and the larger L2 TLB.  The 
direct-mapped L1 TLB has 16 entries and the 
6-way associative L2 TLB has 384 entries.

The on-chip FPU has been enhanced to 
process MMX™  instructions as well as the 
floating point instructions.  Both types of 
instructions execute in parallel with integer 
instruction processing. To facilitate FPU opera-
tions, the FPU features a 64-bit data interface, 
a four-deep instruction queue and a six-deep 
store queue.

The CPU operates using a split rail power 
design. The core runs on a 2.9 volt power 
supply, to minimize power consumption. 
External signal level compatibility is main-
tained by using a 3.3 volt power supply for the 
I/O interface.

For mobile systems and other power sensitive 
applications, the M II processor incorporates 
low power suspend mode, stop clock capa-
bility, and system management mode (SMM).

Product Overview

0.1 1-

1. ARCHITECTURE
OVERVIEW

The Cyrix M II™ processor  operates at higher 
frequencies than the 6x86MX™  processors.
The M II processor, based on the proven 6x86 
core, is superscalar in that it contains two 
separate pipelines that allow multiple 
instructions to be processed at the same time. 
The use of advanced processing technology 
and superpipelining (increased number of 
pipeline stages) allow the M II CPU to achieve 
high clocks rates.

Through the use of unique architectural 
features, the M II processor eliminates many 
data dependencies and resource conflicts, 
resulting in optimal performance for both 
16-bit and 32-bit x86 software.

For maximum performance, the M II CPU 
contains two caches, a large unified 64 KByte 
4-way set associative write-back cache and a 
small high-speed instruction line cache.  

To provide support for multimedia operations, 
the cache can be turned into a scratchpad RAM 
memory on a line by line basis.  The cache area 
set aside as scratchpad memory acts as a 
private memory for the CPU and does not 
participate in cache operations.

April 15, 1997 10:57 am
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1.1 Major Functional
Blocks

The M II processor consists of four major func-
tional blocks, as shown in the overall block 
diagram on the first page of this manual:

• Memory Management Unit
• CPU Core
• Cache Unit
• Bus Interface Unit

The CPU contains the superpipelined integer 
unit, the BTB (Branch Target Buffer) unit and 
the FPU (Floating Point Unit).

The BIU (Bus Interface Unit) provides the 
interface between the external system board 
and the processor’s internal execution units. 
During a memory cycle, a memory location is 
selected through the address lines (A31-A3 
and BE7# -BE0#). Data is passed from or to 
memory through the data lines (D63-D0).

Each instruction is read into 256-Byte Instruc-
tion Line Cache. The Cache Unit stores the 
most recently used data and instructions to 
allow fast access to the information by the 
Integer Unit and FPU.

The CPU core requests instructions from the 
Cache Unit.  The received integer instructions 
are decoded by either the X or Y processing 
pipelines within the superpipelined integer 
unit.  If the instruction is a MMX or FPU 
instruction it is passed to the floating point 
unit for processing.

As required data is fetched from the 64-KByte 
unified cache. If the data is not in the cache it 
is accessed via the bus interface unit from main 
memory.

The Memory Management Unit calculates 
physical addresses including addresses based 
on paging.  

Physical addresses are calculated by the 
Memory Management Unit and passed to the 
Cache Unit and the Bus Interface Unit (BIU).
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1.2 Integer Unit

The Integer Unit (Figure 1-1) provides 
parallel instruction execution using two 
seven-stage integer pipelines. Each of the 
two pipelines, X and Y, can process several 
instructions simultaneously.

The Integer Unit consists of the following 
pipeline stages:

• Instruction Fetch (IF)
• Instruction Decode 1 (ID1)

• Instruction Decode 2 (ID2)
• Address Calculation 1 (AC1)
• Address Calculation 2 (AC2)
• Execute (EX)
• Write-Back (WB)

The instruction decode and address calcula-
tion functions are both divided into superpipe-
lined stages.

Figure 1-1. Integer Unit
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1.2.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by 
both the X and Y pipelines, fetches 16 bytes of 
code from the cache unit in a single clock 
cycle. Within this section, the code stream is 
checked for any branch instructions that could 
affect normal program sequencing.

If an unconditional or conditional branch is 
detected, branch prediction logic within the IF 
stage generates a predicted target address for 
the instruction. The IF stage then begins 
fetching instructions at the predicted address.

The superpipelined Instruction Decode
function contains the ID1 and ID2 stages.   
ID1, shared by both pipelines, evaluates the 
code stream provided by the IF stage and 
determines the number of bytes in each 
instruction. Up to two instructions per clock 
are delivered to the ID2 stages, one in each 
pipeline.

The ID2 stages decode instructions and send 
the decoded instructions to either the X or Y 
pipeline for execution. The particular pipeline 
is chosen, based on which instructions are 
already in each pipeline and how fast they are 
expected to flow through the remaining pipe-
line stages.

The Address Calculation function contains 
two stages, AC1 and AC2. If the instruction 
refers to a memory operand, the AC1 calcu-
lates a linear memory address for the instruc-
tion.

The AC2 stage performs any required memory 
management functions, cache accesses, and 
register file accesses. If a floating point instruc-
tion is detected by AC2, the instruction is sent 
to the FPU for processing.

The Execute (EX) stage executes instructions 
using the operands provided by the address 
calculation stage.  

The Write-Back (WB) stage is the last IU 
stage. The WB stage stores execution results 
either to a register file within the IU or to a 
write buffer in the cache control unit.

1.2.2 Out-of-Order
Processing

If an instruction executes faster than the 
previous instruction in the other pipeline, the 
instructions may complete out of order. All 
instructions are processed in order, up to the 
EX stage. While in the EX and WB stages, 
instructions may be completed out of order.

If there is a data dependency between two 
instructions, the necessary hardware interlocks 
are enforced to ensure correct program 
execution. Even though instructions may 
complete out of order, exceptions and writes 
resulting from the instructions are always 
issued in program order.
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1.2.3 Pipeline Selection

In most cases, instructions are processed in 
either pipeline and without pairing constraints 
on the instructions. However, certain instruc-
tions are processed only in the X pipeline:

• Branch instructions
• Floating point instructions
• Exclusive instructions

Branch and floating point instructions may be 
paired with a second instruction in the Y pipe-
line.

Exclusive Instructions cannot be paired with 
instructions in the Y pipeline. These instruc-
tions typically require multiple memory 
accesses. Although exclusive instructions may 
not be paired, hardware from both pipelines is 
used to accelerate instruction completion. 
Listed below are the M II CPU exclusive 
instruction types:

• Protected mode segment loads
• Special register accesses

 (Control, Debug, and Test Registers)
• String instructions
• Multiply and divide
• I/O port accesses
• Push all (PUSHA) and pop all (POPA)
• Intersegment jumps, calls, and returns

1.2.4 Data Dependency
Solutions

When two instructions that are executing in 
parallel require access to the same data or 
register, one of the following types of data 
dependencies may occur:

• Read-After-Write (RAW)
• Write-After-Read (WAR)
• Write-After-Write (WAW)

Data dependencies typically force serialized 
execution of instructions. However, the M II 
CPU implements three mechanisms that allow 
parallel execution of instructions containing 
data dependencies:

• Register Renaming
• Data Forwarding
• Data Bypassing

The following sections provide detailed exam-
ples of these mechanisms.

1.2.4.1 Register Renaming

The M II CPU contains 32 physical general 
purpose registers. Each of the 32 registers in 
the register file can be temporarily assigned as 
one of the general purpose registers defined by 
the x86 architecture (EAX, EBX, ECX, EDX, 
ESI, EDI, EBP, and ESP). For each register 
write operation a new physical register is 
selected to allow previous data to be retained 
temporarily. Register renaming effectively 
removes all WAW and WAR dependencies. 
The programmer does not have to consider 
register renaming as register renaming is 
completely transparent to both the operating 
system and application software.
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Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the 
second instruction writes to the same logical register. This type of dependency is illustrated by the 
pair of instructions shown below:

X PIPE Y PIPE

(1) MOV BX, AX (2) ADD AX, CX
BX ← AX AX ← AX + CX

Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to 
allow the MOV instruction in the X pipe to read the AX register.

The M II CPU, however, avoids the Y pipe stall (Table 1-2). As each instruction executes, the 
results are placed in new physical registers to avoid the possibility of overwriting a logical register 
value and to allow the two instructions to complete in parallel (or out of order) rather than in 
sequence.

Table 1-1. Register Renaming with WAR Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Reg4 Pipe

(Initial) AX BX CX

MOV BX, AX AX CX BX X Reg3 ← Reg0

ADD AX, CX CX BX AX Y Reg4 ← Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1-2
          are completely independent.
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Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency

A WAW dependency occurs when two consecutive instructions perform writes to the same logical 
register. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV AX, [mem] 
AX ←AX + BX AX ← [mem]

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guar-
antee that the ADD instruction in the X pipe would write its results to the AX register first.

The M II CPU uses register renaming and avoids the Y pipe stall. The contents of the AX and BX 
registers are placed in physical registers (Table 1-3). As each instruction executes, the results are 
placed in new physical registers to avoid the possibility of overwriting a logical register value and 
to allow the two instructions to complete in parallel (or out of order) rather than in sequence.

Table 1-2. Register Renaming with WAW Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ← Reg0 + Reg1

MOV AX, [mem] BX AX Y Reg3 ← [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
         instruction.
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1.2.4.2 Data Forwarding

Register renaming alone cannot remove RAW 
dependencies. The M II CPU uses two types of 
data forwarding in conjunction with register 
renaming to eliminate RAW dependencies:

• Operand Forwarding
• Result Forwarding

Operand forwarding takes place when the 
first in a pair of instructions performs a move 
from register or memory, and the data that is 
read by the first instruction is required by the 
second instruction. The M II CPU performs 
the read operation and makes the data read 
available to both instructions simultaneously.

Result forwarding takes place when the first 
in a pair of instructions performs an operation 
(such as an ADD) and the result is required by 
the second instruction to perform a move to a 
register or memory. The M II CPU performs 
the required operation and stores the results of 
the operation to the destination of both 
instructions simultaneously.
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Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the 
second instruction reads the same register. This type of dependency is illustrated by the pair of 
instructions shown below in the X and Y pipelines:

X PIPE Y PIPE

(1) MOV AX, [mem] (2) ADD BX, AX
AX ← [mem] BX ← AX + BX

The M II CPU uses operand forwarding and avoids a Y pipe stall (Table 1-4). Operand 
forwarding allows simultaneous execution of both instructions by first reading memory and then 
making the results available to both pipelines in parallel.

Operand forwarding can only occur if the first instruction does not modify its source data. In 
other words, the instruction is a move type instruction (for example, MOV, POP, LEA). Operand 
forwarding occurs for both register and memory operands. The size of the first instruction desti-
nation and the second instruction source must match.

Table 1-3. Example of Operand Forwarding

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

MOV AX, [mem] BX AX X Reg2 ← [mem]

ADD BX, AX AX BX Y Reg3 ← [mem] + Reg1
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Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a 
write, and the second instruction reads the same register. This dependency is illustrated by the 
pair of instructions in the X and Y pipelines, as shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV [mem], AX
AX ←AX + BX [mem] ← AX

The M II CPU uses result forwarding and avoids a Y pipe stall (Table 1-5). Instead of transferring 
the contents of the AX register to memory, the result of the previous ADD instruction (Reg0 + 
Reg1) is written directly to memory, thereby saving a clock cycle.

The second instruction must be a move instruction and the destination of the second instruction 
may be either a register or memory.

Table 1-4. Result Forwarding Example

Instruction

Physical Register
Contents Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ←Reg0 + Reg1

MOV [mem], AX BX AX Y [mem] ← Reg0 +Reg1
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1.2.4.3 Data Bypassing

In addition to register renaming and data forwarding, the M II CPU implements a third data 
dependency-resolution technique called data bypassing. Data bypassing reduces the performance 
penalty of those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the 
second instruction reads the same data from memory. The M II CPU retains the data from the first 
instruction and passes it to the second instruction, thereby eliminating a memory read cycle. Data 
bypassing only occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a 
write to memory and the second instruction reads the same memory location. This dependency is 
illustrated by the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE

(1) ADD [mem], AX (2) SUB BX, [mem]
[mem] ←[mem] + AX BX ← BX - [mem]

The M II CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating the Y 
pipe’s memory read cycle (Table 1-6). Instead of reading memory in the Y pipe, the result of the 
previous instruction ([mem] + Reg0) is used to subtract from Reg1, thereby saving a memory 
access cycle.

Table 1-5. Example of Data Bypassing

Instruction

Physical Register
Contents Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD [mem], AX AX BX X [mem] ← [mem] + Reg0

SUB BX, [mem] AX BX Y Reg2 ← Reg1 - {[mem] + Reg0}
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1.2.5 Branch Control

Branch instructions occur on average every 
four to six instructions in x86-compatible pro-
grams. When the normal sequential flow of a 
program changes due to a branch instruction, 
the pipeline stages may stall while waiting for 
the CPU to calculate, retrieve, and decode the 
new instruction stream. The M II CPU mini-
mizes the performance degradation and 
latency of branch instructions through the use 
of branch prediction and speculative execu-
tion.

1.2.5.1 Branch Prediction

The M II CPU uses a 512-entry, 4-way set asso-
ciative Branch Target Buffer (BTB) to store 
branch target addresses. The M II CPU has 
1024-entry branch history table.  During the 
fetch stage, the instruction stream is checked 
for the presence of branch instructions. If an 
unconditional branch instruction is encoun-
tered, the M II CPU accesses the BTB to check 
for the branch instruction’s target address. If 
the branch instruction’s target address is found 
in the BTB, the M II CPU begins fetching at the 
target address specified by the BTB.

In case of conditional branches, the BTB also 
provides history information to indicate 
whether the branch is more likely to be taken 
or not taken. If the conditional branch instruc-
tion is found in the BTB, the M II CPU begins 
fetching instructions at the predicted target 
address. If the conditional branch misses in the 
BTB, the M II CPU predicts that the branch 
will not be taken, and instruction fetching 
continues with the next sequential instruction. 

The decision to fetch the taken or not taken 
target address is based on a four-state branch 
prediction algorithm.

Once fetched, a conditional branch instruction 
is first decoded and then dispatched to the X 
pipeline only. The conditional branch instruc-
tion proceeds through the X pipeline and is 
then resolved in either the EX stage or the WB 
stage. The conditional branch is resolved in the 
EX stage, if the instruction responsible for 
setting the condition codes is completed prior 
to the execution of the branch. If the instruc-
tion that sets the condition codes is executed 
in parallel with the branch, the conditional 
branch instruction is resolved in the WB stage.

Correctly predicted branch instructions 
execute in a single core clock. If resolution of a 
branch indicates that a misprediction has 
occurred, the M II CPU flushes the pipeline 
and starts fetching from the correct target 
address. The M II CPU prefetches both the 
predicted and the non-predicted path for each 
conditional branch, thereby eliminating the 
cache access cycle on a misprediction. If the 
branch is resolved in the EX stage, the 
resulting misprediction latency is four cycles.  
If the branch is resolved in the WB stage, the 
latency is five cycles.

Since the target address of return (RET) 
instructions is dynamic rather than static, the 
M II CPU caches target addresses for RET 
instructions in an eight-entry return stack 
rather than in the BTB. The return address is 
pushed on the return stack during a CALL 
instruction and popped during the corre-
sponding RET instruction.
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1.2.5.2 Speculative Execution

The M II CPU is capable of speculative execu-
tion following a floating point instruction or 
predicted branch. Speculative execution allows 
the pipelines to continuously execute instruc-
tions following a branch without stalling the 
pipelines waiting for branch resolution. The 
same mechanism is used to execute floating 
point instructions (see Section 1.6) in parallel 
with integer instructions.

The M II CPU is capable of up to four levels of 
speculation (i.e., combinations of four condi-
tional branches and floating point opera-
tions).  After generating the fetch address using 
branch prediction, the CPU checkpoints the 
machine state (registers, flags, and processor 
environment), increments the speculation level 
counter, and begins operating on the predicted 
instruction stream.

Once the branch instruction is resolved, the 
CPU decreases the speculation level.   For a 
correctly predicted branch, the status of the 
checkpointed resources is cleared. For a 
branch misprediction, the M II processor 
generates the correct fetch address and uses 
the checkpointed values to restore the machine 
state in a single clock.

In order to maintain compatibility, writes that 
result from speculatively executed instructions 
are not permitted to update the cache or 
external memory until the appropriate branch 
is resolved. Speculative execution continues 
until one of the following conditions occurs:

1)  A branch or floating point operation 
is decoded and the speculation level 
is already at four.

2)  An exception or a fault occurs.

3)  The write buffers are full.

4)  An attempt is made to modify a 
non-checkpointed resource (i.e., 
segment registers, system flags).

1.3 Cache Units

The M II CPU employs two caches, the Unified 
Cache and the Instruction Line Cache (Figure 
1-2, Page 1-15). The main cache is a 4-way 
set-associative 64-KByte unified cache. The 
unified cache provides a higher hit rate than 
using equal-sized separate data and instruction 
caches. While in Cyrix SMM mode both SMM 
code and data are cacheable.  

The instruction line cache is a fully associative 
256-byte cache.  This cache avoids excessive 
conflicts between code and data accesses in the 
unified cache.

1.3.1 Unified Cache

The 64-KByte unified write-back cache func-
tions as the primary data cache and as the 
secondary instruction cache. Configured as a 
four-way set-associative cache, the cache stores 
up to 64 KBytes of code and data in 2048 
lines. The cache is dual-ported and allows any 
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two of the following operations to occur in 
parallel:

• Code fetch
• Data read (X pipe, Y pipeline or FPU)
• Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allo-
cate new lines on read misses only or on read 
and write misses.

1.3.2 Instruction Line Cache

The fully associative 256-byte instruction line 
cache serves as the primary instruction cache. 
The instruction line cache is filled from the 
unified cache through the data bus. Fetches 
from the integer unit that hit in the instruction 
line cache do not access the unified cache. If 
an instruction line cache miss occurs, the 
instruction line data from the unified cache is 
transferred to the instruction line cache and 
the integer unit, simultaneously.

Figure 1-2. Cache Unit Operations
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dures are x86 compatible, adhering to stan-
dard paging mechanisms.

Within the M II CPU there are two TLBs, the 
main L1 TLB and the larger L2 TLB.  The 
16-entry L1 TLB is direct mapped and holds 
42 lines. The 384-entry L2 TLB is 6-way 
associative and hold 384 lines.  The DTE is 
located in memory.

Scratch Pad Cache Memory

The M II CPU has the capability to “lock 
down” lines in the L1 cache on a line by line 
basis.  Locked down lines are treated as private 
memory for use by the CPU.  Locked down 
memory does not participate in hardware--
cache coherency protocols.

The instruction line cache uses a pseudo-LRU 
replacement algorithm. To ensure proper oper-
ation in the case of self-modifying code, any 
writes to the unified cache are checked against 
the contents of the instruction line cache. If a 
hit occurs in the instruction line cache, the 
appropriate line is invalidated.

1.4 Memory 
Management Unit

The Memory Management Unit (MMU), 
shown in Figure 1-3, translates the linear 
address supplied by the IU into a physical 
address to be used by the unified cache and 
the bus interface. Memory management proce-

Figure 1-3.  Paging Mechanism within the Memory 
Management Unit
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Cache locking is controlled through use of the 
RDMSR and WRMSR instructions. 

1.5 Floating Point Unit

The M II Floating Point Unit (FPU) processes 
floating point and MMX instructions.  The 
FPU interfaces to the integer unit and the 
cache unit through a 64-bit bus. The M II FPU 
is x87 instruction set compatible and adheres 
to the IEEE-754 standard. Since most applica-
tions contain FPU instructions mixed with 
integer instructions, the M II FPU achieves 
high performance by completing integer and 
FPU operations in parallel.

FPU Parallel Execution

The M II CPU executes integer instructions in 
parallel with FPU instructions. Integer instruc-
tions may complete out of order with respect 
to the FPU instructions. The M II CPU main-
tains x86 compatibility by signaling exceptions 
and issuing write cycles in program order.

As previously discussed, FPU instructions are 
always dispatched to the integer unit’s X pipe-
line. The address calculation stage of the X 
pipeline checks for memory management 
exceptions and accesses memory operands 
used by the FPU. If no exceptions are detected, 
the M II CPU checkpoints the state of the CPU 
and, during AC2, dispatches the floating point 
instruction to the FPU instruction queue. The 
M II CPU can then complete any subsequent 
integer instructions speculatively and out of 
order relative to the FPU instruction and rela-

tive to any potential FPU exceptions which 
may occur.

As additional FPU instructions enter the pipe-
line, the M II CPU dispatches up to four FPU 
instructions to the FPU instruction queue. The 
M II CPU continues executing speculatively 
and out of order, relative to the FPU queue, 
until the M II CPU encounters one of the 
conditions that causes speculative execution to 
halt. As the FPU completes instructions, the 
speculation level decreases and the check-
pointed resources are available for reuse in 
subsequent operations. The M II FPU also uses 
a set of six write buffers to prevent stalls due to 
speculative writes.

1.6 Bus Interface Unit

The Bus Interface Unit (BIU) provides the 
signals and timing required by external 
circuitry. The signal descriptions and bus inter-
face timing information is provided in 
Chapters 3 and 4 of this manual.
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2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the M 
II CPU are described mainly from an application 
programmer’s point of view. Included in this 
chapter are descriptions of processor initializa-
tion, the register set, memory addressing, vari-
ous types of interrupts and the shutdown and 
halt process.  An overview of real, virtual 8086, 
and protected operating modes is also included 
in this chapter.  The FPU operations are 
described separately at the end of the chapter.

This manual does not—and is not intended 
to—describe the M II processor or its operations 
at the circuit level.

  

2.1 Processor Initialization

The M II CPU is initialized when the RESET sig-
nal is asserted.  The processor is placed in real 
mode and the registers listed in Table 2-1 (Page 
2-2) are set to their initialized values.  RESET 
invalidates and disables the cache and turns off 
paging.  When RESET is asserted, the M II CPU 
terminates all local bus activity and all internal 
execution.  During the entire time that RESET is 
asserted, the internal pipelines are flushed and 
no instruction execution or bus activity occurs.

Approximately 150 to 250 external clock cycles
after RESET is negated, the processor begins 
executing instructions at the top of physical 
memory (address location FFFF FFF0h).  Typi-
cally, an intersegment JUMP is placed at FFFF 
FFF0h. This instruction will force the processor 
to begin execution in the lowest 1 MByte of 
address space.

Note: The actual time depends on the clock 
scaling in use.  Also an additional 220 clock 
cycles are needed if self-test is requested.

Apri l 9, 1997 5:38 pm
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Table 2-1.  Initialized Register Controls

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data 06 + Device ID Device ID = 51h or 59h (2X clock)
Device ID = 55h or 5Ah (2.5X clock)
Device ID = 53h or 5Bh (3X clock)
Device ID = 54h or 5Ch (3.5X clock)

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR Interrupt Descriptor Table Reg-
ister

Base = 0, Limit = 3FFh

GDTR Global Descriptor Table
 Register

xxxx xxxxh, xxxxh

LDTR Local Descriptor Table
 Register

xxxx xxxxh, xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 6000 0010h

CR2 Control Register 2 xxxx xxxxh

CR3 Control Register 3 xxxx xxxxh

CR4 Control Register 4 0000 0000h

CCR (0-6) Configuration Control (0-6) 00h CCR(0-3, 5-6)
80h CCR4

ARR (0-7) Address Region Registers (0-7) 00h

RCR (0-7) Region Control Registers (0-7) 00h

DR7 Debug Register 7 0000 0400h
Note: x = Undefined value
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Instruction Set Overview

2.2 Instruction Set
Overview

The M II CPU instruction set performs ten 
types of general operations:

All M II CPU instructions operate on as few as 
zero operands and as many as three operands. 
An NOP instruction (no operation) is an exam-
ple of a zero operand instruction.  Two operand 
instructions allow the specification of an 
explicit source and destination pair as part of 
the instruction.  These two operand instruc-
tions can be divided into eight groups accord-
ing to operand types:

An operand can be held in the instruction itself 
(as in the case of an immediate operand), in one 
of the processor’s registers or I/O ports, or in 
memory.   An immediate operand is prefetched 
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are sup-
ported as well as 64-or 80-bit associated with 
floating point instructions.  Operand lengths of 
8 or 32 bits are generally used when executing 
code written for 386- or 486-class (32-bit code) 
processors.   Operand lengths of 8 or 16 bits are 
generally used when executing existing 8086 or 
80286 code (16-bit code).  The default length 

• Arithmetic • High-Level Language Support

• Bit Manipulation • Operating System Support

• Control Transfer • Shift/Rotate

• Data Transfer • String Manipulation

• Floating Point • MMX Instructions

• Register to Register • Register to I/O

• Register to Memory • I/O to Register

• Memory to Register • Immediate Data to Register

• Memory to Memory • Immediate Data to Memory

of an operand can be overridden by placing one 
or more instruction prefixes in front of the 
opcode. For example, by using prefixes, a 
32-bit operand can be used with 16-bit code, or 
a 16-bit operand can be used with 32-bit code.

Chapter 6 of this manual lists each instruction 
in the M II CPU instruction set along with the 
associated opcodes, execution clock counts, 
and effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain 
instructions that read, modify, then write back 
to memory.  The prefix asserts the LOCK# sig-
nal to indicate to the external hardware that the 
CPU is in the process of running multiple indi-
visible memory accesses.  The LOCK prefix can 
be used with the following instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG, 

CMPXCHG)
One-operand Arithmetic and Logical 

Instructions (DEC, INC, NEG, NOT)
Two-operand Arithmetic and Logical 

Instructions (ADC, ADD, AND, OR, SBB, 
SUB, XOR).

An invalid opcode exception is generated if the 
LOCK prefix is used with any other instruction, 
or with the above instructions when no write 
operation to memory occurs (i.e., the 
destination is a register).  The LOCK# signal 
can be negated to allow weak-locking for all of 
memory or on a regional basis.  Refer to the 
descriptions of the NO-LOCK bit (within 
CCR1) and the WL bit (within RCRx) later in 
this chapter.
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2.3  Register Sets

From the programmer’s point of view there are 
58 accessible registers in the M II CPU.   These 
registers are grouped into two sets.  The appli-
cation register set contains the registers fre-
quently used by application programmers, and 
the system register set contains the registers 
typically reserved for use by operating system 
programmers.

The application register set is made up of gen-
eral purpose registers, segment registers, a flag 
register, and an instruction pointer register.

The system register set is made up of the 
remaining registers which include control reg-
isters, system address registers, debug registers, 
configuration registers, and test registers.

Each of the registers is discussed in detail in the 
following sections.

2.3.1 Application
Register Set

The application register set, (Figure 2-1, Page 
2-5) consists of the registers most often used by 
the applications programmer.  These registers 
are generally accessible and are not protected 
from read or write access.

The General Purpose Register contents are 
frequently modified by assembly language 
instructions and typically contain arithmetic 
and logical instruction operands.

Segment Registers in real mode contain the 
base address for each segment.  In protected 
mode the segment registers contain segment 
selectors.  The segment selectors provide index-
ing for tables (located in memory) that contain 
the base address and limit for each segment, as 
well as access control information.

The Flag Register contains control bits used to 
reflect the status of previously executed instruc-
tions.  This register also contains control bits 
that affect the operation of some instructions. 

The Instruction Pointer register points to the 
next instruction that the processor will execute.  
This register is automatically incremented by 
the processor as execution progresses.
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Figure 2-1. Application Register Set
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2.3.2 General Purpose
Registers

The general purpose registers are divided into 
four data registers, two pointer registers, and two
index registers as shown in Figure 2-2 (Page 2-6).

The Data Registers are used by the applica-
tions programmer to manipulate data struc-
tures and to hold the results of logical and 
arithmetic operations.  Different portions of 
the general data registers can be addressed by 
using different names.

An “E” prefix identifies the complete 32-bit 
register.  An “X” suffix without the “E” prefix 
identifies the lower 16 bits of the register.

The lower two bytes of a data register can be 
addressed with an “H” suffix (identifies the 
upper byte) or an “L” suffix (identifies the lower 
byte).  The _L and _H portions of a data regis-
ters act as independent registers. For example, 
if the AH register is written to by an instruc-
tion, the AL register bits remain unchanged.
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Figure 2-2.  General Purpose Registers
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The M II processor implements a stack using 
the ESP register.  This stack is accessed during 
the PUSH and POP instructions, procedure 
calls, procedure returns, interrupts, exceptions, 
and interrupt/exception returns.

The microprocessor automatically adjusts the 
value of the ESP during operation of these 
instructions.The EBP register may be used to 
reference data passed on the stack during 
procedure calls.  Local data may also be placed 
on the stack and referenced relative to BP.  This 
register provides a mechanism to access stack 
data in high-level languages.

The Pointer and Index Registers are listed 
below.

SI or ESI Source Index
DI or EDI Destination Index
SP or ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or 
32-bit registers, with the “E” prefix indicating 
32 bits.  The pointer and index registers can be 
used as general purpose registers, however, 
some instructions use a fixed assignment of 
these registers.  For example, repeated string 
operations always use ESI as the source pointer, 
EDI as the destination pointer, and ECX as the 
counter.  The instructions using fixed registers 
include multiply and divide, I/O access, string 
operations, translate, loop, variable shift and 
rotate, and stack operations.
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2.3.3 Segment Registers and
Selectors

Segmentation provides a means of defining data 
structures inside the memory space of the 
microprocessor.  There are three basic types of 
segments: code, data, and stack.  Segments are 
used automatically by the processor to deter-
mine the location in memory of code, data, and 
stack references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment.

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base.  The 
16-bit segment is multiplied by 16 and a 16-bit 
or 32-bit offset is then added to it to create a lin-
ear address.  The offset size is dependent on the 
current address size.  In real mode and in vir-

tual 8086 mode with paging disabled, the linear 
address is also the physical address.  In virtual 
8086 mode with paging enabled, the linear 
address is translated to the physical address 
using the current page tables. Paging is 
described in Section 2.12.4 (Page 2-52).

In protected mode a segment register holds a 
Segment Selector containing a 13-bit index, a 
Table Indicator (TI) bit, and a two-bit 
Requested Privilege Level (RPL) field as shown 
in Figure 2-3.

The Index points into a descriptor table in 
memory and selects one of 8192 (213) segment 
descriptors contained in the descriptor table.

A segment descriptor is an eight-byte value used 
to describe a memory segment by defining the 
segment base, the segment limit, and access 
control information.  To address data within a 
segment, a 16-bit or 32-bit offset is added to the 
segment’s base address.  Once a segment selec-
tor has been loaded into a segment register, an 
instruction needs only to specify the segment 
register and the offset.

Figure 2-3. Segment Selector in Protected Mode
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The Table Indicator (TI) bit of the selector 
defines which descriptor table the index points 
into.  If TI=0, the index references the Global 
Descriptor Table (GDT).  If TI=1, the index ref-
erences the Local Descriptor Table (LDT).  The 
GDT and LDT are described in more detail in 
Section 2.4.2 (Page 2-16). Protected mode 
addressing is discussed further in Sections 2.6.2 
(Page 2-52).

The Requested Privilege Level (RPL) field in a 
segment selector is used to determine the Effec-
tive Privilege Level of an instruction (where 
RPL=0 indicates the most privileged level, and 
RPL=3 indicates the least privileged level).

If the level requested by RPL is less than the 
Current Program Level (CPL), the RPL level is 
accepted and the Effective Privilege Level is 
changed to the RPL value.  If the level requested 
by RPL is greater than CPL, the CPL overrides 
the requested RPL and Effective Privilege Level 
remains unchanged.

When a segment register is loaded with a seg-
ment selector, the segment base, segment limit 
and access rights are loaded from the descriptor 
table entry into a user-invisible or hidden por-
tion of the segment register (i.e., cached 
on-chip).  The CPU does not access the descrip-
tor table entry again until another segment reg-
ister load occurs.  If the descriptor tables are 
modified in memory, the segment registers must 
be reloaded with the new selector values by the 
software.

The processor automatically selects an implied 
(default) segment register for memory refer-
ences. Table 2-2 describes the selection rules.  
In general, data references use the selector con-
tained in the DS register, stack references use 
the SS register and instruction fetches use the 
CS register.  While some of these selections may 
be overridden, instruction fetches, stack opera-
tions, and the destination write of string opera-
tions cannot be overridden.  Special segment 
override instruction prefixes allow the use of 
alternate segment registers including the use of 
the ES, FS, and GS segment registers.

Table 2-2.  Segment Register Selection Rules

TYPE OF MEMORY REFERENCE IMPLIED (DEFAULT)
SEGMENT

SEGMENT OVERRIDE 
PREFIX

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL,
    PUSHA instructions

SS None

Source of POP, POPA, POPF, IRET,
    RET instructions

SS None

Destination of STOS, MOVS, REP STOS,
    REP MOVS instructions

ES None

Other data references with effective
    address using base registers of:
        EAX, EBX, ECX,
        EDX, ESI, EDI
        EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, DS, ES, FS, GS
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2.3.4 Instruction Pointer
Register

The Instruction Pointer (EIP) register contains 
the offset into the current code segment of the 
next instruction to be executed.  The register is nor-
mally incremented with each instruction execu-
tion unless implicitly modified through an 
interrupt, exception or an instruction that 
changes the sequential execution flow 
(e.g., JMP, CALL).

2.3.5 Flags Register

The Flags Register, EFLAGS, contains status 
information and controls certain operations on 
the M II CPU microprocessor. The lower 16 bits of 
this register are referred to as the FLAGS register 
that is used when executing 8086 or 80286 code.  
The flag bits are shown in Figure 2-4 and 
defined in Table 2-3 (Page 2-10).

Figure 2-4.  EFLAGS Register
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Table 2-3.  EFLAGS Bit Definitions

BIT
POSITION NAME FUNCTION

0 CF Carry Flag:  Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag:  Set when the low-order 8 bits of the result contain an even number of ones;
cleared otherwise.

4 AF Auxiliary Carry Flag:  Set when a carry out of (addition) or borrow into (subtraction) bit 
position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag:  Set if result is zero; cleared otherwise.

7 SF Sign Flag:  Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag:  Once set, a single-step interrupt occurs after the next instruction
completes execution.  TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag:  When set, maskable interrupts (INTR input pin) are acknowledged 
and serviced by the CPU.

10 DF Direction Flag: If DF=0, string instructions auto-increment (default) the appropriate index 
registers (ESI and/or EDI).  If DF=1, string instructions auto-decrement the appropriate 
index registers.

11 OF Overflow Flag:  Set if the operation resulted in a carry or borrow into the sign bit of the 
result but did not result in a carry or borrow out of the high-order bit.  Also set if the
operation resulted in a carry or borrow out of the high-order bit but did not result in a 
carry or borrow into the sign bit of the result.

12, 13 IOPL I/O Privilege Level:  While executing in protected mode, IOPL indicates the maximum
current privilege level (CPL) permitted to execute I/O instructions without generating an 
exception 13 fault or consulting the I/O permission bit map.  IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into the 
EFLAGS register.

14 NT Nested Task:  While executing in protected mode, NT indicates that the execution of the 
current task is nested within another task.

16 RF Resume Flag:  Used in conjunction with debug register breakpoints.  RF is checked at 
instruction boundaries before breakpoint exception processing.  If set, any debug fault is 
ignored on the next instruction.

17 VM Virtual 8086 Mode:  If set while in protected mode, the microprocessor switches to virtual 
8086 operation handling segment loads as the 8086 does, but generating exception 13 
faults on privileged opcodes.  The VM bit can be set by the IRET instruction (if current 
privilege level=0) or by task switches at any privilege level.

18 AC Alignment Check Enable:  In conjunction with the AM flag in CR0, the AC flag determines 
whether or not misaligned accesses to memory cause a fault.  If AC is set, alignment faults 
are enabled.

21 ID Identification Bit:  The ability to set and clear this bit indicates that the CPUID instruction 
is supported.  The ID can be modified only if the CPUID bit in CCR4 is set.
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2.4 System Register Set

The system register set, shown in Figure 2-5 
(Page 2-12), consists of registers not generally 
used by application programmers.  These regis-
ters are typically employed by system level pro-
grammers who generate operating systems and 
memory management programs.

The Control Registers control certain aspects 
of the M II processor such as paging, coproces-
sor functions, and segment protection.   When a 
paging exception occurs while paging is 
enabled, some control registers retain the linear
address of the access that caused the exception.

The Descriptor Table Registers and the Task 
Register can also be referred to as system 
address or memory management registers.  
These registers consist of two 48-bit and two 
16-bit registers.  These registers specify the 
location of the data structures that control the 
segmentation used by the M II processor.  Seg-
mentation is one available method of memory 
management.

The Configuration Registers are used to con-
figure the M II CPU on-chip cache operation, 
power management features and System Man-
agement Mode.  The configuration registers 
also provide information on the CPU device 
type and revision.

The Address Region Registers and Region 
Control Registers work together to define 
address regions which can be given attributes 
such as cache disable.

The Model Specific Registers allow time 
stamping, event counting, performance moni-
toring. Cache line locking is also controlled 
through these registers.

The Debug Registers provide debugging facil-
ities to enable the use of data access break-
points and code execution breakpoints.

The Test Registers provide a mechanism to 
test the contents of both the on-chip 64 KByte 
cache and the Translation Lookaside Buffer 
(TLB). In the following sections, the system 
register set is described in greater detail.
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Figure 2-5.  System Register Set
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2.4.1 Control Registers

The Control Registers (CR0, CR2, CR3 and 
CR4), are shown in Figure 2-6. (These registers 
should not be confused with the CCRn registers.) 
The CR0 register contains system control bits
which configure operating modes and indicate 
the general state of the CPU.  The lower 16 bits 
of CR0 are referred to as the Machine Status 
Word (MSW).  The CR0 bit definitions are 
described in Table 2-4 and Table 2-5 (Page 
2-14). The reserved bits in CR0 should not be 
modified.

When paging is enabled and a page fault is gen-
erated, the CR2 register retains the 32-bit linear 
address of the address that caused the fault.  
When a double page fault occurs, CR2 contains 
the address for the second fault. Register CR3 
contains the 20 most significant bits of the 
physical base address of the page directory.  The 

page directory must always be aligned to a 
4-KByte page boundary, therefore, the lower 12 
bits of CR3 are not required to specify the base 
address.

CR3 contains the Page Cache Disable (PCD) and 
Page Write Through (PWT) bits.  During bus 
cycles that are not paged, the state of the PCD 
bit is reflected on the PCD pin and the PWT bit 
is driven on the PWT pin.  These bus cycles 
include interrupt acknowledge cycles and all 
bus cycles, when paging is not enabled.  The 
PCD pin should be used to control caching in an 
external cache. The PWT pin should be used to 
control write policy in an external cache.

Control register CR4 (Table 2-6, Page 2-15)  
controls  usage of the Time Stamp Counter 
Instruction, Debugging Extensions, Page Global 
Enable and the RDPMC instruction.

Figure 2-6.  Control Registers
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Table 2-4.  CR0 Bit Definitions

BIT
POSITION NAME FUNCTION

0 PE Protected Mode Enable:  Enables the segment based protection mechanism.  If PE=1, protected 
mode is enabled.  If PE=0, the CPU operates in real mode and addresses are formed as in an 
8086-style CPU.

1 MP Monitor Processor Extension:  If MP=1 and TS=1, a WAIT instruction causes Device Not Avail-
able (DNA) fault 7.  The TS bit is set to 1 on task switches by the CPU.  Floating point instruc-
tions are not affected by the state of the MP bit.  The MP bit should be set to one during normal 
operations.

2 EM Emulate Processor Extension:  If EM=1, all floating point instructions cause a DNA fault 7.

3 TS Task Switched:  Set whenever a task switch operation is performed.  Execution of a floating 
point instruction with TS=1 causes a DNA fault.  If MP=1 and TS=1, a WAIT instruction also 
causes a DNA fault.

4 1 Reserved:  Do not attempt to modify.

5 NE Numerics Exception. NE=1 to allow FPU exceptions to be handled by interrupt 16.  NE=0 if
FPU exceptions are to be handled by external interrupts.

16 WP Write Protect:  Protects read-only pages from supervisor write access.  WP=0 allows a read-only 
page to be written from privilege level 0-2. WP=1 forces a fault on a write to a
read-only page from any privilege level.

18 AM Alignment Check Mask:  If AM=1, the AC bit in the EFLAGS register is unmasked and allowed 
to enable alignment check faults.  Setting AM=0 prevents AC faults from occurring.

29 NW Not Write-Back: If NW=1, the on-chip cache operates in write-through mode.  In write-through 
mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip 
cache operates in write-back mode.  In write-back mode, writes are issued to the external bus 
only for a cache miss, a line replacement of a modified line, or as the result of a cache inquiry 
cycle.

30 CD Cache Disable:  If CD=1, no further cache line fills occur.  However, data already present in the 
cache continues to be used if the requested address hits in the cache. Writes continue to update 
the cache and cache invalidations due to inquiry cycles occur normally. The cache must also be 
invalidated to completely disable any cache activity.

31 PG Paging Enable Bit:  If PG=1 and protected mode is enabled (PE=1), paging is enabled.  After 
changing the state of PG, software must execute an unconditional branch instruction (e.g., JMP, 
CALL) to have the change take effect.

Table 2-5.  Effects of Various Combinations of EM, TS, and MP Bits

CR0 BIT INSTRUCTION TYPE
EM TS MP WAIT ESC

0 0 0     Execute     Execute

0 0 1     Execute     Execute

0 1 0     Execute     Fault 7

0 1 1     Fault 7     Fault 7

1 0 0     Execute     Fault 7

1 0 1     Execute     Fault 7

1 1 0     Execute     Fault 7

1 1 1     Fault 7     Fault 7
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Table 2-6.  CR4 Bit Definitions

BIT
POSITION NAME FUNCTION

2 TSD Time Stamp Counter Instruction
If = 1 RDTSC instruction enabled for CPL=0 only; Reset State
If = 0 RDTSC instruction enabled for all CPL states

3 DE Debugging Extensions
If = 1 enables I/O breakpoints and R/W bits for each debug register are defined as:
 00 -Break on instruction execution only.
 01 -Break on data writes only.
 10 -Break on I/O reads or writes.
 11 -Break on data reads or writes but not instruction fetches.

If = 0 I/O breakpoints and R/W bits for each debug register are not enabled.

7 PGE Page Global Enable
If = 1 global page feature is enabled.
If = 0 global page feature is disabled.
Global pages are not flushed from TLB on a task switch or write to CR3

8 PCE Performance Monitoring Counter Enable
If = 1 enables execution of RDPMC instruction at any protection level.
If = 0 RDPMC instruction can only be executed at protection level 0.
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2.4.2 Descriptor Table
Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor 
Table Registers (GDTR, IDTR and LDTR), shown
in Figure 2-7, are used to specify the location of 
the data structures that control segmented 
memory management.  The GDTR, IDTR and 
LDTR are loaded using the LGDT, LIDT and 
LLDT instructions, respectively.  The values of 
these registers are stored using the correspond-
ing store instructions.  The GDTR and IDTR 
load instructions are privileged instructions 
when operating in protected mode. The LDTR 
can only be accessed in protected mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-bit 
limit for the Global Descriptor Table (GDT).  
The GDT is an array of up to 8192 8-byte 
descriptors.  When a segment register is loaded 
from memory, the TI bit in the segment selector 
chooses either the GDT or the Local Descriptor 
Table (LDT) to locate a descriptor.  If TI = 0, the 
index portion of the selector is used to locate the 
descriptor within the GDT table.  The contents 
of the GDTR are completely visible to the pro-

grammer by using a SGDT instruction. The first 
descriptor in the GDT (location 0) is not used by 
the CPU and is referred to as the “null descrip-
tor”.  The GDTR is initialized using a LGDT 
instruction.

The Interrupt Descriptor Table Register
(IDTR) holds a 32-bit linear base address and 
16-bit limit for the Interrupt Descriptor Table 
(IDT).  The IDT is an array of 256 interrupt 
descriptors, each of which is used to point to an 
interrupt service routine.  Every interrupt that 
may occur in the system must have an associ-
ated entry in the IDT.  The contents of the IDTR 
are completely visible to the programmer by 
using a SIDT instruction. The IDTR is initialized 
using the LIDT instruction.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor 
Table (LDT). The LDT is an array of up to 8192 
8-byte descriptors. When the LDTR is loaded, 
the LDTR selector indexes an LDT descriptor 
that resides in the Global Descriptor Table 
(GDT).    The base address and limit are loaded 
automatically and cached from the LDT descrip-
tor within the GDT.

Figure 2-7.  Descriptor Table Registers
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Subsequent access to entries in the LDT use the 
hidden LDTR cache to obtain linear addresses. If 
the LDT descriptor is modified in the GDT, the 
LDTR must be reloaded to update the hidden 
portion of the LDTR.

When a segment register is loaded from mem-
ory, the TI bit in the segment selector chooses 
either the GDT or the LDT to locate a segment 
descriptor.  If TI = 1, the index portion of the 
selector is used to locate a given descriptor 
within the LDT.  Each task in the system may be 
given its own LDT, managed by the operating 
system.  The LDTs provide a method of isolating 
a given task’s segments from other tasks in the 
system.

The LDTR can be read or written by the LLDT 
and SLDT instructions.

Descriptors

There are three types of descriptors:

• Application Segment Descriptors that 
define code, data and stack segments.

• System Segment Descriptors that define an 
LDT segment or a Task State Segment 
(TSS) table described later in this text.

• Gate Descriptors that define task gates, 
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be located 
in either the LDT or GDT.  System Segment 
Descriptors can only be located in the GDT.  
Dependent on the gate type, gate descriptors 
may be located in either the GDT, LDT or IDT.  
Figure 2-8 illustrates the descriptor format for 
both Application Segment Descriptors and Sys-
tem Segment Descriptors. Table 2-7 (Page 
2-18) lists the corresponding bit definitions.

Table 2-8. (Page 2-18) and Table 2-9. (Page 
2-19) defines the DT field within the segment 
descriptor.

Figure 2-8.  Application and System Segment Descriptors
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Table 2-7. Segment Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET NAME DESCRIPTION

31-24
7-0

31-16

+4
+4
+0

BASE Segment base address.
32-bit linear address that points to the beginning of the segment.

19-16
15-0

+4
+0

LIMIT Segment limit. 

23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KBytes (page) granularity.

22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only:  0 = 16 bit, 1 = 32-bit.

20 +4 AVL Segment available.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

12 +4 DT Descriptor type:
0 = system, 1 = application.

11-8 +4 TYPE Segment type. See Tables 2-7 and 2-8.

Table 2-8. TYPE Field Definitions with DT = 0

TYPE
(BITS 11-8) DESCRIPTION

0001 TSS-16 descriptor, task not busy.

0010 LDT descriptor.

0011 TSS-16 descriptor, task busy.

1001 TSS-32 descriptor, task not busy

1011 TSS-32 descriptor, task busy.
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Table 2-9. TYPE Field Definitions with DT = 1

TYPE
APPLICATION DECRIPTOR INFORMATION

E C/D R/W A

0 0 x x data, expand up, limit is upper bound of segment

0 1 x x data, expand down, limit is lower bound of segment

1 0 x x executable, non-conforming

1 1 x x executable, conforming (runs at privilege level of calling procedure)

0 x 0 x data, non-writable

0 x 1 x data, writable

1 x 0 x executable, non-readable

1 x 1 x executable, readable

x x x 0 not-accessed

x x x 1 accessed
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Interrupt Gate Descriptors are used to enter a 
hardware interrupt service routine.  Trap Gate 
Descriptors are used to enter exceptions or soft-
ware interrupt service routines.  Trap Gate and 
Interrupt Gate Descriptors can only be located 
in the IDT.

Call Gate Descriptors are used to enter a proce-
dure (subroutine) that executes at the same or a 
more privileged level.  A Call Gate Descriptor 
primarily defines the procedure entry point and 
the procedure’s privilege level.

Figure 2-9.  Gate Descriptor

Table 2-10.  Gate Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET NAME DESCRIPTION

31-16
15-0

+4
+0

OFFSET Offset used during a call gate to calculate the branch target.

31-16 +0 SELECTOR Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

11-8 +4 TYPE Segment type:
0100 = 16-bit call gate
0101 = task gate
0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.

4-0 +4 PARAMETERS Number of 32-bit parameters to copy from the caller’s stack to the called 
procedure’s stack (valid for calls).

OFFSET 31-16

SELECTOR 15-0

31

P TYPE0 PARAMETERS

+0

+4

1707903

16

0

OFFSET 15-0

15 14 13 12 11 8 7 0

0 0DPL

Gate Descriptors provide protection for exe-
cutable segments operating at different privilege 
levels. Figure 2-9 illustrates the format for Gate 
Descriptors and Table 2-10 lists the correspond-
ing bit definitions.

Task Gate Descriptors are used to switch the 
CPU’s context during a task switch.  The selec-
tor portion of the task gate descriptor locates a 
Task State Segment.  These descriptors can be 
located in the GDT, LDT or IDT tables.
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2.4.3 Task Register

The Task Register (TR) holds a 16-bit selector 
for the current Task State Segment (TSS) table as 
shown in Figure 2-10.  The TR is loaded and 
stored via the LTR and STR instructions, respec-
tively.  The TR can only be accessed during pro-
tected mode and can only be loaded when the 
privilege level is 0 (most privileged).  When the 
TR is loaded, the TR selector field indexes a TSS 
descriptor that must reside in the Global 

Descriptor Table (GDT).  The contents of the 
selected descriptor are cached on-chip in the hid-
den portion of the TR.

During task switching, the processor saves the cur-
rent CPU state in the TSS before starting a new 
task.  The TR points to the current TSS.  The TSS 
can be either a 386/486-style 32-bit TSS
(Figure 2-11, Page 2-22) or a 286-style 16-bit TSS type 
(Figure 2-12, Page 2-23).  An I/O permission bit 
map is referenced in the 32-bit TSS by the I/O Map 
Base Address.

Figure 2-10.  Task Register

1708103

SELECTOR

15 0
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Figure 2-11.  32-Bit Task State Segment (TSS) Table

+0h
+4h
+8h
+Ch
+10h
+14h
+18h

+1Ch
+20h
+24h

+28h
+2Ch
+30h
+34h

BACK LINK (OLD TSS SELECTOR)

SS for CPL = 0

SS for CPL = 1

SS for CPL = 2

+38h
+3Ch
+40h
+44h
+48h
+4Ch
+50h
+54h
+58h
+5Ch
+60h
+64h

ES
CS
SS
DS
FS
GS

SELECTOR FOR TASK'S LDT
T

ESP for CPL = 0

ESP for CPL = 1

ESP for CPL = 2

CR3
EIP

EFLAGS
EAX
ECX
EDX

31 16 15 0

EBX
ESP
EBP
ESI
EDI

I/O MAP BASE ADDRESS

1708203

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 = RESERVED. 
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Figure 2-12.  16-Bit Task State Segment (TSS) Table

1708803

BACK LINK (OLD TSS SELECTOR)

SP FOR PRIVILEGE LEVEL 0

SS FOR PRIVILEGE LEVEL 0

SP FOR PRIVILEGE LEVEL 1

SS FOR PRIVILEGE LEVEL 1

SP FOR PRIVILEGE LEVEL 2 

SS FOR PRIVILEGE LEVEL 2

IP

FLAGS

AX

CX

DX

BX

SP

BP

SI

DI

ES

CS

SS

DS

SELECTOR FOR TASK'S LDT

+0h

+2h

+4h

+6h

+8h

+Ah

+Ch

+Eh

+10h

+12h

+14h

+16h

+18h

+1Ah

+1Ch

+1Eh

+20h

+22h

+24h

+26h

+28h

+2Ah
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2.4.4 M II Configuration 
Registers

The M II  configuration registers are used to 
enable features in the M II CPU. These registers 
assign non-cached memory areas, set up SMM, 
provide CPU identification information and 
control various features such as cache write 
policy, and bus locking control. There are four 
groups of registers within the M II configura-
tion register set:

• 7 Configuration Control Registers (CCRx)
• 8 Address Region Registers (ARRx)
• 8 Region Control Registers (RCRx)

Access to the configuration registers is achieved 
by writing the register index number for the 
configuration register to I/O port 22h.  I/O port 
23h is then used for data transfer.

Each I/O port 23h data transfer must be pre-
ceded by a valid I/O port 22h register index 
selection.  Otherwise, the current 22h, and  the 
second and later I/O port 23h operations com-
municate through the I/O port to produce 
external I/O cycles.  All reads from I/O port 22h 
produce external I/O cycles. Accesses that hit 
within the on-chip configuration registers do 
not generate external I/O cycles.

After reset, configuration registers with indexes 
C0-CFh and FC-FFh are accessible. To prevent 
potential conflicts with other devices which 
may use ports 22 and 23h to access their regis-
ters, the remaining registers (indexes D0-FBh) 
are accessible only if the MAPEN(3-0) bits in 
CCR3 are set to 1h.  See Figure 2-16 (Page 
2-29) for more information on the 
MAPEN(3-0) bit locations.

If MAPEN[3-0] = 1h, any access to indexes in 
the range 00-FFh will not create external I/O 
bus cycles.  Registers with indexes C0-CFh, 
FC- FFh are accessible regardless of the state of 
MAPEN[3-0].  If the register index number is 
outside the C0-CFh or FC-FFh ranges, and 
MAPEN[3-0] are set to 0h, external I/O bus 
cycles occur. Table 2-11 (Page 2-25) lists the 
MAPEN[3-0] values required to access each M 
II configuration register.  All bits in the config-
uration registers are initialized to zero following 
reset unless specified otherwise.

2.4.4.1 Configuration Control
Registers

(CCR0 - CCR6) control several functions, 
including non-cacheable memory, write-back 
regions, and SMM features.  A list of the config-
uration registers is listed in Table 2-11 (Page 
2-25). The configuration registers are described 
in greater detail in the following pages.
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Table 2-11.   M II CPU Configuration Registers

REGISTER NAME ACRONYM REGISTER
INDEX

WIDTH
(Bits)

MAPEN VALUE
  NEEDED FOR 

ACCESS

Configuration Control 0 CCR0 C0h 8 x

Configuration Control 1 CCR1 C1h 8 x

Configuration Control 2 CCR2 C2h 8 x

Configuration Control 3 CCR3 C3h 8 x

Configuration Control 4 CCR4 E8h 8 1

Configuration Control 5 CCR5 E9h 8 1

Configuration Control 6 CCR6 EAh 8 1

Address Region 0 ARR0 C4h - C6h 24 x

Address Region 1 ARR1 C7h - C9h 24 x

Address Region 2 ARR2 CAh - CCh 24 x

Address Region 3 ARR3 CDh - CFh 24 x

Address Region 4 ARR4 D0h - D2h 24 1

Address Region 5 ARR5 D3h - D5h 24 1

Address Region 6 ARR6 D6h - D8h 24 1

Address Region 7 ARR7 D9h - DBh 24 1

Region Control 0 RCR0 DCh 8 1

Region Control 1 RCR1 DDh 8 1

Region Control 2 RCR2 DEh 8 1

Region Control 3 RCR3 DFh 8 1

Region Control 4 RCR4 E0h 8 1

Region Control 5 RCR5 E1h 8 1

Region Control 6 RCR6 E2h 8 1

Region Control 7 RCR7 E3h 8 1

Note: x = Don’t Care
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7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

Figure 2-13. M II Configuration Control Register 0 (CCR0)

Table 2-12.  CCR0 Bit Definitions

BIT
POSITION NAME DESCRIPTION

1 NC1 No Cache 640 KByte - 1 MByte 
If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 through 7 are reserved.
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7 6 5 4 3 2 1 0

SM3 Reserved Reserved NO_LOCK Reserved SMAC USE_SMI Reserved

Figure 2-14. M II Configuration Control Register 1 (CCR1)

Table 2-13.  CCR1 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 SM3 SMM Address Space Address Region 3
If = 1: Address Region 3 is designated as SMM address space.

4 NO_LOCK Negate LOCK#
If = 1: All bus cycles are issued with LOCK# pin negated except page table accesses and 
interrupt acknowledge cycles.  Interrupt acknowledge cycles are executed as locked 
cycles even though LOCK# is negated.  With NO_LOCK set, previously noncacheable 
locked cycles are executed as unlocked cycles and therefore, may be cached.  This 
results in higher performance.  Refer to Region Control Registers for information on 
eliminating locked CPU bus cycles only in specific address regions.

2 SMAC System Management Memory Access
If = 1: Any access to addresses within the SMM address space, access system manage-
ment memory instead of main memory.  SMI# input is ignored. Used when initializing 
or testing SMM memory.
If = 0: No effect on access.

1 USE_SMI Enable SMM and SMIACT# Pins
If = 1: SMI#  and SMIACT# pins are enabled.
If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.

Note:  Bits 0, 3, 5 and 6 are reserved.



2-28 PRELIMINARY

System Register Set
Advancing the Standards



7 6 5 4 3 2 1 0

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW SADS Reserved

Figure 2-15. M II Configuration Control Register 2 (CCR2)

Table 2-14.  CCR2 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 USE_SUSP Use Suspend Mode (Enable Suspend Pins)
If = 1: SUSP# and SUSPA# pins are enabled.
If = 0: SUSP# pin is ignored and SUSPA# pin floats.

4 WPR1 Write-Protect Region 1 
If = 1: Designates any cacheable accesses in 640 KByte to 1 MByte address region 
are write protected.

3 SUSP_HLT Suspend on Halt
If = 1: Execution of the HLT instruction causes the CPU to enter low power sus-
pend mode.

2 LOCK_NW Lock NW 
If = 1: NW bit in CR0 becomes read only and the CPU ignores any writes to the 
NW bit.
If = 0: NW bit in CR0 can be modified.

1 SADS If = 1: CPU inserts an idle cycle following sampling of BRDY# and inserts an idle 
cycle prior to asserting ADS#

Note: Bits 0, 5 and 6 are reserved.



2-29

2

PRELIMINARY

System Register Set

7 6 5 4 3 2 1 0

MAPEN3 MAPEN2 MAPEN1 MAPEN0 Reserved LINBRST NMI_EN SMI_LOCK

Figure 2-16. M II Configuration Control Register 3 (CCR3)

Table 2-15.  CCR3 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 - 4 MAPEN(3-0) MAP Enable
If = 1h: All configuration registers are accessible.
If = 0h: Only configuration registers with indexes C0-CFh, FEh and FFh
are accessible.

2 LINBRST If = 1: Use linear address sequence during burst cycles. 
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address 
sequence is compatible with Pentium’s burst address sequence.

1 NMI_EN NMI Enable
If = 1: NMI interrupt is recognized while servicing an SMI interrupt.
NMI_EN should be set only while in SMM, after the appropriate SMI interrupt 
service routine has been setup.

0 SMI_LOCK SMI Lock 
If = 1: The following SMM configuration bits can only be modified while in an 
SMI service routine:
CCR1: USE_SMI, SMAC, SM3
CCR3:  NMI_EN
CCR6: N, SMM_MODE
ARR3: Starting address and block size.
Once set, the features locked by SMI_LOCK cannot be unlocked until the
RESET pin is asserted.

Note: Bit 3 is reserved.
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7 6 5 4 3 2 1 0

CPUID Reserved Reserved Reserved Reserved IORT2 IORT1 IORT

Figure 2-17. M II Configuration Control Register 4 (CCR4)

Table 2-16.  CCR4 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 CPUID Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the 
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and execution of 
the CPUID instruction causes an invalid opcode exception.

2 - 0 IORT(2-0) I/O Recovery Time
Specifies the minimum number of bus clocks between I/O accesses:
0h = 1 clock delay
1h = 2 clock delay
2h = 4 clock delay
3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay

Note: Bits 3 - 6 are reserved.
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7 6 5 4 3 2 1 0

Reserved Reserved ARREN Reserved Reserved Reserved Reserved WT_ALLOC

Figure 2-18. M II Configuration Control Register 5 (CCR5)

Table 2-17.  CCR5 Bit Definitions

BIT
POSITION NAME DESCRIPTION

5 ARREN Enable ARR Registers
If = 1: Enables all ARR registers.
If = 0: Disables the ARR registers.  If SM3 is set, ARR3 is enabled regardless of 
the setting of ARREN.

0 WT_ALLOC Write-Through Allocate
If = 1: New cache lines are allocated for read and write misses. 
If = 0: New cache lines are allocated only for read misses.

Note: Bits 1 - 3 and 6 - 7 are reserved.
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7 6 5 4 3 2 1 0

Reserved N Reserved Reserved Reserved Reserved WP_ARR3 SMM_MODE

Figure 2-19.  M II Configuration Control Register 6 (CCR6)

Table 2-18.  CCR6 Bit Definitions

BIT
POSITION NAME DESCRIPTION

6 N Nested SMI Enable bit: If operating in Cyrix enhanced SMM mode and: 
If = 1: Enables nesting of SMI’s
If = 0: Disable nesting of SMI’s.

This bit is automatically CLEARED upon entry to every SMM routine and is 
SET upon every RSM. Therefore enabling/disabling of nested SMI can only be 
done while operating in SMM mode.

1 WP_ARR3 If = 1: Memory region defined by ARR3 is write protected when operating out-
side of SMM mode.
If = 0: Disable write protection for memory region defined by ARR3. 
Reset State = 0.

0 SMM_MODE If = 1: Enables Cyrix Enhanced SMM mode.
If = 0: Disables Cyrix Enhanced SMM mode.

Note: Bit 1 is reserved.
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2.4.4.2 Memory Address
Region Registers

The Address Region Registers (ARR0 - ARR7)
are paired with the Region Control Registers 
(RCR0-RCR7) and specify up to eight 
memory address regions. Using ARR/RCR 
pairs, these regions can be designated as 
non-cacheable, write through, write locking 
and weak locking. Register pairs ARR7/ RCR7 
are unique and can define attributes for all of 
system main memory.

The 24-bit ARR registers (Figure 2-20) are 
divided into the 20-bit BASE ADDRESS and 
4-bit SIZE fields.  The fields define the size 
and base addresses for the memory regions.

The base address must be on a block size 
boundary. For example, if a 128-KByte block is 
used, the base addresses are allow to be 0, 
128 and, 256 KBytes, and so forth.

The meaning of the SIZE fields are listed in Table 
2-20. (Page 2-34). If the SIZE field is zero, the 
address region is zero sized and thus disabled.

The ARR registers are accessed using I/O ports 
22h and 23h. To read or write to a complete ARR 
register, three I/O port cycles are required. Each 
byte is assigned an index value (Table 2-19, Page 
2-34).

A region is noncacheable, if defined by ARR/RCR 
pair even if KEN# is active.

  

23                                                                                                                                              4 3                      0

START ADDRESS SIZE

Memory Address 
 Bits A31-A24

Memory Address 
Bits A23-A16

Memory Address 
Bits A15-A12

Size Bits
 3-0

7                                                            0 7                                                           0 7                          4 3                         0

Figure 2-20.  Address Region Registers (ARR0 - ARR7)
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Table 2-19.  ARR0 - ARR7 Register Index Assignments

ARR
Register

Register Bytes

Base Memory 
Address Field
A31 - A24

Base Memory
 Address Field

A23 - A16

Base Memory
 Address Field

A15 - A12, and
SIZE Field

ARR0 C4h C5h C6h

ARR1 C7h C8h C9h

ARR2 CAh CBh CCh

ARR3 CDh CEh CFh

ARR4 D0h D1h D2h

ARR5 D3h D4h D5h

ARR6 D6h D7h D8h

ARR7 D9h DAh DBh

Table 2-20. SIZE Field Bit Definition

SIZE (3-0)
 BLOCK SIZE  BLOCK SIZE

SIZE (3-0)
BLOCK SIZE  BLOCK SIZE

ARR0-6 ARR7 ARR0-6 ARR7

0h Disabled Disabled 8h  512 KBytes 32 MBytes

1h 4 KBytes 256 KBytes 9h 1 MBytes 64 MBytes

2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MBytes

3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MBytes

4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes

5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes

6h 128 KBytes 8 MBytes Eh 32 MBytes 2 GBytes

7h 256 KBytes 16 MBytes Fh  4 GBytes 4 GBytes
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2.4.4.3  Region Control
 Registers

The Region Control Registers (RCR0 - RCR7) 
are paired with the Address Region Registers 
(ARR0 -ARR7). Each RCR register specifies the 
attributes associated with a particular address 
regions. These attributes include: cacheability,  
weak locking, write gathering, and cache write 
through policies.The bit definitions for the 
region control registers are shown in Figure 
2-21 (Page 2-36) and in Table 2-21 (Page 
2-36).  

If an address is accessed that is not in a memory 
region defined by the ARRx registers, the fol-
lowing conditions will apply:

• If the memory address is cached, 
write-back is enabled if WB/WT# is 
returned high.

• Writes are not gathered
• Strong locking takes place
• The memory access is cached, if KEN# is 

returned asserted.

Overlapping Conditions Defined. If two 
regions specified by ARRx registers overlap and 
conflicting attributes are specified, the follow-
ing attributes take precedence:

• Write-back is disabled
• Writes are not gathered
• Strong locking takes place
• The overlapping regions are 

non-cacheable.
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7 6 5 4 3 2 1 0

Reserved INV_RGN Reserved WT WG WL Reserved CD

Figure 2-21.  Region Control Registers (RCR0-RCR7)

Table 2-21.  RCR0-RCR7 Bit Definitions

BIT
POSITION NAME DESCRIPTION

6 INV_RGN Inverted Region. If =1, applies controls specified in RCRx to all memory addresses out-
side the region specified in corresponding ARR. Applicable to RCR0-RCR6 only.

4 WT Write-Through. If =1, defines the address region as write-through instead of 
write-back.

3 WG Write Gathering. If =1, enables write gathering for the associated address region.

2 WL Weak Locking. If =1, enables weak locking for that address region.

0 CD Cache Disable. If =1, defines the address region as non-cacheable.

Note: Bits 1, 5 and 7 are reserved.
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Inverted Region (INV_RGN).  Setting 
INV-RGN applies the controls in RCRx to all the 
memory addresses outside the specified address 
region ARRx. This bit effects RCR0-RCR6 and 
not RCR7.

Write Through (WT). Setting WT defines the 
address region as write-through instead of 
write-back, assuming the region is cacheable. 
Regions where system ROM are loaded (shad-
owed or not) should be defined as write- 
through. This bit works in conjunction with the 
CR0_NW and PWT bits and the WB/WT# pin 
to determine write-through or write-back 
cacheability.

Write Gathering (WG). Setting WG enables 
write gathering for the associated address 
region. Write gathering allows multiple byte, 
word, or Dword sequential address writes to 
accumulate in the on-chip write buffer. As 
instructions are executed, the results are placed 
in a series of output buffers. These buffers are 
gathered into the final output buffer.

When access is made to a non-sequential mem-
ory location or when the 8-byte buffer becomes 
full, the contents of the buffer are written on the 
external 64-bit data bus. Performance is 
enhanced by avoiding as many as seven memory 
write cycles.

WG should not be used on memory regions that 
are sensitive to write cycle gathering. WG can be 
enabled for both cacheable and non-cacheable 
regions.

Weak Locking (WL). Setting WL enables 
weak locking for the associated address region.
During weak locking all bus cycles are issued 
with the LOCK# pin negated (except when page 
table access occur and during interrupt 
acknowledge cycles.)

Interrupt acknowledge cycles are executed as 
locked cycles even though LOCK# is negated. 
With WL set previously non-cacheable locked 
cycles are executed as unlocked cycles and 
therefore, may be cached, resulting in higher 
CPU performance.

Note that the NO_LOCK bit globally performs 
the same function that the WL bit performs on 
a single address region. The NO_LOCK bit of 
CCR1 enables weak locking for the entire 
address space. The WL bit allows weak locking 
only for specific address regions. WL is inde-
pendent of the cacheability of the address 
region.

Cache Disable (CD). Cache Disable - If set, 
defines the address region as non-cacheable. 
This bit works in conjunction with the CR0_CD 
and PCD bits and the KEN# pin to determine 
line cacheability. Whenever possible, the 
ARR/RCR combination should be used to define 
non-cacheable regions rather than using exter-
nal address decoding and driving the KEN# pin 
as the M II can better utilize its advanced tech-
niques for eliminating data dependencies and 
resource conflicts with non-cacheable regions 
defined on-chip.



2-38 PRELIMINARY

Model Specific Registers
Advancing the Standards



2.5 Model Specific
Registers

The CPU contains several Model Specific 
Registers (MSRs) that provide time stamp, 
performance monitoring and counter event 
functions. Access to a specific MSR through an 
index value in the ECX register as shown in 
Table 2-22 below.   

The MSR registers can be read using the 
RDMSR instruction, opcode 0F32h. During an 
MSR register read, the contents of the particular 
MSR register, specified by the ECX register, is 
loaded into the EDX:EAX registers.

The MSR registers can be written using the 
WRMSR instruction, opcode 0F30h.  During a 
MSR register write the contents of EDX:EAX are 
loaded into the MSR register specified in the 
ECX register.

The RDMSR and WRMSR instructions are 
privileged instructions and are also used to 
setup scratch pad lock (Page 2-61).

Table 2-22. Machine Specific
Register

REGISTER
 DESCRIPTION

ECX
VALUE

Test Data 3h

Test Address 4h

Command/Status 5h

Time Stamp Counter (TSC) 10h

Counter Event Selection and Control Register 11h

Performance Counter #0 12h

Performance Counter #1 13h

2.6 Time Stamp Counter

The Time Stamp Counter (TSC) Register 
MSR(10) is a 64-bit counter that counts the in-
ternal CPU clock cycles since the last reset. The 
TSC uses a continous CPU core clock and will 
continue to count clock cycles even when the 
M II is suspend mode or shutdown.

The TSC can be accessed using the RDMSR and 
WRMSR instructions. In addition, the TSC can 
be read using the RDTSC instruction, opcode 
0F31h. The RDTSC instruction loads the con-
tents of the TSC into EDX:EAX.  The use of the 
RDTSC instruction is restricted by the Time 
Stamp Disable, (TSD) flag in CR4.  When the 
TSD flag is 0, the RDTSC instruction can be ex-
ecuted at any privilege level.   When the TSD 
flag is 1, the RDTSC instruction can only be ex-
ecuted at privilege level 0.

2.7 Performance
Monitoring

Performance monitoring allows counting of 
over a hundred different event occurrences and 
durations.  Two 48-bit counters are used: Per-
formance Monitor Counter 0 and Performance 
Monitor Counter 1.  These two performance 
monitor counters are controlled by the Counter 
Event Control Register MSR(11).  The perfor-
mance monitor counters use a continuous CPU 
core clock and will continue to count clock cy-
cles even when the M II CPU is in suspend 
mode or shutdown.
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2.8 Performance
Monitoring
Counters 1 and 2

The 48-bit Performance Monitoring Counters 
(PMC) Registers MSR(12), MSR(13) count 
events as specified by the counter event control 
register.

The PMCs can be accessed by the RDMSR and 
WRMSR instructions.  In addition, the PMCs 
can be read by the RDPMC instruction, opcode 
0F33h.  The RDPMC instruction loads the con-
tents of the PMC register specified in the ECX 
register into EDX:EAX.  The use of RDPMC in-
structions is restricted by the Performance Mon-
itoring Counter Enable, (PCE) flag in C4.

When the PCE flag is set to 1, the RDPMC in-
struction can be executed at any privilege level.  
When the PCE flag is 0, the RDPMC instruction 
can only be executed at privilege level 0.

2.8.1 Counter Event
Control Register

Register MSR(11) controls the two internal 
counters, #0 and #1. The events to be counted 
have been chosen based on the micro-architec-
ture of the M II processor. The control register 
for the two event counters is described in 
Figure 2-21 (Page 2-36) and Table 2-23 (Page 
2-40).

2.8.1.1 PM Pin Control

The Counter Event Control register MSR(11) 
contains PM control fields that define the PM0 
and PM1 pins as counter overflow indicators or 
counter event indicators.  When defined as 
event counters, the PM pins indicate that one or 
more events occurred during a particular clock 
cycle and do not count the actual events.   

When defined as overflow indicators, the event 
counters can be preset with a value less the 
248-1 and allowed to increment as events occur.  
When the counter overflows the PM pin be-
comes asserted.

2.8.1.2 Counter Type Control

The Counter Type bit determines whether the 
counter will count clocks or events. When 
counting clocks the counter operates as a timer.

2.8.1.3 CPL Control

The Current Privilege Level (CPL) can be used 
to determine if the counters are enabled.  The 
CP02 bit in the MSR(11) register enables count-
ing when the CPL is less than three, and the 
CP03 bit enables counting when CPL is equal to 
three.  If both bits are set, counting is not depen-
dent on the CPL level; if neither bit is set, count-
ing is disabled.
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Figure 2-22.  Counter Event Control Register

Table 2-23.  Counter Event Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION

25 PM1 Define External PM1 Pin 
If = 1: PM1 pin indicates counter overflows
If = 0: PM1 pin indicates counter events

24 CT1 Counter #1 Counter Type 
If = 1: Count clock cycles 
If = 0: Count events (reset state).

23 CP13 Counter #1 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

22 CP12 Counter #1 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

26, 21 - 16 TC1(5-0) Counter #1 Event Type  
Reset state = 0

9 PM0 Define External PM0 Pin 
If = 1: PM0 pin indicates counter overflows
If = 0: PM0 pin indicates counter events

8 CT0 Counter #0 Counter Type 
If = 1: Count clock cycles 
If = 0: Count events (reset state).

7 CP03 Counter #0 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

6 CP02 Counter #0 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

10, 5 - 0 TC0(5-0) Counter #0 Event Type  
Reset state = 0

Note: Bits 10 - 15 are reserved.
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2.8.2 Event Type and Description

The events that can be counted by the performance monitoring counters are listed in Table 2-24.  
Each of the 127 event types is assigned an event number.

A particular event number to be counted is placed in one of the MSR(11) Event Type fields.   
There is a separate field for counter #0 and #1.

The events are divided into two groups. The occurrence type events and duration type events.  
The occurrence type events, such as hardware interrupts, are counted as single events.  The du-
ration type events such as “clock while bus cycles are in progress” count the number of clock cy-
cles that occur during the event.

During occurrence type events, the PM pins are configured to indicate the counter has incre-
mented The PM pins will then assert every time the counter increments in regards to an occur-
rence event. Under the same PM control, for a duration event the PM pin will stay asserted for 
the duration of the event.

Table 2-24. Event Type Register

NUMBER COUNTER 0 COUNTER 1 DESCRIPTION TYPE

00h yes yes Data Reads Occurrence

01h yes yes Data Writes Occurrence

02h yes yes Data TLB Misses Occurrence

03h yes yes Cache Misses: Data Reads Occurrence

04h yes yes Cache Misses: Data Writes Occurrence

05h yes yes Data Writes that hit on Modified or Exclusive Liens Occurence

06h yes yes Data Cache Lines Written Back Occurrence

07h yes yes External Inquiries Occurrence

08h yes yes External Inquires that hit Occurrence

09h yes yes Memory Accesses in both pipes Occurrence

0Ah yes yes Cache Bank conflicts Occurrence

0Bh yes yes Misaligned data references Occurrence

0Ch yes yes Instruction Fetch Requests Occurrence

0Dh yes yes L2 TLB Code Misses Occurrence

0Eh yes yes Cache Misses: Instruction Fetch Occurrence

0Fh yes yes Any Segment Register Load Occurrence

10h yes yes Reserved Occurrence

11h yes yes Reserved Occurrence

12h yes yes Any Branch Occurrence
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13h yes yes BTB hits Occurrence

14h yes yes Taken Branches or BTB hits Occurrence

15h yes yes Pipeline Flushes Occurrence

16h yes yes Instructions executed in both pipes Occurrence

17h yes yes Instructions executed in Y pipe Occurrence

18h yes yes Clocks while bus cycles are in progress Duration

19h yes yes Pipe Stalled by full write buffers Duration

1Ah yes yes Pipe Stalled by waiting on data memory reads Duration

1Bh yes yes Pipe Stalled by writes to not-Modified or not-Exclusive 
cache lines.

Duration

1Ch yes yes Locked Bus Cycles Occurrence

1Dh yes yes I/O Cycles Occurrence

1Eh yes yes Non-cacheable Memory Requests Occurrence

1Fh yes yes Pipe Stalled by Address Generation Interlock Duration

20h yes yes Reserved

21h yes yes Reserved

22h yes yes Floating Point Operations Occurrence

23h yes yes Breakpoint Matches on DR0 register Occurrence

24h yes yes Breakpoint Matches on DR1 register Occurrence

25h yes yes Breakpoint Matches on DR2 register Occurrence

26h yes yes Breakpoint Matches on DR3 register Occurrence

27h yes yes Hardware Interrupts Occurrence

28h yes yes Data Reads or Data Writes Occurrence

29h yes yes Data Read Misses or Data Write Misses Occurrence

2Bh yes no MMX Instruction Executed in X pipe Occurrence

2Bh no yes MMX Instruction Executed in Y pipe Occurrence

2Dh yes no EMMS Instruction Executed Occurrence

2Dh no yes Transition Between MMX Instruction and FP Instructions Occurrence

2Eh no yes Reserved

2Fh yes no Saturating MMX Instructions Executed Occurrence

2Fh no yes Saturations Performed Occurrence

30h yes no Reserved

31h yes no MMX Instruction Data Reads Occurrence

32h yes no Reserved

32h no yes Taken Branches Occurrence

33h no yes Reserved

34h yes no Reserved

34h no yes Reserved

35h yes no Reserved

Table 2-24. Event Type Register  (Continued)

NUMBER COUNTER 0 COUNTER 1 DESCRIPTION TYPE
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35h no yes Reserved

36h yes no Reserved

36h no yes Reserved

37h yes no Returns Predicted Incorrectly Occurrence

37h no yes Return Predicted (Correctly and Incorrectly) Occurrence

38h yes no MMX Instruction Multiply Unit Interlock Duration

38h no yes MODV/MOVQ Store Stall Due to Previous Operation Duration

39h yes no Returns Occurrence

39h no yes RSB Overflows Occurrence

3Ah yes no BTB False Entries Occurrence

3Ah no yes BTB Miss Prediction on a Not-Taken Back Occurrence

3Bh yes no Number of Clock Stalled Due to Full Write Buffers While 
Executing

Duration

3Bh no yes Stall on MMX Instruction Write to E or M Line Duration

3C - 3Fh yes yes Reserved Duration

40h yes yes L2 TLB Misses (Code or Data) Occurrence

41h yes yes L1 TLB Data Miss Occurrence

42h yes yes L1 TLB Code Miss Occurrence

43h yes yes L1 TLB Miss (Code or Data) Occurrence

44h yes yes TLB Flushes Occurrence

45h yes yes TLB Page Invalidates Occurrence

46h yes yes TLB Page Invalidates that hit Occurrence

47h yes yes Reserved

48h yes yes Instructions Decoded Occurrence

49h yes yes Reserved

Table 2-24. Event Type Register  (Continued)

NUMBER COUNTER 0 COUNTER 1 DESCRIPTION TYPE
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2.9 Debug Registers

Six debug registers (DR0-DR3, DR6 and DR7), 
shown in Figure 2-23, support debugging on 
the M II CPU.  The bit definitions for the debug 
registers are listed in Table 2-25 (Page 2-45).

Memory addresses loaded in the debug regis-
ters, referred to as “breakpoints”, generate a 
debug exception when a memory access of the 
specified type occurs to the specified address.  
A data breakpoint can be specified for a partic-
ular kind of memory access such as a read or a 
write.   Code breakpoints can also be set allow-
ing debug exceptions to occur whenever a 
given code access (execution) occurs.

The size of the debug target can be set to 1, 2, 
or 4 bytes.  The debug registers are accessed via 
MOV instructions which can be executed only 
at privilege level 0.

The Debug Address Registers (DR0-DR3) each 
contain the linear address for one of four possi-
ble breakpoints.  Each breakpoint is further 
specified by bits in the Debug Control Register 
(DR7).  For each breakpoint address in 
DR0-DR3, there are corresponding fields L, 
R/W, and LEN in DR7 that specify the type of 
memory access associated with the breakpoint.

The R/W field can be used to specify instruc-
tion execution as well as data access break-
points.  Instruction execution breakpoints are 
always taken before execution of the instruc-
tion that matches the breakpoint.

The Debug Status Register (DR6) reflects con-
ditions that were in effect at the time the debug 
exception occurred.  The contents of the DR6 
register are not automatically cleared by the 
processor after a debug exception occurs and, 
therefore, should be cleared by software at the 
appropriate time.

Figure 2-23.  Debug Registers
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Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at 
the location where control is to be regained.  Additionally, the single-step feature may be enabled 
by setting the TF flag in the EFLAGS register.  This causes the processor to perform a debug excep-
tion after the execution of every instruction.

Table 2-25.  DR6 and DR7 Debug Register Field Definitions

REGISTER FIELD NUMBER
OF BITS DESCRIPTION

DR6   Bi 1 Bi is set by the processor if the conditions described by DRi, R/Wi, 
and LENi occurred when the debug exception occurred, even if the 
breakpoint is not enabled via the Gi or Li bits.

  BT 1 BT is set by the processor before entering the debug handler if a task 
switch has occurred to a task with the T bit in the TSS set.

  BS 1 BS is set by the processor if the debug exception was triggered by the 
single-step execution mode (TF flag in EFLAGS set).

DR7   R/Wi 2 Specifies type of break for the linear address in DR0, DR1, DR3, DR4:
00 - Break on instruction execution only
01 - Break on data writes only
10 - Not used
11 - Break on data reads or writes.

  LENi 2 Specifies length of the linear address in DR0, DR1, DR3, DR4:
00 - One byte length
01 - Two byte length
10 - Not used
11 - Four byte length.

  Gi 1 If set to a 1, breakpoint in DRi is globally enabled for all tasks and is 
not cleared by the processor as the result of a task switch.

  Li 1 If set to a 1, breakpoint in DRi is locally enabled for the current task 
and is cleared by the processor as the result of a task switch.

  GD 1 Global disable of debug register access.  GD bit is cleared whenever a 
debug exception occurs.
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2.10 Test Registers

The test registers can be used to test the 
on-chip unified cache and to test the main TLB.

Test registers TR3, TR4, and TR5 are used to 
test the unified cache.  Use of these registers is 
described with the memory caches later in this 
chapter in section 2.13.1.1 on page 2-58.

Test registers TR6 and TR7 are used to test the 
TLB. Use of these test registers is described in
section 2.12.4.1 on page 2-54.
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2.11 Address Space

The M II CPU can directly address  64 KBytes of 
I/O space and 4 GBytes of physical memory 
(Figure 2-24). 

Memory Address Space.   Access can be 
made to memory addresses between 
0000 0000h and FFFF FFFFh. This 4 GByte 

Figure 2-24.  Memory and I/O Address Spaces

FFFF FFFFh

Physical Memory

Physical
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64 KBytes

Processor0000 FFFFh

0000 0000h

FFFF FFFFh

1750202

Memory Space

4 GBytes

I/O Address Space

Configuration
Register I/O
Space

0000 0023h
0000 0022h

Not
Accessible

memory  space can be accessed using byte, 
word (16 bits), or doubleword (32 bits)
format.  Words and doublewords are stored in 
consecutive memory bytes with the low-order 
byte located in the lowest address.  The phys-
ical address of a word or doubleword is the 
byte address of the low-order byte.



2-48 PRELIMINARY

Memory Addressing Methods
Advancing the Standards



I/O Address Space

The M II I/O address space is accessed using 
IN and OUT instructions to addresses referred 
to as “ports”.  The accessible I/O address space 
size is 64 KBytes and can be accessed through 
8-bit, 16-bit or 32-bit ports.  The execution of 
any IN or OUT instruction causes the M/IO# 
pin to be driven low, thereby selecting the I/O 
space instead of memory space. 

The accessible I/O address space ranges 
between locations 0000 0000h and 
0000 FFFFh (64 KBytes). The I/O locations 
(ports) 22h and 23h can be used to access the 
M II configuration registers.

2.12 Memory Addressing
Methods

With the M II CPU, memory can be addressed 
using nine different addressing modes (Table 
2-26, Page 2-49).  These addressing modes are 
used to calculate an offset address often 
referred to as an effective address.  Depending 
on the operating mode of the CPU, the offset is 
then combined using memory management 
mechanisms to create a physical address that 
actually addresses the physical memory 
devices.

Memory management mechanisms on the M II
CPU consist of segmentation and paging.  
Segmentation allows each program to use 
several independent, protected address spaces.  
Paging supports a memory subsystem that 
simulates a large address space using a small 
amount of RAM and disk storage for physical 
memory.  Either or both of these mechanisms 
can be used for management of the M II CPU
memory address space.
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2.12.1 Offset Mechanism

The offset mechanism computes an offset 
(effective) address by adding together one or 
more of three values: a base, an index and a 
displacement.  When present, the base is the 
value of one of the eight 32-bit general regis-
ters.   The index if present, like the base, is a 
value that is in one of the eight 32-bit general 
purpose registers (not including the ESP 
register).  The index differs from the base in 
that the index is first multiplied by a scale 
factor of 1, 2, 4 or 8 before the summation is 
made.  The third component added to the 
memory address calculation is the displace-
ment.  The displacement is a value of up to 
32-bits in length supplied as part of the 
instruction. Figure 2-25 illustrates the calcula-
tion of the offset address.

Nine valid combinations of the base, index, 
scale factor and displacement can be used with 
the M II CPU instruction set.  These combina-
tions are listed in Table 2-26.  The base and 
index both refer to contents of a register as 
indicated by [Base] and [Index].

Figure 2-25.  Offset Address Calculation

Table 2-26.  Memory Addressing Modes

ADDRESSING
MODE BASE INDEX

SCALE
FACTOR

(SF)

DISPLACEMENT
(DP)

OFFSET ADDRESS (OA)
CALCULATION

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index with 
Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP

Index

Base Displacement

Scaling

Offset Address

1706603

x1, x2, x4, x8

(Effective Address)
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2.12.2 Memory
Addressing

Real Mode Memory Addressing

In real mode operation, the M II CPU only 
addresses the lowest 1 MByte of memory.  To 
calculate a physical memory address, the 
16-bit segment base address located in the 
selected segment register is multiplied by 16 
and then the 16-bit offset address is added.  
The resulting 20-bit address is then extended.
Three hexadecimal zeros are added as upper 
address bits to create the 32-bit physical address.   
Figure 2-26 illustrates the real mode address 
calculation.

The addition of the base address and the offset 
address may result in a carry.  Therefore, the 
resulting address may actually contain up to 21 
significant address bits that can address 
memory in the first 64 KBytes above 1 MByte.

Protected Mode Memory Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 2-27, Page 2-51).

• Offset Mechanism that produces the 
offset or effective address as in real mode.

• Selector Mechanism that produces the 
base address.

• Optional Paging Mechanism that trans-
lates a linear address to the physical 
memory address.

The offset and base address are added together 
to produce the linear address.  If paging is not 
enabled, the linear address is used as the phys-
ical memory address.  If paging is enabled, the 
paging mechanism is used to translate the 
linear address into the physical address.  The 
offset mechanism is described earlier in this 
section and applies to both real and protected 
mode.  The selector and paging mechanisms 
are described in the following paragraphs.

Figure 2-26.  Real Mode Address Calculation

Offset Mechanism
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Figure 2-27.  Protected Mode Address Calculation

2.12.3 Selector Mechanism

Using segmentation, memory is divided into an 
arbitrary number of segments, each containing 
usually much less than the 232 byte (4 GByte) 
maximum.

The six segment registers (CS, DS, SS, ES, FS 
and GS) each contain a 16-bit selector that is 
used when the register is loaded to locate a 
segment descriptor in either the global 
descriptor table (GDT) or the local descriptor 
table (LDT).  The segment descriptor defines 

the base address, limit, and attributes of the 
selected segment and is cached on the M II
CPU as a result of loading the selector.  The 
cached descriptor contents are not visible to 
the programmer.  When a memory reference 
occurs in protected mode, the linear address is 
generated by adding the segment base address 
in the hidden portion of the segment register to 
the offset address.  If paging is not enabled, this 
linear address is used as the physical memory 
address. Figure 2-28 illustrates the operation 
of the selector mechanism.

Figure 2-28.  Selector Mechanism
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2.12.4 Paging Mechanism

The paging mechanism translates linear 
addresses to their corresponding physical 
addresses. The page size is always 4 KBytes. 
Paging is activated when the PG and the PE bits 
within the CR0 register are set. 

The paging mechanism translates the 20 most 
significant bits of a linear address to a physical 
address.  The linear address is divided into 
three fields DTI, PTI, PFO (Figure 2-29, Page 
2-53). These fields respectively select:

• an entry in the directory table,
• an entry in the page table selected by the 

directory table
• the offset in the physical page selected by 

the page table

The directory table and all the page tables can 
be considered as pages as they are 4 KBytes in 
size and are aligned on 4 KByte boundaries.
Each entry in these tables is 32 bits in length. 
The fields within the entries are detailed in 
Figure 2-30 (Page 2-53) and Table 2-27 (Page 
2-54).

A single page directory table can address up to 
4 GBytes of virtual memory (1,024 page 
tables—each table can select 1,024 pages and 
each page contains 4 KBytes).

Translation Lookaside Buffer (TLB) is 
made up of two caches (Figure 2-29, Page 
2-53).  

• the  L1 TLB caches page tables entries
• the L2 TLB stores PTEs that have been 

evicted from the L1 TLB

The  L1 TLB is a 16-entry direct-mapped dual 
ported cache.  The L2 TLB is a 384 entry, 
6-way, dual ported cache.  
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Figure 2-29.  Paging Mechanism
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Figure 2-30.  Directory and Page Table Entry (DTE and PTE) Format
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Table 2-27.  Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION

31-12 BASE
ADDRESS

Specifies the base address of the page or page table.

11-9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE only, 
undefined in DTE).

5 A Accessed Flag.  If set, indicates that a read access or write access has occurred
to the page.

4 PCD Page Caching Disable Flag.  If set, indicates that the page is not cacheable in
the on-chip cache.

3 PWT Page Write-Through Flag.  If set, indicates that writes to the page or page tables 
that hit in the on-chip cache must update both the cache and external memory.

2 U/S User/Supervisor Attribute.  If set (user), page is accessible at privilege level 3. If 
clear (supervisor), page is accessible only when CPL ≤ 2.

1 W/R Write/Read Attribute.  If set (write), page is writable.  If clear (read), page is 
read only.

0 P Present Flag.  If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits.  If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to 
external directory and page tables.  

The L1 TLB is a small cache optimized for speed 
whereas the L2 TLB  is a much larger cache opti-
mized for capacity.  The L2 TLB is a proper 
superset of the L1 TLB.  

The TLB must be flushed by the software when 
entries in the page tables are changed.  Both the 
L1 and L2 TLBs are flushed whenever the CR3 
register is loaded.  A particular page can be 
flushed from the TLBs by using the INVLPG 
instruction.

2.12.4.1 Translation Lookaside
 Buffer Testing

The L1 and L2 Translation Lookaside Buffers 
(TLBs) can be tested by writing, then reading 
from the same TLB location. The operation to be 
performed is determined by the command 
(CMD) field (Table 2-28, Page 2-54) in the TR6 
register.

Table 2-28. CMD Field

CMD OPERATION LINEAR
 ADDRESS BITS

x00 Write to L1  15 - 12

x01 Write to L2 17 - 12

010 Read from L1 X port 15 -12

011 Read from L2 X port 17 -12

110 Read from L1 Y port 15 - 12

110 Read from L2 Y port 17 - 12



2-55

2

PRELIMINARY

Memory Addressing Methods

TLB Write

To perform a write to the M II TLBs, the TR7 
register (Figure 2-31) is loaded with the desired 
physical address as well as the PCD and PWT 
bits.  For a write to the L2 TLB, the SET field of 
TR7 must be also specified.  The H1, H2, and 
HSET fields of TR7 are not used. The TR6 reg-
ister is then loaded with the linear address, V, 
D, U, W and A fields and the appropriate CMD.  
For a L1 TLB write, the TLB entry is selected by 
bits 15-12 of the linear address.  For a L2 TLB 
write, the TLB entry is selected by bits 17-12 of 
the linear address and the SET field of TR7.

TLB Read

For a L1 LTB read, the TR6 register is loaded 
with the linear address and the appropriate 
CMD.  The L1 TLB entry selected by bits 15-12 
of the linear address will then be accessed.  The 
linear address, V, D, PG, U, W and A fields of 

TR6 and the physical address, PCD and PWT 
fields of TR7 are loaded from the specified L1 
entry.  The H1 bit of TR7 will indicate if the 
specified linear address hit in the L1 TLB.

For a L2 TLB read, the TR7 register is loaded 
with the desired SET.  The TR6 register is then 
loaded with the linear address and the appro-
priate CMD.  The L2 TLB entry selected by bits 
17-12 of the linear address and the SET field in 
TR7 will then be accessed.  The linear address, 
V,D, PG, V, W, and A fields of TR6 and the 
physical address, PCD and PWT fields of TR7 
are loaded from the specified L2 entry.  The H2 
bit of TR7 will indicate if the specified linear 
address hit in the L2 TLB.  If there was an L2 
hit, the HSET field of TR7 will indicate which 
SET hit.

The TLB test register fields are defined in Table 
2-29. (Page 2-56).

Figure 2-31.  TLB Test Registers
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Table 2-29. TLB Test Register Bit Definitions

REGISTER
NAME NAME RANGE DESCRIPTION

TR7 ADR7 31-12 Physical address or variable page size mechanism mask.
TLB lookup:  data field from the TLB.
TLB write:  data field written into the TLB.

PCD 11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT 10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

SET 9-7 L2 TLB Set Selection (0h - 5h)

H1 5 Hit in L1 TLB

H2 4 Hit in L2 TLB

HSET 2-0 L2 Set Selection when L2 TLB hit occurred (0h - 5h)

TR6 ADR6 31-12 Linear Address.  
TLB lookup:  The TLB is interrogated per this address.  If 
one and only one match occurs in the TLB, the rest of the 
fields in TR6 and TR7 are updated per the matching TLB 
entry.
TLB write:  A TLB entry is allocated to this linear address. 

V 11 PTE Valid.
TLB write:  If set, indicates that the TLB entry contains 
valid data.  If clear, target entry is invalidated.

D 10 Dirty Attribute Bit

PG 9 Page Global

U 8 User/Supervisor Attribute Bit

W 6 Write Protect bit.

CMD 2-0 Array Command Select.
Determines TLB array command.
Refer to Table 2-28, Page 2-54.
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2.13 Memory Caches

The M II CPU contains two memory caches as 
described in Chapter 1. The Unified Cache acts 
as the primary data cache, and secondary 
instruction cache.  The Instruction Line Cache 
is the primary instruction cache and provides a 
high speed instruction stream for the Integer 
Unit.

The unified cache is dual-ported allowing 
simultaneous access to any two unique banks. 
Two different banks may be accessed at the 
same time permitting any two of the following 
operations to occur in parallel:

• Code fetch
• Data read (X pipe, Y pipe or FPU)
• Data write (X pipe, Y pipe or FPU).

2.13.1 Unified Cache 
MESI States

The unified cache lines are assigned one of four 
MESI states as determined by MESI bits stored 
in tag memory. Each 32-byte cache line is 
divided into two 16-byte sectors.  Each sector 
contains its own MESI bits. The four MESI 
states are described below:

Modified MESI cache lines are those that have 
been updated by the CPU, but the corre-
sponding main memory location has not yet 
been updated by an external write cycle. Modi-
fied cache lines are referred to as dirty cache 
lines.

Exclusive MESI lines are lines that are exclusive 
to the M II CPU and are not duplicated within 
another caching agent’s cache within the same 
system.  A write to this cache line may be 
performed without issuing an external write 
cycle.

Shared MESI lines may be present in another 
caching agent’s cache within the same system.  A 
write to this cache line forces a corresponding 
external write cycle.

Invalid MESI lines are cache lines that do not 
contain any valid data.
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2.13.1.1 Unified Cache Testing

The TR3, TR4, and TR5 test registers allow 
testing the unified cache. These registers can 
also be accessed as Model Specific Registers 
MSR(3), MSR(4), and MSR(5) using the 
RDMSR and WRMSR instructions. The data 
placed in the MSR registers determine which 
areas will be tested.  

Cache Organization. The 64 KByte Unified 
Cache (Figure 2-32) is a 4-way set associative 
cache divided into 2,048 lines. There are 512 
cache lines in each of the four sets. Each cache 
line is 32 bytes wide.

Memory address bits A13-A5 address sequen-
tial cache lines, repeating the same sequence in 

each set. Since each cache line represents any 
memory location with the same A13-A5 bits, 
the upper address bits A31-A14 are stored in 
the cache tag line.  Memory address bits A4-A2 
are used to select a particular 4-byte entry 
(ENT) within the cache line.

Test Initiation. A test register operation is 
initiated by writing to the TR5 register shown 
in Figure 2-33 (Page 2-59) using a special 
MOV instruction. The TR5 CTL  field, detailed 
in Table 2-30 (Page 2-59), determines the 
function to be performed.  For cache writes, 
the registers TR4 and TR3 must be initialized 
before a write is made to TR5. Eight 4-byte 
accesses are required to access a complete 
cache line. 

Figure 2-32.  Unified Cache
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31 24 23 22 20 19 18 16 15 12 11 8 7 6 5 4 3 2 0

S
M
I

V MESI MRU SET CTL TR5

31 2 1 0

ADDRESS TR4

31 0

DATA TR3

Figure 2-33.  Cache Test Registers

Table 2-30.  Cache Test Register Bit Definitions

REGISTER
NAME

FIELD
NAME RANGE DESCRIPTION

TR5 SMI 23 SMI Address Bit.  Selects separate/cacheable SMI code/data 
space

V, MESI 19 - 16 Valid, MESI Bits*
If = 1000, Modified
If = 1001, Shared
If = 1010, Exclusive 
If = 0011, Invalid
If = 1100, Locked Valid
If = 0111, Locked Invalid
Else = Undefined

MRU 11 - 8 Used to determine the Least Recently Used (LRU) line.

SET 5 - 4 Cache Set. Selects one of four cache sets to perform operation 
on.

CTL 1 - 0 Control field
If = 00: flush cache without invalidate
If = 01: write cache
If = 10: read cache
If = 11: no cache or test register modification

TR4 ADDRESS 31 - 2 Physical Address

TR3 DATA 31 - 0 Data written or read during a cache test.
*Note: All 32 bytes should contain valid data before a line is marked as valid.
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Write Operations. During a write, the TR3 
DATA (32-bits) and TAG field information is 
written to the address selected by the 
ADDRESS field in TR4 and the SET field in 
TR5.

Read Operations. During a read, the cache 
address selected by the ADDRESS field in TR4 
and the SET field in TR5. The TVB, MESI and 
MRU fields in TR5 are updated with the infor-
mation from the selected line. TR3 holds the 
selected read data.

Cache Flushing. A cache flush occurs during 
a TR5 write if the CTL field is set to zero. 
During flushing, the CPU’s cache controller 
reads through all the lines in the cache. “Modi-
fied” lines are redefined as “shared” by setting 
the shared MESI bit.  Clean lines are left in 
their original state. 
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2.13.2 RAM Cache Locking

RAM cache locking (was called Scratch Pad 
Memory) sets up a private area of memory that 
can be assigned within the M II unified cache. 
Cached locked RAM is read/writable and is 
NOT kept coherent with the rest of the system. 
Scratch Pad Memory is a seperate memory on 
certain Cyrix CPUs.

Cache locking may be implemented differently 
on different processors.  On the M II CPU, the 
cache locking RAM may be assigned on a cache 
line granularity.

RDMSR and WRMSR instructions (Page 2-39) 
with indices 03h to 05h are used to assign 
scratch pad memory. These instructions access 
the cache test registers. See section 2.13.1.1 
(Page 2-58) for detailed description of cache 
test register operation. The cache line is 
assigned into Scratch Pad RAM by setting its 
MESI state to “locked valid.”

Table 2-31.  RAM Cache Locking Operations

Read/Write ECX EDX EAX Operation

Read/Write 03h ---- Data to be read or 
written from/to 
the cache.

Loads or stores data to/from TR3.

Write 04h ---- 32 bits of address Address in EAX is loaded into TR4. 
This address is  the cache line address 
that will be locked.

Read 04h ---- 32 bits of address Stores the contents of TR4 in EAX

Write 05h ---- Data to be written 
into TR5

Performs operation specified in CTL 
field of TR5.

Read 05h ---- Data in TR5 regis-
ter

Reads data in TR5 and stores in EAX.

When locking physical addresses into the cache 
(Table 2-31), the programmer should be aware 
of several issues:

1) Locking all sets of the cache should not be 
done. It is required that one set always be avail-
able for general purpose caching. 2) Care must 
be taken by the programmer not to create 
synonyms.  This is done by first checking to see 
if a particular address is locked before 
attempting to lock the address.  If synonyms 
are created, M II CPU operation will be unde-
fined.

 When ever possible, it is recommended to 
flush the cache before assigning locked 
memory areas.  Locked areas of the cache are 
cleared on reset, and are unaffected by warm 
reset and FLUSH#, or the INVD and WBINVD 
instructions.
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2.14 Interrupts and
Exceptions

The processing of an interrupt or an exception 
changes the normal sequential flow of a 
program by transferring program control to a  
selected service routine. Except for SMM inter-
rupts, the location of the selected service 
routine is determined by one of the interrupt 
vectors stored in the interrupt descriptor table.

Hardware interrupts are generated by signal 
sources external to the CPU.  All exceptions 
(including so-called software interrupts) are 
produced internally by the CPU.

2.14.1 Interrupts

External events can interrupt normal program 
execution by using one of the three interrupt 
pins on the M II CPU.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the 
interrupt routine occurs after the current 
instruction has been completed.  When the 
execution returns to the original program, it begins
immediately following the last completed instruc-
tion.

With the exception of string operations,  inter-
rupts are acknowledged between instructions.  
Long string operations have interrupt windows 
between memory moves that allow interrupts 
to be acknowledged.

The NMI interrupt cannot be masked by soft-
ware and always uses interrupt vector 2 to 
locate its service routine.  Since the interrupt 
vector is fixed and is supplied internally, no 
interrupt acknowledge bus cycles are 
performed.  This interrupt is normally reserved 
for unusual situations such as parity errors and 
has priority over INTR interrupts.

Once NMI processing has started, no additional 
NMIs are processed until an IRET instruction is 
executed, typically at the end of the NMI 
service routine.  If NMI is re-asserted prior to 
execution of the IRET instruction, one and only 
one NMI rising edge is stored and  processed 
after execution of the next IRET.  During the 
NMI service routine, maskable interrupts may 
be enabled (unmasked).  If an unmasked INTR 
occurs during the NMI service routine, the 
INTR is serviced and execution returns to the 
NMI service routine following the next IRET.   If 
a HALT instruction is executed within the NMI 
service routine, the M II CPU restarts execution 
only in response to RESET, an unmasked INTR or 
an SMM interrupt.  NMI does not restart CPU 
execution under this condition.

The INTR interrupt is unmasked when the 
Interrupt Enable Flag (IF) in the EFLAGS 
register is set to 1.  When an INTR interrupt 
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2.14.2 Exceptions

Exceptions are generated by an interrupt 
instruction or a program error.  Exceptions are 
classified as traps, faults or aborts depending 
on the mechanism used to report them and the 
restartability of the instruction that first caused 
the exception.

A Trap Exception is reported immediately 
following the instruction that generated the 
trap exception.   Trap exceptions are generated 
by execution of a software interrupt 
instruction  (INTO, INT 3, INT n, BOUND), 
by a single-step operation or by a data 
breakpoint.

Software interrupts can be used to simulate 
hardware interrupts.   For example, an INT n 
instruction causes the processor to execute the 
interrupt service routine pointed to by the nth 
vector in the interrupt table.  Execution of the 
interrupt service routine occurs regardless of 
the state of the IF flag in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt 
(vector 3), is a particular case of the INT n 
instruction.  By inserting this one byte instruc-
tion in a program, the user can set breakpoints 
in the code that can be used during debug.

Single-step operation is enabled by setting the 
TF bit in the EFLAGS register.  When TF is set, 
the CPU generates a debug exception (vector 1)
after the execution of every instruction.  Data 
breakpoints also generate a debug exception 
and are specified by loading the debug regis-
ters (DR0-DR7) with the appropriate values.

occurs, the CPU performs two locked interrupt 
acknowledge bus cycles.  During the second 
cycle, the CPU reads an 8-bit vector that is 
supplied by an external interrupt controller.  
This vector selects one of the 256 possible 
interrupt handlers which will be executed in 
response to the interrupt.

The SMM interrupt has higher priority than 
either INTR or NMI.  After SMI# is asserted, 
program execution is passed to an SMI service 
routine that runs in SMM address space 
reserved for this purpose.  The remainder of 
this section does not apply to the SMM inter-
rupts. SMM interrupts are described in greater 
detail later in this chapter.
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A Fault Exception is reported prior to 
completion of the instruction that generated 
the exception.   By reporting the fault prior to 
instruction completion, the CPU is left in a 
state that allows the instruction to be restarted 
and the effects of the faulting instruction to be 
nullified.  Fault exceptions include 
divide-by-zero errors, invalid opcodes, page 
faults and coprocessor errors. Instruction 
breakpoints (vector 1) are also handled as 
faults.   After execution of the fault service 
routine, the instruction pointer points to the 
instruction that caused the fault.

An Abort Exception is a type of fault exception
that is severe enough that the CPU cannot restart
the program at the faulting instruction. The 
double fault (vector 8) is the only abort excep-
tion that occurs on the M II CPU.

2.14.3 Interrupt Vectors

When the CPU services an interrupt or excep-
tion, the current program’s FLAGS, code 
segment and instruction pointer are pushed 
onto the stack to allow resumption of execu-
tion of the interrupted program.  In protected 
mode, the processor also saves an error code 
for some exceptions.  Program control is then 
transferred to the interrupt handler (also called 
the interrupt service routine).  Upon execution 
of an IRET at the end of the service routine, 
program execution resumes by popping from 
the stack, the instruction pointer, code 
segment, and FLAGS.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is 
assigned one of 256 interrupt vector numbers 
Table 2-32, (Page 2-65). The first 32 interrupt 
vector assignments are defined or reserved.  
INT instructions acting as software interrupts 
may use any of the interrupt vectors, 0 through 
255.
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Table 2-32.  Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAP/FAULT*

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Reserved

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault TRAP/FAULT

14 Page fault FAULT

15 Reserved

16 FPU error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP
*Note: Data breakpoints and single-steps are traps.  All other debug exceptions are faults.
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In response to a maskable hardware interrupt 
(INTR), the M II CPU issues interrupt acknowl-
edge bus cycles to read the vector number from 
external hardware.  These vectors should be in 
the range 32 - 255 as vectors 0 - 31 are reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the M 
II CPU to locate an entry in the interrupt 
descriptor table (IDT).  In real mode, each IDT 
entry consists of a four-byte far pointer to the 
beginning of the corresponding interrupt 
service routine. In protected mode, each IDT 
entry is an eight-byte descriptor.  The Interrupt 
Descriptor Table Register (IDTR) specifies the 
beginning address and limit of the IDT.  
Following reset, the IDTR contains a base 
address of 0h with a limit of 3FFh. 

The IDT can be located anywhere in physical 
memory as determined by the IDTR register.  
The IDT may contain different types of descrip-
tors: interrupt gates, trap gates and task gates.  
Interrupt gates are used primarily to enter a 
hardware interrupt handler.  Trap gates are 
generally used to enter an exception handler or 
software interrupt handler.  If an interrupt gate 
is used, the Interrupt Enable Flag (IF) in the 
EFLAGS register is cleared before the interrupt 
handler is entered.  Task gates are used to make 
the transition to a new task.

2.14.4 Interrupt and Exception
Priorities

As the M II CPU executes instructions, it 
follows a consistent policy for prioritizing 
exceptions and hardware interrupts. The priori-
ties for competing interrupts and exceptions 
are listed in Table 2-33 (Page 2-67). Debug 
traps for the previous instruction and the next 
instructions always take precedence. SMM 
interrupts are the next priority.  When NMI and 
maskable INTR interrupts are both detected at 
the same instruction boundary, the M II
processor services the NMI interrupt first.

The M II CPU checks for exceptions in parallel 
with instruction decoding and execution.  
Several exceptions can result from a single 
instruction.  However, only one exception is 
generated upon each attempt to execute the 
instruction.  Each exception service routine 
should make the appropriate corrections to the 
instruction and then restart the instruction.  In 
this way, exceptions can be serviced until the 
instruction executes properly.

The M II CPU supports instruction restart after 
all faults, except when an instruction causes a 
task switch to a task whose task state segment 
(TSS) is partially not present.  A TSS can be 
partially not present if the TSS is not page 
aligned and one of the pages where the TSS 
resides is not currently in memory.
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Table 2-33.  Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

0 Warm Reset Caused by the assertion of WM_RST.

1 Debug traps and faults from previ-
ous instruction.

Includes single-step trap and data breakpoints 
specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints 
specified in the debug registers.

3 Hardware Cache Flush Caused by the assertion of FLUSH#.

4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted 
and always have highest priority.

5 Non-maskable hardware interrupt. Caused by NMI asserted.

6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

7 Faults resulting from fetching the 
next instruction.

Includes segment not present, general protec-
tion fault and page fault.

8 Faults resulting from instruction 
decoding.

Includes illegal opcode, instruction too long, 
or privilege violation.

9 WAIT instruction and TS = 1 and 
MP = 1.

Device not available exception generated.

10 ESC instruction and EM = 1 or 
TS = 1.

Device not available exception generated.

11 Floating point error exception. Caused by unmasked floating point exception 
with NE = 1.

12 Segmentation faults (for each 
memory reference required by the 
instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and 
general protection fault.

13 Page Faults that prevent transfer-
ring the entire memory operand.

14 Alignment check fault.
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2.14.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-33 (Page 2-67) are not applicable in real mode.  
Exceptions 10, 11, and 14 do not occur in real mode.  Other exceptions have slightly different 
meanings in real mode as listed in Table 2-34.

Table 2-34.  Exception Changes in Real Mode

VECTOR 
NUMBER

PROTECTED MODE
 FUNCTION

REAL MODE FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. x

11 Segment not present. x

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. x
Note: x = does not occur
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2.14.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

The error code is pushed onto the stack prior to entering the exception handler. The error code 
format is shown in Figure 2-34 and the error code bit definitions are listed in Table 2-35.  Bits 
15-3 (selector index) are not meaningful if the error code was generated as the result of a page 
fault.  The error code is always zero for double faults and alignment check exceptions.

 

Double Fault Invalid TSS

Alignment Check Segment Not Present

Page Fault Stack Fault

General Protection Fault

15                   3 2 1 0

Selector Index S2 S1 S0

Figure 2-34.  Error Code Format

Table 2-35.  Error Code Bit Definitions

FAULT
TYPE

SELECTOR
INDEX

(BITS 15-3)

S2
(BIT 2)

S1
(BIT 1)

S0
(BIT 0)

Double Fault or 
Alignment Check

0 0 0 0

Page Fault Reserved. Fault caused by:
0 = not present page
1 = page-level
protection violation.

Fault occurred
 during:
0 = read access
1 = write access.

Fault occurred during:
0 = supervisor access.
1 = user access.

IDT Fault Index of faulty
IDT selector.

Reserved. 1 If = 1, exception 
occurred while trying 
to invoke exception 
or  hardware interrupt 
handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty
selector.

0 If =1, exception 
occurred while trying 
to invoke exception 
or  hardware interrupt 
handler.
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2.15 System Management
Mode

System Management Mode (SMM) is a distinct 
CPU mode that differs from normal CPU x86 
operating modes (real mode, V86 mode, and 
protected mode) and is most often used to 
perform power management.

The M II CPU is backward compatible with the 
SL-compatible SMM found on previous Cyrix 
microprocessors.  On the M II SMM has been 
enhanced to optimized software emulation of 
multimedia and I/O peripherals.

The Cyrix Enhanced SMM provides new 
features:

• Cacheability of SMM memory
• Support for nesting of multiple SMIs
• Improved SMM entry and exit time.

Overall Operation

The overall operation of a SMM operation is 
shown in (Figure 2-35). SMM is entered using 
the System Management Interrupt (SMI) pin. 
SMI interrupts have higher priority than any 
other interrupt, including NMI interrupts. SMM 
can also be entered using software by using an 
SMINT instruction.

Upon entering SMM mode, portions of the CPU 
state are automatically saved in the SMM 
address memory space header.  The CPU enters 
real mode and begins executing the SMI service 
routine in SMM address space.

Execution of a SMM routine starts at the base 
address in SMM memory address space. Since 
the SMM routines reside in SMM memory 
space, SMM routines can be made totally trans-
parent to all software, including protected- 
mode operating systems.

1713703

SMI# Sampled Active or

CPU State Stored in SMM

CPU Enters Real Mode

Execution Begins at SMM

RSM Instruction Restores CPU

Normal Execution Resumes

Address Space Header

Address Space Base Address

State Using Header Information

SMINT Instruction Executed

Figure 2-35.  SMI Execution
Flow Diagram

c:\dataoem\!m2\!m2_2-71.fm

April 9, 1997 5:47 pm

Rev 0.2



 2-71

2

PRELIMINARY

System Management ModeSystem Management Mode

 2-71

2.15.1 SMM Memory Space

SMM memory must reside within the bounds of 
physical memory and not overlap with system 
memory. SMM memory space (Figure 2-36) is 
defined  by setting the SM3 bit in CCR1 and 
specifying the base address and size of the SMM 
memory space in the ARR3 register.

The base address must be a multiple of the SMM 
memory space size. For example, a 32 KByte 
SMM memory space must be located on a 

32 KByte address boundary.  The memory 
space size can range from 4 KBytes to 4 GBytes 
SMM accesses ignore the state of the A20M# 
input pin and drive the A20 address bit to the 
unmasked value.

SMM memory space can be accessed while in 
normal mode by setting the SMAC bit in the 
CCR1 register.  This feature may be used to 
initialize SMM memory space.

FFFF FFFFh

Physical Memory

Physical

0000 0000h

Potential

Defined

0000 0000h

FFFF FFFFh

1747600
Non-SMM Mode

SMIACT# Active
4 KBytes to

SMM Mode

4 GBytes

Memory Space SMM Address
Space

SMM
Address
Space

4 GBytes

SMIACT# Negated

Figure 2-36.  System Management Memory Space
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2.15.2 SMM Memory Space Header

The SMM Memory Space Header (Figure 2-37) is used to store the CPU state prior to starting an 
SMM routine. The fields in this header are described in Table 2-36  (Page 2-73). After the SMM 
routine has completed, the header information is used to restore the original CPU state.  The 
location of the SMM header is determined by the SMM Header Address Register (SMHR).

DR7

EFLAGS

CR0

031
SMHR

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

P

Current IP

Next IP

CS Selector

CS Descriptor  (Bits 63-32)

CS Descriptor  (Bits 31-0)

ESI or EDI

I

1747700

31 16 15 0

31 2 1 0

-2Ch

-30h

Register 

3

S

I/O Write AddressI/O Write Data Size

I/O Write Data

16 15

H

4

Reserved 

Reserved 

2122 1315

CN ISCPL 

Figure 2-37.  SMM Memory Space Header
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Table 2-36.  SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of Debug Register 7. 4 Bytes

EFLAGS The contents of Extended Flags Register. 4 Bytes

CR0 The contents of Control Register 0. 4 Bytes

Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes

Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes

CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes

CPL Current privilege level for current code segment. 2 Bits

N Nested SMI Indicator
If N = 1: current SMM is being serviced from within SMM mode.
If N = 0: current SMM is not being serviced from within SMM mode.

1 Bit

IS Internal SMI Indicator
If IS =1: current SMM is the result of an internal SMI event.
If IS =0: current SMM is the result of an external SMI event.

1 Bit

H SMI during CPU HALT state indicator
If H = 1: the processor was in a halt or shutdown prior to servicing the SMM 
interrupt.

1 Bit

S Software SMM Entry Indicator.
If S = 1: current SMM is the result of an SMINT instruction.
If S = 0: current SMM is not the result of an SMINT instruction.

 1 Bit

P REP INSx/OUTSx Indicator
If P = 1: current instruction has a REP prefix.
If P = 0: current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator
If I = 1: if current instruction performed is an I/O WRITE.
If I = 0: if current instruction performed is an I/O READ.

1 Bit

C Code Segment writable Indicator
If C = 1: the current code segment is writable.
If C = 0: the current code segment is not writable.

1 Bit

I/O Indicates size of data for the trapped I/O write:
  01h = byte
  03h = word
  0Fh = dword

2 Bytes

I/O Write Address I/O Write Address
Processor port used for the trapped I/O write.

 2 Bytes

I/O Write Data I/O Write Data
Data associated with the trapped I/O write.

4 Bytes

ESI or EDI Restored ESI or EDI value.  Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

4 Bytes

Note:  INSx = INS, INSB, INSW or INSD instruction.
Note:  OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.
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Current and Next IP Pointers

Included in the header information are the 
Current and Next IP pointers. The Current IP 
points to the instruction executing when the 
SMI was detected and the Next IP points to the 
instruction that will be executed after exiting 
SMM.

Normally after an SMM routine is completed, 
the instruction flow begins at the Next IP 
address. However, if an I/O trap has occurred, 
instruction flow should return to the Current IP 
to complete the I/O instruction.

If SMM has been entered due to an I/O trap for 
a REP INSx or REP OUTSx instruction, the 
Current IP and Next IP fields contain the same 
address.

If an entry into SMM mode was caused by an 
I/O trap, the port address, data size and data 
value associated with that I/O operation are 
stored in the SMM header. Note that these 
values are only valid for I/O operations. The I/O 
data is not restored within the CPU when 
executing a RSM instruction.

Under these circumstances the I and P bits, as 
well as ESI/EDI field, contain valid information.

Also saved are the contents of debug register 7 
(DR7), the extended flags register (EFLAGS), 
and control register 0 (CR0).

If the S bit in the SMM header is set, the SMM 
entry resulted from an SMINT instruction.

SMM Header Address Pointer

The SMM Header Address Pointer Register 
(SMHR) (Figure 2-38) contains the 32-bit SMM 
Header pointer. The SMHR address is dword 
aligned, so the two least significant bits are 
ignored.

The SMHR valid bit (bit 0) is cleared with every  
write to ARR3 and during a hardware RESET. 
Upon entry to SMM, the SMHR valid bit is 
examined before the CPU state is saved into the 
SMM memory space header. When the valid bit 
is reset, the SMM header pointer will be calcu-
lated (ARR3 base field + ARR3 size field) and 
loaded into the SMHR and the valid bit will be 
set.

If the desired SMM header location is different 
than the top of SMM memory space, as may be 
the case when nesting SMI’s, then the SMHR 
register must be loaded with a new value and 
valid bit from within the SMI routine before 
nesting is enabled.

The SMM memory space header can be relo-
cated using the new RDSHR and WRSHR 
instructions.

Figure 2-38. SMHR Register

31                                                             2 1 0

SMHR Res V

Table 2-37. SMHR Register Bits

BIT 
POSITION DESCRPTION

31 - 2 SMHR header pointer address.

1 Reserved

0 Valid Bit
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2.15.3 SMM Instructions

After entering the SMI service routine, the 
MOV, SVDC, SVLDT and SVTS instructions 
(Table 2-38) can be used to save the complete 
CPU state information. If the SMI service 
routine modifies more than what is automatically 

saved or forces the CPU to power down, the 
complete CPU state information must be saved. 
Since the CPU is a static device, its internal state 
is retained when the input clock is stopped.  
Therefore, an entire CPU state save is not neces-
sary prior to stopping the input clock.

Table 2-38.  SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

  SVDC 0F 78 [mod sreg3  r/m] SVDC mem80, sreg3 Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

  RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80. 
Use RSM to restore CS.  
Note:  Processing “RSDC  CS, Mem80” will produce an exception.

  SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

  RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from mem80.

  SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

  RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

  SMINT 0F 38 SMINT Software SMM Entry
CPU enters SMM mode.  CPU state information is 
saved in SMM memory space header and execution 
begins at SMM base address.

  RSM 0F AA RSM Resume Normal Mode
Exits SMM mode.  The CPU state is restored using 
the SMM memory space header and execution 
resumes at interrupted point.

  RDSHR 0F 36 RDSHR ereg/mem32 Read SMM Header Pointer Register
Saves SMM header pointer to extended register or 
memory.

  WRSHR 0F 37 WRSHR ereg/mem32 Write SMM Header Pointer Register
Load SMM header pointer register from extended 
register or memory.

Note: mem32 = 32-bit memory location
         mem80 = 80-bit memory location
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The SMM instructions listed in Table 2-38, 
(except the SMINT instruction) can be executed 
only if:

1) ARR3 Size > 0
2) Current Privilege Level =0
3) SMAC bit is set or the CPU is executing 

an SMI service routine.
4) USE_SMI (CCR1- bit 1) = 1
5) SM3 (CCR1-bit 7) = 1

If the above conditions are not met and an 
attempt is made to execute an SVDC, RSDC, 
SVLDT, RSLDT, SVTS, RSTS, SMINT, RSM, 
RDSHR, or WDSHR instruction, an invalid 
opcode exception is generated.  These instruc-
tions can be executed outside of defined SMM 
space provided the above conditions are met.

The SMINT instruction allows software entry 
into SMM. The SVDC, RSDC, SVLDT, RSLDT, 
SVTS and RSTS instructions save or restore 80 
bits of data, allowing the saved values to include 
the hidden portion of the register contents.

The WRSHR instruction loads the contents of 
either a 32-bit memory operand or a 32-bit 
register operand into the SMHR pointer register 
based on the value of the mod r/m instruction 
byte. Likewise the RDSHR instruction stores the 
contents of the SMHR pointer register to either 
a 32 bit memory operand or a 32 bit register 
operand based on the value of the mod r/m 
instruction byte.

2.15.4 SMM Operation

This section details the SMM operations.

Entering SMM

Entering SMM requires the assertion of the 
SMI# pin or execution of an SMINT instruction.  
SMI interrupts have higher priority than any 
interrupt including NMI interrupts.

For the SMI# or SMINT instruction to be recog-
nized, the following configuration register bits 
must be set as shown in Table 2-39.

Upon entry into SMM, after the SMM header has 
been saved, the CR0, EFLAGS, and DR7 regis-
ters are set to their reset values.  The Code 
Segment (CS) register is loaded with the base, 
as defined by the ARR3 register, and a limit of 4 
GBytes.  The SMI service routine then begins 
execution at the SMM base address in real mode.

Table 2-39.  Requirements for 
Recognizing SMI# and SMINT

REGISTER (Bit) SMI# SMINT

SMI CCR1 (1)  1 1

SMAC CCR1 (2)  0 1

ARR3 SIZE (3-0) > 0 > 0

SM3 CCR1 (7) 1 1
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Saving the CPU State

The programmer must save the value of any 
registers that may be changed by the SMI service 
routine.  For data accesses immediately after 
entering the SMI service routine, the programmer 
must use CS as a segment override.  I/O port 
access is possible during the routine but care must 
be taken to save registers modified by the I/O 
instructions.  Before using a segment register, the 
register and the register’s descriptor cache contents
should be saved using the SVDC instruction.  
While executing in the SMM space, execution flow 
can transfer to normal memory locations.

Program Execution

Hardware interrupts, (INTRs and NMIs), may 
be serviced during a SMI service routine.  If 
interrupts are to be serviced while executing in 
the SMM memory space, the SMM memory 
space must be within the 0 to 1 MByte address 
range to guarantee proper return to the SMI 
service routine after handling the interrupt.

INTRs are automatically disabled when entering
SMM since the IF flag is set to its reset value.  
Once in SMM, the INTR can be enabled by 
setting the IF flag.  NMI is also automatically 
disable when entering SMM.  Once in SMM, 
NMI can be enabled by setting NMI_EN in 
CCR3.  If NMI is not enabled, the CPU latches 
one NMI event and services the interrupt after 
NMI has been enabled or after exiting SMM 
through the RSM instruction.

Within the SMI service routine, protected mode
may be entered and exited as required, and real
or protected mode device drivers may be 
called.

Exiting SMM

To exit the SMI service routine, a Resume 
(RSM) instruction, rather than an IRET, is 
executed.  The RSM instruction causes the M II
processor to restore the CPU state using the 
SMM header information and resume execution 
at the interrupted point.  If the full CPU state 
was saved by the programmer, the stored values 
should be reloaded prior to executing the RSM 
instruction using the MOV, RSDC, RSLDT and 
RSTS instructions.   

When the RSM instruction is executed at the 
end of the SMI handler, the EIP instruction 
pointer is automatically read from the NEXT IP 
field in the SMM header.

When restarting I/O instructions, the value of 
NEXT IP may need modification.  Before 
executing the RSM instruction, use a MOV 
instruction to move the CURRENT IP value to 
the NEXT IP location as the CURRENT IP value 
is valid if an I/O instruction was executing when 
the SMI interrupt occurred.  Execution is then 
returned to the I/O instruction, rather than to 
the instruction after the I/O instruction.

A set H bit in the SMM header indicates that a 
HLT instruction was being executed when the 
SMI occurred. To resume execution of the HLT 
instruction, the NEXT IP field in the SMM 
header should be decremented by one before 
executing RSM instruction.
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2.15.5 SL and Cyrix SMM 
Operating Modes

There are two SMM modes, SL-compatible 
mode (default) and Cyrix SMM mode.

2.15.5.1 SL-Compatible
SMM Mode

While in SL-compatible mode, SMM memory 
space accesses can only occur during an SMI 
service routine. While executing an SMI service 
routine SMIACT# remains asserted regardless of 
the address being accessed.  This includes the 
time when the SMI service routine accesses 
memory outside the defined SMM memory 
space.

SMM memory caching is not supported in 
SL-compatible SMM mode. If a cache inquiry 
cycle occurs while SMIACT# is active, any 
resulting write-back cycle is issued with 
SMIACT# asserted. This occurs even though the 
write-back cycle is intended for normal memory 
rather than SMM memory. To avoid this 
problem it is recommended that the internal 
caches be flushed prior to servicing an SMI 
event. Of course in write-back mode this could 
add an indeterminate delay to servicing of SMI.

An interrupt on the SMI# input pin has higher 
priority than the NMI input. The SMI# input 
pin is falling edge sensitive and is sampled on 
every rising edge of the processor input clock.

Asserting SMI# forces the processor to save the 
CPU state to memory defined by SMHR register 
and to begin execution of the SMI service 

routine at the beginning of the defined SMM 
memory space.  After the processor internally 
acknowledges the SMI# interrupt, the 
SMIACT# output is driven low for the duration 
of the interrupt service routine.

When the RSM instruction is executed, the CPU 
negates the SMIACT# pin after the last bus cycle 
to SMM memory. While executing the SMM 
service routine, one additional SMI# can be 
latched for service after resuming from the first 
SMI.

During RESET, the USE_SMI bit in CCR1 is 
cleared. While USE_SMI is zero, SMIACT# is 
always negated. SMIACT# does not float during 
bus hold states.

2.15.5.2 Cyrix Enhanced
SMM Mode

The Cyrix SMM Mode is enabled when  bit 0 in 
the CCR6 (SMM_MODE) is set. Only in Cyrix 
enhanced SMM mode can:

• SMM memory be cached
• SMM interrupts be nested

Pin Interface

The SMI# and SMIACT# pins behave differently 
in Cyrix Enhanced SMM mode.

In Cyrix Enhanced SMM mode SMI# is level 
sensitive. As a level sensitive signal software can 
process SMI interrupts until all sources in the 
chipset have been cleared.
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While operating in this mode, SMIACT# output 
is not used to indicate that the CPU is operating 
in SMM mode. This is left to the SMM driver.

In Cyrix enhanced SMM, SMIACT# is asserted 
for every SMM memory bus cycle and is de-as-
serted for every non-SMM bus cycle.  In this 
mode the SMIACT# pin meets the timing of 
D/C# and W/R#.

During RESET, the USE_SMI bit in CCR1 is 
cleared. While USE_SMI is zero, SMIACT# is 
always negated. SMIACT# does float during bus 
hold states.

Cacheability of SMM Space

In SL-compatible SMM mode, caching is not 
available, but in Cyrix SMM mode, both code 
and data caching is supported. In order to cache 
SMM data and avoid coherency issues the 
processor assumes no overlap of main memory 
with SMM memory. This implies that a section 
of main memory must be dedicated for SMM.

The on-chip cache sets a special ID bit in the 
cache tag block for each line that contains SMM 
code data. This ID bit is then used by the bus 
controller to regulate assertion of the SMIACT# 
pin for write-back of any SMM data.

Nested SMI

Only in the Cyrix Enhanced SMM mode is 
nesting of SMI interrupts supported. This is 
important to allow high priority events such as 
audio emulation to interrupt lower priority SMI 
code. In the case of nesting, it is up to the SMM 
driver to determine which SMM event is being 
serviced, which to prioritize, and perform all 
SMM interrupt control functions.

Software enables and disables SMI interrupts 
while in SMM mode by setting and clearing the 
nest-enable bit (N bit, bit 6 of CCR6). By default 
the CPU automatically disables SMI interrupts 
(clears the N bit) on entry to SMM mode, and 
re-enables them (sets the N bit) when exiting 
SMM mode (i.e., RSM). The SMI handler can 
optionally enable nesting to allow higher 
priority SMI interrupts to occur while handling 
the current SMI event.

The SMI handler is responsible for managing 
the SMHR pointer register when processing 
nested SMI interrupts. Before nested SMI’s can 
be serviced the current SMM handler must save 
the contents of the SMHR pointer register and 
then load a new value into the SMHR register for 
use by a subsequent nested SMI event.

Prior to execution of a RSM instruction the 
contents of the old SMHR pointer register must 
be restored for proper operation to continue. 
Prior to restoring the contents of old SMHR 
pointer register one should disable additional 
SMI’s. This should be done so that the CPU will  
not inadvertently receive and service an SMI 
event after the old SMHR contents have been 
restored but before the RSM instruction is 
executed.

2.15.6 Maintaining the FPU
and MMX States

If power will be removed from the CPU or if the 
SMM routine will execute MMX or FPU instruc-
tions, then the MMX or FPU state should be 
maintained for the application running before 
SMM was entered. If the MMX or FPU state is to 
be saved and restored from within SMM, there 
are certain guidelines that must be followed to 
make SMM completely transparent to the appli-
cation program.
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The complete state of the FPU can be saved and 
restored with the FNSAVE and FNRSTOR 
instructions. FNSAVE is used instead of the 
FSAVE because FSAVE will wait for the FPU to 
check for existing error conditions before 
storing the FPU state. If there is a unmasked 
FPU exception condition pending, the FSAVE 
instruction will wait until the exception condi-
tion is serviced. To maintain transparency for 
the application program, the SMM routine 
should not service this exception. If the FPU 
state is restored with the FNRSTOR instruction 
before returning to normal mode, the applica-
tion program can correctly service the excep-
tion. FPU instructions can be executed within 
SMM once the FPU state has been saved.

The information saved with the FSAVE instruc-
tion varies depending on the operating mode of 
the CPU. To save and restore all FPU informa-
tion, the 32-bit protected mode version of the 
FPU save and restore instruction should be 
used.

CPU States Related to SMM and Suspend 
Mode

The state diagram shown in Figure 2-39  (Page 
2-81) illustrates the various CPU states associ-
ated with SMM and suspend mode.  While in 
the SMI service routine, the M II CPU can enter 
suspend mode either by (1) executing a halt 
(HLT) instruction or (2) by asserting the SUSP# 
input.

During SMM operations and while in SUSP# 
initiated suspend mode, an occurrence of 
SMI#, NMI, or INTR is latched.  (In order for 
INTR to be latched, the IF flag must be set.)  
The INTR or NMI is serviced after exiting 
suspend mode.

If suspend mode is entered via a HLT instruc-
tion from the operating system or application 
software, the reception of an SMI# interrupt 
causes the CPU to exit suspend mode and enter 
SMM. 

2.16 Shutdown and Halt

The Halt Instruction (HLT) stops program ex-
ecution and prevents the processor from using
the local bus until restarted.  The M II CPU then 
issues a special Stop Grant bus cycle and enters 
a low-power suspend mode if the SUSP_HLT bit 
in CCR2 is set. SMI, NMI, INTR with interrupts 
enabled (IF bit in EFLAGS=1), WM_RST or RE-
SET forces the CPU out of the halt state. If inter-
rupted, the saved code segment and instruction 
pointer specify the instruction following the 
HLT.

Shutdown occurs when a severe error is detected
that prevents further processing.  An NMI input
can bring the processor out of shutdown if the 
IDT limit is large enough to contain the NMI 
interrupt vector and the stack has enough room 
to contain the vector and flag information. 
Otherwise, shutdown can only be exited by a 
processor reset.
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Figure 2-39.  SMM and Suspend Mode State Diagram
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2.17 Protection

Segment protection and page protection are 
safeguards built into the M II CPU protected 
mode architecture which deny unauthorized 
or incorrect access to selected memory 
addresses.  These safeguards allow multi-
tasking programs to be isolated from each 
other and from the operating system.  Page 
protection is discussed earlier in this chapter.  
This section concentrates on segment protec-
tion.

Selectors and descriptors are the key elements 
in the segment protection mechanism.  The 
segment base address, size, and privilege level 
are established by a segment descriptor.  Privi-
lege levels control the use of privileged instruc-
tions, I/O instructions and access to segments 
and segment descriptors.  Selectors are used to 
locate segment descriptors.

Segment accesses are divided into two basic 
types, those involving code segments (e.g., 
control transfers)  and those involving data 
accesses.  The ability of a task to access a 
segment depends on the:

• Segment type
• Instruction requesting access
• Type of descriptor used to define the 

segment
• Associated privilege levels (described 

below).

Data stored in a segment can be accessed only 
by code executing at the same or a more privi-
leged level.  A code segment or procedure can 
only be called by a task executing at the same 
or a less privileged level.

2.17.1 Privilege Levels

The values for privilege levels range between 
0 and 3.  Level 0 is the highest privilege level 
(most privileged), and level 3 is the lowest 
privilege level (least privileged).  The privilege 
level in real mode is effectively 0.

The Descriptor Privilege Level (DPL) is the 
privilege level defined for a segment in the 
segment descriptor. The DPL field specifies the 
minimum privilege level needed to access the 
memory segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined 
as the current task’s privilege level.  The CPL of 
an executing task is stored in the hidden 
portion of the code segment register and essen-
tially is the DPL for the current code segment.

The Requested Privilege Level (RPL) speci-
fies a selector’s privilege level and is used to 
distinguish between the privilege level of a routine
actually accessing memory (the CPL), and the 
privilege level of the original requestor (the RPL)
of the memory access.  The lesser of the RPL 
and CPL is called the effective privilege level (EPL).  
Therefore, if RPL = 0 in a segment selector, the 
effective privilege level is always determined 
by the CPL.  If RPL = 3, the effective privilege 
level is always 3 regardless of the CPL.

For a memory access to succeed, the effective 
privilege level (EPL) must be at least as privi-
leged as the descriptor privilege level (EPL ≤
DPL).  If the EPL is less privileged than the 
DPL (EPL > DPL), a general protection fault is 
generated.  For example, if a segment has a 
DPL = 2, an instruction accessing the segment 
only succeeds if executed with an EPL ≤ 2.
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2.17.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the oper-
ating system executing at CPL=0 to define the 
least privileged level at which IOPL-sensitive 
instructions can unconditionally be used.  The 
IOPL-sensitive instructions include CLI, IN, 
OUT, INS, OUTS, REP INS, REP OUTS, and 
STI.  Modification of the IF bit in the EFLAGS 
register is also sensitive to the I/O privilege level.  
The IOPL is stored in the EFLAGS register. 

An I/O permission bit map is available as 
defined by the 32-bit Task State Segment 
(TSS).  Since each task can have its own TSS, 
access to individual processor I/O ports can be 
granted through separate I/O permission bit 
maps.

If CPL ≤ IOPL, IOPL-sensitive operations can 
be performed.  If CPL > IOPL, a general 
protection fault is generated if the current task 
is associated with a 16-bit TSS.  If the current 
task is associated with a 32-bit TSS and CPL > 
IOPL, the CPU consults the I/O permission 
bitmap in the TSS to determine on a port-by-port
basis whether or not I/O instructions (IN, 
OUT, INS, OUTS, REP INS, REP OUTS) are 
permitted, and the remaining IOPL-sensitive 
operations generate a general protection fault.

2.17.3 Privilege Level Transfers

A task’s CPL can be changed only through 
intersegment control transfers using gates or 
task switches to a code segment with a different 
privilege level.  Control transfers result from 
exception and interrupt servicing and from 
execution of the CALL, JMP, INT, IRET and 
RET instructions.

There are five types of control transfers that are 
summarized in Table 2-40  (Page 2-84).  Control
transfers can be made only when the operation 
causing the control transfer references the correct
descriptor type.  Any violation of these descriptor
usage rules causes a general protection fault.

Any control transfer that changes the CPL 
within a task results in a change of stack.  The 
initial values for the stack segment (SS) and 
stack pointer (ESP) for privilege levels 0, 1, 
and 2 are stored in the TSS.  During a CALL 
control transfer, the SS and ESP are loaded 
with the new stack pointer and the previous 
stack pointer is saved on the new stack.  When 
returning to the original privilege level, the 
RET or IRET instruction restores the less-privi-
leged stack
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Table 2-40.  Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER OPERATION
TYPES

DESCRIPTOR
REFERENCED

DESCRIPTOR
TABLE

Intersegment within the same privilege level. JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more privileged 
level.
Interrupt within task (could change CPL level).

CALL Gate Call GDT or LDT

Interrupt Instruction, 
Exception, External
Interrupt

Trap or Interrupt Gate IDT

Intersegment to a less privileged level (changes 
task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT

IRET**, Interrupt 
Instruction, Exception, 
External Interrupt

Task Gate IDT

  * NT (Nested Task bit in EFLAGS) = 0
** NT (Nested Task bit in EFLAGS) = 1

Gates

Gate descriptors provide protection for privi-
lege transfers among executable segments.  Gates
are used to transition to routines of the same or 
a more privileged level.  Call gates, interrupt 
gates and trap gates are used for privilege transfers
within a task.  Task gates are used to transfer 
between tasks.

Gates conform to the standard rules of privi-
lege.  In other words, gates can be accessed by a 
task if the effective privilege level (EPL) is the 
same or more privileged than the gate descrip-
tor’s privilege level (DPL).

2.17.4 Initialization and
Transition to Protected
Mode

The M II processor switches to real mode 
immediately after RESET.  While operating in 
real mode, the system tables and registers 
should be initialized.  The GDTR and IDTR 
must point to a valid GDT and IDT, respectively. The 
GDT must contain descriptors which describe 
the initial code and data segments.

The processor can be placed in protected mode 
by setting the PE bit in the CR0 register.  After 
enabling protected mode, the CS register should
be loaded and the instruction decode queue 
should be flushed by executing an intersegment
JMP.  Finally, all data segment registers should 
be initialized with appropriate selector values.
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2.18 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode 
are supported by the M II CPU allowing execu-
tion of 8086 application programs and 8086 
operating systems.  V86 mode allows the 
execution of 8086-type applications, yet still 
permits use of the M II CPU paging mecha-
nism.  V86 tasks run at privilege level 3.  
When loaded, all segment limits are set to 
FFFFh (64K) as in real mode.

2.18.1 V86 Memory
Addressing

While in V86 mode, segment registers are used 
in an identical fashion to real mode. The 
contents of the segment register are multiplied 
by 16 and added to the offset to form the 
segment base linear address.  The M II CPU 
permits the operating system to select which 
programs use the V86 address mechanism and 
which programs use protected mode 
addressing for each task.

The M II CPU also permits the use of paging 
when operating in V86 mode.  Using paging, 
the 1-MByte memory space of the V86 task can 
be mapped to anywhere in the 4-GByte linear 
memory space of the M II CPU.

The paging hardware allows multiple V86 
tasks to run concurrently, and provides protec-
tion and operating system isolation.  The 
paging hardware must be enabled to run 
multiple V86 tasks or to relocate the address 
space of a V86 task to physical address space 
greater than 1 MByte.

2.18.2 V86 Protection

All V86 tasks operate with the least amount of 
privilege (level 3) and are subject to all of the 
M II CPU protected mode protection checks.  As 
a result, any attempt to execute a privileged 
instruction within a V86 task results in a 
general protection fault.

In V86 mode, a slightly different set of instruc-
tions are sensitive to the I/O privilege level 
(IOPL) than in protected mode.  These instruc-
tions are:  CLI, INT n, IRET, POPF, PUSHF, and 
STI.  The INT3, INTO and BOUND variations 
of the INT instruction are not IOPL sensitive.

2.18.3 V86 Interrupt Handling

To fully support the emulation of an 8086-type 
machine, interrupts in V86 mode are handled 
as follows.   When an interrupt or exception is 
serviced in V86 mode, program execution 
transfers to the interrupt service routine at 
privilege level 0 (i.e., transition from V86 to 
protected mode occurs) and the VM bit in the 
EFLAGS register is cleared.  The protected 
mode interrupt service routine then deter-
mines if the interrupt came from a protected 
mode or V86 application by examining the VM 
bit in the EFLAGS image stored on the stack.  
The interrupt service routine may then choose 
to allow the 8086 operating system to handle 
the interrupt or may emulate the function of 
the interrupt handler.  Following completion 
of the interrupt service routine, an IRET 
instruction restores the EFLAGS register 
(restores VM=1) and segment selectors and 
control returns to the interrupted V86 task.
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2.18.4 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by 
either executing an IRET instruction at CPL = 0 
or by task switching.  If an IRET is used, the 
stack must contain an EFLAGS image with 
VM = 1.  If a task switch is used, the TSS must 
contain an EFLAGS image containing a 1 in 
the VM bit position.  The POPF instruction 
cannot be used to enter V86 mode since the 
state of the VM bit is not affected.  V86 mode 
can only be exited as the result of an interrupt 
or exception.  The transition out must use a 
32-bit trap or interrupt gate which must point 
to a non-conforming privilege level 0 segment 
(DPL = 0), or a 32-bit TSS.  These restrictions 
are required to permit the trap handler to IRET 
back to the V86 program.

2.19 Floating Point Unit
Operations

The M II CPU includes an on-chip FPU that 
provides the user access to a complete set of 
floating point instructions (see Chapter 6).  
Information is passed to and from the FPU 
using eight data registers accessed in a 
stack-like manner, a control register, and a 
status register.  The M II CPU also provides a 
data register tag word which improves context 
switching and performance by maintaining 
empty/non-empty status for each of the eight 
data registers.  In addition, registers in the 
CPU contain pointers to (a) the memory 
location containing the current instruction 
word and (b) the memory location containing 
the operand associated with the current 
instruction word (if any).

FPU Tag Word Register. The M II CPU main-
tains a tag word register (Figure 2-40  (Page 
2-87)) comprised of two bits for each physical 
data register.  Tag Word fields assume one of 
four values depending on the contents of their 
associated data registers, Valid (00), Zero (01), 
Special (10), and Empty (11).  Note: Denor-
mal, Infinity, QNaN, SNaN and unsupported 
formats are tagged as “Special”.  Tag values are 
maintained transparently by the M II CPU and 
are only available to the programmer indirectly 
through the FSTENV and FSAVE instructions.

FPU Control and Status Registers.  The 
FPU circuitry communicates information 
about its status and the results of operations 
to the programmer via the status register.  The 
FPU status register is comprised of bit fields 
that reflect exception status, operation execu-
tion status, register status, operand class, and 
comparison results.  The FPU status register 
bit definitions are shown in Figure 2-41  
(Page 2-87) and Table 2-41  (Page 2-87).

The FPU Mode Control Register (MCR) is used 
by the CPU to specify the operating mode of 
the FPU.  The MCR contains bit fields which 
specify the rounding mode to be used, the pre-
cision by which to calculate results, and the 
exception conditions which should be report-
ed to the CPU via traps.  The user controls pre-
cision, rounding, and exception reporting by 
setting or clearing appropriate bits in the 
MCR.  The FPU mode control register bit def-
initions are shown in Figure 2-42  (Page 2-88)
and Table 2-42  (Page 2-88).
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15           14 13           12 11           10 9               8 7               6 5              4 3              2 1               0

Tag(7) Tag(6) Tag(5) Tag(4) Tag(3) Tag(2) Tag(1) Tag(0)

Figure 2-40.  FPU Tag Word Register

15                  12 11                    8 7                      4 3                      0

B     C3    S     S S   C2    C1   C0 ES    SF    P     U   O    Z    D    I

Figure 2-41.  FPU Status Register

Table 2-41.  FPU Status Register Bit Definitions

BIT
POSITION NAME DESCRIPTION

15 B Copy of the ES bit. (ES is bit 7 in this table.)

14, 10 - 8 C3 - C0 Condition code bits.

13 - 11 SSS Top of stack register number which points to the current TOS.

7 ES Error indicator.  Set to 1 if an unmasked exception is detected.

6 SF Stack Fault or invalid register operation bit.

5 P Precision error exception bit.

4 U Underflow error exception bit.

3 O Overflow error exception bit.

2 Z Divide by zero exception bit.

1 D Denormalized operand error exception bit.

0 I Invalid operation exception bit.
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Figure 2-42.  FPU Mode Control Register

15                12 11                   8 7                     4 3                    0

-    -    -    -   RC   RC     PC    -    -     P    U   O    Z    D     I

Table 2-42.  FPU Mode Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION

11 - 10 RC Rounding Control bits:

00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate

9 - 8 PC Precision Control bits:

00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa

5 P Precision error exception bit mask.

4 U Underflow error exception bit mask.

3 O Overflow error exception bit mask.

2 Z Divide by zero exception bit mask.

1 D Denormalized operand error exception bit mask.

0 I Invalid operation exception bit mask.
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2.20 MMX Operations

The M II CPU provides user access to the 
MMX instruction set. MMX data is configured 
in one of four MMX data formats. During oper-
ations eight 64-bit MMX registers are utilized.

2.20.1 MMX Data Formats

The MMX instructions operate on 64-bit data 
groups called “packed data.” A single packed 
data group can be interpreted as a:

•    Packed byte (8 bytes)
•    Packed word (4 words)
•    Packed doubleword (2 doublewords)
•    Quadword (1 quadword)

The packed data types supported are signed 
and unsigned integer.

2.20.2  MMX Registers

The MMX instruction set operates on eight 
64-bit, general-purpose registers (MM0-MM7). 
These registers are overlayed with the floating 
point register stack, so no new architectural 
state is defined by the MMX instruction set.  
Existing mechanisms for saving and restoring 
floating point state automatically work for 
saving and restoring MMX state.  

2.20.3  MMX Instruction Set

The MMX instructions operate on all the 
elements of a signed or unsigned packed data 
group. All data elements (bytes, words, 
doublewords or a quadword) are operated on 
separately in parallel. For example, eight bytes 
in one packed data group can be added to 
another packed data group, such that eight 
independent byte additions are performed in 
parallel.

2.20.4 Instruction Group
Overview

The 57 MMX instructions are grouped into 
seven categories:

• Arithmetic Instructions
• Comparison Instructions
• Conversion Instructions
• Logical Instructions
• Shift Instructions
• Data Transfer Instructions
• Empty MMX State (EMMS) Instruction
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2.20.5 Saturation Arithmetic

For saturating MMX instructions, a ceiling is 
placed on an overflow and a floor is placed on 
an underflow. When the result of an operation 
exceeds the range of the data-type it saturates 
to the maximum value of the range. Conversely, 
when a result that is less than the range of a 
data type, the result saturates to the minimum 
value of the range.

 The saturation limits are shown in Table 2-43.

MMX instructions do not indicate overflow or 
underflow occurrence by generating exceptions 
or setting flags.

2.20.6 EMMS Instruction

The EMMS Instruction clears the TOS pointer 
and sets the entire FPU tag word as empty.  An 
EMMS instruction should be executed at the 
end of each MMX routine.

Table 2-43. Saturation Limits

DATA TYPE LOWER
 LIMIT

UPPER
LIMIT

Signed
Byte

80h -128 7Fh 127

Signed
Word

8000h -32,768 7FFFh 32,767

Unsigned
Byte

00h 0 FFh 256

Unsigned
Word

0000h 0 FFFFh 65,535
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3.0 M II BUS INTERFACE

The signals used in the M II CPU bus interface are described in this chapter. Figure 3-1 shows the 
signal directions and the major signal groupings. A description of each signal and their reference to 
the text are provided in Table 3-1 (Page 3-2).

Figure 3-1. M II CPU Functional Signal Groupings
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3.1 Signal Description Table

The Signal Summary Table (Table 3-1) describes the signals in their active state unless otherwise 
mentioned. Signals containing slashes (/) have logic levels defined as “1/0.”  For example the signal 
W/R#, is defined as write when W/R#=1, and as read when W/R#=0. Signals ending with a “#” 
character are active low.

.

Table 3-1. M II CPU Signals Sorted by Signal Name

Signal 
Name      Description I/O Reference

A20M# A20 Mask causes the CPU to mask (force to 0) the A20 address bit when 
driving the external address bus or performing an internal cache access. 
A20M# is provided to emulate the 1 MByte address wrap-around that 
occurs on the 8086.  Snoop addressing is not affected.

Input Page 3-9

A31-A3 The Address Bus, in conjunction with the Byte Enable signals 
(BE7#-BE0#), provides addresses for physical memory and external I/O 
devices. During cache inquiry cycles, A31-A5 are used as inputs to 
perform cache line invalidations.

3-state 
I/O

Page 3-9

ADS# Address Strobe begins a memory/I/O cycle and indicates the address 
bus (A31-A3, BE7#-BE0#) and bus cycle definition signals (CACHE#, 
D/C#, LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid.

Output Page 3-13

ADSC# Cache Address Strobe performs the same function as ADS#. Output Page 3-13

AHOLD Address Hold allows another bus master access to the M II CPU address 
bus for a cache inquiry cycle. In response to the assertion of AHOLD, the 
CPU floats AP and A31-A3 in the following clock cycle.

Input Page 3-18

AP Address Parity is the even parity output signal for address lines A31-A5 
(A4 and A3 are excluded). During cache inquiry cycles, AP is the 
even-parity input to the CPU, and is sampled with EADS# to produce 
correct parity check status on the APCHK# output.

3-state 
I/O

Page 3-10

APCHK# Address Parity Check Status is asserted during a cache inquiry cycle if 
an address bus parity error has been detected. APCHK# is valid two 
clocks after EADS# is sampled active. APCHK# will remain asserted for 
one clock cycle if a parity error is detected.

Output Page 3-10

BE7#-BE0# The Byte Enables, in conjunction with the address lines, determine the 
active data bytes transferred during a memory or I/O bus cycle.

3-state 
I/O

Page 3-9

BOFF# Back-Off forces the M II CPU to abort the current bus cycle and 
relinquish control of the CPU local bus during the next clock cycle. The 
M II CPU enters the bus hold state and remains in this state until BOFF# 
is negated.

Input Page 3-16

BRDY# Burst Ready indicates that the current transfer within a burst cycle, or the 
current single transfer cycle, can be terminated. The M II CPU samples 
BRDY# in the second and subsequent clocks of a bus cycle. BRDY# is active 
during address hold states.

Input Page 3-13

BRDYC# Cache Burst Ready performs the same function as BRDY# and is logically 
ORed with BRDY# within the M II CPU.

Input Page 3-13
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BREQ Bus Request is asserted by the M II CPU when an internal bus cycle is 
pending. The M II CPU always asserts BREQ, along with ADS#, during the 
first clock of a bus cycle. If a bus cycle is pending, BREQ is asserted during 
the bus hold and address hold states. If no additional bus cycles are pending, 
BREQ is negated prior to termination of the current cycle.

Output Page 3-16

CACHE# Cacheability Status indicates that a read bus cycle is a potentially 
cacheable cycle; or that a write bus cycle is a cache line write-back or line 
replacement burst cycle. If CACHE# is asserted for a read cycle and KEN# is 
asserted by the system, the read cycle becomes a cache line fill burst cycle.

Output Page 3-11

CLK Clock provides the fundamental timing for the M II CPU. The frequency of 
the M II CPU input clock determines the operating frequency of the CPU’s 
bus. External timing is defined referenced to the rising edge of CLK.

Input Page 3-7

CLKMUL1-
CLKMUL0

The Clock Multiplier inputs are sampled during RESET to determine the M 
II CPU core operating frequency. 
If = 00 core/bus ratio is 2.5
If = 01 core/bus ratio is 3.0 
If = 10 core/bus ratio is 2.0 (default)
If = 11 core/bus ratio is 3.5

Input Page 3-7

D63-D0 Data Bus signals are three-state, bi-directional signals which provide the 
data path between the M II CPU and external memory and I/O devices. The 
data bus is only driven while a write cycle is active (state=T2). 

3-state 
I/O

Page 3-10

D/C# Data/Control Status. If high, indicates that the current bus cycle is an I/O 
or memory data access cycle. If low, indicates a code fetch or special bus cycle 
such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C# is driven 
valid in the same clock as ADS# is asserted.

Output Page 3-11

DP7-DP0 Data Parity signals provide parity for the data bus, one data parity bit per 
data byte. Even parity is driven on DP7-DP0 for all data write cycles. 
DP7-DP0 are read by the M II CPU during read cycles to check for even 
parity. The data parity bus is only driven while a write cycle is active 
(state=T2).

3-state 
I/O

Page 3-10

EADS# External Address Strobe indicates that a valid cache inquiry address is 
being driven on the M II CPU address bus (A31-A5) and AP. The state of INV 
at the time EADS# is sampled active determines the final state of the cache 
line. A cache inquiry cycle using EADS# may be run while the M II CPU is in 
the address hold or bus hold state.

Input Page 3-18

EWBE# External Write Buffer Empty indicates that there are no pending write 
cycles in the external system. EWBE# is sampled only during I/O and 
memory write cycles. If EWBE# is negated, the M II CPU delays all 
subsequent writes to on-chip cache lines in the “exclusive” or “modified” state 
until EWBE# is asserted.

Input Page 3-15

FERR# FPU Error Status indicates an unmasked floating point error has occurred. 
FERR# is asserted during execution of the FPU instruction that caused the 
error. FERR# does not float during bus hold states.

Output Page 3-19

Table 3-1. M II CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name      Description I/O Reference
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FLUSH# Cache Flush forces the M II CPU to flush the cache. External interrupts and 
additional FLUSH# assertions are ignored during the flush. Cache inquiry 
cycles are permitted during the flush.

Input Page 3-15

HIT# Cache Hit indicates that the current cache inquiry address has been found 
in the cache (modified, exclusive or shared states).  HIT# is valid two clocks 
after EADS# is sampled active, and remains valid until the next cache inquiry 
cycle.

Output Page 3-18

HITM# Cache Hit Modified Data indicates that the current cache inquiry address 
has been found in the cache and dirty data exists in the cache line (modified 
state). The M II CPU does not accept additional cache inquiry cycles while 
HITM# is asserted.  HITM# is valid two clocks after EADS#.

Output Page 3-18

HLDA Hold Acknowledge indicates that the M II CPU has responded to the 
HOLD input and relinquished control of the local bus.  The M II CPU 
continues to operate during bus hold as long as the on-chip cache can satisfy 
bus requests.

Output Page 3-17

HOLD Hold Request indicates that another bus master has requested control of the 
CPU’s local bus.

Input Page 3-16

IGNNE# Ignore Numeric Error forces the M II CPU to ignore any pending 
unmasked FPU errors and allows continued execution of floating point 
instructions.

Input Page 3-19

INTR Maskable Interrupt forces the processor to suspend execution of the 
current instruction stream and begin execution of an interrupt service 
routine. The INTR input can be masked (ignored) through the IF bit in the 
Flags Register.

Input Page 3-14

INV Invalidate Request is sampled with EADS# to determine the final state of 
the cache line in the case of a cache inquiry hit. An asserted INV directs the 
processor to change the state of the cache line to “invalid”.  A negated INV 
directs the processor to change the state of the cache line to “shared.”

Input Page 3-18

KEN# Cache Enable allows the data being returned during the current cycle to be 
placed in the CPU’s cache. When the M II CPU is performing a cacheable 
code fetch or memory data read cycle (CACHE# asserted), and KEN# is 
sampled asserted, the cycle is transformed into a 32-byte cache line fill. KEN# 
is sampled with the first asserted BRDY# or NA# for the cycle.

Input Page 3-15

LOCK# Lock Status indicates that other system bus masters are denied access to the 
local bus. The M II CPU does not enter the bus hold state in response to 
HOLD while LOCK# is asserted.

Output Page 3-11

M/IO# Memory/IO Status. If high, indicates that the current bus cycle is a 
memory cycle (read or write). If low, indicates that the current bus cycle is an 
I/O cycle (read or write, interrupt acknowledge, or special cycle).

Output Page 3-11

Table 3-1. M II CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name      Description I/O Reference
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NA# Next Address requests the next pending bus cycle address and cycle 
definition information. If either the current or next bus cycle is a locked cycle, 
a line replacement, a write-back cycle, or if there is no pending bus cycle, the 
M II CPU does not start a pipelined bus cycle regardless of the state of NA#.

Input Page 3-13

NMI Non-Maskable Interrupt Request forces the processor to suspend 
execution of the current instruction stream and begin execution of an NMI 
interrupt service routine.

Input Page 3-14

PCD Page Cache Disable reflects the state of the PCD page attribute bit in the 
page table entry or the directory table entry.  If paging is disabled, or for 
cycles that are not paged, the PCD pin is driven low. PCD is masked by the 
cache disable (CD) bit in CR0, and floats during bus hold states.

Output Page 3-15

PCHK# Data Parity Check indicates that a data bus parity error has occurred 
during a read operation. PCHK# is only valid during the second clock 
immediately after read data is returned to the M II CPU (BRDY# asserted) 
and is inactive otherwise. Parity errors signaled by a logic low on PCHK# 
have no effect on processor execution.

Output Page 3-10

PM0-PM1 Performance Monitor indicate an at least one overflow or event 
occurred in the associated Performance Monitor Register (0-1).

Output Page 3-20

PWT Page Write-Through reflects the state of the PWT page attribute bit in the 
page table entry or the directory table entry. PWT pin is negated during cycles 
that are not paged, or if paging is disabled. PWT takes priority over 
WB/WT#.

Output Page 3-15

RESET Reset suspends all operations in progress and places the M II CPU into a 
reset state.  Reset forces the CPU to begin executing in a known state. All data 
in the on-chip caches is invalidated.

Input Page 3-7

SCYC Split Locked Cycle indicates that the current bus cycle is part of a 
misaligned locked transfer. SCYC is defined for locked cycles only.  A 
misaligned transfer is defined as any transfer that crosses an 8-byte boundary.

Output Page 3-11

SMI# SMM Interrupt forces the processor to save the CPU state to the top of 
SMM memory and to begin execution of the SMI service routine at the 
beginning of the defined SMM memory space. An SMI is a higher-priority 
interrupt than an NMI.

Input Page 3-14

SMIACT# SMM Interrupt Active indicates that the processor is operating in System 
Management Mode. SMIACT# does not float during bus hold states.

Output Page 3-13

SUSP# Suspend Request requests that the CPU enter suspend mode. SUSP# is 
ignored following RESET and is enabled by setting the SUSP bit in CCR2.

Input Page 3-19

SUSPA# Suspend Acknowledge indicates that the M II CPU has entered low-power 
suspend mode.   SUSPA# floats following RESET and is enabled by setting the 
SUSP bit in CCR2.

Output Page 3-19

TCK Test Clock (JTAG) is the clock input used by the M II CPU’s boundary scan 
(JTAG) test logic.

Input Page 3-22

TDI Test Data In (JTAG) is the serial data input used by the M II CPU’s 
boundary scan (JTAG) test logic.

Input Page 3-22

Table 3-1. M II CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name      Description I/O Reference
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TDO Test Data Out (JTAG) is the serial data output used by the M II CPU’s 
boundary scan (JTAG) test logic.

Output Page 3-22

TMS Test Mode Select (JTAG) is the control input used by the M II CPU’s 
boundary scan (JTAG) test logic.

Input Page 3-22

TRST# Test Mode Reset (JTAG) initializes the M II CPU’s boundary scan (JTAG) 
test logic.

Input Page 3-22

VCC2DET Vcc2 Detect is always driven low by the CPU to indicate that the M II
processor requires two different Vcc voltages.

Output -

VCC2H/L# Vcc2 High is driven high by the CPU to indicate that the CPU requires 2.9 
volt power supply. This pin is driven low by the CPU to indicate that the CPU 
requires 2.2 volt power supply. This pin appears on CPU revisions 3.3.1 
(DIR=13h and DIR2=01h) and later. This pin is reserved for Revision 2.8.2 
(DIR1 = 08h and DIR2=02h) and earlier.

Output -

WB/WT# Write-Back/Write-Through is sampled during cache line fills to define the 
cache line write policy. If high, the cache line write policy is write-back.  If 
low, the cache line write policy is write-through.  (PWT forces write-through 
policy when PWT=1.)

Input Page 3-16

WM_RST Warm Reset forces the M II CPU to complete the current instruction and 
then places the M II CPU in a known state. Once WM_RST is sampled active 
by the CPU, the reset sequence begins on the next instruction boundary. 
WM_RST does not change the state of the configuration registers, the on-chip 
cache, the write buffers and the FPU registers. WM_RST is sampled during 
reset.

Input Page 3-9

W/R# Write/Read Status. If high, indicates that the current memory, or I/O bus 
cycle is a write cycle. If low, indicates that the current bus cycle is a read cycle.

Output Page 3-11

Table 3-1. M II CPU Signals Sorted by Signal Name  (Continued)

Signal 
Name      Description I/O Reference
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3.2 Signal Descriptions

The following paragraphs provide additional 
information about the 6x86MX CPU signals.  
For ease of this discussion, the signals are 
divided into 16 functional groups as illustrated 
in Figure 3-1 (Page 3-1).

3.2.1 Clock Control

The Clock Input (CLK) signal, supplied by 
the system, is the timing reference used by the 
6x86MX CPU bus interface. All external timing 
parameters are defined with respect to the CLK 
rising edge. The CLK signal enters the 6x86MX 
CPU where it is multiplied to produce the 
6x86MX CPU internal clock signal. During 
power on, the CLK signal must be running even 
if CLK does not meet AC specifications.

The Clock Multiplier (CLKMUL0, CLMUL1, 
CLMUL2) inputs are sampled during RESET to 
determine the CPU’s core operating frequency 
(Table 3-2).

Table 3-2.  Clock Control 
Rev 2.3.1 and earlier (DIR1= 08h, DIR =02h)

CLKMUL1 CLKMUL0
CORE TO BUS
 CLOCK RATIO

0 0 2.5

0 1 3.0

1 0 2.0  (Default)

1 1 3.5

The CLKMUL pins have internal pull-up and 
pull down resistors to define the default ratio. 
Therefore the default setting indicates which 
mode the CPU will operate in if the CLKMUL 
are not driven and left floating.

Table 2-2 (con’t).  Clock Control 
Rev 2.3.1 and later (DIR1= 13h, DIR =01h)

CLKMUL2 CLKMUL1 CLKMUL0
CORE TO BUS
 CLOCK RATIO

0 0 0 Reserved

0 0 1 Reserved

0 1 0 4.0 

0 1 1 Reserved

1 0 0 2.5

1 0 1 3.0 (Default)

1 1 0 2.0 

1 1 1 3.5
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3.2.2 Reset Control

The 6x86MX CPU output signals are initialized 
to their reset states during the CPU reset 
sequence, as shown in Table 3-4 (Page 3-8). 
The signal states given in Table 3-4 assume that 
HOLD, AHOLD, and BOFF# are negated.

Asserting RESET suspends all operations in 
progress and places the 6x86MX CPU in a reset 
state. RESET is an asynchronous signal but 
must meet specified setup and hold times to 
guarantee recognition at a particular clock 
edge.

On system power-up, RESET must be held 
asserted for at least 1 msec after Vcc and CLK 
have reached specified DC and AC limits. This 
delay allows the CPU’s clock circuit to stabilize 
and guarantees proper completion of the reset 
sequence.

During normal operation, RESET must be 
asserted for at least 15 CLK periods in order to 
guarantee the proper reset sequence is 
executed.  When RESET negates (on its falling 
edge), the pins listed in Table 2-3 determine if 
certain 6x86MX CPU functions are enabled

Table 2-3. Pins Sampled During RESET

SIGNAL 
NAME DESCRIPTION

FLUSH# If = 0, three-state test mode enabled.

WM_RST If = 1, built-in self test initiated.
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Table 3-4. Signal States During RESET

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Ignored INTR Ignored

A31-A3 Undefined until first ADS# INV Ignored

ADS# 1 KEN# Ignored

ADSC# 1 LOCK# 1

AHOLD Recognized M/IO# Undefined until first ADS#

AP Undefined until first ADS# NA# Ignored

APCHK# 1 NMI Ignored

BE7#-BE0# Undefined until first ADS# PCD Undefined until first ADS#

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Undefined until first ADS#

BRDYC# Ignored RESET 1

BREQ 0 SCYC Undefined until first ADS#

CACHE# Undefined until first ADS# SMI# Ignored

D(63-0) Float SMIACT# 1

D/C# Undefined until first ADS# SUSP# Ignored

DP(7-0) Float SUSPA# Float

EADS# Ignored TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS, TRST#

FLUSH# Initiates three-state test mode TMS Recognized

HIT# 1 TRST# Recognized

HITM# 1 W/R# Undefined until first ADS#

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Initiates self-test

IGNNE# Ignored
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Warm Reset (WM_RST) allows the M II CPU 
to complete the current instruction and then 
places the M II CPU in a known state. 
WM_RST is an asynchronous signal, but must 
meet specified setup and hold times in order to 
guarantee recognition at a particular CLK edge. 
Once WM_RST is sampled active by the CPU, 
the reset sequence begins on the next instruc-
tion boundary.

WM_RST differs from RESET in that the 
contents of the on-chip cache, the write 
buffers, the configuration registers and the 
floating point registers contents remain 
unchanged.

Following completion of the internal reset 
sequence, normal processor execution begins 
even if WM_RST remains asserted. If RESET 
and WM_RST are asserted simultaneously, 
WM_RST is ignored and RESET takes priority.  
If WM_RST is asserted at the falling edge of 
RESET, built-in self test (BIST) is initiated.

3.2.3 Address Bus

The Address Bus (A31-A3) lines provide the 
physical memory and external I/O device 
addresses. A31-A5 are bi-directional signals 
used by the M II CPU to drive addresses to 
both memory devices and I/O devices. During 
cache inquiry cycles the M II CPU receives 
addresses from the system using signals 
A31-A5.

Using signals A31-A3, the M II CPU can 
address a 4-GByte memory address space.  
Using signals A15-A3, the M II CPU can 
address a 64-KByte I/O space through the 
processor’s I/O ports.  During I/O accesses, 
signals A31-A16 are driven low. A31-A3 float 
during bus hold and address hold states.

The Byte Enable (BE7#-BE0#) lines are 
bi-directional signals that define the valid data 
bytes within the 64-bit data bus.  The 
correlation between the enable signals and data 
bytes is shown in Table 3-5.

During a cache line fill, (burst read or “1+4” 
burst read) the M II CPU expects data to be 
returned as if all data bytes are enabled, regard-
less of the state of the byte enables. BE7#-BE0# 
float during bus hold and byte enable hold 
states.

Address Bit 20 Mask (A20M#) is an active 
low input which causes the M II CPU to mask 
(force low) physical address bit 20 when 
driving the external address bus or when 
performing an internal cache access. Asserting 
A20M# emulates the 1 MByte address 
wrap-around that occurs on the 8086. The A20 
signal is never masked during write-back 
cycles, inquiry cycles, system management 
address space accesses or when paging is 
enabled, regardless of the state of the A20M# 
input.

Table 3-5. Byte Enable Signal to
 Data Bus Byte Correlation

BYTE 
ENABLE

CORRESPONDING
DATA BYTE

BE7# D63-D56

BE6# D55-D48

BE5# D47-D40

BE4# D39-D32

BE3# D31-D24

BE2# D23-D16

BE1# D15-D8

BE0# D7-D0
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3.2.4 Address Parity

Address Parity (AP) is a bi-directional signal 
which provides the parity associated with 
address lines A31-A5.  (A4 and A3 are not 
included in the parity determination.)  During 
M II CPU generated bus cycles, while the 
address bus lines are driven, AP becomes an 
output supplying even address parity. During 
cache inquiry cycles, AP becomes an input and 
is sampled by EADS#.  During cache inquiry 
cycles, even-parity must be placed on the AP 
line to guarantee an accurate result on the 
APCHK# (Address Parity Check Status) pin.

Address Parity Check Status (APCHK#) is 
driven active by the CPU when an address bus 
parity error has been detected for a cache 
inquiry cycle. APCHK# is asserted two clocks 
after EADS# is sampled asserted, and remains 
valid for one clock only.  Address parity errors 
signaled by APCHK# have no effect on 
processor execution.

3.2.5 Data Bus

Data Bus (D63-D0) lines carry three-state, 
bi-directional signals between the M II CPU and 
the system (i.e., external memory and I/O 
devices). The data bus transfers data to the M II
CPU during memory read, I/O read, and inter-
rupt acknowledge cycles. Data is transferred 
from the M II CPU during memory and I/O 
write cycles.

Data setup and hold times must be met for 
correct read cycle operation.  The data bus is 
driven only while a write cycle is active.

3.2.6 Data Parity

The Data Parity Bus (DP7-DP0) provides 
and receives parity data for each of the eight 
data bus bytes (Table 3-6).   The M II CPU 
generates even parity on the bus during write 
cycles and accepts even parity from the system 
during read cycles.  DP7-DP0 is driven only 
while a write cycle is active.

Parity Check (PCHK#) is asserted when a 
data bus parity error is detected. Parity is 
checked during code, memory and I/O reads, 
and the second interrupt acknowledge cycle.  
Parity is not checked during the first interrupt 
acknowledge cycle.

Parity is checked for only the active data bytes 
as determined by the active byte enable signals 
except during a cache line fill (burst read or 
“1+4” burst read).  During a cache line fill, the 
M II CPU assumes all data bytes are valid and 
parity is checked for all data bytes regardless of 
the state of the byte enables.

Table 3-6.  Parity Bit to Data
Byte Correlation

PARITY BIT DATA BYTE

DP7 D63-D56

DP6 D55-D48

DP5 D47-D40

DP4 D39-D32

DP3 D31-D24

DP2 D23-D16

DP1 D15-D8

DP0 D7-D0
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PCHK# is valid only during the second clock 
immediately after read data is returned to the M 
II CPU (BRDY# asserted).  At other times 
PCHK# is not active.  Parity errors signaled by 
the assertion of PCHK# have no effect on 
processor execution.

3.2.7 Bus Cycle Definition

Each bus cycle is assigned a bus cycle type. The 
bus cycle types are defined by six three-state 
outputs: CACHE#, D/C#, LOCK#, M/IO#, 
SCYC, and W/R# as listed in Table 3-7 (Page 
3-12). 

These bus cycle definition signals are driven 
valid while ADS# is active.  D/C#, M/IO#, 
W/R#, SCYC and CACHE# remain valid until 
the clock following the earliest of two signals: 
NA# asserted, or the last BRDY# for the cycle.

LOCK# continues asserted until after BRDY# is 
returned for the last locked bus cycle. The bus 
cycle definition signals float during bus hold 
states.

Cache Cycle Indicator (CACHE#) is an 
output that indicates that the current bus cycle 
is a potentially cacheable cycle (for a read), or 
indicates that the current bus cycle is a cache 
line write-back or line replacement burst cycle 
(for a write). If CACHE# is asserted for a read 
cycle and the KEN# input is returned active by 
the system, the read cycle becomes a cache line 
fill burst cycle.

Data/Control (D/C#) distinguishes between 
data and control operations. When high, this 
signal indicates that the current bus cycle is a 
data transfer to or from memory or I/O. When 
low, D/C# indicates that the current bus cycle 

involves a control function such as a halt, inter-
rupt acknowledge or code fetch.

Bus Lock (LOCK#) is an active low output 
which, when asserted, indicates that other 
system bus masters are denied access to control 
of the CPU bus. The LOCK# signal may be 
explicitly activated during bus operations by 
including the LOCK prefix on certain instruc-
tions. LOCK# is also asserted during descriptor 
updates, page table accesses, interrupt 
acknowledge sequences and when executing 
the XCHG instruction. However, if the 
NO_LOCK bit in CCR1 is set, LOCK# is 
asserted only during page table accesses and 
interrupt acknowledge sequences. The M II
CPU does not enter the bus hold state in 
response to HOLD while the LOCK# output is 
active.

Memory/IO (M/IO#) distinguishes between 
memory and I/O operations. When high, this 
signal indicates that the current bus cycle is a 
memory read or memory write. When low, 
M/IO# indicates that the current bus cycle is an 
I/O read, I/O write, interrupt acknowledge 
cycle or special bus cycle.

Split Cycle (SCYC) is an active high output 
that indicates that the current bus cycle is part 
of a misaligned locked transfer. SCYC is defined 
for locked cycles only.  A misaligned transfer is 
defined as any transfer that crosses an 8-byte 
boundary.

Write/Read (W/R#) distinguishes between 
write and read operations. When high, this 
signal indicates that the current bus cycle is a 
memory write, I/O write or a special bus cycle. 
When low, this signal indicates that the current 
cycle is a memory read, I/O read or interrupt 
acknowledge cycle.
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Table 3-7.  Bus Cycle Types

BUS CYCLE TYPE M/IO# D/C# W/R# CACHE# LOCK#

Interrupt Acknowledge 0 0 0 1 0

Does not occur. 0 0 0 X 1

Does not occur. 0 0 1 X 0

Special Cycles:
If BE(7-0)# = FEh: Shutdown
If BE(7-0)# = FDh: Flush (INVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT)
If BE(7-0)# = F7h: Write-Back (WBINVD)
If BE(7-0)# = EFh: Flush Acknowledge (FLUSH#)
If A4 = 1 and BE(7-0)# = FBh: Stop Grant (SUSP#)

0 0 1 1 1

Does not occur. 0 1 X X 0

I/O Data Read 0 1 0 1 1

I/O Data Write 0 1 1 1 1

Does not occur. 1 0 X X 0

Cacheable Memory Code Read
(Burst Cycle if KEN# Returned Active)

1 0 0 0 1

Non-cacheable Memory Code Read 1 0 0 1 1

Does not occur. 1 0 1 X 1

Locked Memory Data Read 1 1 0 1 0

Cacheable Memory Data Read
(Burst Cycle if KEN# Returned Active)

1 1 0 0 1

Non-cacheable Memory Data Read 1 1 0 1 1

Locked Memory Write 1 1 1 1 0

Burst Memory Write
(Writeback or Line Replacement)

1 1 1 0 1*

Single Transfer Memory Write 1 1 1 1 1

Note: X = Don't Care
*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)
             locked bus cycle.
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3.2.8 Bus Cycle Control

The bus cycle control signals (ADS#, ADSC#, 
BRDY#, BRDYC#,  NA#, and SMIACT#) 
indicate the beginning of a bus cycle and allow 
system hardware to control bus cycle termina-
tion timing and address pipelining.

Address Strobe (ADS#) is an active low 
output which indicates that the CPU has 
driven a valid address and bus cycle definition 
on the appropriate output pins. ADS# floats 
during bus hold states.

Cache Address Strobe (ADSC#) performs 
the same function as ADS#. ADSC# is used to 
interface directly to a secondary cache 
controller.

Burst Ready (BRDY#) is an active low input 
that is driven by the system to indicate that the 
current transfer within a burst cycle or the 
current single transfer bus cycle can be termi-
nated. The CPU samples BRDY# in the second 
and subsequent clocks of a cycle. BRDY# is 
active during address hold states.

Cache Burst Ready (BRDYC#) performs the 
same function as BRDY# and is logically ORed 
with BRDY internally by the CPU. BRDYC# is 
used to interface directly to a secondary cache 
controller.

Next Address (NA#) is an active low input 
that is driven by the system to request the next 
pending bus cycle address and cycle definition 
information even though all data transfers for 
the current bus cycle are not complete. This 
new bus cycle is referred to as a “pipelined” 
cycle. If either the current or next bus cycle is a 
locked cycle, a line replacement, a write-back 

cycle or there is no pending bus cycle, the M II
CPU does not start a pipelined bus cycle 
regardless of the state of the NA# input.

System Management Mode Active 
(SMIACT#) behaves in one of two ways 
depending on which SMM mode is in effect.

In SL-Compatible Mode, SMIACT# is an active 
low output which indicates that the CPU is 
operating in System Management Mode. 
SMIACT# is asserted in response to the asser-
tion of SMI# or due to execution of SMINT 
instruction. SMIACT# is also asserted during 
accesses to define SMM memory if SMAC bit 
CCR1 is set.  The SMAC bit allows access to 
SMM memory while not in SMM mode and 
typically used for initialization purposes.

While in SL-compatible mode, when servicing 
an SMI# interrupt or SMINT instruction, 
SMIACT# remains asserted until a RSM 
instruction is executed.  The RSM instruction 
causes the M II CPUT to exit SMM mode and 
negate the SMIACT# output.  If a cache inquiry 
cycle occurs while SMIACT# is active, any 
resulting write-back cycle is issued with 
SMIACT# asserted.  This occurs even thought 
the write-back cycle is intended for normal 
memory rather than SMM memory.

In Cyrix Enhanced Mode, SMIACT# does not 
indicate that the CPU is operating in system 
management mode.  In Cyrix Enhanced Mode, 
SMIACT# is asserted for every SMM memory 
bus cycle and negated for every non-SMM 
memory cycle. In this mode SMIACT# follows 
the timing of MIO# and W/R#.

During RESET, the USE_SMI bit in CCR1 is 
cleared. While USE_SMI is zero, SMIACT# is 
always negated. SMIACT# does not float 
during bus hold states, except during Cyrix 
Enhanced SMM Operations.
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3.2.9 Interrupt Control

The interrupt control signals (INTR, NMI, 
SMI#) allow the execution of the current 
instruction stream to be interrupted and 
suspended.

Maskable Interrupt Request (INTR) is an 
active high level-sensitive input which causes 
the processor to suspend execution of the 
current instruction stream and begin execution 
of an interrupt service routine. The INTR input 
can be masked (ignored) through the IF bit in 
the Flags Register.

When not masked, the M II CPU responds to 
the INTR input by performing two locked inter-
rupt acknowledge bus cycles. During the 
second interrupt acknowledge cycle, the M II
CPU reads the interrupt vector (an 8-bit value), 
from the data bus. The 8-bit interrupt vector 
indicates the interrupt level that caused genera-
tion of the INTR and is used by the CPU to 
determine the beginning address of the inter-
rupt service routine. To assure recognition of 
the INTR request, INTR must remain active 
until the start of the first interrupt acknowledge 
cycle.

Non-Maskable Interrupt Request (NMI) is a 
rising edge sensitive input which causes the 
processor to suspend execution of the current 
instruction stream and begin execution of an 
NMI interrupt service routine. The NMI inter-
rupt cannot be masked by the IF bit in the Flags 
Register. Asserting NMI causes an interrupt 
which internally supplies interrupt vector 2h to 
the CPU core. Therefore, external interrupt 
acknowledge cycles are not issued.

Once NMI processing has started, no additional 
NMIs are processed until an IRET instruction is 
executed, typically at the end of the NMI 
service routine. If NMI is re-asserted prior to 
execution of the IRET, one and only one NMI 
rising edge is stored and then processed after 
execution of the next IRET.

System Management Interrupt Request 
(SMI#) is an interrupt input with higher 
priority than the NMI input. Asserting SMI# 
forces the processor to save the CPU state to 
SMM memory and to begin execution of the 
SMI service routine.

SMI# behaves one of two ways depending on 
the M II’s SMM mode.

In SL-compatible mode SMI# is a falling edge 
sensitive input and is sampled on every rising 
edge of the processor input clock.  Once SMI# 
servicing has started, no additional SMI# inter-
rupts are processed until a RSM instruction is 
executed. If SMI# is reasserted prior to execu-
tion of a RSM instruction, one and only one 
SMI# falling edge is stored and then processed 
after execution of the next RSM.

In Cyrix enhanced SMM mode, SMI# is level 
sensitive, and nested SMI’s are permitted under 
control of the SMI service routine. As a level 
sensitive input, software can process all SMI 
interrupts until all sources in the chipset have 
cleared.  In enhanced mode, SMIACT# is 
asserted for every SMM memory bus cycle and 
negated for every non-SMM bus cycle.

In either mode, SMI# is ignored following reset 
and recognition is enabled by setting the 
USE_SMI bit in CCR1.
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3.2.10 Cache Control

The cache control signals (EWBE#, FLUSH#, 
KEN#, PCD, PWT, WB/WT#) are used to indi-
cate cache status and control caching activity.

External Write Buffer Empty (EWBE#) is an 
active low input driven by the system to indi-
cate when there are no pending write cycles in 
the external system. The M II CPU samples 
EWBE# during write cycles (I/O and memory) 
only. If EWBE# is not asserted, the processor 
delays all subsequent writes to on-chip cache 
lines in the “exclusive” or “modified” state until 
EWBE# is asserted. Regardless of the state of 
EWBE#, all writes to the on-chip cache are 
delayed until any previously issued external 
write cycle is complete. This ensures that 
external write cycles occur in program order 
and is referred to as “strong write ordering”. To 
enhance performance, “weak write ordering” 
may be allowed for specific address regions 
using the Address Region Registers (ARRs) and 
Region Control Registers (RCRs).

Cache Flush (FLUSH#) is a falling edge sensi-
tive input that forces the processor to 
write-back all dirty data in the cache and then 
invalidate the entire cache contents. FLUSH# 
need only be asserted for a single clock but 
must meet specified setup and hold times to 
guarantee recognition at a particular clock 
edge.

Once FLUSH# is sampled active, the M II CPU 
begins the cache flush sequence after comple-
tion of the current instruction. External inter-
rupts and additional FLUSH# requests are 
ignored while the cache flush is in progress. 
However, cache inquiry cycles are permitted 
during the flush sequence. The M II CPU issues 

a special flush acknowledge cycle to indicate 
completion of the flush sequence. If the 
processor is in a halt or shutdown state, 
FLUSH# is recognized and the M II CPU 
returns to the halt or shutdown state following 
completion of the flush sequence.  If FLUSH# is 
active at the falling edge of RESET, the 
processor enters three state test mode.

Cache Enable (KEN#) is an active low input 
which indicates that the data being returned 
during the current cycle is cacheable. When the 
M II CPU is performing a cacheable code fetch 
or memory data read cycle and KEN# is 
sampled asserted, the cycle is transformed into 
a cache line fill (4 transfer burst cycle) or a 
“1+4” cache line fill.  KEN# is sampled with the 
first asserted BRDY# or NA# for the cycle. I/O 
accesses, locked reads, system management 
memory accesses and interrupt acknowledge 
cycles are never cached.

Page Cache Disable (PCD) is an active high 
output that reflects the state of the PCD page 
attribute bit in the page table entry or the  
directory table entry. If paging is disabled or for 
cycles that are not paged, the PCD pin is driven 
low. PCD is masked by the cache disable (CD) 
bit in CR0 (driven high if CD=1) and floats 
during bus hold states.

Page Write Through (PWT) is an active high 
output that reflects the state of the PWT page 
attribute bit in the page table entry or the direc-
tory table entry.  During non-paging cycles, and 
while paging is disabled the PWT pin is driven 
low. If PWT is asserted, PWT takes priority over 
the WB/WT# input. If PWT is asserted for 
either reads or writes, the cache line is saved in, 
or remains in, the shared (write-through) state. 
PWT floats during bus hold states.
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The Write-Back/Write-Through (WB/WT#)
input allows the system to define the write 
policy of the on-chip cache on a line-by-line 
basis. If WB/WT# is sampled high during a line 
fill cycle and PWT is low, the line is defined as 
write-back and is stored in the exclusive state. If 
WB/WT# is sampled high during a write to a 
write-through cache line (shared state) and 
PWT is low, the line is transitioned to 
write-back (exclusive state). If WB/WT# is 
sampled low or PWT is high, the line is defined 
as write-through and is stored in (line fill), or 
remains in (write), the shared state. Table 3-8 
(Page 3-16) lists the effects of WB/WT# on the 
state of the cache line for various bus cycles.

3.2.11 Bus Arbitration

The bus arbitration signals (BOFF#, BREQ, 
HOLD, and HLDA) allow the M II CPU to relin-
quish control of its local bus when requested by 
another bus master device. Once the processor 

Table 3-8.  Effects of WB/WT# on
          Cache Line State

BUS CYCLE
TYPE PWT WB/

WT#
WRITE
POLICY

MESI
STATE

Line Fill 0 0 Write-
through

Shared

Line Fill 0 1 Write-
back

Exclusive

Line Fill 1 x Write-
through

Shared

Memory Write
(Note)

0 0 Write-
through

Shared

Memory Write 
(Note)

0 1 Write-
back

Exclusive

Memory Write
(Note)

1 x Write-
through

Shared

Note: Only applies to memory writes to addresses that are currently 
valid in the cache.

has released its bus, the bus master device can 
then drive the local bus signals.

Back-Off (BOFF#) is an active low input that 
forces the M II CPU to abort the current bus 
cycle and relinquish control of the CPU's local 
bus in the next clock. The M II CPU responds 
to BOFF# by entering the bus hold state as 
listed in Table 3-9 (Page 3-17). The M II CPU 
remains in bus hold until BOFF# is negated. 
Once BOFF# is negated, the M II CPU restarts 
any aborted bus cycle in its entirety. Any data 
returned to the M II CPU while BOFF# is 
asserted is ignored. If BOFF# is asserted in the 
same clock that ADS# is asserted, the M II CPU 
may float ADS# while in the active low state.

Bus Request (BREQ) is an active high output 
asserted by the M II CPU whenever a bus cycle 
is pending internally. The M II CPU always 
asserts BREQ in the first clock of a bus cycle 
with ADS# as well as during bus hold and 
address hold states if a bus cycle is pending. If 
no additional bus cycles are pending, BREQ is 
negated prior to termination of the current 
cycle.

Bus Hold Request (HOLD) is an active high 
input used to indicate that another bus master 
requests control of the CPU's local bus. After 
recognizing the HOLD request and completing 
the current bus cycle or sequence of locked bus 
cycles, the M II CPU responds by floating the 
local bus and asserting the hold acknowledge 
(HLDA) output. The bus remains granted to the 
requesting bus master until HOLD is negated. 
Once HOLD is sampled negated, the M II CPU 
simultaneously drives the local bus and negates 
HLDA.
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Hold Acknowledge (HLDA) is an active high 
output used to indicate that the M II CPU has 
responded to the HOLD input and has relin-
quished control of its local bus. Table 3-9 (Page 
3-17) lists the state of all the M II CPU signals 
during a bus hold state. The M II CPU 

continues to operate during bus hold states as 
long as the on-chip cache can satisfy bus 
requests.  HLDA is asserted until HOLD is 
negated. Once HOLD is sampled negated, the 
M II CPU simultaneously drives the local bus 
and negates HLDA.

Table 3-9.  Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Recognized internally INTR Recognized internally

A31-A3 Float INV Recognized

ADS# Float KEN# Ignored

ADSC# Float LOCK# Float

AHOLD Ignored M/IO# Float

AP Float NA# Ignored

APCHK# Driven NMI Recognized internally

BE7#-BE0# Float PCD Float

BOFF# Recognized PCHK# Driven

BRDY# Ignored PWT Float

BRDYC# Ignored RESET Recognized

BREQ Driven SCYC Float

CACHE# Float SMI# Recognized

D/C# Float SMIACT# Driven

D63-D0 Float SUSP# Recognized

DP7-DP0 Float SUSPA# Driven

EADS# Recognized TCK Recognized

EWBE# Recognized internally TDI Recognized

FERR# Driven TDO Responds to TCK, TDI, TMS, TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# Driven W/R# Float

HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Recognized

IGNNE# Recognized internally
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3.2.12 Cache Coherency

The cache coherency signals (AHOLD, EADS#, 
HIT#, HITM#, and INV) are used to initiate and 
monitor cache inquiry cycles.  These signals are 
intended to be used to ensure cache coherency 
in a uni-processor environment only.  Contact 
Cyrix for additional specifications on main-
taining coherency in a multi-processor environ-
ment.

Address Hold Request (AHOLD) is an active 
high input which forces the M II CPU to float 
A31-A3 and AP in the next clock cycle. While 
AHOLD is asserted, only the address bus is 
disabled. The current bus cycle remains active 
and can be completed in the normal fashion. 
The M II CPU does not generate additional bus 
cycles while AHOLD is asserted except 
write-back cycles in response to a cache inquiry 
cycle.

External Address Strobe (EADS#) is an 
active low input used to indicate to the M II
CPU that a valid cache inquiry address is being 
driven on the M II CPU address bus (A31-A5) 
and AP. The M II CPU checks the on-chip cache 
for this address. If the address is present in the 
cache the HIT# signal is asserted. If the data 
associated with the inquiry address is “dirty” 
(modified state), the HITM# signal is also 
asserted. If dirty data exists, a write-back cycle 
is issued to update external memory with the 
dirty data. Additional cache inquiry cycles are 
ignored while HITM# is asserted.

The state of the INV pin at the time EADS# is 
sampled active determines the final state of the 

cache line. If INV is sampled high, the final 
state of the cache line is “invalid”. If INV is 
sampled low, the final state of the cache line is 
“shared”. A cache inquiry cycle using EADS# 
may be run while the M II CPU is in either an 
address hold or bus hold state. The inquiry 
address must be driven by an external device.

Hit on Cache Line (HIT#) is an active low 
output used to indicate that the current cache 
inquiry address has been found in the cache 
(modified, exclusive or shared states). HIT# is 
valid two clocks after EADS# is sampled active, 
and remains valid until the next cache inquiry 
cycle.

Hit on Modified Data (HITM#) is an active 
low output used to indicate that the current 
cache inquiry address has been found in the 
cache and dirty data exists in the cache line 
(modified state). If HITM# is asserted, a 
write-back cycle is issued to update external 
memory. HITM# is valid two clocks after 
EADS# is sampled active, and remains asserted 
until two clocks after the last BRDY# of the 
write-back cycle is sampled active. The M II
CPU does not accept additional cache inquiry 
cycles while HITM# is asserted.

Invalidate Request (INV) is an active high 
input used to determine the final state of the 
cache line in the case of a cache inquiry hit. INV 
is sampled with EADS#. A logic one on INV 
directs the processor to change the state of the 
cache line to “invalid”.    A logic zero on INV 
directs the processor to change the state of the 
cache line to “shared”.
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3.2.13 FPU Error Interface

The FPU interface signals FERR# and IGNNE# 
are used to control error reporting for the 
on-chip floating point unit. These signals are 
typically used for a PC-compatible system 
implementation. For other applications, FPU 
errors are reported to the M II CPU core 
through an internal interface.

Floating Point Error Status (FERR#) is an 
active low output asserted by the M II CPU 
when an unmasked floating point error occurs. 
FERR# is asserted during execution of the FPU 
instruction that caused the error. FERR# does 
not float during bus hold states.

Ignore Numeric Error (IGNNE#) is an active 
low input which forces the M II CPU to ignore 
any pending unmasked FPU errors and allows 
continued execution of floating point instruc-
tions. When IGNNE# is not asserted and an 
unmasked FPU error is pending, the M II CPU 
only executes the following floating point 
instructions: FNCLEX, FNINIT, FNSAVE, 
FNSTCW, FNSTENV, and FNSTSW#.  
IGNNE# is ignored when the NE bit in CR0 is 
set to a 1.

3.2.14 Power Management
Interface

The two power management signals (SUSP#, 
SUSPA#) allow the M II CPU to enter and exit 
suspend mode. The M II CPU also enters 
suspend mode as the result of executing a 
HALT instruction if the HALT bit is set in 
CCR2. Suspend mode circuitry forces the M II
CPU to consume minimal power while main-
taining the entire internal CPU state.

Suspend Request (SUSP#) is an active low 
input which requests that the M II CPU enter 
suspend mode. After recognition of an active 
SUSP# input, the M II CPU completes execu-
tion of the current instruction, any pending 
decoded instructions and associated bus 
cycles, issues a stop grant bus cycle, and then 
asserts the SUSPA# output. SUSP# is ignored 
following RESET and is enabled by setting the 
SUSP bit in CCR2.

The Suspend Acknowledge (SUSPA#)
output indicates that the M II CPU has entered 
low-power suspend mode as the result of 
either assertion of SUSP# or execution of a 
HALT instruction. SUSPA# remains asserted 
until SUSP# is negated, or until an interrupt is 
serviced if suspend mode was entered via the 
HALT instruction. If SUSP# is asserted and 
then negated prior to SUSPA# assertion, 
SUSPA# may toggle state after SUSP# negates.
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The M II CPU accepts cache flush requests and 
cache inquiry cycles while SUSPA# is asserted.  
If FLUSH# is asserted, the CPU exits the low 
power state and services the flush request. 
After completion of all required write-back 
cycles, the CPU returns to the low power state.  
SUSPA# negates during the write-back cycles. 
Before issuing the write-back cycle, the CPU 
may execute several code fetches.

If AHOLD, BOFF# or HOLD is asserted while 
SUSPA# is asserted, the CPU exits the low 
power state in preparation for a cache inquiry 
cycle.  After completion of any required 
write-back cycles resulting from the cache 
inquiry, the CPU returns to the low power state 
only if HOLD, BOFF# and AHOLD are 
negated. SUSPA# negates during the 
write-back cycle.

Table 3-10 (Page 3-21) lists the M II CPU 
signal states for suspend mode when initiated 
by either SUSP# or the HALT instruction. 
SUSPA# is disabled (three-state) following 
RESET and is enabled by setting the SUSP bit 
in CCR2.

3.2.15 Performance
Monitoring

The PM0 and PM1 pins are outputs that are 
associated with performance monitoring. 
These pins can be defined in two different 
ways.

If PM0, bit 9 in the Counter Event Control 
Register is set, the PM0 pin indicates an over-
flow has occurred; if reset, the PM0 pin indi-
cates that a performance counter event has 
occurred.  The PM1 pin operates in the same 
manner, but is controlled by PM1, bit 25.

The PM0 and PM1 pins indicate only that an 
event or overflow occurred at least once.  More 
than one event or overflow can occur in the 
same CPU or external  clock cycle. 
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Table 3-10.  Signal States During Suspend Mode

SIGNAL LINE SUSP# INITIATED/
HALT INITIATED SIGNAL LINE SUSP# INITIATED/

HALT INITIATED

A20M# Ignored INTR Latched/Recognized

A31-A3 Driven INV Recognized

ADS# 1 KEN# Ignored

ADSC# 1 LOCK# 1

AHOLD Recognized M/IO# Driven

AP Driven NA# Ignored

APCHK# 1 NMI Latched/Recognized

BE7#-BE0# Driven PCD Driven

BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Driven

BRDYC# Ignored RESET Recognized

BREQ 0 SCYC Driven

CACHE# Driven SMI# Latched/Recognized

D/C# Driven SMIACT# 1

D63-D0 Float SUSP# 0 / Recognized

DP7-DP0 Float SUSPA# 0

EADS# Recognized TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS, TRST#

FLUSH# Recognized TMS Recognized

HIT# Driven TRST# Recognized

HITM# 1 W/R# Driven

HLDA Driven in response to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Latched/Recognized

IGNNE# Ignored
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3.2.16 JTAG Interface

The M II CPU can be tested using JTAG Inter-
face (IEEE Std. 1149.1) boundary scan test 
logic. The M II CPU pin state can be set 
according to serial data supplied to the chip. 
The M II CPU pin state can also be recorded 
and supplied as serial data.   

Test Clock (TCK) is the clock input used by 
the M II CPU boundary scan (JTAG) test logic. 
The rising edge of TCK is used to clock control 
and data information into the M II processor 
using the TMS and TDI pins. The falling edge 
of TCK is used to clock data information out of 
the M II processor using the TDO pin.

Test Data Input (TDI) is the serial data input 
used by the M II CPU boundary scan (JTAG) 
test logic. TDI is sampled on the rising edge of 
TCK.

Test Data Output (TDO) is the serial data 
output used by the M II CPU boundary scan 
(JTAG) test logic. TDO is output on the falling 
edge of TCK.

Test Mode Select (TMS) is the control input 
used by the M II CPU boundary scan (JTAG) 
test logic. TMS is sampled on the rising edge of 
TCK.

Test Reset (TRST#) is an active low input 
used to initialize the M II CPU boundary scan 
(JTAG) test logic.
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3.3 Functional Timing

3.3.1 Reset Timing

Figure 3-2 illustrates the required RESET tim-
ing for both a power-on reset and a reset that 
occurs during operation.  The WM_RST and 
FLUSH# inputs are sampled at the falling edge 

Figure 3-2. RESET Timing

of RESET to determine if the M II CPU should 
enter built-in self-test, enable tree-state test 
mode or enable the scatter-gather interface 
pins, respectively.  WM_RST and FLUSH#   
must be valid at least two clocks prior to the 
RESET falling edge.

VALID

VALID

Reset after Power-On = 15 CLKs Min.

Reset Inactive = 2 CLKs Min.

Power-On Reset = 1 msec  Min.

CLK

RESET

WM_RST

FLUSH#

1734902

Note 1.  ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test

Note 2.  ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.

Note 3.  Output pins dr iven to specified RESET state a maximum of 2 CLKs after  RESET rising edge.
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3.3.2 Bus State Definition

The M II CPU bus controller supports non-pipelined and pipelined operation as well as single 
transfer and burst bus cycles.  During each CLK period, the bus controller exists in one of six 
states as listed in Table 3-11.  Each of bus state and its associated state transitions are illustrated 
in Figure 3-3, (Page 3-25) and listed in Table 3-12, (Page 3-26).

Table 3-11.  M II CPU Bus States

STATE NAME DESCRIPTION

Ti Idle Clock During Ti, no bus cycles are in progress.  BOFF# and RESET force the bus 
to the idle state.  The bus is always in the idle state while HLDA is active.

T1 First Bus Cycle Clock During the first clock of a non-pipelined bus cycle, the bus enters the T1 
state.  ADS# is asserted during T1 along with valid address and bus cycle 
definition information.

T2 Second and Subsequent 
Bus Cycle Clock

During the second clock of a non-pipelined bus cycle, the bus enters the 
T2 state.  The bus remains in the T2 state for subsequent clocks of the bus 
cycle as long as a pipelined cycle is not initiated.  During T2, valid data is 
driven during write cycles and data is sampled during reads.  BRDY# is 
also sampled during T2.  The bus also enters the T2 state to complete bus 
cycles that were initiated as pipelined cycles but complete as the only 
outstanding bus cycle.

T12 First Pipelined Bus Cycle 
Clock

During the first clock of a pipelined cycle, the bus enters the T12 state.  
During T12, data is being transferred and BRDY# is sampled for the 
current cycle at the same time that ADS# is asserted and address/bus cycle 
definition information is driven for the next (pipelined) cycle.

T2P Second and Subsequent 
Pipelined Bus Cycle Clock

During the second and subsequent clocks of a pipelined bus cycle where 
two cycles are outstanding, the bus enters the T2P state.  During T2P, data 
is being transferred and BRDY# is sampled for the current cycle.  However, 
valid address and bus cycle definition information continues to be driven 
for the next pipelined cycle.

Td Dead Clock The bus enters the Td state if a pipelined cycle was initiated that requires 
one idle clock to turn around the direction of the data bus.  Td is required 
for a read followed immediately by a pipelined write, and for a write 
followed immediately by a pipelined read.
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Figure 3-3.  M II CPU Bus State Diagram
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Table 3-12. Bus State Transitions

TRANSITION CURRENT 
STATE

NEXT 
STATE EQUATION

A Ti Ti No Bus Cycle Pending.

B Ti T1 New or Aborted Bus Cycle Pending.

C T1 T2 Always.

D T2 T2 Not Last BRDY# and No New Bus Cycle Pending, or
Not Last BRDY# and New Bus Cycle Pending and NA# Negated.

E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.

F T2 Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.

G T2 T12 Not Last BRDY# and New Bus Cycle Pending and NA# Sampled 
Asserted.

H T12 T2 Last BRDY# and No Dead Clock Required.

I T12 Td Last BRDY# and Dead Clock Required.

J T12 T2P Not Last BRDY#.

K T2P T2P Not Last BRDY#.

L T2P T2 Last BRDY# and No Dead Clock Required.

M T2P Td Last BRDY# and Dead Clock Required.

N Td T12 New Bus Cycle Pending and NA# Sampled Asserted.

O Td T2 No New Bus Cycle Pending, or
New Bus Cycle Pending and NA# Negated.

P Any
State

Ti RESET Asserted, or
BOFF# Asserted.
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3.3.3 Non-Pipelined Bus
Cycles

Non-pipelined bus operation may be used for 
all bus cycle types.  The term “non-pipelined” 
refers to a mode of operation where the CPU 
allows only one outstanding bus cycle.  In 
other words, the current bus cycle must com-
plete before a second bus cycle is allowed to 
start.

3.3.3.1 Non-Pipelined Single 
Transfer Cycles

Single transfer read cycles occur during 
non-cacheable memory reads, I/O read cycles, 
and special cycles.  A non-pipelined single 
transfer read cycle begins with address and bus 
cycle definition information driven on the bus 
during the first clock (T1 state) of the bus 
cycle.  The CPU then monitors the BRDY# 
input at the end of the second clock (T2 state).  
If BRDY# is asserted, the CPU reads the appro-
priate data and data parity lines and terminates 
the bus cycle.  If BRDY# is not active, the CPU 
continues to sample the BRDY# input at the 
end of each subsequent cycle (T2 states).  Each 
of the additional clocks is referred to as a wait 
state.

The CPU uses the data parity inputs to check 
for even parity on the active data lines.  If the 
CPU detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the termination of the read cycle. 

Figure 3-4 (Page 3-28) illustrates the func-
tional timing for two non-pipelined single--
transfer read cycles.  Cycle 2 is a potentially 
cacheable cycle as indicated by the CACHE# 
output.  Because this cycle is potentially cache-
able, the CPU samples the KEN# input at the 
same clock edge that BRDY# is asserted.  If 
KEN# is negated, the cycle terminates as 
shown in the diagram.  If KEN# is asserted, the 
CPU converts this cycle into a burst cycle as 
described in the next section. NA# must be 
negated for non-pipelined operation.  Pipe-
lined bus cycles are described later in this 
chapter.
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Figure 3-4.  Non-Pipelined Single Transfer Read Cycles
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Single transfer write cycles occur for writes that 
are neither line replacement nor write-back 
cycles.  The functional timing of two non-pipe-
lined single transfer write cycles is shown in 
Figure 3-5.  During a write cycle, the data and 
data parity lines are outputs and are driven 
valid during the second clock (T2 state) of the 

VALID

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2

VALID

NA#

BRDY#

DATA, DP OUT

CYCLE 1 CYCLE 2

Cycle 1:  
0 Wait-State Write

Cycle 2:  
2 Wait-State Write

WB/WT# VALID

T2

1735100

T2 Ti

OUT

VALID

Figure 3-5.  Non-Pipelined Single Transfer Write Cycles

bus cycle.  Data and data parity remain valid 
during all wait states. If the write cycle is a 
write to a valid cache location in the “shared” 
state, the WB/WT# pin is sampled with BRDY#.  
If WB/WT# is sampled high, the cache line 
transitions from the “shared” to the “exclusive” 
state.
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Each time BRDY# is sampled asserted during 
the burst cycle, a data transfer occurs.  The 
CPU reads the data and data parity busses and 
assigns the data to an internally generated 
burst address.  Although the CPU internally 
generates the burst address sequence, only the 
first address of the burst is driven on the exter-
nal address bus.  System logic must predict the 
burst address sequence based on the first 
address.  Wait states may be added to any 
transfer within a burst by delaying the asser-
tion of BRDY# by the desired number of 
clocks.

The CPU checks even data parity for each of 
the four transfers within the burst.  If the CPU 
detects an error, the parity check output 
(PCHK#) asserts during the second clock fol-
lowing the BRDY# assertion of the data trans-
fer.

Figure 3-6 (Page 3-31) illustrates two non--
pipelined burst read cycles.  The cycles shown 
are the fastest possible burst sequences 
(2-1-1-1).  NA# must be negated for non-pipe-
lined operation as shown in the diagram.  
Pipelined bus cycles are described later in this 
chapter.

Figure 3-7 (Page 3-32) depicts a burst read 
cycle with wait states. A 3-2-2-2 burst read is 
shown.

3.3.3.2 Non-pipelined Burst
Read Cycles

The M II CPU uses burst read cycles to per-
form cache line fills.  During a burst read cycle, 
four 64-bit data transfers occur to fill one of 
the CPU’s 32-byte internal cache lines.  A 
non-pipelined burst read cycle begins with 
address and bus cycle definition information 
driven on the bus during the first clock (T1 
state) of the bus cycle.  The CACHE# output is 
always active during a burst read cycle and is 
driven during the T1 clock.

The CPU then monitors the BRDY# input at 
the end of the second clock (T2 state).  If 
BRDY# is asserted, the CPU reads the data and 
data parity and also checks the KEN# input.  If 
KEN# is negated, the CPU terminates the bus 
cycle as a single transfer cycle.  If KEN# is 
asserted, the CPU converts the cycle into a 
burst (cache line fill) by continuing to sample 
BRDY# at the end of each subsequent clock. 
BRDY# must be asserted a total of four times to 
complete the burst cycle.

WB/WT# is sampled at the same clock edge as 
KEN#.  In conjunction with PWT and the 
on-chip configuration registers, WB/WT# 
determines the MESI state of the cache line for 
the current line fill.
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Figure 3-6.  Non-Pipelined Burst Read Cycles
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Figure 3-7.  Burst Cycle with Wait States

CPU then performs the burst cycle with the 
address sequence shown in Table 3-13 (Page 
3-33).  The M II CPU CACHE# output is not 
asserted during the single read cycle prior to 
the burst.  Therefore, CACHE# must not be 
used to qualify the KEN# input to the proces-
sor.  In addition, if KEN# is returned active for 
the “1” read cycle in the “1+4”, all data bytes 
supplied to the CPU must be valid. The CPU 
samples WB/WT# during the “1” read cycle, 
and does not resample WB/WT# during the 
following burst cycle. Figure 3-8 (Page 3-33)
illustrates a “1+4” burst read cycle.

Burst Cycle Address Sequence.

The M II CPU provides two different address 
sequences for burst read cycles.  The M II CPU 
burst cycle address sequence modes are 
referred to as “1+4” and “linear”.  After reset, 
the CPU default mode is “1+4”.

In “1+4” mode, the CPU performs a single 
transfer read cycle prior to the burst cycle, if 
the desired first address is (...xx8).  During this 
single transfer read cycle, the CPU reads the 
critical data.  In addition, the M II CPU sam-
ples the state of KEN#.  If KEN# is active, the 
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CLK
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Address, AP

CACHE#

W/R#

Ti T1 T2 T2 T2 T2 T2 T2 T2

BRDY#

KEN#

DATA, DP

PCHK#

IN

Cycle 1:  3-2-2-2 Burs t Read Cyc le 1735400

T2 Ti Ti

VALID VALID VALID VALID

IN IN IN

CYCLE 1

WB/WT# VALID
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Table 3-13.   “1+4” Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

SINGLE READ CYCLE 
PRIOR TO BURST

BURST CYCLE ADDRESS
 SEQUENCE

0 None 0-8-10-18

8 Address 8 0-8-10-18

10 None 10-18-0-8

18 Address 18 10-18-0-8

Figure 3-8. “1+4” Burst Read Cycle

CLK

ADS#

Address, AP

CACHE#

W/R#

Ti T1 T2 T1 T2 T2 T2 T2 Ti

NA#

BRDY#

DATA, DP IN

KEN# must be asserted for both cycles.

1 74 03 00

Ti

Cycle 1: Single transfer read

WB/WT#

PCHK#

VALID (A4-A0 = 08h or 18h) VALID (A4-A0 = 00h or 10h)

VALID VALID VALID VALID VALID

IN IN IN IN

CYCLE 1 CYCLE 2

KEN#

VALID

Cycle 2:  2-1-1-1 Burst Read Cycle
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The address sequences for the M II CPU's linear burst mode are shown in Table 3-14.  Oper-
ating the CPU in linear burst mode minimizes processor bus activity resulting in higher sys-
tem performance.  Linear burst mode can be enabled through the M II CPU CCR3 
configuration register.

Table 3-14.  Linear Burst Address Sequences

BURST CYCLE FIRST 
ADDRESS

BURST CYCLE ADDRESS
 SEQUENCE

0 0-8-10-18

8 8-10-18-0

10 10-18-0-8

18 18-0-8-10
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3.3.3.3 Burst Write Cycles

Burst write cycles occur for line replacement 
and write-back cycles.  Burst writes are similar 
to burst read cycles in that the CACHE# output 
is asserted and four 64-bit data transfers occur.  
Burst writes differ from burst reads in that the 
data and data parity lines are outputs rather 
than inputs.  Also, KEN# and WB/WT# are not 
sampled during burst write cycles.

Data and data parity for the first data transfer 
are driven valid during the second clock (T2 
state) of the bus cycle.  Once BRDY# is sampled 
asserted for the first data transfer, valid data and 
data parity for the second transfer are driven 
during the next clock cycle.  The same timing 
relationship between BRDY# and data applies 
for the third and fourth data transfers as well. 
Wait states may be added to any transfer within 
a burst by delaying the assertion of  BRDY# by 
the required number of clocks.

As on burst read cycles, only the first address of 
a burst write cycle is driven on the external 
address bus.  System logic must predict the 
remaining burst address sequence based on the 
first address.  Burst write cycles always begin 
with a first address ending in 0 (signals 
A4-A0=0) and follow an ascending address 
sequence for the remaining transfers 
(0-8-10-18).

Figure 3-9 illustrates two non-pipelined burst 
write cycles.  The cycles shown are the fastest 
possible burst sequences (2-1-1-1).  As shown, 
an idle clock always exists between two 
back-to-back burst write cycles.  Therefore, the 
second burst write cycle in a pair of 
back-to-back burst writes is always issued as a 
non-pipelined cycle regardless of the state of 
the NA# input.

Figure 3-9.  Non-Pipelined Burst Write Cycles
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3.3.4 Pipelined Bus Cycles

Pipelined addressing is a mode of operation 
where the CPU allows up to two outstanding 
bus cycles at any given time.  Using pipelined 
addressing, the address of the first bus cycle is 
driven on the bus. While the CPU waits for the 
data for the first cycle, the address for a second 
bus cycle is issued.  Pipelined bus cycles occur 
for all cycle types except locked cycles and 
burst write cycles.

Pipelined cycles are initiated by asserting NA#.  
The CPU samples NA# at the end of each T2, 
T2P and Td state. KEN# and WB/WT# are 
sampled at either the same clock as NA# is 
active, or at the same clock as the first BRDY# 
for that cycle, whichever occurs first. The CPU 

VALID 1

CLK

ADS#

Address, AP

CACHE#

W/R#

1735500

Ti T1 T2 T12 T2 T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

IN 1 IN 2

VALID 1 VALID 2

Cycle 1:
2 Wait State Read

Cycle 2:Potentially Cacheable,
Pipelined Read Cycle

Non-Cacheable,

CYCLE 1 CYCLE 2

CPU enters idle bus state because

no bus cycle pending internally.

KEN# sampled when NA# sampled asserted.

T2

Figure 3-10.  Pipelined Single Transfer Read Cycles

issues the next address a minimum of two 
clocks after NA# is sampled asserted.

The CPU latches the state of the NA# pin inter-
nally. Therefore, even if a new bus cycle is not 
pending internally at the time NA# was sam-
pled asserted, the CPU still issues a pipelined 
bus cycle if an internal bus request occurs 
prior to completion of the current bus cycle. 
Once NA# is sampled asserted, the state of 
NA# is ignored until the current bus cycle 
completes.  If two cycles are outstanding and 
the second cycle is a read, the CPU samples 
KEN# and WB/WT# for the second cycle when 
NA# is sampled asserted.

Figure 3-10 and Figure 3-11 (Page 3-37) illus-
trate pipelined single transfer read cycles and 
pipelined burst read cycles, respectively.
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Figure 3-11.  Pipelined Burst Read Cycles
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VALID 2
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3.3.4.1 Pipelined
Back-to-Back
Read/Write Cycles

Figure 3-12 depicts a read cycle followed by a 
pipelined write cycle.  Under this condition, 
the data bus must change from an input for the 
read cycle to an output for the write cycle.  In 
order to accomplish this transition without 

VALID 1

CLK

ADS#

Address,  AP

CACHE#

W/R#

1735700

Ti T1 T2 T2 T12 T2P Td T2 Ti

VALID 2

NA#

BRDY#

KEN#

DATA, DP

PCHK#

Cycle 1:  2-1-1-1 Burst Read Cycle 2:  Pipelined Write

CYCLE 1 CYCLE 2

IN 1 IN 1IN 1 IN 1

VALID 1 VALID 1 VALID 1 VALID 1

OUT 2

Figure 3-12.   Read Cycle Followed by Pipelined Write Cycle

causing data bus contention, the CPU auto-
matically inserts a “dead” (Td) clock cycle.  
During the Td state, the data bus floats.  The 
CPU then drives the write data onto the bus in 
the following clock.  The CPU also inserts a Td 
clock between a write cycle and a pipelined 
read cycle to allow the data bus to smoothly 
transition from an output to an input.
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3.3.5 Interrupt
Acknowledge
Cycles

The CPU issues interrupt acknowledge bus 
cycles in response to an active INTR input.  
Interrupt acknowledge cycles are single trans-
fer cycles and always occur in locked pairs as 
shown in Figure 3-13.  The CPU reads the 
interrupt vector from the lower eight bits of 
the data bus at the completion of the second 

Figure 3-13.  Interrupt Acknowledge Cycles

interrupt acknowledge cycle.  Parity is not 
checked during the first interrupt acknowl-
edge cycle.

M/IO#, D/C# and W/R# are always logic low 
during interrupt acknowledge cycles.  Addi-
tionally, the address bus is driven with a value 
of 0000 0004h for the first interrupt acknowl-
edge cycle and with a value of 0000 0000h for 
the second.  A minimum of one idle clock 
always occurs between the two interrupt 
acknowledge cycles.

0000 0004h

CLK

ADS#

Address

LOCK#

1735800

Ti T1 T2 Ti T1 T2 Ti

0000 0000h

Acknowledge Cycle.

Interrupt Vector Read
During Second Interrupt

BRDY#

DATA IN IN

Idle States = 1 CLK Min.
CYCLE 1 CYCLE 2

M/IO#, 
D/C#,  W/R#

PCHK#

Ti

VALID
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3.3.6 SMI# Interrupt Timing

The CPU samples the System Management 
Interrupt (SMI#) input at each clock edge.  At 
the next appropriate instruction boundary, the 
CPU recognizes the SMI# and completes all 
pending write cycles.  The CPU then asserts 
SMIACT# and begins saving the SMM header 
information to the SMM address space.  
SMIACT# remains asserted until after 
execution of a RSM instruction. Figure 3-14
illustrates the functional timing of the 
SMIACT# signal.

Figure 3-14.  SMIACT# Timing in SL Compatible Mode

CLK

ADS#

 BRDY#

SMI#

SMIACT#

1739900

Normal
Access

Normal
Access

SMI
Handler

Normal
Access

1 CLK MIN 1 CLK MIN
4 CLK 
MI N 4 CLK 

MIN

To facilitate using SMI# to power manage I/O 
peripherals, the M II CPU implements a fea-
ture called I/O trapping.  If the current bus 
cycle is an I/O cycle and SMI# is asserted a 
minimum of three clocks prior to BRDY#, the 
CPU immediately begins execution of the SMI 
service routine following completion of the I/O 
instruction.  No additional instructions are 
executed prior to entering the SMI service rou-
tine.  I/O trap timing requirements are shown 
in Figure 3-15 (Page 3-41).
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Figure 3-15.  SMM I/O Trap Timing

CLK

Address,

ADS#

BRDY#

SMI#

1736000

T1 T2 T2 T2 T2 T2

I/O Cycle (Read or Write)

3 CLK Min.

Byte Enables VALID

The latency between when FLUSH# occurs 
and when the cache invalidation actually com-
pletes varies depending on:

(1) the state of the processor when FLUSH# 
is asserted,

(2) the number of modified cache lines,
(3) the number of wait states inserted during 

the write-back cycles.

Figure 3-16 (Page 3-42) illustrates the 
sequence of events that occur on the bus in 
response to a FLUSH# request.

3.3.7 Cache Control Timing

3.3.7.1 Invalidating the
Cache Using FLUSH#

The FLUSH# input forces the CPU to 
write-back and invalidate the entire contents of 
the on-chip cache.  FLUSH# is sampled at each 
clock edge, latched internally and then recog-
nized internally at the next instruction bound-
ary.  Once FLUSH# is recognized, the CPU 
issues a series of burst write cycles to write-back 
any “modified” cache lines.  The cache lines are 
invalidated as they are written back.  Following 
completion of the write-back cycles, the CPU 
issues a flush acknowledge special bus cycle.
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CLK

ADS#

BRDY#

Address

FLUSH#

1736100

Wait for Processor
to Complete Current

Instruction

Write-Back of all Modified Lines
in Internal Cache

Flush Acknowledge
Special Cycle

Write-Back Cycle 0000 0004h

Figure 3-16.  Cache Invalidation Using FLUSH#
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3.3.7.2 EWBE# Timing

During memory and I/O write cycles, the M II 
CPU samples the external write buffer empty 
(EWBE#) input.  If EWBE# is negated, the CPU 
does not write any data to “exclusive” or “mod-
ified” internal cache lines.  After sampling 
EWBE# negated, the CPU continues to sample 

CLK

ADS#

W/R#

DATA

EWBE#

1737800

Write Cycle:
EWBE# sampled
with each BRDY#.

Writes to E or M-State lines

T1 T2

BRDY#

OUT

that hit in the internal cache
can complete.

No writes to E or M-State lines
that hit in the internal cache.
EWBE# sampled at each
clock edge.

Figure 3-17.  External Write Buffer Empty (EWBE#) Timing

EWBE# at each clock edge until it asserts.  
Once EWBE# is asserted, all internal cache 
writes are allowed.  Through use of this sig-
nal, the external system may enforce strong 
write ordering when external write buffers 
are used.  EWBE# functional timing is shown 
in Figure 3-17.
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3.3.8 Bus Arbitration

An external bus master can take control of the 
CPU's bus using either the HOLD/HLDA 
handshake signals or the back-off (BOFF#) 
input.  Both mechanisms force the M II CPU to 
enter the bus hold state.

Figure 3-18.  Requesting Hold from an Idle Bus

3.3.8.1  HOLD and HLDA

Using the HOLD/HLDA handshake, an exter-
nal bus master requests control of the CPU’s 
bus by asserting the HOLD signal.  In response 
to an active HOLD signal, the CPU completes 
all outstanding bus cycles, enters the bus hold 
state by floating the bus, and asserts the HLDA 
output.  The CPU remains in the bus hold state 
until HOLD is negated.  Figures 3-18 (this 
page), Figure 3-19 (Page 3-45) and Figure 
3-20 (Page 3-46) illustrate the timing associ-
ated with requesting HOLD during an idle 
bus, during a non-pipelined bus cycle and 
during a pipelined bus cycle, respectively.

CLK

ADS#

Address

HOLD

1736200

Ti Ti Ti Ti Ti T1 T2

VALID

HLDA

MIN 
Zero Clocks

Min One Clock

0.1 Functional Timing
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Figure 3-19.  Requesting Hold During a Non-Pipelined Bus Cycle
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BRDY#

1736300

T1 T2 T2 Ti Ti Ti

VALID

HLDA
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Figure 3-20.  Requesting Hold During a Pipelined Bus Cycle
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CLK

ADS#

Address, AP

Ti T1 T2

BRDY#

DATA, DP

CYCLE 1

HOLD

HLDA

T2

1736400

T12 T2 T2 Ti Ti Ti

VALID 2
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3.3.8.2 Back-Off Timing

An external bus master requests immediate 
control of the CPU's bus by asserting the 
back-off (BOFF#) input.  The CPU samples 
BOFF# at each clock edge and responds by 
floating the bus in the next clock cycle as 
shown in Figure 3-21.  The CPU remains in 
the bus hold state until BOFF# is negated. 

If the assertion of BOFF# interrupts a bus 
cycle, the bus cycle is restarted in its entirety 
following the negation of BOFF#.  If KEN# was 

CLK

ADS#

Address

BRDY#

1 73 65 00

T1 T2 Ti Ti T1 T2

VALID

BOFF#

VALID

Figure 3-21.  Back-Off Timing

sampled by the processor before the cycle was 
aborted, it must be returned with the same 
value during the restarted cycle.  The state of 
WB/WT# may be changed during the restarted 
cycle.

If BOFF# and BRDY# are active at the same 
clock edge, the CPU ignores BRDY#.  Any data 
returned to the CPU with the BRDY# is also 
ignored.  If BOFF# interrupts a burst read 
cycle, the CPU does not cache any data 
returned prior to BOFF#.  However, this data 
may be used for internal CPU execution.
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3.3.9 Cache Inquiry Cycles

Cache inquiry cycles are issued by the system 
with the CPU in either a bus hold or address 
hold state.  Bus hold is requested by asserting 
either HOLD or BOFF#, and address hold is 
requested by asserting AHOLD.  The system 
initiates the cache inquiry cycle by asserting 
the EADS# input.  The system must also drive 
the desired inquiry address on the address 
lines, and a valid state on the INV input. 

In response to the cache inquiry cycle, the 
CPU checks to see if the specified address is 
present in the internal cache.  If the address is 
present in the cache, the CPU checks the MESI 
state of the cache line.  If the line is in the 
“exclusive” or “shared” state, the CPU asserts 
the HIT# output and changes the cache line 
state to “invalid” if the INV input was sampled 
logic high with EADS#. 

If the line is in the “modified” state, the CPU 
asserts both HIT# and HITM#. The CPU then 
issues a bus cycle request to write the modified 
cache line to external memory.  HITM# 
remains asserted until the write-back bus cycle 
completes.  No additional cache inquiry cycles 
are accepted while HITM# is asserted.  Write-
back cycles always start at burst address 0.  
Once the write-back cycle has completed, the 
CPU changes the cache line state to “invalid” if 
the INV input was sampled logic high, or 
“shared” if the INV input was sampled low.

In addition to checking the cache, the CPU 
also snoops the internal line fill and cache 
write-back buffers in response to a cache 
inquiry cycle.   The following sections describe 
the functional timing for cache inquiry cycles 
and the corresponding write-back cycles for 
the various types of inquiry cycles. 
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3.3.9.1 Inquiry Cycles
Using HOLD/HLDA

Figure 3-22 illustrates an inquiry cycle where 
HOLD is used to force the CPU into a bus hold 
state.  In this case, the system asserts HOLD 
and must wait for the CPU to respond with 
HLDA before issuing the cache inquiry cycle.  
To avoid address bus contention, EADS# 

To CPU

CLK

ADS#

Address

BRDY#

HOLD

T2 Ti Ti Ti Ti Ti Ti Ti Ti

From CPU

EADS#

INV

HIT#

HITM#

1736600

T1 T2 T2 T2

Write-Back Cycle

T2 Ti Ti

VALID

HLDA

Figure 3-22.  HOLD Inquiry Cycle that Hits on a Modified Line

should not be asserted until the second clock 
after HLDA as shown in the diagram.  If the 
inquiry address hits on a modified cache line, 
HIT# and HITM# are asserted during the sec-
ond clock following EADS#.  Once HITM# 
asserts, the system must negate HOLD to allow 
the CPU to run the corresponding write-back 
cycle.  The first cycle issued following negation 
of HLDA is the write-back bus cycle.
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3.3.9.2 Inquiry Cycles
Using BOFF#

Figure 3-23 illustrates an inquiry cycle where 
BOFF# is used to force the CPU into a bus hold 
state.  In this case, the system asserts BOFF# 
and the CPU immediately relinquishes control 
of the bus in the next clock. To avoid address 
bus contention, EADS# should not be asserted 

To CPU

CLK

ADS#

Address

BRDY#

BOFF#

T1 Ti Ti Ti Ti Ti T1 T2 T2

From CPU

EADS#

INV

HIT#

HITM#

1736 700

T2 T2 Ti T1

Write-Back Cycle

T2

VALID

Cycle 1

(Restarted)

Ti

Figure 3-23.  BOFF# Inquiry Cycle that Hits on a Modified Line

until the second clock edge after BOFF# as 
shown in the diagram.  If the inquiry address 
hits on a modified cache line, HIT# and HITM# 
are asserted during the second clock following 
EADS#.  Once HITM# asserts, the system must 
negate BOFF# to allow the CPU to run the cor-
responding write-back cycle.  The first cycle 
issued following negation of BOFF# is the 
write-back bus cycle.
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3.3.9.3 Inquiry Cycles
Using AHOLD

Figure 3-24 illustrates an inquiry cycle where 
AHOLD is used to force the CPU into an 
address hold state.  In this case, the system 
asserts AHOLD and the CPU immediately floats 
the address bus in the next clock. To avoid 
address bus contention, EADS# should not be 
asserted until the second clock edge after 

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 Ti Ti Ti Ti Ti T1 T2

From CPU

AHOLD

EADS#

INV

HIT#

1736800

T2 T2 T2 T2

Write-Back Cycle

Ti

VALID

HITM#

OUT OUT OUT OUT

Ti

Restrictions on negating AHOLD:
1.  During a write cycle, AHOLD should not be negated in the same clock that BRDY# is asserted.
2.  During pipelined bus cycles, AHOLD should not be negated during the Td clock between a read cycle followed by a pipelined write cycle.
3.  While HITM# is asserted, AHOLD should not be negated in the same clock that ADS# is asserted.

Figure 3-24.  AHOLD Inquiry Cycle that Hits on a Modified Line

AHOLD as shown in the diagram.  If the 
inquiry address hits on a modified cache line, 
the CPU asserts HIT# and HITM# during the 
second clock following EADS#.  The CPU then 
issues the write-back cycle even if AHOLD 
remains asserted.  ADS# for the write-back 
cycle asserts two clocks after HITM# is 
asserted.  To prevent the address bus and data 
bus from switching simultaneously, the system 
must adhere to the restrictions on negation of 
AHOLD as shown in Figure 3-24.



3-52 PRELIMINARY                                   

Advancing the Standards


Functional Timing

Figure 3-25 depicts an AHOLD inquiry cycle 
during a line fill.  In this case, the write-back 
cycle occurs after the line fill is completed.  At 
least one idle clock exists between the final 
BRDY# of the line fill and the ADS# for the 
write-back cycle.  If the inquiry cycle hits on 
the address of the line fill that is in progress, 

To CPU

CLK

ADS#

Address

BRDY#

Data, DP

T1 T2 T2 T2 T2 T2 T2

From CPU

AHOLD

EADS#

INV

HIT#

1736900

VALID

HITM#

IN IN IN

Line Fill

Note: If the inquiry  cycle hits on the line fil l in progress, the data from the line fill will be used to complete the pending internal operation.
The line is not  placed in the cache if INV is  sampled asserted with EADS#.  The l ine is  placed in the cache in a "shared"
state if INV is sampled negated with EADS#.

T1 T2 T2 T2 T2 Ti Ti

OUT OUT OUT OUTIN

Write-Back Cycle

Ti

Figure 3-25.  AHOLD Inquiry Cycle During a Line Fill

the data from the line fill cycle is always used 
to complete the pending internal operation.  
However, the data is not placed in the cache if 
INV is sampled asserted with EADS#.  The 
data is placed in the cache in a “shared” state 
if INV is sampled negated.
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During cache inquiry cycles, the CPU performs 
address parity checking using A31-A5 and the 
AP signal.  The CPU checks for even parity and 

CLK

EADS#

Address

AP

1 73 70 00

Tx Tx Tx Tx Tx

To CPU

APCHK#

To CPU

VALID

Figure 3-26.   APCHK# Timing

asserts the APCHK# output if a parity error is 
detected. Figure 3-26 illustrates the functional 
timing of the APCHK# output.
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3.3.10 Cache Inquiry Cycles
During SMM Mode

It is assumed that while operating in SL-compatible mode SMM code and data are non-cacheable 
thereby precluding any inquiry cycles from hitting on cache lines containing modified SMM data. 
Therefore this section is only relevant while operating in Cyrix enhanced SMM mode.

Cache inquiry cycles are issued by the system with the CPU in either a bus hold or address hold 
state. The SMIACT# pin is floated along with the other buses, and bus control signals as defined 
by the bus hold state. The SMIACT# pin follows the timing protocol shown in Figure 3-27  in 

Figure 3-27. Hold Inquiry that Hits on a Modified Data Line
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regards to an inquiry during an address hold 
request. Bus hold is requested by asserting 
either HOLD or BOFF#, and address hold is 
requested by asserting AHOLD. The system 
initiates the cache inquiry cycle by asserting 
the EADS# input. The system must also drive 
the desired inquiry address on the address 
lines, and a valid state on the INV input.

In response to the cache inquiry cycle the CPU 
checks to see if the specified address is present 
in the internal cache. If the address is present 
in the cache, the CPU checks the MESI state of 
the cache line. If the line is in the “exclusive” 
or “shared” state, the CPU asserts the HIT# 
output and changes the cache line state to 
“invalid” if the INV input was sampled logic 
high with EADS#. If the line is in the “modi-
fied” state, the CPU asserts both HIT# and 
HITM#. The CPU then issues a bus cycle 
request to write the modified cache line to 
external memory. If the data to be written back 
is SMM data, the CPU asserts SMIACT# 1 cycle 
before asserting the ADS of the write back 
cycle. HITM# remains asserted until the 
write-back bus cycle completes. No additional 
cache inquiry cycles are accepted while 
HITM# is asserted. Write-back cycles always 
start at burst address 0. Once the write-back 
cycle has completed, the CPU changes the 
cache line state to “invalid” if the INV input 
was sampled logic high, or “shared” if the INV 
input was sampled low.

3.3.10.1 Inquiry Cycles
Using BOFF,
HOLD/HLDA

The system asserts HOLD or BOFF# to force 
the CPU into a bus hold state. The system 
must wait for the CPU to respond with HLDA 
before issuing the cache inquiry cycle, or in the 
case of BOFF# the CPU immediately relin-
quishes control to the bus in the next cycle. To 
avoid address bus contention, EADS# should 
not be asserted until the second clock edge 
after HLDA/BOFF#. If the inquiry address hits 
on a modified cache line, HIT# and HITM# are 
asserted during the second clock following 
EADS#. Once HITM# asserts, the system must 
negate HOLD/BOFF# to allow the CPU to run 
the corresponding write-back cycle. The first 
cycle issued following negation of 
HLDA/BOFF# is the write-back bus cycle. If 
this cycle is to SMM memory then SMIACT# is 
asserted, otherwise this cycle is run with 
SMIACT# high.
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Figure 3-28. BOFF# Inquiry Cycle that Hits on a Modified Data Line

To CPU

CLK

ADS#

Address

BRDY

T2 Ti Ti Ti Ti Ti Ti Ti Ti

From CPU

EADS#

INV

HIT#

HITM#

1748200

T1 T2 T2 T2

Write-Back Cycle

T2 Ti Ti

VALID

BOFF#
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If SMIACT# was low prior to HLDA/BOFF# assertion and write-back cycle is intended for main 
memory then SMIACT# must be pulled high at least one clock prior to assertion of ADS# for the 
write-back cycle. See Figure 3-28 and Figure 3-29 (Page 3-57). If there is no write-back bus cycle to 
run and the next cycle to be run is to SMM memory then SMIACT# must be asserted at least 1 clock 
prior to assertion of ADS# as defined in Figure 3-30 (Page 3-58).
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Figure 3-29.  HOLD Inquiry Cycle that Misses the Cache While in SMM Mode
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Figure 3-30.  AHOLD Inquiry Cycle During a Line Fill from SMM Memory
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3.3.10.2 Inquiry Cycles
Using AHOLD

In this case, the system asserts AHOLD the 
CPU immediately floats the address bus in the 
next clock. To avoid address bus contention, 
EADS# should not be asserted until the second 
clock edge after AHOLD. If the inquiry address 
hits on a modified cache line the CPU asserts 
HIT# and HITM# during the second clock 
following EADS#. The CPU then issues the 
write-back cycle even if AHOLD remains 
asserted. If this cycle is to SMM memory then 
SMIACT# is asserted, otherwise this cycle is 
run with SMIACT# high. If SMIACT# was low 
prior to AHOLD assertion and write back cycle 
is intended for main memory then SMIACT# 
must be pulled high at least one clock prior to 
assertion of ADS# for the write-back cycle. 

Likewise, if SMIACT# was high prior to 
AHOLD assertion and the write-back cycle is 
intended for SMM memory then SMIACT# 
must be pulled low at least one clock prior to 
assertion of ADS#. If there is no write-back bus 
cycle to run and the next cycle to be run is to 
SMM memory then SMIACT# must be asserted 
at least one clock prior to assertion of ADS#.

The following timing diagram depicts an 
AHOLD inquiry cycle during a line fill from 
SMM memory. In this case, the write-back 
cycle occurs after the line fill is completed, and 
one clock after SMIACT# is set to a logic high 
provided the write-back cycle is to main 
memory.  For this case, if the write-back cycle 
is to SMM memory then the one clock setup 
time criterion for SMIACT# to ADS# is met and 
the write-back cycle can start immediately.
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3.3.11 Power Management
Interface

SUSP# Initiated Suspend Mode

The M II CPU enters suspend mode when the 
SUSP# input is asserted and execution of the 
current instruction, any pending decoded 
instructions and associated bus cycles are 
completed.  A stop grant bus cycle is then 
issued and the SUSPA# output is asserted.  The 
CPU responds to SUSP# and asserts SUSPA# 
only if the SUSP bit is set in the CCR2 configu-
ration register.

SUSP# is sampled (Figure 3-31) on the rising 
edge of CLK.  SUSP# must meet specified 
setup and hold times to be recognized at a 
particular CLK edge.  The time from assertion 
of SUSP# to activation of SUSPA# varies 
depending on which instructions were 

Figure 3-31.  SUSP# Initiated Suspend Mode

CLK

SUSP#

SUSPA#

1737600

Tx Tx Ti Ti Ti Ti Tx

8 CLKs 5 CLKs

decoded prior to assertion of SUSP#.   The 
minimum time from SUSP# sampled active to 
SUSPA# asserted is eight CLKs.  As a 
maximum, the CPU may execute up to two 
instructions and associated bus cycles prior to 
asserting SUSPA#.  The time required for the 
CPU to deactivate SUSPA# once SUSP# has 
been sampled inactive is five CLKs.

If the CPU is in a hold acknowledge state and 
SUSP# is asserted, the CPU may or may not 
enter suspend mode depending on the state of 
the CPU internal execution pipeline. If the 
CPU is in a SUSP# initiated suspend mode, 
one occurrence of NMI, INTR and SMI# is 
stored for execution once suspend mode is 
exited. The M II CPU also recognizes and 
acknowledges the HOLD, AHOLD, BOFF# 
and FLUSH# signals while in suspend mode.
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HALT Initiated Suspend Mode

The CPU also enters suspend mode as a result 
of executing a HALT instruction if the HALT 
bit in CCR2 is set.  The SUSPA# output is 
asserted no later than 40 CLKs following BRDY# 

CLK

ADS#

M/IO#,

BRDY#

1737700

INTR, NMI

SUSPA#

T1 T2 Ti Ti Ti Ti Ti Ti

Non-Pipelined HALT

BE(0, 1, 3-7)#,
W/R#

10 CLKs

A3-A31,
BE#2, D/C#, IO#

40 CLKs (Max)

Figure 3-32.  HALT Initiated Suspend Mode

sampled active for the HALT bus cycle as shown 
in Figure 3-32.  Suspend mode is then exited 
upon recognition of an NMI, an unmasked 
INTR or an SMI#.  SUSPA# is deactivated 10 
CLKs after sampling of an active interrupt.  
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Stopping the Input Clock

Once the CPU has entered suspend mode, the 
input clock (CLK) can be stopped and 
restarted without loss of any internal CPU 
data.  The CLK input can be stopped at either a 
logic high or logic low state. 

The CPU remains suspended until CLK is 
restarted and suspend mode is exited as 

described earlier.  While the CLK is stopped, 
the CPU can no longer sample and respond to 
any input stimulus.

Figure 3-33 illustrates the recommended 
sequence for stopping the CLK using SUSP# to 
initiate suspend mode.  CLK may be started 
prior to or following negation of the SUSP# 
input. The system must allow sufficient time 
for the CPU’s internal PLL to lock to the 
desired frequency before exiting suspend 
mode.

CLK

SUSP#

SUSPA#

1731901

Tx Tx Tx Tx

Figure 3-33.  Stopping CLK During Suspend Mode
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4.0 ELECTRICAL
SPECIFICATIONS

4.1 Electrical Connections

This section provides information on electrical 
connections, absolute maximum ratings, 
recommended operating conditions, DC char-
acteristics, and AC characteristics.   All voltage 
values in Electrical Specifications are measured 
with respect to VSS unless otherwise noted.

The M II CPU operates using two power supply 
voltages—one for the I/O (3.3 V) and one for 
the core (2.9 V).

4.1.1 Power and Ground
Connections and
Decoupling

Testing and operating the M II CPU requires 
the use of standard high frequency techniques 
to reduce parasitic effects.  The high clock 
frequencies used in the M II CPU and its output 
buffer circuits can cause transient power surges 
when several output buffers switch output 
levels simultaneously.  These effects can be 
minimized by filtering the DC power leads with 
low-inductance decoupling capacitors, using 
low impedance wiring, and by utilizing all of 
the VCC and GND pins.   The M II CPU 
contains 296 pins with 25 pins connected to 

VCC2 (2.9 volts), 28 pins connected to VCC3
(3.3 volts), and 53 pins connected to VSS
(ground).

4.1.2 Pull-Up/Pull-Down
Resistors

Table 4-1 lists the input pins that are internally
connected to pull-up and pull-down resistors.  
The pull-up resistors are connected to VCC and 
the pull-down resistors are connected to VSS.  When
unused, these inputs do not require connec-
tion to external pull-up or pull-down resis-
tors. The SUSP# pin is unique in that it is 
connected to a pull-up resistor only when 
SUSP# is not asserted.
  

Table 4-1.  Pins Connected to Internal 
Pull-Up and Pull-Down Resistors

SIGNAL PIN NO. RESISTOR

BRDYC# Y3 20-kΩ pull-up
CKMUL0 Y33 20-kΩ pull-down (see text)
CKMUL1 X34 20-kΩ pull-up (see text)
Reserved AN35 20-kΩ pull-down
Reserved W35 20-kΩ pull-up
SMI# AB34 20-kΩ pull-up
SUSP# Y34 20-kΩ pull-up (see text)
TCK M34 20-kΩ pull-up
TDI N35 20-kΩ pull-up
TMS P34 20-kΩ pull-up
TRST# Q33 20-kΩ pull-up

April 9, 1997 5:58 pm

c: \dataoem\!m2\!m2_4-1.fm

MII™  PROCESSOR
 Enhanced High Performance CPU
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4.1.3 Unused Input Pins

All inputs not used by the system designer and 
not listed in Table 4-1 should be connected 
either to ground or to VCC.  Connect active--
high inputs to ground through a 10 kΩ (± 10%)
pull-down resistor and active-low inputs to 
VCC through a 10 kΩ (± 10%) pull-up resistor 
to prevent possible spurious operation.

4.1.4 NC and Reserved Pins

Pins designated NC have no internal connec-
tions.  Pins designated RESV or RESERVED 
should be left disconnected.  Connecting a 
reserved pin to a pull-up resistor, pull-down 
resistor, or an active signal could cause unex-
pected results and possible circuit malfunc-
tions.

4.2 Absolute Maximum
Ratings

The following table lists absolute maximum 
ratings for the M II CPU processors.  Stresses 
beyond those listed under Table 4-2 limits may 
cause permanent damage to the device. These 
are stress ratings only and do not imply that 
operation under any conditions other than 
those listed under “Recommended Operating 
Conditions” Table 4-3 (Page 4-3) is possible.  
Exposure to conditions beyond Table 4-2 may 
(1) reduce device reliability and (2) result in 
premature failure even when there is no imme-
diately apparent sign of failure.  Prolonged 
exposure to conditions at or near the absolute 
maximum ratings may also result in reduced 
useful life and reliability.

Table 4-2.  Absolute Maximum Ratings

PARAMETER MIN MAX UNITS NOTES

Operating Case Temperature -65 110 °C Power Applied

Storage Temperature -65 150 °C

Supply Voltage, VCC3 -0.5 4.0 V

Supply Voltage, VCC2 -0.5 3.3 V

Voltage On Any Pin -0.5 VCC3 + 0.5 V Not to exceed Vcc3 max

Input Clamp Current, IIK 10 mA Power Applied

Output Clamp Current, IOK 25 mA Power Applied



  PRELIMINARY                                       4-3

4Recommended Operating Conditions

4.3 Recommended Operating Conditions

Table 4-3 presents the recommended operating conditions for the M II CPU device.

Table 4-3.  Recommended Operating Conditions

PARAMETER MIN MAX UNITS NOTES

TC   Operating Case Temperature 0 70 °C Power Applied

VCC3  Supply Voltage (3.3 V) 3.135 3.465 V

VCC2  Supply Voltage (2.9 V) 2.8 3.0 V

VIH  High-Level Input Voltage (except CLK) 2.00 3.55 V

VIH  CLK High-Level Input Voltage 2.0 5.5 V

VIL   Low-Level Input Voltage -0.3 0.8 V

IOH High-Level Output Current -1.0 mA VO=VOH(MIN)

IOL  Low-Level Output Current  5.0 mA VO=VOL(MAX}
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4.4 DC Characteristics

Table 4-4.  DC Characteristics (at Recommended Operating Conditions) 1 of 2

PARAMETER MIN TYP MAX UNITS NOTES

VOL    Low-Level Output Voltage         0.4 V IOL = 5 mA

VOH   High-Level Output Voltage 2.4 V IOH = -1 mA

II      Input Leakage Current
         For all pins (except those
          listed in Table 4-1).

±15 µA 0 < VIN < VCC3
Note 1

IIH     Input Leakage Current
          For all pins with internal
          pull-downs.

200 µA VIH = 2.4 V
 Note 1

IIL      Input Leakage Current
          For all pins with internal pull-ups.

-400 µA VIL = 0.45 V
Note 1

CIN Input Capacitance 15 pF f = 1 MHz*

COUT Output Capacitance 20 pF f = 1 MHz*

CIO I/O Capacitance 25 pF f = 1 MHz*

CCLK CLK Capacitance 15 pF f = 1 MHz*

*Note: Not 100% tested.
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Table 4-5.  DC Characteristics (at Recommended Operating Conditions) 2 of 2

PARAMETER
ICC2 
MAX

ICC3 
MAX

UNITS NOTES

ICC     Active ICC 
75/225 MHz (M II -300)
66/233 MHz (M II -300)
83/250 MHz (M II -333)

7480
7740
8350

100
100
100

mA
Notes 1, 2

ICCSM     Active ICC 
75/225 MHz (M II -300)
66/233 MHz (M II -300)
83/250 MHz (M II -333)

52
54
57

100
100
100

mA
Notes 1, 2, 3

ICCSS Standby ICC
          0 MHz (Suspended/CLK Stopped) 30 50.0 mA

Notes 1, 2, 4

Notes: 1.  These values should be used for power supply design. Maximum ICC  is determined using the worst-case instruction sequences and 
functions at maximum Vcc.

2.  Frequency (MHz) ratings refer to the internal clock frequency.
3.  All inputs at 0.4 or VCC3 - 0.4 (CMOS levels).  All inputs held static except clock and all outputs unloaded (static IOUT = 0 mA).
4.  All inputs at 0.4 or VCC3 - 0.4 (CMOS levels).  All inputs held static and all outputs unloaded (static IOUT = 0 mA).

Table 4-6. Power Dissipation

PARAMETER
POWER

UNITS NOTES
TYP MAX

Active Power Dissipation
75/225 MHz (M II -300)
66/233 MHz (M II -300)
83/250 MHz (M II -333)

12.5
13.0
14.0

20.7
21.6
23.3

W
Note 1

Suspend Mode Power Dissipation
75/225 MHz (M II -300)
66/233 MHz (M II -300)
83/250 MHz (M II -333)

0.150
0.152
0.157

W
Notes 1, 2

Standby Mode Power Dissipation
          0 MHz (Suspended/CLK Stopped) 0.070 W

Notes 1, 3

Notes: 1.  Systems must be designed to thermally dissipate the maximum active power dissipation. Maximum power is determined using the 
worst-case instruction sequences and functions with Vcc2 = 2.9 V and Vcc3 = 3.3 V.

2.  All inputs at 0.4 or VCC3 - 0.4 (CMOS levels).  All inputs held static except clock and all outputs unloaded (static IOUT = 0 mA).
3.  All inputs at 0.4 or VCC3 - 0.4 (CMOS levels).  All inputs held static and all outputs unloaded (static IOUT = 0 mA).
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4.5 AC Characteristics

Tables 4-7 through 4-12 (Pages 4-8 through 
4-11) list the AC characteristics including 
output delays, input setup requirements, input 
hold requirements and output float delays.  
These measurements are based on the 
measurement points identified in Figure 4-1 
(Page 4-7) and Figure 4-2 (Page 4-8).  The rising 
clock edge reference level VREF,  and other 

reference levels are shown in Table 4-7.   Input 
or output signals must cross these levels during 
testing.

Figure 4-1 shows output delay (A and B) and 
input setup and hold times (C and D).  Input 
setup and hold times (C and D) are specified 
minimums, defining the smallest acceptable 
sampling window a synchronous input signal 
must be stable for correct operation.

The JTAG AC timing is shown in Table 4-13 
(Page 13) supported by Figures 4-6 (Page 
4-13) though 4-8 (Page 4-14).



  PRELIMINARY                                       4-7

4AC Characteristics

Figure 4-1.  Drive Level and Measurement Points for Switching Characteristics

Tx

MIN

MAX

ValidValid

A

B

CLK:

LEGEND: A -  Maximum Output Delay Specification

OUTPUTS:

INPUTS:

170 9406

VREF VREF

VREF VREF

C

ValidVREF VREF

VIHD

VILD

D

B -  Minimum Output Delay Specification
C -  Minimum Input Setup Specification
D -  Minimum Input Hold Specification

Output n Output n+1

Input

VIHD

VILD

Table 4-7.  Drive Level and Measurement
Points for Switching Characteristics

SYMBOL VOLTAGE
(Volts)

VREF 1.5
VIHD 2.3
VILD 0

Note: Refer to Figure 4-1.
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AC Characteristics
Table 4-8.  Clock Specifications

TCASE = 0°C to 70°C, See Figure 4-2

PARAMETER
60-MHz BUS 66-MHz BUS 75-MHz BUS 83-MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX MIN MAX

f CLK Frequency 60 66.6 75 83 MHz

T1 CLK Period 16.67 15.0 13.33 12.0 ns

T2 CLK Period Stability ±250 ±250 ±250 ±250 ps

T3 CLK High Time 4.0 4.0 4.0 4.0 ns

T4 CLK Low Time 4.0 4.0 4.0 4.0 ns

T5 CLK Fall Time 0.15 1.5 0.15 1.5 0.15 1.5 0.15 1.5 ns

T6 CLK Rise Time 0.15 1.5 0.15 1.5 0.15 1.5 0.15 1.5 ns

T3

T6 T4

T1

T5

V

CLK

17 405 02

IH(MIN)

VREF

V IL(MAX)

Figure 4-2.  CLK Timing and Measurement Points
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Tx Tx Tx Tx

CLK

17 409 00

MIN MAX

VALID n+1VALID n

T7 - T14

OUTPUTS

 

Table 4-9.  Output Valid Delays
CL = 50 pF, Tcase = 0°C to 70°C, See Figure 4-3

PARAMETER
60-MHz BUS 66-MHz BUS 75-MHz BUS 83-MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX MIN MAX

T7a A31-A3 1.0 7.0 1.0 6.3 1.0 6.3 1.0 5.7 ns

T7b BE7#-BE0#, CACHE#, D/C#,
LOCK#, PCD, PWT, SCYC, 
SMIACT#, W/R#

1.0 7.0 1.0 7.0 1.0 7.0 1.0 6.0 ns

T7c ADS# 1.0 7.0 1.0 6.0 1.0 6.0 1.0 5.5 ns

T7d M/IO# 1.0 7.0 1.0 5.9 1.0 5.9 1.0 5.5 ns

T8 ADSC# 1.0 7.0 1.0 7.0 1.0 7.0 1.0 6.5 ns

T9 AP 1.0 8.5 1.0 8.5 1.0 8.5 1.0 7.5 ns

T10 APCHK#, PCHK#, FERR# 1.0 8.3 1.0 7.0 1.0 7.0 1.0 6.5 ns

T11 D63-D0, DP7-DP0 (Write) 1.3 7.5 1.3 7.5 1.3 7.5 1.3 7.0 ns

T12a HIT# 1.0 8.0 1.0 6.8 1.0 6.8 1.0 6.0 ns

T12b HITM# 1.1 6.0 1.1 6.0 1.1 6.0 1.1 5.5 ns

T13a BREQ 1.0 8.0 1.0 8.0 1.0 8.0 1.0 7.0 ns

T13b HLDA 1.0 8.0 1.0 6.8 1.0 6.8 1.0 6.0 ns

T14 SUSPA# 1.0 8.0 1.0 8.0 1.0 8.0 1.0 7.0 ns

Figure 4-3.   Output Valid Delay Timing
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Table 4-10.  Output Float Delays
CL = 50 pF, Tcase = 0°C to 70°C, See Figure 4-5

PARAMETER
60-MHz BUS 66-MHz BUS 75-MHz BUS 83-MHz BUS

UNITS
MIN MAX MIN MAX MIN MAX MIN MAX

T15 A31-A3, ADS#, 
BE7#-BE0#,  CACHE#,
D/C#,  LOCK#, PCD, 
PWT, SCYC, SMIACT#,
W/R#

10.0 10.0 10.0 10.0 ns

T16 AP 10.0 10.0 10.0 10.0 ns

T17 D63-D0, DP7-DP0 (Write) 10.0 10.0 10.0 10.0 ns

Tx Tx Tx Tx

CLK

174 1000

MIN

VALID

MA XT15 - T17

OUTPUTS

Figure 4-4.  Output Float Delay Timing
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Table 4-11.  Input Setup Times 
Tcase = 0°C to 70°C, See Figure 4-5

SYMBOL PARAMETER
60-MHz 

BUS
66-MHz

 BUS
75-MHz

 BUS
83-MHz

 BUS UNITS
MIN MIN MIN MIN

T18a A20M#, 5.0 5.0 3.3 3.0 ns

T18b FLUSH#, IGNNE#, SUSP# 5.0 5.0 3.3 3.0 ns

T19a AHOLD, BOFF# 5.0 5.0 3.3 3.0 ns

T19b HOLD 5.0 5.0 3.3 3.0 ns

T20 BRDY# 5.0 5.0 3.3 3.0 ns

T21 BRDYC# 5.0 5.0 3.3 3.0 ns

T22a A31-A3, AP, BE7#-BE0#, 5.0 5.0 3.3 3.0 ns

T22b AP 5.0 5.0 3.3 3.0 ns

T22c D63-D0 (Read), DP7-DP0 (Read) 3.0 3.0 3.0 2.7 ns

T23a EADS# 5.0 5.0 5.0 4.5 ns

T23b INV 5.0 5.0 5.0 4.5 ns

T24 INTR, NMI, RESET, SMI#, WM_RST 5.0 5.0 5.0 4.5 ns

T25a EWBE#, NA#, WB/WT# 4.5 4.5 3.0 2.7 ns

T25b KEN# 4.5 4.5 3.0 2.7 ns

Table 4-12.  Input Hold Times
Tcase = 0°C to 70°C, See Figure 4-5

SYMBOL PARAMETER
60-MHz 

BUS
66-MHz 

BUS
75-MHz 

BUS
83-MHz 

BUS UNITS
MIN MIN MIN MIN

T27 A20M#, FLUSH#, IGNNE#, SUSP# 1.0 1.0 1.0 1.0 ns

T28a AHOLD, BOFF# 1.0 1.0 1.0 1.0 ns

T28b HOLD 1.0 1.0 1.0 1.0 ns

T29 BRDY# 1.0 1.0 1.0 1.0 ns

T30 BRDYC# 1.0 1.0 1.0 1.0 ns

T31a A31-A3, AP, BE7#-BE0#, 1.0 1.0 1.0 1.0 ns

T31b AP 1.0 1.0 1.0 1.0 ns

T31c D63-D0 (Read), DP7-DP0 (Read) 2.0 1.5 1.5 1.5 ns

T32 EADS#, INV 1.0 1.0 1.0 1.0 ns

T33 INTR, NMI, RESET, SMI#, WM_RST 1.0 1.0 1.0 1.0 ns

T34 EWBE#, KEN#, NA#, WB/WT# 1.0 1.0 1.0 1.0 ns



4-12                                   PRELIMINARY                                 

Advancing the Standards


AC Characteristics

Figure 4-5.  Input Setup and Hold Timing

Tx Tx Tx Tx

SETUP HOLD

CLK

1740600

T18 - T26 T27 - T35
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Table 4-13.  JTAG AC Specifications

SYMBOL PARAMETER
ALL BUS FREQUENCIES

UNITS FIGURE
MIN MAX

TCK Frequency (MHz) 20 ns

T36 TCK Period 50 ns 4-6

T37 TCK High Time 25 ns 4-6

T38 TCK Low Time 25 ns 4-6

T39 TCK Rise Time 5 ns 4-6

T40 TCK Fall Time 5 ns 4-6

T41 TDO Valid Delay 3 20 ns 4-7

T42 Non-test Outputs Valid Delay 3 20 ns 4-7

T43 TDO Float Delay 25 ns 4-7

T44 Non-test Outputs Float Delay 25 ns 4-7

T45 TRST# Pulse Width 40 ns 4-8

T46 TDI, TMS Setup Time 20 ns 4-7

T47 Non-test Inputs Setup Time 20 ns 4-7

T48 TDI, TMS Hold Time 13 ns 4-7

T49 Non-test Inputs Hold Time 13 ns 4-7

Figure 4-6. TCK Timing and Measurement Points

T37

T39 T38

T36

T40

V

TCK

174 1102

IH

VREF

V IL
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Figure 4-7.  JTAG Test Timings

Figure 4-8. Test Reset Timing

TCK

TDI
TMS

TDO

1740400

1.5 V

T46 T48

T41 T43

T42 T44

T47 T49

OUTPUT
SIGNALS

INPUT
SIGNALS

TRST#

1741200

T45
1.5 V
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5.0 MECHANICAL SPECIFICATIONS

5.1 296-Pin SPGA Package

The pin assignments for the M II CPU in a 296-pin SPGA package are shown in Figure 5-1.  
The pins are listed by signal name in Table 5-1(Page 5-3) and by pin number in Table 5-2 (Page 
5-4).  Dimensions are shown in Figure 5-2 (Page 5-5) and Table 5-3 (Page 5-6).

Figure 5-1.  296-Pin SPGA Package Pin Assignments

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

AN

AM

AL

AK

AJ

AH

AG

AF

AE

AD

AC

AB

AA

Z

Y

X

W

V

U

T

S

R

Q

P

N

M

L

K

J

H

G

F

E

D

C

B

A

AN

AM

AL

AK

AJ

AH

AG

AF

AE

AD

AC

AB

AA

Z

Y

X

W

V

U

T

S

R

Q

P

N

M

L

K

J

H

G
F

E

D

C

B

A

TOP VIEW

NCD41V CC2V CC2V CC2VCC2V CC2VCC2V CC3V CC3V CC3V CC3V CC3V CC3D22D18D15NC

NCD43V SSV SSV SSV SSV SSV SSV SSVSSV SSV SSV SSV SSD20D16D13D11

NCD47D45DP4D38D36D34D32D31D29D27D25DP 2D24D21D17D14D10D9

D50D48D44D40D39D37D35D33DP3D30D28D26D23D19DP 1D12D8DP 0

D54D52D49D46D42D7D6V CC3

DP6D51DP5D5D4

V CC2D55D53

V SSD56

V CC2D57D58

V SSD59

D3D1V CC3

NCV SS

NCD2V CC3

D0V SS

V CC2D61D60

V SSD62

V CC2D63DP7

V SSNC

VCC2PM0F ERR#

VCCNCV CC3

T CKV SS

T DOT DIV CC3

T MSV SS

TRST#NCV CC3

V SSPM1

V CC2NCNC

V SSMI/O #

V CC2CACHE#INV

V SSAHOLD

V CC2E WB E#K EN#

V SSB RDY#

V CC2B RDY C#NA#

V SSBOF F#

V CC2NCW B/WT #

V SSHOLD

NCVSS

NCNCV CC3

VCCV SS

VCCV SSV CC3

SUSP#VSS

S US P A#CLKMUL2V CC3

CLKMUL1V SS

CLKMUL0NCVCC3

NCV SS

W M_RS TIGNNE #V CC3

SMI#VSS

V CC2NCNC

V SSNC

V CC2NCA PCHK#

V SSP CHK#

V CC2SMIA CT #PCD

V SSLO CK#

BREQHLDAADS#

NMINCV CC3

INTRV SS

A23NCV CC3

A21V SS

A27A24V CC3

A26A22

A31A25VSS

A PD/C#HIT#A20M#BE1#BE3#BE 5#BE 7#CLKRE S ETA19A17A15A13A9A5A29A28

VCC2DETPW THITM#NCBE0#BE 2#BE4#BE6#S CY CNCA20A18A16A14A12A11A7A3V SS

A DS C#E ADS#W/R#V SSV SSVSSV SSV SSV SSVSSV SSV SSV SSV SSV SSA8A4A30

NCNCVCC2H/L#FLUS H#VCC2VCC2V CC2VCC2VCC2VCC2VCC3V CC3V CC3V CC3V CC3A10A6RES VV SS

1746503

 
M II CPU

MII™  PROCESSOR
 Enhanced High Performance CPU



5-2                                                                                    PRELIMINARY

Advancing the Standards


296-Pin SPGA Package

Figure 5-2.  296-Pin SPGA Package Pin Assignments (Bottom View)
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SUSP A# CLK2MUL2 V CC3

CLK MUL1 V SS

CLK MUL0 NC VCC3

NC V SS

WM_RST IGNNE # VCC3

S MI# V SS

V CC2 NC NC

V SS NC

V CC2 NC AP CHK#

V SS P CHK#

V CC2 SMIACT# P CD

V SS LO CK#

B RE Q HLDA ADS#

NMI NC V CC3

INTR V SS

A23 NC V CC3

A21 V SS

A27 A24 V CC3

A26 A22

A31 A25 VSS

A P D/C# HIT# A20M# BE 1# B E3# BE 5# BE 7# CLK RES ET A19 A17 A15 A13 A9 A 5 A29 A28

VCC2DET PWT HITM# NC BE 0# BE 2# BE 4# BE 6# SCYC NC A20 A18 A16 A14 A12 A11 A 7 A3 VSS

A DS C# EA DS# W/R# V SS V SS V SS V SS VSS VSS V SS V SS V SS V SS VSS VSS A 8 A 4 A30

NC NC V CC2H/L# FLUS H# VCC2 V CC2 V CC2 V CC2 V CC2 VCC2 VCC3 VCC3 V CC3 V CC3 VCC3 A10 A 6 RE SV V SS

1747401

 
M II CPU
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Pin Signal
A3 NC

A5 D41

A7 Vcc2

A9 Vcc2

A11 Vcc2

A13 Vcc2

A15 Vcc2

A17 Vcc2

A19 Vcc3

A21 Vcc3

A23 Vcc3

A25 Vcc3

A27 Vcc3

A29 Vcc3

A31 D22

A33 D18

A35 D15

A37 NC

B2 NC

B4 D43

B6 Vss

B8 Vss

B10 Vss

B12 Vss

B14 Vss

B16 Vss

B18 Vss

B20 Vss

B22 Vss

B24 Vss

B26 Vss

B28 Vss

B30 D20

B32 D16

B34 D13

B36 D11

C1 NC

C3 D47

C5 D45

C7 DP4

C9 D38

C11 D36

C13 D34

C15 D32

C17 D31

C19 D29

C21 D27

C23 D25

C25 DP2

C27 D24

C29 D21

C31 D17

C33 D14

C35 D10

C37 D9

D2 D50

D4 D48

D6 D44

D8 D40

D10 D39

D12 D37

D14 D35

D16 D33

D18 DP3

D20 D30

D22 D28

D24 D26

D26 D23

D28 D19

D30 DP1

D32 D12

D34 D8

D36 DP0

E1 D54

E3 D52

E5 D49

E7 D46

E9 D42

E33 D7

E35 D6

E37 Vcc3

F2 DP6

F4 D51

F6 DP5

F34 D5

F36 D4

G1 Vcc2

G3 D55

G5 D53

G33 D3

G35 D1

G37 Vcc3

H2 Vss

H4 D56

H34 NC

H36 Vss

J1 Vcc2

J3 D57

J5 D58

J33 NC

Pin Signal
J35 D2

J37 Vcc3

K2 Vss

K4 D59

K34 D0

K36 Vss

L1 Vcc2

L3 D61

L5 D60

L33 Vcc3

L35 NC

L37 Vcc3

M2 Vss

M4 D62

M34 TCK

M36 Vss

N1 Vcc2

N3 D63

N5 DP7

N33 TDO

N35 TDI

N37 Vcc3

P2 Vss

P4 NC

P34 TMS

P36 Vss

Q1 Vcc2

Q3 PM0

Q5 FERR#

Q33 TRST#

Q35 NC

Q37 Vcc3

R2 Vss

R4 PM1

R34 NC

R36 Vss

S1 Vcc2

S3 NC

S5 NC

S33 NC

S35 NC

S37 Vcc3

T2 Vss

T4 MI/O#

T34 Vcc3

T36 Vss

U1 Vcc2

U3 CACHE#

U5 INV

U33 Vcc3

Pin Signal
U35 Vss

U37 Vcc3

V2 Vss

V4 AHOLD

V34 SUSP#

V36 Vss

W1 Vcc2

W3 EWBE#

W5 KEN#

W33 SUSPA#

W35 CLKMUL2

W37 Vcc3

X2 Vss

X4 BRDY#

X34 CLKMUL1

X36 Vss

Y1 Vcc2

Y3 BRDYC#

Y5 NA#

Y33 CLKMUL0

Y35 NC

Y37 Vcc3

Z2 Vss

Z4 BOFF#

Z34 NC

Z36 Vss

AA1 Vcc2

AA3 NC

AA5 WB/WT#

AA33 WM_RST

AA35 IGNNE#

AA37 Vcc3

AB2 Vss

AB4 HOLD

AB34 SMI#

AB36 Vss

AC1 Vcc2

AC3 NC

AC5 NC

AC33 NMI

AC35 NC

AC37 Vcc3

AD2 Vss

AD4 NC

AD34 INTR

AD36 Vss

AE1 Vcc2

AE3 NC

AE5 APCHK#

AE33 A23

Pin Signal
AE35 NC

AE37 Vcc3

AF2 Vss

AF4 PCHK#

AF34 A21

AF36 Vss

AG1 Vcc2

AG3 SMIACT#

AG5 PCD

AG33 A27

AG35 A24

AG37 Vcc3

AH2 Vss

AH4 LOCK#

AH34 A26

AH36 A22

AJ1 BREQ

AJ3 HLDA

AJ5 ADS#

AJ33 A31

AJ35 A25

AJ37 Vss

AK2 AP

AK4 D/C#

AK6 HIT#

AK8 A20M#

AK10 BE1#

AK12 BE3#

AK14 BE5#

AK16 BE7#

AK18 CLK

AK20 RESET

AK22 A19

AK24 A17

AK26 A15

AK28 A13

AK30 A9

AK32 A5

AK34 A29

AK36 A28

AL1 Vcc2DET

AL3 PWT

AL5 HITM#

AL7 NC

AL9 BE0#

AL11 BE2#

AL13 BE4#

AL15 BE6#

AL17 SCYC

AL19 NC

Pin Signal
AL21 A20

AL23 A18

AL25 A16

AL27 A14

AL29 A12

AL31 A11

AL33 A7

AL35 A3

AL37 Vss

AM2 ADSC#

AM4 EADS#

AM6 W/R#

AM8 Vss

AM10 Vss

AM12 Vss

AM14 Vss

AM16 Vss

AM18 Vss

AM20 Vss

AM22 Vss

AM24 Vss

AM26 Vss

AM28 Vss

AM30 Vss

AM32 A8

AM34 A4

AM36 A30

AN1 NC

AN3 NC

AN5 NC

AN7 FLUSH#

AN9 Vcc2

AN11 Vcc2

AN13 Vcc2

AN15 Vcc2

AN17 Vcc2

AN19 Vcc2

AN21 Vcc3

AN23 Vcc3

AN25 Vcc3

AN27 Vcc3

AN29 Vcc3

AN31 A10

AN33 A6

AN35 VCC2H/L#

AN37 Vss

Pin Signal

Table 5-1.  296-Pin SPGA Package Signal Names Sorted by Pin Number 
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Signal Pin
A3  AL35

A4  AM34

A5  AK32

A6  AN33

A7  AL33

A8  AM32

A9  AK30

A10  AN31

A11  AL31

A12  AL29

A13  AK28

A14  AL27

A15  AK26

A16  AL25

A17  AK24

A18  AL23

A19  AK22

A20  AL21

A20M#  AK8

A21  AF34

A22  AH36

A23  AE33

A24  AG35

A25  AJ35

A26  AH34

A27  AG33

A28  AK36

A29  AK34

A30  AM36

A31  AJ33

ADS#  AJ5

ADSC#  AM2

AHOLD  V4

AP  AK2

APCHK#  AE5

BE0#  AL9

BE1#  AK10

BE2#  AL11

BE3#  AK12

BE4#  AL13

BE5#  AK14

BE6#  AL15

BE7#  AK16

BOFF#  Z4

BRDY#  X4

BRDYC#  Y3

BREQ  AJ1

CACHE#  U3

CLK  AK18

CLKMUL0  Y33

CLKMUL1 X34

CLKMUL2 W35

D/C#  AK4

D0  K34

D1  G35

D2  J35

D3  G33

D4  F36

D5  F34

D6  E35

D7  E33

D8  D34

D9  C37

D10  C35

D11  B36

D12  D32

D13  B34

D14  C33

D15  A35

D16  B32

D17  C31

D18  A33

D19  D28

D20  B30

D21  C29

D22  A31

D23  D26

D24  C27

D25  C23

D26  D24

D27  C21

D28  D22

D29  C19

D30  D20

D31  C17

D32  C15

D33  D16

D34  C13

D35  D14

D36  C11

D37  D12

D38  C9

D39  D10

D40  D8

D41  A5

D42  E9

D43  B4

D44  D6

D45  C5

D46  E7

Signal Pin
D47  C3

D48  D4

D49  E5

D50  D2

D51  F4

D52  E3

D53  G5

D54  E1

D55  G3

D56  H4

D57  J3

D58  J5

D59  K4

D60  L5

D61  L3

D62  M4

D63  N3

DP0  D36

DP1  D30

DP2  C25

DP3  D18

DP4  C7

DP5  F6

DP6  F2

DP7  N5

EADS#  AM4

EWBE#  W3

FERR#  Q5

FLUSH#  AN7

HIT#  AK6

HITM#  AL5

HLDA  AJ3

HOLD  AB4

IGNNE#  AA35

INTR  AD34

INV  U5

KEN#  W5

LOCK#  AH4

MI/O#  T4

NA#  Y5

NC  A3

NC  A37

NC  B2

NC  C1

NC  H34

NC  J33

NC  L35

NC  P4

NC  Q35

NC  R34

Signal Pin
NC  S3

NC  S5

NC  S33

NC  S35

NC  Y35

NC  Z34

NC  AA3

NC  AC3

NC  AC5

NC  AC35

NC  AD4

NC  AE3

NC  AE35

NC  AL7

NC AL19

NC  AN1

NC  AN3

NC  AN5

NMI  AC33

PCD  AG5

PCHK#  AF4

PM0  Q3

PM1  R4

PWT  AL3

RESET  AK20

SCYC  AL17

SMI#  AB34

SMIACT#  AG3

SUSP#  V34

SUSPA#  W33

TCK  M34

TDI  N35

TDO  N33

TMS  P34

TRST#  Q33

Vcc2  A7

Vcc2  A9

Vcc2  A11

Vcc2  A13

Vcc2  A15

Vcc2  A17

Vcc2  G1

Vcc2  J1

Vcc2  L1

Vcc2  N1

Vcc2  Q1

Vcc2  S1

Vcc2  U1

Vcc2  W1

Vcc2  Y1

Signal Pin
Vcc2  AA1

Vcc2  AC1

Vcc2  AE1

VCC2H/L# AN5

Vcc2  AG1

Vcc2  AN9

Vcc2  AN11

Vcc2  AN13

Vcc2  AN15

Vcc2  AN17

Vcc2  AN19

Vcc3  A19

Vcc3  A21

Vcc3  A23

Vcc3  A25

Vcc3  A27

Vcc3  A29

Vcc3  E37

Vcc3  G37

Vcc3  J37

Vcc3  L33

Vcc3  L37

Vcc3  N37

Vcc3  Q37

Vcc3  S37

Vcc3  T34

Vcc3  U33

Vcc3  U37

Vcc3  W37

Vcc3  Y37

Vcc3  AA37

Vcc3  AC37

Vcc3  AE37

Vcc3  AG37

Vcc3  AN21

Vcc3  AN23

Vcc3  AN25

Vcc3  AN27

Vcc3  AN29

Vcc2DET  AL1

Vss  B6

Vss  B8

Vss  B10

Vss  B12

Vss  B14

Vss  B16

Vss  B18

Vss  B20

Vss  B22

Vss  B24

Signal Pin
Vss  B26

Vss  B28

Vss  H2

Vss  H36

Vss  K2

Vss  K36

Vss  M2

Vss  M36

Vss  P2

Vss  P36

Vss  R2

Vss  R36

Vss  T2

Vss  T36

Vss  U35

Vss  V2

Vss  V36

Vss  X2

Vss  X36

Vss  Z2

Vss  Z36

Vss  AB2

Vss  AB36

Vss  AD2

Vss  AD36

Vss  AF2

Vss  AF36

Vss  AH2

Vss  AJ37

Vss  AL37

Vss  AM8

Vss  AM10

Vss  AM12

Vss  AM14

Vss  AM16

Vss  AM18

Vss  AM20

Vss  AM22

Vss  AM24

Vss  AM26

Vss  AM28

Vss  AM30

Vss  AN37

W/R#  AM6

WB/WT#  AA5

WM_RST  AA33

Signal Pin

Table 5-2.  296-Pin SPGA Package Signal Names Sorted by Signal Names
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45  CHAMFER

Pin C3

(INDEX CORNER)

1.65
REF.

S1
D1

D

D

D

D3

D2

BRAZE
METALIZATION

D4

D4

SEATING
PLANE

L

E2
E1

B

A

1749900

o

HEAT SPREADER

G A1

Figure 5-3. 296-Pin SPGA Package A
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Table 5-3.  296-Pin SPGA Package A

SYMBOL DESCRIPTION OF 
MEASURMENT

MILLIMETERS INCHES
MIN MAX MIN MAX

A Seating plane to highest point on heat 
spreader

3.43 4.34 0.135 0.171

A1 Seating plane to highest point on 
package

2.51 3.07 0.099 0.121

B Pin diameter 0.43 0.51 0.017 0.020

D Overall package dimension 49.28 49.91 1.940 1.965

D1 Outer pin center to outer pin center 45.47 45.97 1.790 1.810

D2 Vert. and hoz. heat spreader, 
measured edge to edge.

31.37 32.13 Sq. 1.235 1.265

D3 Top metalization vert. and hoz., 
measured edge to edge

33.43 34.42 1.316 1.355

D4 Top metalization to top edge. 7.49 6.71 0.295 0.264

E1 First row/column linear pin spacing 2.41 2.67 0.095 0.105

E2 Next row/column linear pin spacing 1.14 1.40 0.045 0.055

G Linear chamfer distance 1.52 2.29 0.060 0.090

L Pin length, tip to seating plane 2.97 3.38 0.117 0.133

S1 Outer pin center to edge of package 1.65 2.16 0.065 0.085
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45  CHAMFER

Pin C3

(INDEX CORNER)

1.65
REF.

S1
D1

D

D

D

D2

D4

D4

SEATING
PLANE

L

E2
E1

B

A

1750800

oG
A1

Figure 5-4. 296-Pin “Flip-Chip C4” SPGA Package B
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Table 5-4.   296-Pin “Flip-Chip C4” SPGA Package B Dimensions

SYMBOL
MILLIMETERS INCHES

MIN MAX MIN MAX

A 3.80 4.50 0.150 0.177

A1 1.62 1.98 0.064 0.078

B 0.43 0.51 0.017 0.020

D 49.28 49.91 1.940 1.965

D1 45.47 45.97 1.790 1.810

D2 36.75 Sq. 37.25 Sq. 1.447 1.467

E1 2.41 2.67 0.095 0.105

E2 1.14 1.40 0.045 0.055

G 1.52 2.29 0.060 0.090

L 2.97 3.38 0.117 0.133

S1 1.65 2.16 0.065 0.085



5-9

5

PRELIMINARY

Thermal Resistances

5.2 Thermal Resistances

Three thermal resistances can be used to idealize the heat flow from the junction of the M II CPU 
to ambient:

θJC = thermal resistance from junction to case in °C/W

θCS = thermal resistance from case to heatsink in °C/W,

θSA = thermal resistance from heatsink to ambient in °C/W,

θCA = θCS + θSA, thermal resistance from case to ambient in °C/W.

TC  = TA  +  P *  θCA  (where TA = ambient temperature and P = power applied to the CPU).

To maintain the case temperature under 70°C during operation θCA can be reduced by a heat-
sink/fan combination. (The heatsink/fan decreases θCA by a factor of three compared to using a 
heatsink alone.)  The required θCA to maintain 70°C is shown in Table 5-4.   The designer should 
ensure that adequate air flow is maintained to control the ambient temperature (TA).

A typical θJC value for the M II 296-pin PGA-package value is  0.5 °C/W.

Table 5-3.  Required θCA to Maintain 70°C  Case Temperature

Frequency
(MHz)

 Power*
(W)

θCA For Different Ambient Temperatures

25°C 30°C 35°C 40°C 45°C

150 16.7 2.68 2.39 2.09 1.79 1.49

166 18.1 2.48 2.20 1.92 1.65 1.37

188 20.6 2.17 1.93 1.69 1.45 1.20

200 22.0 2.04 1.81 1.58 1.35 1.13

225 24.9 1.87 1.66 1.45 1.24 1.03

233 25.5 1.81 1.61 1.41 1.20 1.00

250 27.6 1.63 1.45 1.27 1.09 0.91

*Note: Power based on Max Active Power values from Table 4-6,  Page 4-5. 
Refer to the Cyrix Application AP105 titled “Thermal Design Considerations” for more information.
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6. INSTRUCTION SET

This section summarizes the M II CPU instruc-
tion set and provides detailed information on 
the instruction encodings. 

All instructions are listed in CPU, FPU and 
MMX Instruction Set Summary Tables shown 
on pages 6-14, 6-31 and 6-38.  These tables 
provide information on the instruction 
encoding,  and the instruction clock counts for 
each instruction.  The clock count values for 
these tables are based on the assumptions 
described in Section 6.3. 

Depending on the instruction, the M II CPU 
instructions follow the general instruction 
format shown in Table 6-1.  These instructions 
vary in length and can start at any byte address.

6.1  Instruction Set Format

An instruction consists of one or more bytes 
that can include: prefix byte(s), at least one 
opcode byte(s), mod r/m byte, s-i-b byte, 
address displacement byte(s) and immediate 
data byte(s).   An instruction can be as short as 
one byte and as long as 15 bytes.  If there are 
more than 15 bytes in the instruction a general 
protection fault (error code of 0) is generated.

Table 6-1.  Instruction Set Format

PREFIX OPCODE
REGISTER AND ADDRESS MODE SPECIFIER

ADDRESS
DISPLACEMENT

IMMEDIATE
DATAmod r/m Byte s-i-b Byte

mod reg r/m ss Index Base
0 or More Bytes 1 or 2 Bytes 7 - 6 5 - 3 2 - 0 7 - 6 5 - 3 2 - 0 0, 8, 16, or 32 Bits 0, 8, 16, or 32 Bits

MII™  PROCESSOR
 Enhanced High Performance CPU
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6.2  General Instruction Format

The fields in the general instruction format at the byte level are listed in Table 6-2.    

Table 6-2.  Instruction Fields

FIELD NAME DESCRIPTION REFERENCE

Prefix Segment register override
Address size
Operand size
Repeat elements in string instructions
LOCK# assertion

6.2.1 (Page 6-3)

Opcode Instruction operation 6.2.2 (Page 6-4)

mod Address Mode 
Specifier

Used with r/m field to select address mode 6.2.3 (Page 6-6)

reg General Register 
Specifier

Uses reg, sreg2 or sreg3 encoding depending on 
opcode field

6.2.4 (Page 6-7)

r/m Address Mode 
Specifier

Used with mod field to select addressing mode. 6.2.3 (Page 6-6)

ss Scale Factor Scaled-index address mode 6.2.5 (Page 6-9)

Index Determines general register to be selected as 
index register

6.2.6 (Page 6-9)

Base Determines general register to be selected as 
base register

6.2.7 (Page 6-10)

Address Displacement Determines address displacement

Immediate data Immediate data operand used by instruction
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6.2.1 Prefix Field

Prefix bytes can be placed in front of any instruction.  The prefix modifies the operation of the 
next instruction only.  When more than one prefix is used, the order is not important.  There are 
five type of prefixes as follows:

1. Segment Override explicitly specifies which segment register an instruction will use for 
effective address calculation.

2. Address Size switches between 16- and 32-bit addressing.  Selects the inverse of the 
default.

3. Operand Size switches between 16- and 32-bit operand size.  Selects the inverse of the 
default.

4. Repeat is used with a string instruction which causes the instruction to be repeated for 
each element of the string.

5. Lock is used to assert the hardware LOCK# signal during execution of the instruction.

Table 6-3 lists the encodings for each of the available prefix bytes.

Table 6-3.  Instruction Prefix Summary

PREFIX ENCODING DESCRIPTION

ES: 26h Override segment default, use ES for memory operand

CS: 2Eh Override segment default, use CS for memory operand

SS: 36h Override segment default, use SS for memory operand

DS: 3Eh Override segment default, use DS for memory operand

FS: 64h Override segment default, use FS for memory operand

GS: 65h Override segment default, use GS for memory operand

Operand Size 66h Make operand size attribute the inverse of the default

Address Size 67h Make address size attribute the inverse of the default

LOCK F0h Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.
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6.2.2 Opcode Field

The opcode field specifies the operation to be performed by the instruction.  The opcode field is 
either one or two bytes in length and may be further defined by additional bits in the mod r/m 
byte.  Some operations have more than one opcode, each specifying a different form of the opera-
tion.  Some opcodes name instruction groups.  For example, opcode 80h names a group of oper-
ations that have an immediate operand and a register or memory operand. The reg field may 
appear in the second opcode byte or in the mod r/m byte.

6.2.2.1 Opcode Field:  w Bit

The 1-bit w bit (Table 6-4) selects the operand size during 16 and 32 bit data operations.

6.2.2.2 Opcode Field: d Bit

The d bit (Table 6-11) determines which operand is taken as the source operand and which 
operand is taken as the destination.

Table 6-4.  w Field Encoding

w BIT OPERAND SIZE
16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table 6-5.  d Field Encoding

d BIT DIRECTION OF OPERATON  SOURCE OPERAND  DESTINATION
 OPERAND

0 Register --> Register or
Register --> Memory

reg mod r/m or
mod ss-index-base

1 Register --> Register or
Memory --> Register

mod r/m or
mod ss-index-base

reg
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6.2.2.3 Opcode Field: s Bit

The s bit (Table 6-11) determines the size of the immediate data field. If the S bit is set, the imme-
diate field of the OP code is 8-bits wide and is sign extended to match the operand size of the 
opcode.

 

6.2.2.4 Opcode Field: eee Bits

The eee field (Table 6-7) is used to select the control, debug and test registers in the MOV instruc-
tions. The type of register and base registers selected by the eee bits are listed in Table 6-7.  The 
values shown in Table 6-7 are the only valid encodings for the eee bits.

Table 6-6. s Field Encoding 

s FIELD
IMMEDIATE FIELD SIZE

8-BIT OPERAND SIZE 16-BIT OPERAND SIZE 32-BIT OPERAND SIZE

0 
(or not present)

8 bits 16 bits 32 bits

 1 8 bits 8 bits (sign extended) 8 bits (sign extended)

Table 6-7.  eee Field Encoding

eee BITS REGISTER TYPE BASE REGISTER

000 Control Register CR0

010 Control Register CR2

011 Control Register CR3

100 Control Register CR4

000 Debug Register DR0

001 Debug Register DR1

010 Debug Register DR2

011 Debug Register DR3

110 Debug Register DR6

111 Debug Register DR7

011 Test Register TR3

100 Test Register TR4

101 Test Register TR5

110 Test Register TR6

111 Test Register TR7
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6.2.3 mod and r/m Fields

The mod and r/m fields (Table 6-8), within the mod r/m byte, select the type of memory 
addressing to be used.  Some instructions use a fixed addressing mode (e.g., PUSH or POP) and 
therefore, these fields are not present. Table 6-8 lists the addressing method when 16-bit addressing 
is used and a mod r/m byte is present.  Some mod r/m field encodings are dependent on the w 
field and are shown in Table 6-9 (Page 6-7).

Table 6-8.  mod r/m Field Encoding

mod and r/m fields 16-BIT ADDRESS MODE
with mod r/m Byte

32-BIT ADDRESS MODE
with mod r/m Byte and
No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 DS:[BP+SI] DS:[EDX]

00 011 DS:[BP+DI] DS:[EBX]

00 100 DS:[SI] Note 1

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX+DI+d8] DS:[ECX+d8]

01 010 DS:[BP+SI+d8] DS:[EDX+d8]

01 011 DS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] Note 1

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 DS:[BP+SI+d16] DS:[EDX+d32]

10 011 DS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] Note 1

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 000 through 11 111 See Table 6-9 (Page 6-7)

Note 1:  An “s-i-d” (ss, Index, Base) field is present.  Refer to the ss Table 6-13 (Page 6-9),  Index Table 6-14 (Page 6-9)
and Base Table 6-15 (Page 6-10).
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Table 6-9.  mod r/m Field Encoding Dependent on w Field

mod r/m
16-BIT

OPERATION
w = 0

16-BIT
OPERATION

w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

11 000           AL           AX           AL          EAX

11 001           CL           CX           CL          ECX

11 010           DL           DX           DL          EDX

11 011           BL           BX           BL          EBX

11 100           AH           SP           AH          ESP

11 101           CH           BP           CH          EBP

11 110           DH           SI           DH          ESI

11 111           BH           DI           BH          EDI

6.2.4 reg Field

The reg field (Table 6-10) determines which general registers are to be used.  The selected register is 
dependent on whether a 16 or 32 bit operation is current and the status of the w bit.

Table 6-10.  reg Field

reg

16-BIT
OPERATION
w Field Not

Present

32-BIT
OPERATION
w Field Not

Present

16-BIT
OPERATION

w = 0

16-BIT
OPERATION

 w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

000         AX         EAX          AL AX          AL         EAX

001         CX         ECX          CL CX          CL         ECX

010         DX         EDX          DL DX          DL         EDX

011         BX         EBX          BL BX          BL         EBX

100         SP         ESP          AH SP          AH         ESP

101         BP         EBP          CH BP          CH         EBP

110         SI         ESI          DH SI          DH         ESI

111         DI         EDI          BH DI          BH         EDI
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6.2.4.1 reg Field: sreg3 Encoding

The sreg3 field (Table 6-11) is 3-bit field that is similar to the sreg2 field, but allows use of the FS 
and GS segment registers.

6.2.4.2 reg Field: sreg2 Encoding

The sreg2 field (Table 6-4) is a 2-bit field that allows one of the four 286-type segment registers to 
be specified.

Table 6-11.  sreg3 Field Encoding

sreg3 FIELD SEGMENT REGISTER SELECTED

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 undefined

111 undefined

Table 6-12.  sreg2 Field Encoding

sreg2 FIELD SEGMENT REGISTER SELECTED

00 ES

01 CS

10 SS

11 DS



PRELIMINARY                                         6-9

6General Instruction Format

6.2.5 ss Field

The ss field (Table 6-13) specifies the scale factor used in the offset mechanism for address calcu-
lation. The scale factor multiplies the index value to provide one of the components used to 
calculate the offset address.

6.2.6 Index Field

The index field (Table 6-14) specifies the index register used by the offset mechanism for offset 
address calculation. When no index register is used (index field = 100), the ss value must be 00 or 
the effective address is undefined.

Table 6-13. ss Field Encoding

ss FIELD SCALE FACTOR

00 x1

01 x2

01 x4

11 x8

Table 6-14.  Index Field Encoding

Index FIELD INDEX REGISTER

000 EAX

001 ECX

010 EDX

011 EBX

100 none

101 EBP

110 ESI

111 EDI
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6.2.7 Base Field

In Table 6-8 (Page 6-6), the note “s-i-b present” for certain entries forces the use of the mod and 
base field as listed in Table 6-15.  The first two digits in the first column of Table 6-15 identifies 
the mod bits in the mod r/m byte.  The last three digits in the first column of this table identifies 
the base fields in the s-i-b byte.

Table 6-15. mod base Field Encoding

mod FIELD 
WITHIN

 mode/rm BYTE

base FIELD
WITHIN

s-i-b BYTE

32-BIT ADDRESS MODE
with mod r/m and
s-i-b Bytes Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]
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6.3 CPUID Instruction

The M II CPU executes the CPUID instruction 
(opcode 0FA2) as documented in this section 
only if the CPUID bit in the CCR4 configura-
tion register is set.  The CPUID instruction 
may be used by software to determine the 
vendor and type of CPU.

When the CPUID instruction is executed with 
EAX = 0, the ASCII characters “CyrixInstead” 
are placed in the EBX, EDX, and ECX registers 
as shown in Table 6-16:

When the CPUID instruction is executed with 
EAX = 1, EAX and EDX contain the values 
shown in Table 6-17.

Table 6-16.  CPUID Data
 Returned When EAX = 0

REGISTER CONTENTS
(D31 - D0)

EBX 69 72 79 43
 i     r     y    C*

EDX 73 6E 49 78
s    n    I    x*

ECX 64 61 65 74
d    a    e    t*

*ASCII equivalent

Table 6-17.  CPUID Data
Returned When EAX = 1

REGISTER CONTENTS

EAX[7 - 0] 00h

EAX[15 - 8] 06h

EDX[0] 1 = FPU Built In

EDX[1] 0 = No V86 Enhancements

EDX[2] 1 = I/O Breakpoints

EDX[3] 0 = No Page Size Extensions

EDX[4] 1 = Time Stamp Counter

EDX[5] 1 = RDMSR and WRMSR

EDX[6] 0 = No Physical Address Extensions

EDX[7] 0 = No Machine Check Exception

EDX[8] 1 = CMPXCHG8B Instruction

EDX[9] 0 = No APIC

EDX[11 - 10] 0 = Undefined

EDX[12] 0 = No Memory Type Range Registers

EDX[13] 1 = PTE Global Bit

EDX[14] 0 = No Machine Check Architecture

EDX[15] 1 = CMOV, FCMOV, FCOMI Instructions

EDX[22 - 16] 0 = Undefined

EDX[23] 1 = MMX Instructions

EDX[31 - 24] 0 = Undefined
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6.4 Instruction Set Tables

The M II CPU instruction set is presented in 
three tables: Table 6-21. “M II CPU Instruction 
Set Clock Count Summary” on page 6-14, Table 
6-23. “M II FPU Instruction Set Summary” on 
page 6-31 and the Table 6-25. “M II Processor 
MMX Instruction Set Clock Count Summary” on 
page 6-38.  Additional information concerning 
the FPU Instruction Set is presented on page 
6-30, and the M II MMX instruction set on page 
6-37.

6.4.1 Assumptions Made in
Determining Instruction
Clock Count

The assumptions made in determining instruc-
tion clock counts are listed below:

1. All clock counts refer to the internal 
CPU internal clock frequency.

2. The instruction has been prefetched, 
decoded and is ready for execution.

3. Bus cycles do not require wait states.

4. There are no local bus HOLD 
requests delaying processor access to 
the bus.

5. No exceptions are detected during 
instruction execution.

6. If an effective address is calculated, it 
does not use two general register 
components.  One register, scaling 
and displacement can be used within 
the clock count shown.  However, if 
the effective address calculation uses 
two general register components, 

add 1 clock to the clock count 
shown.

7. All clock counts assume aligned 
32-bit memory/IO operands.

8. If instructions access a 32-bit 
operand that crosses a 64-bit 
boundary, add 1 clock for read or 
write and add 2 clocks for read and 
write.

9. For non-cached memory accesses, 
add two clocks (M II CPU with 2x 
clock) or four clocks (M II CPU 
with 3x clock). (Assumes zero wait 
state memory accesses).

10. Locked cycles are not cacheable.  
Therefore, using the LOCK prefix 
with an instruction adds additional 
clocks as specified in paragraph 9 
above.

11. No parallel execution of 
instructions.

6.4.2 CPU Instruction Set
Summary Table 
Abbreviations 

The  clock counts listed in the CPU Instruction 
Set Summary Table are grouped by operating 
mode and whether there is a register/cache hit 
or a cache miss.  In some cases, more than one 
clock count is shown in a column for a given 
instruction, or a variable is used in the clock 
count.  The abbreviations used for these condi-
tions are listed in Table 6-18.
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6.4.3 CPU Instruction Set Summary Table Flags Table

The CPU Instruction Set Summary Table lists nine flags that are affected by the execution of 
instructions.  The conventions shown in Table 6-19 are used to identify the different flags. Table 6-20
lists the conventions used to indicate what action the instruction has on the particular flag.

Table 6-18.  CPU Clock Count Abbreviations

CLOCK COUNT SYMBOL EXPLANATION

/ Register operand/memory operand.

n Number of times operation is repeated.

L Level of the stack frame.

|
Conditional jump taken  |  Conditional jump not taken.
(e.g.  “4|1”  =  4 clocks if jump taken, 1 clock if jump not taken)

\
CPL ≤ IOPL  \  CPL > IOPL
(where CPL = Current Privilege Level, IOPL = I/O Privilege Level)

m Number of parameters passed on the stack.

Table 6-19.  Flag Abbreviations

ABBREVIATION NAME OF FLAG

OF Overflow Flag

DF Direction Flag

IF Interrupt Enable Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Flag

PF Parity Flag

CF Carry Flag

Table 6-20.  Action of Instruction on Flag

INSTRUCTION 
TABLE SYMBOL ACTION

x Flag is modified by the instruction.

- Flag is not changed by the instruction.

0 Flag is reset to “0”.

1 Flag is set to “1”.

u Flag is undefined following execu-
tion of the instruction.
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Table 6-21. M II CPU Instruction Set Clock Count Summary

INSTRUCTION OPCODE
FLAGS

REAL
MODE CLOCK

COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit

Reg/
Cache Hit

Real
Mode

Protected
Mode

AAA ASCII Adjust AL after Add 37 u     -     -     -     u     u    x     u    x 7 7

AAD ASCII Adjust AX before Divide D5 0A u     -     -     -     x     x    u     x    u 7 7

AAM ASCII Adjust AX after Multiply D4 0A u     -     -     -     x     x    u     x    u 13-21 13-21

AAS ASCII Adjust AL after Subtract 3F u     -     -     -     u     u    x    u     x 7 7

ADC Add with Carry
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator

1 [00dw] [11 reg r/m]
1 [000w] [mod reg r/m]
1 [001w] [mod reg r/m]
8 [00sw] [mod 010 r/m]###
1 [010w] ###

x     -     -     -     x     x    x     x    x
1
1
1
1
1

1
1
1
1
1

b h

ADD Integer Add
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator

0 [00dw] [11 reg r/m]
0 [000w] [mod reg r/m]
0 [001w] [mod reg r/m]
8 [00sw] [mod 000 r/m]###
0 [010w] ###

x     -     -     -     x     x    x     x    x
1
1
1
1
1

1
1
1
1
1

b h

AND Boolean AND
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator

2 [00dw] [11 reg r/m]
2 [000w] [mod reg r/m]
2 [001w] [mod reg r/m]
8 [00sw] [mod 100 r/m]###
2 [010w] ###

0     -     -     -     x     x    u     x    0
1
1
1
1
1

1
1
1
1
1

b h

ARPL Adjust Requested Privilege Level
From Register/Memory 63 [mod reg r/m]

-     -     -     -     -     x     -     -    - 9 a h

BOUND Check Array Boundaries
If Out of Range (Int 5)
If In Range

62 [mod reg r/m] -     -     -     -     -     -     -     -    -
20
11

20+INT
11

b, e g,h,j,k,r

BSF Scan Bit Forward
Register, Register/Memory 0F BC [mod reg r/m]

-     -     -     -     -     x    -     -    - 3 3 b h

BSR Scan Bit Reverse
Register, Register/Memory 0F BD [mod reg r/m]

-     -     -     -     -     x    -     -    - 3 3 b h

BSWAP Byte Swap 0F C[1 reg] -     -     -     -     -     -    -     -    - 4 4

BT Test Bit
Register/Memory, Immediate
Register/Memory, Register

0F BA [mod 100 r/m]#
0F A3 [mod reg r/m]

-     -     -     -     -     -    -     -    x
2

5/6
2

5/6

b h

BTC Test Bit and Complement
Register/Memory, Immediate
Register/Memory, Register

0F BA [mod 111 r/m]#
0F BB [mod reg r/m]

-     -     -     -     -     -    -     -    x
3

5/6
3

5/6

b h

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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BTR Test Bit and Reset
Register/Memory, Immediate
Register/Memory, Register

0F BA [mod 110 r/m]#
0F B3 [mod reg r/m]

-     -     -     -     -     -    -     -    x
3

5/6
3

5/6

b h

BTS Test Bit and Set
Register/Memory
Register (short form)

0F BA [mod 101 r/m]
0F AB [mod reg r/m]

-     -     -     -     -     -    -     -    x
3

5/6
3

5/6

b h

CALL Subroutine Call
Direct Within Segment
Register/Memory Indirect Within Segment
Direct Intersegment
     Call Gate to Same Privilege
     Call Gate to Different Privilege No  Parameters
     Call Gate to Different Privilege m Par’s
     16-bit Task to 16-bit TSS
     16-bit Task to 32-bit TSS
     16-bit Task to V86 Task
     32-bit Task to 16-bit TSS
     32-bit Task to 32-bit TSS
     32-bit Task to V86 Task
Indirect Intersegment
     Call Gate to Same Privilege
     Call Gate to Different Privilege No Parameters
     Call Gate to Different Privilege Level m Par’s
     16-bit Task to 16-bit TSS
     16-bit Task to 32-bit TSS
     16-bit Task to V86 Task
     32-bit Task to 16-bit TSS
     32-bit Task to 32-bit TSS
     32-bit Task to V86 Task

E8  +++
FF  [mod 010 r/m]
9A  [unsigned full offset,
       selector]

FF  [mod 011 r/m]

-     -     -     -     -     -    -     -    -
1

1/3
3

5

1
1/3
4
15
26

35+2m
110
118
96
112
120
98
8
20
31

40+2m
114
122
100
116
124
102

b h,j,k,r

CBW Convert Byte to Word 98 -     -     -     -     -     -    -     -    - 3 3

CDQ Convert Doubleword to Quadword 99 -     -     -     -     -     -    -     -    - 2 2

CLC Clear Carry Flag F8 -     -     -     -     -     -    -     -    0 1 1

CLD Clear Direction Flag FC -     0     -     -     -     -    -     -    - 7 7

CLI Clear Interrupt Flag FA -     -     0     -     -     -    -     -    - 7 7 m

CLTS Clear Task Switched Flag 0F  06 -     -     -     -     -     -    -     -    - 10 10 c l

CMC Complement the Carry Flag F5 -     -     -     -     -     -    -     -    x 2 2

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)

INSTRUCTION OPCODE
FLAGS

REAL
MODE CLOCK

COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit

Reg/
Cache Hit

Real
Mode

Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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CMP Compare Integers
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator

3 [10dw] [11 reg r/m]
3 [101w] [mod reg r/m]
3 [100w] [mod reg r/m]
8 [00sw] [mod 111 r/m] ###
3 [110w] ###

x     -     -     -     x     x    x     x    x
1
1
1
1
1

1
1
1
1
1

b h

CMOVA/CMOVNBE Move if Above/
Not Below or Equal
Register, Register/Memory 0F 47 [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

CMOVBE/CMOVNA Move if Below or Equal/ 
Not Above
Register, Register/Memory 0F 46 [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

CMOVAE/CMOVNB/CMOVNC/ Move if Above 
or Equal/Not Below/Not Carry
Register, Register/Memory 0F 43 [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

CMOVB/CMOVC/CMOVNAE Move if Below/ 
Carry/Not Above or Equal
Register, Register/Memory 0F 42 [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

CMOVE/CMOVZ Move if Equal/Zero
Register, Register/Memory 0F 44 [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

r

CMOVNE/CMOVNZ Move if Not Equal/
Not Zero
Register, Register/Memory 0F 45 [mod reg r/m]

-     -     -     -     -     -     -     -    -
 

1 1

r

CMOVG/CMOVNLE Move if Greater/
Not Less or Equal
Register, Register/Memory 0F 4F [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

CMOVLE/CMOVNG Move if Less or Equal/
Not Greater
Register, Register/Memory 0F 4E [mod reg r/m]

-     -     -     -     -     -     -     -    -
 

1 1

r

CMOVL/CMOVNGE Move if Less/
Not Greater or Equal
Register, Register/Memory 0F 4C [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

CMOVGE/CMOVNL Move if Greater or Equal/ 
Not Less
Register, Register/Memory 0F 4D [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)

INSTRUCTION OPCODE
FLAGS

REAL
MODE CLOCK

COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit

Reg/
Cache Hit

Real
Mode

Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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CMOVO Move if Overflow
Register, Register/Memory 0F 40 [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

r

CMOVNO Move if No Overflow
Register, Register/Memory 0F 41 [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

r

CMOVP/CMOVPE Move if Parity/Parity Even
Register, Register/Memory 0F 4A [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

r

CMONP/CMOVPO Move if Not Parity/
Parity Odd
Register, Register/Memory 0F 4B [mod reg r/m]

-     -     -     -     -     -     -     -    -

1 1

r

CMOVS Move if Sign
Register, Register/Memory 0F 48 [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

r

CMOVNS Move if Not Sign
Register, Register/Memory 0F 49 [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

r

CMPS Compare String A [011w] x     -     -     -     x     x    x     x    x 5 5 b h

CMPXCHG Compare and Exchange
Register1, Register2
Memory, Register

0F B [000w] [11 reg2 reg1]
0F B [000w] [mod reg r/m]

x     -     -     -     x     x    x     x    x
11
11

11
11

CMPXCHG8B Compare and Exchange 8 Bytes 0F C7 [mod 001 r/m] -     -     -     -     -     -    -     -    -

CPUID CPU Identification 0F A2 -     -     -     -     -     -    -     -    - 12 12

CWD Convert Word to Doubleword 99 -     -     -     -     -     -    -     -    - 2 2

CWDE Convert Word to Doubleword Extended 98 -     -     -     -     -     -    -     -    - 2 2

DAA Decimal Adjust AL after Add 27 -     -     -     -     x     x    x     x    x 9 9

DAS Decimal Adjust AL after Subtract 2F -     -     -     -     x     x    x     x    x 9 9

DEC Decrement by 1
Register/Memory
Register (short form)

F [111w] [mod 001 r/m]
4 [1 reg]

x     -     -     -     x     x    x     x    -
1
1

1
1

b h

DIV Unsigned Divide
Accumulator by Register/Memory
    Divisor:  Byte
                  Word
                  Doubleword

F [011w] [mod 110 r/m] -     -     -     -     x     x    u     u    -

13-17
13-25
13-41

13-17
13-25
13-41

b,e e,h

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)

INSTRUCTION OPCODE
FLAGS
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PROTECTED
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OF DF IF TF SF ZF AF PF CF Reg/
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#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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ENTER Enter New Stack Frame
Level = 0
Level = 1
Level (L) > 1

C8 ##,# -     -     -     -     -     -    -     -    -
10
13

10+L*3

10
13

10+L*3

b h

HLT Halt F4 -     -     -     -     -     -    -     -     - 5 5 l

IDIV Integer (Signed) Divide
Accumulator by Register/Memory
   Divisor:  Byte
                 Word
                 Doubleword

F [011w] [mod 111 r/m]
 -     -     -     -     x     x    u    u    -

16-20
16-28
17-45

16-20
16-28
17-45

b,e e,h

IMUL Integer (Signed) Multiply
Accumulator by Register/Memory
   Multiplier:  Byte
                     Word
                     Doubleword
Register with Register/Memory
   Multiplier:  Word
                     Doubleword
Register/Memory with Immediate to Register2
   Multiplier:  Word
                     Doubleword

F [011w] [mod 101 r/m]

0F AF [mod reg r/m]

6 [10s1] [mod reg r/m] ###

x     -     -     -     x     x    u     u    x

4
4
10

4
10

5
11

4
4
10

4
10

5
11

b h

IN Input from I/O Port
Fixed Port
Variable Port

E [010w] [#]
E [110w]

-     -     -     -     -     -    -     -    -
14
14

14/28
14/28

m

INC Increment by 1
Register/Memory
Register (short form)

F [111w] [mod 000 r/m]
4 [0 reg]

x     -     -     -     x     x    x     x    -
1
1

1
1

b h

INS Input String from I/O Port 6 [110w] -     -     -     -     -     -    -     -    - 14 14/28 b h,m

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)
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FLAGS
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COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
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Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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INT Software Interrupt
INT i
Protected Mode:
Interrupt or Trap to Same Privilege
Interrupt or Trap to Different Privilege
16-bit Task to 16-bit TSS by Task Gate
16-bit Task to 32-bit TSS by Task Gate
16-bit Task to V86 by Task Gate
16-bit Task to 16-bit TSS by Task Gate
32-bit Task to 32-bit TSS by Task Gate
32-bit Task to V86 by Task Gate
V86 to 16-bit TSS by Task Gate
V86 to 32-bit TSS by Task Gate
V86 to Privilege 0 by Trap Gate/Int Gate

CD  #
-     -     x     0     -     -    -     -    -

9

21
32
114
122
100
116
124
102
124
102
46

b,e g,j,k,r

INT 3
INTO
      If OF==0
      If OF==1  (INT 4)

CC
CE

INT

6

INT

6
15+INT

INVD Invalidate Cache 0F  08 -     -     -     -     -     -     -     -    - 12 12 t t

INVLPG Invalidate TLB Entry 0F  01 [mod 111 r/m] -     -     -     -     -     -     -     -    - 13 13

IRET Interrupt Return
Real Mode
Protected Mode:
     Within Task to Same Privilege
     Within Task to Different Privilege
16-bit Task to 16-bit Task
16-bit Task to 32-bit TSS
16-bit Task to V86 Task
32-bit Task to 16-bit TSS
32-bit Task to 32-bit TSS
32-bit Task to V86 Task

CF  x     x     x     x     x     x     x     x    x
7

10
26
117
125
103
119
127
105

g,h,j,k,r

JB/JNAE/JC Jump on Below/Not Above or Equal/
Carry
8-bit Displacement
Full Displacement

72  +
0F  82 +++

-     -     -     -     -     -     -     -    -

1
1

1
1

r

JBE/JNA Jump on Below or Equal/Not Above
8-bit Displacement
Full Displacement

76  +
0F  86 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)
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JCXZ/JECXZ Jump on CX/ECX Zero E3  + -     -     -     -     -     -     -     -    - 1 1 r

JE/JZ Jump on Equal/Zero
8-bit Displacement
Full Displacement

74  +
0F  84 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JL/JNGE Jump on Less/Not Greater or Equal
8-bit Displacement
Full Displacement

7C  +
0F  8C +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JLE/JNG Jump on Less or Equal/Not Greater
8-bit Displacement
Full Displacement

7E  +
0F  8E +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JMP Unconditional Jump
8-bit Displacement
Full Displacement
Register/Memory Indirect Within Segment
Direct Intersegment

  Call Gate Same Privilege Level
  16-bit Task to 16-bit TSS
  16-bit Task to 32-bit TSS
  16-bit Task to V86 Task
  32-bit Task to 16-bit TSS
  32-bit Task to 32-bit TSS
  32-bit Task to V86 Task
Indirect Intersegment
  Call Gate Same Privilege Level
  16-bit Task to 16-bit TSS
  16-bit Task to 32-bit TSS
  16-bit Task to V86 Task
  32-bit Task to 16-bit TSS
  32-bit Task to 32-bit TSS
  32-bit Task to V86 Task

EB   +
E9   +++
FF   [mod 100 r/m]
EA   [unsigned full offset,
        selector]

FF   [mod 101 r/m]

-     -     -     -     -     -     -     -    -
1
1

1/3
1

5

1
1

1/3
4

14
110
118
96
112
120
98
7
17
113
121
99
115
123
101

b h,j,k,r

JNB/JAE/JNC Jump on Not Below/Above or 
Equal/Not Carry
8-bit Displacement
Full Displacement

73   +
0F   83 +++

-     -     -     -     -     -     -     -    -

1
1

1
1

r

JNBE/JA Jump on Not Below or Equal/Above
8-bit Displacement
Full Displacement

77   +
0F   87 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JNE/JNZ Jump on Not Equal/Not Zero
8-bit Displacement
Full Displacement

75   +
0F   85 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)
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COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit
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Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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JNL/JGE Jump on Not Less/Greater or Equal
8-bit Displacement
Full Displacement

7D   +
0F   8D +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JNLE/JG Jump on Not Less or Equal/Greater
8-bit Displacement
Full Displacement

7F   +
0F   8F +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JNO Jump on Not Overflow
8-bit Displacement
Full Displacement

71  +
0F  81 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JNP/JPO Jump on Not Parity/Parity Odd
8-bit Displacement
Full Displacement

7B  +
0F  8B +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JNS Jump on Not Sign
8-bit Displacement
Full Displacement

79  +
0F  89 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JO Jump on Overflow
8-bit Displacement
Full Displacement

70  +
0F  80 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JP/JPE Jump on Parity/Parity Even
8-bit Displacement
Full Displacement

7A  +
0F  8A +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

JS Jump on Sign
8-bit Displacement
Full Displacement

78  +
0F  88 +++

-     -     -     -     -     -     -     -    -
1
1

1
1

r

LAHF Load AH with Flags 9F -     -     -     -     -     -     -     -    - 2 2

LAR Load Access Rights
From Register/Memory 0F  02 [mod reg r/m]

-     -     -     -     -     x     -     -    -
8

a g,h,j,p

LDS Load Pointer to DS C5  [mod reg r/m] -     -     -     -     -     -     -     -    - 2 4 b h,i,j

LEA Load Effective Address
No Index Register
With Index Register

8D  [mod reg r/m] -     -     -     -     -     -     -     -    -
1
1

1
1

LEAVE Leave Current Stack Frame C9 -     -     -     -     -     -     -     -    - 4 4 b h

LES Load Pointer to ES C4  [mod reg r/m] -     -     -     -     -     -     -     -    - 2 4 b h,i,j

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)
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PROTECTED
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OF DF IF TF SF ZF AF PF CF Reg/
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Protected
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#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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LFS Load Pointer to FS 0F  B4 [mod reg r/m] -     -     -     -     -     -     -     -    - 2 4 b h,i,j

LGDT Load GDT Register 0F  01 [mod 010 r/m] -     -     -     -     -     -     -     -    - 8 8 b,c h,l

LGS Load Pointer to GS 0F  B5 [mod reg r/m] -     -     -     -     -     -     -     -    - 2 4 b h,i,j

LIDT Load IDT Register 0F  01 [mod 011 r/m] -     -     -     -     -     -     -     -    - 8 8 b,c h,l

LLDT Load LDT Register
From Register/Memory 0F  00 [mod 010 r/m]

-     -     -     -     -     -     -     -    -
5 5

a g,h,j,l

LMSW Load Machine Status Word
From Register/Memory 0F  01 [mod 110 r/m]

-     -     -     -     -     -     -     -    -
13 13

b,c h,l

LODS Load String A  [110 w] -     -     -     -     -     -     -     -    - 3 3 b h

LOOP Offset Loop/No Loop E2  + -     -     -     -     -     -     -     -    - 1 1 r

LOOPNZ/LOOPNE Offset E0  + -     -     -     -     -     -     -     -    - 1 1 r

LOOPZ/LOOPE Offset E1  + -     -     -     -     -     -     -     -    - 1 1 r

LSL Load Segment Limit
From Register/Memory 0F  03 [mod reg r/m]

-     -     -     -     -     x     -     -    -
8

a g,h,j,p

LSS Load Pointer to SS 0F  B2 [mod reg r/m] -     -     -     -     -     -     -     -    - 2 4 a h,i,j

LTR Load Task Register
From Register/Memory 0F  00 [mod 011 r/m]

-     -     -     -     -     -     -     -    -
7

a g,h,j,l

MOV Move Data
Register to Register
Register to Memory
Register/Memory to Register
Immediate to Register/Memory
Immediate to Register (short form)
Memory to Accumulator (short form)
Accumulator to Memory (short form)
Register/Memory to Segment Register
Segment Register to Register/Memory

8  [10dw] [11 reg r/m]
8  [100w] [mod reg r/m]
8  [101w] [mod reg r/m]
C [011w] [mod 000 r/m] ###
B [w reg] ###
A [000w] +++
A [001w] +++
8E [mod sreg3 r/m]
8C [mod sreg3 r/m]

-     -     -     -     -     -     -     -    -
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1/3
1

b h,i,j

MOV Move to/from Control/Debug/Test Regs
Register to CR0/CR2/CR3/CR4
CR0/CR2/CR3/CR4 to Register
Register to DR0-DR3
DR0-DR3 to Register
Register to DR6-DR7
DR6-DR7 to Register
Register to TR3-5
TR3-5 to Register
Register to TR6-TR7
TR6-TR7 to Register

0F  22 [11 eee reg]
0F  20 [11 eee reg]
0F  23 [11 eee reg]
0F  21 [11 eee reg]
0F  23 [11 eee reg]
0F  21 [11 eee reg]
0F  26 [11 eee reg]
0F  24 [11 eee reg]
0F  26 [11 eee reg]
0F  24 [11 eee reg]

-     -     -     -     -     -     -     -    -
20/5/5

6
16
14
16
14
10
5
10
6

20/5/5
6
16
14
16
14
10
5
10
6

l

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)
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#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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MOVS Move String A [010w] -     -     -     -     -     -     -     -    - 4 4 b h

MOVSX Move with Sign Extension
Register from Register/Memory 0F  B[111w] [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

b h

MOVZX Move with Zero Extension
Register from Register/Memory 0F  B[011w] [mod reg r/m]

-     -     -     -     -     -     -     -    -
1 1

b h

MUL Unsigned Multiply
Accumulator with Register/Memory
  Multiplier:  Byte
                    Word
                    Doubleword

F  [011w] [mod 100 r/m] x     -     -     -     x     x    u     u    x

4
4
10

4
4
10

b h

NEG Negate Integer F  [011w] [mod 011 r/m] x     -     -     -     x     x     x     x    x 1 1 b h

NOP No Operation 90 -     -     -     -     -     -     -     -    - 1 1

NOT Boolean Complement F  [011w] [mod 010 r/m] -     -     -     -     -     -     -     -    - 1 1 b h

OIO Official Invalid OpCode 0F FF -     -     x     0     -     -     -     -    - 1 8 - 125

OR Boolean OR
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator

0  [10dw] [11 reg r/m]
0  [100w] [mod reg r/m]
0  [101w] [mod reg r/m]
8  [00sw] [mod 001 r/m] ###
0  [110w] ###

0     -     -     -     x     x     u     x    0
1
1
1
1
1

1
1
1
1
1

b h

OUT Output to Port
Fixed Port
Variable Port

E  [011w] #
E  [111w]

-     -     -     -     -     -     -     -    -
14
14

14/28
14/28

m

OUTS Output String 6  [111w] -     -     -     -     -     -     -     -    - 14 14/28 b h,m

POP Pop Value off Stack
Register/Memory
Register (short form)
Segment Register (ES, SS, DS)
Segment Register (FS, GS)

8F  [mod 000 r/m]
5 [1 reg]
[000 sreg2 111]
0F  [10 sreg3 001]

-     -     -     -     -     -     -     -    -
1
1
1
1

1
1
3
3

b h,i,j

POPA Pop All General Registers 61 -     -     -     -     -     -     -     -    - 6 6 b h

POPF Pop Stack into FLAGS 9D x     x     x     x     x     x     x     x    x 9 9 b h,n

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)
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##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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PREFIX BYTES
Assert Hardware LOCK Prefix
Address Size Prefix
Operand Size Prefix
Segment Override Prefix
     CS
     DS
     ES
     FS
     GS
     SS

F0
67
66

2E
3E
26
64
65
36

-     -     -     -     -     -     -     -    - m

PUSH Push Value onto Stack
Register/Memory
Register (short form)
Segment Register (ES, CS, SS, DS)
Segment Register (FS, GS)
Immediate

FF [mod 110 r/m]
5   [0 reg]
[000 sreg2 110]
0F [10 sreg3 000]
6   [10s0] ###

-     -     -     -     -     -     -     -    -
1
1
1
1
1

1
1
1
1
1

b h

PUSHA Push All General Registers 60 -     -     -     -     -     -     -     -    - 6 6 b h

PUSHF Push FLAGS Register 9C -     -     -     -     -     -     -     -    - 2 2 b h

RCL Rotate Through Carry Left
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D  [000w] [mod 010 r/m]
D  [001w] [mod 010 r/m]
C  [000w] [mod 010 r/m] #

x     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x

3
8
8

3
8
8

b h

RCR Rotate Through Carry Right
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D  [000w] [mod 011 r/m]
D  [001w] [mod 011 r/m]
C  [000w] [mod 011 r/m] #

x     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x

4
9
9

4
9
9

b h

RDMSR Read Model Specific Register 0F 32 -     -     -     -     -     -     -     -    -

RDPMC Read Performance-Monitoring Counters 0F 33 -     -     -     -     -     -     -     -    -

RDSHR Read SMM Header Pointer Register 0F 36 -     -     -     -     -     -     -     -    -

RDTSC Read Time Stamp Counter 0F 31 -     -     -     -     -     -     -     -    -

REP INS Input String F3  6[110w] -     -     -     -     -     -     -     -    - 12+5n 12+5n\
28+5n

b h,m

REP LODS Load String F3  A[110w] -     -     -     -     -     -     -     -    - 10+n 10+n b h

REP MOVS Move String F3  A[010w] -     -     -     -     -     -     -     -    - 9+n 9+n b h

REP OUTS Output String F3  6[111w] -     -     -     -     -     -     -     -    - 12+5n 12+5n\
28+5n

b h,m

REP STOS Store String F3  A[101w] -     -     -     -     -     -     -     -    - 10+n 10+n b h

REPE CMPS Compare String
     (Find non-match)

F3  A[011w] x     -     -     -     x     x     x     x    x
10+2n 10+2n

b h
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REPE SCAS Scan String
     (Find non-AL/AX/EAX)

F3  A[111w] x     -     -     -     x     x     x     x    x 10+2n 10+2n b h

REPNE CMPS Compare String
     (Find match)

F2  A[011w] x     -     -     -     x     x     x     x    x 10+2n 10+2n b h

REPNE SCAS Scan String
     (Find AL/AX/EAX)

F2  A[111w] x     -     -     -     x     x     x     x    x 10+2n 10+2n b h

RET Return from Subroutine
Within Segment
Within Segment Adding Immediate to SP
Intersegment
Intersegment Adding Immediate to SP
Protected Mode:  Different Privilege Level

Intersegment
Intersegment Adding Immediate to SP

C3
C2  ##
CB
CA  ##

-     -     -     -     -     -     -     -    -
3
4
4
4

3
4
7
7

23
23

b g,h,j,k,r

ROL Rotate Left
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D[000w] [mod 000 r/m]
D[001w] [mod 000 r/m]
C[000w] [mod 000 r/m] #

x     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x

1
2
1

1
2
1

b h

ROR Rotate Right
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D[000w] [mod 001 r/m]
D[001w] [mod 001 r/m]
C[000w] [mod 001 r/m] #

x     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x
u     -     -     -     -     -     -     -    x

1
2
1

1
2
1

b h

RSDC Restore Segment Register and Descriptor 0F 79 [mod sreg3 r/m] -     -     -     -     -     -     -     -    - 6 6 s s

RSLDT Restore LDTR and Descriptor 0F 7B [mod 000 r/m] -     -     -     -     -     -     -     -    - 6 6 s s

RSM Resume from SMM Mode 0F AA x     x     x    x     x     x     x     x    x 40 40 s s

RSTS Restore TSR and Descriptor 0F 7D [mod 000 r/m] -     -     -     -     -     -     -     -    - 6 6 s s

SAHF Store AH in FLAGS 9E -     -     -     -     x     x     x     x    x 1 1

SAL Shift Left Arithmetic
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D[000w] [mod 100 r/m]
D[001w] [mod 100 r/m]
C[000w] [mod 100 r/m] #

x     -     -     -     x    x     u     x    x
u     -     -     -     x    x     u     x    x
u     -     -     -     x    x     u     x    x

1
2
1

1
2
1

b h

SAR Shift Right Arithmetic
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D[000w] [mod 111 r/m]
D[001w] [mod 111 r/m]
C[000w] [mod 111 r/m] #

x     -     -     -    x    x     u     x    x
u     -     -     -    x    x     u     x    x
u     -     -     -    x    x     u     x    x

1
2
1

1
2
1

b h

SBB Integer Subtract with Borrow
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator (short form)

1[10dw] [11 reg r/m]
1[100w] [mod reg r/m]
1[101w] [mod reg r/m]
8[00sw] [mod 011 r/m] ###
1[110w] ###

x     -     -     -     x     x     x     x    x
1
1
1
1
1

1
1
1
1
1

b h

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)

INSTRUCTION OPCODE
FLAGS

REAL
MODE CLOCK

COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit

Reg/
Cache Hit

Real
Mode

Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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SCAS Scan String A  [111w] x     -     -     -     x     x     x     x    x 2 2 b h

SETB/SETNAE/SETC Set Byte on Below/Not
     Above or Equal/Carry
To Register/Memory 0F  92 [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETBE/SETNA Set Byte on Below or
     Equal/Not Above
To Register/Memory 0F  96 [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETE/SETZ Set Byte on Equal/Zero
To Register/Memory 0F  94 [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1 1

h

SETL/SETNGE Set Byte on Less/Not Greater
     or Equal
To Register/Memory 0F  9C [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETLE/SETNG Set Byte on Less or Equal/Not
     Greater
To Register/Memory 0F  9E [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETNB/SETAE/SETNC Set Byte on Not Below/
     Above or Equal/Not Carry
To Register/Memory 0F  93 [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETNBE/SETA Set Byte on Not Below or
     Equal/Above
To Register/Memory 0F  97 [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETNE/SETNZ Set Byte on Not Equal/Not Zero
To Register/Memory 0F  95 [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1 1

h

SETNL/SETGE Set Byte on Not Less/Greater
     or Equal
To Register/Memory 0F  9D [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETNLE/SETG Set Byte on Not Less or
     Equal/Greater
To Register/Memory 0F  9F [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETNO Set Byte on Not Overflow
To Register/Memory 0F  91 [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1 1

h

SETNP/SETPO Set Byte on Not
 Parity/Parity Odd
To Register/Memory 0F  9B [mod 000 r/m]

-     -     -     -     -     -     -     -    -

1 1

h

SETNS Set Byte on Not Sign
To Register/Memory 0F  99 [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1 1

h

SETO Set Byte on Overflow
To Register/Memory 0F  90 [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1 1

h

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)

INSTRUCTION OPCODE
FLAGS

REAL
MODE CLOCK

COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit

Reg/
Cache Hit

Real
Mode

Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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SETP/SETPE Set Byte on Parity/Parity Even
To Register/Memory 0F  9A [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1 1

h

SETS Set Byte on Sign
To Register/Memory 0F  98 [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1 1

h

SGDT Store GDT Register
To Register/Memory 0F  01 [mod 000 r/m]

-     -     -     -     -     -     -     -    - 4 4 b,c h

SHL Shift Left Logical
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D  [000w] [mod 100 r/m]
D  [001w] [mod 100 r/m]
C  [000w] [mod 100 r/m] #

x     -     -     -     x    x     u     x    x
u     -     -     -     x    x     u     x    x
u     -     -     -     x    x     u     x    x

1
2
1

1
2
1

b h

SHLD Shift Left Double
Register/Memory by Immediate
Register/Memory by CL

0F  A4 [mod reg r/m] #
0F  A5 [mod reg r/m]

u     -     -     -     x     x     u     x    x
4
5

4
5

b h

SHR Shift Right Logical
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D  [000w] [mod 101 r/m]
D  [001w] [mod 101 r/m]
C  [000w] [mod 101 r/m] #

x     -     -     -     x    x     u     x    x
u     -     -     -     x    x     u     x    x
u     -     -     -     x    x     u     x    x

1
2
1

1
2
1

b h

SHRD Shift Right Double
Register/Memory by Immediate
Register/Memory by CL

0F  AC [mod reg r/m] #
0F  AD [mod reg r/m]

u     -     -     -     x     x     u     x    x
4
5

4
5

b h

SIDT Store IDT Register
To Register/Memory 0F  01 [mod 001 r/m]

-     -     -     -     -     -     -     -    -
4 4

b,c h

SLDT Store LDT Register
To Register/Memory 0F  00 [mod 000 r/m]

-     -     -     -     -     -     -     -    -
1

a h

SMINT Software SMM Entry 0F 38 -     -     -     -     -     -     -     -    - 55 55 s s

SMSW Store Machine Status Word 0F  01 [mod 100 r/m] -     -     -     -     -     -     -     -    - 6 6 b,c h

STC Set Carry Flag F9 -     -     -     -     -     -     -     -    1 1 1

STD Set Direction Flag FD -     1     -     -     -     -     -     -    - 7 7

STI Set Interrupt Flag FB -     -     1     -     -     -     -     -    - 7 7 m

STOS Store String A  [101w] -     -     -     -     -     -     -     -    - 2 2 b h

STR Store Task Register
To Register/Memory 0F  00 [mod 001 r/m]

-     -     -     -     -     -     -     -    -
4

a h

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)

INSTRUCTION OPCODE
FLAGS

REAL
MODE CLOCK

COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit

Reg/
Cache Hit

Real
Mode

Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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SUB Integer Subtract
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator (short form)

2  [10dw] [11 reg r/m]
2  [100w] [mod reg r/m]
2  [101w] [mod reg r/m]
8  [00sw] [mod 101 r/m] ###
2  [110w] ###

x     -     -     -     x     x     x     x    x
1
1
1
1
1

1
1
1
1
1

b h

SVDC Save Segment Register and Descriptor 0F  78 [mod sreg3 r/m] -     -     -     -     -     -     -     -    - 12 12 s s

SVLDT Save LDTR and Descriptor 0F  7A [mod 000 r/m] -     -     -     -     -     -     -     -    - 12 12 s s

SVTS Save TSR and Descriptor 0F  7C [mod 000 r/m] -     -     -     -     -     -     -     -    - 14 14 s s

TEST Test Bits
Register/Memory and Register
Immediate Data and Register/Memory
Immediate Data and Accumulator

8 [010w] [mod reg r/m]
F [011w] [mod 000 r/m] ###
A [100w] ###

0     -     -     -     x     x     u     x    0
1
1
1

1
1
1

b h

VERR Verify Read Access
To Register/Memory 0F  00 [mod 100 r/m]

-     -     -     -     -     x     -     -    -
7

a g,h,j,p

VERW Verify Write Access
To Register/Memory 0F  00 [mod 101 r/m]

-     -     -     -     -     x     -     -    -
7

a g,h,j,p

WAIT Wait Until FPU Not Busy 9B -     -     -     -     -     -     -     -    - 5 5

WBINVD Write-Back and Invalidate Cache 0F  09 -     -     -     -     -     -     -     -    - 15 15 t t

WRMSR Write to Model Specific Register 0F 30 -     -     -     -     -     -     -     -    -

WRSHR Write SMM Header Pointer Register 0F 37 -     -     -     -     -     -     -     -    -

XADD Exchange and Add
Register1, Register2
Memory, Register

0F C[000w] [11 reg2 reg1]
0F C[000w] [mod reg r/m]

x     -     -     -     x     x     x     x    x
2
2

2
2

XCHG Exchange
Register/Memory with Register
Register with Accumulator

8[011w] [mod reg r/m]
9[0 reg]

-     -     -     -     -     -     -     -    -
2
2

2
2

b,f f,h

XLAT Translate Byte D7 -     -     -     -     -     -     -     -    - 4 4 h

XOR Boolean Exclusive OR
Register to Register
Register to Memory
Memory to Register
Immediate to Register/Memory
Immediate to Accumulator (short form)

3 [00dw] [11 reg r/m]
3 [000w] [mod reg r/m]
3 [001w] [mod reg r/m]
8 [00sw] [mod 110 r/m] ###
3 [010w] ###

0     -     -     -     x     x     u     x    0
1
1
1
1
1

1
1
1
1
1

b h

Table 6-21. M II CPU Instruction Set Clock Count Summary  (Continued)

INSTRUCTION OPCODE
FLAGS

REAL
MODE CLOCK

COUNT

PROTECTED
MODE CLOCK

COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/
Cache Hit

Reg/
Cache Hit

Real
Mode

Protected
Mode

#     = immediate 8-bit data +     = 8-bit signed displacement x = modified
##   = immediate 16-bit data +++ = full signed displacement (16, 32 bits) - = unchanged
### = full immediate 32-bit data (8, 16, 32 bits) u = undefined
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Instruction Notes for Instruction Set Summary

Notes a through c apply to Real Address Mode only:
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid op-code).
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment 

limit (FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maxi-
mum SS limit.

c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.
d.   -

Notes e through g apply to Real Address Mode and Protected Virtual Address Mode:
e. An exception may occur, depending on the value of the operand.
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK prefix.
g. LOCK#  is asserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode only:
h. Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit is vio-

lated, an exception 12 occurs.
i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault. The segment’s descriptor must indicate “present” or exception

 11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.
j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain descriptor integrity in multiprocessor systems.
k. JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.
l. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
m. An exception 13 fault occurs if CPL is greater than IOPL.
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = 0.
o. The PE bit of the MSW (CR0) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.
p. Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.
q. If the coprocessor’s memory operand violates a segment limit or segment access rights, an exception 13 fault will occur before the ESC instruction is executed. An exception 12 fault 

will occur if the stack limit is violated by the operand’s starting address.
r. The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

Note s applies to Cyrix specific SMM instructions:
s. All memory accesses to SMM space are non-cacheable. An invalid opcode exception 6 occurs unless SMI is enabled and ARR3 size > 0, and CPL = 0 and [SMAC is set or if in an SMI

 handler].

Note t applies to cache invalidation instructions with the cache operating in write-back mode:
t. The total clock count is the clock count shown plus the number of clocks required to write all “modified” cache lines to external memory.
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6.5 FPU Instruction
Clock Counts

The CPU is functionally divided into the FPU 
unit, and the integer unit. The FPU has been 
extended to processes MMX instructions as 
well as floating point instructions in parallel 
with the integer unit.

For example, when the integer unit detects a 
floating point instruction the instruction passes 
to the FPU for execution.  The integer unit con-
tinues to execute instructions while the FPU 
executes the floating point instruction. 

If another FPU instruction is encountered, the 
second FPU instruction is placed in the FPU 
queue.  Up to four FPU instructions can be 
queued.  In the event of an FPU exception, 
while other FPU instructions are queued, the 
state of the CPU is saved to ensure recovery.

6.5.1 FPU Clock Count Table

The clock counts for the FPU instructions are 
listed in Table 6-23 (Page 6-31). The 
abbreviations used in this table are listed in 
Table 6-22.

Table 6-22.  FPU Clock Count Table Abbreviations

ABBREVIATION MEANING

n Stack register number

TOS Top of stack register pointed to by SSS in the status register.

ST(1) FPU register next to TOS

ST(n) A specific FPU register, relative to TOS

M.WI 16-bit integer operand from memory

M.SI 32-bit integer operand from memory

M.LI 64-bit integer operand from memory

M.SR 32-bit real operand from memory

M.DR 64-bit real operand from memory

M.XR 80-bit real operand from memory

M.BCD 18-digit BCD integer operand from memory

CC FPU condition code

Env Regs
Status, Mode Control and Tag Registers, Instruction Pointer and Operand 
Pointer
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Table 6-23. M II FPU Instruction Set Summary 

FPU INSTRUCTION OP CODE OPERATION CLOCK COUNT NOTES
F2XM1 Function Evaluation 2x-1
FABS Floating Absolute Value

D9 F0
D9 E1

TOS
TOS

<------------
<------------

2TOS-1
| TOS |

92 - 108
2

See Note 2

FADD Floating Point Add 
Top of Stack  
80-bit Register
64-bit Real
32-bit Real
FADDP Floating Point Add, Pop
FIADD Floating Point Integer Add
32-bit integer
16-bit integer

DC [1100 0  n]
D8 [1100 0  n]
DC [mod 000 r/m]
D8 [mod 000 r/m]
DE [1100 0  n]

DA [mod 000 r/m]
DE [mod 000 r/m]

ST(n)
TOS
TOS
TOS

ST(n)

TOS
TOS

<------------
<------------
<------------
<------------
<------------

<------------
<------------

ST(n) + TOS
TOS + ST(n)
TOS + M.DR
TOS + M.SR
ST(n) + TOS; then pop TOS

TOS + M.SI
TOS + M.WI

4 - 7
4 - 7
4 - 7
4 - 7
4 - 7

8 - 12
8 - 12

FCHS Floating Change Sign D9 E0 TOS <------------ - TOS 2

FCLEX Clear Exceptions
FNCLEX Clear Exceptions

(9B)DB E2
DB E2

Wait then Clear Exceptions
Clear Exceptions

5
3

FCOM Floating Point Compare 
80-bit Register
64-bit Real
32-bit Real
FCOMP Floating Point Compare, Pop 
80-bit Register
64-bit Real
32-bit Real
FCOMPP Floating Point Compare, Pop

Two Stack Elements
FICOM Floating Point Compare 
32-bit integer
16-bit integer
FICOMP Floating Point Compare 
32-bit integer
16-bit integer

D8 [1101 0  n]
DC [mod 010 r/m]
D8 [mod 010 r/m]

D8 [1101 1  n]
DC [mod 011 r/m]
D8 [mod 011 r/m]
DE D9

DA [mod 010 r/m]
DE [mod 010 r/m]

DA [mod 011 r/m]
DE [mod 011 r/m]

CC set by TOS - ST(n)
CC set by TOS - M.DR
CC set by TOS - M.SR

CC set by TOS - ST(n); then pop TOS
CC set by TOS - M.DR; then pop TOS
CC set by TOS - M.SR;  then pop TOS
CC set by TOS - ST(1);  then pop TOS and ST(1)

CC set by TOS - M.WI
CC set by TOS - M.SI

CC set by TOS - M.WI; then pop TOS
CC set by TOS - M.SI; then pop TOS

4
4
4

4
4
4
4

9 - 10
9 - 10

9 - 10
9 - 10

FCOMI Floating Point Compare Real 
and Set EFLAGS 
80-bit Register
FCOMIP Floating Point Compare Real 
and Set EFLAGS, Pop 
80-bit Register
FUCOMI Floating Point Unordered 
Compare Real and Set EFLAGS 
80-bit integer
FUCOMIP Floating Point Unordered
Compare Real and Set EFLAGS 
80-bit integer

DB [1111 0 n]

DF [1111 0 n]

DB [1110 1 n]

DF [1110 1 n]

EFLAG set by TOS - ST(n)

EFLAG set by TOS - ST(n); then pop TOS

EFLAG set by TOS - ST(n)

EFLAG set by TOS - ST(n); then pop TOS

4

4

9 - 10

9 - 10

FCMOVB Floating Point Conditional
 Move if Below

DA [1100 0 n] If (CF=1)  ST(0) <—ST(n) 4

FCMOVE Floating Point Conditional 
Move if Equal

DA [1100 1 n] If (ZF=1)  ST(0) <—ST(n) 4
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FCMOVBE Floating Point Conditional Move 
if Below or Equal

DA [1101 0 n] If (CF=1 or ZF=1)  ST(0) <—ST(n) 4

FCMOVU Floating Point Conditional Move
 if Unordered

DA [1101 1 n] If (PF=1)  ST(0) <—ST(n) 4

FCMOVNB Floating Point Conditional Move 
if Not Below

DB [1100 0 n] If (CF=0)  ST(0) <—ST(n) 4

FCMOVNE Floating Point Conditional Move 
if Not Equal

DB [1100 1 n] If (ZF=0)  ST(0) <—ST(n) 4

FCMOVNBE Floating Point Conditional 
Move if Not Below or Equal

DB [1101 0 n] If (CF=0 and ZF=0)  ST(0) <—ST(n) 4

FCMOVNU Floating Point Conditional Move 
if Not Unordered

DB [1101 1 n] If (DF=0)  ST(0)<—ST(n) 4

FCOS Function Evaluation: Cos(x) D9 FF TOS <------------- COS(TOS) 92 - 141 See Note 1

FDECSTP Decrement Stack Pointer D9 F6 Decrement top of stack pointer 4

FDIV Floating Point Divide
Top of Stack
80-bit Register
64-bit Real
32-bit Real
FDIVP Floating Point Divide, Pop
FDIVR Floating Point Divide Reversed
Top of Stack
80-bit Register
64-bit Real
32-bit Real

DC [1111 1  n]
D8 [1111 0  n]
DC [mod 110 r/m]
D8 [mod 110 r/m]
DE [1111 1  n]

DC [1111 0  n]
D8 [1111 1  n]
DC [mod 111 r/m]
D8 [mod 111 r/m]

ST(n)
TOS
TOS
TOS

ST(n)

TOS
ST(n)
TOS
TOS

<------------
<------------
<------------
<------------
<------------

<------------
<------------
<------------
<------------

ST(n) / TOS
TOS / ST(n)
TOS / M.DR
TOS / M.SR
ST(n) / TOS; then pop TOS

ST(n) / TOS
TOS / ST(n)
M.DR / TOS
M.SR / TOS

24 - 34
24 - 34
24 - 34
24 - 34
24 - 34

24 - 34
24 - 34
24 - 34
24 - 34

FDIVRP Floating Point Divide Reversed, Pop
FIDIV Floating Point Integer Divide
32-bit Integer
16-bit Integer
FIDIVR Floating Point Integer Divide

Reversed 
32-bit Integer
16-bit Integer

DE [1111 0  n]

DA [mod 110 r/m]
DE [mod 110 r/m]

DA [mod 111 r/m]
DE [mod 111 r/m]

ST(n)

TOS
TOS

TOS
TOS

<------------

<------------
<------------

<------------
<------------

TOS / ST(n);  then pop TOS

TOS / M.SI
TOS / M.WI

M.SI / TOS
M.WI / TOS

24 - 34

34 - 38
33 - 38

34 - 38
33 - 38

FFREE Free Floating Point Register DD [1100 0  n] TAG(n) <------------ Empty 3

FINCSTP Increment Stack Pointer
FINIT Initialize FPU
FNINIT Initialize FPU

D9 F7
(9B)DB E3
DB E3

Increment top of stack pointer 
Wait then initialize
Initialize

2
8
6

Table 6-23. M II FPU Instruction Set Summary  (Continued)

FPU INSTRUCTION OP CODE OPERATION CLOCK COUNT NOTES
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FLD Load Data to FPU Reg.
Top of Stack
64-bit Real
32-bit Real
FBLD Load Packed BCD Data to FPU Reg.
FILD Load Integer Data to FPU Reg.
64-bit Integer
32-bit Integer
16-bit Integer

D9 [1100 0  n]
DD [mod 000 r/m]
D9 [mod 000 r/m]
DF [mod 100 r/m]

DF [mod 101 r/m]
DB [mod 000 r/m]
DF [mod 000 r/m]

Push ST(n) onto stack
Push M.DR onto stack
Push M.SR onto stack
Push M.BCD  onto stack

Push M.LI onto stack
Push M.SI onto stack
Push M.WI onto stack

2
2
2

41 - 45

4 - 8
4 - 6
3 - 6

FLD1 Load Floating Const.= 1.0 D9 E8 Push 1.0 onto stack 4

FLDCW Load FPU Mode Control Register
FLDENV Load FPU Environment

D9 [mod 101 r/m]
D9 [mod 100 r/m]

Ctl Word
Env Regs

<------------
<------------

Memory
Memory

4
30

FLDL2E Load Floating Const.= Log2(e)
FLDL2T Load Floating Const.= Log2(10)
FLDLG2 Load Floating Const.= Log10(2)
FLDLN2 Load Floating Const.= Ln(2)
FLDPI Load Floating Const.= π
FLDZ Load Floating Const.= 0.0

D9 EA
D9 E9
D9 EC
D9 ED
D9 EB
D9 EE

Push Log2(e) onto stack
Push Log2(10) onto stack
Push Log10(2) onto stack
Push Loge(2) onto stack
Push π onto stack
Push 0.0 onto stack

4
4
4
4
4
4

FMUL Floating Point Multiply
Top of Stack
80-bit Register
64-bit Real
32-bit Real
FMULP Floating Point Multiply & Pop
FIMUL Floating Point Integer Multiply
32-bit Integer
16-bit Integer

DC [1100 1  n]
D8 [1100 1  n]
DC [mod 001 r/m]
D8 [mod 001 r/m]
DE [1100 1  n]

DA [mod 001 r/m]
DE [mod 001 r/m]

ST(n)
TOS
TOS
TOS

ST(n)

TOS
TOS

<------------
<------------
<------------
<------------
<------------

<------------
<------------

ST(n) × TOS
TOS × ST(n)
TOS × M.DR
TOS × M.SR
ST(n) × TOS;  then pop TOS

TOS × M.SI
TOS × M.WI

4 - 6
4 - 6
4 - 6
4 - 5
4 - 6

9 - 11
8 - 10

FNOP No Operation D9 D0 No Operation 2

FPATAN Function Eval: Tan-1(y/x)
FPREM Floating Point Remainder
FPREM1 Floating Point Remainder IEEE
FPTAN Function Eval: Tan(x)
FRNDINT Round to Integer

D9 F3
D9 F8
D9 F5
D9 F2
D9 FC

ST(1)
TOS
TOS
TOS
TOS

<------------
<------------
<------------
<------------
<------------

ATAN[ST(1) / TOS];  then pop TOS
Rem[TOS / ST(1)]
Rem[TOS / ST(1)]
TAN(TOS); then push 1.0 onto stack 
Round(TOS)

97 - 161
82 - 91
82 - 91

117 - 129
10 - 20

See Note 3

See Note 1

FRSTOR Load FPU Environment and Reg.
FSAVE Save FPU Environment and Reg
FNSAVE Save FPU Environment and Reg

DD [mod 100 r/m]
(9B)DD[mod 110 r/m]
DD [mod 110 r/m]

Restore state.
Wait then save state.
Save state.

56 - 72
57 - 67
55 - 65

FSCALE Floating Multiply by 2n

FSIN Function Evaluation: Sin(x)
D9 FD
D9 FE

TOS
TOS

<------------
<------------

TOS × 2(ST(1))

SIN(TOS)
7 - 14

76 - 140 See Note 1

FSINCOS Function Eval.: Sin(x)& Cos(x) D9 FB temp
TOS

<------------
<------------

TOS;
SIN(temp); then

145 - 161 See Note 1

push COS(temp) onto stack

FSQRT Floating Point Square Root D9 FA TOS <------------ Square Root of TOS 59 - 60

Table 6-23. M II FPU Instruction Set Summary  (Continued)

FPU INSTRUCTION OP CODE OPERATION CLOCK COUNT NOTES



6
-3

4
P
R
ELIM

IN
A
R
Y

C
P
U

In
stru

ctio
n

S
e
t

S
u
m

m
a
ry

�
FST Store FPU Register
Top of Stack
80-bit Real
64-bit Real
32-bit Real
FSTP Store FPU Register, Pop 
Top of Stack
80-bit Real
64-bit Real
32-bit Real
FBSTP Store BCD Data, Pop
FIST Store Integer FPU Register
32-bit Integer
16-bit Integer
FISTP Store Integer FPU Register, Pop
64-bit Integer
32-bit Integer
16-bit Integer

DD [1101 0  n]
DB [mod 111 r/m]
DD [mod 010 r/m]
D9 [mod 010 r/m]

DB [1101 1  n]
DB [mod 111 r/m]
DD [mod 011 r/m]
D9 [mod 011 r/m]
DF [mod 110 r/m]

DB [mod 010 r/m]
DF [mod 010 r/m]

DF [mod 111 r/m]
DB [mod 011 r/m]
DF [mod 011 r/m]

ST(n)
M.XR
M.DR
M.SR

ST(n)
M.XR
M.DR
M.SR

M.BCD

M.SI
M.WI

M.LI
M.SI

M.WI

<------------
<------------
<------------
<------------

<------------
<------------
<------------
<------------
<------------

<------------
<------------

<------------
<------------
<------------

TOS
TOS
TOS
TOS

TOS;  then pop TOS
TOS;  then pop TOS
TOS;  then pop TOS
TOS;  then pop TOS
TOS;  then pop TOS

TOS
TOS

TOS;  then pop TOS
TOS;  then pop TOS
TOS;  then pop TOS

2
2
2
2

2
2
2
2

57 - 63

8 - 13
7 - 10

10 - 13
8 - 13
7 - 10

FSTCW Store FPU Mode Control Register
FNSTCW Store FPU Mode Control Register
FSTENV Store FPU Environment
FNSTENV Store FPU Environment
FSTSW Store FPU Status Register 
FNSTSW Store FPU Status Register 
FSTSW AX Store FPU Status Register to AX
FNSTSW AX Store FPU Status Register to AX

(9B)D9[mod 111 r/m]
D9 [mod 111 r/m]
(9B)D9[mod 110 r/m]
D9 [mod 110 r/m]
(9B)DD[mod 111 r/m]
DD [mod 111 r/m]
(9B)DF E0
DF  E0

Wait Memory
Memory

Wait Memory
Memory

Wait Memory
Memory
Wait AX

AX

<------------
<------------
<------------
<------------
<------------
<------------
<------------
<------------

Control Mode Register
Control Mode Register
Env.  Registers 
Env.  Registers 
Status Register
Status Register
Status Register
Status Register

5
3

14 - 24
12 - 22

6
4
4
2

FSUB Floating Point Subtract
Top of Stack
80-bit Register
64-bit Real
32-bit Real
FSUBP Floating Point Subtract, Pop

DC [1110 1  n]
D8 [1110 0  n]
DC [mod 100 r/m]
D8 [mod 100 r/m]
DE [1110 1  n]

ST(n)
TOS
TOS
TOS

ST(n)

<------------
<------------
<------------
<------------
<------------

ST(n) - TOS
TOS - ST(n)
TOS - M.DR
TOS - M.SR
ST(n) - TOS; then pop TOS

4 - 7
4 - 7
4 - 7
4 - 7
4 - 7

Table 6-23. M II FPU Instruction Set Summary  (Continued)
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FSUBR Floating Point Subtract Reverse
Top of Stack
80-bit Register
64-bit Real
32-bit Real
FSUBRP Floating Point Subtract

 Reverse, Pop
FISUB Floating Point Integer Subtract
32-bit Integer
16-bit Integer
FISUBR Floating Point Integer Subtract

Reverse
32-bit Integer Reversed
16-bit Integer Reversed

DC [1110 0  n]
D8 [1110 1  n]
DC [mod 101 r/m]
D8 [mod 101 r/m]
DE [1110 0  n]

DA [mod 100 r/m]
DE [mod 100 r/m]

DA [mod 101 r/m]
DE [mod 101 r/m]

TOS
ST(n)
TOS
TOS

ST(n)

TOS
TOS

TOS
TOS

<-----------
<------------
<------------
<------------
<------------

<-----------
<------------

<------------
<------------

ST(n) - TOS
TOS - ST(n)
M.DR - TOS
M.SR - TOS
TOS - ST(n); then pop TOS

TOS - M.SI
TOS - M.WI

M.SI - TOS
M.WI - TOS

4 - 7
4 - 7
4 - 7
4 - 7
4 - 7

14 - 29
14 - 27

14 - 29
14 - 27

FTST Test Top of Stack
FUCOM Unordered Compare
FUCOMP Unordered Compare, Pop
FUCOMPP Unordered Compare,

  Pop two elements

D9 E4
DD [1110 0  n]
DD [1110 1  n]
DA E9

CC set by TOS - 0.0
CC set by TOS - ST(n)
CC set by TOS - ST(n);  then pop TOS
CC set by TOS - ST(I);  then pop TOS and ST(1)

4
4
4
4

FWAIT Wait 9B Wait for FPU not busy 2

FXAM Report Class of Operand D9 E5 CC <------------ Class of TOS 4

FXCH Exchange Register with TOS D9 [1100 1  n] TOS -<---------> ST(n) Exchange 2

FXTRACT Extract Exponent D9 F4 temp
TOS

<-----------
<------------

TOS;
exponent (temp); then
push significant (temp) onto stack

11 - 16

FLY2X Function Eval. y × Log2(x)
FLY2XP1 Function Eval. y × Log2(x+1)

D9 F1
D9 F9

ST(1)
ST(1)

<------------
<------------

ST(1) × Log2(TOS); then pop TOS
ST(1) × Log2(1+TOS); then pop TOS

145 - 154
131 - 133 See Note 4

Table 6-23. M II FPU Instruction Set Summary  (Continued)
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FPU Instruction Summary Notes

All references to TOS and ST(n) refer to stack layout prior to execution.

Values popped off the stack are discarded.

A pop from the stack increments the top of stack pointer.

A push to the stack decrements the top of stack pointer.

Note 1:
For FCOS, FSIN, FSINCOS and FPTAN, time shown is for absolute value of TOS < 3π/4. 
Add 90 clock counts for argument reduction if outside this range.

For FCOS, clock count is 141  if TOS < π/4 and clock count is 92  if π/4  < TOS > π/2.

For FSIN, clock count is 81 to 82 if absolute value of TOS < π/4.

Note 2:
For F2XM1, clock count is 92 if absolute value of TOS < 0.5.

Note 3:
For FPATAN, clock count is 97 if ST(1)/TOS < π/32.

Note 4:
For FYL2XP1, clock count is 170 if TOS is out of range and regular FYL2X is called.

Note 5:
The following opcodes are reserved by Cyrix:
D9D7, D9E2, D9E7, DDFC, DED8, DEDA, DEDC, DEDD, DEDE, DFFC.
If a reserved opcode is executed, and unpredictable results may occur (exceptions are not generated).
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6
6.6 M II Processor

MMX Instruction 
Clock Counts

The CPU is functionally divided into the FPU 
unit, and the integer unit. The FPU has been 
extended to processes both MMX instructions 
and floating point instructions in parallel with 
the integer unit.

For example, when the integer unit detects a 
MMX instruction, the instruction passes to the 
FPU unit for execution.  The integer unit con-

tinues to execute instructions while the FPU 
unit executes the MMX instruction.  If another 
MMX instruction is encountered, the second 
MMX instruction is placed in the MMX 
queue.  Up to four MMX instructions can be 
queued.

6.6.1 MMX Clock Count Table

The clock counts for the MMX instructions are 
listed in Table 6-25 (Page 38). The 
abbreviations used in this table are listed in 
Table 6-24.

Table 6-24.  MMX Clock Count Table Abbreviations

ABBREVIATION MEANING

<---- Result written

[11 mm reg] Binary or binary groups of digits

mm One of eight 64-bit MMX registers

reg A general purpose register

<--sat-- If required, the resultant data is saturated to remain in the associated data range

<--move-- Source data is moved to result location

[byte] Eight 8-bit bytes are processed in parallel

[word] Four 16-bit word are processed in parallel

[dword] Two 32-bit double words are processed in parallel

[qword] One 64-bit quad word is processed

[sign xxx] The byte, word, double word or quad word most significant bit is a sign bit

mm1, mm2 MMX register 1, MMX register 2

mod r/m Mod and r/m byte encoding (page 6-6 of this manual)

pack Source data is truncated or saturated to next smaller data size, then concatenated.

packdw
Pack two double words from source and two double words from destination into four  
words in destination register.

packwb
Pack four words from source and four words from destination into eight bytes in desti-
nation register.
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Table 6-25.  M II Processor MMX Instruction Set Clock Count Summary

MMX INSTRUCTIONS OPCODE OPERATION
CLOCK
COUNT
LATENCY/

THROUGHPUT

EMMS Empty MMX State 10F77 Tag Word <--- FFFFh (empties the floating point tag word) 1/1

MOVD Move Doubleword
Register to MMX Register
MMX Register to Register
Memory to MMX Register
MMX Register to Memory

2
0F6E [11 mm reg]
0F7E [11 mm reg]
0F6E [mod mm r/m]
0F7E [mod mm r/m]

MMX reg [qword] <--move, zero extend-- reg [dword] 
reg [qword] <--move-- MMX reg [low dword] 
MMX regr[qword] <--move, zero extend-- memory[dword] 
Memory [dword] <--move-- MMX reg [low dword]

1/1
5/1
1/1
1/1

MOVQ Move Quardword
MMX Register 2 to MMX Register 1
MMX Register 1 to MMX Register 2
Memory to MMX Register
MMX Register to Memory

3
0F6F [11 mm1 mm2]
0F7F [11 mm1 mm2]
0F6F [mod mm r/m]
0F7F [mod mm r/m]

MMX reg 1 [qword] <--move-- MMX reg 2 [qword] 
MMX reg 2 [qword] <--move-- MMX reg 1 [qword] 
MMX reg [qword] <--move-- memory[qword] 
Memory [qword] <--move-- MMX reg [qword]

1/1
1/1
1/1
1/1

PACKSSDW Pack Dword with Signed Saturation
MMX Register 2 to MMX Register 1
Memory to MMX Register

4
0F6B [11 mm1 mm2]
0F6B [mod mm r/m]

MMX reg 1 [qword] <--packdw, signed sat-- MMX reg 2, MMX reg 1 
MMX reg [qword] <--packdw, signed sat-- memory, MMX reg

1/1
1/1

PACKSSWB Pack Word with Signed Saturation
MMX Register 2 to MMX Register 1
Memory to MMX Register

5
0F63 [11 mm1 mm2]
0F63 [mod mm r/m]

MMX reg 1 [qword] <--packwb, signed sat-- MMX reg 2, MMX reg 1 
MMX reg [qword] <--packwb, signed sat-- memory, MMX reg

1/1
1/1

PACKUSWB Pack Word with Unsigned Saturation
MMX Register 2 to MMX Register 1
Memory to MMX Register

6
0F67 [11 mm1 mm2]
0F67 [mod mm r/m]

MMX reg 1 [qword] <--packwb, unsigned sat-- MMX reg 2, MMX reg 1 
MMX reg [qword] <--packwb, unsigned sat-- memory, MMX reg

1/1
1/1

PADDB Packed Add Byte with Wrap-Around
MMX Register 2 to MMX Register 1
Memory to MMX Register

7
0FFC [11 mm1 mm2]
0FFC [mod mm r/m]

MMX reg 1 [byte] <---- MMX reg 1 [byte] + MMX reg 2 [byte] 
MMX reg[byte] <---- memory [byte] + MMX reg [byte]

1/1
1/1

PADDD Packed Add Dword with Wrap-Around
MMX Register 2 to MMX Register 1
Memory to MMX Register

8
0FFE [11 mm1 mm2]
0FFE [mod mm r/m]

MMX reg 1 [sign dword] <---- MMX reg 1 [sign dword] + MMX reg 2 [sign dword] 
MMX reg [sign dword] <---- memory [sign dword] + MMX reg [sign dword]

1/1
1/1

PADDSB Packed Add Signed Byte with Saturation
MMX Register 2 to MMX Register1
Memory to Register

9
0FEC [11 mm1 mm2]
0FEC [mod mm r/m]

MMX reg 1 [sign byte] <--sat-- MMX reg 1 [sign byte] + MMX reg 2 [sign byte] 
MMX reg [sign byte] <--sat-- memory [sign byte] + MMX reg [sign byte]

1/1
1/1

PADDSW Packed Add Signed Word with Saturation
MMX Register 2 to MMX Register1
Memory to Register

1
10FED [11 mm1 mm2]

0FED [mod mm r/m]
MMX reg 1 [sign word] <--sat-- MMX reg 1 [sign word] + MMX reg 2 [sign word] 
MMX reg [sign word] <--sat-- memory [sign word] + MMX reg [sign word]

1/1
1/1

PADDUSB Add Unsigned Byte with Saturation
MMX Register 2 to MMX Register1
Memory to Register

1
20FDC [11 mm1 mm2]

0FDC [mod mm r/m]
MMX reg 1 [byte] <--sat-- MMX reg 1 [byte] + MMX reg 2 [byte] 
MMX reg [byte] <--sat-- memory [byte] + MMX reg [byte]

1/1
1/1

PADDUSW Add Unsigned Word with Saturation
MMX Register 2 to MMX Register1
Memory to Register

1
30FDD [11 mm1 mm2]

0FDD [mod mm r/m]
MMX reg 1 [word] <--sat-- MMX reg 1 [word] + MMX reg 2 [word] 
MMX reg [word] <--sat-- memory [word] + MMX reg [word]

1/1
1/1

March 7, 1997 10:11 am --Rev1.0
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PADDW Packed Add Word with Wrap-Around
MMX Register 2 to MMX Register1
Memory to MMX Register

1
40FFD [11 mm1 mm2]

0FFD [mod mm r/m]
MMX reg 1 [word] <---- MMX reg 1 [word] + MMX reg 2 [word] 
MMX reg [word] <---- memory [word] + MMX reg [word]

1/1
1/1

PAND Bitwise Logical AND
MMX Register 2 to MMX Register1
Memory to MMX Register

1
50FDB [11 mm1 mm2]

0FDB [mod mm r/m]
MMX Reg 1 [qword] <--logic AND-- MMX Reg 1 [qword], MMX Reg 2 [qword] 
MMX Reg [qword] <--logic AND-- memory[qword], MMX Reg [qword]

1/1
1/1

PANDN Bitwise Logical AND NOT
MMX Register 2 to MMX Register1
Memory to MMX Register

1
60FDF [11 mm1 mm2]

0FDF [mod mm r/m]
MMX Reg 1 [qword] <--logic  AND -- NOT MMX Reg 1 [qword], MMX Reg 2 [qword] 
MMX Reg [qword] <--logic  AND-- NOT MMX Reg [qword], Memory[qword]

1/1
1/1

PCMPEQB Packed Byte Compare for Equality
MMX Register 2 with MMX Register1

Memory with MMX Register

1
80F74 [11 mm1 mm2]

0F74 [mod mm r/m]

MMX reg 1 [byte] <--FFh-- if MMX reg 1 [byte] = MMX reg 2 [byte]
MMX reg 1 [byte]<--00h-- if MMX reg 1 [byte] NOT = MMX reg 2 [byte]
MMX reg [byte] <--FFh-- if memory[byte] = MMX reg [byte]
MMX reg [byte] <--00h-- if memory[byte] NOT = MMX reg [byte]

1/1

1/1

PCMPEQD Packed Dword Compare for Equality
MMX Register 2 with MMX Register1

Memory with MMX Register

1
90F76 [11 mm1 mm2]

0F76 [mod mm r/m]

MMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] = MMX reg 2 [dword]
MMX reg 1 [dword]<--0000 0000h--if MMX reg 1[dword] NOT = MMX reg 2 [dword]
MMX reg [dword] <--FFFF FFFFh-- if memory[dword] = MMX reg [dword]
MMX reg [dword] <--0000 0000h-- if memory[dword] NOT = MMX reg [dword]

1/1

1/1

PCMPEQW Packed Word Compare for Equality
MMX Register 2 with MMX Register1

Memory with MMX Register

2
00F75 [11 mm1 mm2]

0F75 [mod mm r/m]

MMX reg 1 [word] <--FFFFh-- if MMX reg 1 [word] = MMX reg 2 [word]
MMX reg 1 [word]<--0000h-- if MMX reg 1 [word] NOT = MMX reg 2 [word]
MMX reg [word] <--FFFFh-- if memory[word] = MMX reg [word]
MMX reg [word] <--0000h-- if memory[word] NOT = MMX reg [word]

1/1

1/1

PCMPGTB Pack Compare Greater Than Byte
MMX Register 2 to MMX Register1

Memory with MMX Register

2
10F64 [11 mm1 mm2]

0F64 [mod mm r/m]

MMX reg 1 [byte] <--FFh-- if MMX reg 1 [byte] > MMX reg 2 [byte]
MMX reg 1 [byte]<--00h-- if MMX reg 1 [byte] NOT > MMX reg 2 [byte]
MMX reg [byte] <--FFh-- if memory[byte] > MMX reg [byte]
MMX reg [byte] <--00h-- if memory[byte] NOT > MMX reg [byte]

1/1

1/1

PCMPGTD Pack Compare Greater Than Dword
MMX Register 2 to MMX Register1

Memory with MMX Register

2
20F66 [11 mm1 mm2]

0F66 [mod mm r/m]

MMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] > MMX reg 2 [dword]
MMX reg 1 [dword]<--0000 0000h--if MMX reg 1 [dword]NOT > MMX reg 2 [dword]
MMX reg [dword] <--FFFF FFFFh-- if memory[dword] > MMX reg [dword]
MMX reg [dword] <--0000 0000h-- if memory[dword] NOT > MMX reg [dword]

1/1

1/1

Table 6-25.  M II Processor MMX Instruction Set Clock Count Summary  (Continued)

MMX INSTRUCTIONS OPCODE OPERATION
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COUNT
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THROUGHPUT
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PCMPGTW Pack Compare Greater Than Word
MMX Register 2 to MMX Register1

Memory with MMX Register

2
30F65 [11 mm1 mm2]

0F65 [mod mm r/m]

MMX reg 1 [word] <--FFFFh-- if MMX reg 1 [word] > MMX reg 2 [word]
MMX reg 1 [word]<--0000h-- if MMX reg 1 [word] NOT > MMX reg 2 [word]
MMX reg [word] <--FFFFh-- if memory[word] > MMX reg [word]
MMX reg [word] <--0000h-- if memory[word] NOT > MMX reg [word]

1/1

1/1

PMADDWD Packed Multiply and Add
MMX Register 2 to MMX Register 1
Memory to MMX Register

2
60FF5 [11 mm1 mm2]

0FF5 [mod mm r/m]
MMX reg 1 [dword] <--add-- [dword]<---- MMX reg 1 [sign word]*MMX reg 2[sign word] 
MMX reg 1 [dword] <--add-- [dword] <---- memory[sign word] * Memory[sign word]

2/1
2/1

PMULHW Packed Multiply High
MMX Register 2 to MMX Register1
Memory to MMX Register

3
00FE5 [11 mm1 mm2]

0FE5 [mod mm r/m]
MMX reg 1 [word] <--upper bits-- MMX reg 1 [sign word] * MMX reg 2 [sign word] 
MMX reg 1 [word] <--upper bits-- memory [sign word] * Memory [sign word]

2/1
2/1

PMULLW Packed Multiply Low
MMX Register 2 to MMX Register1
Memory to MMX Register

3
10FD5 [11 mm1 mm2]

0FD5 [mod mm r/m]
MMX reg 1 [word] <--lower bits-- MMX reg 1 [sign word] * MMX reg 2 [sign word] 
MMX reg 1 [word] <--lower bits-- memory [sign word] * Memory [sign word]

2/1
2/1

POR Bitwise OR
MMX Register 2 to MMX Register1
Memory to MMX Register

3
60FEB [11 mm1 mm2]

0FEB [mod mm r/m]
MMX Reg 1 [qword] <--logic OR-- MMX Reg 1 [qword], MMX Reg 2 [qword]
MMX Reg [qword] <--logic OR-- MMX Reg [qword], memory[qword]

1/1
1/1

PSLLD Packed Shift Left Logical Dword
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

3
70FF2 [11 mm1 mm2]

0FF2 [mod mm r/m]
0F72 [11 110 mm] #

MMX reg 1 [dword] <--shift left, shifting in zeroes by MMX reg 2 [dword]-- 
MMX reg [dword] <--shift left, shifting in zeroes by memory[dword]-- 
MMX reg [dword] <--shift left, shifting in zeroes by [im byte]--

1/1
1/1
1/1

PSLLQ Packed Shift Left Logical Qword
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

3
80FF3 [11 mm1 mm2]

0FF3 [mod mm r/m]
0F73 [11 110 mm] #

MMX reg 1 [qword] <--shift left, shifting in zeroes by MMX reg 2 [qword]-- 
MMX reg [qword] <--shift left, shifting in zeroes by[qword]-- 
MMX reg [qword] <--shift left, shifting in zeroes by[im byte]--

1/1
1/1
1/1

PSLLW Packed Shift Left Logical Word
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

3
90FF1 [11 mm1 mm2]

0FF1 [mod mm r/m]
0F71 [11 110mm] #

MMX reg 1 [word] <--shift left, shifting in zeroes by MMX reg 2 [word]-- 
MMX reg [word] <--shift left, shifting in zeroes by memory[word]-- 
MMX reg [word] <--shift left, shifting in zeroes by[im byte]--

1/1
1/1
1/1

PSRAD Packed Shift Right Arithmetic Dword
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

4
00FE2 [11 mm1 mm2]

0FE2 [mod mm r/m]
0F72 [11 100 mm] #

MMX reg 1 [dword] <--arith shift right, shifting in zeroes by MMX reg 2 [dword--] 
MMX reg [dword] <--arith shift right, shifting in zeroes by memory[dword]-- 
MMX reg [dword] <--arith shift right, shifting in zeroes by [im byte]--

1/1
1/1
1/1

Table 6-25.  M II Processor MMX Instruction Set Clock Count Summary  (Continued)
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PSRAW Packed Shift Right Arithmetic Word
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

4
10FE1 [11 mm1 mm2]

0FE1 [mod mm r/m]
0F71 [11 100 mm] #

MMX reg 1 [word] <--arith shift right, shifting in zeroes by MMX reg 2 [word]-- 
MMX reg [word] <--arith shift right, shifting in zeroes by memory[word--] 
MMX reg [word] <--arith shift right, shifting in zeroes by [im byte]--

1/1
1/1
1/1

PSRLD Packed Shift Right Logical Dword
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

4
20FD2 [11 mm1 mm2]

0FD2 [mod mm r/m]
0F72 [11 010 mm] #

MMX reg 1 [dword] <--shift right, shifting in zeroes by MMX reg 2 [dword]-- 
MMX reg [dword] <--shift right, shifting in zeroes by memory[dword]-- 
MMX reg [dword] <--shift right, shifting in zeroes by[im byte]--

1/1
1/1
1/1

PSRLQ Packed Shift Right Logical Qword
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

4
30FD3 [11 mm1 mm2]

0FD3 [mod mm r/m]
0F73 [11 010 mm] #

MMX reg 1 [qword] <--shift right, shifting in zeroes by MMX reg 2 [qword] 
MMX reg [qword] <--shift right, shifting in zeroes by memory[qword] 
MMX reg [qword] <--shift right, shifting in zeroes by [im byte]

1/1
1/1
1/1

PSRLW Packed Shift Right Logical Word
MMX Register 1 by MMX Register 2
MMX Register by Memory
MMX Register by Immediate

4
40FD1 [11 mm1 mm2]

0FD1 [mod mm r/m]
0F71 [11 010 mm] #

MMX reg 1 [word] <--shift right, shifting in zeroes by MMX reg 2 [word] 
MMX reg [word] <--shift right, shifting in zeroes by memory[word] 
MMX reg [word] <--shift right, shifting in zeroes by  imm[word]

1/1
1/1
1/1

PSUBB Subtract Byte With Wrap-Around
MMX Register 2 to MMX Register1
Memory to MMX Register

4
50FF8 [11 mm1 mm2]

0FF8 [mod mm r/m]
MMX reg 1 [byte] <---- MMX reg 1 [byte] subtract MMX reg 2 [byte] 
MMX reg [byte] <---- MMX reg [byte] subtract memory [byte]

1/1
1/1

PSUBD Subtract Dword With Wrap-Around
MMX Register 2 to MMX Register1
Memory to MMX Register

4
60FFA [11 mm1 mm2]

0FFA [mod mm r/m]
MMX reg 1 [dword] <---- MMX reg 1 [dword] subtract MMX reg 2 [dword] 
MMX reg [dword] <---- MMX reg [dword] subtract memory [dword]

1/1
1/1

PSUBSB Subtract Byte Signed With Saturation
MMX Register 2 to MMX Register1
Memory to MMX Register

4
70FE8 [11 mm1 mm2]

0FE8 [mod mm r/m]
MMX reg 1 [sign byte] <--sat-- MMX reg 1 [sign byte] subtract MMX reg 2 [sign byte] 
MMX reg [sign byte] <--sat-- MMX reg [sign byte] subtract memory [sign byte]

1/1
1/1

PSUBSW Subtract Word Signed With Saturation
MMX Register 2 to MMX Register1
Memory to MMX Register

4
90FE9 [11 mm1 mm2]

0FE9 [mod mm r/m]
MMX reg 1 [sign word] <--sat-- MMX reg 1 [sign word] subtract MMX reg 2 [sign word] 
MMX reg [sign word] <--sat-- MMX reg [sign word] subtract memory [sign word]

1/1
1/1

PSUBUSB Subtract Byte Unsigned With Saturation
MMX Register 2 to MMX Register1
Memory to MMX Register

5
00FD8 [11 mm1 mm2]

0FD8 [11 mm reg]
MMX reg 1 [byte] <--sat-- MMX reg 1 [byte] subtract MMX reg 2 [byte] 
MMX reg [byte] <--sat-- MMX reg [byte] subtract memory [byte]

1/1
1/1

PSUBUSW Subtract Word Unsigned With Saturation
MMX Register 2 to MMX Register1
Memory to MMX Register

5
10FD9 [11 mm1 mm2]

0FD9 [11 mm reg]
MMX reg 1 [word] <--sat-- MMX reg 1 [word] subtract MMX reg 2 [word] 
MMX reg [word] <--sat-- MMX reg [word] subtract memory [word]

1/1
1/1

PSUBW Subtract Word With Wrap-Around
MMX Register 2 to MMX Register1
Memory to MMX Register

5
20FF9 [11 mm1 mm2]

0FF9 [mod mm r/m]
MMX reg 1 [word] <---- MMX reg 1 [word] subtract MMX reg 2 [word] 
MMX reg [word] <---- MMX reg [word] subtract memory [word]

1/1
1/1

Table 6-25.  M II Processor MMX Instruction Set Clock Count Summary  (Continued)
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PUNPCKHBW Unpack High Packed Byte
 Data to Packed Words
MMX Register 2 to MMX Register1
Memory to MMX Register

5
30F68 [11 mm1 mm2]

0F68 [11 mm reg]
MMX reg 1 [byte] <--interleave-- MMX reg 1 [up byte], MMX reg 2 [up byte] 
MMX reg [byte] <--interleave-- memory [up byte], MMX reg [up byte]

1/1
1/1

PUNPCKHDQ Unpack High Packed Dword
Data to Qword
MMX Register 2 to MMX Register1
Memory to MMX Register

5
40F6A [11 mm1 mm2]

0F6A [11 mm reg]
MMX reg 1 [dword] <--interleave-- MMX reg 1 [up dword], MMX reg 2 [up dword] 
MMX reg [dword] <--interleave-- memory [up dword], MMX reg [up dword]

1/1
1/1

PUNPCKHWD Unpack High Packed Word
 Data to Packed Dwords
MMX Register 2 to MMX Register1
Memory to MMX Register

5
50F69 [11 mm1 mm2]

0F69 [11 mm reg]
MMX reg 1 [word] <--interleave-- MMX reg 1 [up word], MMX reg 2 [up word] 
MMX reg [word] <--interleave-- memory [up word], MMX reg [up word]

1/1
1/1

PUNPCKLBW Unpack Low Packed Byte
 Data to Packed Words
MMX Register 2 to MMX Register1
Memory to MMX Register

5
60F60 [11 mm1 mm2]

0F60 [11 mm reg]
MMX reg 1 [word] <--interleave-- MMX reg 1 [low byte], MMX reg 2 [low byte] 
MMX reg [word] <--interleave-- memory [low byte], MMX reg [low byte]

1/1
1/1

PUNPCKLDQ Unpack Low Packed Dword 
Data to Qword
MMX Register 2 to MMX Register1
Memory to MMX Register

5
70F62 [11 mm1 mm2]

0F62 [11 mm reg]
MMX reg 1 [word] <--interleave-- MMX reg 1 [low dword], MMX reg 2 [low dword] 
MMX reg [word] <--interleave-- memory [low dword], MMX reg [low dword]

1/1
1/1

PUNPCKLWD Unpack Low Packed Word 
Data to Packed Dwords
MMX Register 2 to MMX Register1
Memory to MMX Register

5
80F61 [11 mm1 mm2]

0F61 [11 mm reg]
MMX reg 1 [word] <--interleave-- MMX reg 1 [low word], MMX reg 2 [low word] 
MMX reg [word] <--interleave-- memory [low word], MMX reg [low word]

1/1
1/1

PXOR Bitwise XOR
MMX Register 2 to MMX Register1
Memory to MMX Register

5
90FEF [11 mm1 mm2]

0FEF [11 mm reg]
MMX Reg 1 [qword] <--logic exclusive OR-- MMX Reg 1 [qword], MMX Reg 2 [qword] 
MMX Reg [qword] <--logic exclusive OR-- memory[qword], MMX Reg [qword]

1/1
1/1

Table 6-25.  M II Processor MMX Instruction Set Clock Count Summary  (Continued)
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Appendix

Advancing the Standards



Ordering Information

300M II

1740002

Device Name
M II

Package Type

G = PGA Package

Temperature Range

 G P

P = Commercial

Performance 

Note:   For further information concerning Performance Ratings, visit our website at www.cyrix.com.

MII™  PROCESSOR
 Enhanced High Performance CPU
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Advancing the Standards



The Cyrix M II CPU part numbers are listed below.

 

Cyrix M II™ Part Numbers

PART NUMBER CLOCK
MULTIPLIER

FREQUENCY
(MHz)

BUS INTERNAL

M II - 300GP 3.0 75 225

M II - 300GP 3.5 66 233

M II - 333GP 3.0 83 250
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AC Characteristics 4-6
Address Bus Signals 3-9
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Architecture Overview 1-1

B ————————————————————

Back-Off Timing 3-47
Base Field, Instruction Format 6-10
Branch Control 1-13
Burst Cycle Address Sequence 3-32
Burst Write Cycles 3-35
Bus Arbitration 3-16
Bus Arbitration 3-44
Bus Cycle Control Signals 3-13
Bus Cycle Definition 3-11
Bus Cycle Types Table 3-12
Bus Cycles, Non-pipelined 3-27
Bus Hold, Signal States During 3-17
Bus Interface 3-1
Bus Interface Unit 1-17
Bus State Definition 3-24
Bus State Diagram for M II 3-25
Bus Timing 3-23
C ————————————————————

Cache Coherency Signals 3-18
Cache Control Signals 3-14
Cache Control Timing 3-41
Cache Disable, Overall (CR0-14) 2-14
Cache Disable by Region 2-36
Cache Inquiry Cycles 3-48
Cache Inquiry Cycles, SMM Mode 3-54

INDEX

Cache Organization 2-58
Cache Units 1-14
Caches, Memory 2-57
CCR0 Bit Definitions 2-26
CCR1 Bit Definitions 2-27
CCR2 Bit Definitions 2-28
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CCR5 Bit Definitions 2-31
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Clock Count for MMX Instructions 6-38
Clock Specifications 4-8
Configuration Control Registers 2-24
Control Registers 2-13
Counter Event Control Register 2-40
CPUID Instruction 6-11
Cyrix Enhanced SMM Mode 2-78

D ————————————————————

Data Bus Signals 3-10
Data Bypassing 1-12
Data Forwarding 1-9
Data Parity Signals 3-10
DC Characteristics 4-4
Debug Register 2-44
Descriptors 2-17
Differences Between 
       M II and 6x86 Processors 1-2
E ————————————————————
Electrical Specifications 4-1
Error Codes 2-69
Event Type Register 2-41
EWBE# Timing 3-43
Exceptions 2-62
Exceptions in Real Mode 2-68

Index
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Flags Register 2-9
Floating Point Unit 1-17
FPU Error Interface 3-19
FPU Error Interface Signals 3-19
FPU Operations 2-86
Functional Blocks 1-3

G ————————————————————

Gate Descriptors 2-20
Gates, Protection Level Transfer 2-84

I————————————————————

I/O Address Space 2-48
Index Field, Instruction Format 6-9
Initialization and Protected Mode 2-84
Initialization of the CPU 2-1
Input Hold Times 4-11
Input Setup Times 4-11
Inquiry Cycles Using AHOLD 3-51
Inquiry Cycles Using BOFF# 3-50
Inquiry Cycles Using HOLD/HLDA 3-49
Instruction Fields, General 6-2
Instruction Line Cache 1-15
Instruction Pointer Register 2-9
Instruction Set Overview 2-3
Instruction Set Summary 6-1
Instruction Set Tables 6-12
Instruction Set Tables  Assumptions 6-12
Integer Unit 1-4
Interrupt Acknowledge Cycles 3-39
Interrupt and Exception Priorities 2-66
Interrupt Control Signals 3-13
Interrupt Vectors 2-64
Interrupts and Exceptions 2-62

J ————————————————————

JTAG AC Specifications 4-13
JTAG Interface 3-22

L ————————————————————

Lock Prefix 2-3

M ————————————————————

Maximum Ratings, Absolute 4-2
Mechanical Specifications 5-1
Memory Addressing 2-50
Memory Addressing Methods 2-48
Memory Management Unit 1-16
MESI States, Unified Cache 2-57
MMX Operations 2-89
mod and r/m Fields, Inst. Format 6-6
Mode State Diagram 2-81
Model Specific Registers 2-38
N ————————————————————
NC and Reserved Pins 4-2
Non-pipelined Burst Read Cycles 3-30
Non-pipelined Bus Cycles 3-27

O ————————————————————

Offset Mechanism 2-49
Opcode Field, Instruction Format 6-4
Out-of-order Processing 1-5
Output Float Delays 4-10
Output Valid Delays 4-9

P ————————————————————

Package, Mechanical Drawing 5-5
Paging Mechanisms (Detail) 2-52
Performance Monitoring 2-38
Performance Monitoring Event Type 2-41
Pin Diagram, 296-Pin SPGA Package 5-1
Pin List, Sorted by Pin Number 5-3
Pin List, Sorted by Signal Name 5-4
Pipeline Stages 1-5
Pipelined Back-to-Back R/W Cycles 3-38
Pipelined Bus Cycles 3-36
Power and Ground Connections 4-1
Power Dissipation 4-5
Power Management Interface Signals 3-19
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Privilege Levels 2-82
Programming Interface 2-1
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reg Field, Instruction Format 6-7
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Thermal Characteristics 5-7
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Unified Cache 1-14
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