

3DNow!
Technology

Manual

TM

Trademarks

AMD, the AMD logo, K6, 3DNow!, AMD Athlon, and combinations thereof, and K86 are trademarks, and AMD-K6
is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.

© 2000 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc.
(“AMD”) products. AMD makes no representations or warranties with respect to the accuracy
or completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted
by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its
products including, but not limited to, the implied warranty of merchantability, fitness for a
particular purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components
in systems intended for surgical implant into the body, or in other applications intended to
support or sustain life, or in any other application in which the failure of AMD’s product could
create a situation where personal injury, death, or severe property or environmental damage
may occur. AMD reserves the right to discontinue or make changes to its products at any time
without notice.

21928G/0—March 2000 3DNow!™ Technology Manual
Contents

Revision History . ix

1 3DNow!™ Technology 1

Introduction . 1

Key Functionality . 2

Feature Detection . 3

Register Set . 4

Data Types . 6

3DNow!™ Instruction Formats . 8

Definitions . 9

Execution Resources on AMD-K6® Processors 11

Task Switching . 15

Exceptions. 15

Prefixes . 16

2 3DNow!™ Instruction Set 17

FEMMS. 18

PAVGUSB . 19

PF2ID . 21

PFACC . 23

PFADD . 25

PFCMPEQ . 27

PFCMPGE . 29

PFCMPGT . 31

PFMAX. 33

PFMIN . 35

PFMUL . 37

PFRCP . 39

PFRCPIT1 . 41

PFRCPIT2 . 43
Contents iii

3DNow!™ Technology Manual 21928G/0—March 2000
PFRSQIT1 . 45

PFRSQRT. 47

PFSUB . 49

PFSUBR . 51

PI2FD . 53

PMULHRW . 54

PREFETCH/PREFETCHW . 56

3 Division and Square Root 59

Division . 59

Divide Examples. 60

Square Root . 61

Square Root Examples. 61
iv Contents

21928G/0—March 2000 3DNow!™ Technology Manual
List of Figures

Figure 1. 3DNow!™/MMX™ Registers . 5

Figure 2. 3DNow! Data Type . 6

Figure 3. Single-Precision, Floating-Point Data Format. 6

Figure 4. Integer Data Types. 7

Figure 5. Register X Unit and Register Y Unit Resources 13
List of Figures v

3DNow!™ Technology Manual 21928G/0—March 2000
vi List of Figures

21928G/0—March 2000 3DNow!™ Technology Manual
List of Tables

Table 1. 3DNow!™ Technology Exponent Ranges. 10

Table 2. 3DNow! Floating-Point Instructions. 14

Table 3. 3DNow! Performance-Enhancement Instructions 14

Table 4. 3DNow! and MMX™ Instruction Exceptions 15

Table 5. Numerical Range for the PF2ID Instruction. 22

Table 6. Numerical Range for the PFACC Instruction 24

Table 7. Numerical Range for the PFADD Instruction. 26

Table 8. Numerical Range for the PFCMPEQ Instruction 28

Table 9. Numerical Range for the PFCMPGE Instruction 30

Table 10. Numerical Range for the PFCMPGT Instruction 32

Table 11. Numerical Range for the PFMAX Instruction 34

Table 12. Numerical Range for the PFMIN Instruction 36

Table 13. Numerical Range for the PFMUL Instruction 38

Table 14. Numerical Range for the PFRCP Instruction 40

Table 15. Numerical Range for the PFRCPIT1 Instruction 42

Table 16. Numerical Range for the PFRCPIT2 Instruction 44

Table 17. Numerical Range for the PFRSQIT1 Instruction 46

Table 18. Numerical Range for the PFRSQRT Instruction 48

Table 19. Numerical Range for the PFSUB Instruction 50

Table 20. Numerical Range for the PFSUBR Instruction 52

Table 21. Summary of PREFETCH Instruction Type
Options . 57
List of Tables vii

3DNow!™ Technology Manual 21928G/0—March 2000
viii List of Tables

21928G/0—March 2000 3DNow!™ Technology Manual
Revision History

Date Rev Description

Feb 1998 A Initial Release

Feb 1998 B Clarified CPUID usage in ”Feature Detection” on page 3.

May 1998 C Revised description of 3DNow! instructions in ”Definitions” on page 9.

May 1998 C Revised function descriptions in Table 2, “3DNow!™ Floating-Point Instructions,” on page 14.

Sept 1998 D Revised code example for the PFRSQRT instruction on page 48.

Sept 1998 D
Changed exceptions generated for the PREFETCH/PREFETCHW instructions to none, deleted
exception table, and revised PREFETCHW description on page 56.

Sept 1998 D Added PUNPCKLDQ instruction to the division example (24-bit precision) on page 60.

Nov 1998 E Added sample code that tests for the presence of extended function 8000_0001h on page 3.

Nov 1998 E Clarified instruction descriptions of PFRCPIT1 on page 41, PFRCPIT2 on page 43, and PFRSQIT1 on
page 45.

Nov 1998 E Added PUNPCKLDQ instruction and clarified comments to the square root examples on page 62.

Aug 1999 F
Changed “X” variable to “Z” in Newton-Raphson recurrence definitions, and swapped order of
PFMUL and PUNPCKLDQ instructions in square root example (24-bit precision) in Chapter 3 on
page 59.

Aug 1999 F Added references to the AMD Athlon™ processor throughout the manual.

Mar 2000 G Updated and clarified the PFACC instruction operation description on page 23.
Revision History ix

3DNow!™ Technology Manual 21928G/0—March 2000
x Revision History

21928G/0—March 2000 3DNow!™ Technology Manual
1
3DNow!™ Technology
Introduction

3DNow!™ Technology is a significant innovation to the x86
architecture that drives today's personal computers. 3DNow!
technology is a group of new instructions that opens the
traditional processing bottlenecks for floating-point-intensive
and multimedia applications. With 3DNow! technology,
hardware and software applications can implement more
powerful solutions to create a more entertaining and productive
PC platform. Examples of the type of improvements that
3DNow! technology enables are faster frame rates on
high-resolution scenes, much better physical modeling of
real-world environments, sharper and more detailed 3D
imaging, smoother video playback, and near theater-quality
audio.

AMD has taken a leadership role in developing these new
instructions that enable exciting new levels of performance and
realism. 3DNow! technology was defined and implemented in
collaboration with independent software developers, including
operating system designers, application developers, and
graphics vendors. It is compatible with today's existing x86
software and requires no operating system support, thereby
enabling 3DNow! applications to work with all existing
operating systems. 3DNow! technology is implemented on the
AMD-K6®-2, AMD-K6-III, and AMD Athlon™ processors. The
Chapter 1 3DNow!™ Technology 1

3DNow!™ Technology Manual 21928G/0—March 2000
AMD Athlon processor implements five new 3DNow!
technology instructions that add streaming and digital signal
processing (DSP) technologies. For more information, see the
AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets
Manual, order# 22466.

Key Functionality

The 3DNow! technology instructions are intended to open a
major processing bottleneck in a 3D graphics application—
floating-point operations. Today's 3D applications are facing
limitations due to the fact that only one floating-point
execution unit exists in the most advanced x86 processors. The
front end of a typical 3D graphics software pipeline performs
object physics, geometry transformations, clipping, and
l ight ing calculat ions . These computat ions are very
floating-point intensive and often limit the features and
functionality of a 3D application. The source of performance for
the 3DNow! instructions originates from the single instruction
multiple data (SIMD) implementation. With SIMD, each
instruction not only operates on two single-precision,
floating-point operands, but the microarchitecture within the
processor can execute up to two 3DNow! instructions per clock
through two register execution pipelines, which allows for a
total of four floating-point operations per clock. In addition,
because the 3DNow! instructions use the same floating-point
registers as the MMX™ technology instructions, task switching
between MMX and 3DNow! operations is eliminated.

The 3DNow! technology instruction set contains 21 instructions
that support SIMD floating-point operations and includes SIMD
integer operat ions , data prefetching , and faster
MMX-to-floating-point switching. To improve MPEG decoding,
the 3DNow! instructions include a specific SIMD integer
instruction created to facilitate pixel-motion compensation.
Because media-based software typically operates on large data
sets, the processor often needs to wait for this data to be
transferred from main memory. The extra time involved with
retrieving this data can be avoided by using the new 3DNow!
instruction called PREFETCH. This instruction can ensure that
data is in the level 1 cache when it is needed. To improve the
time it takes to switch between MMX and x87 code, the 3DNow!
2 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
instructions include the FEMMS (fast entry/exit multimedia
state) instruction, which eliminates much of the overhead
involved with the switch. The addition of 3DNow! technology
expands the capabilities of the AMD family of processors and
enables a new generation of enriched user applications.

Feature Detection

To properly identify and use the 3DNow! instructions, the
application program must determine if the processor supports
them. The CPUID instruction gives programmers the ability to
determine the presence of 3DNow! technology on a processor.
Software applications must first test to see if the CPUID
instruction is supported. For a detailed description of the
CPUID instruction, see the AMD Processor Recognition
Application Note, order# 20734.

The presence of the CPUID instruction is indicated by the ID
bit (21) in the EFLAGS register. If this bit is writable, the
CPUID instruction is supported. The following code sample
shows how to test for the presence of the CPUID instruction.

pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; put to stack
popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID

Once the software has identified the processor’s support for
CPUID, it must test for extended functions by executing
extended function 8000_0000h (EAX=8000_0000h). The EAX
register returns the largest extended function input value
defined for the CPUID instruction on the processor. If the value
is greater than 8000_0000h, extended functions are supported.
The following code sample shows how to test for the presence of
extended function 8000_0001h.

mov eax, 80000000h ; query for extended functions
CPUID ; get extended function limit
cmp eax, 80000000h ; is 8000_0001h supported?
jbe NO_EXTENDEDMSR ; if not, 3DNow! tech. not supported
Chapter 1 3DNow!™ Technology 3

3DNow!™ Technology Manual 21928G/0—March 2000
The next step is for the programmer to determine if the 3DNow!
instructions are supported. Extended function 8000_0001h of
the CPUID instruction provides this information by returning
the extended feature bits in the EDX register. If bit 31 in the
EDX register is set to 1, 3DNow! instructions are supported. The
following code sample shows how to test for 3DNow! instruction
support.

mov eax, 80000001h ; setup ext. function 8000_0001h
CPUID ; call the function
test edx, 80000000h ; test bit 31
jnz YES_3DNow! ; 3DNow! technology supported

The processor supports all of the above features.
Concatenating the code examples above will produce the basis
for a CPU detection software routine. A more comprehensive
code example is available on the AMD website at
http://www.amd.com/products/cpg/bin/.

Register Set

The complete multimedia units in the processor combine the
existing MMX instructions with the new 3DNow! instructions.
In addition, by merging 3DNow! with MMX, it becomes possible
to write x86 programs containing both integer, MMX, and
floating-point graphics instructions with no performance
penalty for switching between the multimedia (integer) and
3DNow! (floating-point) units.

The processor implements eight 64-bit 3DNow!/MMX registers.
These registers are mapped onto the floating-point registers. As
shown in Figure 1, the 3DNow! and MMX instructions refer to
these registers as mm0 to mm7. Mapping the new 3DNow!/MMX
registers onto the floating-point register stack enables
backwards compatibility for the register saving that must occur
as a result of task switching.
4 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
Figure 1. 3DNow!™/MMX™ Registers

Aliasing the 3DNow!/MMX registers onto the floating-point
register stack provides a safe method to introduce 3DNow! and
MMX technology, because it does not require modifications to
existing operating systems. Instead of requiring operating
system modifications, new 3DNow! and MMX technology
applications are supported through device drivers, 3DNow! and
MMX libraries, or Dynamic Link Library (DLL) files.

Current operating systems have support for floating-point
operations and the floating-point register state. Using the
floating-point registers for 3DNow! and MMX code is a
convenient way of implementing non-intrusive support for
3DNow! and MMX instructions. Every time the processor
executes a 3DNow! or MMX instruction, all the floating-point
register tag bits are set to zero (00b=valid), except for the
FEMMS and EMMS instructions, which set all tag bits to one
(11b=empty).

Note: Executing the PREFETCH instruction does not change the
tag bits.

TAG BITS 63 0

mm0

mm7

mm1

mm6

mm5

mm2

mm3

mm4

xx

xx

xx

xx

xx

xx

xx

xx
Chapter 1 3DNow!™ Technology 5

3DNow!™ Technology Manual 21928G/0—March 2000
Data Types

3DNow! technology uses a packed data format. The data is
packed in a single, 64-bit 3DNow!/MMX register or a quadword
memory operand.

Figure 2 shows the 3DNow! floating-point data type. D0 and D1
each hold an IEEE 32-bit single-precision, floating-point
doubleword.

Figure 2. 3DNow!™ Data Type

Figure 3 on page 6 shows the format of the IEEE 32-bit,
single-precision, floating-point format.

Figure 3. Single-Precision, Floating-Point Data Format

63 032 31
(32 bits x 2) Two packed, single-precision, floating-point doublewords

D0D1

031
32-bit, single-precision, floating-point doubleword

22

SignificandBiased ExponentS

Value definitions

1.X=(–1)S*0 Biased Exponent=0
2.X=(–1)S*2(Biased Exponent – 127)*Significand 0<Biased Exponent<FFh
3.X=Undefined Biased Exponent=FFh

X is the value of the 32-bit, single-precision, floating-point doubleword.

2330
6 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
Figure 4 shows the formats for the integer data types.

Figure 4. Integer Data Types

63 56 55 47

63

39 31 23 15 7

47

63

63

31 15

48 40 32 24 16

0

032

48 32 16 0

08

31

(8 bits x 8) Packed bytes

(16 bits x 4) Packed words

(32 bits x 2) Packed doublewords

(64 bits x 1) Quadword

B2 B1B4 B3B5 B0B6B7

W0W1W2W3

D0D1

Q0
Chapter 1 3DNow!™ Technology 7

3DNow!™ Technology Manual 21928G/0—March 2000
3DNow!™ Instruction Formats

The format of 3DNow! instruction encodings is based on the
conventional x86 modR/M instruction format and is similar to
the format used by MMX instructions. The assembly language
syntax used for the 3DNow! instructions is as follows:

3DNow! Mnemonic mmreg1, mmreg2/mem64

The destination and source1 operand (mmreg1) must be an
MMX register (mm0–mm7). The source2 operand
(mmreg2/mem64) can be either an MMX register or a 64-bit
memory value.

The encoding uses the opcode prefix 0Fh followed by a second
opcode byte of 0Fh. To differentiate the various 3DNow!
instructions, a third instruction suffix byte is used. This suffix
byte occupies the same position at the end of a 3DNow!
instructions as would an imm8 byte. The opcode format is as
follows:

0Fh 0Fh modR/M [sib] [displacement] 3DNow!_suffix

The specific operands (mmreg1 and mmreg2/mem64)
determine the values used in modR/M [sib] [displacement], and
follow conventional x86 encodings. The 3DNow! suffix is
determined by the actual 3DNow! instruction. The 3DNow!
suffixes are defined in Table 2 on page 14.

As an example, the 3DNow! PFMUL instruction can produce
the following opcodes, depending on its use:

Opcode Instruction

0F 0F CA B4 PFMUL mm1, mm2
0F 0F 0B B4 PFMUL mm1, [ebx]
0F 0F 4B 0A B4 PFMUL mm1, [ebx+10]

26 0F 0F 0B B4 PFMUL mm1, es:[ebx]
0F 0F 4C 83 0A B4 PFMUL mm1, [ebx+eax*4+10]

The encoding of the two performance-enhancement
instructions (FEMMS and PREFETCH) uses a single opcode
prefix 0Fh. The details of the opcodes for these instructions are
shown on pages 18 and 56 respectively.
8 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
Definitions

3DNow! technology provides 21 additional instructions to
support high-performance, 3D graphics and audio processing.
3DNow! instructions are vector instructions that operate on
64-bit registers. 3DNow! instructions are SIMD — each
instruction operates on pairs of 32-bit values.

The definitions for the 3DNow! instructions starting on page 17
contain designations classifying each instruction as vectored or
scalar. Vector instructions operate in parallel on two sets of
32-bit, single-precision, floating-point words. Instructions that
are labeled as scalar instructions operate on a single set of
32-bit operands (from the low halves of the two 64-bit
operands).

The 3DNow! single-precision, floating-point format is
compatible with the IEEE-754, single-precision format. This
format comprises a 1-bit sign, an 8-bit biased exponent, and a
23-bit significand with one hidden integer bit for a total of 24
bits in the significand. The bias of the exponent is 127,
consistent with the IEEE single-precision standard. The
significands are normalized to be within the range of [1,2).

In contrast to the IEEE standard that dictates four rounding
modes, 3DNow! technology supports one rounding mode —
either round-to-nearest or round-to-zero (truncation). The
hardware implementation of 3DNow! technology determines
the rounding mode. The AMD processors implement
round-to-nearest mode. Regardless of the rounding mode used,
the floating-point-to-integer and integer-to-floating-point
conversion instructions, PF2ID and PI2FD, always use the
round-to-zero (truncation) mode.

The largest, representable, normal number in magnitude for
this precision in hexadecimal has an exponent of FEh and a
significand of 7FFFFFh, with a numerical value of 2127 (2 – 2–23).
All results that overflow above the maximum-representable
pos i t ive value are saturated to e ither th is
maximum-representable normal number or to positive infinity.
Simi larly, a l l result s that overf low below the
minimum-representable negative value are saturated to either
Chapter 1 3DNow!™ Technology 9

3DNow!™ Technology Manual 21928G/0—March 2000
this minimum-representable normal number or to negative
infinity.

The implementation of 3DNow! technology determines how
arithmetic overflow is handled — either properly signed
maximum- or minimum-representable normal numbers or
properly signed infinities. The processor generates properly
signed maximum- or minimum-representable normal numbers.

Infinities and NaNs are not supported as operands to 3DNow!
instructions.

The smallest representable normal number in magnitude for
this precision in hexadecimal has an exponent of 01h and a
significand of 000000h, with a numerical value of 2 – 1 2 6.
Accordingly, all results below this minimum representable
value in magnitude are held to zero. Table 1 shows the
exponent ranges supported by the 3DNow! technology.

Like MMX instructions, 3DNow! instructions do not generate
numeric exceptions nor do they set any status flags. It is the
user’s responsibility to ensure that in-range data is provided to
3DNow! instructions and that all computations remain within
valid ranges (or are held as expected).

Table 1. 3DNow!™ Technology Exponent Ranges

Biased
Exponent Description

FFh Unsupported *

00h Zero

00h<x<FFh Normal

01h 2 (1–127) lowest possible exponent

FEh 2 (254–127) largest possible exponent
Note:

* Unsupported numbers can be used as operands. The results of
operations with unsupported numbers are undefined.
10 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
Execution Resources on AMD-K6® Processors

The register operations of all 3DNow! floating-point
instructions are executed by either the register X unit or the
register Y unit. One operation can be issued to each register
unit each clock cycle, for a maximum issue and execution rate
of two 3DNow! operations per cycle. All 3DNow! operations
have an execution latency of two clock cycles and are fully
pipelined.

Even though 3DNow! execution resources are not duplicated in
both register units (for example, there are not two pairs of
3DNow! multipliers, just one shared pair of multipliers), there
are no instruction-decode or operation-issue pairing
restrictions. When, for example, a 3DNow! multiply operation
starts execution in a register unit, that unit grabs and uses the
one shared pair of 3DNow! multipliers. Only when actual
contention occurs between two 3DNow! operations starting
execution at the same time is one of the operations held up for
one cycle in its first execution pipe stage while the other
proceeds. The delay is never more than one cycle.

For code optimization purposes, 3DNow! operations are
grouped into two categories. These categories are based on
execution resources and are important when creating properly
scheduled code. As long as two 3DNow! operations that start
execution simultaneously do not fall into the same category,
both operations will start execution without delay.

The first category of instructions contains the operations for the
following 3DNow! instructions: PFADD, PFSUB, PFSUBR,
PFACC, PFCMPx, PFMIN, PFMAX, PI2FD, PF2ID, PFRCP, and
PFRSQRT.

The second category contains the operations for the following
3DNow! instructions: PFMUL, PFRCPIT1, PFRSQIT1, and
PFRCPIT2.

Note: 3DNow! add and multiply operations, among other
combinations, can execute simultaneously.

Normally, in high-performance 3DNow! code, all of the 3DNow!
instructions are properly scheduled apart from each other so as
to avoid delays due to execution resource contentions (as well
as taking into account dependencies and execution latencies).
Chapter 1 3DNow!™ Technology 11

3DNow!™ Technology Manual 21928G/0—March 2000
For further information regarding code optimization, see the
AMD-K6® Processor Code Optimization Application Note, order#
21924. This document provides in-depth discussions of code
optimization techniques for the processor.

For execution resources information on the AMD Athlon
processor, refer to the AMD Athlon Processor x86 Code
Optimization Guide, order# 22007.

The SIMD 3DNow! instructions for all processors are
summarized in Table 2 on page 14. The dedicated and shared
execution resources of the register X unit and register Y unit
are shown in Figure 5 on page 13. The execution resources for
some MMX operations, as well as all 3DNow! operations, are
shared between the two register units. For contention-checking
purposes, each box represents a category of operations that
cannot start execution simultaneously. In addition, the MMX
and 3DNow! multiplies use the same hardware, while MMX and
3DNow! adds and subtracts do not.

The 3DNow! performance-enhancement instructions for all
AMD processors are summarized in Table 3 on page 14. The
FEMMS instruction does not use any specific execution
resource or pipeline. The PREFETCH instruction is operated
on in the Load unit.
12 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
Figure 5. Register X Unit and Register Y Unit Resources

Integer ALU

Integer Shift

Integer Multiply
and Divide Integer ALU

MMX ALU
Add/Subtract,

Compare

MMX Shifter

Integer Byte
Operations

Integer Special
Registers

Integer Segment
Register Loads

MMX ALU
Add/Subtract,

Compare

MMX ALU
Logical, Pack,

Unpack

Register X Execution
Pipeline

3DNow!™
Add/Subtract,

Compare, Integer
Conversion,

Reciprocal and
Reciprocal

Square Root
Table Lookup

MMX™ and
3DNow!
Multiply,

Reciprocal and
Reciprocal

Square Root
Iteration

MMX ALU
Logical, Pack,

Unpack

Shared Register X and Y
Resources

Register Y Execution
Pipeline

Dedicated Register X
Resources

Dedicated Register Y
Resources
Chapter 1 3DNow!™ Technology 13

3DNow!™ Technology Manual 21928G/0—March 2000
Table 2. 3DNow!™ Floating-Point Instructions

Operation Function Opcode
Suffix

PAVGUSB Packed 8-bit Unsigned Integer Averaging BFh

PFADD Packed Floating-Point Addition 9Eh

PFSUB Packed Floating-Point Subtraction 9Ah

PFSUBR Packed Floating-Point Reverse Subtraction AAh

PFACC Packed Floating-Point Accumulate AEh

PFCMPGE Packed Floating-Point Comparison, Greater or Equal 90h

PFCMPGT Packed Floating-Point Comparison, Greater A0h

PFCMPEQ Packed Floating-Point Comparison, Equal B0h

PFMIN Packed Floating-Point Minimum 94h

PFMAX Packed Floating-Point Maximum A4h

PI2FD Packed 32-bit Integer to Floating-Point Conversion 0Dh

PF2ID Packed Floating-Point to 32-bit Integer 1Dh

PFRCP Packed Floating-Point Reciprocal Approximation 96h

PFRSQRT Packed Floating-Point Reciprocal Square Root Approximation 97h

PFMUL Packed Floating-Point Multiplication B4h

PFRCPIT1 Packed Floating-Point Reciprocal First Iteration Step A6h

PFRSQIT1 Packed Floating-Point Reciprocal Square Root First Iteration Step A7h

PFRCPIT2 Packed Floating-Point Reciprocal/Reciprocal Square Root Second Iteration Step B6h

PMULHRW Packed 16-bit Integer Multiply with rounding B7h

Table 3. 3DNow!™ Performance-Enhancement Instructions

Operation Function Opcode
Second Byte

FEMMS Faster entry/exit of the MMX™ or floating-point state 0Eh

PREFETCH/PREFETCHW * Prefetch at least a 32-byte line into L1 data cache (Dcache) 0Dh
Note:

* The AMD-K6-2 and AMD-K6-III processors execute the PREFETCHW instruction identically to the PREFETCH instruction.
On the AMD Athlon processor, PREFETCHW can increase performance by providing a hint to the processor of an intent to
modify the cache line.
14 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
Task Switching
With respect to task switching, treat the 3DNow! instructions
exactly the same as MMX instructions. Operating system design
must be taken into account when writing a 3DNow! program.

The programmer must know whether the operating system
automatically saves the current states when task switching, or if
the 3DNow! program has to provide the code to save states.

If a task switch occurs, the Control Register (CR0) Task Switch
(TS) bit is set to 1. The processor then generates an interrupt 7
(int 7—Device Not Available) when it encounters the next
floating-point, 3DNow!, or MMX instruction, allowing the
operating system to save the state of the 3DNow!/MMX/FP
registers.

In a multitasking operating system, if there is a task switch
when 3DNow!/MMX applications are running with older
applications that do not include MMX instructions, the
MMX/FP register state is still saved automatically through the
int 7 handler.

Exceptions
Table 4 contains a list of exceptions that 3DNow! and MMX
instructions can generate.

Table 4. 3DNow!™ and MMX™ Instruction Exceptions

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X X X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1. (In
Protected Mode, CPL = 3.)
Chapter 1 3DNow!™ Technology 15

3DNow!™ Technology Manual 21928G/0—March 2000
The rules for exceptions are the same for both MMX and
3DNow! instructions. In addition, exception detection and
handling is identical for MMX and 3DNow! instructions. None
of the exception handlers need modification.

Notes:

1. An invalid opcode exception (interrupt 6) occurs if a
3DNow! instruction is executed on a processor that does
not support 3DNow! instructions.

2. If a floating-point exception is pending and the processor
encounters a 3DNow! instruction, FERR# is asserted and,
if CR0.NE = 1, an interrupt 16 is generated. (This is the
same for MMX instructions.)

Prefixes

The following prefixes can be used with 3DNow! instructions:

■ The segment override prefixes (2Eh/CS, 36h/SS, 3Eh/DS,
26h/ES, 64h/FS, and 65h/GS) affect 3DNow! instructions
that contain a memory operand.

■ The address-size override prefix (67h) affects 3DNow!
instructions that contain a memory operand.

■ The operand-size override prefix (66h) is ignored.

■ The LOCK prefix (F0h) triggers an invalid opcode exception
(interrupt 6).

■ The REP prefixes (F3h/ REP/ REPE/ REPZ, F2h/ REPNE/
REPNZ) are ignored.
16 3DNow!™ Technology Chapter 1

21928G/0—March 2000 3DNow!™ Technology Manual
2
3DNow!™ Instruction Set
The following 3DNow! instruction definit ions are in
alphabetical order according to the instruction mnemonics.
Chapter 2 3DNow!™ Instruction Set 17

3DNow!™ Technology Manual 21928G/0—March 2000
FEMMS

mnemonic opcode description

FEMMS 0F 0Eh Faster Enter/Exit of the MMX or floating-point state

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

Like the EMMS instruction, the FEMMS instruction can be used to clear the MMX
state following the execution of a block of MMX instructions. Because the MMX
registers and tag words are shared with the floating-point unit, it is necessary to clear
the state before executing floating-point instructions. Unlike the EMMS instruction,
the contents of the MMX/floating-point registers are undefined after a FEMMS
instruction is executed. Therefore, the FEMMS instruction offers a faster context
switch at the end of an MMX routine where the values in the MMX registers are no
longer required. FEMMS can also be used prior to executing MMX instructions where
the preceding floating-point register values are no longer required, which facilitates
faster context switching.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set
to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the
control register (CR0) is set to 1.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.
18 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PAVGUSB

mnemonic opcode/imm8 description

PAVGUSB mmreg1, mmreg2/mem64 0F 0Fh / BFh Average of unsigned packed 8-bit values

Privilege: None
Registers Affected: MMX
Flags Affected: None
Exceptions Generated:

The PAVGUSB instruction produces the rounded averages of the eight unsigned 8-bit
integer values in the source operand (an MMX register or a 64-bit memory location)
and the eight corresponding unsigned 8-bit integer values in the destination operand
(an MMX register). It does so by adding the source and destination byte values and
then adding a 001h to the 9-bit intermediate value. The intermediate value is then
divided by 2 (shifted right one place) and the eight unsigned 8-bit results are stored
in the MMX register specified as the destination operand.

The PAVGUSB instruction can be used for pixel averaging in MPEG-2 motion
compensation and video scaling operations.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 19

3DNow!™ Technology Manual 21928G/0—March 2000
Functional Illustration of the PAVGUSB Instruction

The following list explains the functional illustration of the PAVGUSB instruction:

■ The rounded byte average of FFh and FFh is FFh.

■ The rounded byte average of FFh and 00h is 80h.

■ The rounded byte average of 01h and FFh is also 80h.

■ The rounded byte average of 0Fh and 10h is 10h.

■ The rounded byte average of 00h and 01h is 01h.

■ The rounded byte average of 70h and 44h is 5Ah.

■ The rounded byte average of 07h and F7h is 7Fh.

■ The rounded byte average of 9Ah and A8h is A1h.

The equations for byte averaging with rounding are as follows:

■ mmreg1[63:56] = (mmreg1[63:56] + mmreg2/mem64[63:56] + 01h)/2

■ mmreg1[55:48] = (mmreg1[55:48] + mmreg2/mem64[55:48] + 01h)/2

■ mmreg1[47:40] = (mmreg1[47:40] + mmreg2/mem64[47:40] + 01h)/2

■ mmreg1[39:32] = (mmreg1[39:32] + mmreg2/mem64[39:32] + 01h)/2

■ mmreg1[31:24] = (mmreg1[31:24] + mmreg2/mem64[31:24] + 01h)/2

■ mmreg1[23:16] = (mmreg1[23:16] + mmreg2/mem64[23:16] + 01h)/2

■ mmreg1[15:8] = (mmreg1[15:8] + mmreg2/mem64[15:8] + 01h)/2

■ mmreg1[7:0] = (mmreg1[7:0] + mmreg2/mem64[7:0] + 01h)/2

FFh FFh 01h 0Fh 9Ah00h 70h 07hmmreg2/mem64

mmreg1

per byte averaging

= = = = = = ==

FFh 80h 80h 10h A1h01h 5Ah 7Fhmmreg1

FFh 00h FFh 10h A8h01h 44h F7h

063

063

063

Indicates a value that was rounded-up
20 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PF2ID

mnemonic opcode/imm8 description

PF2ID mmreg1, mmreg2/mem64 0Fh 0Fh / 1Dh Converts packed floating-point operand to packed
32-bit integer

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PF2ID is a vector instruction that converts a vector register containing
single-precision, floating-point operands to 32-bit signed integers using truncation.
Table 5 on page 22 shows the numerical range of the PF2ID instruction.

The PF2ID instruction performs the following operations:

IF (mmreg2/mem64[31:0] >= 231)
THEN mmreg1[31:0] = 7FFF_FFFFh

ELSEIF (mmreg2/mem64[31:0] <= –231)
THEN mmreg1[31:0] = 8000_0000h

ELSE mmreg1[31:0] = int(mmreg2/mem64[31:0])
IF (mmreg2/mem64[63:32] >= 231)

THEN mmreg1[63:32] = 7FFF_FFFFh
ELSEIF (mmreg2/mem64[63:32] <= –231)

THEN mmreg1[63:32] = 8000_0000h
ELSE mmreg1[63:32] = int(mmreg2/mem64[63:32])

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 21

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PI2FD instruction.

Table 5. Numerical Range for the PF2ID Instruction

Source 2 Source 1 and Destination

0 0

Normal, abs(Source 1) <1 0

Normal, –2147483648 < Source 1 <= –1 round to zero (Source 1)

Normal, 1 <= Source 1< 2147483648 round to zero (Source 1)

Normal, Source 1 >= 2147483648 7FFF_FFFFh

Normal, Source 1 <= –2147483648 8000_0000h

Unsupported Undefined
22 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFACC

mnemonic opcode/imm8 description

PFACC mmreg1, mmreg2/mem64 0Fh 0Fh / AEh Floating-point accumulate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFACC is a vector instruction that accumulates the two words of the destination
operand and the source operand and stores the results in the low and high words of
destination operand respectively. Both operands are single-precision, floating-point
operands with 24-bit significands. Table 6 on page 24 shows the numerical range of the
PFACC instruction.

The PFACC instruction performs the following operations:

temp = mmreg2/mem64
mmreg1[31:0] = mmreg1[31:0] + mmreg1[63:32]
mmreg1[63:32] = temp[31:0] + temp[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 23

3DNow!™ Technology Manual 21928G/0—March 2000
Table 6. Numerical Range for the PFACC Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 Source 2 Source 2

Normal Source 1 Normal, +/– 0 2 Undefined

Unsupported Source 1 Undefined Undefined

Notes:
1. The sign of the result is the logical AND of the signs of the source operands.
2. If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand

that is larger in magnitude (if the magnitudes are equal, the sign of source 1 is used). If the absolute value of the result
is greater than or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand
that is larger in magnitude.
24 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFADD

mnemonic opcode/imm8 description

PFADD mmreg1, mmreg2/mem64 0Fh 0Fh / 9Eh Packed, floating-point addition

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFADD is a vector instruction that performs addition of the destination operand and
the source operand. Both operands are single-precision, floating-point operands with
24-bit significands. Table 7 on page 26 shows the numerical range of the PFADD
instruction.

The PFADD instruction performs the following operations:

mmreg1[31:0] = mmreg1[31:0] + mmreg2/mem64[31:0]
mmreg1[63:32] = mmreg1[63:32] + mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 25

3DNow!™ Technology Manual 21928G/0—March 2000
Table 7. Numerical Range for the PFADD Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 Source 2 Source 2

Normal Source 1 Normal, +/– 0 2 Undefined

Unsupported Source 1 Undefined Undefined

Notes:
1. The sign of the result is the logical AND of the signs of the source operands.
2. If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand

that is larger in magnitude (if the magnitudes are equal, the sign of source 1 is used). If the absolute value of the result
is greater than or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand
that is larger in magnitude.
26 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFCMPEQ

mnemonic opcode/imm8 description

PFCMPEQ mmreg1, mmreg2/mem64 0Fh 0Fh / B0h Packed floating-point comparison, equal to

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFCMPEQ is a vector instruction that performs a comparison of the destination
operand and the source operand and generates all one bits or all zero bits based on the
result of the corresponding comparison. Table 8 on page 28 shows the numerical range
of the PFCMPEQ instruction.

The PFCMPEQ instruction performs the following operations:

IF (mmreg1[31:0] = mmreg2/mem64[31:0])
THEN mmreg1[31:0] = FFFF_FFFFh

ELSE mmreg1[31:0] = 0000_0000h
IF (mmreg1[63:32] = mmreg2/mem64[63:32]

THEN mmreg1[63:32] = FFFF_FFFFh
ELSE mmreg1[63:32] = 0000_0000h

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 27

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PFCMPGE instruction.

See the PFCMPGT instruction.

Table 8. Numerical Range for the PFCMPEQ Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh 1 0000_0000h 0000_0000h

Normal 0000_0000h
0000_0000h,

FFFF_FFFFh 2
0000_0000h

Unsupported 0000_0000h 0000_0000h Undefined

Notes:
1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh if source 1 and source 2 have identical signs, exponents, and mantissas. Otherwise, the result is

0000_0000h.
28 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFCMPGE

mnemonic opcode/imm8 description

PFCMPGE mmreg1, mmreg2/mem64 0Fh 0Fh / 90h Packed floating-point comparison, greater than or
equal to

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFCMPGE is a vector instruction that performs a comparison of the destination
operand and the source operand and generates all one bits or all zero bits based on the
result of the corresponding comparison. Table 9 on page 30 shows the numerical range
of the PFCMPGE instruction.

The PFCMPGE instruction performs the following operations:

IF (mmreg1[31:0] >= mmreg2/mem64[31:0])
THEN mmreg1[31:0] = FFFF_FFFFh

ELSE mmreg1[31:0] = 0000_0000h
IF (mmreg1[63:32] >= mmreg2/mem64[63:32]

THEN mmreg1[63:32] = FFFF_FFFFh
ELSE mmreg1[63:32] = 0000_0000h

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 29

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PFCMPEQ instruction.

See the PFCMPGT instruction.

Table 9. Numerical Range for the PFCMPGE Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh 1
0000_0000h,

FFFF_FFFFh 2
Undefined

Normal
0000_0000h,

FFFF_FFFFh 3

0000_0000h,

FFFF_FFFFh 4
Undefined

Unsupported Undefined Undefined Undefined

Notes:
1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
4. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative and source 1 is smaller

than or equal in magnitude to source 2, or if source 1 and source 2 are both positive and source 1 is greater than or equal in
magnitude to source 2. The result is 0000_0000h in all other cases.
30 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFCMPGT

mnemonic opcode/imm8 description

PFCMPGT mmreg1, mmreg2/mem64 0Fh 0Fh / A0h Packed floating-point comparison, greater than

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFCMPGT is a vector instruction that performs a comparison of the destination
operand and the source operand and generates all one bits or all zero bits based on the
result of the corresponding comparison. Table 10 on page 32 shows the numerical
range of the PFCMPGT instruction.

The PFCMPGT instruction performs the following operations:

IF (mmreg1[31:0] > mmreg2/mem64[31:0])
THEN mmreg1[31:0] = FFFF_FFFFh

ELSE mmreg1[31:0] = 0000_0000h
IF (mmreg1[63:32] > mmreg2/mem64[63:32]

THEN mmreg1[63:32] = FFFF_FFFFh
ELSE mmreg1[63:32] = 0000_0000h

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 31

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PFCMPEQ instruction.

See the PFCMPGE instruction.

Table 10. Numerical Range for the PFCMPGT Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 0000_0000h
0000_0000h,

FFFF_FFFFh 1
Undefined

Normal
0000_0000h,

FFFF_FFFFh 2

0000_0000h,

FFFF_FFFFh 3
Undefined

Unsupported Undefined Undefined Undefined

Notes:
1. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
2. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative and source 1 is smaller in

magnitude than source 2, or if source 1 and source 2 are positive and source 1 is greater in magnitude than source 2. The result
is 0000_0000h in all other cases.
32 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFMAX

mnemonic opcode/imm8 description

PFMAX mmreg1, mmreg2/mem64 0Fh 0Fh / A4h Packed floating-point maximum

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFMAX is a vector instruction that returns the larger of the two single-precision,
floating-point operands. Any operation with a zero and a negative number returns
positive zero. An operation consisting of two zeros returns positive zero. Table 11 on
page 34 shows the numerical range of the PFMAX instruction.

The PFMAX instruction performs the following operations:

IF (mmreg1[31:0] > mmreg2/mem64[31:0])
THEN mmreg1[31:0] = mmreg1[31:0]

ELSE mmreg1[31:0] = mmreg2/mem64[31:0]
IF (mmreg1[63:32] > mmreg2/mem64[63:32])

THEN mmreg1[63:32] = mmreg1[63:32]
ELSE mmreg1[63:32] = mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 33

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PFMIN instruction.

Table 11. Numerical Range for the PFMAX Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +0 1 Undefined

Normal Source 1, +0 2 Source 1/Source 2 3 Undefined

Unsupported Undefined Undefined Undefined

Notes:
1. The result is source 2, if source 2 is positive. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is positive. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is positive and source 2 is negative. The result is source 1, if both are positive and source 1 is

greater in magnitude than source 2. The result is source 1, if both are negative and source 1 is lesser in magnitude than source
2. The result is source 2 in all other cases.
34 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFMIN

mnemonic opcode/imm8 description

PFMIN mmreg1, mmreg2/mem64 0Fh 0Fh / 94h Packed floating-point minimum

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFMIN is a vector instruction that returns the smaller of the two single-precision,
floating-point operands. Any operation with a zero and a positive number returns
positive zero. An operation consisting of two zeros returns positive zero. Table 12 on
page 36 shows the numerical range of the PFMIN instruction.

The PFMIN instruction performs the following operations:

IF (mmreg1[31:0] < mmreg2/mem64[31:0])
THEN mmreg1[31:0] = mmreg1[31:0]

ELSE mmreg1[31:0] = mmreg2/mem64[31:0]
IF (mmreg1[63:32] < mmreg2/mem64[63:32])

THEN mmreg1[63:32] = mmreg1[63:32]
ELSE mmreg1[63:32] = mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 35

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PFMAX instruction.

Table 12. Numerical Range for the PFMIN Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +0 1 Undefined

Normal Source 1, +0 2 Source 1/Source 2 3 Undefined

Unsupported Undefined Undefined Undefined

Notes:
1. The result is source 2, if source 2 is negative. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is negative. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is negative and source 2 is positive. The result is source 1, if both are negative and source 1 is

greater in magnitude than source 2. The result is source 1, if both are positive and source 1 is lesser in magnitude than source
2. The result is source 2 in all other cases.
36 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFMUL

mnemonic opcode/imm8 description

PFMUL mmreg1, mmreg2/mem64 0Fh 0Fh / B4h Packed floating-point multiplication

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFMUL is a vector instruction that performs multiplication of the destination
operand and the source operand. Both operands are single-precision, floating-point
operands with 24-bit significands. Table 13 on page 38 shows the numerical range of
the PFMUL instruction.

The PFMUL instruction performs the following operations:

mmreg1[31:0] = mmreg1[31:0] * mmreg2/mem64[31:0]
mmreg1[63:32] = mmreg1[63:32] * mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 37

3DNow!™ Technology Manual 21928G/0—March 2000
Table 13. Numerical Range for the PFMUL Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 +/– 0 1 +/– 0 1

Normal +/– 0 1 Normal, +/– 0 2 Undefined

Unsupported +/– 0 1 Undefined Undefined

Notes:
1. The sign of the result is the exclusive-OR of the signs of the source operands.
2. If the absolute value of the result is less then 2 –126, the result is zero with the sign being the exclusive-OR of the signs of the

source operands. If the absolute value of the product is greater than or equal to 2 128, the result is the largest normal number
with the sign being exclusive-OR of the signs of the source operands.
38 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFRCP

mnemonic opcode/imm8 description

PFRCP mmreg1, mmreg2/mem64 0Fh 0Fh / 96h Floating-point reciprocal approximation

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRCP is a scalar instruction that returns a low-precision estimate of the reciprocal of
the source operand. The single result value is duplicated in both high and low halves
of this instruction’s 64-bit result. The source operand is single-precision with a 24-bit
significand, and the result is accurate to 14 bits. Table 14 on page 40 shows the
numerical range of the PFRCP instruction.

Increased accuracy (the full 24 bits of a single-precision significand) requires the use
of two additional instructions (PFRCPIT1 and PFRCPIT2). The first stage of this
increase or refinement in accuracy (PFRCPIT1) requires that the input and output of
the already executed PFRCP instruction be used as input to the PFRCPIT1
instruct ion . Refer to “Divis ion and Square Root” on page 59 for an
application-specific example of how to use this instruction and related instructions.

The PFRCP instruction performs the following operations:

mmreg1[31:0] = reciprocal(mmreg2/mem64[31:0])
mmreg1[63:32] = reciprocal(mmreg2/mem64[31:0])

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 39

3DNow!™ Technology Manual 21928G/0—March 2000
In the following code example, the bold line illustrates the PFRCP instruction in a
sequence used to compute q = a/b accurate to 24 bits:

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

Related Instructions See the PFRCPIT1 instruction.

See the PFRCPIT2 instruction.

Table 14. Numerical Range for the PFRCP Instruction

Source 1 and
Destination

Source 2

0 +/– Maximum Normal 1

Normal Normal, +/– 0 2

Unsupported Undefined

Notes:
1. The result has the same sign as the source operand.
2. If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand.

Otherwise, the result is a normal with the sign being the same sign as the source operand.
40 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
Chapter 2 3DNow!™ Instruction Set 41

PFRCPIT1

mnemonic opcode/imm8 description

PFRCPIT1 mmreg1, mmreg2/mem64 0Fh 0Fh / A6h Packed floating-point reciprocal, first iteration step

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRCPIT1 is a vector instruction that performs the first intermediate step in the
Newton-Raphson iteration to refine the reciprocal approximation produced by the
PFRCP instruction (the second and final step completes the iteration and is accurate
to 24 bits). Table 15 on page 42 shows the numerical range of the PFRCPIT1
instruction.

The behavior of this instruction is only defined for those combinations of operands
such that one source operand was the input to the PFRCP instruction and the other
source operand was the output of the same PFRCP instruction. Refer to “Division and
Square Root” on page 59 for an application-specific example of how to use this
instruction and related instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)

3DNow!™ Technology Manual 21928G/0—March 2000
In the following code example, the bold line illustrates the PFRCPIT1 instruction in a
sequence used to compute q = a/b accurate to 24 bits:

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

Related Instructions See the PFRCP instruction.

See the PFRCPIT2 instruction.

Table 15. Numerical Range for the PFRCPIT1 Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 +/– 0 1 +/– 0 1

Normal +/– 0 1 Normal 2 Undefined

Unsupported +/– 0 1 Undefined Undefined

Notes:
1. The sign of the result is the exclusive-OR of the signs of the source operands.
2. The sign is positive.
42 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFRCPIT2

mnemonic opcode/imm8 description

PFRCPIT2 mmreg1, mmreg2/mem64 0Fh 0Fh / B6h Packed floating-point reciprocal/reciprocal square
root, second iteration step

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRCPIT2 is a vector instruction that performs the second and final intermediate
step in the Newton-Raphson iteration to refine the reciprocal or reciprocal square root
approximation produced by the PFRCP and PFSQRT instructions, respectively.
Table 16 on page 44 shows the numerical range of the PFRCPIT2 instruction.

The behavior of this instruction is only defined for those combinations of operands
such that the first source operand (mmreg1) was the output of either the PFRCPIT1 or
PFRSQIT1 instructions and the second source operand (mmreg2/mem64) was the
output of either the PFRCP or PFRSQRT instructions. Refer to “Division and Square
Root” on page 59 for an application-specific example of how to use this instruction
and related instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 43

3DNow!™ Technology Manual 21928G/0—March 2000
In the following code example, the bold line illustrates the PFRCPIT2 instruction in a
sequence used to compute q = a/b accurate to 24 bits:

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

Related Instructions See the PFRCPIT1 instruction.

See the PFRSQIT1 instruction.

See the PFRCP instruction.

See the PFRSQRT instruction.

Table 16. Numerical Range for the PFRCPIT2 Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 +/– 0 1 +/– 0 1

Normal +/– 0 1 Normal, +/– 0 2 Undefined

Unsupported +/– 0 1 Undefined Undefined

Notes:
1. The sign of the result is the exclusive-OR of the signs of the source operands.
2. If the absolute value of the result is less then 2 –126, the result is zero with the sign being the exclusive-OR of the signs of the

source operands. If the absolute value of the product is greater than or equal to 2 128, the result is the largest normal number
with the sign being exclusive-OR of the signs of the source operands.
44 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFRSQIT1

mnemonic opcode/imm8 description

PFRSQIT1 mmreg1, mmreg2/mem64 0Fh 0Fh / A7h Packed floating-point reciprocal square root, first
iteration step

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRSQIT1 is a vector instruction that performs the first intermediate step in the
Newton-Raphson iteration to refine the reciprocal square root approximation
produced by the PFSQRT instruction (the second and final step completes the
iteration and is accurate to 24 bits). Table 17 on page 46 shows the numerical range of
the PFRSQIT1 instruction.

The behavior of this instruction is only defined for those combinations of operands
such that one source operand was the input to the PFRSQRT instruction and the other
source operand is the square of the output of the same PFRSQRT instruction. Refer to
“Division and Square Root” on page 59 for an application-specific example of how to
use this instruction and related instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 45

3DNow!™ Technology Manual 21928G/0—March 2000
In the following code example, the bold lines illustrate the PFMUL and PFRSQIT1
instructions in a sequence used to compute a = 1/sqrt (b) accurate to 24 bits:

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions See the PFRCPIT2 instruction.

See the PFRSQRT instruction.

Table 17. Numerical Range for the PFRSQIT1 Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 +/– 0 1 +/– 0 1

Normal +/– 0 1 Normal 2 Undefined

Unsupported +/– 0 1 Undefined Undefined

Notes:
1. The sign of the result is the exclusive-OR of the signs of the source operands.
2. The sign is 0.
46 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFRSQRT

mnemonic opcode/imm8 description

PFRSQRT mmreg1, mmreg2/mem64 0Fh 0Fh / 97h Floating-point reciprocal square root approximation

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRSQRT is a scalar instruction that returns a low-precision estimate of the
reciprocal square root of the source operand. The single result value is duplicated in
both high and low halves of this instruction’s 64-bit result. The source operand is
single-precision with a 24-bit significand, and the result is accurate to 15 bits.
Negative operands are treated as positive operands for purposes of reciprocal square
root computation, with the sign of the result the same as the sign of the source
operand. Table 18 on page 48 shows the numerical range of the PFRSQRT instruction.

Increased accuracy (the full 24 bits of a single-precision significand) requires the use
of two additional instructions (PFRSQIT1 and PFRCPIT2). The first stage of this
increase or refinement in accuracy (PFRSQIT1) requires that the input and squared
output of the already executed PFRSQRT instruction be used as input to the
PFRSQIT1 instruction. Refer to “Division and Square Root” on page 59 for an
application-specific example of how to use this instruction and related instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 47

3DNow!™ Technology Manual 21928G/0—March 2000
The PFRSQRT instruction performs the following operations:

mmreg1[31:0] = reciprocal square root(mmreg2/mem64[31:0])
mmreg1[63:32] = reciprocal square root(mmreg2/mem64[31:0])

In the following code example, the bold line illustrates the PFRSQRT instruction in a
sequence used to compute a = 1/sqrt (b) accurate to 24 bits:

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions See the PFRSQIT1 instruction.

See the PFRCPIT2 instruction.

Table 18. Numerical Range for the PFRSQRT Instruction

Source 1 and
Destination

Source 2

0 +/– Maximum Normal*

Normal Normal *

Unsupported Undefined *

Note:
* The result has the same sign as the source operand.
48 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFSUB

mnemonic opcode/imm8 description

PFSUB mmreg1, mmreg2/mem64 0Fh 0Fh / 9Ah Packed floating-point subtraction

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFSUB is a vector instruction that performs subtraction of the source operand from
the destination operand. Both operands are single-precision, floating-point operands
with 24-bit significands. Table 19 on page 50 shows the numerical range of the PFSUB
instruction.

The PFSUB instruction performs the following operations:

mmreg1[31:0] = mmreg1[31:0] – mmreg2/mem64[31:0]
mmreg1[63:32] = mmreg1[63:32] – mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 49

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PFSUBR instruction.

Table 19. Numerical Range for the PFSUB Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 Source 2 Source 2

Normal Source 1 Normal, +/– 0 2 Undefined

Unsupported Source 1 Undefined Undefined

Notes:
1. The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2.
2. If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand that is

larger in magnitude (if the magnitudes are equal, the sign of source 1 is used). If the absolute value of the result is greater than
or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand that is larger in
magnitude.
50 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PFSUBR

mnemonic opcode/imm8 description

PFSUBR mmreg1, mmreg2/mem64 0Fh 0Fh / AAh Packed floating-point reverse subtraction

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFSUBR is a vector instruction that performs subtraction of the destination operand
from the source operand. Both operands are single-precision, floating-point operands
with 24-bit significands. Table 20 on page 52 shows the numerical range of the
PFSUBR instruction.

The PFSUBR instruction performs the following operations:

mmreg1[31:0] = mmreg2/mem64[31:0] – mmreg1[31:0]
mmreg1[63:32] = mmreg2/mem64[63:32] – mmreg1[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 51

3DNow!™ Technology Manual 21928G/0—March 2000
Related Instructions See the PFSUB instruction.

Table 20. Numerical Range for the PFSUBR Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 1 Source 2 Source 2

Normal Source 1 Normal, +/– 0 2 Undefined

Unsupported Source 1 Undefined Undefined

Notes:
1. The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2.
2. If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand that is

larger in magnitude (if the magnitudes are equal, the sign of source 2 is used). If the absolute value of the result is greater than
or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand that is larger in
magnitude.
52 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
PI2FD

mnemonic opcode/imm8 description

PI2FD mmreg1, mmreg2/mem64 0Fh 0Fh / 0Dh Packed 32-bit integer to floating-point conversion

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated

PI2FD is a vector instruction that converts a vector register containing signed, 32-bit
integers to single-precision, floating-point operands. When PI2FD converts an input
operand with more significant digits than are available in the output, the output is
truncated.

The PI2FD instruction performs the following operations:

mmreg1[31:0] = float(mmreg2/mem64[31:0])
mmreg1[63:32] = float(mmreg2/mem64[63:32])

Related Instructions See the PF2ID instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 3DNow!™ Instruction Set 53

3DNow!™ Technology Manual 21928G/0—March 2000
PMULHRW

mnemonic opcode/imm8 description

PMULHRW mmreg1, mmreg2/mem64 0F 0Fh/B7h Multiply signed packed 16-bit values with rounding
and store the high 16 bits.

Privilege: None
Registers Affected: MMX
Flags Affected: None
Exceptions Generated:

The PMULHRW instruction multiplies the four signed 16-bit integer values in the
source operand (an MMX register or a 64-bit memory location) by the four
corresponding signed 16-bit integer values in the destination operand (an MMX
register). The PMULHRW instruction then adds 8000h to the lower 16 bits of the
32-bit result, which results in the rounding of the high-order, 16-bit result. The
high-order 16 bits of the result (including the sign bit) are stored in the destination
operand.

The PMULHRW instruction provides a numerically more accurate result than the
PMULMH instruction, which truncates the result instead of rounding.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
54 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
Functional Illustration of the PMULHRW Instruction

The following list explains the functional illustration of the PMULHRW instruction:

■ The signed 16-bit negative value D250h (–2DB0h) is multiplied by the signed
16-bit negative value 8807h (–77F9h) to produce the signed 32-bit positive result
of 1569_4030h. 8000h is then added to the lower 16 bits to produce a final result of
1569_C030h. This rounding does not affect the final result of 1569h. The signed
high-order 16 bits of the result are stored in the destination operand.

■ The signed 16-bit positive value 5321h is multiplied by the signed 16-bit negative
value EC22h (–13DEh) to produce the signed 32-bit negative result of F98C_7662h
(–0673_899Eh). 8000h is then added to the lower 16 bits, producing a final result
of F98C_F662h. This rounding does not affect the final result of F98Ch. The
signed high-order 16 bits of the result are stored in the destination operand.

■ The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive
value 7FFEh to produce the signed 32-bit positive result of 3802_9FF2h. 8000h is
then added to the lower 16 bits to produce a final result of 3803_1FF2h. This result
has been rounded up. The signed high-order 16 bits of the result (3803h) are
stored in the destination operand.

■ The signed 16-bit negative value FFFFh (–1) is multiplied by the signed 16-bit
negative value FFFFh (–1) to produce the signed 32-bit positive result of
0000_0001h. 8000h is then added to the lower 16 bits to produce a final result of
0000_8001h. This rounding does not affect the final result of 0000h. The signed
high-order 16 bits of the result are stored in the destination operand.

∗ ∗ ∗ ∗

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

0000h

7007h

7FFEh

3803h

5321h

EC22h

F98Ch

8807h

1569h

63

63

63

0

0

0

Indicates a value that was rounded-up
Chapter 2 3DNow!™ Instruction Set 55

3DNow!™ Technology Manual 21928G/0—March 2000
PREFETCH/PREFETCHW

mnemonic opcode description

PREFETCH(W) mem8 0F 0Dh Prefetch processor cache line into L1 data cache
(Dcache)

Privilege: none
Registers Affected: none
Flags Affected: none
Exceptions Generated: none

The PREFETCH instruction loads a processor cache line into the data cache. The
address of this line is specified by the mem8 value. For the AMD processor, the line
size is 32 bytes. In all future processors, the size of the line that is loaded by the
PREFETCH instruction will be at least 32-bytes. The PREFETCH instruction loads a
cache line even if the mem8 address is not aligned with the start of the line (although
some implementations, including the AMD-K6 family of processors, may perform the
cache fill starting from the cache miss or mem8 address). If a cache hit occurs (the
line is already in the Dcache) or a memory fault is detected, no bus cycle is initiated
and the instruction is treated as a NOP.

In applications where a large number of data sets must be processed, the PREFETCH
instruction can pre-load the next data set into the Dcache while, simultaneously, the
processor is operating on the present set of data. This instruction allows the
programmer to explicitly code operation concurrency. When the present set of data
values is completed, the next set is already available in the Dcache. An example of a
concurrent operation is vertices processing in 3D transformations, where the next set
of vertices can be prefetched into the data cache while the present set is being
transformed.

The PREFETCH instruction format in the processor is defined to allow extensions in
future AMD K86™ processors. The instruction mnemonic for the PREFETCH
instruction includes the modR/M byte. Only the memory form of modR/M is valid (use
of the register form results in an invalid opcode exception). Because there is no
destination register, the three destination register field bits of the modR/M byte are
used to define the type of prefetch to be performed. The PREFETCH and
PREFETCHW instructions are defined by the bit pattern 000b and 001b, respectively.
All other bit patterns are reserved for future use.

The PREFETCHW instruction loads the prefetched line and sets the cache line MESI
state to modified (in anticipation of subsequent data writes to the line), unlike the
PREFETCH instruction, which typically sets the state to exclusive. If the data that is
prefetched into the Dcache is to be modified, use of the PREFETCHW instruction
56 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
will save the cycle that the PREFETCH instruction requires for modifying the Dcache
line state. The PREFETCHW instruction should be used when the programmer
expects that the data in the cache line will be modified. Otherwise, the PREFETCH
instruction should be used.

Note: The AMD-K6-2 and AMD-K6-III processors execute the PREFETCHW instruction
identically to the PREFETCH instruction. However, the AMD Athlon and future
AMD processors that support PREFETCHW as described above will be able to take
advantage of the performance benefit provided by this instruction. For more
information, see the AMD Athlon Processor x86 Code Optimization Guide, order#
22007.

Table 21 summarizes the PREFETCH type options:

Note: The “Reserved” PREFETCH types do not result in an Invalid Opcode Exception if
executed. Instead, for forward compatibility with future processors that may
implement additional forms of the PREFETCH instruction, all “Reserved”
PREFETCH types are implemented as synonyms for the basic PREFETCH type (for
example, the PREFETCH instruction with type 000b).

Table 21. Summary of PREFETCH Instruction Type Options

Mod R/M Result

11-xxx-xxx Invalid Opcode

mm-000-xxx PREFETCH

mm-001-xxx PREFETCHW

mm-010-xxx Reserved

mm-011-xxx Reserved

mm-100-xxx Reserved

mm-101-xxx Reserved

mm-110-xxx Reserved

mm-111-xxx Reserved
Chapter 2 3DNow!™ Instruction Set 57

3DNow!™ Technology Manual 21928G/0—March 2000
58 3DNow!™ Instruction Set Chapter 2

21928G/0—March 2000 3DNow!™ Technology Manual
3
Division and Square Root
Division

The 3DNow! instructions can be used to compute a very fast,
highly accurate reciprocal or quotient.

Consider the quotient q = a/b. An on-chip, ROM-based table
lookup can be used to quickly produce a 14–15 bit precision
approximation of 1/b (using just one two-cycle latency
instruction—PFRCP). A full-precision reciprocal can then
quickly be computed from this approximation using a
Newton-Raphson algorithm.

The general Newton-Raphson recurrence for the reciprocal is as
follows:

Zi +1 ← Zi • (2 – b • Zi)

Given that the initial approximation is accurate to at least 14
bits, and that full IEEE single precision contains 24 bits of
mantissa, just one Newton-Raphson iteration is required. The
following shows the 3DNow! instruction sequence to produce
the initial reciprocal approximation, to compute the
full-precision reciprocal from this, and lastly, to complete the
required division of a/b.
Chapter 3 Division and Square Root 59

3DNow!™ Technology Manual 21928G/0—March 2000
X0 = PFRCP(b)

X1 = PFRCPIT1(b, X0)

X2 = PFRCPIT2(X1, X0)

q = PFMUL(a, X2)

The 24-bit final reciprocal value is X2. In the AMD processor
implementat ion, the est imate contains the correct
round-to-nearest value for approximately 99% of all arguments.
The remaining arguments di f fer f rom the correct
round-to -nearest value for the rec iprocal by 1
unit-in-the-last-place (ulp). The quotient is formed in the last
step by multiplying the reciprocal by the dividend a.

Divide Examples

These examples illustrate the use of 3DNow! instructions to
perform divides.

(14-Bit Precision) MOVD MM0, [mem] ; 0 | w
PFRCP MM0, MM0 ; 1/w | 1/w (approx.)
MOVQ MM2, [mem] ; y | x
PFMUL MM2, MM0 ; y/w | x/w

(24-Bit Precision) MOVD MM0, [mem] ; 0 | w
PFRCP MM1, MM0 ; 1/w | 1/w (approx.)
PUNPCKLDQ MM0, MM0 ; w | w (MMX instruction)
PFRCPIT1 MM0, MM1 ; 1/w | 1/w (intermed.)
MOVQ MM2, [mem] ; y | x
PFRCPIT2 MM0, MM1 ; 1/w | 1/w (full prec.)
PFMUL MM2, MM0 ; y/w | x/w

Note: For a description of the PUNPCKLDQ instruction, see the
AMD-K6® Processor Multimedia Technology Manual, order#
20726.
60 Division and Square Root Chapter 3

21928G/0—March 2000 3DNow!™ Technology Manual
Square Root
The 3DNow! instructions can also be used to compute a
reciprocal square root or square root with high performance.
The general Newton-Raphson reciprocal square root recurrence
is as follows:

Zi +1 ← 1/2 • Zi • (3 – b • Zi
2)

To reduce the number of iterations, the initial approximation is
read from a table. The 3DNow! reciprocal square root
approximation is accurate to at least 15 bits. Accordingly, to
obtain a single-precision 24-bit reciprocal square root of an
input operand b, one Newton-Raphson iteration is required
using the following 3DNow! instructions:

1. X0 = PFRSQRT(b)

2. X1 = PFMUL(X0, X0)

3. X2 = PFRSQIT1(b, X1)

4. X3 = PFRCPIT2(X2, X0)

5. X4 = PFMUL(b, X3)

The 24-bit final reciprocal square root value is X3. In the AMD
implementat ion, the est imate contains the correct
round-to-nearest value for approximately 87% of all arguments.
The remaining arguments di f fer f rom the correct
round-to-nearest value by 1 ulp. The square root (X4) is formed
in the last step by multiplying by the input operand b.

Square Root Examples

These examples illustrate the use of 3DNow! technology to
perform square roots.

(15-Bit Precision) MOVD MM0, [mem] ; 0 | a
PFRSQRT MM1, MM0 ; 1/(sqrt a) | 1/(sqrt a) (approx.)
PUNPCKLDQ MM0, MM0 ; a | a (MMX instr.)
PFMUL MM0, MM1 ; (sqrt a) | (sqrt a)
Chapter 3 Division and Square Root 61

3DNow!™ Technology Manual 21928G/0—March 2000
(24-Bit Precision) MOVD MM0, [mem] ; 0 | a
PFRSQRT MM1, MM0 ; 1/(sqrt a) | 1/(sqrt a) (approx.)
MOVQ MM2, MM1 ; X_0 = 1/(sqrt a) (approx.)
PFMUL MM1, MM1 ; X_0 * X_0 | X_0 * X_0 step 1
PUNPCKLDQ MM0, MM0 ; a | a (MMX instr.)
PFRSQIT1 MM1, MM0 ; (intermediate) step 2
PFRCPIT2 MM1, MM2 ; 1/(sqrt a) (full prec.) step 3
PFMUL MM0, MM1 ; (sqrt a) | (sqrt a)
62 Division and Square Root Chapter 3

	Contents
	1 3DNow!™ Technology 1
	2 3DNow!™ Instruction Set 17
	3 Division and Square Root 59

	List of Figures
	List of Tables
	Revision History
	3DNow!™ Technology
	Introduction
	Key Functionality
	Feature Detection
	Register Set
	Data Types
	3DNow!™ Instruction Formats
	Definitions
	Execution Resources on AMD�K6® Processors
	Task Switching
	Exceptions
	Prefixes

	3DNow!™ Instruction Set
	FEMMS
	PAVGUSB
	PF2ID
	PFACC
	PFADD
	PFCMPEQ
	PFCMPGE
	PFCMPGT
	PFMAX
	PFMIN
	PFMUL
	PFRCP
	PFRCPIT1
	PFRCPIT2
	PFRSQIT1
	PFRSQRT
	PFSUB
	PFSUBR
	PI2FD
	PMULHRW
	PREFETCH/PREFETCHW

	Division and Square Root
	Division
	Divide Examples

	Square Root
	Square Root Examples

