
AMD Extensions to the
3DNow! and MMX

Instruction Sets

Manual

TM TM

Trademarks

AMD, the AMD logo, AMD Athlon, and combinations thereof, and 3DNow! are trademarks, and AMD-K6 is a
registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.

© 2000 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms
and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims
any express or implied warranty, relating to its products including, but not
limited to, the implied warranty of merchantability, fitness for a particular
purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use
as components in systems intended for surgical implant into the body, or in
other applications intended to support or sustain life, or in any other applica-
tion in which the failure of AMD’s product could create a situation where per-
sonal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any
time without notice.

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
Contents

Revision History . vii

1 Extensions to the 3DNow!™ and MMX™ Instruction Sets 1

Introduction . 1

2 Extensions to the 3DNow!™ Instruction Set 3

PF2IW. 4

PFNACC . 6

PFPNACC. 7

PI2FW. 8

PSWAPD . 9

3 Extensions to the MMX™ Instruction Set 11

MASKMOVQ . 12

MOVNTQ . 13

PAVGB . 14

PAVGW . 17

PEXTRW . 19

PINSRW . 20

PMAXSW . 21

PMAXUB . 22

PMINSW. 24

PMINUB . 25

PMOVMSKB . 27

PMULHUW . 28

PREFETCHNTA - PREFETCHT0 - PREFETCHT1 -
PREFETCHT2 . 30

PSADBW . 31

PSHUFW . 33

SFENCE . 35
Contents iii

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
iv Contents

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
List of Tables

Table 1. 3DNow!™ Technology DSP Extensions 2

Table 2. MMX™ Instruction Set Extensions 2

Table 3. Numerical Range for the PF2IW Instruction 5

Table 4. Locality References for the Prefetch Instructions 30
List of Tables v

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
vi List of Tables

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
Revision History

Date Rev Description

August 1999 B Initial public release

February
2000 C

■ Clarification of PSWAPD operation on page 9.
■ Clarification of PINSRW description and operation on page 20.
■ Clarification of PSHUFW description and operation on page 33.
■ Clarification of SFENCE encoding on page 35.

March 2000 D
■ Clarification of PFNACC operation on page 6.
■ Clarification of PFPNACC operation on page 7.
Revision History vii

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
viii Revision History

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
1
Extensions to the 3DNow!™
and MMX™ Instruction Sets
Introduction

With the advent of the AMD Athlon™ processor, AMD has
taken 3DNow!™ Technology to the next level of performance
and functionality. The AMD Athlon processor adds 24 new
instructions to the existing 3DNow! and MMX™ instruction
sets. Along with the new instructions, the AMD Athlon
processor implements addit ional microarchitecture
enhancements that enable more efficient operation of all these
instructions, and programming may be simplified because there
are fewer coding restrictions.

3DNow! technology enabled fast frame rates on high-resolution
3D rendered scenes, amazing physical modeling of real-world
environments, sharp and detailed 3D imaging, smooth video
playback, and theater-quality audio. The new enhanced
3DNow! technology implemented in the AMD Athlon processor
adds streaming and digital s ignal processing (DSP)
technologies, which allow faster, more accurate speech
recognition, DVD-quality audio and video, and streaming audio
and video for a rich Internet experience.

The instructions described in this document are extensions to
the instruction sets described in the 3DNow!™ Technology
Manual, order# 21928 and the Multimedia Technology Manual,
order# 20726. The five new 3DNow! technology DSP extensions
Chapter 1 Extensions to the 3DNow!™ and MMX™ Instruction Sets 1

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
are summarized in Table 1 and fully described in Chapter 2.
The 19 new instructions augmenting existing MMX technology
are summarized in Table 2 and fully described in Chapter 3.

Table 1. 3DNow!™ Technology DSP Extensions

Operation Function Opcode / imm8

PF2IW Packed Floating-Point to Integer Word Conversion with Sign Extend 0Fh 0Fh / 1Ch

PFNACC Packed Floating-Point Negative Accumulate 0Fh 0Fh / 8Ah

PFPNACC Packed Floating-Point Mixed Positive-Negative Accumulate 0Fh 0Fh / 8Eh

PI2FW Packed Integer Word to Floating-Point Conversion 0Fh 0Fh / 0Ch

PSWAPD Packed Swap Doubleword 0Fh 0Fh / BBh

Table 2. MMX™ Instruction Set Extensions

Operation Function Opcode / imm8

MASKMOVQ Streaming (Cache Bypass) Store Using Byte Mask 0Fh F7h

MOVNTQ Streaming (Cache Bypass) Store 0Fh E7h

PAVGB Packed Average of Unsigned Byte 0Fh E0h

PAVGW Packed Average of Unsigned Word 0Fh E3h

PEXTRW Extract Word into Integer Register 0Fh C5h

PINSRW Insert Word from Integer Register 0Fh C4h

PMAXSW Packed Maximum Signed Word 0Fh EEh

PMAXUB Packed Maximum Unsigned Byte 0Fh DEh

PMINSW Packed Minimum Signed Word 0Fh EAh

PMINUB Packed Minimum Unsigned Byte 0Fh DAh

PMOVMSKB Move Byte Mask to Integer Register 0Fh D7h

PMULHUW Packed Multiply High Unsigned Word 0Fh E4h

PREFETCHNTA Move Data Closer to the Processor Using the NTA Reference 0Fh 18h 0*

PREFETCHT0 Move Data Closer to the Processor Using the T0 Reference 0Fh 18h 1*

PREFETCHT1 Move Data Closer to the Processor Using the T1 Reference 0Fh 18h 2*

PREFETCHT2 Move Data Closer to the Processor Using the T2 Reference 0Fh 18h 3*

PSADBW Packed Sum of Absolute Byte Differences 0Fh F6h

PSHUFW Packed Shuffle Word 0Fh 70h

SFENCE Store Fence 0Fh AEh / 7h
Note:

* The number after the opcode indicates the different prefetch modes in the ModR/M byte.
2 Extensions to the 3DNow!™ and MMX™ Instruction Sets Chapter 1

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
2
Extensions to the 3DNow!™
Instruction Set
This chapter describes the five new DSP instructions added to
the 3DNow! instruction set first defined in the 3DNow!™
Technology Manual, order# 21928. The five instructions enhance
the performance of communications applications, including
soft modems, soft ADSL, MP3, and Dolby Digital and Surround
sound processing.

Programmers should check bit 30 of the Extended Feature
Flags in the EDX register after executing extended function
8000_0001h of the CPUID instruction. If bit 30 is set, the AMD
processor supports these five instructions. For more
information, refer to the AMD Processor Recognition Application
Note, order# 20734.

Instruction definitions are in alphabetical order according to
the instruction mnemonics.
Chapter 2 Extensions to the 3DNow!™ Instruction Set 3

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PF2IW

mnemonic opcode / imm8 description

PF2IW mmreg1, mmreg2 0Fh 0Fh / 1Ch Packed floating-point to integer word conversion with
PF2IW mmreg, mem64 sign extend

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PF2IW converts a register containing single-precision floating-point operands to
16-bit signed integers using truncation. Arguments outside the range representable by
signed 16-bit integers are saturated to the largest and smallest 16-bit integer,
depending on their sign. All results are sign-extended to 32-bits. Table 3 on page 5
shows the numerical range of the PF2IW instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
4 Extensions to the 3DNow!™ Instruction Set Chapter 2

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
“PF2IW mmreg1, mmreg2” performs the following operations:

IF (mmreg2[31:0] >= 215)
THEN mmreg1[31:0] = 0x0000_7FFF

ELSE IF (mmreg2[31:0] <= –215)
THEN mmreg1[31:0] = 0xFFFF_8000

ELSE mmreg1[31:0] = int(mmreg2[31:0])
IF (mmreg2[63:32] >= 215)

THEN mmreg1[63:32] = 0x0000_7FFF
ELSE IF (mmreg2[63:32] <= –215)

THEN mmreg1[63:32] = 0xFFFF_8000
ELSE mmreg1[63:32] = int(mmreg2[63:32])

“PF2IW mmreg, mem64” performs the following operations:

IF (mem64[31:0] >= 215)
THEN mmreg[31:0] = 0x0000_7FFF

ELSE IF (mem64[31:0] <= –215)
THEN mmreg[31:0] = 0xFFFF_8000

ELSE mmreg[31:0] = int(mem64[31:0])

IF (mem64[63:32] >= 215)
THEN mmreg[63:32] = 0x0000_7FFF

ELSE IF (mem64[63:32] <= –215)
THEN mmreg[63:32] = 0xFFFF_8000

ELSE mmreg[63:32] = int(mem64[63:32])

Related Instructions See the PF2ID, PI2FW, and PI2FD instructions.

Table 3. Numerical Range for the PF2IW Instruction

Source 2 Source 1 and Destination

0 0

Normal, abs(Source 1) <1 0

Normal, –32768 < Source 1 <= –1 round to zero (Source 1)

Normal, 1 <= Source 1< 32768 round to zero (Source 1)

Normal, Source 1 >= 32768 0x0000_7FFF

Normal, Source 1 <= –32768 0xFFFF_8000

Unsupported Undefined
Chapter 2 Extensions to the 3DNow!™ Instruction Set 5

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PFNACC

mnemonic opcode / imm8 description

PFNACC mmreg1, mmreg2 0Fh 0Fh / 8Ah Packed floating-point negative accumulate
PFNACC mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFNACC performs negative accumulation of the two doublewords of the destination
operand and the source operand. PFNACC then stores the results in the low and high
words of the destination operand, respectively. Both operands are single-precision,
floating-point operands with 24-bit significands.

“PFNACC mmreg1, mmreg2” performs the following operations:

temp = mmreg2
mmreg1[31:0] = mmreg1[31:0] – mmreg1[63:32]
mmreg1[63:32] = temp[31:0] – temp[63:32]

“PFNACC mmreg, mem64” performs the following operations:

mmreg[31:0] = mmreg[31:0] – mmreg[63:32]
mmreg[63:32] = mem64[31:0] – mem64[63:32]

Related Instructions See the PFACC and PFPNACC instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
6 Extensions to the 3DNow!™ Instruction Set Chapter 2

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PFPNACC

mnemonic opcode / imm8 description

PFPNACC mmreg1, mmreg2 0Fh 0Fh / 8Eh Packed floating-point mixed positive-negative
PFPNACC mmreg, mem64 accumulate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFPNACC performs mixed negative and positive accumulation of the two
doublewords of the destination operand and the source operand. PFPNACC then
stores the results in the low and high words of the destination operand, respectively.
Both operands are single-precision, floating-point operands with 24-bit significands.

“PFPNACC mmreg1, mmreg2” performs the following operations:

temp = mmreg2
mmreg1[31:0] = mmreg1[31:0] – mmreg1[63:32]
mmreg1[63:32] = temp[31:0] + temp[63:32]

“PFPNACC mmreg, mem64” performs the following operations:

mmreg[31:0] = mmreg[31:0] – mmreg[63:32]
mmreg[63:32] = mem64[31:0] + mem64[63:32]

Related Instructions See the PFACC and PFNACC instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 Extensions to the 3DNow!™ Instruction Set 7

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PI2FW

mnemonic opcode / imm8 description

PI2FW mmreg1, mmreg2 0Fh 0Fh / 0Ch Packed 16-bit integer to floating-point conversion
PI2FW mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated

PI2FW converts a register containing signed, 16-bit integers to single-precision,
floating-point operands.

“PI2FW mmreg1, mmreg2” performs the following operations:

mmreg1[31:0] = float(mmreg2[15:0])
mmreg1[63:32] = float(mmreg2[47:32])

“PI2FW mmreg, mem64” performs the following operations:

mmreg[31:0] = float(mem64[15:0])
mmreg[63:32] = float(mem64[47:32])

Related Instructions See the PI2FD, PF2IW, and PF2ID instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
8 Extensions to the 3DNow!™ Instruction Set Chapter 2

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PSWAPD

mnemonic opcode / imm8 description

PSWAPD mmreg1, mmreg2 0Fh 0Fh / BBh Packed swap doubleword
PSWAPD mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated

The PSWAPD instruction swaps or reverses the upper and lower doublewords of the
source operand.

“PSWAPD mmreg1, mmreg2” performs the following operations:

temp = mmreg2
mmreg1[63:32] = temp[31:0]
mmreg1[31:0] = temp[63:32]

“PSWAPD mmreg, mem64” performs the following operations:

mmreg[63:32] = mem64[31:0]
mmreg[31:0] = mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 Extensions to the 3DNow!™ Instruction Set 9

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
10 Extensions to the 3DNow!™ Instruction Set Chapter 2

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
3
Extensions to the
MMX™ Instruction Set
This chapter describes 19 new instructions added to the MMX
instruction set defined in the AMD-K6® MMX™ Enhanced
Processor Multimedia Technology Manual, order# 20726. Twelve
of the instructions improve multimedia-enhanced integer math
calculations used in such applications as speech recognition
and high-quality video processing. Seven instructions are
dedicated to efficiently moving multimedia data into and out of
the processor.

Programmers should check bit 22 of the Extended Feature
Flags in the EDX register after executing extended function
8000_0001h of the CPUID instruction. If bit 22 is set, the AMD
processor supports these 19 instructions. See the AMD Processor
Recognition Application Note , order# 20734 for more
information.

Instruction definitions are in alphabetical order according to
the instruction mnemonics.
Chapter 3 Extensions to the MMX™ Instruction Set 11

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
MASKMOVQ

mnemonic opcode description

MASKMOVQ mmreg1, mmreg2 (edi) 0Fh F7h Streaming (cache bypass) store using byte mask

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The MASKMOVQ instruction conditionally stores individual bytes of an MMX register
to a memory location specified by the edi register, while using the byte mask in a
second MMX register. The MASKMOVQ instruction acts as a streaming store to
minimize cache pollution. It is used to store data without first reading in old data (no
write allocate).

“MASKMOVQ mmreg1, mmreg2 (edi)” performs the following operations:

memory[edi][63:56] = mmreg2[63] ? mmreg1[63:56] : memory[edi][63:56]
memory[edi][55:48] = mmreg2[55] ? mmreg1[55:48] : memory[edi][55:48]
memory[edi][47:40] = mmreg2[47] ? mmreg1[47:40] : memory[edi][47:40]
memory[edi][39:32] = mmreg2[39] ? mmreg1[39:32] : memory[edi][39:32]
memory[edi][31:24] = mmreg2[31] ? mmreg1[31:24] : memory[edi][31:24]
memory[edi][23:16] = mmreg2[23] ? mmreg1[23:16] : memory[edi][23:16]
memory[edi][15:8] = mmreg2[15] ? mmreg1[15:8] : memory[edi][15:8]
memory[edi][7:0] = mmreg2[7] ? mmreg1[7:0] : memory[edi][7:0]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
12 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
MOVNTQ

mnemonic opcode description

MOVNTQ mem64, mmreg 0Fh E7h Streaming (cache bypass) store

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The MOVNTQ instruction stores individual bytes of an MMX register to memory. The
MOVNTQ instruction acts as a streaming store to minimize cache pollution. It is used
to store data without first reading in old data (no write allocate).

“MOVNTQ mem64, mmreg” performs the following operations:

mem64[63:0] = mmreg

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 13

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PAVGB

mnemonic opcode description

PAVGB mmreg1, mmreg2 0Fh E0h Packed average of unsigned byte
PAVGB mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PAVGB instruction produces the rounded up averages of the eight unsigned 8-bit
integer values in the source operand (an MMX register or a 64-bit memory location)
and the eight corresponding unsigned 8-bit integer values in the destination operand
(an MMX register). It does so by adding the source and destination byte values to get a
9-bit unsigned intermediate value. The intermediate value is then incremented by one
and finally shifted to the right by one bit position. The eight unsigned 8-bit results are
stored in the MMX register specified as the destination operand.

The PAVGB instruction is identical to the 3DNow! PAVGUSB instruction and can be
used for pixel averaging in MPEG-2 motion compensation and video scaling
operations.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
14 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
Functional Illustration of the PAVGB Instruction

The following list explains the functional illustration of the PAVGB instruction:

■ The rounded byte average of FFh and FFh is FFh.

■ The rounded byte average of FFh and 00h is 80h.

■ The rounded byte average of 01h and FFh is also 80h.

■ The rounded byte average of 0Fh and 10h is 10h.

■ The rounded byte average of 00h and 01h is 01h.

■ The rounded byte average of 70h and 44h is 5Ah.

■ The rounded byte average of 07h and F7h is 7Fh.

■ The rounded byte average of 9Ah and A8h is A1h.

“PAVGB mmreg1, mmreg2” performs the following operations:

mmreg1[7:0] = (mmreg1[7:0] + mmreg2[7:0] + 1) >> 1
mmreg1[15:8] = (mmreg1[15:8] + mmreg2[15:8] + 1) >> 1
mmreg1[23:16] = (mmreg1[23:16] + mmreg2[23:16] + 1) >> 1
mmreg1[31:24] = (mmreg1[31:24] + mmreg2[31:24] + 1) >> 1
mmreg1[39:32] = (mmreg1[39:32] + mmreg2[39:32] + 1) >> 1
mmreg1[47:40] = (mmreg1[47:40] + mmreg2[47:40] + 1) >> 1
mmreg1[55:48] = (mmreg1[55:48] + mmreg2[55:48] + 1) >> 1
mmreg1[63:56] = (mmreg1[63:56] + mmreg2[63:56] + 1) >> 1

FFh FFh 01h 0Fh 9Ah00h 70h 07hmmreg2/mem64

mmreg1

per byte averaging

= = = = = = ==

FFh 80h 80h 10h A1h01h 5Ah 7Fhmmreg1

FFh 00h FFh 10h A8h01h 44h F7h

063

063

063

Indicates a value that was rounded-up
Chapter 3 Extensions to the MMX™ Instruction Set 15

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
“PAVGB mmreg, mem64” performs the following operations:

mmreg[7:0] = (mmreg[7:0] + mem64[7:0] + 1) >> 1
mmreg[15:8] = (mmreg[15:8] + mem64[15:8] + 1) >> 1
mmreg[23:16] = (mmreg[23:16] + mem64[23:16] + 1) >> 1
mmreg[31:24] = (mmreg[31:24] + mem64[31:24] + 1) >> 1
mmreg[39:32] = (mmreg[39:32] + mem64[39:32] + 1) >> 1
mmreg[47:40] = (mmreg[47:40] + mem64[47:40] + 1) >> 1
mmreg[55:48] = (mmreg[55:48] + mem64[55:48] + 1) >> 1
mmreg[63:56] = (mmreg[63:56] + mem64[63:56] + 1) >> 1

Related Instructions See the PAVGW instruction.
16 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PAVGW

mnemonic opcode description

PAVGW mmreg1, mmreg2 0Fh E3h Packed average of unsigned word
PAVGW mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PAVGW instruction is the same as the PAVGB instruction, except it operates on
packed unsigned words instead. PAVGW produces the rounded up averages of the four
unsigned 16-bit integer values in the source operand (an MMX register or a 64-bit
memory location) and the four corresponding unsigned 16-bit integer values in the
destination operand (an MMX register). It does so by adding the source and
destination byte values to get a 17-bit unsigned intermediate value. The intermediate
value is then incremented by one and finally shifted to the right by one bit position.
The four unsigned 16-bit results are stored in the MMX register specified as the
destination operand.

“PAVGW mmreg1, mmreg2” performs the following operations:

mmreg1[15:0] = (mmreg1[15:0] + mmreg2[15:0] + 1) >> 1
mmreg1[31:16] = (mmreg1[31:16] + mmreg2[31:16] + 1) >> 1
mmreg1[47:32] = (mmreg1[47:32] + mmreg2[47:32] + 1) >> 1
mmreg1[63:48] = (mmreg1[63:48] + mmreg2[63:48] + 1) >> 1

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 17

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
“PAVGW mmreg, mem64” performs the following operations:

mmreg[15:0] = (mmreg[15:0] + mem64[15:0] + 1) >> 1
mmreg[31:16] = (mmreg[31:16] + mem64[31:16] + 1) >> 1
mmreg[47:32] = (mmreg[47:32] + mem64[47:32] + 1) >> 1
mmreg[63:48] = (mmreg[63:48] + mem64[63:48] + 1) >> 1

Related Instructions See the PAVGB instruction.
18 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PEXTRW

mnemonic opcode description

PEXTRW reg32, mmreg, imm8 0Fh C5h Extract word into integer register

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PEXTRW instruction extracts one of the four words pointed to by imm8 from an
MMX register and stores that into the least significant word of a 32-bit integer register.

“PEXTRW reg32, mmreg, imm8” performs the following operations:

index = imm8[1:0] * 16
reg32[31:16] = 0
reg32[15:0] = mmreg[index+15:index]

Related Instructions See the PINSRW instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 19

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PINSRW

mnemonic opcode description

PINSRW mmreg, reg32, imm8 0Fh C4h Insert word from integer register
PINSRW mmreg, mem16, imm8

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PINSRW instruction inserts the least significant word of the source operand (an
integer register or a 16-bit memory location) into one of the four words of the
destination operand (an MMX register).

“PINSRW mmreg, reg32, imm8” performs the following operations:

index = imm8[1:0] * 16
temp1 = 0
temp1[index+15:index] = reg32[15:0]
temp2 = mmreg
temp2[index+15:index] = 0
mmreg = temp1 | temp2

“PINSRW mmreg, mem16, imm8” performs the following operations:

index = imm8[1:0] * 16
temp1 = 0
temp1[index+15:index] = mem16[15:0]
temp2 = mmreg
temp2[index+15:index] = 0
mmreg = temp1 | temp2

Related Instructions See the PEXTRW instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
20 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PMAXSW

mnemonic opcode description

PMAXSW mmreg1, mmreg2 0Fh EEh Packed maximum signed word
PMAXSW mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMAXSW instruction operates on signed 16-bit data and selects the maximum
signed value between source 1 and source 2 for each of the four word positions.

“PMAXSW mmreg1, mmreg2” performs the following signed operations:

mmreg1[15:0] = (mmreg1[15:0] > mmreg2[15:0]) ? mmreg1[15:0] : mmreg2[15:0]
mmreg1[31:16] = (mmreg1[31:16] > mmreg2[31:16]) ? mmreg1[31:16] : mmreg2[31:16]
mmreg1[47:32] = (mmreg1[47:32] > mmreg2[47:32]) ? mmreg1[47:32] : mmreg2[47:32]
mmreg1[63:48] = (mmreg1[63:48] > mmreg2[63:48]) ? mmreg1[63:48] : mmreg2[63:48]

“PMAXSW mmreg, mem64” performs the following signed operations:

mmreg[15:0] = (mmreg[15:0] > mem64[15:0]) ? mmreg[15:0] : mem64[15:0]
mmreg[31:16] = (mmreg[31:16] > mem64[31:16]) ? mmreg[31:16] : mem64[31:16]
mmreg[47:32] = (mmreg[47:32] > mem64[47:32]) ? mmreg[47:32] : mem64[47:32]
mmreg[63:48] = (mmreg[63:48] > mem64[63:48]) ? mmreg[63:48] : mem64[63:48]

Related Instructions See the PMINSW instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 21

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PMAXUB

mnemonic opcode description

PMAXUB mmreg1, mmreg2 0Fh DEh Packed maximum unsigned byte
PMAXUB mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMAXUB instruction operates on unsigned 8-bit data and selects the maximum
unsigned value between source 1 and source 2 for each of the eight byte positions.

“PMAXUB mmreg1, mmreg2” performs the following unsigned operations:

mmreg1[7:0] = (mmreg1[7:0] > mmreg2[7:0]) ? mmreg1[7:0] : mmreg2[7:0]
mmreg1[15:8] = (mmreg1[15:8] > mmreg2[15:8]) ? mmreg1[15:8] : mmreg2[15:8]
mmreg1[23:16] = (mmreg1[23:16] > mmreg2[23:16]) ? mmreg1[23:16] : mmreg2[23:16]
mmreg1[31:24] = (mmreg1[31:24] > mmreg2[31:24]) ? mmreg1[31:24] : mmreg2[31:24]
mmreg1[39:32] = (mmreg1[39:32] > mmreg2[39:32]) ? mmreg1[39:32] : mmreg2[39:32]
mmreg1[47:40] = (mmreg1[47:40] > mmreg2[47:40]) ? mmreg1[47:40] : mmreg2[47:40]
mmreg1[55:48] = (mmreg1[55:48] > mmreg2[55:48]) ? mmreg1[55:48] : mmreg2[55:48]
mmreg1[63:56] = (mmreg1[63:56] > mmreg2[63:56]) ? mmreg1[63:56] : mmreg2[63:56]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
22 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
“PMAXUB mmreg, mem64” performs the following unsigned operations:

mmreg[7:0] = (mmreg[7:0] > mem64[7:0]) ? mmreg[7:0] : mem64[7:0]
mmreg[15:8] = (mmreg[15:8] > mem64[15:8]) ? mmreg[15:8] : mem64[15:8]
mmreg[23:16] = (mmreg[23:16] > mem64[23:16]) ? mmreg[23:16] : mem64[23:16]
mmreg[31:24] = (mmreg[31:24] > mem64[31:24]) ? mmreg[31:24] : mem64[31:24]
mmreg[39:32] = (mmreg[39:32] > mem64[39:32]) ? mmreg[39:32] : mem64[39:32]
mmreg[47:40] = (mmreg[47:40] > mem64[47:40]) ? mmreg[47:40] : mem64[47:40]
mmreg[55:48] = (mmreg[55:48] > mem64[55:48]) ? mmreg[55:48] : mem64[55:48]
mmreg[63:56] = (mmreg[63:56] > mem64[63:56]) ? mmreg[63:56] : mem64[63:56]

Related Instructions See the PMINUB instruction.
Chapter 3 Extensions to the MMX™ Instruction Set 23

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PMINSW

mnemonic opcode description

PMINSW mmreg1, mmreg2 0Fh EAh Packed minimum signed word
PMINSW mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMINSW instruction operates on signed 16-bit data and selects the minimum
arithmetic value between source 1 and source 2 for each word.

“PMINSW mmreg1, mmreg2” performs the following signed operations:

mmreg1[15:0] = (mmreg1[15:0] <= mmreg2[15:0]) ? mmreg1[15:0] : mmreg2[15:0]
mmreg1[31:16] = (mmreg1[31:16] <= mmreg2[31:16]) ? mmreg1[31:16] : mmreg2[31:16]
mmreg1[47:32] = (mmreg1[47:32] <= mmreg2[47:32]) ? mmreg1[47:32] : mmreg2[47:32]
mmreg1[63:48] = (mmreg1[63:48] <= mmreg2[63:48]) ? mmreg1[63:48] : mmreg2[63:48]

“PMINSW mmreg, mem64” performs the following signed operations:

mmreg[15:0] = (mmreg[15:0] <= mem64[15:0]) ? mmreg[15:0] : mem64[15:0]
mmreg[31:16] = (mmreg[31:16] <= mem64[31:16]) ? mmreg[31:16] : mem64[31:16]
mmreg[47:32] = (mmreg[47:32] <= mem64[47:32]) ? mmreg[47:32] : mem64[47:32]
mmreg[63:48] = (mmreg[63:48] <= mem64[63:48]) ? mmreg[63:48] : mem64[63:48]

Related Instructions See the PMAXSW instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
24 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PMINUB

mnemonic opcode description

PMINUB mmreg1, mmreg2 0Fh DAh Packed minimum unsigned byte
PMINUB mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMINUB instruction operates on unsigned 8-bit data and selects the minimum
value between source 1 and source 2 for each byte position.

“PMINUB mmreg1, mmreg2” performs the following unsigned operations:

mmreg1[7:0] = (mmreg1[7:0] <= mmreg2[7:0]) ? mmreg1[7:0] : mmreg2[7:0]
mmreg1[15:8] = (mmreg1[15:8] <= mmreg2[15:8]) ? mmreg1[15:8] : mmreg2[15:8]
mmreg1[23:16] = (mmreg1[23:16] <= mmreg2[23:16]) ? mmreg1[23:16] : mmreg2[23:16]
mmreg1[31:24] = (mmreg1[31:24] <= mmreg2[31:24]) ? mmreg1[31:24] : mmreg2[31:24]
mmreg1[39:32] = (mmreg1[39:32] <= mmreg2[39:32]) ? mmreg1[39:32] : mmreg2[39:32]
mmreg1[47:40] = (mmreg1[47:40] <= mmreg2[47:40]) ? mmreg1[47:40] : mmreg2[47:40]
mmreg1[55:48] = (mmreg1[55:48] <= mmreg2[55:48]) ? mmreg1[55:48] : mmreg2[55:48]
mmreg1[63:56] = (mmreg1[63:56] <= mmreg2[63:56]) ? mmreg1[63:56] : mmreg2[63:56]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 25

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
“PMINUB mmreg1, mem64” performs the following unsigned operations:

mmreg[7:0] = (mmreg[7:0] <= mem64[7:0]) ? mmreg[7:0] : mem64[7:0]
mmreg[15:8] = (mmreg[15:8] <= mem64[15:8]) ? mmreg[15:8] : mem64[15:8]
mmreg[23:16] = (mmreg[23:16] <= mem64[23:16]) ? mmreg[23:16] : mem64[23:16]
mmreg[31:24] = (mmreg[31:24] <= mem64[31:24]) ? mmreg[31:24] : mem64[31:24]
mmreg[39:32] = (mmreg[39:32] <= mem64[39:32]) ? mmreg[39:32] : mem64[39:32]
mmreg[47:40] = (mmreg[47:40] <= mem64[47:40]) ? mmreg[47:40] : mem64[47:40]
mmreg[55:48] = (mmreg[55:48] <= mem64[55:48]) ? mmreg[55:48] : mem64[55:48]
mmreg[63:56] = (mmreg[63:56] <= mem64[63:56]) ? mmreg[63:56] : mem64[63:56]

Related Instructions See the PMAXUB instruction.
26 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PMOVMSKB

mnemonic opcode description

PMOVMSKB reg32, mmreg 0Fh D7h Move byte mask to integer register

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMOVMSKB instruction selects the most significant bit from each byte position of
an MMX register and collapses all eight bits into the least significant byte of an
integer register.

“PMOVMSKB reg32, mmreg” performs the following operations:

reg32[31:8] = 0
reg32[7] = mmreg[63]
reg32[6] = mmreg[55]
reg32[5] = mmreg[47]
reg32[4] = mmreg[39]
reg32[3] = mmreg[31]
reg32[2] = mmreg[23]
reg32[1] = mmreg[15]
reg32[0] = mmreg[7]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 27

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PMULHUW

mnemonic opcode description

PMULHUW mmreg1, mmreg2 0Fh E4h Packed multiply high unsigned word
PMULHUW mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMULHUW instruction multiplies the four unsigned words in the source operand
with the four unsigned words in the destination operand. The upper 16 bits of the
32-bit intermediate result is placed into the destination operand.

“PMULHUW mmreg1, mmreg2” performs the following operations:

temp1 = (mmreg1[15:0] * mmreg2[15:0])
temp2 = (mmreg1[31:16] * mmreg2[31:16])
temp3 = (mmreg1[47:32] * mmreg2[47:32])
temp4 = (mmreg1[63:48] * mmreg2[63:48])

mmreg1[15:0] = temp1[31:16]
mmreg1[31:16] = temp2[31:16]
mmreg1[47:32] = temp3[31:16]
mmreg1[63:48] = temp4[31:16]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
28 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
“PMULHUW mmreg, mem64” performs the following operations:

temp1 = (mmreg1[15:0] * mem642[15:0])
temp2 = (mmreg1[31:16] * mem64[31:16])
temp3 = (mmreg1[47:32] * mem64[47:32])
temp4 = (mmreg1[63:48] * mem64[63:48])

mmreg1[15:0] = temp1[31:16]
mmreg1[31:16] = temp2[31:16]
mmreg1[47:32] = temp3[31:16]
mmreg1[63:48] = temp4[31:16]
Chapter 3 Extensions to the MMX™ Instruction Set 29

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
PREFETCHNTA - PREFETCHT0 - PREFETCHT1 - PREFETCHT2

mnemonic opcode / ModR/M description

PREFETCHNTA mem8 0Fh 18h / 0 Move data closer to the processor using the NTA reference.
PREFETCHT0 mem8 0Fh 18h / 1 Move data closer to the processor using the T0 reference.
PREFETCHT1 mem8 0Fh 18h / 2 Move data closer to the processor using the T1 reference.
PREFETCHT2 mem8 0Fh 18h / 3 Move data closer to the processor using the T2 reference.

Privilege: none
Registers Affected: none
Flags Affected: none
Exceptions Generated: none

The prefetch instruction brings a cache line into the processor cache level(s)
specified by a locality reference. The address of the prefetched cache line is specified
by the mem8 value. The prefetch instruction loads a cache line even if the mem8
address is not aligned with the start of the line. If the cache line is already contained
in a cache level that is lower than the locality reference or a memory fault is
detected, then no bus cycle is initiated and the instruction is treated as a NOP.

The operation of the prefetch instructions is processor implementation dependent.
The instructions can be ignored or changed by a processor implementation, though
they will not change program behavior. The cache line size is also implementation
dependent having a minimum size of 32 bytes.

Bits 5:3 of the ModR/M byte indicate the cache locality references.

Table 4. Locality References for the Prefetch Instructions

Locality
Reference Description

NTA Move specified data into processor with minimal L1/L2 cache pollution.

T0 Move specified data into all cache levels.

T1 Move specified data into all cache levels except 0th level cache.

T2 Move specified data into all cache levels except 0th and 1st level caches.
Note:

A 0th level cache is implementation dependent.
30 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PSADBW

mnemonic opcode description

PSADBW mmreg1, mmreg2 0Fh F6h Packed sum of absolute byte differences
PSADBW mmreg, mem64

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSADBW instruction is the sum of the absolute value of the differences between
each byte position of source 1 and source 2.

“PSADBW mmreg1, mmreg2” performs the following operations:

mmreg1[63:16] = 0
mmreg1[15:0] = abs(mmreg1[7:0] – mmreg2[7:0]) +

abs(mmreg1[15:8] – mmreg2[15:8]) +
abs(mmreg1[23:16] – mmreg2[23:16]) +
abs(mmreg1[31:24] – mmreg2[31:24]) +
abs(mmreg1[39:32] – mmreg2[39:32]) +
abs(mmreg1[47:40] – mmreg2[47:40]) +
abs(mmreg1[55:48] – mmreg2[55:48]) +
abs(mmreg1[63:56] – mmreg2[63:56])

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 31

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
“PSADBW mmreg, mem64” performs the following operations:

mmreg[63:16] = 0
mmreg[15:0] = abs(mmreg[7:0] – mem64[7:0]) +

abs(mmreg[15:8] – mem64[15:8]) +
abs(mmreg[23:16] – mem64[23:16]) +
abs(mmreg[31:24] – mem64[31:24]) +
abs(mmreg[39:32] – mem64[39:32]) +
abs(mmreg[47:40] – mem64[47:40]) +
abs(mmreg[55:48] – mem64[55:48]) +
abs(mmreg[63:56] – mem64[63:56])

Related Instructions See the PAVGUSB instruction.
32 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
PSHUFW

mnemonic opcode description

PSHUFW mmreg1, mmreg2, imm8 0Fh 70h Packed shuffle word
PSHUFW mmreg, mem64, imm8

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSHUFW instruction selects from the four words of the source operand (an MMX
register or a 64-bit memory location) in one of 256 possible ways as defined by an
immediate byte.

“PSHUFW mmreg1, mmreg2, imm8” performs the following operations:

index3 = imm8[7:6] * 16
index2 = imm8[5:4] * 16
index1 = imm8[3:2] * 16
index0 = imm8[1:0] * 16
temp = mmreg2
mmreg1[63:48] = temp[index3+15:index3]
mmreg1[47:32] = temp[index2+15:index2]
mmreg1[31:16] = temp[index1+15:index1]
mmreg1[15:0] = temp[index0+15:index0]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X The task switch bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 3 Extensions to the MMX™ Instruction Set 33

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
“PSHUFW mmreg, mem64, imm8” performs the following operations:

index3 = imm8[7:6] * 16
index2 = imm8[5:4] * 16
index1 = imm8[3:2] * 16
index0 = imm8[1:0] * 16
mmreg[63:48] = mem64[index3+15:index3]
mmreg[47:32] = mem64[index2+15:index2]
mmreg[31:16] = mem64[index1+15:index1]
mmreg[15:0] = mem64[index0+15:index0]
34 Extensions to the MMX™ Instruction Set Chapter 3

22466D/0—March 2000 AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
SFENCE

mnemonic opcode / imm8 description

SFENCE 0Fh AEh / 7h Store fence

Privilege: none
Registers Affected: none
Flags Affected: none
Exceptions Generated: none

In a weakly ordered system, hardware is allowed to reorder reads and writes between
the processor and memory. For example, writeback stores can complete ahead of
write-combining stores. SFENCE provides a mechanism to force a strong ordering
between routines that produce weakly ordered results (such as WC memory types).

The SFENCE instruction makes all previous writes globally visible to any preceding
store. For example, an SFENCE instruction will force a newer write-back store to wait
until all older streaming stores or write-combining stores are completed.

Note: Software should encode the SFENCE instruction with a ModR/M byte of 0xF8.
All other possible ModR/M encodings are reserved for future use.
Chapter 3 Extensions to the MMX™ Instruction Set 35

AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets 22466D/0—March 2000
36 Extensions to the MMX™ Instruction Set Chapter 3

	Contents
	List of Tables
	Revision History
	Extensions to the 3DNow!™ and MMX™ Instruction Sets
	Introduction

	Extensions to the 3DNow!™ Instruction Set
	PF2IW
	PFNACC
	PFPNACC
	PI2FW
	PSWAPD

	Extensions to the MMX™ Instruction Set
	MASKMOVQ
	MOVNTQ
	PAVGB
	PAVGW
	PEXTRW
	PINSRW
	PMAXSW
	PMAXUB
	PMINSW
	PMINUB
	PMOVMSKB
	PMULHUW
	PREFETCHNTA - PREFETCHT0 - PREFETCHT1 - PREFETCHT2
	PSADBW
	PSHUFW
	SFENCE

